
The media9 Package, v1.29

Alexander Grahn
 https://gitlab.com/agrahn/media9

16th September 2024

Abstract

A LATEX package for embedding interactive Adobe Flash (SWF) and 3D files (Adobe
U3D & PRC) as well as video and sound files or streams (FLV, MP4/H.246, MP3)
into PDF documents with Adobe Reader-9/X compatibility.

Keywords: embed flash movie LaTeX pdf 3d include sound swf mp3 video mp4
h.264 aac slideshow image gallery flv audio multimedia streamed media rtmp
YouTube animation JavaScript pdfLaTeX dvips ps2pdf dvipdfmx XeLaTeX u3d prc
Adobe Reader Foxit RichMedia annotation LuaLaTeX

Contents
1 Introduction 2

2 Requirements 3

3 Installation 3

4 Using the package 4

5 The user interface 5

5.1 Media inclusion . 5

5.2 Command options . 6

5.3 Control buttons . 16

6 Embedding Flash, video and sound, image slide-shows (with examples) 18

7 Embedding 3D objects (with examples) 30

7.1 Introduction . 30

7.2 3D quick-start guide . 35

8 Caveats 36

9 Acknowledgements 36

1

https://gitlab.com/agrahn/media9

1 Introduction
This package provides an interface to embed, in the first place, interactive Flash (SWF)
and 3D objects (Adobe U3D & PRC) into PDF documents. Video and audio files or
streams in the popular MP4, FLV and MP3 formats can be embedded as well. However,
a media player Flash component is required for playback, as will be explained shortly.
Playback of multimedia files uses Adobe Flash Player, which was bundled with Adobe
Reader 9 and 10 versions. Unfortunately, beginning with Adobe Reader 11, it must be
installed as a separate plug-in.

Among the supported media types, video and sound files require an additional Flash
(SWF) application for playback, which must be either embedded into the PDF or
loaded at runtime from the internet. There are numerous such players, both open-
source and commercial, available on the internet. One of them is the highly config-
urable open-source ‘StrobeMediaPlayback.swf’ [1], maintained by Adobe and hosted
on SourceForge.net . Package ‘media9’ comes with an enhanced version of ‘Strobe-
MediaPlayback.swf’. In addition, two simple players for video and audio, ‘VPlayer.swf’
and ‘APlayer.swf’ are included, which can be used instead. They provide sufficient
functionality for playing embedded files and streamed media.

There is yet another player bundled with ‘media9’. It is a simple image gallery viewer
called ‘SlideShow.swf’ which can display collections of embedded and remote images
in the PNG, JPEG and GIF file formats. Remote images are downloaded at viewing
time and can be configured to be refreshed at definite time intervals.

Flash Player supports the efficient H.264 codec for video compression. MP4/H.264 video
files can be encoded from existing video files and from numbered bitmap sequences
using the ffmpeg (http://ffmpeg.org) or avconv (http://libav.org) command
line tools (Libav is a fork from the FFmpeg code). In order to allow for precise seeking
within video files it is necessary to encode them with a sufficient number of key frames.
The command line for recoding an existing video file video.avi into video.mp4

reads (one line; ffmpeg can be substituted with avconv)

ffmpeg -i video.avi -vf scale="trunc(iw/2)*2:trunc(ih/2)*2"

-c:v libx264 -profile:v high -pix_fmt yuv420p

-g 30 -r 30 video.mp4

From a sequence frame-0.png, frame-1.png, … of bitmap files, an MP4 video is
produced by

ffmpeg -i frame-%d.png -vf scale="trunc(iw/2)*2:trunc(ih/2)*2"

-c:v libx264 -profile:v high -pix_fmt yuv420p

-g 30 -r 30 video.mp4

Both examples insert a key frame (option ‘-g’) at every second since the frame rate
is set to 30 fps. The video encoder requires even pixel numbers in both dimensions
which is ensured by adding ‘-vf scale="..."’ to the option list.

Note: ‘media9’ package replaces the now obsolete ‘movie15’ package. ‘media9’ is based
on the RichMedia Annotation (Annotations are the interactive elements in a document,
in PDF specification parlance.), an Adobe addition to the PDF specification [2], while
‘movie15’ uses the old multimedia framework (‘Screen Annotation’) of pre-9 Readers
which depends on third-party plug-ins and which does not support recent media file
formats.

2

http://sourceforge.net/projects/osmf.adobe/files/
http://ffmpeg.org
http://libav.org

Package ‘media9’ supports the usual PDF making workflows, i. e. pdfLATEX, LuaLATEX,
LATEX → dvips→ ps2pdf/Distiller and (X E)LATEX → (x)dvipdfmx.

The final PDF can be viewed in current Adobe Readers on MS Windows and other
platforms. On Unix platforms including Linux, however, support of Flash, video and
sound was discontinued at Reader version 9.4.2, probably for security reasons. PDF
documents which target Adobe Reader 9.4.1 for Linux should use ‘VPlayer9.swf’ and
‘APlayer9.swf’ (also included in the ‘media9’ package). These media player components
are compatible with the older Flash Player 9 plugin that is bundled with the Reader
for Linux. Recent versions of Foxit PDF Reader, which is available on the Windows
platform, are known to render embedded Flash, video and audio content. Foxit also
uses Adobe Flash Player plugin. On tablets and phones running Android or iOS, ezPDF
Reader was reported to play video and sound files embedded with ‘media9’.

2 Requirements
l3kernel (LATEX package), version ≥ 2024 − 08 − 30

pdfTEX, version ≥ 1.40

Ghostscript, version ≥ 9.15, or Adobe Distiller for PS to PDF conversion

dvipdfmx, version ≥ 20190503 for DVI to PDF conversion

Adobe Reader, version ≥ 9, but not greater than 9.4.1 on Linux; Foxit Reader (Flash,
video, audio)

Adobe Flash Player plugin for Firefox

3 Installation
MiKTEX and TEXLive users should run the package manager for installation and
updates.

Otherwise, a manual installation into the local TeX-Directory-Structure (TDS) root
directory is done along the following steps:

1. Download the TDS compliant package file ‘ media9.tds.zip ’ from CTAN.

2. Find the local TDS root directory by running
kpsewhich -var-value TEXMFLOCAL

on the command line. The local TDS root directory is intended for packages that
are not maintained by the TEXLive package manager.

3. Unzip ‘media9.tds.zip’ into the local TDS root directory previously found.
Depending on the location of this directory, you may need to be logged in as
Root/Administrator.

4. After installation, update the filename database by running ‘texhash’ on the
command line. Again, Root/Administrator privileges may be required.

For updating the package, repeat the steps given above.

3

ftp://ftp.adobe.com/pub/adobe/reader/unix/9.x/9.4.1/
http://mirror.ctan.org/install/macros/latex/contrib/media9.tds.zip

4 Using the package
Invoke the package by putting the line

\usepackage[<package options>]{media9}

to the preamble of your document, i. e. somewhere between \documentclass and
\begin{document}.

‘media9’ honours the package options:

dvipdfmx

xetex

bigfiles

draft

final

playbutton=...

noplaybutton

activate=...

deactivate=...

windowed=...

transparent

passcontext

attachfiles

3Dplaytype=...

3Dplaycount=...

3Dplayspeed=...

3Dtoolbar

3Dnavpane

3Dpartsattrs=...

3Dmenu

3Dbg=...

3Dlights=...

3Drender=...

Except for ‘dvipdfmx’, ‘xetex’ and ‘bigfiles’, the options above are also available
(among others) as command options and will be explained shortly. However, if used as
package options they have global scope, taking effect on all embedded media in the
document. In turn, command options locally override global settings. Options without
an argument are boolean options and can be negated by appending ‘=false’.

X ELATEX will be auto-detected. Therefore package option ‘xetex’ is optional. However,
in the case of dvipdfmx, package option ‘dvipdfmx’ is mandatory because it cannot
be auto-detected.

If PDF is generated via DVI and Postscript by the command sequence latex
→ dvips → ps2pdf, dvips option ‘-Ppdf’ should not be set when converting the
intermediate DVI into Postscript. If you cannot do without, put ‘-D 1200’ after ‘-Ppdf’
on the command line. Users of LATEX-aware text editors with menu-driven toolchain
invocation, such as TEXnicCenter, should check the configuration of the dvips call.

Option ‘bigfiles’ is only relevant for the latex→ dvips→ ps2pdf workflow. It
may be needed if large media files cause latex to abort with error ‘TeX capacity

exceeded’. See Sect. 8 .

4

5 The user interface
Package ‘media9’ provides commands for media inclusion (\includemedia) and
insertion of media control buttons (\mediabutton). The latter is introduced in Sect.

 5.3 .

5.1 Media inclusion
\includemedia[<options>]{<poster text>}{

<main Flash (SWF) file or URL | 3D (PRC, U3D) file>}

The last argument, <main Flash (SWF) file or URL | 3D (PRC, U3D) file>,
is the main interactive application to be inserted into the PDF. In the case of Flash,
this can be a local SWF file, or a URL, such as a YouTube video player. A local file
will become part of the final PDF file, while Flash content from a URL requires an
internet connection when the user activates it in Adobe Reader. A URL must be fully
qualified, i. e., starting with either ‘http[s]://’ or ‘ftp://’. As for 3D content, Adobe
Reader only supports U3D or PRC files embedded in the PDF; they cannot be loaded
or streamed during runtime. The most frequent use of \includemedia will likely
be embedding video or sound files for playback in Adobe Reader. For this we need
some media player, which is an SWF file we embed as our main application. It will be
configured to load, upon activation, a particular video or sound file that was embedded
as a resource into the PDF or is to be streamed from the internet. This will be shown
later. Note that a local file (main application or resource) will only once be physically
embedded in order to keep the final PDF file size small. If the same file (identified by
MD5 checksum) appears in other \includemedia commands, only a reference will
be inserted that points to the same storage location in the PDF.

Argument <poster text> defines the size of the rectangular region of the docu-
ment page in which the media will be displayed. Moreover, <poster text> will
be shown in case the media has not been activated. <poster text> can be any-
thing that LATEX can typeset, such as an \includegraphics command serving as a
poster image, a PGF/TikZ/PSTricks inline graphics or just ordinary text. Alternatively,
<poster text> can be left blank in which case the size of the media rectangle should
be set with options ‘width’ and ‘height’. If a non-zero size <poster text> was
provided, it can be resized using any combination of options ‘width’, ‘height’ or
‘totalheight’, ‘keepaspectratio’ and ‘scale’.

A list of directories where TEX searches for media and resource files can be set-up by
means of

\addmediapath{<directory>}

This command appends one directory at a time to the search list. To specify more
directories, just use it repeatedly. The path separator is always ‘/’, independent from
the operating system.

The following section explains all command options provided. They are passed to
the media inclusion command as a comma separated list enclosed in a pair of square
brackets.

5

5.2 Command options
A subset of the command options (see Sect. 4) can also be used as package options,
which lets them apply to all embedded media. Some of the options listed here are
meaningful only for a specific media type (either Flash or 3D), which will be noted
explicitly if not obvious. Dedicated sections covering Flash, video and sound as well as
3D inclusion will follow later on in this document.

label=<label text>

The media annotation is given a label, <label text>, which should be unique. La-
belled media annotations can be targeted by the media actions of a control button
(see description of the \mediabutton command in Sect. 5.3). Moreover, a reference
to the RichMedia Annotation object (of type ‘AnnotRichMedia’) is assigned to the
JavaScript variable annotRM['<label text>'] in order to facilitate its access in
JavaScript. Note that the JavaScript reference is known only after the first opening of
the page containing the media.

width=<h-size>,

height=<v-size> | totalheight=<v-size>,

keepaspectratio

Resize the media playback area. <poster text>, if provided, is squeezed or stretched
accordingly. If only one of ‘width’ or ‘[total]height’ is given, the other dimen-
sion is scaled to maintain the aspect ratio of <poster text>. If both ‘width’ and
‘[total]height’ are given together with ‘keepaspectratio’, <poster text> is
resized to fit within <h-size> and <v-size> while maintaining its original aspect
ratio. Any valid TEX dimension is acceptable for <h-size> and <v-size>. In addition,
the length commands \width, \height, \depth and \totalheight can be used to
refer to the original dimensions of <poster text>.

scale=<factor>

Scales the playback area by <factor>.

addresource=<local file>,

addresource=<another local file>,

...

Every invocation of this option embeds another local file that is required to run the
main Flash application or 3D file (last argument of \includemedia). Typically, this
option is used to embed video files, media player skins, XML files (such as databases),
additional objects to appear in a 3D scene etc. If an already embedded file is needed in
another \includemedia command, this option must be given there again. However,
the file in question will only once be physically embedded in order to keep the PDF
file small.

flashvars={<some_var=some_val&another_var=another_val&...>}

(Flash only) Usually, Flash applications can be configured via ActionScript (AS) vari-
ables the programmer of the application has made visible from outside. A typical use
would be to set the video source of a media player to point to an embedded MP4 file or
to a live stream, or to set the speaker volume for playback of an MP3 file. The argument
of the flashvars option is a list of <AS variable>=<value> pairs separated by ‘&’
and enclosed in a pair of braces ({...}).

6

Note: If a variable is to be set to point to an embedded resource, the value of the
variable must be given in exactly the same way as with the ‘addresource’ option.
Otherwise the name of the embedded file cannot be resolved. For example,

addresource=path/to/video.mp4

implies

flashvars={vid=path/to/video.mp4&...}

if, for a particular media player, the video source is set through ActionScript variable
‘vid’.

(Note for 3D) Resource files used in 3D scenes cannot be loaded by means of Action-
Script variables. This must be done by 3D JavaScript during activation of the 3D scene
in the Reader. 3D JavaScript can be attached using option ‘add3Djscript’, see below.

attachfiles

If set, embedded files can be downloaded from the PDF via the Attachments navigation
pane in the Reader.

activate=onclick | pageopen | pagevisible

Decides on how to activate the media annotation. ‘activate=onclick’ is default
behaviour and does not need be given explicitly; embedded media is activated when the
user clicks on it or by a JavaScript. It is recommended to provide a poster image with the
<poster text> argument in that case. ‘pageopen’ and ‘pagevisible’ automatically
activate the media when the page becomes visible; ‘pagevisible’ is better for two-up
and continuous page display.

deactivate=onclick | pageclose | pageinvisible

Decides on how to de-activate the media annotation. ‘deactivate=pageclose’ is
default behaviour and does not need be given explicitly; media is automatically de-
activated when the user leaves the page containing the media. ‘pageinvisible’ is
similar, butmay be better for two-up and continuous page display. Setting ‘deactivate
=onclick’ requires user interaction for de-activating the media, either by right-click
and chosing ‘Disable Content’ or by a JavaScript.

draft

final

With ‘draft’ the media is not embedded. Instead, a box is inserted that has the
dimensions of <poster text>, subject to the resizing options ‘width’, ‘height’,
‘totalheight’ and ‘scale’. Option ‘final’ does the opposite as it forces the media
to be embedded. Both options can be used to reduce compilation time during authoring
of a document. To get the most out of them it is recommended to set ‘draft’ globally
as a package or class option and to set ‘final’ locally as a command option of the
media annotation that is currently worked on. After the document has been finished,
the global ‘draft’ option can be removed.

playbutton[= fancy | plain | none]

noplaybutton

By default, a transparent play button is laid over the inactive media annotation to draw
the reader’s attention to the embedded multimedia content. It is provided in two ver-

7

sions, ‘fancy’ and ‘plain’, but only ‘plain’ is available in the X ELATEX workflow. The
default setting is to try the ‘fancy’ version. ‘noplaybutton’ or ‘playbutton=none’
disable the play button overlay.

windowed[= false | [<width>x<height>][@<position>]]

Themedia is played in a floating window, instead of being played in an embedded fash-
ion.The floatingwindow size is specified via the optional argument <width>x<height>,
where <width> and <height> are given in pixels (integer numbers without unit). If
the size is not given, a default size is guessed from the annotation size. Optionally, the
position of the floating window on the screen can be specified through @<position>,
where <position> may assume one of ‘tl’, ‘cl’, ‘bl’, ‘bc’, ‘br’, ‘cr’, ‘tr’, ‘tc’ or ‘cc’.
The position specifiers have the following meaning: tl tc tr

cl cc cr

bl bc br

Default window position is ‘cc’, that is, centred on the screen. ‘false’ can be set to
override a global setting via package options.

transparent

Indicates whether underlying page content is visible through transparent areas of the
embedded media. Default is ‘transparent=false’; media artwork is drawn over an
opaque background prior to composition over the page content.

passcontext

(Flash only) If set, user right-clicks are passed through to the context menu of the
embedded Flash application, replacing the default Adobe Reader context menu. Useful
for cases where the Flash programmer provided additional functionality through the
context menu of his application.

3Dtoolbar

Indicates whether a 3D toolbar should be shown in the Reader on top of the embedded
3D model.

3Dnavpane

If set, the 3D navigation pane displaying the 3D Model Tree becomes visible in the
Reader when the content is initially activated.

3Dcoo=<x> <y> <z>

<x> <y> <z> specify the positional vector −−−→𝐶𝑂𝑂 of the centre of orbit of the virtual
camera. Real numbers in fixed and floating point notation are accepted.

3Dc2c=<x> <y> <z>

<x> <y> <z> specify a direction vector −−−→𝐶2𝐶 of arbitrary length, originating in the
centre of orbit and pointing to the virtual camera. Real numbers in fixed and floating
point notation are accepted.

3Droll=<roll>

Prescribes an initial camera roll around the optical axis (in clockwise direction, if
<roll> is greater that zero); measured in degrees and given as fixed or floating point
real number.

8

3Dc2w=<12 element camera-to-world matrix>

This option directly sets the camera-to-world transformation matrix according to the
PDF specification. This is an expert option to be used instead of the ‘3Dc2c’, ‘3Dcoo’
and ‘3Droll’ options. Only fixed point real numbers are accepted.

3Dpsob=Min | Max | W | H

Expert option which directly sets either the /PS entry in the case of perspective
projection or the /OB entry in the case of orthographic projection to one of the four
possible values. Default value is Min.

3Droo=<r>

<r> is a positive fixed or floating point number specifying the radius of orbit 𝑅𝑂𝑂 of
the virtual camera. Good values can be found by means of the ‘3Dmenu’ option.

3Daac=<angle>

This option sets the aperture angle of the camera, measured in degrees, for the per-
spective view mode. Fixed and floating point real numbers between 0 and 180 are
admissible. A sensible value of 30 is pre-set by default. Larger values can be used
to achieve wide-angle or fish-eye effects. See example 10 in section 7.1 . This option
excludes the use of the ‘3Dortho’ option.

3Dortho[=<orthographic scaling factor>]

Switches from the default perspective to orthographic viewmode. In orthographic view,
the 3D object is parallelly projected onto the virtual camera chip. The projected image
is scaled by <orthographic scaling factor> before reaching the camera chip;
default value is 1. The optimal value for the scaling factor is given by 1/𝐷 , where 𝐷 is
the diameter of the smallest enclosing sphere of the 3D object inWorld coordinate units.
Fixed and floating point real numbers are accepted. The camera should be positioned
outside the 3D object. For this, the radius of orbit (option ‘3Droo’) should be greater
than 𝐷/2. Good values for orthographic scaling and orbital radius can easily be found
by means of the ‘3Dmenu’ option. Option ‘3Dortho’ excludes the use of the ‘3Daac’
option.

3Dmenu

Mainly used during document authoring. Adds three entries, ‘Generate Default View’,
‘Get Current View’ and ‘Cross Section’ to the context (right-click) menu of an activated
3D annotation. Moreover, it allows single parts or part groups of the scene to be scaled,
translated and rotated against the remaining scene objects using the keyboard. Their
new position can be saved in the current view (‘Get Current View’). At first, parts to
be modified must be highlighted by clicking either into the scene or into the 3D Model
Tree (the part’s bounding box becomes visible). Then, arrow keys , let the part
spin around the vertical axis, and , tilt against it. In order to spin parts around
their local up-axis, keep ctrl pressed while using and . Keys X , + X ,
Y , + Y , Z , + Z translate the selected part along the World axes, and S ,

+ S scale the part.

‘Generate Default View’ computes optimal camera settings such that the visible parts
of the 3D scene fit tightly into the viewing area. The result is printed, formatted as a
list of \includemedia options, into the JavaScript console. The calculation is based

9

on the 3D object size and its position in the World coordinate system as well as the
current viewing mode (perspective or orthographic).

‘Cross Section’ is a toggle switch to add or remove a cross section to or from the current
view. If a part of the 3D scene was previously selected, the central rotating point of
the cutting plane is put into the part’s centre, otherwise into the target point of the
camera. The cutting plane can be rotated around the vertical axis and tilted against
its upright position using the arrow keys , , and . Keys X , + X ,
Y , + Y , Z , + Z move the cutting plane along the World axes, and S ,

+ S scale its size.

‘Get Current View’ writes camera settings, any part alterations, an optional cross section
as well as part and scene rendering attributes of the current view into the JavaScript
console. The output is a readily formatted VIEW section to be inserted into or appended
to a file of predefined views. See option ‘3Dviews’. All settings reachable via the ‘Part
Options’ and ‘Viewing Options’ context menu items are written to the VIEW section.

3Dbg=<r> <g>

This option sets the background colour of the 3D scene. Only fixed point real numbers
in the range from 0 to 1 are allowed for the colour components. Option ‘transparent’
may not be set at the same time.

3Dlights=<lighting scheme>

Sets the default lighting scheme. The following values are honoured: ‘None’, ‘White’,
‘Day’, ‘Night’, ‘Hard’, ‘Primary’, ‘Blue’, ‘Red’, ‘Cube’, ‘CAD’, ‘HeadLamp’. The default
is to use the lighting scheme as specified within the 3D artwork.

3Drender=Solid | Transparent[:<opacity>] | ...

Sets the default render mode of the scene. The following values are honoured: ‘Solid’,
‘SolidWireframe’, ‘Transparent’, ‘TransparentWireframe’, ‘BoundingBox’,
‘TransparentBoundingBox’, ‘TransparentBoundingBoxOutline’, ‘Wireframe’,
‘ShadedWireframe’, ‘HiddenWireframe’, ‘Vertices’, ‘ShadedVertices’,
‘SolidOutline’, ‘Illustration’, ‘ShadedIllustration’. Options ‘Transparent’
and ‘TransparentWireframe’ take an optional value between 0 and 1 that controls
the opacity of the rendered 3D object.

3Dpartsattrs=restore | keep

When the user selects another view from the list of predefined views (see option
‘3Dviews’), attributes of individual parts, such as opacity, visibility, render mode,
translation in space, which all can be set from within the Reader or by means of a file
of predefined views, are reset to their original states as defined in the embedded 3D
file, before any new part settings are applied. This default behaviour can be overridden
by ‘3Dpartsattrs=keep’. This will preserve current part attributes when the user
selects another predefined 3D view in the Reader.

3Dviews=<views file>

Instead of or in addition to the default view (options ‘3Dcoo’, ‘3Dc2c’, ‘3Droll’,
‘3Droo’, ‘3Daac’, ‘3Dortho’), further named views can be predefined in an auxili-
ary file <views file>. Besides the virtual camera position, it is possible to adjust the
rendering attributes, such as visibility and transparency, as well as position and scaling
of every single part in the 3D scene. Moreover, background colour and scene lighting

10

can be set individually for every view. The additional views can later be selected either
from a drop down list in the tool bar that is associated with the activated 3D object in
the Reader or from the context menu of the 3D object.

The file <views file> is structured into view sections, one for every view:

VIEW[=<optional name>]

COO=<x> <y> <z>

C2C=<x> <y> <z>

ROLL=<roll>

% C2W=<camera-to-world matrix> % instead of COO, C2C and ROLL

ROO=<roo>

AAC=<aac>

% ORTHO[=<othographic scaling factor>] % instead of AAC

BGCOLOR=<r> <g>

RENDERMODE=<render mode>

LIGHTS=<lighting scheme>

CROSSSECT

CENTER=<x> <y> <z>

NORMAL=<x> <y> <z>

OPACITY=<cutting plane opacity>

VISIBLE=true | false

PLANECOLOR=<r> <g>

INTERSECTIONVISIBLE=true | false

INTERSECTIONCOLOR=<r> <g>

SHOWTRANSPARENT=true | false

SECTIONCAPPING=true | false

END

PARTSATTRS=keep

PART=<part name as in the Model Tree (required, optional if UTF16NAME present)>

UTF16NAME=<part name as hex encoded Unicode string>

VISIBLE=true | false

OPACITY=<part opacity>

RENDERMODE=<part render mode>

TRANSFORM=<12 element transformation matrix>

END

PART=<...>

...

END

etc.

END

VIEW

...

END

etc.

A view section starts with the keyword VIEW, optionally followed by a name for the
view, and ends with the keyword END. If no name is given to the view, a default one is
created, consisting of ‘View’ followed by the number of the current VIEW section in

11

the file. A VIEW section may contain optional entries for setting the camera position
and global rendering attributes of the scene, a CROSSSECT subsection as well as PART
subsections for setting rendering and other attributes of parts individually. Table 1

lists the entries in a VIEW section.

Part sub-sections are opened by PART=<part name> and closed by END. There may
be as many part subsections as there are parts in a 3D scene. Table 2 lists the possible
entries in a PART sub-section. All entries are optional. However, a UTF16NAME entry is
recommended, as the part name may contain non-ASCII characters. The value of the
UTF16NAME key is the part name as a hex-encoded Unicode string. If UTF16NAME is
not used, the part name in the 3D file must be entirely composed of ASCII characters.
In that case, <part name> is mandatory and must match the part name as indicated
in the 3D Model Tree of the 3D object (accessible via right-click onto the model in
the Reader). The part can be scaled and repositioned by means of a TRANSFORM entry
which takes a 12-element transformation matrix as its value. Remaining entries in a
part sub-section control the visual appearance of the part.

A view section may contain at most one CROSSSECT sub-section. It inserts a cutting
plane at a definite position and orientation in the 3D space, controlled by optional
CENTER and NORMAL entries. The appearance characteristics of the cutting plane and
the intersection of the plane with the 3D geometry are controlled by optional OPACITY,
VISIBLE, PLANECOLOR, INTERSECTIONVISIBLE, INTERSECTIONCOLOR,
SHOWTRANSPARENT, SECTIONCAPPING entries. See Table 3 for explanation.

The views file can be commented. As usual, comments start with the percent sign.

To facilitate the creation of a views file, option ‘3Dmenu’ can be added to \includemedia
(see above). It creates context (right-click) menu entry ‘Get Current View’ which out-
puts a complete VIEW section corresponding to the current view of the 3D object in the
Reader, including camera position, an optional cross section, and all part and viewing
options that can be modified via the 3D toolbar (option ‘3Dtoolbar’) or the context
menu of the 3D object (entries ‘Part Options’, ‘Viewing Options’). Hence, apart from
tweaking one or another entry, there should be no need for writing views files by
hand.

3Dplaytype=linear | oscillating

According to the PDF specification, embedded keyframe animations can be played in
two ways. If set to ‘linear’, keyframe animations are driven linearly from beginning
to end, while ‘oscillating’ lets the animation play in a forth-and-back manner.

3Dplaycount=<integer number>

A non-negative <integer number> represents the number of times the animation
is played. A negative integer indicates that the animation is infinitely repeated. This
value is ignored if option 3Dplaytype is not set.

3Dplayspeed=<positive number>

This option can be used to adjust the keyframe animation speed. A value of ‘1’ corres-
ponds to the default speed defined in the 3D file.

add3Djscript=<3D JavaScript file>,

add3Djscript=<another 3D JavaScript file>,

...

12

Things like animation, lighting, background of 3D objects etc. may also be script
driven. Every invocation of ‘add3Djscript’ associates another JavaScript file with
the 3D object. Upon activation of the 3D object, the scripts are executed once in
the order of their inclusion. Refer to the Acrobat 3D JavaScript Reference [3] for
syntax details. The following 3D JavaScript loads an image file that was attached by
‘addresource=images/sunset.jpg’ and uses it as the scene background.

sunset = new Image(new Resource('pdf://images/sunset.jpg'));

reh = new RenderEventHandler();

reh.onEvent = function(event) {

runtime.removeEventHandler(this);

event.canvas.background.image=sunset;

}

runtime.addEventHandler(reh);

For convenience, subdirectory ‘javascript’ of the ‘media9’ installation contains three
3D JavaScript files which may come in handy at times: ‘animation.js’ enables embedded
keyframe animation in 3D files; ‘3Dspintool.js’ enables the Spin tool of the 3D plugin for
easier rotating the 3D object with the mouse; ‘asylabels.js’ adds ‘billboard behaviour’
to text labels in Asymptote (≥ 𝑣2.17) generated PRC files for improved visibility; text
labels always face the camera while rotating the 3D object with the mouse.

13

Table 1: Entries in a VIEW section.

key type remarks
COO three numbers centre of orbit, see option ‘3Dcoo’
C2C three numbers centre of orbit to camera vector, see

option ‘3Dc2c’
ROO number radius of orbit, see option ‘3Droo’
C2W 12 numbers camera-to-world transformation

matrix, see option ‘3Dc2w’
AAC number camera aperture angle, see option

‘3Daac’
ORTHO number (optional) enables orthographic view, see op-

tion ‘3Dortho’
PSOB string expert setting, see option ‘3Dpsob’
ROLL number camera roll, see option ‘3Droll’
BGCOLOR three numbers given as <r> <g> , specify the

3D scene background colour (RGB),
see option ‘3Dbg’

RENDERMODE string render mode of the 3D object, see
option ‘3Drender’

LIGHTS string lighting scheme, see option
‘3Dlights’

PARTSATTRS string allowed values are ‘keep’ and
‘restore’; decides on whether to re-
store or not original part attributes
before applying new ones from this
view; see option ‘3Dpartsattrs’

PART (sub-section) string part name as in the 3D Model
Tree ; name argument is optional
if a UTF16NAME entry is present in
the sub-section opened by a PART

keyword, otherwise required; see
Table 2 for list of possible entries

CROSSSECT (sub-
section)

– see Table 3 for list of possible entries

14

Table 2: Entries in a PART sub-section.

key type remarks
UTF16NAME hex string part name in UTF-16 (aka Unicode), en-

coded as a hexadecimal string; optional,
but useful for part names composed of non-
latin characters;

VISIBLE boolean a flag (‘true’ or ‘false’) indicating the vis-
ibility of this part

OPACITY number a number between 0.0 and 1.0 specifying
the opacity of this part

RENDERMODE string rendermode of this part, overrides global
RENDERMODE value in parent VIEW section,
see option ‘3Drender’

TRANSFORM 12 numbers transformation matrix defining the part’s
position and scaling

Table 3: Entries in a CROSSSECT sub-section.

key type remarks
CENTER three numbers central point coordinates of the cutting

plane
NORMAL three numbers normal vector coordinates of the cutting

plane pointing into the cut-off region
OPACITY number a number between 0.0 and 1.0 specifying

the opacity of the cutting plane
VISIBLE boolean a flag (‘true’ or ‘false’) indicating the vis-

ibility of the cutting plane
PLANECOLOR three numbers given as <r> <g> , specify the colour

(RGB) of the cutting plane
INTERSECTIONVISIBLE boolean a flag (‘true’ or ‘false’) indicating the

visibility of the intersection of the cutting
plane with any 3D geometry

INTERSECTIONCOLOR three numbers given as <r> <g> , specify the colour
(RGB) for the cutting plane’s intersection
with the 3D geometry

SHOWTRANSPARENT boolean a flag (‘true’ or ‘false’) indicating that
the portion of a model on the cut side of a
section plane shall be viewed using a trans-
parent render mode

SECTIONCAPPING boolean a flag (‘true’ or ‘false’) indicating
whether the section plane shall be closed
and rendered as if cutting through a solid
object

15

5.3 Control buttons
\mediabutton[<options>]{<normal button text or graphic>}

This command inserts a clickable button for media control. Actions to be performed are
specified through options ‘mediacommand’, ‘3Dgotoview’ and ‘jsaction’. By using
these options repeatedly and in any combination, several actions can be bound to one
media button, and one media button can be used to control several media at the same
time. Media actions are started in the given order but performed in parallel, because
they do not wait for each other to finish.The target of an action is specified via the label
that was also given to a particular media by the ‘label’ option of ‘\includemedia’.
Individual button faces can be defined for the ‘mouse-over’ and ‘mouse-button-down’
events using the ‘overface’ and ‘downface’ options. Without options, the button
produced does nothing. The options provided are as follows:

overface=<mouse-over text or graphic>

If specified, the media button changes its appearance when the mouse pointer is
moved over it. Without this option, the button appearance does not change. An
\includegraphics command may need to be enclosed in braces.

downface=<mouse-button-down text or graphic>

If specified, the media button changes its appearance when the mouse button is pressed
while the pointer is over it. An \includegraphics commandmay need to be enclosed
in braces.

tooltip=<tip text>

A box with <tip text> is shown when the mouse pointer is moved over the button.

3Dgotoview=<label text>[:<view specification>]

Selects a view from the list of predefined views associated with a 3D media inclusion
(see option ‘3Dviews’). The target media is specified by <label text>, as defined
by the ‘label’ option of ‘\includemedia’. <label text> alone without a view spe-
cification simply activates the 3D object if not yet activated. <view specification>

which is separated from the label by a colon (:) can be one of the following: an integer
specifying the zero-based index into the list of views in the 3D views file; one of
‘D’, ‘F’, ‘L’, ‘N’, ‘P’ indicating the default, first, last, next or previous view in the list
of views; a string delimited by ‘(’ and ‘)’ matching the name of a view as specified
by the ‘VIEW=...’ entry in the views file. The option can be given several times to
simultaneously change the view in more than one 3D inclusion. However, it cannot be
used to create an animation effect within the same 3D inclusion, because 3Dgotoview
actions are executed in parallel.

mediacommand=<label text>[:<command> [(<arg1>) (<arg2>) ...]]

Amedia command <command>, with arguments if required, is sent to a media inclusion
identified by <label text>, as defined by the ‘label’ option of ‘\includemedia’.
<label text> alone without a command specification simply activates the media, if
not yet activated. The option can be used multiple times within the same button to
target different media inclusions at the same time or to execute several commands for
the same media. Depending on the type of the target media (3D or Flash), <command> is
either the name of a JavaScript function defined in a 3D JavaScript file associated with

16

the 3D media (see option ‘add3Djscript’) or the name of an ActionScript function
that was exposed by the embedded Flash file. ActionScript functions are exposed
to the scripting context of the hosting document by using the ExternalInterface
call within the Flash file. Arguments to be passed to <command> must be enclosed
in ‘(’ and ‘)’ and separated by spaces, the whole list be finally enclosed in ‘[’ and
‘]’, even if there is only a single argument. Arguments can be of Boolean type (true,
false), numbers (integer, reals) and strings. The number of arguments and their types
must match the definition of the function to be called. Media players VPlayer.swf and
APlayer.swf shipping with ‘media9’ expose a number of ActionScript functions that
can be used with this option (see Tab. 6). <command> [(<arg1>) (<arg2>) ...]

must be enclosed in braces if there are embedded equals signs or commas. Examples
of using ‘mediacommand’ are given in Figs. 2 and 6 c.

jsaction=[<label text>:]{<JavaScript code>}

The JavaScript code is executed in the context of the document’s instance of the Ja-
vaScript engine (there is one instance of the JavaScript engine per open document
in Adobe Reader). <JavaScript code> is required and must be enclosed in braces.
Unlike media actions defined with options ‘mediacommand’ and ‘3Dgotoview’, the Ja-
vaScript action defined here is not targeted at a particular embedded media and can be
used to run arbitrary code. Therefore, <label text> is optional. If provided, it must
be separated from <JavaScript code> by a colon. However, it is recommended to
provide a label text. It ensures that annotRM['<label text>'] is a valid JavaScript
reference to the AnnotRichMedia object. annotRM['<label text>'] can be used
to get access to the global context of the annotation’s instance of the 3D JavaScript
engine (there is one instance of the 3D JavaScript engine per activated RichMedia
Annotation with 3D content). The 3D JavaScript context of a 3D model can be accessed
as annotRM['<label text>'].context3D. Refer to the Acrobat 3D JavaScript Ref-
erence [3] for details on built-in JavaScript objects that are available in the 3D context.
The annotRM['<label text>'].callAS() method may be used as an alternative
to the ‘mediacommand‘ option. Both serve as means of running ActionScript functions
exposed by embedded Flash files. See [4] for details.

draft

final

See above .

17

6 Embedding Flash, video and sound,
image slide-shows

A YouTube video clip, as shown in Fig. 1 , may serve as a basic example of loading
Flash content from a URL to be displayed in an embedded fashion in a PDF document.
Indeed, a YouTube clip is nothing more than a small SWF file which loads a video
stream and other necessary resources, such as user controls and a player skin from a
remote server. It can be configured via ActionScript variables to play several videos in
a row, to play a video in a loop etc. Player parameters are documented on http://

code.google.com/apis/youtube/player_parameters.html and can be passed
to the player using either the ‘flashvars’ option, as in the example, or appended to
the URL string after the video ID. A question mark ‘?’ must be put between the video
ID and the parameter string. Some of the documented parameters, such as ‘rel’, seem
to have an effect only if they are passed as part of the URL.

\includemedia[

width=0.6\linewidth,height=0.3375\linewidth, % 16:9

activate=pageopen,

flashvars={

modestbranding=1 % no YT logo in control bar

&autohide=1 % controlbar autohide

&showinfo=0 % no title and other info before start

&rel=0 % no related videos after end

}

]{}{http://www.youtube.com/v/r382kfkqAF4?rel=0}

Figure 1: A YouTube video as an example of a Flash application loaded from a URL.

Media files (video, sound, images) are always loaded and then played by a media player
application. Four players are installed along with the ‘media9.sty’ package file: three
simple players for video (‘VPlayer.swf’), sound (‘APlayer.swf’) and slide-shows of
embedded and/or remote (live or static) image files (‘SlideShow.swf’), and the fully
blown third-party media player ‘StrobeMediaPlayback.swf’ with some fixes to improve
its usability.The simple players are ‘chromeless’, that is, they do not have graphical user
controls. Nevertheless, interactivity is provided through left mouse button press and
release for playing, pausing, resuming playback, through the player’s context menu
(right-click), and through the keyboard as summarized in Table 4 . The player apps were
compiled using the open-source Apache Flex SDK [5] from XML source files which
reside in the doc/ folder of the package installation. For ‘StrobeMediaPlayback.swf’,

18

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

http://code.google.com/apis/youtube/player_parameters.html
http://code.google.com/apis/youtube/player_parameters.html

only a patch file is included, as the sources can be downloaded elsewhere.

The improvements of ‘StrobeMediaPlayback.swf’ in comparision to the original version
on SourceForge.net are

• fix: video could not be restarted after end of playback if ActionScript variable
‘autoRewind’ is set to ‘false’

• new: first frame of video is shown as default poster instead of black stage

• new: play/pause video by clicking on the stage (as with ‘VPlayer.swf’), useful in
a lecture situation

There is no need to copy the installed players into the directory of the document source
for embedding. They will be found by LATEX without taking any further action.

Like YouTube videos, media players are configured via ActionScript variables which are
passed using option ‘flashvars’. Table 5 lists parameters available for ‘VPlayer.swf’,
‘APlayer.swf’ and ‘SlideShow.swf’, Table 8 for ‘StrobeMediaPlayback.swf’.

Playback of embedded video files is shown in Fig. 2 . Besides embedded files, also video
streamed from remote servers via HTTP and RTMP protocols is supported, as shown
in Fig. 5 .

Sound files and streams in the MP3 format can be played with ‘APlayer.swf’. Fig. 6

contains examples of an audio live stream and a remote MP3 sound file. In one of the
sound examples, the player is loaded from a CTAN mirror during runtime because an
internet connection is required anyway for streaming the audio. If a local sound file is
to be embedded into the PDF this would have to be done in the same way as with the
video file in one of the previous examples using the ‘addresource’ option.

The slide-show application ‘SlideShow.swf’ requires a configuration file in the XML
file format. It specifies the URLs from which the images will be loaded and may contain
optional settings, such as image captions, refresh intervals for live images and initial
rotation. The syntax is documented in the configuration file template in Fig. 3 . The file
name of a configuration file is passed to ‘SlideShow.swf’ using the ‘xml’ ActionScript
variable. Note that for security reasons the configuration file and ‘SlideShow.swf’ must
reside on the same server or be both embedded into the PDF. Otherwise, a security
error will be thrown by the Flash Player plugin. A slide-show example is shown in
Fig. 4 .

‘VPlayer.swf’, ‘APlayer.swf’ and ‘SlideShow.swf’ expose a number of ActionScript
functions to the JavaScript engine of Adobe Reader, allowing for playback control of
media through push buttons (see Sect. 5.3) and various trigger events. The functions
and their calling convention are listed in Tables 6 and 7 . From within JavaScript,
these functions can be called using the ‘callAS’ (= call ActionScript) method of the
AnnotRichMedia object. As an example, a call to the ‘seek’ function looks like

annotRM.myvideo.callAS("seek", 12.3);

and a call to the parameter-less function ‘playPause’ like

annotRM.myvideo.callAS("playPause");

Both functions calls are sent to the media inclusion that was labelled ‘myvideo’ using
the ‘label’ option of \includemedia. An example of playing and pausing a video
clip and setting the video source via interactive push buttons is given in Fig. 2 .

\includemedia[

label=some_dice,

width=0.6\linewidth,height=0.45\linewidth,

addresource=random.mp4, %two video files

addresource=cube.mp4,

transparent, %transparent player background

activate=pageopen,

passcontext, %show VPlayer's right-click menu

flashvars={

source=random.mp4

&loop=true % loop video

}

]{}{VPlayer.swf}

\mediabutton[

mediacommand=some_dice:playPause,

overface=\color{blue}{\fbox{\strut Play/Pause}},

downface=\color{red}{\fbox{\strut Play/Pause}}

]{\fbox{\strut Play/Pause}}

\mediabutton[

mediacommand=some_dice:setSource [(random.mp4)]

]{\fbox{\strut random.mp4}}

\mediabutton[

mediacommand=some_dice:setSource [(cube.mp4)]

]{\fbox{\strut cube.mp4}}

Figure 2: Example of playing back two different embedded MP4 video files in the same
video player instance. The player, ‘VPlayer.swf’, is also embedded in the PDF. Exposed
ActionScript functions ‘playPause’ and ‘setSource’ of ‘VPlayer.swf’ (Table 6) are
used to set-up media control buttons. Different button faces have been defined for the
Play/Pause button. Also, playback can be contolled via the player’s context (right-click)
menu or the keyboard.

20

media resource

media resource

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

<?xml version="1.0"?>

<SlideShow>

<!--

Configuration file template for SlideShow.swf

SlideShow.swf can display life and static PNG/JPEG/GIF image files from

remote servers or residing on the same server as the app itself.

Pass this file to SlideShow.swf using the `xml=<configuration file>'

FlashVar.

NOTE: For security reasons of Flash Player, the configuration file and

SlideShow.swf must reside on the same web server or be both embedded into

the PDF. Different web servers or the combination of web server location

and embedding into the PDF throws a security error.

An image definition starts with and ends with .

All attributes in the opening tag are optional:

live="<refresh interval in [s]>" for live remote image

rot90="<integer number>" initial rotation by number*90°

Inside an image definition, at least one <URL [attributes]>...</URL>

element is required. The attributes are optional. More than one URL may be

given to provide image files at various resolutions. The best one fitting

within the current display size will be chosen dynamically. In the case of

multiple URLs, the actual resolution of each image should be told using the

size="<width>x<height>"

attribute, which specifies the image file dimensions in pixels.

Some servers generate bitmap graphics at arbitrary resolution upon request.

In such cases, one or both of the attributes

width="<width pattern>" height="<height pattern>"

may be given in the opening URL tag. <width pattern> and <height pattern>,

if present in the URL string, will be substituted with the current display

dimensions.

An image URL, given between <URL> and </URL>, can be absolute, that is,

starting with 'http://...', or relative to the location of SlideShow.swf.

The <caption>...</caption> element inside the image definition is optional.

-->

 <!-- Live image, refreshed every 3 seconds -->

<caption>Mow-the-lawn simulation (live remote image).</caption>

<URL>http://1.618034.com/corner-icon.png</URL>

 <!-- remote image with dynamic size URL -->

<caption>"An algorithm must be seen to be believed." (Donald E. Knuth)

Remote image URL with dynamic size that is reloaded while resizing the display.</caption>

<URL width="@@@@@">https://openclipart.org/image/@@@@@px/svg_to_png/137407/1304882618.png</URL>

 <!-- remote image with multiple URLs of different resolution -->

<caption>CTAN lion drawing by Duane Bibby. Thanks to www.ctan.org.

Remote image with URLs at various resolutions ("responsive image").</caption>

<URL size="200x178" >

http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/media9/doc/files/ctan_lion_200.png</URL>

<URL size="400x355" >

http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/media9/doc/files/ctan_lion_400.png</URL>

<URL size="800x710" >

http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/media9/doc/files/ctan_lion_800.png</URL>

<URL size="1200x1065">

http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/media9/doc/files/ctan_lion_1200.png</URL>

 <!-- static image with URL relative to SlideShow.swf location -->

<caption>Static embedded image file with initial rotation of 3x90°.
Press "r" or "R" to change orientation.</caption>

<URL>files/cubeposter.png</URL>

</SlideShow>

Figure 3: Configuration file template (XML format) for ‘SlideShow.swf’

21

\includemedia[

width=\linewidth,height=\linewidth,

activate=pageopen,

addresource=files/config.xml, %embedded configuration

addresource=files/cubeposter.png, %embedded image file

flashvars={xml=files/config.xml},

passcontext %show the player's context menu

]{}{SlideShow.swf}

Figure 4: Slide-show example with one embedded and several remote image files, one of
which is a live image. Images 2 and 3 are examples of remote images with variable res-
olution; the best fitting image resolution is requested from the server depending on the
current display size. The listing in Fig. 3 is used as content of file ‘config.xml’ . Manually
cycle forwards through the images by mouse-click or backwards by +mouse-click.
Play/pause auto-cycling through the slide-show by hitting Space . Also, the context
(right-click) menu of the player can be used.

22

media resource

 Mow-the-lawn simulation (live remote image).
 http://1.618034.com/corner-icon.png

 "An algorithm must be seen to be believed." (Donald E. Knuth)
Remote image URL with dynamic size that is reloaded while resizing the display.
 https://openclipart.org/image/@@@@@px/svg_to_png/137407/1304882618.png

 CTAN lion drawing by Duane Bibby. Thanks to www.ctan.org.
Remote image with URLs at various resolutions ("responsive image").

 http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/media9/doc/files/ctan_lion_200.png

 http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/media9/doc/files/ctan_lion_400.png

 http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/media9/doc/files/ctan_lion_800.png

 http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/media9/doc/files/ctan_lion_1200.png

 Static embedded image file with initial rotation of 3x90°.
Press "r" or "R" to change orientation.
 files/cubeposter.png

media resource

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

Table 4: Keyboard control of media players (a) ‘VPlayer.swf’ & ‘APlayer.swf’, (b)
‘SlideShow.swf’. Players must have the focus to take effect. Click onto the players if
necessary.

(a)
keys action

Space play/pause
Home , End go to start/end

, seek backwards/forwards
, decrease/increase speaker volume

m mute/unmute
ctrl + , ctrl + , ctrl + (APlayer.swf only) change sound speaker

balance

(b)
keys action

Space play/pause auto-cycling through slides
, previous/next slide

Home , End go to first/last slide
r , R right/left rotate current slide by 90◦

\includemedia[

width=0.6\linewidth,height=0.3375\linewidth, % 16:9

activate=pageopen,

flashvars={

src=rtmp://streaming.music.indiana.edu:1935/onDemand/mp4:media/%

20090327_VarRussianTheme-h264-480.m4v

&scaleMode=stretch

}

]{}{StrobeMediaPlayback.swf}

Figure 5: Example of video streamed from an RTMP server. This example uses media
player ‘StrobeMediaPlayBack.swf’, physically embedded in the PDF.

23

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

Table 5: Parameters (ActionScript variables) for media players (a) ‘VPlayer.swf’ &
‘APlayer.swf’, (b) ‘SlideShow.swf’ shipping with media9. Parameters are passed as a
‘&’-separated string using ‘flashvars’ option.

(a)
parameter description
source=<file path or URL> (required) path to embedded media file (see

option ‘addresource’), or URL (http, rtmp)
to online media file

autoPlay=true|false if =true, automatically starts playback
after activation (see option ‘activation)’

autoRewind=true|false (VPlayer.swf only) if =true, automatically
rewind to the first frame after playback has
finished; default is ‘false’

loop=true|false if =true, media is played in a loop
scaleMode=letterbox|none|

stretch|zoom

default: letterbox; determines how to
scale the video in order to fit into player

hideBar=true|false (APlayer.swf only) if =true, the progress
bar indicating the play position is not
shown

volume=<value between 0.0

and 1.0>

sets volume of the sound

balance=<value between

-1.0 and 1.0>

(APlayer.swf only) sets balance of sound
speakers

(b)
parameter description
xml=<file path or URL> (required) path to embedded (option

‘addresource’) or URL of remote config-
uration file

delay=<number> sets time delay in seconds for transition
between slides during playback, default: 5 s

autoPlay=true|false if =true, automatically starts cycling
through slides after activation (see option
‘activation)’

24

Table 6: Exposed ActionScript functions of media players ‘VPlayer.swf’ and
‘APlayer.swf’ that can be called from within media buttons (see Sect. 5.3) or from
JavaScript using the ‘callAS’ method of the ‘AnnotRichMedia’ JavaScript object
(see [4] for further information).

function argument description
play number (optional) play media, optionally starting at number

seconds offset into the media file
pause number (optional) pause media, optionally at the given offset

of number seconds into the media file
playPause toggle between play and pause
setSource string load another media file (path to file, embed-

ded using option ‘addresource’, or URL)
seek number move the play location to a time offset from

the beginning of the media; argument meas-
ured in seconds

rewind rewind media to the beginning (without
pausing it)

volume number between 0
and 1

set volume level

balance number between −1
and +1

(APlayer.swf only) set speaker balance

mute mute or unmute (toggle) the audio of the
media

currentTime returns current playhead position in
seconds; only useful in JavaScript via
‘callAS’ method

duration returns duration of the media video/sound
file currently loaded, only useful in Java-
Script via ‘callAS’ method

playing returns boolean value ‘true’, if the media
is currently playing, ‘true’ otherwise; only
useful in JavaScript via ‘callAS’ method

muted returns boolean value ‘true’, if the sound
is currently muted, ‘false’ otherwise; only
useful in JavaScript via ‘callAS’ method

25

\includemedia[

addresource=bird.mp3,

flashvars={

source=bird.mp3

&autoPlay=true

},

transparent,

passcontext %show APlayer's right-click menu

]{\color{blue}\framebox[0.4\linewidth][c]{Singing bird}}{APlayer.swf}

(a) Singing bird

\includemedia[

flashvars={

source=http://mp3.live.tv-radio.com/franceculture%

/all/franceculturehautdebit.mp3

&autoPlay=true

},

transparent,

passcontext %show APlayer's right-click menu

]{\color{blue}\fbox{Listen live to Radio France Culture}}{%

http://mirrors.ibiblio.org/pub/mirrors/CTAN/macros/latex/%

contrib/media9/players/APlayer.swf%

}

(b) Listen live to Radio France Culture

\includemedia[

label=song49,

flashvars={source=http://www.openbsd.org/songs/song49.mp3},

transparent,

passcontext %show VPlayer's right-click menu

]{\color{blue}\fbox{Listen to OpenBSD 4.9 release song}}{APlayer.swf}\\

\mediabutton[

mediacommand=song49:play[(5.5)],

mediacommand=song49:pause[(37)]

]{\fbox{First verse}}

\mediabutton[

mediacommand=song49:play[(39)],

mediacommand=song49:pause[(49)]

]{\fbox{The Answer}}

\mediabutton[

mediacommand=song49:play[(206.5)],

mediacommand=song49:pause[(221)]

]{\fbox{Harmonica solo}}

Listen to OpenBSD 4.9 release song
(c)

Figure 6: Example of (a) embedded sound file, (b) streamed audio and (c) progressively
downloaded MP3. ID3 tags ‘title’, ‘artist’ and ‘album’ are displayed if contained in the
MP3 stream or file. In (b), the sound player, APlayer.swf, is loaded from a CTAN mirror
upon activation.

26

media resource

Birdsong mild sunny day

Stephan

36.54539

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}

\includemedia[

%activate=onclick, % default

addresource=cube.mp4,

flashvars={

source=cube.mp4

&autoPlay=true % start playing on activation

&loop=true

},

passcontext %show player's right-click menu

]{\includegraphics[height=0.45\linewidth]{cubeposter}}{VPlayer9.swf}

\includemedia[

addresource=bird.mp3,

flashvars={

source=bird.mp3

&autoPlay=true

},

transparent,

passcontext %show player's right-click menu

]{\color{blue}\framebox[0.4\linewidth][c]{Singing bird}}{APlayer9.swf}

Singing bird

Figure 7: Video and sound examples that should run in Adobe Reader for Linux up
to version 9.4.1 . Here, players ‘VPlayer9.swf’ and ‘APlayer9.swf’ are used. Both are
compatible with Adobe Flash Player 9 plugin that is bundled with the Reader. Also, the
video player needs to be activated by mouse click (which is the default). We provide a
poster image that is shown in the inactive state.

27

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton8'){ocgs[i].state=false;}}

ftp://ftp.adobe.com/pub/adobe/reader/unix/9.x/9.4.1/

Table 7: Exposed ActionScript functions of slide-show player ‘SlideShow.swf’ that can
be called from within media buttons or from JavaScript.

function argument description
play play slide-show
pause pause slide-show
playPause toggle between play and pause
setXML string load another configuration file

(path to file, embedded using op-
tion ‘addresource’, or URL)

seek int number go to slide ‘number’ (zero-based)
slideNum returns current slide number (zero-

based); only useful in JavaScript via
‘callAS’ method

numSlides returns total number of slides in the
slide-show; only useful in JavaScript via
‘callAS’ method

playing returns boolean value ‘true’, if the slide-
show is currently playing, ‘true’ oth-
erwise; only useful in JavaScript via
‘callAS’ method

rotate int number (op-
tional)

rotate current slide by number×90◦

28

Table 8: Parameters (ActionScript variables) for ‘StrobeMediaPlayback.swf’ shipping
with media9. Parameters are passed as a ‘&’-separated string using ‘flashvars’ option.

parameter description
src=<file path or URL> (required) path to embedded media file (see

option ‘addresource’), or URL (http, rtmp)
of online media file

autoPlay=true|false default: false; if =true, automatically
starts playback after activation (see option
‘activation)’

autoRewind=true|false default: true; if =false, keep last frame
after end of playback

loop=true|false if =true, media is played in a loop
scaleMode=letterbox|none|

stretch|zoom

default: letterbox; determines how to
scale the video in order to fit into player

controlBarMode=docked|

floating|none

default: docked; determines position and
visibility of control bar

controlBarAutoHide=

true|false

default: true; automatically hide or not
control bar

controlBarAutoHideTimeout=

<number [s]>

default: 3; time span before auto-hide

volume=<value between 0.0

and 1.0>

sets volume of the sound

audioPan=<value between

-1.0 and 1.0>

default: 0; sets balance of sound speakers

muted=true|false default: false; mute or not sound

29

7 Embedding 3D objects

7.1 Introduction
Adobe Acrobat/Reader 7 was the first version to allow for embedding 3-dimensional
graphic objects, such as CAD models or 3D scientific data, that can be manipulated
interactively by the user. U3Dwas the first supported format and was mainly developed
by Right Hemisphere and Adobe. U3D had some deficiencies and was later replaced
by the PRC format after Adobe purchased the original developer, the French company
‘Trade and Technology France’. U3D is still supported, but PRC is preferred as it allows
for exact representation of curved surfaces and better compression. Both, U3D and
PRC specifications are public [6 , 7].

Currently, two open-source software packages are known to export into the PRC file
format. The first one is Asymptote [8], which is a descriptive 2D and 3D vector graphics
language and interpreter and which uses TEX to typeset labels and equations. It allows
for high quality mathematical figures and technical drawings. An impressive gallery
of examples can be found on its Web site. The second one is MathGL [9], a library for
scientific data visualization. It provides interfaces to a number of programming and
scripting languages as well as an interpreter for its own command language ‘MGL’.

MeshLab [11] is an open-source conversion and processing software for 3D mesh data
which can import from and export to a number of file formats. Its U3D export filter is
based on the open-source ‘Universal 3D Sample Software’ [10].

There are a few options to \includemedia which define how the 3D object is posi-
tioned within the view port of a virtual camera, or conversely, how the virtual camera
is positioned and oriented within a coordinate system, called ‘The World’, which bears
the 3D object at a fixed position. Fig. 8 should help to grasp the scenery: The virtual
camera is orbiting at a distance of 𝑅𝑂𝑂 (option ‘3Droo’) around the centre of orbit,
specified by the position vector −−−→𝐶𝑂𝑂 (option ‘3Dcoo’); ∢𝐴𝐴𝐶 (option ‘3Daac’) is the
camera’s aperture angle. The direction vector −−−→𝐶2𝐶 (option ‘3Dc2c’) is needed to spe-
cify the initial camera position. The camera may be given an initial roll angle (option
‘3Droll’) around its optical axis (−1) · −−−→𝐶2𝐶 . Fig. 8 shows the camera parameters for
the perspective view mode. Alternatively, the orthographic view mode may be chosen.
In orthographic view, the 3D object is parallelly projected onto the virtual camera chip.
Before reaching the camera chip, the projected image must be scaled in order to fit
onto the chip. Orthographic view can be enabled using the ‘3Dortho’ option which
takes the scaling factor as its argument.

Above options define the default view, i. e. the view that is shown initially after activ-
ating the 3D object in the Reader. Of course, once activated, the camera position can
be changed using the mouse and one can change forth and back between perspective
and orthographic viewing modes using the 3D tool bar.

By default, the virtual camera sits at the origin (0, 0, 0) of the World, looking in the pos-
itive 𝑌 direction, i. e. default settings of 3Droo=0, 3Dcoo=0 0 0 and 3Dc2c=0 -1 0

are assumed. (Note that −−−→𝐶2𝐶 is the opposite of the optical axis vector.) Thus, in order
to get a ‘front view’ of the 3D object it is sufficient to set the radius of orbit, i. e. the
distance between camera and object appropriately. Sometimes you may want to adjust
the orbital centre, i. e. the target of the camera as well, in particular, if the object is
irregularly shaped or if it is not centred around the World origin. Fortunately, it is

30

−−−→
𝐶2𝐶 𝑌

𝑋

𝑍

−−−→
𝐶𝑂𝑂

(0, 0, 0)

∢𝐴𝐴𝐶

𝑅𝑂𝑂

Figure 8: Camera and 3D object in the World System 𝑋𝑌𝑍 ; centre of orbit position
vector −−−→𝐶𝑂𝑂 , centre of orbit to camera direction vector −−−→𝐶2𝐶 , radius of orbit 𝑅𝑂𝑂 ,
aperture angle of camera ∢𝐴𝐴𝐶 .

possible to let the values of the corresponding options be determined automatically.
Choosing option ‘3Dmenu’ adds ‘Generate Default View’ to the context menu of the
activated 3D scene. Selecting this entry calculates and outputs optimal camera settings
which can be inserted into the option list of \includemedia.

Additional resource files that are needed to render the 3D scene can be embedded using
the ‘addresource’ option. Typical resources are bitmaps and Flash files (even animated
and interactive ones), to be used as materials or scene backgrounds, as well as additional
3D objects in the U3D or PRC file format. The allowed file formats of bitmapped image
files depend on the LATEXworkflow. LATEX→ dvips→ ps2pdf/Distiller accepts PS and
EPS files; pdfLATEX accepts PNG, JPEG and JBIG2; (X E)LATEX→ (x)dvipdfmx accepts
PNG and JPEG. 3D JavaScript is necessary to load these resources upon activation. 3D
JavaScript files are attached using the ‘add3Djscript’ option.

Below, several examples of embedded 3D files are shown. The first one, Fig. 9 is a
PRC file generated with Asymptote. Note the text labels always facing the camera
thanks to the attached 3D JavaScript file ‘asylabels.js’. The second example, Fig. 10 ,

31

demonstrates the use of a views file which defines additional named views of the 3D
object. Moreover, the possibilities of the extended 3D context menu can be evaluated.
They were enabled by adding the ‘3Dmenu’ option to \includemedia. All part and
scene rendering attributes that can be changed via the ‘Part Options’ and ‘Viewing
Options’ menu entries, as well as a cross section to be added with the ‘Cross Section’
menu entry can be saved into a new view (‘Get Current View’). Position, orientation
and scaling of individual parts and of the cross section can be changed using the
keyboard (keys , , , , X , + X , Y , + Y , Z , + Z , S ,

+ S). The third example, Fig. 11 , shows an animated 3D object. The animation
itself and the functions called by pressing the controls are defined in a 3D JavaScript
file attached to the model.

\includemedia[

width=0.8\linewidth,height=0.8\linewidth,

add3Djscript=asylabels.js, %upright text labels

add3Djscript=3Dspintool.js, %let scene rotate about z-axis

% 3Dcoo, 3Droo values found with `Generate Default View' from

% context menu

3Dmenu,

3Dc2c=4 2 3,

3Dcoo=4.413303375244141 2.195653200149536 -0.000011444091796875,

3Droo=429.49035778293376,

]{\includegraphics{epixposter}}{epix.prc}

Figure 9: Embedded PRC file produced with Asymptote, making use of convenience
3D JavaScripts ‘asylabels.js’ and ‘3Dspintool.js’ mentioned above.

32

media resource

//
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh)
{
 var t=new Matrix4x4(mesh.transform);
 if(mesh.parent.name != "") {
 var parentTransform=fulltransform(mesh.parent);
 t.multiplyInPlace(parentTransform);
 return t;
 } else
 return t;
}

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
 var node=nodes.getByIndex(i);
 var name=node.name;
 var end=name.lastIndexOf(".")-1;
 if(end > 0) {
 if(name.charAt(end) == "\001") {
 var start=name.lastIndexOf("-")+1;
 if(end > start) {
 node.name=name.substr(0,start-1);
 var nodeMatrix=fulltransform(node.parent);
 var c=nodeMatrix.translation; // position
 var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
 bbnodes.push(node);
 bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
 }
 }
 }
}

var camera=scene.cameras.getByIndex(0);
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
 var T=new Matrix4x4();
 T.setView(zero,camera.position.subtract(camera.targetPosition),
 camera.up.subtract(camera.position));

 for(var j=0; j < bbcount; j++)
 bbnodes[j].transform.set(T.multiply(bbtrans[j]));
 runtime.refresh();
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();

media resource

//
//
// (C) 2012, Alexander Grahn
//
// 3Dspintool.js
//
// version 20120301
//
//
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript')
//
// enables the Spin tool (also accessible via 3D toolbar or context menu)
// upon activation of the 3D scene; the scene then rotates around the upright
// axis while dragging with the mouse
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
//

runtime.setCurrentTool(runtime.TOOL_NAME_SPIN);

media resource

//
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard, be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys
// and caled using the s and S keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts and
// groups of parts in the 3D scene. Parts which have been selected with the
// mouse can be scaled moved around and rotated like the cross section as
// described above. To spin the parts around their local up-axis, keep
// Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 if(
 clip=scene.nodes.getByName('$$$$$$')||
 clip=scene.nodes.getByName('Clipping Plane')
);
 for(var i=0;i<scene.nodes.count;i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd==clip||nd.name=='') continue;
 var ndUTFName='';
 for (var j=0; j<nd.name.length; j++) {
 var theUnicode = nd.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 ndUTFName += theUnicode;
 }
 var end=nd.name.lastIndexOf('.');
 if(end>0) var ndUserName=nd.name.substr(0,end);
 else var ndUserName=nd.name;
 respart=' PART='+ndUserName+'\n';
 respart+=' UTF16NAME='+ndUTFName+'\n';
 defaultvals=true;
 if(!nd.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(nd.opacity<1.0){
 respart+=' OPACITY='+nd.opacity+'\n';
 defaultvals=false;
 }
 if(nd.constructor.name=='Mesh'){
 currender=defaultrender;
 switch(nd.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 }
 if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
 var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
 var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
 var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +nd.transform.translation.x+' '
 +nd.transform.translation.y+' '
 +nd.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=host.util.printf(
 ' VISIBLE=%s\n', clip.visible);
 res+=host.util.printf(
 ' PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
 clip.material.emissiveColor.g, clip.material.emissiveColor.b);
 res+=host.util.printf(
 ' OPACITY=%s\n', clip.opacity);
 res+=host.util.printf(
 ' INTERSECTIONCOLOR=%s %s %s\n',
 clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
 res+=' END\n';
// for(var propt in clip){
// console.println(propt+':'+clip[propt]);
// }
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected&&e.node.name!=''){
 target=e.node;
 }else{
 target=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 var clip=null;
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
 scene.nodes.getByName('Clipping Plane')){ //added via context menu
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 if(clip){//plane in predefined views must be rotated by 90 deg around normal
 clip.transform.rotateAboutLineInPlace(
 Math.PI/2,clip.transform.translation,
 clip.transform.transformDirection(new Vector3(0,0,1))
);
 }
 for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
 target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var backtrans=new Matrix4x4();
 var trgt=null;
 if(target) {
 trgt=target;
 var backtrans=new Matrix4x4();
 var trans=trgt.transform;
 var parent=trgt.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 if(
 trgt=scene.nodes.getByName('$$$$$$')||
 trgt=scene.nodes.getByName('Clipping Plane')
) var trans=trgt.transform;
 }
 if(!trgt) return;

 var tname=trgt.name;
 if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
 if(target)
 var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
 else
 var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
 var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

 //get the centre of the mesh
 if(target&&trgt.constructor.name=='Mesh'){
 var centre=trans.transformPosition(trgt.computeBoundingBox().center);
 }else{ //part group (Node3 parent node, clipping plane)
 var centre=new Vector3(trans.translation);
 }
 switch(e.characterCode){
 case 30://tilt up
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
 break;
 case 31://tilt down
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
 break;
 case 28://spin right
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 29://spin left
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 120: //x
 translateTarget(trans, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(trans, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(trans, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(trans, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(trans, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(trans, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 case 83: //shift + s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1/1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 }
 trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
 var curTrans=getCurTrans();
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(target){
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 if(target.constructor.name=='Mesh'){
 var centre=trans.transformPosition(target.computeBoundingBox().center);
 }else{
 var centre=new Vector3(trans.translation);
 }
 target=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 if(
 scene.nodes.getByName('$$$$$$')||
 scene.nodes.getByName('Clipping Plane')
){
 clip.remove();clip=null;
 }
 }
 restoreTrans(curTrans);
 return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
 var tA=new Array();
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd.name=='') continue;
 tA[nd.name]=new Matrix4x4(nd.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(tA[nd.name]) nd.transform.set(tA[nd.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton9'){ocgs[i].state=false;}}

\includemedia[

label=dice,

width=0.5\linewidth,height=0.5\linewidth,

activate=pageopen,

3Dtoolbar, 3Dmenu,

3Dviews=dice.vws,

]{}{dice.u3d}

\mediabutton[3Dgotoview=dice:N]{\fbox{Next view}}

\mediabutton[3Dgotoview=dice:(Back)]{\fbox{View `Back'}}

\mediabutton[3Dgotoview=dice:5]{\fbox{6th view in the list}}

Contents of ‘dice.vws’:
VIEW=Front

ROO=27

END

VIEW=Back

ROO=27

C2C=0 1 0

END

VIEW=Left

ROO=27

C2C=-1 0 0

END

VIEW=Right

ROO=27

C2C=1 0 0

END

VIEW=Top

ROO=27

C2C=0 0 1

END

VIEW=Bottom

ROO=27

C2C=0 0 -1

END

VIEW=Fish Eye at Centre

AAC=130

END

Figure 10: Embedded U3D file, based on a VRML model by Peter Whitehouse,
 http://www.wonko.info/vrml/index.htm ; conversion to U3D was done using
DeepExploration®[12]. The file ‘dice.vws’ provides predefined views. Buttons are
created with \mediabutton using the ‘3Dgotoview’ option.

33

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton10'){ocgs[i].state=false;}}

http://www.wonko.info/vrml/index.htm

\includemedia[

label=malte,

width=0.5\linewidth,height=0.5\linewidth,

activate=pageopen,

3Dmenu,

3Dc2c=1 1 1,

3Dcoo=-0.001042630523443222 1.4577869224116568e-19 0.028235001489520073,

3Droo=0.2604540212188131,

add3Djscript=malte.js

]{}{malte.u3d}

\mediabutton[

jsaction=malte:{annotRM['malte'].context3D.cntrClockWise();}

]{\includegraphics[height=1.44em]{boutona}}

\mediabutton[

jsaction=malte:{annotRM['malte'].context3D.pause();}

]{\includegraphics[height=1.44em]{boutonb}}

\mediabutton[

jsaction=malte:{annotRM['malte'].context3D.clockWise();}

]{\includegraphics[height=1.44em]{boutonc}}

\hspace{1em}

\mediabutton[

jsaction=malte:{annotRM['malte'].context3D.scaleSpeed(1/1.1);}

]{\includegraphics[height=1.44em]{boutond}}

\mediabutton[

jsaction=malte:{annotRM['malte'].context3D.origSpeed();}

]{\includegraphics[height=1.44em]{boutone}}

\mediabutton[

jsaction=malte:{annotRM['malte'].context3D.scaleSpeed(1.1);}

]{\includegraphics[height=1.44em]{boutonf}}

Figure 11: Animated U3D example of a Maltese drive contributed by Jean-Luc Chesnot.
The animation and the functions called in the JavaScript actions of the media buttons
are defined in the JavaScript file ‘malte.js’.

34

media resource

crank=this.scene.nodes.getByName("manivelle-1-1");
cross=this.scene.nodes.getByName("croix-1-1");

function cntrClockWise(){dir=1; speed=lastspeed;}
function pause(){if(speed)lastspeed=speed; speed=0;}
function clockWise(){dir=-1; speed=lastspeed;}
function scaleSpeed(s){lastspeed*=s; if(speed) speed=lastspeed;}
function origSpeed(){lastspeed=1; if(speed) speed=lastspeed;}

Ocrank=new Vector3(-0.025, 0, 0);
Ocross=new Vector3(0.025, 0, 0);

axeZ=new Vector3(0,0,1);
mx4x4=new Matrix4x4();

var omega0=Math.PI; // init. angular frequency (half turn per second)
var dir=1; // init. direction
var speed=0; // speed multiplier
var lastspeed=1;
var alpha=0;

timeEvHnd=new TimeEventHandler();
timeEvHnd.onEvent=function(event) {
 var dalpha=dir*speed*omega0*event.deltaTime;
 if (dalpha!=0){
 mx4x4.setIdentity();
 mx4x4.rotateAboutLineInPlace(alpha,Ocrank,axeZ);
 crank.transform.set(mx4x4);
 with (Math){
 if (alpha<3*PI/2) beta=0;
 else beta=-atan(sin(alpha+PI/4)/(sqrt(2)-cos(alpha+PI/4)))+PI/4;
 }
 mx4x4.setIdentity();
 mx4x4.rotateAboutLineInPlace(beta,Ocross,axeZ);
 cross.transform.set(mx4x4);
 alpha+=dalpha+2*Math.PI;
 alpha%=2*Math.PI;
 scene.update();
 }
}

runtime.addEventHandler(timeEvHnd);

media resource

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton11'){ocgs[i].state=false;}}

7.2 3D quick-start guide
1. Insert the 3D object with default camera settings and with extended context

menu enabled (option ‘3Dmenu’):

\includemedia[

width=0.5\linewidth,height=0.5\linewidth,

activate=pageopen,

3Dmenu

]{}{myfile.u3d}

2. Compile the document.

3. Open the PDF document in Adobe Reader and go to the page containing the 3D
object. Select ‘Generate Default View’ from the 3D context menu (right mouse
click) and wait for the JavaScript console to pop up. Optionally, drag the object
with the mouse to change the viewpoint of the camera and select ‘Generate
Default View’ again. This will re-adjust the distance between camera and target
to fit all visible parts tightly into the viewport. The options printed into the
console are updated accordingly.

4. Copy the camera settings (3Droo=..., 3Dcoo=..., etc.) from the console into
the option list of \includemedia.

5. Compile the document again.

Optional steps (option ‘3Dmenu’ required):

6. Additional, named views; cross sections; rescaled, repositioned parts:

a) Open a text file, e. g. ‘myviews.vws’, to be populated with additional views
of the 3D object.

b) Manipulate the 3D object using the mouse (camera position) and via 3D
context menu items ‘Part Options’ and ‘Viewing Options’ (visibility, render-
ing attributes, background etc.); the camera target can be moved into the
centre of a single part via ‘Part Options’→‘Zoom to Part’.

c) Add a cross section plane (select ‘Cross Section’ from the 3D context menu),
adjust its position using the keyboard; keyboard keys are given here .

d) Adjust scaling and position of individual parts using the keyboard; keyboard
keys are given here .

e) Re-adjust the camera distance using either ‘Generate Default View’ or ‘Part
Options’→‘Fit Visible’.

f) When you are done, select ‘Get Current View’ to get the VIEW section,
readily formatted for insertion into the views file. Repeat steps (a)–(f) to
get any number of views you want to define. The views file can be edited
manually to give meaningful names to the views (change the value of the
VIEW key), or to further tweak camera settings, opacity, part options etc.

g) Attach the views file with option ‘3Dviews’:

\includemedia[

width=0.5\linewidth,height=0.5\linewidth,

35

activate=pageopen,

3Dviews=myviews.vws,

3Dmenu

]{}{myfile.u3d}

If you are satisfied with the predefined views in the views file, the default
view first specified through the options of \includemedia can be deleted.
The first view in the views file becomes the default view then.

7. Associate any number of 3D JavaScript files with the 3D object:

\includemedia[

width=0.5\linewidth,height=0.5\linewidth,

activate=pageopen,

add3Djscript=somescript.js,

add3Djscript=otherscript.js,

3Dviews=myviews.vws,

3Dmenu

]{}{myfile.u3d}

A few 3D JavaScript files ready to be used are already installed along with
‘media9.sty’, see above .

8 Caveats
1. Large media files may cause TEX to interrupt with error

! TeX capacity exceeded, sorry [main memory size=3000000].

when using latex in dvips mode. While writing the DVI file, media files in
the current page that are about to be embedded are kept in TEX’s memory until
shipping out of the readily typeset page. In the case of large or many files, this
may be more than TEX can cope with by default.

There are two options to handle such situations:

The first one is to increase TEX’s main memory. You may follow the steps in
the Bugs section of the ‘animate’ package documentation. In TEXLive-2012, the
maximum value that can be set is main_memory = 12435455.

If increasing TEX’smainmemory does not help, use the package option ‘bigfiles’
withmedia9. It defers file embedding from the DVI producing to the PS producing
step.

2. In right-to-left typesetting context (RTL) using the (pdf)LATEX or X ELATEX engines,
the <poster text> argument of \includemedia and the text arguments for
button faces of the \mediabutton command should be enclosed in pairs of
\beginR and \endR.

9 Acknowledgements
This package was written using the new LATEX3 syntax which was a lot of fun. Many
thanks to the LATEX3 team!

36

http://mirror.ctan.org/macros/latex/contrib/animate/animate.pdf#dest:mem

References
[1] Adobe Systems Inc.: Strobe Media Playback, 2010, available at http://osmf.org/

strobe_mediaplayback.html

[2] Adobe Systems Inc.: Adobe Supplement to ISO 32000, BaseVersion 1.7, Extension-
Level 3, 2008, available at https://www.adobe.com/content/dam/acom/en/

devnet/acrobat/pdfs/adobe_supplement_iso32000.pdf

[3] Adobe Systems Inc.: JavaScript for Acrobat 3D Annotations API Reference, avail-
able at https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/

HTMLHelp/Acro12_MasterBook/JS_3D_Intro/JS_3D_Intro.htm

[4] Adobe Systems Inc.: JavaScript for Acrobat API Reference, available at
 https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/

HTMLHelp/Acro12_MasterBook/JS_API_AcroJSPreface/JS_API_

AcroJSPreface.htm

[5] The Apache Software Foundation: Apache Flex SDK, available at http://flex.

apache.org

[6] ECMA International: Universal 3D File Format (ECMA-363), 4th Edition, 2007,
available at http://www.ecma-international.org/publications/files/

ECMA-ST/ECMA-363%204th%20Edition.pdf

[7] Adobe Systems Inc.: PRC Format Specification, available at https://web.

archive.org/web/20081202034541/http://livedocs.adobe.com/

acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/

PRC_Format_Specification/index.html

[8] A. Hammerlindl, J. Bowman and T. Prince:Asymptote:The Vector Graphics Language,
available at http://asymptote.sourceforge.net

[9] A. A. Balakin:MathGL - library for scientific graphics, available at http://mathgl.

sourceforge.net

[10] T. O’Rourke, T. Strelchun: Universal 3D Sample Software, available at http://

sourceforge.net/projects/u3d

[11] P. Cignoni et al.: MeshLab, available at http://meshlab.sourceforge.net

[12] RightHemisphere Inc.: DeepExploration, http://www.righthemisphere.com/

products/dexp/

37

http://osmf.org/strobe_mediaplayback.html
http://osmf.org/strobe_mediaplayback.html
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/adobe_supplement_iso32000.pdf
https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/adobe_supplement_iso32000.pdf
https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/HTMLHelp/Acro12_MasterBook/JS_3D_Intro/JS_3D_Intro.htm
https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/HTMLHelp/Acro12_MasterBook/JS_3D_Intro/JS_3D_Intro.htm
https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/HTMLHelp/Acro12_MasterBook/JS_API_AcroJSPreface/JS_API_AcroJSPreface.htm
https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/HTMLHelp/Acro12_MasterBook/JS_API_AcroJSPreface/JS_API_AcroJSPreface.htm
https://help.adobe.com/en_US/acrobat/acrobat_dc_sdk/2015/HTMLHelp/Acro12_MasterBook/JS_API_AcroJSPreface/JS_API_AcroJSPreface.htm
http://flex.apache.org
http://flex.apache.org
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-363%204th%20Edition.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-363%204th%20Edition.pdf
https://web.archive.org/web/20081202034541/http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/index.html
https://web.archive.org/web/20081202034541/http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/index.html
https://web.archive.org/web/20081202034541/http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/index.html
https://web.archive.org/web/20081202034541/http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/index.html
http://asymptote.sourceforge.net
http://mathgl.sourceforge.net
http://mathgl.sourceforge.net
http://sourceforge.net/projects/u3d
http://sourceforge.net/projects/u3d
http://meshlab.sourceforge.net
http://www.righthemisphere.com/products/dexp/
http://www.righthemisphere.com/products/dexp/

	1 Introduction
	2 Requirements
	3 Installation
	4 Using the package
	5 The user interface
	5.1 Media inclusion
	5.2 Command options
	5.3 Control buttons

	6 Embedding Flash, video and sound, image slide-shows (with examples)
	7 Embedding 3D objects (with examples)
	7.1 Introduction
	7.2 3D quick-start guide

	8 Caveats
	9 Acknowledgements

	0.0:
	0.1:
	anm0:
	fd@rm@0:
	fd@some_dice:
	mbtn@0:
	mbtn@1:
	mbtn@2:
	fd@rm@2:
	fd@rm@3:
	fd@rm@4:
	fd@rm@5:
	fd@song49:
	mbtn@3:
	mbtn@4:
	mbtn@5:
	fd@rm@7:
	fd@rm@8:
	fd@rm@9:
	fd@dice:
	mbtn@6:
	mbtn@7:
	mbtn@8:
	fd@malte:
	mbtn@9:
	mbtn@10:
	mbtn@11:
	mbtn@12:
	mbtn@13:
	mbtn@14:

