
Verbatim phrases and listings in LATEX

Péter Szabó 〈pts@fazekas.hu〉 ∗

Budapest University of Technology and Ecomomics,
Department of Analysis,
Műegyetem rakpart 3–9.,

Budapest, Hungary H-1111

2004-11-11

Abstract

The examplep package written by the author recently provides sophisti-
cated features for typesetting verbatim source code listings, including the
display of the source code and its compiled LATEX or METAPOST output
side-by-side, with automatic width detection and enabled page breaks (in
the source), without the need for specifying the source twice. Special care
is taken so section, page and footnote numbers do not interfere with the
main document. For typesetting short verbatim phrases, a replacement
for the \verb command is also provided in the package, which can be used
inside tables and moving arguments such as footnotes and section titles.
The listings package is used for syntax highlighting.

The article reviews the design decisions made during the package de-
velopment and also presents some interesting implementation internals.
examplep is compared to standard LATEX packages such as listings, ltxdoc,
sverb and moreverb. The new codep package and its accomanying Perl
script, which provide a convenient interface to the examplep package for
authors of manuals, is also presented. With codep it is possible to generate
the source code, the LATEX or METAPOST output and the compilable ex-
ample file onto the CD from a single source embedded into the appropriate
place of the .tex document file.

1 Terminology

verbatim text A visually distinguishable textual part of the document (usu-
ally typeset with a monospaced, or typewriter font) that is allowed to
contain the full ASCII character set. Verbatim text is often used to type-
set parts of program source files, including TEX source. Verbatim text
must be marked up (i.e. surrounded) in the source of the LATEX document,
so backslash and other control characters are typeset verbatim instead of
being interpreted as commands or special LATEX characters.

inline verbatim A verbatim text passage inside a paragraph or table cell.
∗Thanks to Ferenc Wettl for the fruitful long discussion about the line syntax of the code

environment, and also for reviewing the article.

1



display verbatim is a vertical verbatim text block between paragraphs.

side-by-side display When typesetting program source in a display verbatim,
it is often desirable to show the output of the program as well. This is
especially useful when teaching scripting languages, so the reader can see
the command and its effect side-by-side in a quick glance. For TEX or
METAPOST sources and EPS and PDF source files it is also useful to see
the source and the typeset result side-by-side.

Source and Sample Side-by-side displays can be divided to Source and Sam-
ple, the latter being program output or typeset material.

CD-files Files accompanying a book, usually on a CD or DVD shipped with
the book, or avalable for download on the home page of the book. These
files usually contain some of the display verbatim material in the book, so
readers do not have to retype them.

2 Special characters in the LATEX source

The special meaning of the input characters in the source file must be disabled in
verbatim mode – except for the character(s) that delimit the end of the verbatim
text. The following characters have to be dealt with:

ASCII symbols The ligatures have to be disabled, especially ?‘→ ¿ etc. The
safest way is to make both characters of such a ligature active, and defining
\def?{\relax\string?\relax} and \def‘{\relax\string‘\relax}.ex-
amplep issues similar definitions covering all such ligatures in the OT1- and
T1-encoded CM fonts.

ASCII letters Most verbatim fonts don’t contain the “fi” or similar ligatures,
so examplep takes no care to disable them.

special TEX source symbols To disable the special meaning of the symbols
\ { } $ % ^ & _, examplep redefines their \catcode for display verbatim.
However, catcode changes are not always appriopriate for inline verbatim,
so examplep provides \÷ (see below) which doesn’t change catcodes at all.

other ASCII punctuation Some of these characters ([ ] ; ’ , . / ~ ! @ *
( ) + | : " < > ? ‘ - =) may be active, for example, ~ is ÷ ÷, ‘ is a
Babel shorthand (e.g. in the Hungarian language module, magyar.ldf); "
is a Babel shorthand (e.g in the German language module); ?, !, : and ;
are activated (e.g. by the French language module), and other characters
may be activated, too. So examplep sets the catcode of all characters in
the range 33 . . . 126 to other (12). This includes all ASCII punctuation,
letter and digit characters.

double carets For example, the letter “J” can be input as its ASCII code in
hex, prefixed by double carets: ^^4a. However, in verbatim mode we
want the 4 characters, not the letter J. There is no problem in inline
verbatim mode, because ^ loses its special meaning once its catcode is
changed. However, when the verbatim material is written to a file or to
the terminal, TEX may change “unprintable” characters to escapes prefixed

2



by ^^. These changes must be reverted when reading the file back. See
Subsection 7.2 for more.

high characters Input characters in the range 128 . . . 255 are usually activated
by the inputenc package, and they know how to typeset themselves – so
examplep leaves the catcode of such characters intact. However, in some
modes, examplep has already changed all catcodes to 12 and 10 (with
\meaning), so it has to change the catcodes of such high codes back to 13
(active).

3 Features of examplep
These are the most important, unique features:

• layout of side-by-side display may depend on maximum Source width

• automatic hyphenation of inline verbatim. The text is divided into words
and punctuation symbols (based on catcodes). For words, the normal TEX
hyphenation patterns apply, and it is allowed to break the line on both
sides of a punctuation symbol.

• customizable isolation of page, section etc. numbers in the Sample and the
host document with the PexaMiniPage environment

• besides the outer level, inline verbatim (when properly escaped inside \Q
or \÷) works safely inside macro arguments, section titles, footnotes, table
cells and index entries

• generated CD-files with automatic page and chapter number

• writing verbatim data to CD-files with a Perl script; exact, binary repro-
duction of verbatim text is guaranteed

• ability to write different material to Source, Sample and CD-files

• the accents \H and \. work as expected with monospaced fonts in the
OT1 encoding. By default, \texttt{\H o} produces }o in OT1 encoding,
because such typewriter fonts (such as cmtt10 ) have those accents replaced
by ASCII symbols. examplep solves the problem by getting the accent from
the cmr font family.

Some other features:

• side-by-side display of the Source and the Sample

• between-word hypenation of inline verbatim

• customizable left and right indentation of display verbatim

• specifying inline verbatim with nested braces (\PVerb, \Q) or terminating
character (\PVerb, ÷, \÷)

• automatic line breaks with hyphenation in display verbatim

3



Table 1: Contexts and features of inline verbatim commands

outer argument tablular elsewhere escaped

\verb + −1 + −1 no
\PVerbOpt + +2 + − no
÷ + +2 − +2 no
\÷ + + + + yes
\Q + + + + yes

1sometimes displays the proper error message
2inner mode only (spaces compressed or lost, % is comment etc.)

• the discretionary hyphen (\hyphenchar) of verbatim text is different from
the one in normal text

• line numbering in display verbatim

• writing to temporary files only if needed

• reading back contents of any file in display verbatim

• inline verbatim with a single character (÷) and its escaped version (\÷
and \Q)

• automatic \indent/\noindent, based on empty line above \begin{...}

• ISO Latin accented input character support in all modes (also present in
\verb)

• support for syntax highlighting with the listings package [1]

• emits a tab as eight spaces in normal mode, but tabs are supported prop-
erly with ttlistings=yes and ttlistings=showtabs

• simple side-by-side display emulation without temporary files, using src
style=leftboth or srcstyle=leftleft

3.1 Escaped mode of inline verbatim locations
For compatibility reasons, examplep doesn’t change the original \verb and
\verb* commands in any way, but defines its own commands: \PVerb, \PVerbH,
\PVerbInner, \PVerbOpt, \Q, ÷ and \÷. Most of the \PVerb. . . commands
are historical. For new documents, only the use of \PVerbOpt, \Q, ÷ and \÷
is recommended. Some of these commands have to be activated with package
load options: \usepackage[Q=yes,div=yes,bsdiv=yes]{examplep}. The rea-
son why ÷ was introduced is that it is a high Latin-1 (and Latin-2) character
available on the Hungarian keyboard, which is usually not used in LATEX doc-
uments (in fact, $\div$ is used instead). Inline verbatim sources with such a
character are compact, and they can contain all ASCII symbols.

examplep supports inline verbatim text at the outer level, inside macro ar-
guments, in table cells and elsewhere (in section titles, in footnotes and in index
entries), see also in Table 1. The reason why some of these cases are treated

4



differently is that catcode changes must be timed correctly so that the proper
catcodes are active by the time TEX reads the verbatim text from the input
file for the first time. (Please note that section titles and index entries are also
written to and read back from auxilary files.)

This is quite hard to accomplish in several cases (because TEX’s mouth
gathers macro arguments at high speed, a way before TEX’s stomach could
change the catcodes), so examplep provides the commands ÷ and \Q, which do
not change catcodes at all, so they work everywhere. Each special (say, not
alphanumeric) character of the source text of these commands must be prefixed
by a backslash, so TEX’s eyes will see it as a controls sequence token. The
backslashes are retained when the construct is written to auxilary files, but
they get removed upon typesetting. Letters, when prefixed by a backslash, get
special meaning, for example \V denotes a visible space. For example, The
construct \÷\\\}÷ is seen by TEX’s eyes as \÷13\\13\}13÷13, and its gets
typeset as \} (by running the command \÷). Please note that the construct
is properly nested, because all braces are inside control sequence names. The
same result (\}) can be achieved with \Q{\\\}}. Both constructs are safe,
because they can be freely moved to anywhere in the source file. However, for
compatibility reasons, \Q is recommended, because its execution doesn’t rely on
the current catcode of the terminating ÷ of \÷. A more complicated example:
‘‘\Q{\\\V X\ }’’ gets typeset as “\ X ”. In escaped mode, \V dentoes a
visible, unbreakable space, \S and \ denote default space (affected by the
pverb-space= option), \B allows a line break there with a discreationary hyphen
(affected by the pverb-linebreak= option), and \n flushes left and starts a new
line.

The \PVerb macros can detect whether they have been invoked from within
a macro argument. If so, they do not insist on catcode changes, but they
emit all the tokens that has been seen by TEX’s eyes. (Spaces are already
compressed now, and everything after % is ignored etc., so this is not purely
verbatim anymore.) However, this works only if the macro argument is properly
nested with respect to braces, and it is delimited by braces (not a terminator
character).

Please note that there might be problems with verbatim material in index
entries processed by makeindex if characters ", @, ! and | are not quoted properly
with ". This is a generic makeindex issue. The quoting must be applied even
inside verbatim material.

3.2 Horizontal alignment of the Source lines
The verbatim environment of standard LATEX reads the whole verbatim text
into a macro argument, thus limiting the length of the verbatim material to
the available main memory. This is enough for about 3400 80-character lines.
The verbatim, moreverb, listings and examplep packages parse the input line-by-
line, so there is no such limit. However, with examplep, additional memory is
required for aligned mode, which limits the maximum number of lines to about
2200 (32 pages) when the average line width is 80 characters. Please note that
the maximums mentioned here may be lower if more packages are loaded; in
another situatian the maximum number of lines was 375. As a reference, a
plain \halign with all lines having (9999)\hfil\cr only could accomodate
about 5000 lines when no packages were loaded. The maximum memory can

5



srcstyle=left PAF
9srcstyle=leftnumhang PAF

9srcstyle=leftnum PAF
9srcstyle=leftnumcol AF when the last page number has 2 digits

srcstyle=center PAF
srcstyle=right PAF

srcstyle=paralign PF with source-par-align=justjust
srcstyle=leftboth srcstyle=leftboth A

9srcstyle=leftbothnumcol srcstyle=leftbothnumcol A
srcstyle=leftleft anything A

P: works in paragraph mode
A: works in aligned mode
F: works when Source is read back from file

Figure 1: The effect of the srcstyle= option

be increased by increasing the extra_mem_bot variable in texmf.cnf or in the
environment.

There are two display modes used for display verbatim: paragraph and
aligned (see the \pexa@show@pars and \pexa@show@halign macros, respec-
tively, in the source). Aligned mode is used when multiple columns (such as
line numbers and text) have to be aligned horizontally. Aligned mode uses the
TEX \halign primitive to do the alignment, and this primitive reads the whole
construct into memory before typesetting it (in order to be able to calculate the
column widths). The other one, paragraph mode, is used when horizontal align-
ment is not needed and side-by-side display is not used. In paragraph mode,
each line is typeset as a seperate paragraph, so the length of the verbatim text
is only limited by the available disk space to hold the resulting DVI file. exam-
plep chooses the mode automatically: for side-by-side display it always chooses
aligned mode (so it can measure the width of the Source before typesetting
it), otherwise, if the srcstyle= makes it possible, it chooses paragraph mode,
otherwise it chooses aligned mode. See Figure 1 for details about Source styles.

Please note that the Source styles leftboth and leftbothnumcol display
each line twice, as Source and as Sample, too. This is different from regular side-
by-side display, because lines of the Source and Sample here are forcibly aligned,
and this solution doesn’t use a temporary file. The source style leftleft is
similar, but it lefts the author specify different Source and Sample for the same
line (they should be separated by & in the source).

3.3 Display verbatim isolation
The PexaMinipage environment is provided, which is similar to the built-in
minipage environment, but provides better isolation of the Sample from the
container document, because it saves and restores section, page, equiation (etc.)
numbers and also marks (section titles in page headers). Labels (for \label,
\ref etc.) are not isolated, because many packages use them in a non-standard
way. See Figure 2 for an example.

The environment also cancels vertical skips (including \belowdisplayskip)
at the bottom of its contents. For space conservation, \abovedisplayskip

6



I My chapter

Welcome1!

1to our isolated minipage environment

1

1 My section

The chapter begins on page 1.

a
2 + b

2 = c
2 (1)

Indented.

2

1\chapter{My chapter}\label{c}

2Welcome\footnote{to our isolated

3minipage environment}!

4\newpage

5\section{My section}\label{s}

6The chapter begins on page

7\pageref{c}.\par

8\begin{equation}a^2+b^2=c^2

9\end{equation}

10\par Indented.

Figure 2: Display verbatim isolation with the PexaMinipage environment

above the very first displayed equation is also canceled. To vaid this, put
\everydisplay{} before the formula. The environment starts with \noindent,
but subsequent paragraphs are indented.

3.4 Feature comparison
Although there are several LATEX packages providing display and/or inline ver-
batim environments for LATEX, examplep has some important unique features
not found in other packages (see the beginning of this section for details). The
author has tried the following packages before deciding to write examplep:

verbatim Although the verbatim environment is built-in into LATEX, its most
important limitation is that it eats up TEX memory when typesetting
very long verbatim material (of several hundred or thousand lines). The
verbatim package fixes this, and provides the \verbatiminput command
(similar to the \PexaShowSource command of examplep) and the comment
environment (similar to PIgnore in examplep).

moreverb This package extends the verbatim package with additional features:
proper handling of tabulators (also accessible from examplep with the list-
ings interface), line numbering (also available in examplep with much more
customization), verbatim surrounded by a frame (this is not available
in examplep, but it works with listings, with page breaks allowed), the
verbatimwrite environment writes its contents to a file (similar to the
WFile environment in examplep).

sverb It provides display verbatim with tabulators and long environments, and it
can read and write text from files. It also has a side-by-side environment
(demo) with fancy frames. The verbfwr package (part of the examplep
distribution) was derived from parts of this package.

7



syntax This package is written by the author of sverb. It provides generic and
customizable inline verbatim support and it also has powerful features to
typeset BNF-like grammars and syntax diagrams. It is documented that
no attempt is made to make the constructs work inside macro arguments
or section titles.

alltt This standard LATEX package defines the alltt environment in which the
characters \ { } retain their original meaning, so it is possible to do some
manual formatting in the verbatim text.

fancyvrb [5] This is extremely configurable verbatim package provides inline
verbatim even in footnotes, display verbatim even with side-by-side, line
numbers on any side, all kinds of francy frames even with page breaks,
text formatting and writing and reading from files; and very long diplay
verbatim text. Options can be specified any time within the argument of
the \fvset command. The original verbatim environment is not modified,
but a new one, Verbatim is defined. Setting the background color is not
possible.

This package is not actively developed. Version 2.7 (dated 2000/03/21) is
part of teTEX. Oddly enough, the newest version on CTAN is 2.6, which
a file timestamp in 2004, but it dated 1998/07/17).

fvrb-ex This package is part of the fancyvrb distribution and uses the fancyvrb
package. It provides a side-by-side display verbatim environment (SideBy
SideExample). A page break is not allowed in the Source after the Sample.
The xrightmargin option has to be specified manually (e.g. xrightmargin
=3cm. The first two characters of each line in the environment are ignored.

ltxdoc The most important features of examplep inspired by the LATEX documen-
tation package are display verbatim line numbering with srcstyle=left
num and inline verbatim started with÷. The ltxdoc package typesets every-
thing between two | characters as inline verbatim. This is not supported
by examplep to avoid making an ASCII character active.

listings [1] The most important layout elements of this sophisticated, highly cus-
tomizable, actively developed package missing from examplep are: back-
ground color, frames (with page breaks allowed), syntax highlighting and
proper tabulator support. Except for the background color and frames,
these features can be used from examplep with its interface to listings, see in
Subsection 4.1. Use \lstset{columns=fullflexible,language=C,back
groundcolor=\color{red},frame=trBL} to try these features. listings
also provides inline verbatim mode (with syntax highlighting), in the
character-delimited argument of the command \lstinline; unfortunately,
spaces at line breaks (with option breaklines) are rendered in an incon-
sistent way, and line breaks do not work well with background color.

listings has an important weak point: it cannot typeset ISO Latin accented
characters with the inputenc package; the way described in the manual
doesn’t work as expected: it puts the accented characters to the wrong
place in the line. This problem, however, is solved when listings is invoked
from examplep. See more about listings in Subsection 4.1.

8



4 Customization

The operation of examplep can be customized with options as 〈key〉=〈value〉
pairs. Global options, which affect all subsequent commands within the current
block, can be specified as package load options (\usepackage[. . . ]{examplep})
or as argument of the \PexaDefaults command. LATEX doesn’t allow compli-
cated option values (such as values containing some expandable macros, for
example after linenumberformat=) to be specified in the \usepackage line –
use \PexaDefaults in such cases. Many commands and environment accept
local options, which affect only that construct.

All options have default values, which are indicated below right after the
option name. If the option has a fixed set of possible values, all of them
are mentioned, and they are prefixed by =. The defaults have been chosen so
the PSource environment matches the builtin verbatim environment as closely
as possible. Note that the original environment is not overridden before the
verbatimenv=yes is specified.

Q=unchanged To enable \Q, use =yes instead of the default.

abreak=unchanged To enable \abreak, use =yes instead of the default.

addvspace-bottom={\vskip\z@skip\addvspace} Specifies the command to
add vertical space below display verbantim. The default works fine, but
e.g. packages maintaining the baseline grid might want to change it.

addvspace-top=\addvspace Command to add vertical space above display ver-
bantim. The default works fine, but for example, packages maintaining
the baseline grid might want to change it.

allowbreak=yes Use =no to disable page breaks in the Source of display ver-
batim.

allowshrink=yes The default will shrink the Sample horizontally if the Source
is too wide. Use =no to disable this. Use =force to enable shrinking of
Source, and with srcstyle=leftleft or srcstyle=leftboth, also enable
shrinking of the Source if it is narrow.

baseline-grid=no Use =yes to adjust the height of the Sample to be an integer
multiply of \baselineskip (with yalign=u and yalign=v).

boxstyle=p Controls how the Sample is boxed. Capital letters are not allowed
for side-by-side display. By default (=p), a PexaMinipage environment
is put inside a \vtop. Use =h to put a \hbox only, =v to put a \vtop
only, =V to put a \vbox only, =m to put a minipage environment inside
a \vtop, =M to put a minipage environment inside a \vbox, =P to put a
PexaMinipage environment inside a \vbox, =G to add \begingroup and
\endgroup only. The default is recommended for most cases, because the
\vtop provides proper alignment with the Source, and the PexaMinipage
environment provides isolation (of page and section numbers etc.) from
the main document.

bsdiv=unchanged To enable \÷, use =yes instead of the default.

9



div=unchanged To enable ÷, use =yes instead of the default.

firstlinenum=1 Specifies the number of the first line of a numbered Source
listing. Useful with srcstyle=leftnumcol and srcstyle=leftnumhang.

linenumberformat={{...}} Commands to display a line number and the sepa-
rator in a numbered Source listing. See the default value in examplep.sty.

linenumbersep={} Commands to display the separator in a numbered Source
listing.

listings=no Use =yes to display each Source line with the listings package.
Specify options (to be executed in \lstset), separated by commas in the
argument. Read more about the options in the documentation of the list-
ings package. For example, listings=yes and listings={} uses listings
with default options (no syntax highlighting), and listings={language=
C,showtabs} enables syntax highlighting for C language and enables vis-
ible tabulators. See Subsection 4.1 for more information.

listings-verbatimfont=pexavf Set the font to be used in the Source when
listings= is active. See source-verbatimfont= for the possible values.

mp-equation-reset=yes Use =no to make the main document and the Samples
inside PexaMinipage share the same equation counter.

mp-varioref-reset=no Use =yes to make the internal counter vrcnt of the
varioref package to be reset for each Sample inside PexaMinipage. This
option doesn’t affect the final output, and varioref expects this counter not
to be reset, so it is not recommended to change the default.

noligs=some By default, only those ligatures are disabled whose second char-
acter is one of ‘ ’ , - < >. Use =kernel to get the same effect, but using
the LATEX built-in \@noligs. Use =most to get all ligatures with either
the first or the second character having code between 32 and 127 and cat-
code 12. Please note that ligatures in inline verbatim mode are disabled
anyway, because \allowbreak is inserted between characters of catcode
12, depending on the value of pverb-linebreak=.

pexaminipage-setuphook={} Extra commands to run when starting the Pexa
MiniPage environment, just after the environment has finished its own
initialization.

pverb-hash=full Use =half to make \PVerb convert ## to #. The com-
mand \PVerbH is the same as \PVerb but forces =half. This is re-
quired when \PVerb or ÷ is used inside a macro argument. For example,
\textit{÷#÷} yields the error message Illegal parameter number in defi-
nition of \reserved@a, but \textit{\PVerbH{##}} works fine. The error
message is a general LATEX kernel limitation, for example \textit{\@gobb
le{#}} doesn’t work either.

pverb-hyphenchar=hyphen By default, the minus character (ASCII code 45) is
used to for automatic word hyphenation in inline verbatim. Use =char’30
to have character with code 24; see also Subsection 7.6. Use =none to dis-
able word hyphenation (by setting \hyphenchar to −1). Use =unchanged

10



to get the hyphenchar from the font (the cmtt and ectt fonts have word
hyphenation disabled). Please note that hyphenation around symbols is
affected the pverb-linebreak= option, not this one.

pverb-leftbreakmin=2 Specifies the minimum number of characters in inline
verbatim after which it is allowed to break the line (with pverb-linebreak
=). Values allowed are 0, 1 and 2, but 0 usually doesn’t make sense.

pverb-linebreak=char By default, \PexaAllowBreak is inserted around sym-
bols in inline verbatim, so a line break (with a discreationary hyphen
affected by pverb-linebreakchar=) is allowed there. Use =yes to insert
\allowbreak instead, which allows a line break without discretionaries.
Use =no to disable line breaks around symbols in inline verbatim. The
option pverb-hyphenchar= affects intra-word hyphenation in inline ver-
batim, not this one.

pverb-linebreakchar={$\lnot$} Specifies the discreationary hyphen to be
used in \PexaAllowBreak. See also pverb-linebreak=.

pverb-space=invbreak By default, spaces in inline verbatim are invisible, vari-
able width (as allowed by the font, see also pverb-stretchshrink=) and
breakable (i.e. a space can be replaced by a line break if necessary). Use
=invdisc to get an invisible, variable width space which becomes visi-
ble ( ) when it is broken at the end of the line. Use =invfixbreak to
get an invisible, fixed width and breakable space. Use =invnobreak to
get an visible, variable width and unbreakable space. Use =visnobreak
to get a visible, fixed width and unbreakable space. Use =visbreak to
get a visible, fixed width space with line breaks allowed on both sides.
Use =invbreakleft to get a visible, variable width space with infinite
stretchablility if the line is broken there (this may have strange effect on
other line breaks in the paragraph, so please try to avoid it). The built-in
\verb* command uses source-space=visnobreak.

pverb-stretchshrink=yes By default, spaces in inline verbatim are forced to
be stretchable and shrinkable (by \quad/9). Use =no to disable stretcha-
bility and shrinkability. Use =unchanged to keep the settings in the font.
Note that \fontdimen3 and \fontdimen4 are changed by this option, and
the changes are local to inline verbatim mode.

pverb-verbatimfont=pexavf Set the font to be used in inline verbatim mode.
See source-verbatimfont= for the possible values.

samplewidth=.5\PexaWidth Specifies the maximum width of the Sample in
side-by-side display as a TEX dimension. The actual Sample can be-
come actually narrower (see allowshrink=. The dimensions \hsize,
\linewidth and \PexaWidth can be used. (Our LATEX book used sample
width=.45\PexaWidth.) \leftskip and \rightskip do not affect this
option. \hsize can be used, which is the total width available (including
the extra margins added by surrounding list environments), \linewidth
is \hsize widtout the extra margins produced by lists, and \PexaWidth is
the total width of the Source, the separator (see vrule=) and the Sample.

11



source-par-align=left Specifies the alignment of Source lines when srcsty
le=paralign is active. Use =left (default), =right or =center to speci-
fied flush-left, flush-right or centered alignment, respectively. Use =justi
fy to have the last line flush-left and the previous line justified (please
note that each Source line is mapped to a single paragraph, so the para-
graph will have more than 1 line only if the source line is too long). Use
=justjust to have all lines justified. Use =unchanged to keep the align-
ment of the enclosing block.

source-sepwidth=\tabcolsep Specifies the horizontal distance between the
Source and the Sample. See also vrule=.

source-space=invfixbreak Specifies how to typeset spaces of the Source. See
pverb-space= for the possible values. The built-in verbatim* environ-
ment uses source-space=visnobreak.

source-verbatimfont=pexavf Sets the font to be used for the Source when
listings= is not active (see also listings-verbatimfont= for listings
=). Give =ttfamily to use \ttfamily, =pexavf to use \pexa@@verbatim
font (which defaults to \verbatim@font), =latexvf to use \verbatim@
font (which defaults to \normalfont\ttfamily), =unchanged to keep the
current font, or =normalfont to use \normalfont.

srcstyle=left Specifies the horizontal alignment of the Source lines. See more
in Subsection 3.2 and Figure 1.

ttlistings= (no default) Shorthand of listings-verbatimfont=ttfamily,
listings=.

url=unchanged To enable \url, use =yes instead of the default. The \url
will be defined as \def\url{\PVerbOpt{}}. This has the disadvantage
that inside \textit etc. it cannot typeset URLs having a single # (see
pverb-hash= for more), but the url package has the same limitation. A
quick fix: use \itshape instead of \textit etc.

usewidth=skipwidth Specifies which horizontal part of the main text should be
used in a display verbatim. By default, left and right margins introduced
by list environments (such as itemize) and \leftskip and \rightskip
are respected. Use =linewidth to ignore \leftskip and \rightskip but
respect list environments. Use =hsize to use the whole width of main
text. Note that this option affects the calculation of \PexaWidth.

vextrabotdepth=\z@ Dimension to add to the depth of the display verbatim
with yalign=v. The default works fine, but for example, packages main-
taining the baseline grid might want to change it for each instance.

vextravskip=\z@ Amount of vertical space to be added above display verban-
tim with yalign=v. The default works fine, but for example, packages
maintaining the baseline grid might want to change it for each instance.

vsmallht=1pt Specifies Sample height threshold for yalign=v. If the Sample
is lower than this (or sample a higher than the 1st line of the Source plus
\vextravskip – typical for \includegraphics), its top will be aligned

12



to the top of the Source, otherwise its top baseline (with \vtop) will be
aligned to the top baseline of the Source.

xalign=l Specifies horizontal alignment (=l for left, =r for right) of the Sample
box (and the separator) within its allocated width for side-by-side display.
Please note that =r works only with boxstyle=h, because all other box
sizes use their full allocated width.

xindent=deeppre Specifies additional horizontal indentation in display ver-
batim mode. Use =none to get no extra indentation. Use =narrower
to get \narrower (both \leftskip and \rightskip are decreased by
\parindent). Use =deeper to move one level deeper in the list envi-
ronment hierarchy and get that indentation. Use =deeppre (default) to
move one level deeper, but don’t change indentation (this is useful with
yindent=deeper – otherwise it is equivalent to =none). Use =deepright
to set both left and right indentation from the left indentation of =deeper.

yalign=u Specifies vertical alignment in side-by-side display. By default, the
top of the bounding boxes of the Source and the Sample is aligned, which
looks nice if the Sample is an image, but doesn’t align properly if the
Sample is text with a font of similar size to the Source. Use =b to align
the topmost baselines of the Sample and the Source. This looks nice if
the Sample is text, but it is ugly if the Sample is an image higher than
\baselineskip. The use of =v is recommended, which decides between =b
and =u based on the height of the Sample (see vsmallht= for the details).

yindent=deeper Specifies the vertical space separating display verbatim from
the surrounding text. Use =none no have no extra vertical space, the dis-
play verbatim appears to be a new paragraph as far as \baselineskip and
\vskips are concerned. Use =deeper (default) to move one level deeper
in the list environment hierarchy (and use the \parsep and \partopsep
etc. specified there). It is recommended to have yindent=deeper and
xindent=deeppre together, so there is no extra horizontal indentation.

verbatimenv=unchanged Use =yes to change the implementation of the verba
tim and verbatim* environments to use the PSource environment.

vrule=rule By default, the Source and the Sample are separated with a ver-
tical rule of width \arrayrulewidth in the middle of a horizontal space
specified by source-sepwidth=. Use =skip to omit the rule but keep the
space. Use =none to have no separator at all.

The other packages (codep and verbfwr) shipped with examplep do not have
load options.

4.1 Interface to the listings package
The listings package [1] provides advanced typographic for display verbatim, in-
cluding proper typesetting of tabulators and syntax highlighting for more than
a hundred languages. examplep doesn’t try to reimplement these features, but
it supports calling the listings package to typeset the Source lines in display ver-
batim. The surroundings (line numbers, vertical separation, horizontal margins

13



and the Sample) are not effected, only the Source line contents are passed to
listings. This implies that the border and the background color support provided
by the listings package doesn’t work with examplep. To use the interface, the
listings package must be loaded, and either the listings= or the ttlistings= options
of examplep has to be active when the Source is typeset. Additional options can
be specified to listings in the argument of \lstset at any time. The interface
has been tested with the listings package dated 2000/08/23 and 2004/09/07.

examplep treats tabulators (ASCII code 9) as 8 spaces. This is acceptable at
the beginning of the line, but it may be incorrect elsewhere. To get tabs right,
specify the ttlistings=yes, or, to be more precise, the ttlistings={tabsize
=8} option to examplep. It is also possible to have visible tabulators: specify,
for example, ttlistings={tabsize=8,showtabs}. In our tests listings failed
to detect the width of a character of a fixed width font, so examplep enforces
character width using the natural width of the space each time it calls listings.
This workaround made the showtabs listings option work properly. See the
documentation of the listings package for options that affect the typesetting of
Source line contents. See an example of using listings from examplep on page 22.

listings supports fixed width characters with a variable with fonts. However,
this support seems to be broken when used with examplep, so the columns=full
flexible listings option is enforced so proportional fonts will look proportional.
Although the listings package claims that it has accented letter support, this
didn’t work well with the single-character accented letters input using the inpu-
tenc package (those characters were positioned to a wrong place inside the line,
possibly because listings has failed to recognise that \lst@UseLostSpace\lst@
PrintToken has to be inserted in front of the accented character into its in-
ternal token list). examplep contains a work-around to this problem, with the
following limitations: multibyte input encodings such as UTF-8 are not sup-
ported (will print strange error message); accented characters may not be part
of keyword names in syntax highlighting; accented characters are shown as ^^
hex escapes in aligned mode (see in Subsection 3.2), so they don’t work with
\PexaShowBoth.

listings, when called from examplep, failed to break ligatures such as ‘? and
<<. This has the side effect that guillemots would be typeset instead of bitwise
right shift in C language sources. examplep modifies the \lst@FillOutputBox@
macro so it will add a \relax between each character displayed – so all ligatures
are broken. (This approach is quite differrent from the way LATEX disables a few
ligatures with \@noligs; \pexa@noligs is similar to \@noligs in this respect.)

It is possible to customize the listings package so it typesets some strings dif-
ferently. For example, with the literate={<=}{{$\leq$}}1 listings option, all
occurences of <= (even those inside strings of the target programming language)
are typeset as ≤. There are no problems when using this feature from within
examplep. It is also possible for strings and comments in the syntax-highlighted
Source to span multiple lines – listings takes care to remember its internal state
between lines.

5 Commands and environments

The arguments between brackets ([ and ]) are optional: either the the argument
and the brackets are all missing all all present. The arguments named “options”

14



is a comma-separated list of local customization options, defined in Section
4. The {+ notation in front of an argument means that the argument can be
delimited by braces (thus it must be properly nested), or with any symbol in
\dospecials (\ $ & # ^ _ % ~) or in \pexa@cverb@donormals (‘ ! @ * - + = |
: ; ’ " , . / ? < > ( ) [ ]).

\PVerb[〈options〉]{+〈verbatimtext〉} Typesets its argument in inline verbatim
mode. Similar to the LATEX \verb macro, but respects the options. The
use of [] is recommended instead of omitting the options altogether, be-
cause [] will ensure that the proper catcode changes are in effect even for
the first verbatim character. This command is robust.

\PVerbH{+〈verbatimtext〉} Shorthand for \PVerb[pverb-hash=half] (extra
options cannot be specified). This command is robust.

\PVerbInner\PVerb. . . Forces the \PVerb. . . command immediately following
it to work in inner mode, thus compressing spaces, respecting comment
characters etc. Because of how TEX works, it is impossible to go the other
way round, and force outer mode, because it is too late change catcodes –
the argument has already been tokenized in inner mode. This command
is robust.

\PVerbOpt{〈options〉}{+〈verbatimtext〉} Equivalent to \PVerb, but uses a dif-
ferent syntax. For example, \item[\PVerb[pverb-space=visbreak]{xy
}] doesn’t work because of the nested [. Use this instead: \item[\PVerb
Opt{pverb-space=visbreak}{xy}], or \item[{\PVerb[pverb-space=
visbreak]{xy}}]. This command is robust.

\Q{〈verbatimtext〉} Similar to \PVerb, but its argument must be escaped (see
in Subsection 3.1), and it can be used in section titles etc. Must be enabled
with Q=yes. This command is robust.

÷〈verbatimtext〉÷ Similar to \PVerb, but it can be used in section titles etc.
(but not int tabular) (see in Subsection 3.1). Must be enabled with
div=yes. This command is robust.

\÷〈verbatimtext〉÷ Equivalent to \Q, but the argument delimiter is different.
Similar to \PVerb, but its argument must be escaped (see in Subsec-
tion 3.1), and it can be used in section titles etc. Must be enabled with
bsdiv=yes. This command is robust.

\url{〈url〉} Must be enabled with url=yes. This command is robust.

\begin{WFile}{〈filename〉} (defined in the verbfwr package) Writes its contents
verbatim to the specified file. TEX .tcx and line ending transformations
apply, so it is possible that accented letters will be converted to ^^hex
according to the input encoding.

\begin{WAux} (defined in the verbfwr package) Writes its contents verbatim
into the current .aux file. TEX .tcx and line ending transformations
apply, so it is possible that accented letters will be converted to ^^hex
according to the input encoding.

15



\begin{PWSource}[〈options〉] Comination of \begin{WSource} and \PexaShow
Source. It is recommended to have a [] even if there are no options, so
the very first token of the contents will be read with proper catcodes.

\begin{WBoth} Writes its contents to the Source and the Sample temporary
file. It is a combination of WSample and WSample.

\begin{WSample} Writes its contents to the Sample temporary file (pexa-sam.
tex), to be typeset by a subsequent \PexaShowSample or \PexaShowBoth.
The line must end at \end{WSample} because of technical reasons.

\begin{WSource} Writes its contents to the Source temporary file (pexa-src.
tex), to be typeset by a subsequent \PexaShowSource or \PexaShowBoth.
It is similar to \begin{verbwrite} in the sverb package and the \begin{
filecontents} LATEX built-in environment. The line must end at \end{
WSource} because of technical reasons.

\begin{PIgnore} Ignores everything up to \end{PIgnore}. The environment
closer must be at the end of its line. Similar to the comment environment
in some other packages.

\begin{PSource}[〈options〉] Typesets its contents in display verbatim. Similar
to the LATEX \begin{verbatim} environment, but respects the customiza-
tion options. It is recommended to have a [] even if there are no options,
so the very first token of the contents will be read with proper catcodes.
This environment is similar to PWSource, but it doesn’t create a tempo-
rary file, so it is faster, srcstyle=leftboth (etc.) can be used, and there
is no ambiguity between ^^e1 and á (etc., see more in Subsection 7.2).
Page breaks are allowed between each Source line. (The implementation
of this environment is fairly complex compared to PWSource.)

\begin{verbatim} Equivalent to \begin{PSource}[]. Must be enabled with
verbatimenv=yes.

\begin{verbatim*} Equivalent to \begin{PSource}[source-space=visbrea
k]. Must be enabled with verbatimenv=yes.

\begin{PexaMinipage}[〈vbox-type〉]{〈width〉} Similar to the LATEX minipage
environment (and accepts the same arguments), but isolates (concerning
section numbers etc.) of its contents from the main document more thor-
oughly. See Subsection 3.3 for details of isolation.

\PexaShowBoth{〈options〉} Typeets the Source and the Sample side-by-side in
display verbatim mode. The Source comes from the temporary file written
by the last WSource or WBoth environment, and the Sample comes from
the temporary file written by the last WSample or WBoth environment.
By default, a vertical separator line is drawn between the Source and the
Sample, and page breaks are allowed in the Source after the end of Sample.
It can be called multiple times with different options for the same file.

\PexaShowSample{〈options〉} Typesets the Sample (written by the last WSample
or WBoth environment) in display mode. It can be called multiple times
with different options for the same file.

16



\PexaShowSource{〈options〉} Equivalent to \PexaInputSource with the file
written by the last WSource or WBoth environment. It can be called mul-
tiple times with different options for the same file.

\PexaInputSource{〈filename〉}{〈options〉} Typesets the contents of the speci-
fied file as Source in display verbatim mode.

\begin{code} (defined in the codep package) Typesets its contents side-by-side
and also marks its contents to be dumped to the CD. By default, each line
is emitted to all three streams, but lines with special prefixes will go into
the Source, Sample or CD-file stream only. See Section 6 for details.

\PexaAllowBreak Allows a line break here with a discreationary specified in
the option pverb-linebreakchar= inserted.

\abreak A robust command which inserts \PexaAllowBreak when the font
{\ttdefault}{m}{n} is active; inserts \allowbreak otherwise. Must be
enabled with abreak=yes.

6 Writing examples with the codep package

Textbooks and manuals tend to have many display verbatim examples. The
examples are usually code snippets which can be further processed by a compiler
or another program. Sometimes minor modifications, such as adding the proper
header or trailer, are necessary before the code snippet can be processed. It
is customary to put all code snippets in the book onto the CD accompanying
the book. The code environment of the codep package (part of the examplep
distribution) generates CD-files automatically.

Three streams are generated from the contents of each code environment:
the Source, the Sample and the CD-file streams. Most parts of these streams are
identical. The Sample usually differs from the Source because the code snippet
has to be typeset specially in the book (for example, \includegraphics has to
be used to typeset an EPS file whose Source is displayed). The CD-file differs
from Source because additional header and footer may be required (such as
\begin{document} etc.), which are omitted from the book to conserve space.

The code environment reads the code snippet line-by-line. The type of the
line is specified in first two characters. Lines having the default type are writ-
ten to all 3 streams, and special line types exist to write to a specific stream
only. The code environment writes the Source and Sample streams to tempo-
rary files, and upon the end of the environment, it calls \PexaShowBoth (or
\PexaShowSource, if the Sample stream is empty) to typeset the example. The
CD-file stream is not written to a file by TEX, but the file name and starting
line number of the code environment is reported in the .aux file. A Perl script
(wrfiles.pl, part of the examplep distribution) has to be called later to the actual
generaton of CD-files. It will examine the .aux files, extract the CD-file stream
from the .tex files, and dump these streams to individual files in the CDfiles
directory. The file names can be specified in the code enviroment, and the en-
vironment can generate file names based on chapter and page numbers (so the
reader will know from the file name where to read more about the example).
The same file name is never generated again.

17



The code package was used in our recent LATEX textbook [4] to typeset its
examples. Most of the examples were written in LATEX, but many of them were
METAPOST sources, and some of them were others (e.g. configuration files, shell
scripts or EPS files). Because of the huge amount of LATEX examples, special
features were added to make them easy and convenient to input for the author.
For example,

\begin{code}
t \usepackage{url}
URL:
\\\url{http://foo.org/~user/}

\end{code}

is displayed as (depending on the examplep options)

1%^\usepackage{url} URL:
2URL: http//foo.org/~user/
3\\\url{http//foo.org/~user/}

As seen above, examples are quite convenient to input, and examplep takes
care of typesetting side-by-side, determining width of the Source, allowing page
breaks, putting margins and \vskips right, adding the rule the separate the
Source and the Sample, adding line numbers, generating file name for CD-file
and writing the CD-file with header and footer.

With codep it is easy to fulfill the following quality criterias: the Sample
must be consistent with the Source (i.e. if the Source is changed during editing to
book, the Sample should change automatically); the CD-file must be consistent
with the Source; the CD-file must be directly compilable with LATEX (so a
header and a footer have to be added). When the deadline of finishing the book
approaches, there might not be enough time left to ensure these manually, so a
package such as codep is very useful in this situation.

6.1 Example files on the CD
The following CD-file is generated from the code snippet above:

\documentclass{article}

\usepackage[latin2]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[magyar]{babel}
\usepackage{url}

\begin{document}

URL:
\\\url{http://foo.org/~user/}

\end{document}

The CodeDefaultD, CodeDefaultL, CodeDefaultB and CodeDefaultE en-
vironments can be used in the preamble to customize the default header and
footer generated into the CD-file. For example:

18



\begin{CodeDefaultD}
\documentclass[10pt]{article}
\end{CodeDefaultD}
\begin{CodeDefaultL}
\usepackage[latin2]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\end{CodeDefaultL}

Although TEX is able to write to external files with \textsfrite, there
were several reasons for using an external program (a Perl script) to extract the
source snippets from the document sources:

• with \write the file always ends at end-of-line

• \write forces .tex if no extension is specified

• \write removes whitespace from end-of-line

• \write translates accented letters to hat-escapes (e.g. á to ^^e1) unless
compiled with latex –translate-file cp8bit.tcx (–translate-file
il2-t1.tcx makes ő in DVI incorrect). There is the same problem when
emitting UTF-8 text.

• it is impossible to distinguish missing files from empty files, so accidental
file overwrites are hard to prevent

• it is too late to verbatize if the verbatim text is inside braced macro
arguments

The only limitations of this solution are: is not possible to \input or \include a
subfile, and then use the code environment in the referrer file; the subfile has to
be included with \include{...} or \input{...} (with braces); and the subfile
must have extension .tex. The first one is usually not a problem, since referrer
files themselves do not typeset text, they only include subfiles. See Subsection
7.7 for implementation details.

6.2 \begin{code} invocation
The input syntax of the code environment has been designed so that typing the
most common examples (short LATEX code snippets) is simple and straightfor-
ward, but the author can have full control over all three streams if he wants to.
The contents of the environment is divided into lines. The first two characters of
each line specify the line type and the rest is the line data. The first character of
the line type is usually a lowercase ASCII letter or a punctuation symbol. Line
types belong to classes, which are denoted by capital ASCII letters. The order
of the classes in the environment is significant, but the order of the individual
types or lines within the class is irrelevant. Some classes have default lines,
which are used only if the class is omitted from the environment. The default
lines make it possible to have default CD-file header and trailer. The clases, in
proper order with allowed types in parentheses), are:

F (f, f !, v, v!) specify the file name.

19



D (d) the \documentclass line, default uses article

L (l) the preamble specific to the natural language, defaults for Hungarian
babel, Latin-2 inputenc, T1 fontenc. Use the CodeDefaultL environment
to override.

P (p≡0, t) the preamble with the \usepackage lines

B (b) \begin{document}

C (<≡c, >≡o,  ≡2, w, s, x, %) the document contents

E (e) \end{document}

The meaning of the complicated types are:

f Accepts a file name with extension. The use of _ in the name is not recom-
mended. The extension (e.g. .tex) is mandatory. The chapter and page
numbers will be prepended to the file name (only the page number for
document classes without chapters), for example f foo.mp may become
2_63_foo.mp in chapter 2, on page 63.

v Like f, but removes the default lines from classes D, L, P, B and E. This is
ideal for emitting non-LATEX examples.

f ! Like f, but don’t prepend numbers to the file name.

v! Like v, but don’t prepend numbers to the file name.

p≡0 Writes only to the preamble of the CD-file.

t Writes to CD-file, appends line prefixed by %^ to Source. Useful to indicate
in the book that a package is needed. Example: t \usepackage{url}.

<≡c Writes to Source and CD-file.

> Writes only to Sample.

x Writes to Sample and CD-file.

 ≡2 Writes to Source, CD-file and Sample.

w Writes only to CD-file.

s Writes only to Source.

% Comment, ignored.

The code environment omits the Sample part from the book if the Sample
is empty, and it omits the whole display verbatim environment (but still writes
to CD-files) if both the Sample and Source are empty.

20



6.3 An example with METAPOST code
If the eempost package is also loaded, the following code can be used to typeset
a simple, syntax-highlighted METAPOST source and its output:

{\PexaDefaults{listings={language=metapost}}\begin{code}
v house.mp
> \begin{EempDef}{house.1}{}{}
w beginfig(1)
u:=18bp; picture V; V:=image(
draw unitsquare scaled u xscaled 2;
fill (0,u)--(2u,u)--(u,1.5u)--cycle
withcolor red);

draw V rotated 10;
draw V shifted (3u,0);

w endfig; end
> \end{EempDef}
> \leavevmode\EempUseFig{house.1}{0}{0}
% ^^^ Dat: \leavevmode to get the Overfull \hbox warning
\end{code}
} % Dat: nothing allowed after \end{code} in its line

If eempost is not loaded, the following code should be used instead:

{\PexaDefaults{listings={language=metapost}}\begin{code}
v house.mp
> \begin{WFile}{house.mp}
x beginfig(2)
u:=18bp; picture V; V:=image(
draw unitsquare scaled u xscaled 2;
fill (0,u)--(2u,u)--(u,1.5u)--cycle
withcolor red);

draw V rotated 10;
draw V shifted (3u,0);

x endfig; end
> \end{WFile}
> \leavevmode\includemps{house.2}
\end{code}
}

The \includemps command should be defined in the preamble as:

\usepackage{graphicx}
\DeclareGraphicsRule{*}{mps}{*}{}
\makeatletter
\@ifundefined{Ginclude@eps}{}{\def\Ginclude@mps{\Ginclude@eps}}
\def\includemps{\@ifnextchar[\includempsb{\includempsb[]}}
\def\includempsb[#1]#2{\includempsc{#1}#2\@nil}
\def\includempsc#1#2.#3\@nil{%
\IfFileExists{#2.#3}{\includegraphics[#1]{#2.#3}}{
\GenericWarning{}{Please run: mpost #2^^J\@gobble}}}

\makeatother

21



This should work with both dvips and pdflatex. The typeset output looks like
this:

1u:=18bp; picture V; V:=image(
2 draw unitsquare scaled u xscaled 2;
3 fill (0,u)−−(2u,u)−−(u,1.5u)−−cycle
4 withcolor red);
5draw V rotated 10;
6draw V shifted (3u,0);

7 Some implementation details

7.1 Starting from poor man’s inline verbatim
The following macro, derived from a macro in the .dtx documentation of David
Kastrup’s binhex package [2], typesets its argument in inline verbatim mode:

{\catcode\string‘>12 \gdef\stripprefix#1>{}}
\def\verbatize#1{{\ttfamily

\toks0{#1}\edef\next{\the\toks0}% Dat: make # OK
\fontdimen2\font=0pt % Dat: hide spaces
\expandafter\stripprefix\meaning\next
\unskip % Dat: strip final space, possibly after command
\fontdimen2\font=\dimen0}}% Dat: reset global change

This demonstration show how useful the TEX primitives \string and \meaning
are. Both of them convert tokens to characters with catcode 12 (other) or 10
(space). Token lists with spaces are hard to post-process by TEX macros, be-
cause TEX macro expansion ignores spaces before undelimited macro arguments.
But it is possible to write a macro which converts spaces to anything with cat-
code 12, for example the \sca macro below does this:

\begingroup\catcode\string‘‘12 \lccode‘‘‘\%\lowercase{\endgroup
\def\scc#1 {\ifx\hfuzz#1\else#1‘\expandafter\scc\fi}}

\def\scb#1#2{\scc#2\hfuzz#1} \def\sca{\scb{ }}
% try with: \message{\sca{foo bar }}

It is possible to change % in the definition above to anything, including a space:
the replacement character will have catcode 12. After such a conversion, the text
to be emitted can be easily processed to add TEX macros, change catcodes back
to 13 for ISO Latin high accented characters, replace spaces with appropriate
constructs, insert \allowbreak to the right places to enable line breaks etc. The
\PVerb macro, when invoked in inner mode (i.e. read inside a macro argument)
works this way, and respects the options specified by the author.

7.2 Hex escapes with output translation
The TEX primitives \write, \message and \errmessage may escape some char-
acters when printing them. By default, TEX changes the code ranges 0–31 and
127–255 (the codes outside the printable ASCII range), escaping such codes with
a ^^: for example, the tabulator (code 9) becomes ^^I, and characters having a
high code in the font (not the input) encoding are dumped in hexadecimal, for

22



example ő (having code 174 in T1 encoding) becomes Ž. (This behaviour depends
on the default .tcx file the TEX distribution uses. No translation occurs with
cp8bit.tcx. To spot the difference, run tex -translate-file cp8bit "\messa
ge{^^I^^1fá}\end", and then change cp8bit to .missing., and run again.)
The transformation is lossy: both \message{ő} and \message{\string^^ae}
yield the same result: ^^ae. Escaping the caret as ^^5e doesn’t help either,
because the TEX unescapes carets recursively when reading back the written
file. Since ISO Latin accented characters are more often needed in verbatim en-
vironments than double carets, examplep does the necessary unescaping when it
reads the file back. The back-transformation doesn’t work with UTF-8, because
the 2nd byte is not decoded by the time the first one is being executed. The
unescaping would be done by TEX itself if the caret had its original catcode 7,
but that would imply that the non-escaping, verbatim carets wouldn’t work.

The unescaping is implemented in a straighforward, but ugly way in the
\pexa@dohex@low. . . macros. The caret escapes are parsed in a huge \if\else
\if construct nested in 40 levels, and once the hexadecimal code is available
and converted to upper case, the \lccode‘+="〈code〉\lowercase{+} construct
is used to insert the appropriate character with catcode 12 (~ is used instead of
+ to get an active character, catcode 13). The construct is not expandable, but
it works because it is used for typesetting. The caret is made active and defined
to execute \pexa@dohex, so each caret in the file will get unescped.

7.3 Disabling ligatures
The only way to disable a ligature in TEX is to insert a nonexpandable tokens
into the input stream between the characters forming the ligature. For example,
f{}i or f\relax i can be used to get “fi” instead of “fi”. The most important lig-
atures (in addition to ligature letters) to be disabled in verbatim mode are: << >>
?‘ !‘ ,, ‘‘ ’’ -- and ---. This can be accomplised by inserting a \relax token
in front of each ‘ ’ , - < and >. The \pexa@noligs@some command of exam-
plep does exactly this, for example, it defines {\lccode‘~‘<13 \gdef~{\relax
\string~}}. The definition slightly different from the one of the \@noligs
command in the LATEX kernel: \def<{\leavevmode\kern\z@\char‘\<}; but
the effect is the same. The \pexa@noligs@most command, on the other hand,
makes all characters with category code 12 in the range 32. . . 127 active, and
adds \relax to both sides. This change doesn’t affect ASCII or accented letters,
but usually there are no ligatures with letters in typewriter fonts. See also the
noligs= load option.

7.4 Detecting inner/outer brace in inline verbatim mode
The \PVerb commands work differently based on whether they are inside a
macro argument or not. More precisely, they detect whether they are able to
change the catcode of the following token. If so, they are in outer mode (i.e.
outside a macro argument), so they change all the other catcodes as well, so
consecutive spaces and comment characters will be included in verbatim, too.
Otherwise, they are in inner mode, their argument is already read and tokenized
by TEX’s eyes, so changing catcodes is pointless.

The auto-detection works this way: the catcode of all the special characters
(as enumerated in \dospecials; including braces) is changed to 3 (math-shift).

23



Then the next token is read into \reserved@a with \afterassignment\pexa@
cverb@gottoken\let\reserved@a= . No tokens are ignored this way, not even
spaces. The \pexa@cverb@gottoken macro then examines the catcode of the
character in \reserved@a, and if it is 3, it continues in outer mode, otherwise
it continues in inner mode. In inner mode, the next token is forced to be an
open-brace, because verbatim material with braces not nested cannot be read
into inner mode anyway (TEX would print an error message when it is trying to
find the end of the macro argument containing the \PVerb construct).

Another common trick is used when parsing the argument in outer mode
when it is delimited by braces. Normally a TEX macro expansion (using the
definition \def\pexa@cverb@outerc#1{...}) can read an argument that is in
braces, but in our case the very first opening brace has been already read (by
\let above), so we have to insert it back: \catcode‘\{1 \catcode‘\}2 \ex
pandafter\pexa@cverb@outerc\expandafter{\iffalse}\fi. The \iffalse
}\fi here is needed for making the definition properly nested.

7.5 Inline verbatim in section titles
The TEX command \write, \message and \edef fully expand their argu-
ments, and similar expansion is enforced by the \markboth built-in LATEX macro
for section titles and page headings. Therefore macros in section titles have
to be protected so their expansion is delayed until the section title is type-
set. LATEX offers \protect for this: if the macro control sequence is pre-
ceded by \protect, its expansion is properly delayed; the expansion of the
argument has to be delayed manually in a similar way. Some macros have
\protection included; they are called “robust”. If the definition a macro starts
with \DeclareRobustCommand instead of \newcommand, the macro is defined to
be robust (and its body can be retrieved by looking at the control sequence with
a space added, e.g. \expandafter\show\csname sqrt \endcsname).

\protect can have three definitions depending on what time it is pro-
cessed: it is \string in a \typeout or a LATEX error or warning message
(try \typeout{\meaning\protect}); it is \noexpand\protect\noexpand when
\writeing to a file (most commonly the .aux file); otherwise it is just \relax
(≡ \@typeset@protect; try \pagestyle{headings}\section{\meaning\pro
tect} and spot the difference between the main text, the section title and the
.aux file).

The \÷ and \Q inline verbatim commands are made robust, so they can be
used in macro arguments. In fact, they are extra-robust, since they take care
of protecting their arguments when being written to a file by LATEX. Protecting
here means adding \noexpand in front of each token in the argument. The token
parsing is easy since the argument – by the nature of these commands – may
not contain braces or spaces. The implementation looks like this.

\long\def\÷#1÷{\Q{#1}}
\long\def\Q{\ifx\protect\@typeset@protect\expandafter\@gobble\fi
\@thirdofthree\@firstoftwo\displayit\protectit}

\def\displayit#1{...}
\def\protectit#1{\noexpand\÷\protectnext#1÷}
\long\def\protectnext#1{\noexpand#1%
\ifx#1÷\else\expandafter\protectnext\fi}

24



The first trick is in the body of \Q: the argument is passed to either \displayit
or \protectit, depending on the current value of \protect. If the condition
is true, \@gobble is called, which removes \@thirdofthree, so \@firstoftwo
will choose \displayit (otherwise, \@thirdofthree chooses \protectit). The
second, more classical trick is the rôle of \expandafter in the definition of
\protectnext: it makes the \fi token disappear, so the tail-recursive call to
\protectnext will grab the next token into #1 instead of \fi itself.

7.6 Special hyphenchar in inline verbatim
When inline verbatim is hyphenated, care has to be taken to make the discre-
tionary hyphen different from a regular, verbatim hyphen. (There is a simi-
lar problem with spaces disappearing when the line is broken; to avoid this,
try setting the option pverb-space=visbreak or pverb-space=invdisc.) TEX
auto-hyphenation takes the discretionary hyphen from the \hyphenchar of the
font. So the solution is adding a new glyph to the verbatim font, changing the
font encoding vector to include the glyph, and then setting \hyphenchar.

We have chosen character position 24 (per-thousand sign) of the T1 encoding
to be replaced by a soft hyphen ( ), which is deliberately narrower than all the
other characters, so the reader immediately sees its function. For example: “foo
bar”. We have drawn the glyph in Fontforge, saved the data to PFB, converted
it to human-readable format with the command type1fix.pl shorthyp.pfb
gsx: shorthyp.gsx, extracted the human readable glyph definition (/short
hyp { ... }) from the output. We have changed the /FontName and injected
the glyph to original font with the following command:

perl -x -S type1fix.pl --set-leniv=0 --dump-spaces=no --pack \
--dump-bars --dump-stde --dump-ends=no --debug-warnings \
--chk-insize=no --set-uniqueid=random --set-fontname=t1xtts \
--set-glyph="/shorthyp { 50 354 hsbw 315 vmoveto -17 vlineto 0
-8 0 -8 6 -4 rrcurveto 4 -6 8 0 5 0 rrcurveto 195 hlineto -124
vlineto -11 0 -21 15 vhcurveto 2 0 3 1 2 1 rrcurveto 10 2 1 12
0 12 rrcurveto 0 8 -1 8 0 5 rrcurveto 130 vlineto 0 5 1 7 0 7
rrcurveto 0 12 -2 11 -11 3 rrcurveto -5 1 -6 0 -5 0 rrcurveto
-12 0 -12 -1 -10 0 rrcurveto -98 hlineto -16 0 -19 2 -17 0
rrcurveto -32 -6 -3 -24 hvcurveto closepath endchar} def" \
t1xtt.pfb pfb: t1xtt-shorthyp.pfb

We have changed six lines in tex256.enc to match the glyph names in the font
(e.g. /endash→ /rangedash), and we have changed position 24 to /shorthyp.
We have also changed the name of the encoding in the beginning of the file.
We have inserted the following line to the PostScript font map files (e.g. ps-
fonts.map), without the line break:

t1xtts t1xtts "TeX256-shorthypEncoding ReEncodeFont"
<tex256-shorthyp.enc <t1xtt-shorthyp.pfb

We have also added a new TFM file based on the old one. We have dumped
the old one with tftopl -charcode-format=octal t1xtt.tfm, modified the
width (CHARWD) of character 24 (CHARACTER O 30), and saved the modifications
with pltotf modified.pl t1xtts.tfm. We’ve added the LATEX font map file
t1xtts.fd with the following content:

25



\DeclareFontFamily{T1}{xtts}{\hyphenchar\font\m@ne}
\DeclareFontShape {T1}{xtts}{m}{n}{<->t1xtts}

The \hyphenchar settings above disables automatic word hyphenation, so words
inside \texttt etc. won’t be accidentally hyphenated. We have copied all the
files above to the appropriate directories and we have run mktexlsr to update
the file list. We have included some options in \PexaDefaults line in the docu-
ment preamble: pverb-hyphenchar=char’30 (for automatic word hyphenation)
pverb-linebreak=char, pverb-linebreakchar={\string\char’30 } (insert-
ed around symbols). We have also defined \def\pexa@verbatimfont{\normal
font\fontfamily{xtts}\selectfont}, and we have made sure that the T1
encoding is in use (\usepackage{t1enc}).

The overall effect of these modifications was that examplep now used our
glyph for automatic word hyphenation and as discreationary hyphen around
symbols in inline verbatim mode. The demonstrations above shows that it is
quite complicated to change a single glyph in a LATEX font. It is hoped that the
situtation will improve with TEX’s successors.

7.7 Passing information about the CD-files to wrfiles.pl
wrfiles.pl is used to extract the CD-files from the LATEX sources of a book. The
reasons why an external program is used instead of TEX’s built-in \write com-
mand are described in Subsection 6.1.

The file names and environment start line numbers are passed to wrfiles.pl in
the .aux file(s). For example, the line \@gobble{code:foo.tex:156:2_pic3.
mp} is a declaration that there is a code environment starting at line 156 in the
file foo.tex. wrfiles.pl understands such declarations, and it also understands
lines like \@input{foo1.aux}, so dumping works even if the document is sep-
arated to several \included source files. The declaration above is ignored by
LATEX when it reads back the .aux file (because \@gobble gobbles its argument).

Although the \inputlineno primitive is mentioned twice in the TEXbook
[3], its – rather straightforward – purpose is not documented there. But the
real problem is that TEX doesn’t remember the name of the file being read.
\jobname contains the name of the top-level .tex file, so it doesn’t work when
that file \includes or \inputs subfiles containing code. The codep package
thus modifies the \InputIfFileExists command to save the file name to the
macro \codep@code@@inputfile if the extension is .tex. (The other most
common extension after the preamble is .fd: such a file is loaded each time
a LATEX font that has not been used yet is selected.) The implicit limitation
here that code won’t work unless the extension of the file included is .tex.
Hooking \InputIfFileExists affects \include{...} and \input{...}, but
not not \input ..., \documentclass or \usepackage. This is not a problem
if the author remember that he has to use braces around the file name.

Since there is no hook for \endinput (and some packages rely on that
\endinput is an expandable primitive), it is not possible to set up a stack
of names of files being read. Thus, if file A has included file B, an after that
code environment placed in A will not work, because the declaration line read
by wrfiles.pl will contain the name of B instead of A. This is not a serious limi-
tation, becase files including other files usually don’t typeset text by themselves
after the inclusion.

26



The primary reason why wrfiles.pl needs the .aux file is that it has to embed
the page and chapter numbers into the file names. Although wrfiles.pl could find
the source file with the code environments by trying to match line numbers with
all source files in the current directory, we have decided to make it fail when
the file name is not emitted properly into the declaration, so it is sure that the
examples in the book and on the CD are consistent.

8 Future work

The most important features to be added and other improvement possibilites:

• a better approach towards automatic hyphenation of inline verbatim, after
studies in typography

• allow wider sample if source is small enough

• why doesn’t \selectlanguage work inside \begin{PSource}[srcstyle=
leftboth]

• \PVerb{foo} mustn’t insert “¬” if foo is at end-of-line

• \PVerb{...} inner unnested braces (\futurelet?)

• differentiated \penalty values in \PVerb

• paragraph mode should work with side-by-side displays (of course, mea-
suring the width of the Source has still to be done in aligned mode)

• ASCII tabulator (9) characters aren’t supported properly, they are just
converted to spaces. The width of the tab character should depend on its
horizontal position in the line. (With listings=, the results are already
correct.)

• framing and background color support to display verbatim

• accented characters should work with listings and \PexaShowBoth. The
original catcode of ^ should be kept so TEX itself would parse the hex
escapes.

• an interface to \lstinline in listings, with line breaks allowed

9 Conclusion

examplep, as it is now, is a highly customizable LATEX package that provides
both inline and display verbatim mode with several advanced features, many
of which are not available in any other packages. The code environment is also
provided which can typeset both the Source and the Sample column of a side-
by-side display verbatim from the same LATEX source stream, furthermore it
can emit the stand-alone working version of the Source into a CD-file. These
features make the code environment especially useful for sofware textbook and
manual authoring. The whole examplep distribution is under the GNU GPL,

27



and it is freely available from CTAN. An earlier version of the packages was used
to typeset all the examples in a 770-page introductionary book about LATEX.

examplep is not complete. Some important features are not implemented
yet and the package has not been tested thoroughly. Some parts of the code
are really ugly, partially because it has not been polished up after writing, and
partially because the architecture of TEX and LATEX doesn’t provide an elegant
way to address the problem. For example, active characters are overloaded:
they are used by inputenc, babel (shorthands) and listings (syntax highlighting)
for different purposes – these packages have to make extra effort to cooperate
with each other. We hope that TEX’s successors will improve these conditions,
and the core system will provide a generic way to tokenize verbatim text instead
of changing catcodes.

References

[1] Carsten Heinz. The Listings Package, 7 September 2004.
CTAN:macros/latex/contrib/listings/listings-1.3.dtx.

[2] David Kastrup. The binhex.tex package for expansible conversion into
binary-based number systems, 2001.
CTAN:macros/generic/kastrup/binhex.dtx.

[3] Donald E. Knuth. The TEXbook. Addison–Wesley, 1984.

[4] Ferenc Wettl, Gyula Mayer, and Péter Szabó. LATEX kézikönyv. Panem,
Budapest, 2004.

[5] Timothy Van Zandt, Denis Girou, and Sebastian Rahtz. The ‘fancyvrb’
package. Fancy Verbatims in LATEX, 1998.
CTAN:macros/latex/contrib/fancyvrb/fancyvrb.dtx.

28


