
mff.sty: Computer Modern Typefaces

as the Multiple Master Fonts

Version 1.21

A.S.Berdnikov
berd@ianin.spb.su

S.B.Turtia
turtia@ianin.spb.su

We would like to express our warmest thanks
to Dr. A.Compagner from the Delft University
of Technology who spent a lot of his time and
efforts trying to transform two naive students
from Russia into serious scientists.

Abstract

The style file mff.sty simulates the effect of Multiple Master Fonts
created by Adobe using the Computer Modern typefaces as a template.
It enables to vary continuously in a wide range the shape of TEX fonts
and create the unique font which suites the User’s demands. Although
originally mff.sty was created for internal purposes to investigate the
possibilities hidden inside the METAFONT source code for Computer
Modern typefaces, it might be useful for professional applications too.
The style file works correctly with LATEX 2ε as well as with LATEX 2.09.

1 Introduction

The Multiple Master Font format for PostScript fonts was suggested some time
ago by the well-known company Adobe Inc. It enables to vary continuously
the font characteristics (say, weight (“boldness”) from light to black, width from
condensed to expanded, etc.) and create the unique font which suites the par-
ticular User’s demands. Like many other “new inventions” in computer assisted
typography, the roots of this idea can be found inside TEX1 — namely, in
METAFONT as the language for font description, and in Computer Modern
font family created by D.Knuth in 1977–1985.

1For example, Microsoft Word 6.0 was announced as the first program which enables to
mark some place in the text by a special marker and then to refer to its position in a form:

“see page . . . ” �� � .

1

The METAFONT source code was created, and the Computer Modern font
parameters were selected using the advises of such professional font designers as
Hermann Zapf, Matthew Carter, Charles Bigelow and others (see [1] for the full
list of contributors). The METAFONT code for Computer Modern typefaces
has the following essential features:

• the parameter files are separated from the main source code so that the
font parameters can be variated easily;

• the role of the font parameters, the details of the METAFONT source
code, etc., are documented in [1] in deep details;

• the font variations (provided that the fonts and all changed .mf files have
the names different from that for the original CM fonts) are encouraged
by the author.

The Computer Modern fonts are parametrized using sixty two (!!!) parameters
most of which are independent. It can be seen easily that such big amount
of free parameters exceeds the flexibility of any multiple master font which is
created up to now or even will be created by somebody in future.

The continuous parametrization of the canonical Computer Modern type-
faces created by John Sauter and Karl Berry (sauter fonts [2]), and, on a
different basis, by Jörg Knappen and Norbert Schwarz for European Computer
Modern typefaces [3], enables to vary continuously the font size in a wide range
without loosing the high quality of the output. As a result it is easy to manip-
ulate with Computer Modern typefaces like the Adobe multiple master fonts,
and to produce an enomorous amount of freeware fonts of professional quality.

The style file mff.sty described here performs this work. It follows the ideas
implimented in the package MFPIC2 and enables to specify the new fonts inside
LATEX document without dealing with the details of METAFONT programming
and manual specification of each of 62 parameters used in Computer Modern
source files. The User can variate the font shape continuously between CMR,
CMBX, CMSL, CMSS, CMTT and CMFF font families, specify the weight,
width, height and contrast of the output font independently, and in addition
he/she can play the character characteristics so that the output does not look
like the canonical Computer Modern typefaces at all.

2 Main Command: define a font

The generation of the .mf header file and the activation of the new font is
performed by the command \MFFgener which has the format:

\MFFgener[fntscaled]{\fntcmd}{filename}{fntsize}
2Like MFPIC, the first pass of LATEX creates the .mf file, then the .mf file is processed by

METAFONT, and at the second pass of LATEX the new font is used to make the output.

2

The command \fntcmd will switch inside the document to the desired font like
it is done by the LATEX commands \bf, \sl, \sf, etc.3 The file filename.mf will
contain the METAFONT source code of the new font4. The value fntsize spec-
ifies the design size of the new font (it defines the size of a new font and is used
by mff.sty to calculate the font parameters as the functions of this reference
value — see sections 3 and 4 for more details). The optional parameter fntscaled
specifies the additional scaling of this font in LATEX document. Examples:

\MFFgener{\zfnt}{zmz30}{30pt}
\MFFgener[scaled 2000]{\zfnt}{zmz15}{15pt}
\MFFgener[at 30pt]{\zfnt}{zmz20}{20pt}

The .mf file created by mff.sty contains only the list of 62 font parameters
which determine the character shapes. It also contains the command that loads
the driver file (roman.mf, csc.mf, etc.), and the driver file assemblers all the
necessary METAFONT source code. It is assumed that the driver files for the
fonts described in section 6 together with all necessary .mf files are already
installed on your computer.

When the file filename.mf is created, it is necessary to process it by META-
FONT to get the metric file filename.tfm and the bitmap file filename.pk. The
second pass of LATEX will use the metric information to format the document
properly, and the DVI-drivers will use the bitmap data to make the output.
The proper configuration of TEX-compiler and DVI-drivers so that they can
find these files is the User’s task (please consult your local TEX-expert how to
configure it5).

If LATEX can find the file filename.tfm, it assigns the font filename to the
command \fntcmd which can be used later in the document to switch to the
desired font. If LATEX cannot find the .tfm file, the warning message

No file filename.tfm -- dummy font will be used

is displayed which means that the text typed by this new font will disappear
from the DVI-file (dummy font is the artificial font which contains no characters).

The file filename.mf which contains the METAFONT data necessary to
make the font is created after each pass of LATEX and the warning message

Do not forget to process filename.mf and reprocess this file

is displayed even if the new .mf file is identical to the previous one. It is the
User’s responcibility to guarantee that the mff.sty commands are the same as
during the previous pass of LATEX and that the .tfm and .pk files are produced
from the correct version of .mf file.

3The difference is that the size of this font is not influenced by the commands like \large

or \small — it is fixed and is determined totally by the parameters fntscaled and fntsize.
4To minimize the attempts to create the fonts with the names already used in Computer

Modern family, etc., the prefix xx is added before the file name automatically. See section 11
for more details.

5Some advises how to configure the programs if you use MS DOS/emTEX are in section 9.

3

3 Mixture of independent fonts

The Computer Modern font sequences

roman, bold, slanted, sans serif, typewriter, funny,

dunhill, quotation

share just the same METAFONT source code but with different values for font
parameters. Since each font exists at different sizes, it is possible to construct
for each sequence and for each parameter a continuous approximation which
is the function of the font size. Such approximations, for example, enable to
generate fonts with the font sizes different from that created by D.E.Knuth.

At least two ready-to-use font approximations are available from CTAN. One
is the sauter font package created by John Sauter and Karl Berry [2], and the
other is realized in dc and tc fonts created by Jörg Knappen and Norbert
Schwarz [3]. Special mff.sty comands control the approximation scheme:

\MFFsauter — sauter-type approximation is used;
\MFFdcfonts — DC font approximation is used;

where the default mode is \MFFsauter.
The continuous approximation for CMR parameters enables to create the

METAFONT header file for CMR font with an arbitrary font size. Similar
approximations and, as a result, the font headers with an arbitrary font size,
can be constructed for CMBX, CMTT, CMSS, etc. The main hypothesis used
below is the following: if some font headers result to correct fonts when processed
by METAFONT, the font header contructed from the weighted sum of the
font parameters extracted from these font headers gives the correct font also6.
Although it is not necessarily true, the experiments with Computer Modern
typefaces show that if the header files corresponding to different Computer
Modern fonts with the same font size are selected, this assumption is fulfilled
with great probability.

The fonts CMR, CMBX, CMTT, CMSS, etc., have quite different character
styles although they use just the same METAFONT driver file roman.mf. The
CMTT fonts have nearly rectangular serifs, nearly no contrast between thin and
thick lines, and different ratio width/height as compared with CMR. The CMSS
fonts has no serifs at all, they also have no contrast, the thickness of their lines
is greater than that for CMTT. Other fonts have their own specific features, but
inspite of this fact they can be “added” together — at least mathematically as
the 62-dimensional vectors of font parameters. The resulting font is no longer
CMR, CMBX, CMTT, etc., but something intermediate with a unique shape.

Taking into account the New Font Selection Scheme used by LATEX 2ε, it is
preferable to decompose the CMBX font sequence into two sequences — one

6The internal relations between font parameters described in [1] are conserved for the
weighted sum of font parameters.

4

for “boldness” (weight) and one for “extension” (width) characteristics. The
mff.sty uses the special fonts CMB7 (bold as CMBX and wide as CMR) and
CMX (wide as CMBX and bold as CMR) which are derived from CMBX.

The mixture of fonts is performed by the command

\MFFmixture{α1}{α2}{α3}{α4}{α5}{α6}
where α1, α2, α3, α4, α5, α6 specify the weight factors: α1 corresponds to CMB,
α2 corresponds to CMX, α3 corresponds to CMSS (sans serif fonts), α4 corre-
sponds to CMTT (typewriter fonts), α5 corresponds to CMFIB (“Fibonacci”
fonts), α6 corresponds to CMFF (funny fonts)8.

If some parameter has the value pcmr for CMR font, the value pcmb for CMB
font (with the same font size!), the value psf for CMSS font, etc., the mixture
value p∗ for this parameter is calculated as

p∗ = α0pcmr + α1 (pcmb − pcmr) + α2 (pcmx − pcmr) + α3 (psf − pcmr)
+α4 (ptt − pcmr) + α5 (pfib − pcmr) + α6 (pfunny − pcmr) (1)

The value α0 is set to 1.0 by the command \MFFmixture, but the User can
assign an arbitrary value to it using the commands \setMFF[α0]{cmr} and
\mixMFF[α0]{cmr} which are decribed below.

This procedure enables, for example, to make the font “less bold” than CMR
or “more bold” and “more extended” than CMBX using the weight factors which
are less than 0 or greater than 1, and to create the “mutant” combinations of
nearly incompatible font families9.

The command \MFFmixture{α1}{α2}{α3}{α4}{α5}{α6} is equivalent to the
following sequence of commands:

\clearMFF % synonim for \MFFmixture{0}{0}{0}{0}{0}{0}
\mixMFF[α1]{bold}
\mixMFF[α2]{x}
\mixMFF[α3]{sf}
\mixMFF[α4]{tt}
\mixMFF[α5]{fib}
\mixMFF[α6]{funny}

These commands are better recognized due to their mnemonic form, they can be
specified in an arbitrary order, the commands with zero α’s can be skipped since
the zero weight factors are already assigned by \clearMFF. If several commands
with the same font name are encountered, the last specification is active. The
default value for the optional parameter α is 1.0.

7It is not the same as cmb10 created by D.E.Knuth — the font parameters are different.
8The fonts slanted, quotation and dunhill
are not included in this list because they can be produced from CMR easily using the scaling

commands described in section 4.
9Caution: playing this game it is very easy to get the .mf file which cannot be passed

through METAFONT without errors if you do not understand clearly what are you doing.

5

The mixture between CMR and a single font can be specified by a single
mnemonic command selected from

\setMFF[α1]{bold} \setMFF[α3]{sf} \setMFF[α5]{fib}
\setMFF[α2]{x} \setMFF[α4]{tt} \setMFF[α6]{funny}

which is equivalent to \MFFmixture where only one weight factor has non-zero
value. If the optional parameter α is skipped, the default value 1.0 is used. It
means that the “pure” font family can be specified by the commands

\setMFF{bold} \setMFF{sf} \setMFF{fib}
\setMFF{x} \setMFF{tt} \setMFF{funny}

Although LATEX 2ε/NFSS considers the weight and the width as two inde-
pendent font characteristics, the movement in the direction “bold + extended”
(i.e., to CMBX font family) usually gives more pleasant results. To perform this
operation it is necessary to assign the equal weights to αcmb and αcmx which
can be done by the mnemonic commands

\mixMFF[αbx]{bx} and \setMFF[αbx]{bx}
The commands

\mixMFF[αcmr]{cmr} and \setMFF[αcmr]{cmr}
play a special role: they enable to assign the value α0 = αcmr in the equation (1)
(usually α0 is set to 1.0 by the command \MFFmixture — for the evident rea-
sons).

4 Modifications of font parameters

You can use the weighted mixture of font ingredients using the commands
\setMFF, \mixMFF and \MFFmixture described above, but you can also vary
“by hand” the font parameters which control the essential details of the char-
acter shape.

4.1 Variations of the height

The following commands enable to vary the height of the vertical elements of
the characters:

\MFFscaleHeight{factor} — scale proportionally the height and the depth
of the characters;

\MFFscaleAsc{factor} — scale the height of the capital characters, brackets,
digits, etc., and the ascenders of the characters like ‘b’, ‘h’;

6

\MFFscaleDesc{factor} — scale the depth of comma and the descenders of
the characters like ‘Q’, ‘y’;

\MFFscaleMath{factor} — scale the height of digits and the height of the
horizontal bar (the middle line) for mathematical symbols like =, +, −.

If several height factors are specified, their effect is combined. The curious font
cmdunh10 can be reproduced exactly by proper specification of all these factors.

Example:

\MFFscaleAsc{1.5}
\MFFscaleDesc{1.2}

4.2 Variations of the width

The width of CMR font can be variated by mixturing with the CMX font. It
increases the character width and also performs some fine tuning of other font
parameters. Due to this reason the mixturing with CMX can be advantageous
to variate the width of characters if you deal with CMR family. From the other
side, for CMTT fonts or CMSS fonts the mixturing with CMX results also to
some variation of the character shapes which can be an undesirable effect.

The User can specify the explicit width multiplication which means that the
font parameters which define the width of the characters are multiplied by some
factor:

\MFFscaleWidth{factor}
After this command the font parameters

u#, serif fit#, cap serif fit#, jut#, cap jut#

are scaled proportionally to factor. The values factor > 1.0 correspond to
expansion, the values 0 < factor < 1.0 — to compression of the characters. The
command \MFFscaleWidth{1.0} restores the default width.

4.3 Variations of the weight

The weight, i.e., the “boldness” of the characters can be controlled by muxturing
with CMB. Similarly to width correction described in the previous section, for
such fonts as CMTT or CMSS it is accompanied by some undesirable changes
in the character shapes.

The following commands control explicitly the weight and the contrast of the
characters:

\MFFscaleBoldLines{coef1} — scale the thickness of thick strokes by coef1;

\MFFscaleThinLines{coef2} — scale the thickness of thin strokes by coef2.

7

The coefficient coef1 scales the values of the font parameters

stem#, curve#, ess#, flare#, dot size#, cap stem#, cap curve#,
cap ess#, bar#, slab#, cap bar#, cap band#, thin join#.

The coefficient coef2 scales the values of font parameters

hair#, vair#, cap hair#, rule thickness#, notch cut#,
cap notch cut#.

Multiplication by coef1 and coef2 increases the font contrast in coef1/coef2
times. The contrast can be specified explicitly using the commands

\MFFcontrast[type] or \MFFcontrast{value}
which defines the parameter value equal to the ratio of the thickness of thin
strokes to the thickness of thick strokes. The commands work as:

\MFFcontrast[s] — no correction of the contrast;
\MFFcontrast[n] — no contrast at all (value=1);
\MFFcontrast[d] — 50% contrast (value=0.5);
\MFFcontrast{value} — the value is specified explitly.

If the correction of the contrast is active (no command \MFFcontrast[s]), all
thick element of lowercase characters are equal to stem#, all thick element of up-
percase characters are equal to cap stem#, all thin elements have the thickness
of stem# or cap stem# multiplied by value, the values stem# and cap stem# are
multiplied by coef1, the value coef2 is ignored.

4.4 Miscellaneous variations

The following scaling factors can help to perform fine tuning of the characters
(see [1] for more details):

\MFFscaleJoinLines{factor} — variable thin join# is multiplied by factor
(this variable is responcible for fine connection between thin and thick lines
in ‘h’, ‘m’, ‘n’);

\MFFscaleNotchCut{factor} — variables notch cut# and cap notch cut#
are multiplied by factor (these variables are responcible for sharp corners
in letters ‘A’, ‘V’, ‘w’);

\MFFscaleDotSize{factor} — variables dot size# and flare# are multi-
plied by factor (these variables are responcible for dots in ‘i’, ‘:’ and bulbs
in ‘a’, ‘c’);

\MFFscaleSerifDish{factor} — variable dish# is multiplied by factor (this
variable defines the curved shape of the serif platform).

8

Since these parameters perform fine tuning of the character shape, it can
be desirable to assign the specific value to some of them instead of scaling the
default value. This operation requires the “expert level macros” described in sec-
tion 4.7. For example, to assign a very big number to the variables notch cut#
and cap notch cut# which control the sharpness of the corners in letters ‘A’,
‘V’, ‘w’, etc.10, the following commands can be used:

\MFFcatcode
\def\MFF@assign@notch cut{\@tempdimb=16383pt}
\def\MFF@assign@cap notch cut{\@tempdimb=16383pt}
\noMFFcatcode

To return the rule of calculation for these parameters to the default state, the
commands

\MFFcatcode
\def\MFF@assign@notch cut{}
\def\MFF@assign@cap notch cut{}
\noMFFcatcode

should be used.

4.5 Slanted characters

The inclination of the characters is defined by the variable slant# which is
specified explicitly by the commands:

\MFFslant{parm} — set slant as a fraction;

\MFFslantD{parm} — set slant as an angle specified in degrees.

For example, slant typical for CMSL is specified as \MFFslant{1/6}, and slant
typical for CMSSI is specified as \MFFslantD{12} which is just the same as
\MFFslant{sind(12)/cosd(12)}. The arguments of the commands \MFFslant
and \MFFslantD are interpreted as the text strings directly transferred to .mf
files, not as the numerical values.

4.6 Logical flags

The logical switches usually specified at the end of *.mf file can be controlled
by the following commands (char=n means false, char=y means true):

\MFFflagSquareDots{char} — set logical variable square dots (should dots
be square?);

10This operation is necessary to produce high-quality outlined characters using font tricks
commands described in section 7 (see [7] for more details).

9

\MFFflagHefty{char} — set logical variable hefty (should we try hard not
to be overweight?);

\MFFflagSerifs{char} — set logical variable serifs (should bulbs and se-
rifs be attached?);

\MFFflagMonospace{char} — set logical variable monospace (are all charac-
ters of the same width?);

\MFFflagVariantG{char} — set logical variable variant g (should an italic-
style g be used?);

\MFFflagLowAsterisk{char} — set logical variable low asterisk (should
the asterisk be centered at the axis?);

\MFFflagMathSpacing{char} — set logical variable math fitting (should
math-mode spacing be used?).

The level of ligature and kerning data is specified by the command:

\MFFflagLigs{type} where type is 0, 1, 2, s or n — set ligature level: 0, 1,
2 correspond to the value of the variable ligs, n is equivalent to 0, s set
ligature level like in CMR fonts (it is 1 if font design size is less than 6pt,
and 2 otherwise).

4.7 Expert level macros

It is possible to change manually each font variable if the default value calculated
by mff.sty is not satisfactory. To perform such operation it is necessary to
specify the macro with the name

\MFF@assign@varname

which redefine the value of the register \@tempdimb. On input the register
\@tempdimb is equal to automatically calculated value for that parameter, and
the register \@tempdima is equal to the font design size. On output the register
\@tempdimb should contain the new value for the font parameter. When the
macro \MFF@assign@varname is executed, the correction procedure described
in section 5 is performed.

For example, the following macro

\def\MFF@assign@x height{\@tempdimb=3\@tempdimb}
scales by 3 the font variable x height#, and the macro

\def\MFF@assign@crisp{\@tempdimb=0pt}
assigns zero value to the font variable crisp#. To delete this user-specified
transformation it is necessary to use the explicit dummy definition

10

\def\MFF@assign@x height{}
\def\MFF@assign@crisp{}

The characters ‘ ’ and ‘@’ should have the status letters to type such macro
definition. The command \MFFcatcode assigns the status letters to ‘ ’ and
‘@’, and the command \noMFFcatcode returns the previous status for these
characters. These commands work correctly even inside .sty files where the
character ‘@’ have the status letter before LATEX starts to process the style file,
and should conserve this status when LATEX finishes to process the style file.
Since the command \noMFFcatcode returns the previous status to ‘ ’ and ‘@’
(that is, the catcode which they have during the last command \MFFcatcode),
two subsequent commands \MFFcatcode without intermediate\noMFFcatcode
produce an error: the status of ‘ ’ and ‘@’ will be letters even after the command
\noMFFcatcode. To assign the status other characters to ‘ ’ and ‘@’ uncondi-
tionally, the command \otherMFFcatcode can be used.

The only operation that should be performed inside \MFF@assign@varname
is the re-definition of \@tempdimb. No \@tempdima nor other internal variables
can be changed although the contents of \@tempdima and the initial value of
\@tempdimb can be used to calculate the output value. The exception are the
dimensional registers \MFF@dimenA, \MFF@dimenB, \MFF@dimenC, \MFF@dimenD
which can be used for intermediate calculations. Also, it is necessary to take
into account that:

• the value of all dimensional .mf variables except

notch cut#, cap notch cut#, rule thickness#

is divided by 36 when printed to the header file;

• the values of the variables

notch cut#, cap notch cut#, rule thickness#

are divided by 100 when printed to the header file;

• the values of non-dimensional variables

fudge, math spread, superness, superpull, beak darkness

are printed to the header file ‘as it is’ but it is to be specified in pt — say,
to assign the value 0.5 to the variable fudge, the command

\def\MFF@assign@fudge{\@tempdimb=0.5pt}
should be used;

11

• the value of the font parameter slant is set directly by the commands
\MFFslant and \MFFslantD and cannot be specified using the command
\MFF@assign@slant;

• the value of font size is defined by the parameter fntsize of the command
\MFFgener (see section 2) and cannot be changed after it.

5 Automatic control of font parameters

The METAFONT programs which describe the Computer Modern typefaces
assume that the following mutial relations between font parameters are fulfilled
(see [1] for more details):

• 0.5·x height ≤ bar height ≤ 0.55·x height

• asc height ≥ 1.2 · x height
curve ≥ stem

cap stem ≥ stem
cap curve ≥ curve

• each of the variables

thin join, hair, vair, stem, curve, ess, flare, dot size, bar,
slab, cap hair, cap stem, cap curve, cap ess, cap bar, cap band

are no less than crisp, tiny and fine;

• the variables stem corr and vair corr are no greater than 1
5 cap hair,

1
6 stem, 1

4 fudge×stem and 1
12 curve;

• the variable vair corr is no greater than 1
4slab;

• the variable stem corr is no greater than 1
16fudge× hair.

Although even the canonical header files sometimes violate these conditions,
it is more safe if the font parameters calculated by mff.sty satisfy these re-
lations (especially if the Computer Modern driver files roman.mf, textit.mf,
csc.mf are used). From the other side, several interesting effects can be achieved
only when these relations are violated (provided that the .mf file is still pro-
cessed by METAFONT without errors). The automatical correction is switched
on and off by the commands:

\MFFcheck — the conditions described above are checked and the variable
values are corrected if necessary;

\MFFnocheck — the automatical checking and correction of the font param-
eters is switched off although the condition that some critical parameters
are not negative, is still checked and corrected, if necessary.

12

6 Font classes

The NFSS/LATEX2ε classifies TEX font families in a way which is different from
the logical structure of .mf files for Computer Modern typefaces. That is, the
italic and small caps are at the same family roman together with bold and
slanted fonts, although they are produced by different driver files. Similarly,
roman, typewriter, sans serif, dunhill, quotation and funny fonts are
considered as different font families although they are produced by the same
driver file roman.mf (but with different font parameters).

As soon as we deal with mff.sty there is no sharp boundary between ro-
man, bold, slanted, typewriter, sans serif, funny and dunhill fonts —
each font is smoothly converted to another one, while italic and small caps
fonts are quite different — they use different driver files. The macros mff.sty
assign different classes to these fonts to distinguish such difference from font
families used in NFSS. The following font classes can be specified now:

CMR — Computer Modern Roman;

CMTI — Computer Modern Text Italic;

CMCSC — Computer Modern Small Caps;

DCR — European Computer Modern Roman;

DCTI — European Computer Modern Text Italic;

DCCSC — European Computer Modern Small Caps;

CMRZ — CMZ Computer Modern Roman/Cyrillic created by Nana Glonti
and Alexander Samarin;

CMRIZ — CMZ Computer Modern Text Italic/Cyrillic;

CMCCSC — CMZ Computer Modern Small Caps/Cyrillic;

LHR — LH Computer Modern Roman/Cyrillic created by Olga Lapko and
Alexey Khodulev;

LHTI — LH Computer Modern Text Italic/Cyrillic;

LHCSC — LH Computer Modern Small Caps/Cyrillic.

LLR — LL Computer Modern Roman/Cyrillic created by Olga Lapko and
Alexey Khodulev (cyrillic part only);

LLTI — LL Computer Modern Text Italic/Cyrillic;

LLCSC — LL Computer Modern Small Caps/Cyrillic.

13

The font class is specified by the command

\MFFclass{class}
For example the command \MFFclass{CMR} activates Computer Modern Roman
fonts (that is, the font header file will use the driver file roman.mf).

The set of font classes can be extended easily as soon as there is a font based
on the same set of parameters as Computer Modern fonts. The only thing to
do is to specify the macro which writes the font identifier value and the
operator generate with corresponding name of the driver file (see mff.sty for
the examples).

7 Special Effects

To make more fun some special effects described in [6, 7] can be included in
your font. If you specify some font trick declaration, the special portion of
METAFONT code is inserted in the header file which modifies the characters
generated by original METAFONT subroutines. The font trick declarations
can specify

• pattern for the main body of the character;

• pattern for the rectangular box (background) of the character;

• pattern for the character shadow (if present);

• pattern for the underlining of the character (if present) [this feature will
be realized in future versions];

• additional transformations (reflections, rotations, etc.) of the characters.

The command \MFFtrick which specifies these attributes has the format:

\MFFtrick{char-style}{box-style}{shadow-style}{underline}{transform}
where the parameter underline is reserved for future improvements and means
nothing in the current version. The following letters can be used to specify the
char-style, box-style and shadow-style:

z — no such element or solid white pattern;
b — solid black pattern;
h — horizontal stripes;
v — vertical stripes;
r — slanted stripes /;
l — slanted stripes \;
g — rectangular grid (‘h’+‘v’);
s — slanted grid (‘r’+‘l’);
d — dotted grid.

14

The capital letters Z, B, H, V, R, L, G, S, D mean that the outline of the ele-
ment contour is added to the filling pattern. The specifications b and B are
equivalent since the outlined contour is undistinguishable over the solid black
pattern. For example, the outlined main character with a white body, white
box background and outlined shadow filled with dotted grid is specified by the
command \MFFtrick{Z}{z}{D}{}.

The parameter transform specifies the transformation of the character11:

rr — rotation −90◦;
rl — rotation +90◦;
ro — rotation 180◦;
sx — symmetry x −→ −x;
sy — symmetry y −→ −y;
sz — symmetry (x, y) −→ (y, x),
st — symmetry (x, y) −→ (−y,−x).

The font trick effects specified by the command \MFFtrick are used immediately
by the subsequent commands \MFFgener. The following commands switch on
and of the font trick effects provided that the font trick parameters are already
established:

\MFFfonttricks — activates the font trick declarations;

\MFFnotricks — deactivates the font trick declarations.

The following commands can be used to specify the individual font trick el-
ements (these declarations are used by the subsequent commands \MFFgener
only after the explicit command \MFFfonttricks or if they are specified after
the command \MFFtrick):

\trickMFFchar{char-style} — the pattern style for filling of the body of the
character (“z” means white body);

\trickMFFbox{box-style} — the pattern style for filling of the background
box (“z” means empty background);

\trickMFFshadow{shadow-style} — the pattern style for filling of the char-
acter shadow (“z” means no shadow);

\trickMFFtransform{transform} — the additional transformation of the
character.

Some typical font trick effects can be specified using the command
11Several transformations can be used — in this case the individual letters are separated

by commas like in {rr,sx,ro}.

15

\MFFstdtrick{trick-name}
where the following trick-name identifiers can be used:

standard — no font tricks (=\MFFtrick{b}{z}{z}{});
reversed — reversed characters: white letters over black rectangle;

dotted — characters with a body filled with dots;

striped — characters with a body filled with rectangular grid;

stripedH — characters with a body filled with horizontal stripes;

stripedV — characters with a body filled with vertical stripes;

slanted — characters with a body filled with slanted rectangular grid;

slantedL — characters with a body filled with slanted stripes “\”;

slantedR — characters with a body filled with slanted stripes “/”;

outlined — outlined white characters;

shadowed — outlined white characters with solid shadows;

sHadowed — outlined white characters with outlined white shadows;

shadowonly — only the solid shadow of the character is still present.

The parameters of the font trick effects are controlled by the commands:

• outline contour parameters:

\stepMFFoutline{value} — the thickness of the outline contour.

• shadow parameters:

\stepMFFshadow{value} — the step of the shadow shift;

\cornerMFFshadow{char} — the corner of the shadow:

A — right/down corner;
B — right/upper corner;
C — left/upper corner;
D — left/down corner.

• the parameters for the patterns which are used for the main body of the
character:

\stepMFFcharpattern{value} — the step between lines and dots;

\penMFFcharpattern{value} — the thickness of lines and dots.

16

• the parameters for the patterns which are used for the background of the
character:

\stepMFFboxpattern{value} — the step between lines and dots;

\penMFFboxpattern{value} — the thickness of lines and dots.

• the parameters for the patterns which are used for the character shadow:

\stepMFFshadowpattern{value} — the step between lines and dots;

\penMFFshadowpattern{value} — the thickness of lines and dots.

The values of the thickness/step size for the striped, slanted and dotted pat-
terns are specified using the non-dimensional value which is the factor ap-
plied to the (dimensional) font parameter hair#. For example, the command
\stepMFFboxpattern{0.5} specifies that the step size between horizontal, ver-
tical or slanted lines used to construct the pattern for the background is equal
to 0.5×hair#.

8 Default state

The default values for all parameters used by mff.sty are assigned by the
command \MFFdefault which is defined as

\def\MFFdefault{

%

\MFFcontrast[s]

\MFFscaleBoldLines{1} \MFFscaleThinLines{1}

\MFFscaleWidth{1} \MFFscaleHeight{1}

\MFFscaleAscend{1} \MFFscaleDescend{1} \MFFscaleMath{1}

\MFFscaleJoinLines{1} \MFFscaleNotchCut{1}

\MFFscaleDotSize{1} \MFFscaleSerifDish{1}

%

\MFFslant{0}

\MFFflagLigs{s} \MFFflagMonospace{n}

\MFFflagSquareDots{n} \MFFflagHefty{n}

\MFFflagSerifs{y} \MFFflagVariantG{n}

\MFFflagLowAsterisk{n} \MFFflagMathSpacing{n}

%

\stepMFFoutline{0.075}

\stepMFFshadow{0.5}

\cornerMFFshadow{A}

\stepMFFbackpattern{0.375} \penMFFbackpattern{0.075}

\stepMFFcharpattern{0.375} \penMFFcharpattern{0.075}

\stepMFFshadowpattern{0.375} \penMFFshadowpattern{0.075}

%

\MFFstdtrick{standard}

17

\MFFnotricks

%

\MFFsauter

\MFFclass{CMR}

\MFFmixture{0}{0}{0}{0}{0}{0}{0}

\MFFnocheck

}

It can be called at any moment to initialize from the very beginning the mff.sty
parameters.

9 Configuration of emTEX programs

The way you should setup TEX and METAFONT to work with mff.sty cor-
rectly depends on your local system. The most difficult (and system-dependent)
aspect is how to teach METAFONT to generate the *.pk-files according to your
printer specification, and how to teach TEX and DVI-drivers to find META-
FONT’s output files. For MS DOS and OS/2 and for emTEX package this
problem can be solved using the utility MFJob as it is described below.

The configuration used here assumes that the .mf files and .tfm files are
placed at the working directory, and the .pk files are placed in its subdirec-
tories with the names corresponding to font resolution. The .mf files created
by mff.sty are placed at the current directory automatically. The .tfm and
.pk files are placed at the proper directories by the utility MFJob if it uses the
following script file:

%
% file mff.mfj / script for MFPiC and MFF.STY
%
input [modes];
def s=[s0];
{
base=plain;
fonts=f; mags=s; m;
output=pk[.\@Rrdpi\@f] tfm[@f] log[@f];
}

The script file named mff.mfj should be placed at the directory \EMTEX\MFJOB\.
To process the .mf file by METAFONT and to generate the output font for the
desired printer with desired magnification it is necessary to use the command

mfjob /a mff.mfj m=<printer-mode> s=<magn> f=<fontname>

(option /a forces the program to generate the output font even if it was already
generated). The program MFJob put .tfm and .log files at the current directory,
and .pk file at the subdirectory with the name which mirrors the font resolution.
Example:

18

mfjob /a mff.mfj m=lj s=1 f=zcmr10

To teach emTEX to look for .tfm files at the current directory as well as at
the system directories, it is necessary to specify the DOS environment variable
TEXTFM as

SET TEXTFM=%EMTEXDIR%\TFM!;.\

instead of its default value %EMTEXDIR%\TFM! (it is assumed that EMTEXDIR is
specified already like SET EMTEXDIR=C:\EMTEX).

To teach DVI-drivers to look for .pk files at the subdirectories of the current
directory, it is necessary to edit the printer configuration files placed by emTEX
at \EMTEX\DATA\. Suppose you use the HP Laser Jet printer (the modifications
of the configuration files for other printers are performed similarly). The original
Laser Jet configuration file lj.cnf looks like

% lj.cnf (300x300 DPI using LJ fonts)
+dvi-file={,$DVIDRVINPUT:}@i
+font-libraries=$DVIDRVFONTS:lj_{base,more}
+font-files=$DVIDRVFONTS:pixel.lj\@Rrdpi\@f{.pk,.pxl}
+graph-files={,$DVIDRVGRAPH:}{@Rrdpi\,}@PBf{@Ef,.msp,.pcx,.bmp}
+resolution=300
+font-resolution=300
+font-scaling=1
+metafont-mode=laserjet
+max-drift=2

The new configuration file (with the file name different from lj.cnf) should
contain the parameter +font-files in a form

....
+font-files={$DVIDRVFONTS:pixel.lj\,}@Rrdpi\@f{.pk,.pxl}
....

Now it is necessary to substitute the references on this configuration file in the
batch files v.bat, vs.bat and prtlj.bat from \EMTEX\BIN\, and you are ready
to work with mff.sty. Just the same re-configuration of emTEX will enable to
work correctly with the MFPIC macro package.

10 History

• Ver. 0.?? — the first attempt which helped to learn more about TEX
commands and the internal structure of Computer Modern fonts.

• Ver. 1.0 — the arithmetical macros finally works. The “empirical” approx-
imation scheme based on linear splines and “corrected-by-hand” CM pa-
rameters is implemented. The fonts generated by command \MFFmixture
(at that moment it was called \MFFcompose) are tested experimentally.

19

• Ver. 1.1 — sauter approximation scheme is used instead of the “empir-
ical” approximation scheme. Commands for the logical flags are added.
Font classes other than CMR are included. Generation of small caps
and italic fonts is added. As a result new commands are added, some
commands are renamed.

• Ver. 1.2 — the font tricks described in [6] and [7] are added. Font classes
corresponding to the DC fonts driver files are included.

• Ver. 1.21a — the approximation based on DC fonts data is added.
Information printed at the header of .mf file becomes more detailed now.
The mff.sty commands are revised and the names of many commands
are changed. This version was distributed during the TUG-96 Conference.

• Ver. 1.21b — the section “Last minute corrections” is added to this man-
ual. The obligatory prefix xx is added now in front of the file name con-
taining the font header. The list of parameters for \MFFtrick is changed
so that in future the underlining effect can be added. This version is put
on CTAN.

11 Last minute corrections

The following data is the result of discussioins held during the TUG-96 Con-
ference. Some corrections suggested by the participants are implemented just
now, most of them will be implemented in future versions:

• Add special (and obligatory) prefix in front of the file name so, that the
fonts created by mff.sty cannot be confused with the fonts created by the
professional font designers.

Corrected. Now all the fonts created by mff.sty are started with xx. This
feature is added to lock the attempts to create user-defined fonts under
the names of the Computer Modern, etc., fonts. The prefix xx used by
default is defined as

\def\MFFprefix{xx}
and can be redefined by the User, if necessary.

• Include Concrete Fonts into the set of fonts used in the arithmetical mix-
ture of Computer Modern families.

It is not done, and with great probability it will not be done at all. The
most essential effects associated with Concrete Font Family can be pro-
duced in mff.sty using the scaling of the thickness for the thin strokes
(see section 4.3).

20

• Extend mff.sty to generate the mathematical fonts as well.

This is a very interesting and important suggestion, but it requires a
lot of time since it is also necessary to describe all these fonts as the
mathematical ones inside TEX. Will be done somedays in future.

• Extend mff.sty to work with Pandora Font Family as well.

Interesting and promising. It may be done if there is enough time to look
for for Pandora Font Family in more details.

• Generate the partial fonts, i.e., generate the font where some (or nearly
all) characters from the original MetaFont source are excluded.

Interesting and not too difficult using the re-definition of the procedure
beginchar by the commands inside the font header created by mff.sty.
Some problems may arize due to Metafont memory problems. Will be
done in future.

• Include some more font trick effect, namely the underlining of the char-
acters so that the underlining stroke has some gaps near the descender of
the character.

Interesting and not too difficult. Corresponding feature is reserved now in
the list of \MFFtrick parameters (see section 7). Will be realized in the
nearest future.

Acknowledgements

This research was partially supported by a grant from the Dutch Organization
for Scientific Research (NWO grant No 07-30-007).

References

[1] Donald E. Knuth. Computer Modern Typefaces (Computers & Typesetting
series). Addison-pt Wesley, 1986.

[2] John Sauter. Building Computer Modern fonts. TUGboat, 7 (1986), pp.
151–152.

[3] Jörg Knappen. The release 1.2 of the Cork encoded DC fonts and the text
companion symbol fonts. Proceedings of the 9th EuroTEX Conference, Arn-
hem, 1995.

[4] A.Khodulev, I.Mahovaya. On TEX experience in MIR Publishers. Proceed-
ings of the 7th EuroTEX Conference, Prague, 1992.

21

[5] O.Lapko. MAKEFONT as a part of CurTUG–EmTEX package. Proceed-
ings of the 8th EuroTEX Conference, Gdańsk, 1994.

[6] Georgia K.M. Tobin. The ABS’s of Special Effects. TUGBoat 9 (1988) No
1 pp. 15–18.

[7] Doug Henderson. Outline Fonts with Metafont. TUGBoat 10 (1989) No 1
pp. 36–38.

22

