
3DLDF User and Reference Manual
3-dimensional drawing with MetaPost output.

Manual edition 1.1.5.1 for 3DLDF Version 1.1.5.1
January 2004

Laurence D. Finston

This is the 3DLDF User and Reference Manual, edition 1.1.5.1 for 3DLDF 1.1.5.1. This
manual was last updated on 16 January 2004. 3DLDF is a GNU package for three-
dimensional drawing with MetaPost output. The author is Laurence D. Finston.

Copyright c© 2003, 2004 Laurence D. Finston.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Short Contents

1 Introduction. 1

2 Points . 10

3 Transforming Points . 13

4 Transforms . 19

5 Drawing and Labeling Points . 24

6 Paths . 28

7 Plane Figures . 36

8 Solid Figures . 47

9 Pictures . 54

10 Intersections . 73

11 Installing and Running 3DLDF . 74

12 Typedefs and Utility Structures . 81

13 Global Constants and Variables . 82

14 Dynamic Allocation of Shapes . 84

15 System Information . 85

16 Color Reference. 88

17 Input and Output . 92

18 Shape Reference . 93

19 Transform Reference . 96

20 Label Reference . 108

21 Picture Reference . 111

22 Point Reference . 119

23 Focus Reference. 151

24 Line Reference . 154

25 Plane Reference . 157

26 Path Reference . 165

27 Polygon Reference . 199

28 Regular Polygon Reference . 205

29 Rectangle Reference . 211

30 Regular Closed Plane Curve Reference 216

31 Ellipse Reference . 222

32 Circle Reference . 238

33 Pattern Reference . 242

34 Solid Reference . 248

35 Faced Solid Reference . 257

ii

36 Cuboid Reference . 258

37 Polyhedron Reference . 260

38 Utility Functions . 271

39 Adding a File . 273

40 Future Plans . 275

41 Changes . 278

Bibliography . 280

A GNU Free Documentation License 282

Data Type and Variable Index . 289

Function Index . 292

Concept Index . 295

iii

Table of Contents

1 Introduction . 1
1.1 Sources of Information . 1
1.2 About This Manual . 2

1.2.1 Conventions . 3
1.2.2 Illustrations . 4

1.3 CWEB Documentation . 5
1.4 Metafont and MetaPost . 6
1.5 Caveats . 7

1.5.1 Accuracy . 7
1.5.2 No Input Routine . 8

1.6 Ports . 8
1.7 Contributing to 3DLDF. 9

2 Points. 10
2.1 Declaring and Initializing Points . 10
2.2 Setting and Assigning to Points . 11

3 Transforming Points . 13
3.1 Shifting . 13
3.2 Scaling . 14
3.3 Shearing . 14
3.4 Rotating. 17

4 Transforms . 19
4.1 Applying Transforms to Points . 20
4.2 Inverting Transforms . 21

5 Drawing and Labeling Points 24
5.1 Drawing Points . 24
5.2 Labeling Points . 26

6 Paths . 28
6.1 Declaring and Initializing Paths . 28
6.2 Drawing and Filling Paths . 30

7 Plane Figures . 36
7.1 Regular Polygons . 36
7.2 Rectangles . 39
7.3 Ellipses . 43
7.4 Circles . 45

iv

8 Solid Figures . 47
8.1 Cuboids . 47
8.2 Polyhedron . 48

8.2.1 Tetrahedron . 48
8.2.2 Dodecahedron . 49
8.2.3 Icosahedron . 51

9 Pictures . 54
9.1 Projections . 58

9.1.1 Parallel Projections . 58
9.1.2 The Perspective Projection . 60

9.2 Focuses . 63
9.3 Surface Hiding . 66

10 Intersections . 73

11 Installing and Running 3DLDF 74
11.1 Installing 3DLDF . 74

11.1.1 Template Functions . 74
11.2 Running 3DLDF . 75

11.2.1 Converting EPS Files . 77
11.2.1.1 Emacs-Lisp Functions 78

11.2.2 Command Line Arguments . 79

12 Typedefs and Utility Structures 81

13 Global Constants and Variables. 82

14 Dynamic Allocation of Shapes 84

15 System Information . 85
15.1 Endianness . 85
15.2 Register Width . 86
15.3 Get Second Largest Real . 86

16 Color Reference . 88
16.1 Data Members . 88
16.2 Constructors and Setting Functions . 88
16.3 Operators . 89
16.4 Modifying . 89
16.5 Showing . 90
16.6 Querying . 90
16.7 Defining and Initializing Colors . 90
16.8 Namespace Colors. 90

v

17 Input and Output . 92
17.1 Global Variables . 92
17.2 I/O Functions . 92

18 Shape Reference . 93
18.1 Data Members . 93
18.2 Operators . 93
18.3 Copying . 93
18.4 Modifying . 93
18.5 Affine Transformations . 94
18.6 Applying Transformations . 94
18.7 Clearing . 94
18.8 Querying . 94
18.9 Showing . 94
18.10 Outputting . 94

19 Transform Reference . 96
19.1 Data Members . 96
19.2 Global Variables and Constants . 96
19.3 Constructors . 96
19.4 Operators . 96
19.5 Matrix Inversion . 99
19.6 Setting Values . 99
19.7 Querying . 99
19.8 Returning Information . 100
19.9 Showing . 100
19.10 Affine Transformations . 101
19.11 Alignment with an Axis . 105
19.12 Resetting . 107
19.13 Cleaning . 107

20 Label Reference . 108
20.1 Data Members . 108
20.2 Copying . 109
20.3 Outputting . 109

vi

21 Picture Reference . 111
21.1 Data Members . 111
21.2 Global Variables . 111
21.3 Constructors . 111
21.4 Operators . 112
21.5 Affine Transformations . 113
21.6 Modifying . 113
21.7 Showing . 114
21.8 Outputting . 114

21.8.1 Namespaces . 114
21.8.1.1 Namespace Projections 114
21.8.1.2 Namespace Sorting 114

21.8.2 Output Functions . 115

22 Point Reference . 119
22.1 Data Members . 119
22.2 Typedefs and Utility Structures . 121
22.3 Global Constants and Variables . 122
22.4 Constructors and Setting Functions . 122
22.5 Destructor . 123
22.6 Operators . 124
22.7 Copying . 126
22.8 Querying . 126
22.9 Returning Coordinates . 127
22.10 Returning Information . 129
22.11 Modifying . 129
22.12 Affine Transformations . 130
22.13 Applying Transformations . 135
22.14 Projecting . 135
22.15 Vector Operations . 135
22.16 Points and Lines . 140
22.17 Intersections . 143
22.18 Drawing . 144
22.19 Labelling . 147
22.20 Showing . 149
22.21 Outputting . 149

23 Focus Reference . 151
23.1 Data Members . 151
23.2 Global Variables . 151
23.3 Constructors and Setting Functions . 152
23.4 Operators . 152
23.5 Modifying . 152
23.6 Querying . 153
23.7 Showing . 153

vii

24 Line Reference . 154
24.1 Data Members . 154
24.2 Global Constants . 154
24.3 Constructors . 154
24.4 Operators . 155
24.5 Get Path . 155
24.6 Showing . 155

25 Plane Reference . 157
25.1 Data Members . 157
25.2 Global Constants . 157
25.3 Constructors . 157
25.4 Operators . 158
25.5 Returning Information . 159
25.6 Intersections . 160
25.7 Showing . 163

26 Path Reference . 165
26.1 Data Members . 165
26.2 Constructors and Setting Functions . 167
26.3 Destructor . 171
26.4 Operators . 171
26.5 Appending . 172
26.6 Copying . 173
26.7 Clearing . 173
26.8 Modifying . 173
26.9 Affine Transformations . 174
26.10 Aligning with an Axis . 178
26.11 Applying Transformations . 180
26.12 Drawing and Filling . 180
26.13 Labelling . 191
26.14 Showing . 192
26.15 Querying . 194
26.16 Outputting . 196
26.17 Intersections . 197

27 Polygon Reference . 199
27.1 Data Members . 199
27.2 Operators . 199
27.3 Querying . 199
27.4 Affine Transformations . 199
27.5 Intersections . 200

viii

28 Regular Polygon Reference 205
28.1 Data Members . 205
28.2 Constructors and Setting Functions . 205
28.3 Operators . 207
28.4 Querying . 207
28.5 Circles . 207

29 Rectangle Reference . 211
29.1 Data Members . 211
29.2 Constructors and Setting Functions . 211
29.3 Operators . 212
29.4 Returning Points . 212
29.5 Querying . 213
29.6 Ellipses . 213

30 Regular Closed Plane Curve Reference. . . 216
30.1 Data Members . 216
30.2 Querying . 216
30.3 Intersections . 217
30.4 Segments . 219

31 Ellipse Reference . 222
31.1 Data Members . 222
31.2 Constructors and Setting Functions . 222
31.3 Performing Transformations. 224
31.4 Operators . 224
31.5 Labeling . 224
31.6 Affine Transformations . 226
31.7 Querying . 226
31.8 Returning Elements and Information 227
31.9 Intersections . 230
31.10 Solving . 235
31.11 Rectangles . 236

32 Circle Reference . 238
32.1 Data Members . 238
32.2 Constructors and Setting Functions . 238
32.3 Operators . 238
32.4 Querying . 239
32.5 Intersections . 240

33 Pattern Reference . 242
33.1 Plane Tesselations . 242
33.2 Roulettes and Involutes . 244

33.2.1 Epicycloids. 245

ix

34 Solid Reference . 248
34.1 Data Members . 248
34.2 Constructors and Setting Functions . 248
34.3 Destructor . 249
34.4 Operators . 249
34.5 Copying . 249
34.6 Setting Members . 249
34.7 Querying . 250
34.8 Returning Elements and Information 250

Getting Shape Centers . 250
Getting Shapes . 251

34.9 Showing . 253
34.10 Affine Transformations . 253
34.11 Applying Transformations . 254
34.12 Outputting . 254
34.13 Drawing and Filling . 255
34.14 Clearing . 256

35 Faced Solid Reference 257
35.1 Data Members . 257

36 Cuboid Reference . 258
36.1 Data Members . 258
36.2 Constructors and Setting Functions . 258
36.3 Operators . 259

37 Polyhedron Reference 260
37.1 Data Members . 260
37.2 Regular Platonic Polyhedra . 260

37.2.1 Tetrahedron . 260
37.2.1.1 Data Members . 260
37.2.1.2 Constructors and Setting Functions . . 260
37.2.1.3 Net . 262

37.2.2 Dodecahedron . 264
37.2.2.1 Data Members . 264
37.2.2.2 Constructors and Setting Functions . . 264
37.2.2.3 Net . 265

37.2.3 Icosahedron . 266
37.2.3.1 Data Members . 266
37.2.3.2 Constructors and Setting Functions . . 266
37.2.3.3 Net . 267

37.3 Semi-Regular Archimedean Polyhedra 269
37.3.1 Truncated Octahedron . 269

37.3.1.1 Data Members . 269
37.3.1.2 Constructors and Setting Functions . . 269
37.3.1.3 Net . 270

x

38 Utility Functions . 271
38.1 Perspective Functions . 271

39 Adding a File . 273

40 Future Plans . 275
40.1 Geometry . 275
40.2 Curves and Surfaces . 275
40.3 Shadows, Reflections, and Rendering 276
40.4 Multi-Threading . 277

41 Changes . 278
41.1 3DLDF 1.1.5.1 . 278
41.2 3DLDF 1.1.5. 278
41.3 3DLDF 1.1.4.2 . 279
41.4 3DLDF 1.1.4.1 . 279
41.5 3DLDF 1.1.4. 279
41.6 3DLDF 1.1.1. 279

Bibliography. 280

Appendix A GNU Free Documentation License
. 282

A.0.1 ADDENDUM: How to use this License for your
documents . 288

Data Type and Variable Index 289

Function Index . 292

Concept Index . 295

Chapter 1: Introduction 1

1 Introduction

3DLDF is a free software package for three-dimensional drawing written by Laurence D.
Finston, who is also the author of this manual. It is written in C++ using CWEB and it
outputs MetaPost code.

3DLDF is a GNU package. It is part of the GNU Project of the Free Soft-
ware Foundation and is published under the GNU General Public License. See
the website http://www.gnu.org for more information. 3DLDF is available for
downloading from http://ftp.gnu.org/gnu/3dldf. The official 3DLDF website is
http://www.gnu.org/software/3dldf. More information about 3DLDF can be found at
the author’s website: http://wwwuser.gwdg.de/~lfinsto1.

Please send bug reports to:

bug-3DLDF@gnu.org and

Two other mailing lists may be of interest to users of 3DLDF: help-3DLDF@gnu.org is for
people to ask other users for help and info-3DLDF@gnu.org is for sending announcements
to users. To subscribe, send an email to the appropriate mailing list or lists with the word
"subscribe" as the subject. The author’s website is http://wwwuser.gwdg.de/~lfinsto1.

My primary purpose in writing 3DLDF was to make it possible to use MetaPost for
three-dimensional drawing. I’ve always enjoyed using MetaPost, and thought it was a
shame that I could only use it for making two-dimensional drawings. 3DLDF is a front-
end that operates on three-dimensional data, performs the necessary calculations for the
projection onto two dimensions, and writes its output in the form of MetaPost code.

While 3DLDF’s data types and operations are modelled on those of Metafont and Meta-
Post, and while the only form of output 3DLDF currently produces is MetaPost code, it is
nonetheless not in principle tied to MetaPost. It could be modified to produce PostScript
code directly, or output in other formats. It would also be possible to modify 3DLDF so
that it could be used for creating graphics interactively on a terminal, by means of an
appropriate interface to the computer’s graphics hardware.

The name “3DLDF” (“3D” plus the author’s initials) was chosen because, while not
pretty, it’s unlikely to conflict with any of the other programs called “3D”-something.

1.1 Sources of Information

This handbook, and the use of 3DLDF itself, presuppose at least some familiarity on the
part of the reader with Metafont, MetaPost, CWEB, and C++. If you are not familiar with
any or all of them, I recommend the following sources of information:

Knuth, Donald Ervin. The METAFONTbook. Computers and Typesetting; C. Addison
Wesley Publishing Company, Inc. Reading, Massachusetts 1986.

Hobby, John D. A User’s Manual for MetaPost. AT & T Bell Laboratories. Murray Hill,
NJ. No date.

Knuth, Donald E. and Silvio Levy. The CWEB System of Structured Documentation.
Version 3.64—February 2002.

Chapter 1: Introduction 2

Stroustrup, Bjarne. The C++ Programming Language. Special Edition. Reading, Mas-
sachusetts 2000. Addison-Wesley. ISBN 0-201-70073-5.

The manuals for MetaPost and CWEB are available from the Comprehensive TEX
Archive Network (CTAN). See one of the following web sites for more information:

Germany http://dante.ctan.org, http://ftp.dante.de
http://www.dante.de.

United Kingdom
http://www.cam.ctan.org

http://ftp.tex.ac.uk.

USA http://www.tug.ctan.org

http://www.ctan.tug.org.

1.2 About This Manual

This manual has been created using Texinfo, a documentation system which is part of the
GNU Project, whose main sponsor is the Free Software Foundation. Texinfo can be used
to generate online and printed documentation from the same input files.

For more information about Texinfo, see:

Stallmann, Richard M. and Robert J. Chassell. Texinfo. The GNU Documentation Format.
The Free Software Foundation. Boston 1999.

For more information about the GNU Project and the Free Software Foundation, see
the following web site: http://www.gnu.org.

The edition of this manual is 1.1.5.1 and it documents version 1.1.5.1 of 3DLDF. The
edition number of the manual and the version number of the program are the same (as of
16 January 2004), but may diverge at a later date.

Note that “I”, “me”, etc., in this manual refers to Laurence D. Finston, so far the sole
author of both 3DLDF and this manual. “Currently” and similar formulations refer to
version 1.1.5.1 of 3DLDF as of 16 January 2004.

This manual is intended for both beginning and advanced users of 3DLDF. So, if there’s
something you don’t understand, it’s probably best to skip it and come back to it later.
Some of the more difficult points, or ones that presuppose familiarity with features not yet
described, are in the footnotes.

I firmly believe that an adequate program with good documentation is more useful
than a great program with poor or no documentation. The ideal case, of course, is a
great program with great documentation. I’m sorry to say, that this manual is not
yet as good as I’d like it to be. I apologize for the number of typos and other errors.
I hope they don’t detract too much from its usefulness. I would have liked to have
proofread and corrected it again before publication, but for reasons external to 3DLDF,
it is necessary for me to publish now. I plan to set up an errata list on the official
3DLDF website (http://www.gnu.org/software/3dldf), and/or my own website
(http://wwwuser.gwdg.de/~lfinsto1).

Chapter 1: Introduction 3

Unless I’ve left anything out by mistake, this manual documents all of the data types,
constants and variables, namespaces, and functions defined in 3DLDF. However, some of the
descriptions are terser than I would like, and I’d like to have more examples and illustrations.
There is also more to be said on a number of topics touched on in this manual, and some
topics I haven’t touched on at all. In general, while I’ve tried to give complete information
on the “what and how”, the “why and wherefore” has sometimes gotten short shrift. I hope
to correct these defects in future editions.

1.2.1 Conventions

Data types are formatted like this: int, Point, Path. Plurals are formatted in the same
way: ints, Points, Paths. It is poor typographical practice to typeset a single word using
more than one font, e.g., ints, Points, Paths. This applies to data types whose plurals do
not end in “s” as well, e.g., the plural of the C++ class Polyhedron is Polyhedra.

When C++ functions are discussed in this manual, I always include a pair of parentheses
to make it clear that the item in question is a function and not a variable, but I generally
do not include the arguments. For example, if I mention the function foo(), this doesn’t
imply that foo() takes no arguments. If it were appropriate, I would include the argument
type:

foo(int)

or the argument type and a placeholder name:

foo(int arg)

or I would write

foo(void)

to indicate that foo() takes no arguments. Also, I generally don’t indicate the return type,
unless it is relevant. If it is a member function of a class, I may indicate this, e.g.,, bar_
class::foo(), or not, depending on whether this information is relevant. This convention
differs from that used in the [Function Index], page 292, which is generated automatically
by Texinfo. There, only the name of the function appears, without parentheses, parameters,
or return values. The class type of member functions may appear in the Function Index,
(e.g., bar_class::foo), but only in index entries that have been entered explicitly by the
author; such entries are not generated by Texinfo automatically.

Examples are formatted as follows:

Point p0(1, 2, 3);

Point p1(5, 6, 7.9);

Path pa(p0, p1);

p0.show("p0:");

a p0: (1, 2, 3)

Examples can contain the following symbols:

a Indicates output to the terminal when 3DLDF is run.

⇒ Indicates a result of some sort. It may precede a illustration generated by the
code in the example.

error Indicates that the following text is an error message.

Chapter 1: Introduction 4

This manual does not use all of the symbols provided by Texinfo. If you find a symbol
you don’t understand in this manual (which shouldn’t happen), see page 103 of the Texinfo
manual.

Symbols:

N The set of the natural numbers {0, 1, 2, 3, 4, . . .}.

Z The set of the integers {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . .}.

R The set of the real numbers.

1.2.2 Illustrations

The illustrations in this manual have been created using 3DLDF. The code that generates
them is in the Texinfo files themselves, that contain the text of the manual. Texinfo is
based on TEX, so it’s possible to make use of the latter’s facility for writing ASCII text to
files using TEX’s \write command.

The file ‘3DLDF-1.1.5.1/CWEB/exampman.web’ contains the C++ code, and the file
‘3DLDF-1.1.5.1/CWEB/examples.mp’ contains the MetaPost code for generating the
illustrations. 3DLDF was built using GCC 2.95 when the illustrations were generated. For
some reason, GCC 3.3 has difficulty with them. It works to generate them in batches of
about 50 with GCC 3.3.

MetaPost outputs Encapsulated PostScript files. These can be included in TEX files,
as explained below. However, in order to display the illustrations in the HTML ver-
sion of this manual, I had to convert them to PNG (“Portable Network Graphics”) for-
mat (http://www.libpng.org/pub/png/index.html). See Section 11.2.1 [Converting EPS
Files], page 77, for instructions on how to do this.

Please note that the illustrations cannot be shown in the Info output format!

If you have problems including the illustrations in the printed version, for example, if
your installation doesn’t have dvips, look for the following lines in ‘3DLDF.texi’:

\doepsftrue %% One of these two lines should be commented-out.

%\doepsffalse

Now, remove the ‘%’ from in front of ‘\doepsffalse’ and put one in front of ‘\doepsftrue’.
This will prevent the illustrations from being included. This should only be done as a last
resort, however, because it will make it difficult if not impossible to understand this manual.

The C++ code in an example is not always the complete code used to create the illustra-
tion that follows it, since the latter may be cluttered with commands that would detract
from the clarity of the example. The actual code used always follows the example in the
Texinfo source file, so the latter may be referred to, if the reader wishes to see exactly what
code was used to generate the illustration.

You may want to skip the following paragraphs in this section, if you’re reading this
manual for the first time. Don’t worry if you don’t understand it, it’s meaning should
become clear after reading the manual and some experience with using 3DLDF.

The file ‘3DLDF.texi’ in the directory ‘3DLDF-1.1.5.1/DOC/TEXINFO’, the driver file for
this manual, contains the following TEX code:

Chapter 1: Introduction 5

\newif\ifmakeexamples

\makeexamplestrue %% One of these two lines should be commented-out.

%\makeexamplesfalse

When texi2dvi is run on ‘3DLDF.texi’, \makeexamplestrue is not commented-
out, and \makeexamplesfalse is, the C++ code for the illustrations is written
to the file ‘examples.web’. If the EPS files don’t already exist (in the directory
‘3DLDF-1.1.5.1/DOC/TEXINFO/EPS’), the TEX macro \PEX, which includes them in the
Texinfo files, will signal an error each time it can’t find one. Just type ‘s’ at the command
line to tell TEX to keep going. If you want to be sure that these are indeed the only errors,
you can type ‘<RETURN>’ after each one instead.

texi2dvi 3DLDF.texi also generates the file ‘extext.tex’, which contains TEX code for
including the illustrations by themselves.

‘examples.web’ must now be moved to ‘3DLDF-1.1.5.1/CWEB/’ and ctangled,
‘examples.c’ must compiled, and 3DLDF must be relinked. ctangle examples also
generates the header file ‘example.h’, which is included in ‘main.web’. Therefore, if
the contents of ‘examples.h’ have changed since the last time ‘main.web’ was ctangled,
‘main.web’ will have to be ctangled, and ‘main.c’ recompiled, before ‘3dldf’ is relinked.1

Running 3dldf and MetaPost now generates the EPS (Encapsulated PostScript) files
‘3DLDFmp.1’ through (currently) ‘3DLDFmp.199’ for the illustrations. They must be moved
to ‘3DLDF-1.1.5.1/DOC/TEXINFO/EPS’. Now, when texi2dvi 3DLDF.texi is run again,
the dvips command ‘\epsffile’ includes the EPS files for the illustrations in the manual.
‘3DLDF.texi’ includes the line ‘\input epsf’, so that ‘\epsffile’ works. Of course, dvips
(or some other program that does the job) must be used to convert ‘3DLDF.dvi’ to a
PostScript file. To see exactly how this is done, take a look at the ‘.texi’ source files of
this manual.2

In the ‘3DLDF.texi’ belonging to the 3DLDF distribution, \makeexamplestrue will be
commented-out, and makeexamplesfalse won’t be, because the EPS files for the illustra-
tions are included in the distribution.

The version of ‘examples.web’ in ‘3DLDF-1.1.5.1/CWEB’ merely includes the files
‘subex1.web’ and ‘subex2.web’. If you rename ‘3DLDF-1.1.5.1/CWEB/exampman.web’ to
‘examples.web’, you can generate the illustrations.

1.3 CWEB Documentation

As mentioned above, 3DLDF has been programmed using CWEB, which is a “literate
programming” tool developed by Donald E. Knuth and Silvio Levy. See Section 1.1 [Sources
of Information], page 1, for a reference to the CWEB manual. Knuth’s TEX—The Program

and Metafont—The Program both include a section “How to read a WEB” (pp. x–xv, in
both volumes).

1 ctangle creates ‘<filename>.c’ from ‘<filename>.web’, so the compiler must compile the C++ files
using the ‘-x c++’ option. Otherwise, it would handle them as if they contained C code.

2 If you want to try generating the illustrations yourself, you can save a little run-time by calling tex

3DLDF.texi the first time, rather than texi2dvi. The latter program runs TEX twice, because it needs
two passes in order to generate the contents, indexing, and cross reference information (and maybe some
other things, too).

Chapter 1: Introduction 6

CWEB files combine source code and documentation. Running ctangle on a CWEB
file, for example, ‘main.web’, produces the file ‘main.c’ containing C or C++ code. Running
cweave main.web creates a TEX file with pretty-printed source code and nicely formatted
documentation. I find that using CWEB makes it more natural to document my code
as I write it, and makes the source files easier to read when editing them. It does have
certain consequences with regard to compilation, but these are taken care of by make.
See Chapter 39 [Adding a File], page 273, and Chapter 41 [Changes], page 278, for more
information.

The CWEB files in the directory ‘3DLDF-1.1.5.1/CWEB/’ contain the source code for
3DLDF. The file ‘3DLDFprg.web’ in this directory is only ever used for cweaving; it is never
ctangled and contains no C++ code for compilation. It does, however, include all of the other
CWEB files, so that cweave 3DLDFprg.web generates the TEX file containing the complete
documentation of the source code of 3DLDF.

The files ‘3DLDF-1.1.5.1/CWEB/3DLDFprg.tex’, ‘3DLDF-1.1.5.1/CWEB/3DLDFprg.dvi’,
and ‘3DLDF-1.1.5.1/CWEB/3DLDFprg.ps’ are included in the distribution of 3DLDF as
a convenience. However, users may generate them themselves, should there be some
reason for doing so, by entering make ps from the command line of a shell from the
working directory ‘3DLDF-1.1.5.1/’ or ‘3DLDF-1.1.5.1/CWEB’. Alternatively, the user
may generate them by hand from the working directory ‘3DLDF-1.1.5.1/CWEB/’ in the
following way:

1. cweave 3DLDFprg.web generates ‘3DLDFprg.tex’.

2. tex 3DLDFprg or tex 3DLDFprg.tex generates ‘3DLDFprg.dvi’.

3. dvips -o 3DLDFprg.ps 3DLDFprg (possibly with additional options) generates
‘3DLDFprg.ps’.

4. lpr -P<print queue> 3DLDFprg.ps sends ‘3DLDFprg.ps’ to a printer, on a UNIX or
UNIX-like system.

The individual commands may differ, depending on the system you’re using.

1.4 Metafont and MetaPost

Metafont is a system created by Donald E. Knuth for generating fonts, in particular for
use with TEX, his well-known typsetting system.3 Expressed in a somewhat simplified way,
Metafont is a system for programming curves, which are then digitized and output in the
form of run-time encoded bitmaps. (See Knuth’s The Metafontbook for more information).

John D. Hobby modified Metafont’s source code to create MetaPost, which functions in
much the same way, but outputs encapsulated PostScript (EPS) files instead of bitmaps.
MetaPost is very useful for creating graphics and is a convenient interface to PostScript. It
is also easy both to imbed TEX code in MetaPost programs, for instance, for typesetting
labels, and to include MetaPost graphics in ordinary TEX files, e.g., by using dvips.4 Apart
from simply printing the PostScript file output by dvips, there are many programs that

3 Knuth, Donald E. The TEXbook. Computers and Typesetting; A. Addison-Wesley Publishing Company.
Reading, Massachusetts 1986.

4 Rokicki, Tomas. Dvips: A DVI-to-PostScript Translator February 1997. Available from CTAN. See
Section 1.1 [Sources of Information], page 1.

Chapter 1: Introduction 7

can process ordinary or encapsulated PostScript files and convert them to other formats.
Just two of the many possibilities are ImageMagick and GIMP, both of which can be used
to create animations from MetaPost graphics.

However, MetaPost inherited a significant limitation from Metafont: it’s not possible to
use it for making three-dimensional graphics, except in a very limited way. One insuperable
problem is the severe limitation on the magnitude of user-defined numerical variables in
Metafont and MetaPost.5 This made sense for Metafont’s and MetaPost’s original purposes,
but they make it impossible to perform the calculations needed for 3D graphics.

Another problem is the data types defined in Metafont: Points are represented as pairs
of real values and affine transformations as sets of 6 real values. This corresponds to the
representation of points and affine transformations in the plane as a two-element vector on
the one hand and a six element matrix on the other. While it is possible to work around the
limitation imposed by having points be represented by only two values, it is impracticable
in the case of the transformations.

For these reasons, I decided to write a program that would behave more or less like
Metafont, but with suitable extensions, and the ability to handle three dimensional data;
namely 3DLDF. It stores the data and performs the transformations and other necessary
calculations and is not subject to the limitations of MetaPost and its data types. Upon
output, it performs a perspective transformation, converting the 3D image into a 2D one.
The latter can now be expressed as an ordinary MetaPost program, so 3DLDF writes its
output as MetaPost code to a file.

In the following, it may be a little unclear why I sometimes refer to Metafont and
sometimes to MetaPost. The reason is that Metafont inherited much of its functionality
from Metafont. Certain operations in Metafont have no meaning in MetaPost and so have
been removed, while MetaPost’s function of interfacing with PostScript has caused other
operations to be added. For example, in MetaPost, color is a data type, but not in
Metafont. Unless otherwise stated, when I refer to Metafont, it can be assumed that what
I say applies to MetaPost as well. However, when I refer to MetaPost, it will generally be
in connection with features specific to MetaPost.

1.5 Caveats

1.5.1 Accuracy

When 3DLDF is run, it uses the three-dimensional data contained in the user code to create
a two-dimensional projection. Currently, this can be a perspective projection, or a parallel
projection onto one of the major planes. MetaPost code representing this projection is then
written to the output file. 3DLDF does no scan conversion,6 so all of the curves in the

5 “[. . .] METAFONT deals only with numbers in a limited range: A numeric token must be less than 4096,
and its value is always rounded to the nearest multiple of 1

65536
.” Knuth, The METAFONTbook, p. 50.

6 Scan conversion is the process of digitizing geometric data. The ultimate result is a 2× 2 map of pixels,
which can be used for printing or representing the projection on a computer screen. The number of
pixels per a given unit of measurement is the resolution of a given output device, e.g., 300 pixels per
inch.

Chapter 1: Introduction 8

projection are generated by means of the algorithms MetaPost inherited from Metafont.
These algorithms, however, are designed to find the “most pleasing curve”7 given one or
more two-dimensional points and connectors; they do not account for the the fact that
the two-dimensional points are projections of three-dimensional ones. This can lead to
unsatisfactory results, especially where extreme foreshortening occurs. In particular, ‘curl’,
dir, ‘tension’, and control points should be used cautiously, or avoided altogether, when
specifying connectors.

3DLDF operates on the assumption that, given an adequate number of points, MetaPost
will produce an adequate approximation to the desired curve in perspective, since the greater
the number of points given for a curve, the less “choice” MetaPost has for the path through
them. My experience with 3DLDF bears this out. Generally, the curves look quite good.
Where problems arise, it usually helps to increase the number of points in a curve.

A more serious problem is the imprecision resulting from the operation of rotation.
Rotations use the trigonometric functions, which return approximate values. This has the
result that points that should have identical coordinate values, sometimes do not. This
has consequences for the functions that compare points. The more rotations are applied to
points, the greater the divergence between their actual coordinate values, and the values
they should have. So far, I haven’t found a solution for this problem. On the other hand,
it hasn’t yet affected the usability of 3DLDF.

1.5.2 No Input Routine

3DLDF does not yet include a routine for reading input files. This means that user code
must be written in C++, compiled, and linked with the rest of the program. I admit, this
is not ideal, and writing an input routine for user code is one of the next things I plan to
add to 3DLDF.

I plan to use Flex and Bison to write the input routine.8 The syntax of the input code
should be as close as possible to that of MetaPost, while taking account of the differences
between MetaPost and 3DLDF.

For the present, however, the use of 3DLDF is limited to those who feel comfortable
using C++ and compiling and relinking programs. Please don’t be put off by this! It’s
not so difficult, and make does most of the work of recompiling and running 3DLDF. See
Chapter 11 [Installing and Running 3DLDF], page 74, for more information.

1.6 Ports

I originally developed 3DLDF on a DECalpha Personal Workstation with two processors
running under the operating system Tru64 Unix 5.1, using the DEC C++ compiler. I then
ported it to a PC Pentium 4 running under Linux 2.4, using the GNU C++ compiler GCC
2.95.3, and a PC Pentium II XEON under Linux 2.4, using GCC 3.3. I am currently only
maintaining the last version. I do not believe that it’s worthwhile to maintain a version for
GCC 2.95. While I would like 3DLDF to run on as many platforms as possible, I would

7 Knuth, The METAFONTbook, Chapter 14, p. 127.
8 Flex is a program for generating text scanners and Bison is a parser generator. They are available from
http://www.gnu.org.

Chapter 1: Introduction 9

rather spend my time developing it than porting it. This is something where I would be
grateful for help from other programmers.

Although I am no longer supporting ports to other systems, I have left some conditionally
compiled code for managing platform dependencies in the CWEB sources of 3DLDF. This
may make it easier for other people who want to port 3DLDF to other platforms.

Currently, the files ‘io.web’, ‘loader.web’, ‘main.web’, ‘points.web’, and ‘pspglb.web’
contain conditionally compiled code, depending on which compiler, or in the case of GCC,
which version of the compiler, is used. The DEC C++ compiler defines the preprocessor
macro ‘__DECCXX’ and GCC defines ‘__GNUC__’. In order to distinguish between GCC 2.95.3
and GCC 3.3, I’ve added the macros ‘LDF_GCC_2_95’ and ‘LDF_GCC_3_3’ in ‘loader.web’,
which should be defined or undefined, depending on which compiler you’re using. In the
distribution, ‘LDF_GCC_3_3’ is defined and ‘LDF_GCC_2_95’ is undefined, so if you want to
try using GCC 2.95, you’ll have to change this (it’s not guaranteed to work).

3DLDF 1.1.5.1 now uses Autoconf and Automake, and the ‘configure’ script generates
a ‘config.h’ file, which is now included in ‘loader.web’. Some of the preprocessor macros
defined in ‘config.h’ are used to conditionally include library header files, but so far, there
is no error handling code for the case that a file can’t be included. I hope to improve the
way 3DLDF works together with Autoconf and Automake in the near future.

3DLDF 1.1.5 is the first release that contains template functions. Template instantiation
differs from compiler to compiler, so using template functions will tend to make 3DLDF
less portable. See Section 11.1.1 [Template Functions], page 74, for more information. I
am no longer able to build 3DLDF on the DECalpha Personal Workstation. I’m fairly sure
that it would be possible to port it, but I don’t plan to do this, since Tru64 Unix 5.1 and
the DEC C++ compiler are non-free software.

1.7 Contributing to 3DLDF

So far, I’ve been the sole author and user of 3DLDF. I would be very interested in having
other programmers contribute to it. I would be particularly interested in help in making
3DLDF conform as closely as possible to the GNU Coding Standards. I would be grateful if
someone would write proper Automake and Autoconf files, since I haven’t yet learned how
to do so (I’m working on it).

See Chapter 1 [Introduction], page 1, for information on how to contact the author.

Using 3DLDF

Since 3DLDF does not yet have an input routine, user code must be written in C++ (in
‘main.web’, or some other file) and compiled. Then, 3DLDF must be relinked, together
with the new file of object code resulting from the compilation. For now, the important
point is that the text of the examples in this manual represent C++ code. See Chapter 11
[Installing and Running 3DLDF], page 74, for more information.

Chapter 2: Points 10

2 Points

2.1 Declaring and Initializing Points

The most basic drawable object in 3DLDF is class Point. It is analogous to pair in
Metafont. For example, in Metafont one can define a pair using the “z” syntax as follows:

z0 = (1cm, 1cm);

There are other ways of defining pairs in Metafont (and MetaPost), but this is the usual
way.

In 3DLDF, a Point is declared and initialized as follows:

Point pt0(1, 2, 3);

This simple example demonstrates several differences between Metafont and 3DLDF.
First of all, there is no analog in 3DLDF to Metafont’s “z” syntax. If I want to have Points
called “pt0”, “pt1”, “pt2”, etc., then I must declare each of them to be a Point:

Point pt0(10, 15, 2);

Point pt1(13, 41, 5.5);

Point pt2(62.9, 7.02, 8);

Alternatively, I could declare an array of Points:

Point pt[3];

Now I can refer to pt[0], pt[1], and pt[2].

In the Metafont example, the x and y-coordinates of the pair z0 are specified using the unit
of measurement, in this case, centimeters. This is currently not possible in 3DLDF. The
current unit of measurement is stored in the static variable Point::measurement_units,
which is a string. Its default value is "cm" for “centimeters”. At present, it is best to stick
with one unit of measurement for a drawing. After I’ve defined an input routine, 3DLDF
should handle units of measurement in the same way that Metafont does.

Another difference is that the Points pt0, pt1, and pt2 have three coordinates, x, y,
and z, whereas z0 has only two, x and y. Actually, the difference goes deeper than this. In
Metafont, a pair has two parts, xpart and ypart, which can be examined by the user. In
3DLDF, a Point contains the following sets of coordinates:

world_coordinates

user_coordinates

view_coordinates

projective_coordinates

These are sets of 3-dimensional homogeneous coordinates, which means that they contain
four coordinates: x, y, z, and w. Homogeneous coordinates are used in the affine and
perspective transformations (see Chapter 4 [Transforms], page 19).

Currently, only world_coordinates and projective_coordinates are used in 3DLDF.
The world_coordinates refer to the position of a Point in 3DLDF’s basic, unchanging co-
ordinate system. The projective_coordinates are the coordinates of the two-dimensional
projection of the Point onto a plane. This projection is what is ultimately printed out or
displayed on the computer screen. Please note, that when the coordinates of a Point are
referred to in this manual, the world_coordinates are meant, unless otherwise stated.

Chapter 2: Points 11

Points can be declared and their values can be set in different ways.

Point pt0;

Point pt1(1);

Point pt2(2.3, 52);

Point pt3(4.5, 7, 13.205);

pt0 is declared without any arguments, i.e., using the default constructor, so the values
of its x, y, and z-coordinates are all 0.

pt1 is declared and initialized with one argument for the x-coordinate, so its y and z-
coordinates are initialized with the values of CURR_Y and CURR_Z respectively. The latter
are static constant data members of class Point, whose values are 0 by default. They can
be reset by the user, who should make sure that they have sensible values.

pt2 is declared and initialized with two arguments for its x and y-coordinates, so its
z-coordinate is initialized to the value of CURR_Z. Finally, pt3 has an argument for each of
its coordinates.

Please note that pt0 is constructed using a the default constructor, whereas the
other Points are constructed using a constructor with one required argument (for the
x-coordinate), and two optional arguments (for the y and z-coordinates). The default
constructor always sets all the coordinates to 0, irrespective of the values of CURR_Y and
CURR_Z.

2.2 Setting and Assigning to Points

It is possible to change the value of the coordinates of Points by using the assignment

operator = (Point::operator=()) or the function Point::set() (with appropriate argu-
ments):

Point pt0(2, 3.3, 7);

Point pt1;

pt1 = pt0;

pt0.set(34, 99, 107.5);

pt0.show("pt0:");

a pt0: (34, 99, 107.5)

pt1.show("pt1:");

a pt1: (2, 3.3, 7)

In this example, pt0 is initialized with the coordinates (2, 3.3, 7), and pt1 with the
coordinates (0, 0, 0). pt1 = pt0 causes pt1 to have the same coordinates as pt0, then
the coordinates of pt0 are changed to (34, 99, 107.5). This doesn’t affect pt1, whose
coordinates remain (2, 3.3, 7).

Another way of declaring and initializing Points is by using the copy constructor:

Point pt0(1, 3.5, 19);

Point pt1(pt0);

Point pt2 = pt0;

Point pt3;

pt3 = pt0;

Chapter 2: Points 12

In this example, pt1 and pt2 are both declared and initialized using the copy constructor;
Point pt2 = pt0 does not invoke the assignment operator. pt3, on the other hand, is
declared using the default constructor, and not initialized. In the following line, pt3 = pt0

does invoke the assignment operator, thus resetting the coordinate values of pt3 to those
of pt0.

Chapter 3: Transforming Points 13

3 Transforming Points

Points don’t always have to remain in the same place. There are various ways of moving
or transforming them:

• Shifting. This is often called “translating”, but the operation in Metafont that performs
translation is called shift, so I call it “shifting”.

• Scaling.

• Shearing.

• Rotating about an axis.

class Point has several member functions for applying these affine transformations 1 to
a Point. Most of the arguments to these functions are of type real. As you may know,
there is no such data type in C++. I have defined real using typedef to be either float

or double, depending on the value of a preprocessor switch for conditional compilation.2

3DLDF uses many real values and I wanted to be able to change the precision used by
making one change (in the file ‘pspglb.web’) rather than having to examine all the places
in the program where float or double are used. Unfortunately, setting real to double

currently doesn’t work.

3.1 Shifting

The function shift() adds its arguments to the corresponding world_coordinates of
a Point. In the following example, the function show() is used to print the world_

coordinates of p0 to standard output.

Point p0(0, 0, 0);

p0.shift(1, 2, 3);

p0.show("p0:");

a p0: (1, 2, 3)

p0.shift(10);

p0.show("p0:");

a p0: (11, 2, 3)

p0.shift(0, 20);

p0.show("p0:");

a p0: (11, 22, 3)

p0.shift(0, 0, 30);

p0.show("p0:");

a p0: (11, 22, 33)

1 Affine transformations are operations that have the property that parallelity of lines is maintained.
That is, if two lines (each determined by two points) are parallel before the transformation, they will
also be parallel after the transformation. Affine transformations are discussed in many books about
computer graphics and geometry. For 3DLDF, I’ve mostly used Jones, Computer Graphics through Key

Mathematics and Salomon, Computer Graphics and Geometric Modeling.
2 I try to avoid the use of preprocessor macros as much as possible, for the reasons given by Stroustrup in

the The C++ Programming Language, §7.8, pp. 160–163, and Design and Evolution of C++, Chapter
18, pp. 423–426. However, conditional compilation is one of the tasks that only the preprocessor can
perform.

Chapter 3: Transforming Points 14

shift takes three real arguments, whereby the second and third are optional. To shift a
Point in the direction of the positive or negative y-axis, and/or the positive or negative
z-axis only, then a 0 argument for the x direction, and possibly one for the y direction must
be used as placeholders, as in the example above.

shift() can be invoked with a Point argument instead of real arguments. In this case,
the x, y, and z-coordinates of the argument are used for shifting the Point:

Point a(10, 10, 10);

Point b(1, 2, 3);

a.shift(b);

a.show("a:")

a a: (11, 12, 13)

Another way of shifting Points is to use the binary += operator (Point::operator+=())
with a Point argument.

Point a0(1, 1, 1);

Point a1(2, 2, 2);

a0 += a1;

a0.show("a0:");

a a0: (3, 3, 3)

3.2 Scaling

The function scale() takes three real arguments. The x, y, and z-coordinates of the
Point are multiplied by the first, second, and third arguments respectively. Only the first
argument is required; the default for the others is 1.

If one wants to perform scaling in either the y-dimension only, or the y and z-dimensions
only, a dummy argument of 1 must be passed for scaling in the x-dimension. Similarly,
if one wants to perform scaling in the z-dimension only, dummy arguments of 1 must be
passed for scaling in the x and y-dimensions.

Point p0(1, 2, 3);

p0.scale(2, 3, 4);

p0.show("p0:");

a p0: (2, 6, 12)

p0.scale(2);

p0.show("p0:");

a p0: (4, 6, 12)

p0.scale(1, 3);

p0.show("p0:");

a p0: (4, 18, 12)

p0.scale(1, 1, 3);

p0.show("p0:");

a p0: (4, 18, 36)

Chapter 3: Transforming Points 15

3.3 Shearing

Shearing is more complicated than shifting or scaling. The function shear() takes six real

arguments. If p is a Point, then p.shear(a, b, c, d, e, f) sets xp to xp + ayp + bzp, yp

to yp + cxp + dzp, and zp to zp + exp + fyp. In this way, each coordinate of a Point is
modified based on the values of the other two coordinates, whereby the influence of the
other coordinates on the new value is weighted according to the arguments.

Point p(1, 1, 1);

p.shear(1);

p.show("p:");

a p: (2, 1, 1)

p.set(1, 1, 1);

p.shear(1, 1);

p.show("p:");

a p: (3, 1, 1)

p.set(1, 1, 1);

p.shear(1, 1, 2, 2, 3, 3);

p.show("p:");

a p: (3, 5, 7)

Fig. 1 demonstrates the effect of shearing the points of a rectangle in the x-y plane.

Point P0;

Point P1(3);

Point P2(3, 3);

Point P3(0, 3);

Rectangle r(p0, p1, p2, p3);

r.draw();

Rectangle q(r);

q.shear(1.5);

q.draw(black, "evenly");

Chapter 3: Transforming Points 16

P0 = Q0 = (0, 0) P1 = Q1 = (3, 0)

P2 = (3, 3)P3 = (0, 3)

r q

Q2 = (7.5, 3)Q3 = (4.5, 3)

Figure 1.

Chapter 3: Transforming Points 17

3.4 Rotating

The function rotate() rotates a Point about one or more of the main axes. It takes three
real arguments, specifying the angles of rotation in degrees about the x, y, and z-axes
respectively. Only the first argument is required, the other two are 0 by default. If rotation
about the y-axis, or the y and z-axes only are required, then 0 must be used as a placeholder
for the first and possibly the second argument.

Point p(0, 1);

p.rotate(90);

p.show("p:");

a p: (0, 0, -1)

p.rotate(0, 90);

p.show("p:");

a p: (1, 0, 0)

p.rotate(0, 0, 90);

p.show("p:");

a p: (0, 1, 0)

The rotations are performed successively about the x, y, and z-axes. However, rotation
is not a commutative operation, so if rotation about the main axes in a different order is
required, then rotate() must be invoked more than once:

Point A(2, 3, 4);

Point B(A);

A.rotate(30, 60, 90);

A.show("A:");

a A: (-4.59808, -0.700962, 2.7141)

B.rotate(0, 0, 90);

B.rotate(0, 60);

B.rotate(30);

B.show("B:");

a B: (-4.9641, 1.43301, -1.51795)

Rotation need not be about the main axes; it can also be performed about a line defined
by two Points. The function rotate() with two Point arguments and a real argument
for the angle of rotation (in degrees) about the axis. The real argument is optional, with
180◦ as the default.

Point p0 (-1.06066, 0, 1.06066);

Point p1 (1.06066, 0, -1.06066);

p1 *= p0.rotate(0, 30, 30);

p0.show("p0:");

a p0: (-1.25477, -0.724444, 0.388228)

p1.show("p1:");

a p1: (1.25477, 0.724444, -0.388228)

p0.draw(p1);

Point p2(1.06066, 0, 1.06066);

p2.show("p2:");

a p2: (1.06066, 0, 1.06066)

Chapter 3: Transforming Points 18

Point p3(p2);

p3.rotate(p1, p0, 45);

p3.show("p3:");

a p3 (1.09721, 1.15036, 1.17879)

Point p4(p2);

p4.rotate(p1, p0, 90);

p4.show("p4:");

a p4: (0.882625, 2.05122, 0.485242)

Point p5(p2);

p5.rotate(p1, p0, 135);

p5.show("p5:");

a p5: (0.542606, 2.17488, -0.613716)

Point p6(p2);

p6.rotate(p1, p0);

p6.show("p6:");

a p6: (0.276332, 1.44889, -1.47433)

x

y

z

p0

p1
p2

p3

p4

p5

p6

Figure 2.

I have sometimes gotten erroneous results using rotate() for rotation about two Points.
It’s usually worked to reverse the order of the Point arguments, or to change sign of the
angle argument. I think I’ve fixed the problem, though.

Chapter 4: Transforms 19

4 Transforms

When Points are transformed using shift(), shear(), or one of the other transforma-
tion functions, the world_coordinates are not modified directly. Instead, another data
member of class Point is used to store the information about the transformation, namely
transform of type class Transform. A Transform object has a single data element of
type Matrix and a number of member functions. A Matrix is simply a 4 × 4 array1 of
reals defined using typedef real Matrix[4][4]. Such a matrix suffices for performing all
of the transformations (affine and perspective) possible in three-dimensional space.2 Any
combination of transformations can be represented by a single transformation matrix. This
means that consecutive transformations of a Point can be “saved up” and applied to its
coordinates all at once when needed, rather than updating them for each transformation.

Transforms work by performing matrix multiplication of Matrix with the homogeneous
world_coordinates of Points. If a set of homogeneous coordinates α = (x, y, z, w) and

Matrix M =









a e i m
b f j n
c g k o
d h l p









then the set of homogeneous coordinates β resulting from multiplying α and M is calculated
as follows:

β = α×M = ((xa+yb+zc+wd), (xe+yf +zg+wh), (xi+yj+zk+wl), (xm+yn+zo+wp))

Please note that each coordinate of β can be influenced by all of the coordinates of α.

Operations on matrices are very important in computer graphics applications and are
described in many books about computer graphics and geometry. For 3DLDF, I’ve mostly
used Huw Jones’ Computer Graphics through Key Mathematics and David Salomon’s Com-

puter Graphics and Geometric Modeling.

It is often useful to declare and use Transform objects in 3DLDF, just as it is for
transforms in Metafont. Transformations can be stored in Transforms and then be used
to transform Points by means of Point::operator*=(const Transform&).

1. Transform t;

2. t.shift(0, 1);

3. Point p(1, 0, 0);

4. p *= t;

1 It is unfortunate that the terms “array”, “matrix”, and “vector” have different meanings in C++ and
in normal mathematical usage. However, in practice, these discrepancies turn out not to cause many
problems. Stroustrup, The C++ Programming Language, § 22.4, p. 662.

2 In fact, none of the operations for transformations require all of the elements of a 4 × 4 matrix. In
many 3D graphics programs, the matrix operations are modified to use smaller transformation matrices,
which reduces the storage requirements of the program. This is a bit tricky, because the affine trans-
formations and the perspective transformation use different elements of the matrix. I consider that the
risk of something going wrong, possibly producing hard-to-find bugs, outweighs any benefits from saving
memory (which is usually no longer at a premium, anyway). In addition, there may be some interesting
non-affine transformations that would be worth implementing. Therefore, I’ve decided to use full 4 × 4
matrices in 3DLDF.

Chapter 4: Transforms 20

5. p.show("p:");

a p: (1, 1, 0)

When a Transform is declared (line 1), it is initialized to an identity matrix. All identity
matrices are square, all of the elements of the main diagonal (upper left to lower right) are
1, and all of the other elements are 0. So a 4× 4 identity matrix, as used in 3DLDF, looks
like this:









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









If a matrix A is multiplied with an identity matrix I, the result is identical to A, i.e.,
A× I = A. This is the salient property of an identity matrix.

The same affine transformations are applied in the same way to Transforms as they are
to Points, i.e., the functions scale(), shift(), shear(), and rotate() correspond to the
Point versions of these functions, and they take the same arguments:

Point p;

Transform t;

p.shift(3, 4, 5);

t.shift(3, 4, 5);
⇒ p.transform ≡ t

p.show_transform("p:");

a p:

Transform:

0 0.707 0.707 0

-0.866 0.354 -0.354 0

-0.5 -0.612 0.612 0

0 0 0 1

t.show("t:");

a t:

0 0.707 0.707 0

-0.866 0.354 -0.354 0

-0.5 -0.612 0.612 0

0 0 0 1

4.1 Applying Transforms to Points

A Transform t is applied to a Point P using the binary *= operation
(Point::operator*=(const Transform&)) which performs matrix multiplication
of P.transform by t. See Section 22.6 [Point Reference; Operators], page 124.

Point P(0, 1);

Transform t;

t.rotate(90);

t.show("t:");

a t:

Chapter 4: Transforms 21

1 0 0 0

0 0 -1 0

0 1 0 0

0 0 0 1

P *= t;

P.show_transform("P:");

a P:

Transform:

1 0 0 0

0 0 -1 0

0 1 0 0

0 0 0 1

P.show("P:");

a P: (0, 0, -1)

In the example above, there is no real need to use a Transform, since P.rotate(90)

could have been called directly. As constructions become more complex, the power of
Transforms becomes clear:

1. Point p0(0, 0, 0);

2. Point p1(10, 5, 10);

3. Point p2(16, 14, 32);

4. Point p3(25, 50, 99);

5. Point p4(12, 6, 88);

6. Transform a;

7. a.shift(2, 3, 4);

8. a.scale(1, 3, 1);

9. p2 *= p3 *= a;

10. a.rotate(p0, p1, 75);

11. p4 *= a;

12. p2.show("p2:");

a p2: (18, 51, 36)

13. p3.show("p3:");

a p3: (27, 159, 103)

14. p4.show("p4:");

a p4: (24.4647, -46.2869, 81.5353)

In this example, a is shifted and scaled, and a is applied to both in line 9. This works,
because the binary operation operator*=(const Transform& t) returns t, making it pos-
sible to chain invocations of *=. Following this, a is rotated 75◦ about the line through p0

and p1. Finally, all three transformations, which are stored in a, are applied to p4.

4.2 Inverting Transforms

Inversion is another operation that can be performed on Transforms. This makes it possible
to reverse the effect of a Transform, which may represent multiple transformations.

Chapter 4: Transforms 22

Point p;

Transform t;

t.shift(1, 2, 3);

t.scale(2, 3, 4);

t.rotate(45, 45, 30);

t.show("t:");

a t:

1.22 0.707 1.41 0

0.238 2.59 -1.5 0

-3.15 1.45 2 0

-7.74 10.2 4.41 1

p *= t;

p.show("p:");

a p: (-7.74, 10.2, 4.41)

Transform u;

u = t.inverse();

u.show("u:");

a u:

0.306 0.0265 -0.197 2.85e-09

0.177 0.287 0.0906 -1.12e-09

0.354 -0.167 0.125 0

-1 -2 -3 1

p *= u;

p.show("p:");

a p: (0, 0, 0)

u *= t;

u.show("u:");

a u:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

If inverse() is called with no argument, or with the argument false, it returns a
Transform representing its inverse, and remains unchanged. If it is called with the argument
true, it is set to its inverse.

Complete reversal of the transformations applied to a Point, as in the previous example,
probably won’t make much sense. However, partial reversal is a valuable technique. For
example, it is used in rotate() for rotation about a line defined by two Points. The
following example merely demonstrates the basic principle; an example that does something
useful would be too complicated.

Chapter 4: Transforms 23

Transform t;

t.shift(3, 4, 5);

t.rotate(45);

t.scale(2, 2, 2);

Point p;

p *= t;

p.show("p:");

a p: (6, 12.7279, 1.41421)

t.inverse(true);

p.rotate(90, 90);

p *= t;

p.show("p:");

a p: (3.36396, -5.62132, -2.37868)

Chapter 5: Drawing and Labeling Points 24

5 Drawing and Labeling Points

5.1 Drawing Points

It’s all very well to declare Points, place them at particular locations, print their locations to
standard output, and transform them, but none of these operations produce any MetaPost
output. In order to do this, the first step is to use drawing and filling commands. The
drawing and filling commands in 3DLDF are modelled on those in Metafont.

The following example demonstrates how to draw a dot specifying a Color (see Chap-
ter 16 [Color Reference], page 88) and a pen1.

Point P(0, 1);

P.drawdot(Colors::black, "pencircle scaled 3mm");

P

Figure 3.

In drawdot(), a Color argument precedes the string argument for the pen, so
“Colors::black” must be specified as a placeholder in the call to drawdot().2

The following example “undraws” a dot at the same location using a smaller pen.
undraw() does not take a Color argument.

p.undrawdot("pencircle scaled 2mm");

P

Figure 4.

For complete descriptions of drawdot() and undrawdot(), see Section 22.18 [Point Refer-
ence; Drawing], page 144.

Drawing and undrawing dots is not very exciting. In order to make a proper drawing it
is necessary to connect the Points. The most basic way of doing this is to use the Point

member function draw() with a Point argument:

Point p0;

Point p1(2, 2);

p0.draw(p1);

1 Pens are a concept from Metafont. In 3DLDF, there is currently no type “Pen”. Pen arguments to
functions are simply strings, and are written unaltered to out_stream. For more information about
Metafont’s pens, see Knuth, The Metafontbook, Chapter 4.

2 Colors are declared in the namespace Colors, so if you have a “using” declaration in the function where
you use drawdot(), you can write “black” instead of “Colors::black”. For more information about
namespaces, see Stroustrup, The C++ Programming Language, Chapter 8.

Chapter 5: Drawing and Labeling Points 25

p0

p1

Figure 5.

p0.draw(p1) is equivalent in its effect to p1.draw(p0).

The function Point::draw() takes a required Point& argument (a reference 3 to a Point)
an optional Color argument, and optional string arguments for the dash pattern and the
pen. The string arguments, if present, are passed unchanged to the output file. The empty
string following the argument p1 is a placeholder for the dash pattern argument, which
isn’t used here.

p0.draw(p1, Colors::gray, "", "pensquare scaled .5cm rotated 45");

p0

p1

Figure 6.

The function Point::undraw() takes a required Point& argument and optional string
arguments for the dash pattern and the pen. Unlike Point::draw(), a Color argument
would have no meaning for Point::undraw(). The string arguments are passed unchanged
to the output file.

undraw() can be used to “hollow out” the region drawn in Fig. 6. Since a dash pattern
is used, portions of the middle of the region are not undrawn.

p0.undraw(p1, "evenly scaled 6", "pencircle scaled .2cm");

p0

p1

Figure 7.

3 “A reference is an alternative name for an object. The main use of references is for specifying arguments
and return values for functions in general and for overloaded operators (Chapter 11) in particular.”
Stroustrup, The C++ Programming Language, §5.5, p. 97.

Chapter 5: Drawing and Labeling Points 26

For complete descriptions of draw() and undraw(), see Section 22.18 [Point Reference;
Drawing], page 144.

5.2 Labeling Points

The labels in the previous examples were made by using the functions Point::label() and
Point::dotlabel(), which make it possible to include TEX text in a drawing.

label() and dotlabel() take string arguments for the text of the label and the po-
sition of the label with respect to the Point. The label text is formatted using TEX, so it
can contain math mode material between dollar signs. Please note that double backslashes
must be used, where a single backslash would suffice in a file of MetaPost code, for example,
for TEX control sequences. Alternatively, a short argument can be used for the label.

The position argument is optional, with "top" as the default. If the empty string ""

is used, the label will centered about the Point itself. This will usually only make sense
for label(), because it would otherwise interfere with the dot. Valid arguments for the
position are the same as in MetaPost: "top", "bot" (bottom), "lft" (left), "rt" (right),
"ulft" (upper left), "urt" (upper right), "llft" (lower left), and "lrt" (lower right).

Point p0;

Point p1(1);

Point p2(2);

Point p3(p0);

Point p4(p1);

Point p5(p2);

p3 *= p4 *= p5.shift(0, 1);

p0.draw(p1);

p1.draw(p2);

p2.draw(p5);

p5.draw(p4);

p4.draw(p3);

p3.draw(p0);

p0.label(p_0, "");

p1.dotlabel(1);

p2.dotlabel("p2", "bot");

p3.dotlabel("This is p_3", "lft");

p4.label(4);

p5.label("$\\leftarrow p_5$", "rt");

p0
1

p2

This is p3
4 ← p5

Figure 8.

Chapter 5: Drawing and Labeling Points 27

For complete descriptions of Point::label() and Point::dotlabel(), see
Section 22.19 [Points; Labelling], page 147.

Chapter 6: Paths 28

6 Paths

Points alone are not enough for making useful drawings. The next step is to combine them
into Paths, which are similar to Metafont’s paths, except that they are three-dimensional.
A Path consists of a number of Points and strings representing the connectors. The latter
are not processed by 3DLDF, but are passed unchanged to the output file. They must be
valid connectors for MetaPost, e.g.:

..

...

--

&

curl{2}..

{dir 60}..

{z1 - z2}..

.. tension 1 and 1.5..

..controls z1 and z2..

Usually, it will only make sense to use .. or --, and not ..., ---, tension, curl,
controls, or any of the other possibilities, in Paths, unless you are sure that they will
only be viewed with no foreshortening due to the perspective projection. This can be the
case, when a Path lies in a plane parallel to one of the major planes, and is projected
using parallel projection onto that plane. Otherwise, the result of using these connectors is
likely to be unsatisfactory, because MetaPost performs its calculations based purely on the
two-dimensional values of the points in the perspective projection. While the Points on
the Path will be projected correctly, the course of the Path between these Points is likely
to differ, depending on the values of the Focus used (see Section 9.2 [Focuses], page 63),
so that different views of the same Path may well be mutually inconsistent. This problem
doesn’t arise with “--”, since the perspective projection does not “unstraighten” straight
lines, but it does with “..”, even without tension, curl, or controls. The solution is
to use enough Points, since a greater number of Points on a Path tends to reduce the
number of possible courses through the Points.1

6.1 Declaring and Initializing Paths

There are various ways of declaring and initializing Paths. The simplest is to use the
constructor taking two Point arguments:

Point A;

Point B(2, 2);

Path p(A, B);

p.draw();

1 I believe that counter-examples could probably constructed, but for the most common cases, the principle
applies.

Chapter 6: Paths 29

A

B

Figure 9.

Paths created in this way are important, because they are guaranteed to be linear, as
long as no operations are performed on them that cause them to become non-linear. Linear
Paths can be used to find intersections. See Section 26.17 [Path Intersections], page 198.

Paths can be declared and initialized using a single connector and an arbitrary number
of Points. The first argument is a string specifying the connector. It is followed by a
bool, indicating whether the Path is cyclical or not. Then, an arbitrary number of pointers
to Point follow. The last argument must be 0.2

Point p[3];

p[0].shift(1);

p[1].set(1, 2, 2);

p[2].set(1, 0, 2);

Path pa("--", true, &p[0], &p[1], &p[2], 0);

pa.draw();

x

y

z

(1, 0, 0)

(1, 2, 2)

(1, 0, 2)

Figure 10.

Another constructor must be used for Paths with more than one connector and an
arbitrary number of Points. The argument list starts with a pointer to Point, followed by
string for the first connector. Then, pointer to Point arguments alternate with string

arguments for the connectors. Again, the list of arguments ends in 0. There is no need for
a bool to indicate whether the Path is cyclical or not; if it is, the last non-zero argument
will be a connector, otherwise, it will be a pointer to Point.

Point p[8];

2 It’s easy to forget to use Point* arguments, rather than plain Point arguments, and to forget to end
the list of arguments with 0. If plain Point arguments are used, compilation fails with GCC. With the
DEC compiler, compilation succeeds, but a memory fault error occurs at run-time. If the argument list
doesn’t end in 0, neither compiler signals an error, but a memory fault error always occurs at run-time.

Chapter 6: Paths 30

p[0].set(-2);

p[1].set(2);

p[2].set(0, 0, -2);

p[3].set(0, 0, 2);

p[4] = p[0].mediate(p[2]);

p[5] = p[2].mediate(p[1]);

p[6] = p[1].mediate(p[3]);

p[7] = p[3].mediate(p[0]);

p[4] *= p[5] *= p[6] *= p[7].shift(0, 1);

Path pa(&p[0], "..", &p[4], "...", &p[2],

"..", &p[5], "...", &p[1], "..", &p[6],

"...", &p[3], "..", &p[7], "...", 0);

pa.draw();

x

y

z

p0

p1

p2

p3
p4 p5

p6p7

Figure 11.

As mentioned above (see Section 1.5.1 [Accuracy], page 7), specifying connectors is prob-
lematic for three-dimensional Paths, because MetaPost ultimately calculates the “most
pleasing curve” based on the two-dimensional points in the MetaPost code written by
3DLDF.3 For this reason, it’s advisable to avoid specifying ‘curl’, ‘dir’, ‘tension’ or
control points in connectors. The more Points a (3DLDF) Path or other object contains,
the less freedom MetaPost has to determine the (MetaPost) path through them. So a
three-dimensional Path or other object in 3DLDF should have enough Points to ensure
satisfactory results. The Path in Fig. 11 does not really have enough Points. It may re-
quire some trial and error to determine what a sufficient number of Points is in a given
case.

Paths are very flexible, but not always convenient. 3DLDF provides a number of classes
representing common geometric Shapes, which will be described in subsequent sections,
and I intend to add more in the course of time.

3 Knuth, The METAFONTbook, Chapter 14, p. 127.

Chapter 6: Paths 31

6.2 Drawing and Filling Paths

The easiest way to draw a Path is with no arguments.

Point pt[5];

pt[0].set(-1, -2);

pt[1].set(0, -3);

pt[2].set(1, 0);

pt[3].set(2, 1);

pt[4].set(-1, 2);

Path pa("..", true, &pt[0], &pt[1], &pt[2], &pt[3], &pt[4], 0);

pa.draw();

(−1,−2)

(0,−3)

(1, 0)

(2, 1)

(−1, 2)

Figure 12.

Since pa is closed, it can be filled as well as drawn. The following example uses fill()
with a Color argument, in order to avoid having a large splotch of black on the page.
Common Colors are declared in the namespace Colors. See Chapter 16 [Color Reference],
page 88.

pa.fill(Colors::gray);

Chapter 6: Paths 32

Figure 13.

Closed Paths can be filled and drawn, using the function filldraw(). This func-
tion draws the Path using the pen specified, or MetaPost’s currentpen by default. A
Color for drawing the Path can also be specified, otherwise, the default color (currently
Colors::black) is used. In addition, the Path is filled using a second Color, which can
be specified, or the background color (Colors::background_color), by default. Filling a
Path using the background color causes it to hide objects that lie behind it. See Section 9.3
[Surface Hiding], page 67, for a description of the surface hiding algorithm, and examples.
Currently, this algorithm is quite primitive and only works for simple cases.

Point p0(-3, 0, 1);

Point p1(3, 1, 1);

p0.draw(p1);

pa.filldraw();

(−3, 0, 1)

(3, 1, 1)

Figure 14.

Chapter 6: Paths 33

The following example uses arguments for the Colors used for drawing and filling, and
the pen. The empty string argument before the pen argument is a placeholder for the dash
pattern argument.

pa.filldraw(black, gray, "",

"pensquare xscaled 3mm yscaled 1mm rotated 60");

Figure 15.

Paths can also be “undrawn”, “unfilled”, and “unfilldrawn”, using the corresponding
functions:

pa.fill(gray);

p0.undraw(p1, "", "pencircle scaled 3mm");

(−3, 0, 1)

(3, 1, 1)

Figure 16.

pa.fill(gray);

Chapter 6: Paths 34

Path q;

q = pa;

q.scale(.5, .5);

q.unfill();

Figure 17.

The function unfilldraw() takes a Color argument for drawing the Path, which is
*Colors::background_color by default. This makes it possible to unfill the Path while
drawing the outline with a visible Color. On the other hand, it also makes it necessary to
specify *Colors::background_color or Colors::white, if the user wants to use the dash
pattern and/or pen arguments, without drawing the Path.

pa.fill(gray);

q.unfilldraw(white, "", "pensquare xscaled 3mm yscaled 1mm");

Figure 18.

Chapter 6: Paths 35

The following example demonstrates the use of unfilldraw() with black as its Color

argument. Unfortunately, it also demonstrates one of the limitations of the surface hiding
algorith: The line from p0 to p1 is hidden by the filled Path pa. Since the portion of pa
covered by Path q has been unfilled, −−→p0p1 should be visible as it passes through q. However,
from the point of view of 3DLDF, there is no relationship between pa and q; nor does it
“know” whether a Path has been filled or unfilled. If it’s on a Picture, it will hide objects
lying behind it, unless the surface hiding algorithm fails for another reason. See Section 9.3
[Surface Hiding], page 67, for more information.

p0.draw(p1);

pa.fill(gray);

q.unfilldraw(black, "", "pensquare xscaled 3mm yscaled 1mm");

(−3, 0, 1)

(3, 1, 1)

Figure 19.

See Section 26.12 [Paths; Drawing and Filling], page 180, for more information, and
complete descriptions of the functions.

Chapter 7: Plane Figures 36

7 Plane Figures

3DLDF currently includes the following classes representing plane geometric figures:
Polygon, Reg_Cl_Plane_Curve (“Regular Closed Plane Curve”), Reg_Polygon (“Regular
Polygon”), Rectangle, Ellipse and Circle. Polygon and Reg_Cl_Plane_Curve are
derived from Path, Reg_Polygon and Rectangle are derived from Polygon, and Ellipse

and Circle are derived from Reg_Cl_Plane_Curve. Polygon and Reg_Cl_Plane_Curve

are meant to be used as base classes only, so objects of these types should normally never
be declared.

Since Reg_Polygon, Rectangle, Ellipse, and Circle all ultimately derive from Path,
they are really just special kinds of Path. In particular, they inherit their drawing and
filling functions from Path, and their transformation functions take the same arguments as
the Path versions. They also have constructors and setting functions that work in a similar
way, with a few minor differences, to account for their different natures. See Chapter 27
[Polygon Reference], page 199, Chapter 29 [Rectangle Reference], page 211, Chapter 31
[Ellipse Reference], page 222, and Chapter 32 [Circle Reference], page 238, for complete
information on these classes.

7.1 Regular Polygons

The following example creates a pentagon in the x-z plane, centered about the origin, whose
enclosing circle has a radius equal to 3cm.

default_focus.set(2, 3, -10, 2, 3, 10, 10);

Reg_Polygon p(origin, 5, 3);

p.draw();

x

y

z

Figure 20.

Three additional arguments cause the pentagon to be rotated about the x, y, and z axes
by the amount indicated. In this example, it’s rotated 90◦ about the x-axis, so that it comes
to lie in the x-y plane:

Reg_Polygon p(origin, 5, 3, 90);

Chapter 7: Plane Figures 37

p.draw();

x

y

z

Figure 21.

In this example, it’s rotated 36◦ about the y-axis, so that it appears to point in the
opposite direction from the first example:

Reg_Polygon p(origin, 5, 3, 0, 36);

p.draw();

x

y

z

Figure 22.

In this example, it’s rotated 90◦ about the z-axis, so that it lies in the z-y plane:

Reg_Polygon p(origin, 5, 3, 0, 0, 90);

p.draw();

Chapter 7: Plane Figures 38

x

y

z

Figure 23.

In this example, it’s rotated 45◦ about the x, y, and z-axes in that order:

Reg_Polygon p(origin, 5, 3, 45, 45, 45);

p.draw();

x

y

z

Figure 24.

Reg_Polygons need not be centered about the origin. If another Point pt is used as
the first argument, the Reg_Polygon is first created with its center at the origin, then the
specified rotations, if any, are performed. Finally, the Reg_Polygon is shifted such that its
center comes to lie on pt:

Point P(-2, 1, 1);

Reg_Polygon hex(P, 6, 4, 60, 30, 30);

hex.draw();

Chapter 7: Plane Figures 39

P

x

y

z

Figure 25.

In the following example, the Reg_Polygon polygon is first declared using the de-
fault constructor, which creates an empty Reg_Polygon. Then, the polygon is repeatedly
changed using the setting function corresponding to the constructor used in the previous
examples. Fig. 26 demonstrates that a given Reg_Polygon need not always have the same
number of sides.

Point p(0, -3);

Reg_Polygon polygon;

for (int i = 3; i < 9; ++i)

{

polygon.set(p, i, 3);

polygon.draw();

p.shift(0, 1);

}

x

y

z

Figure 26.

Chapter 7: Plane Figures 40

7.2 Rectangles

A Rectangle can be constructed in the x-z plane by specifying a center Point, the width,
and the height:

Rectangle r(origin, 2, 3);

r.draw();

x

y

z

Figure 27.

Three additional arguments can be used to specify rotation about the x, y, and z-axes
respectively:

Rectangle r(origin, 2, 3, 30, 45, 15);

r.draw();

x

y

z

Figure 28.

If a Point p other than the origin is specified as the center of the Rectangle, the latter
is first created in the x-z plane, centered about the origin, as above. Then, any rotations
specified are performed. Finally, the Rectangle is shifted such that its center comes to lie
at p:

Chapter 7: Plane Figures 41

Point p0(.5, 1, 3);

Rectangle r(p0, 4, 2, 30, 30, 30);

r.draw();

p0
p0 = (0.5, 1, 3)

x

y

z

Figure 29.

This constructor has a corresponding setting function:

Rectangle r;

for (int i = 0; i < 180; i += 30)

{

r.set(origin, 4, 2, i);

r.draw();

}

x

y

z

Figure 30.

Rectangles can also be specified using four Points as arguments, whereby they must
be ordered so that they are contiguous in the resulting Rectangle:

Chapter 7: Plane Figures 42

Point pt[4];

pt[0].shift(-1, -2);

pt[2] = pt[1] = pt[0];

pt[1].rotate(180);

pt[3] = pt[1];

pt[2] *= pt[3].rotate(0, 180);

Rectangle r(pt[0], pt[2], pt[3], pt[1]);

r.draw();

(−1,−2) (1,−2)

(1, 2)(−1, 2)

x

y

Figure 31.

This constructor checks whether the Point arguments are coplanar, however, it does not
check whether they are really the corners of a valid rectangle; the user, or the code that
calls this function, must ensure that they are. In the following example, r, although not
rectangular, is a Rectangle, as far as 3DLDF is concerned:

pt[0].shift(0, -1);

pt[3].shift(0, 1);

Rectangle q(pt[0], pt[2], pt[3], pt[1]);

q.draw();

Chapter 7: Plane Figures 43

(−1,−3)

(1,−2)

(1, 3)

(−1, 2)

x

y

Figure 32.

This constructor is not really intended to be used directly, but should mostly be called
from within other functions, that should ensure that the arguments produce a rectangular
Rectangle. There is also no guarantee that transformations or other functions called on
Rectangle, Circle, or other classes representing geometric figures won’t cause them to
become non-rectangular, non-circular, or otherwise irregular. Sometimes, this might even
be desirable. I plan to add the function Rectangle::is_rectangular() soon, so that users
can test Rectangles for rectangularity.

7.3 Ellipses

Ellipse has a constructor similar to those for Reg_Polygon and Rectangle. The first
argument is the center of the Ellipse, and the following two specify the lengths of the
horizontal and vertical axes respectively. The Ellipse is first created in the x-z plane,
centered about the origin. The horizontal axis lies along the x-axis and the vertical axis lies
along the z-axis. The three subsequent arguments specify the amounts of rotation about
the x, y, and z-axes respectively and default to 0. Finally, Ellipse is shifted such that its
center comes to lie at the Point specified in the first argument.

Point pt(-1, 1, 1);

Ellipse e(pt, 3, 6, 90);

e.draw();

Chapter 7: Plane Figures 44

(−1, 1, 1)

x

y

Figure 33.

As you may expect, this constructor has a corresponding setting function:

Ellipse e;

real h_save = 1.5;

real v_save = 2;

real h = h_save;

real v = v_save;

Point p(-1);

for (int i = 0; i < 5; ++i)

{

e.set(p, h, v, 90);

e.draw();

h_save += .25;

v_save += .25;

h *= sqrt(h_save);

v *= sqrt(v_save);

p.shift(0, 0, 2);

}

Chapter 7: Plane Figures 45

x

y

z

Figure 34.

7.4 Circles

Circles are constructed just like Ellipses, except that the vertical and horizontal axes
are per definition the same, so there’s only one argument for the diameter, instead of two
for the horizontal and vertical axes:

Point P(0, 2, 1);

Circle c(P, 3.5, 90, 90);

c.draw();

(0, 2, 1)
y

z

Figure 35.

Chapter 7: Plane Figures 46

This constructor, too, has a corresponding setting function:

Circle c;

Point p(-1, 0, 5);

for (int i = 0; i < 16; ++i)

{

c.set(p, 5, i * 22.5, 0, 0, 64);

c.draw();

}

p

x

y

z

Figure 36.

In the preceding example, the last argument to set(), namely “64”, is for the number
of Points used for constructing the perimeter of the Circle. The default value is 16,
however, if it is used, foreshortening distorts the most nearly horizontal Circle. Increasing
the number of points used improves its appearance. However, there may be a limit to how
much improvement is possible. See Section 1.5.1 [Accuracy], page 7.

Chapter 8: Solid Figures 47

8 Solid Figures

8.1 Cuboids

A cuboid is a solid figure consisting of six rectangular faces that meet at right angles. A
cube is a special form of cuboid, whose faces are all squares. The constructor for the class
Cuboid follows the pattern familiar from the constructors for the plane figures: The first
argument is the center of the Cuboid, followed by three real arguments for the height,
width, and depth, and then three more real arguments for the angles of rotation about the
x, y, and z-axes. The Cuboid is first constructed with its center at the origin. Its width,
height, and depth are measured along the x, y, and z-axes respectively. If rotations are
specified, it is rotated about the x, y, z-axes in that order. Finally, it is shifted such that
its center comes to lie on its Point argument, if the latter is not the origin.

If the width, height, and depth arguments are equal, the Cuboid is a cube:

Cuboid c0(origin, 3, 3, 3, 0, 30);

c0.draw();

Figure 37.

In the following example, the Cuboid is “filldrawn”, so that the lines dilineating the
hidden surfaces of the Cuboid are covered.

Cuboid c1(origin, 3, 4, 5, 0, 30);

c1.filldraw();

Chapter 8: Solid Figures 48

Figure 38.

8.2 Polyhedron

The class Polyhedron is meant for use only as a base class; no objects of type Polyhedron
should be declared. Instead, there is a class for each of the different drawable polyhedra.
Currently, 3DLDF defines only three: Tetrahedron, Dodecahedron, and Icosahedron.
There’s no need for a Cube class, because cubes can be drawn using Cuboid (see Section 8.1
[Cuboid Getstart], page 47).

Polyhedra have a high priority in my plans for 3DLDF. I intend to add Octahedron

soon, which will complete the set of regular Platonic polyhedra. Then I will begin adding
the semi-regular Archimedean polyhedra, and their duals.

The constructors for the classes derived from Polyhedron follow the pattern familiar
from the classes already described. The constructors for the classes described below have
identical arguments: First, a Point specifying the center, then a real for the diameter of
the surrounding circle (Umkreis, in German) of one of its polygonal faces, followed by three
real arguments for the angles of rotation about the main axes.

8.2.1 Tetrahedron

The center of a tetrahedron is the intersection of the lines from a vertex to the center of
the opposite side. At least, in 3DLDF, this is the center of a Tetrahedron. I’m not 100◦

certain that this is mathematically correct.

Tetrahedron t(origin, 4);

t.draw();

t.get_center().dotlabel("c");

Chapter 8: Solid Figures 49

c

Figure 39.

8.2.2 Dodecahedron

A dodecahedron has 12 similar regular pentagonal faces. The following examples show the
same Dodecahedron using different projections:

default_focus.set(2, 5, -10, 2, 5, 10, 10);

Dodecahedron d(origin, 3);

d.draw();

Parallel projection, x-y plane

Figure 40.

Chapter 8: Solid Figures 50

Parallel projection, x-z plane

Figure 41.

Please note that the Dodecahedron in Fig. 42 is drawn, and not filldrawn!

Parallel projection, z-y plane

Figure 42.

Chapter 8: Solid Figures 51

Perspective projection

Figure 43.

In Fig. 44, d is filldrawn. In this case, the surface hiding algorithm has worked properly.
See Section 9.3 [Surface Hiding], page 67.

Perspective projection

Figure 44.

8.2.3 Icosahedron

An icosahedron has 20 similar regular triangular faces. The following examples show the
same Icosahedron using different projections:

default_focus.set(3, 0, -10, 2, 0, 10, 10);

Icosahedron i(origin, 3);

i.draw();

Chapter 8: Solid Figures 52

Parallel projection, x-y plane

Figure 45.

Parallel projection, x-z plane

Figure 46.

Parallel projection, z-y plane

Figure 47.

Chapter 8: Solid Figures 53

Perspective projection—drawn

Figure 48.

In Fig. 49, i is filldrawn. In this case, the surface hiding algorithm has worked properly.
See Section 9.3 [Surface Hiding], page 67.

Perspective projection—filldrawn

Figure 49.

Chapter 9: Pictures 54

9 Pictures

Applying drawing and filling operations to the drawable objects described in the previous
chapters isn’t enough to produce output. These operations merely modify the Picture

object that was passed to them as an argument (current_picture, by default).

Pictures in 3DLDF are quite different from pictures in MetaPost. When a drawing
or filling operation is applied to an object O, a copy of O, C, is allocated on the free store,
a pointer to Shape S is pointed at C, and S is pushed onto the vector<Shape*> shapes

on the Picture P, which was passed as an argument to the drawing or filling command.
The arguments for the pen, dash pattern, Color, and any others, are used to set the
corresponding data members of C (not O).

In order to actually cause MetaPost code to be written to the output file, it is necessary
to invoke P.output(). Now, the appropriate version of output() is applied to each of the
objects pointed to by a pointer on P.shapes. output() is a pure virtual function in Shape,
so all classes derived from Shape must have an output() function. So, if shapes[0] points
to a Path, Path::output() is called, if shapes[1] points to a Point, Point::output() is
called, and if shapes[2] points to an object of a type derived from Solid, Solid::output()
is called. Point, Path, and Solid are namely the only classes derived from Shape for which
a version of output() is defined. All other Shapes are derived from one of these classes.
These output() functions then write the MetaPost code to the output file through the
output file stream out_stream.

beginfig(1);

default_focus.set(0, 0, -10, 0, 0, 10, 10);

Circle c(origin, 3, 90);

c.draw();

c.shift(1.5);

c.draw();

current_picture.output();

endfig(1);

Figure 50.

The C++ code for Fig. 50 starts with the command beginfig(1) and ends with the
command endfig(1). They simply write “beginfig(〈arg〉)” and “endfig()” to out_

stream, The optional unsigned int argument to endfig() is not written to out_stream,
it’s merely “syntactic sugar” for the user.

Chapter 9: Pictures 55

In MetaPost, the endfig command causes output and then clears currentpicture.
This is not the case in 3DLDF, where Picture::output() and Picture::clear() must
be invoked explicitly:

beginfig(1);

Point p0;

Point p1(1, 2, 3);

p0.draw(p1);

current_picture.output();

endfig(1);

beginfig(2);

current_picture.clear();

Circle C(origin, 3);

C.fill();

current_picture.output();

endfig(2);

In Fig. 51, two Pictures are used within a single figure.

beginfig(1);

Picture my_picture;

default_focus.set(0, 0, -10, 0, 0, 10, 10);

Circle c(origin, 3, 90);

c.draw(my_picture);

my_picture.output();

c.shift(1.5);

c.fill(light_gray);

current_picture.output();

endfig(1);

Figure 51.

Multiple objects, or complex objects made up of sub-objects, can be stored in a Picture,
so that operations can be applied to them as a group:

default_focus.set(7, 5, -10, 7, 5, 10, 10);

Cuboid c0(origin, 5, 5, 5);

c0.shift(0, 0, 3);

c0.draw();

Circle z0(c0.get_rectangle_center(0), 2.5, 90, 0, 0, 64);

Chapter 9: Pictures 56

z0.draw();

Circle z1(z0);

z1.shift(0, 0, -1);

z1.draw();

int i;

int j = z0.get_size();

for (i = 0; i < 8; ++i)

z0.get_point(i * j/8).draw(z1.get_point(i * j/8));

Cuboid c1(c0.get_rectangle_center(4), 5, 3, 3);

c1.shift(0, 2.5);

c1.draw();

Rectangle r0 = *c1.get_rectangle_ptr(3);

Point p[10];

for (i = 0; i < 4; ++i)

p[i] = r0.get_point(i);

p[4] = r0.get_mid_point(0);

p[5] = r0.get_mid_point(2);

p[6] = p[4].mediate(p[5], 2/3.0);

Circle z2(p[6], 2, 90, 90, 0, 16);

z2.draw();

Circle z3 = z2;

z3.shift(3);

z3.draw();

j = z2.get_size();

for (i = 0; i < 8; ++i)

z2.get_point(i * j/8).draw(z3.get_point(i * j/8));

p[7] = c0.get_rectangle_center(2);

p[7].shift(-4);

p[8] = c0.get_rectangle_center(3);

p[8].shift(4);

current_picture.output();

current_picture.rotate(45, 45);

current_picture.shift(10, 0, 3);

current_picture.output();

Chapter 9: Pictures 57

Figure 52.

Let’s say the complex object in Fig. 52 represents a furnace. From the point of view
of 3DLDF, however, it’s not an object at all, and the drawing consists of a collection of
unrelated Cuboids, Circles, Rectangles, and Paths. If we hadn’t put it into a Picture,
we could still have rotated and shifted it, but only by applying the operations to each of
the sub-objects individually.

One consequence of the way Pictures are output in 3DLDF is, that the following code
will not work:

beginfig(1);

Point p(1, 2);

Point q(1, 3);

out_stream << "pickup pencircle scaled .5mm;" << endl;

origin.draw(p);

out_stream << "pickup pensquare xscaled .3mm rotated 30;" << endl;

origin.draw(q);

current_picture.output();

endfig();

This is the MetaPost code that results:

beginfig(1);

pickup pencircle scaled .5mm;

pickup pensquare xscaled .3mm rotated 30;

Chapter 9: Pictures 58

draw (0.000000cm, -3.000000cm) -- (1.000000cm, -1.000000cm);

draw (0.000000cm, -3.000000cm) -- (1.000000cm, 0.000000cm);

endfig;

It’s perfectly legitimate to write raw MetaPost code to out_stream, as in lines 4 and
6 of this example. However, the draw() commands do not cause any output to out_

stream. The MetaPost drawing commands are written to out_stream when current_

picture.output() is called. Therefore, the pickup commands are “bunched up” before
the drawing commands. In this example, setting currentpen to pencircle scaled .5mm

has no effect, because it is immediately reset to pensquare xscaled .3mm rotated 30 in
the MetaPost code, before the draw commands. It is not possible to change currentpen in
this way within a Picture. Since the draw() commands in the 3DLDF code didn’t specify
a pen argument, currentpen with its final value is used for both of the MetaPost draw

commands. For any given invocation of Picture::output(), there can only be one value
of currentpen. All other pens must be passed as arguments to the drawing commands.

9.1 Projections

In order for a 3D graphic program to be useful, it must be able to make two-dimensional
projections of its three-dimensional constructions so that they can be displayed on computer
screens and printed out. These are some of the possible projections:

• Parallel projection onto one of the major planes
These projections are trivial, and can be performed by 3DLDF. They are dis-
cussed in the following section.

• Parallel projection onto another plane
I haven’t programmed these projections yet, but they might be useful, so I
probably will, when I get around to it.

• The perspective projection
This is the projection most people think of, when they think of 3D-graphics. It
is discussed in detail in Section 9.1.2 [The Perspective Projection], page 60.

• The isometric and axonometric projections
These projections are important for engineering and drafting. I have not yet
implemented them in 3DLDF, but they are on my list of “Things To Do”.

The function Picture::output() takes a const unsigned short argument specifying
the projection to be used. The user should probably avoid using explicit unsigned shorts,
but should use the constants defined for this purpose in the namespace Projections.1 The
constants are PERSP, PARALLEL_X_Y, PARALLEL_X_Z, PARALLEL_Z_Y, AXON, and ISO. The
latter two should not be used, because the axonometric and isometric projections have not
yet been implemented.

9.1.1 Parallel Projections

When a Picture is projected onto the x-y plane, the x and y-values from the world_

coordinates of the Points belonging to the objects on the Picture are copied to their

1 Namespaces are described in Stroustrup, The C++ Programming Language, Chapter 8.

Chapter 9: Pictures 59

projective_coordinates, which are used in the MetaPost code written to out_stream.
If a Picture p contains an object in the x-y plane, or in a plane parallel to the x-y plane,
then the result of p.output(Projections::PARALLEL_X_Y) is more-or-less equivalent to
just using MetaPost without 3DLDF.

Rectangle r(origin, 3, 3, 90);

Circle c(origin, 3, 90);

c *= r.shift(0, 0, 5);

r.draw();

c.draw();

current_picture.output(Projections::PARALLEL_X_Y);

Figure 53.

If the objects do not lie in the x-y plane, or a plane parallel to the x-y plane, then the
projection will be distorted:

current_picture.output(Projections::PARALLEL_X_Y);

Figure 54.

Picture::output() can be called with an additional real argument factor for magni-
fying or shrinking the Picture.

Rectangle r(origin, 4, 4, 90, 60);

Circle c(origin, 4, 90, 60);

c *= r.shift(0, 0, 5);

r.filldraw(black, gray);

c.unfilldraw(black);

current_picture.output(Projections::PARALLEL_X_Y, .5);

current_picture.shift(2.5);

current_picture.output(Projections::PARALLEL_X_Y);

Chapter 9: Pictures 60

current_picture.shift(1);

current_picture.output(Projections::PARALLEL_X_Y, 2);

.5× Normal size 2×

Figure 55.

Parallel projection onto the x-z and z-y planes are completely analogous to parallel
projection onto the x-y plane.

9.1.2 The Perspective Projection

The perspective projection obeys the laws of linear perspective. In 3DLDF, it is performed
by means of a transformation, whose effect is, to the best of my knowledge, exactly equiv-
alent to the result of a perspective projection done by hand using vanishing points and
rulers.

It is very helpful to the artist to understand the laws of linear perspective, and to know
how to make a perspective drawing by hand.2 However, it is a very tedious and error-prone
procedure (I know, I’ve done it). One of my main motivations for writing 3DLDF was so I
wouldn’t have to do it anymore.

Fig. 56 shows a perspective construction, the way it could be done by hand. The point
of view, or focus is located 6cm from the picture plane, and 4cm above the ground (or x-z)
plane at the point (0, 4, -6). The rectangle R lies in the ground plane, with the point r0

at (2, 0, 1.5). The right side of R, with length = 2 cm lies at an angle of 40 to the ground
line, which corresponds to the intersection line of the ground plane with the picture plane,
and the left side, with length = 5 cm, at an angle of 90◦ − 40◦ = 50◦ to the ground line.

2 There are many books on linear perspective for artists. I’ve found Gwen White’s Perspective. A Guide

for Artists, Architects and Designers to be particularly good. Vredeman de Vries, Perspective contains
beautiful examples of perspective constructions.

Chapter 9: Pictures 61

focus

CV
horizon

ground line

VP 40◦rMP 40◦rVP 50◦l MP 50◦l

MP-CV

xr0
= 2zr0

= 1.5

r0

0 2

r1

05

r3

r2

R

CV: center of vision
VP: vanishing point
MP: measuring point

l: left
r: right

Figure 56.

While it’s possible to use 3DLDF to make a perspective construction in the traditional
way, as Fig. 56 shows, the code for Fig. 57 achieves the same result more efficiently:

default_focus.set(0, 4, -6, 0, 4, 6, 6);

Rectangle r(origin, 2, 5, 0, 40);

Point p(2, 0, 1.5);

r.shift(p - r.get_point(0));

r.draw();

r0

r1

r2

r3

R

Figure 57.

In Fig. 56, it was convenient to start with the corner point r0; if we needed the center of
R, it would have to be found from the corner points. However, in 3DLDF, Rectangles are
most often constructed about the center. Therefore, in Fig. 58, R is first constructed about
the origin, with the rotation about the y-axis passed as an argument to the constructor.
It is then shifted such that *(R.points[0]), the first (or zeroth, if you will) Point on R
comes to lie at (2, 0, 1.5).

Unlike the other transformations currently used in 3DLDF, the perspective transfor-
mation is non-affine. Affine transformations maintain parallelity of lines, while the rules of

Chapter 9: Pictures 62

perspective state that parallel lines, with one exception, appear to recede toward a vanishing

point.3

In Fig. 56, the lines −−→r0r1 and −−→r3r2 appear to vanish toward the right-hand 40◦ vanishing
point, while −−→r0r3 and −−→r1r2 appear to vanish toward the left-hand 50◦ vanishing point. The
lower the angle of a vanishing point, the further away it is from the center of vision, as
Fig. 58 shows:

focus

CV

horizon

ground line

VP 20◦VP 30◦VP 40◦VP 50◦

VP 60◦

VP 70◦

VP 80◦

VP 0.5◦ (x = 572.943cm)

VP 5◦ (x = 57.1503cm)

VP 10◦ (x = 28.3564cm)

Figure 58.

In Fig. 58, the 0.5◦ vanishing point is nearly 5 3

4
meters away from the CV, and a line

receding to it will be very nearly horizontal. However, the distance from the focus to the
CV is only 5 cm. As this distance increases, the distance from the CV to a given vanishing
point increases proportionately. If the distance is 30 cm, a more reasonable value for a
drawing, then the x-coordinate of VP 10◦ is 170.138 cm, that of VP 5◦ is 342.902 cm, and
that of VP 0.5◦ is 3437.66 cm! This is the reason why perspective drawings done by hand
rarely contain lines receding to the horizon at low angles.

This problem doesn’t arise when the perspective transformation is used. In this case,
any angle can be calculated as easily as any other:

default_focus.set(0, 4, -6, 0, 4, 6, 6);

Rectangle r;

Point center(0, 2);

r.set(center, 2, 5, 0, 0, 0.5);

r.draw();

r.set(center, 2, 5, 0, 0, 2.5);

3 (I believe the following to be correct, but I’m not entirely sure.) Let ~v be the line of sight. By definition,
the plane of projection will be a plane p, such that ~v is normal to p. Let q0 and q1 be planes such that
q0 ≡ q1 or q0 ‖ q1, and q0 ⊥ p. It follows that q1 ⊥ p. Let l0 and l1 be lines, such that l0 6= l1, l0 ‖ l1,
l0 ∈ q0, l1 ∈ q1, l0 ⊥ ~v, and l1 ⊥ ~v. Under these circumstances, the projections of l0 and l1 in p will also
be parallel.

Chapter 9: Pictures 63

r.draw();

r.set(center, 2, 5, 0, 0, 5);

r.draw();

current_picture.output();

0.5◦ 2.5◦ 5◦

Figure 59.

9.2 Focuses

The perspective transformation requires a focus; as a consequence, outputting a Picture

requires an object of class Focus. Picture::output() takes an optional pointer-to-Focus
argument, which is 0 by default. If the default is used, (or 0 is passed explicitly), the global
variable default_focus is used. See Section 23.2 [Focus Reference; Global Variables],
page 152.

A Focus can be thought of as the observer of a scene, or a camera. It contains a
Point position for its location with respect to 3DLDF’s coordinate system, and a Point

direction, specifying the direction where the observer is looking, or where the camera is
pointed. The Focus can be rotated freely about the line

−−→
PD, where P stands for position

and D for direction, so a Focus contains a third Point up, to indicate which direction
will be “up” on the projection, when a Picture is projected.

The projection plane q will always be perpendicular to
−−→
PD, or to put it another way,

−−→
PD is normal to q.

Unlike the traditional perspective construction, where the distance from the focus to the
center of vision fixes both the location of the focus in space, and its distance to the picture
plane,4 these two parameters can be set independently when the perspective transformation
is used. The distance from a Focus to the picture plane is stored in the data member
distance, of type real.

A Focus can be declared using two Point arguments for position and direction, and
a real argument for distance, in that order.

Point pos(0, 5, -10);

Point dir(0, 5, 10);

Focus f(pos, dir, 10);

Point center(2, 0, 3);

Rectangle r(center, 3, 3);

4 I believe this to be true, but I’m not 100\% certain.

Chapter 9: Pictures 64

r.draw();

current_picture.output(f);

r

x

y

z

Figure 60.

The “up” direction is calculated by the Focus constructor automatically. An optional
argument can be used to specify the angle by which to rotate the Focus about

−−→
PD.

Point pos(0, 5, -10);

Point dir(0, 5, 10);

Focus f(pos, dir, 10, 30);

Point center(2, 0, 3);

Rectangle r(center, 3, 3);

r.draw();

current_picture.output(f);

r

x

y

z

Figure 61.

Alternatively, a Focus can be declared using three real arguments each for the x, y, and
z-coordinates of position and direction, respectively, followed by the real arguments for
distance and the angle of rotation:

Focus f(3, 5, -5, 0, 3, 0, 10, 10);

Point center(2, 0, 3);

Chapter 9: Pictures 65

Rectangle r(center, 3, 3);

r.draw();

current_picture.output(f);

r

x

y

z

Figure 62.

Focuses contain two Transforms, transform and persp. A Focus can be located any-
where in 3DLDF’s coordinate system. However, performing the perspective projection is
more convenient, if position and direction both lie on one of the major axes, and the
plane of projection corresponds to one of the major planes. transform is the transforma-
tion which would have this affect on the Focus, and is calculated by the Focus constructor.
When a Picture is output using that Focus, transform is applied to all of the Shapes on
the Picture, maintaining the relationship between the Focus and the Shapes, while making
it easier to calculate the projection. The Focus need never be transformed by transform.
The actual perspective transformation is stored in persp.

Focuses can be moved by using one of the setting functions, which take the same ar-
guments as the constructors. Currently, there are no affine transformation functions for
moving Focuses, but I plan to add them soon. If 3DLDF is used for making animation,
resetting the Focus can be used to simulate camera movements:

beginfig(1);

Point pos(2, 10, 3);

Point dir(2, -10, 3);

Focus f;

Point center(2, 0, 3);

for (int i = 0; i < 5; ++i)

{

f.set(pos, dir, 10, (15 * i));

Rectangle r(center, 3, 3);

r.draw();

current_picture.output(f);

current_picture.clear();

pos.shift(1, 1, 0);

Chapter 9: Pictures 66

dir.rotate(0, 0, 10);

}

endfig(1);

0

1

2

3

4

Figure 63.

In Fig. 63, current_picture is output 5 times within a single MetaPost figure. Since
the file passed to MetaPost is called ‘persp.mp’, the file of Encapsulated PostScript (EPS)
code containing Fig. 63 is called ‘persp.1’. To use this technique for making an animation,
it’s necessary to output the Picture into multiple MetaPost figures.

Point pos(2, 10, 3);

Point dir(2, -10, 3);

Focus f;

Point center(2, 0, 3);

for (int i = 0; i < 5; ++i)

{

f.set(pos, dir, 10, (15 * i));

Rectangle r(center, 3, 3);

r.draw();

beginfig(i+1);

current_picture.output(f);

endfig();

current_picture.clear();

pos.shift(1, 1, 0);

dir.rotate(0, 0, 10);

}

Now, running MetaPost on ‘persp.mp’ generates the EPS files ‘persp.1’, ‘persp.2’,
‘persp.3’, ‘persp.4’, and ‘persp.5’, containing the five separate drawings of r.

Chapter 9: Pictures 67

9.3 Surface Hiding

In Fig. 64, Circle c lies in front of Rectangle r. Since c is drawn and not filled, r is visible
behind c.

default_focus.set(1, 3, -5, 0, 3, 5, 10);

Point p(0, -2, 5);

Rectangle r(p, 3, 4, 90);

r.draw();

Point q(2, -2, 3);

Circle c(q, 3, 90);

c.draw();

current_picture.output();

r

c

Figure 64.

If instead, c is filled or filldrawn, only the parts of r that are not covered by c should be
visible:

r.draw();

c.filldraw();

Chapter 9: Pictures 68

r

c

Figure 65.

What parts of r are covered depend on the point of view, i.e., the position and direction
of the Focus used for outputting the Picture:

default_focus.set(8, 0, -5, 5, 3, 5, 10);

r

c

Figure 66.

Determining what objects cover other objects in a program for 3D graphics is called
surface hiding, and is performed by a hidden surface algorithm. 3DLDF currently has a
very primitive hidden surface algorithm that only works for the most simple cases.

The hidden surface algorithm used in 3DLDF is a painter’s algorithm, which means that
the objects that are furthest away from the Focus are drawn first, followed by the objects
that are closer, which may thereby cover them. In order to make this possible, the Shapes

on a Picture must be sorted before they are output. They are sorted according to the
z-values in the projective_coordinates of the Points belonging to the Shape. This may
seem strange, since the projection is two-dimensional and only the x and y-values from
projective_coordinates are written to out_stream. However, the perspective transfor-
mation also produces a z-coordinate, which indicates the distance of the Points from the
Focus in the z-dimension.

The problem is, that all Shapes, except Points themselves, consist of multiple Points,
that may have different z-coordinates. 3DLDF currently does not yet have a satisfactory

Chapter 9: Pictures 69

way of dealing with this situtation. In order to try to cope with it, the user can specify
four different ways of sorting the Shapes: They can be sorted according to the maxi-
mum z-coordinate, the minimum z-coordinate, the mean of the maximum and minimum
z-coordinate (max + min)/2, and not sorted. In the last case, the Shapes are output in
the order of the drawing and filling commands in the user code. The z-coordinates referred
to are those in projective_coordinates, and will have been calculated for a particular
Focus.

The function Picture::output() takes a const unsigned short sort value argument
that specifies which style of sorting should be used. The namespace Sorting contains
the following constants which should be used for sort value: MAX_Z, MIN_Z, MEAN_Z, and
NO_SORT. The default is MAX_Z.

3DLDF’s primitive hidden surface algorithm cannot work for objects that intersect. The
following examples demonstrate why not:

using namespace Sorting;

using namespace Colors;

using namespace Projections;

default_focus.set(5, 3, -10, 3, 1, 1, 10, 180);

Rectangle r0(origin, 3, 4, 45);

Rectangle r1(origin, 2, 6, -45);

r0.draw();

r1.draw();

current_picture.output(default_focus, PERSP, 1, MAX_Z);

r0.show("r0:");

a r0:

fill_draw_value == 0

(-1.5, -1.41421, -1.41421) -- (1.5, -1.41421, -1.41421) --

(1.5, 1.41421, 1.41421) -- (-1.5, 1.41421, 1.41421)

-- cycle;

r0.show("r0:", ’p’);

a r0:

fill_draw_value == 0

Perspective coordinates.

(-5.05646, -4.59333, -0.040577) -- (-2.10249, -4.86501, -0.102123) --

(-1.18226, -1.33752, 0.156559) -- (-3.51276, -1.2796, 0.193084)

-- cycle;

r1.show("r1:");

a r1:

fill_draw_value == 0

(-1, 2.12132, -2.12132) -- (1, 2.12132, -2.12132) --

(1, -2.12132, 2.12132) -- (-1, -2.12132, 2.12132)

-- cycle;

r1.show("r1:", ’p’);

a r1:

Chapter 9: Pictures 70

fill_draw_value == 0

Perspective coordinates.

(-5.09222, -0.995681, -0.133156) -- (-2.98342, -1.03775, -0.181037) --

(-1.39791, -4.05125, 0.208945) -- (-2.87319, -3.93975, 0.230717)

-- cycle;

-1.41421
-1.41421

1.414211.41421

-2.12132 -2.12132

2.121322.12132

r0

r1

x

y

z

Figure 67.

In Fig. 67, the Rectangles r0 and r1 intersect along the x-axis. The z-values of the
world_coordinates of r0 are -1.41421 and 1.41421 (two Points each), while those of r1 are
2.12132 and -2.12132. So r1 has two Points with z-coordinates greater than the z-coordinate
of any Point on r0, and two Points with z-coordinates less than the z-coordinate of any
Point on r0. The Points on r0 and r1 all have different z-values in their projective_

coordinates, but r1 still has a Point with a z-coordinate greater than that of any of the
Points on r0, and one with a z-coordinate less than that of any of the Points on r0.

In Fig. 68, the Shapes on current_picture are sorted according to the maximum z-
values of the projective_coordinates of the Points belonging to the Shapes. r1 is
filled and drawn first, because it has the Point with the positive z-coordinate of greatest
magnitude. When subsequently r0 is drawn, it covers part of the top of r1, which lies in
front of r0, and should be visible:

current_picture.output(default_focus, PERSP, 1, MAX_Z);

Chapter 9: Pictures 71

r0

r1

x

y

z

x

y

z

Figure 68.

In Fig. 69, the Shapes on current_picture are sorted according to the minimum z-
values of the projective_coordinates of the Points belonging to the Shapes. r1 is
drawn and filled last, because it has the Point with the negative z-coordinate of greatest
magnitude. It thereby covers the bottom part of r0, which lies in front of r1, and should
be visible.

current_picture.output(default_focus, PERSP, 1, MIN_Z);

r0

r1

x

y

z

Figure 69.

Neither sorting by the mean z-value in the projective_coordinates, nor suppressing
sorting does any good. In each case, one Rectangle is always drawn and filled last, covering
parts of the other that lie in front of the first.

3DLDF’s hidden surface algorithm will fail wherever objects intersect, not just where
one extends past the other in both the positive and negative z-directions.

Rectangle r(origin, 3, 4, 45);

Circle c(origin, 2, -45);

r.filldraw();

c.filldraw(black, gray);

current_picture.output(default_focus, PERSP, 1, NO_SORT);

Chapter 9: Pictures 72

x

y

z

Figure 70.

Even where objects don’t intersect, their projections may. In order to handle these cases
properly, it is necessary to break up the Shapes on a Picture into smaller Shapes, until
there are none that intersect or whose projections intersect. Then, any of the three methods
of sorting described above can be used to sort the Shapes, and they can be output.

Before this can be done, 3DLDF must be able to find the intersections of all of the
different kinds of Shapes. If 3DLDF converted solids to polyhedra and curves to sequences
of line segments, this would reduce to the problem of finding the intersections of lines and
planes, however it does not yet do this.

Even if it did, a fully functional hidden surface algorithm must compare each Shape on
a Picture with every other Shape. Therefore, for n Shapes, there will be n!/(n− r)! r!
(possibly time-consuming) comparisons. The following table shows how many comparisons
are needed for n Shapes for several values of n:

Shapes Comparisons

10 45

100 4950

1000 499,500

10,000 49,995,000

100,000 4.99995× 109

Figure 71.

Clearly, such a hidden surface algorithm would considerably increase run-time.

Currently, all of the Shapes on a Picture are output, as long as they lie completely within
the boundaries passed as arguments to Picture::output(). See Section 21.8 [Pictures;
Outputting], page 114. It would be more efficient to suppress output for them, if they
are completely covered by other objects. This also requires comparisions, and could be
implemented together with a fully-functional hidden surface algorithm.

Shadows, reflections, highlights and shading are all effects requiring comparing each
Shape with every other Shape, and could greatly increase run-time.

Chapter 10: Intersections 73

10 Intersections

There are no functions for finding the intersection points of two (or more) arbitrary Paths.
This is impossible, so long as 3DLDF outputs MetaPost code. 3DLDF only “knows” about
the Points on a Path; it doesn’t actually generate the curve or other figure that passes
through the Points, and consequently doesn’t “know” how it does this.

In addition, an arbitrary Path can contain connectors. In 3DLDF, the connectors are
merely strings and are written verbatim to the output file, however, in MetaPost they
influence the form of a Path.

3DLDF can, however, find the intersection points of some non-arbitrary Paths. So far,
it can find the intersection point of the following combinations of Paths:

1. Two linear Paths, i.e., Paths for which Path::is_linear() returns true (see Sec-
tion 26.15 [Path Reference; Querying], page 194). In addition, the static Point

member function Point::intersection_points() can be called with four Point ar-
guments. The first and second arguments are treated as the end points of one line, and
the third and fourth arguments as the end points of the other.

2. A line and a Polygon. Currently, Reg_Polygon and Rectangle are the only classes
derived from Polygon.

3. Two Polygons.

4. A line and a Regular Closed Plane Curve (Reg_Cl_Plane_Curve, see Section 30.3
[Regular Closed Plane Curve Reference; Intersections], page 217). Currently, Ellipse
and Circle are the only classes derived from Reg_Cl_Plane_Curve.

5. Two Ellipses. Since a Circle is also an Ellipse, one or both of the Ellipses may
be a Circle. See Section 31.9 [Ellipse Reference; Intersections], page 230.

Adding more functions for finding the intersections of various geometric figures is one of
my main priorities with respect to extending 3DLDF.

There are currently no special functions for finding the intersection points of a line
and a Circle or two Circles. Since the class Circle is derived from class Ellipse,
Circle::intersection_points() resolves to Ellipse::intersection_points(), which,
in turn, calls Reg_Cl_Plane_Curve::intersection_points(). This does the trick, but
it’s much easier to find the intersections for Circles that it is for Ellipses. In particular,
the intersections of two coplanar Circles can be found algebraically, whereas I’ve had to
implement a numerical solution for the case of two coplanar Ellipses with different centers
and/or axis orientation. It may also be worthwhile to write a specialization for finding the
intersection points of a Circle and an Ellipse.

The theory of intersections is a fascinating and non-trivial branch of mathematics.1 As
I learn more about it, I plan to define more classes to represent various curves (two-
dimensional ones to start with) and functions for finding their intersection points.

1 The books on computer graphics and the fairly elementary mathematics books that I own or have referred
to don’t go into intersections very deeply. One that does is Fischer, Gerd. Ebene Algebraische Kurven,
which is a bit over my head.

Chapter 11: Installing and Running 3DLDF 74

11 Installing and Running 3DLDF

11.1 Installing 3DLDF

3DLDF is available for downloading from http://ftp.gnu.org/gnu/3dldf. The
official 3DLDF website is http://www.gnu.org/software/3dldf. The “tarball”, i.e.,
the compressed archive file ‘3DLDF-1.1.5.1.tar.gz’ unpacks into a directory called
‘/3DLDF-1.1.5.1/’.

On a typical Unix-like system, entering the following commands at the command line
in a shell will unpack the 3DLDF distribution. Please note that the form of the commands
may differ on your system.

gunzip 3DLDF-1.1.5.1.tar.gz

tar xpvf 3DLDF-1.1.5.1.tar

The ‘p’ option to tar ensures that the files will have the same permissions as when they
were packed.

The directory ‘3DLDF-1.1.5.1/’ contains a configure script, which should be called
from the command line in the shell, using the absolute path of ‘3DLDF-1.1.5.1/’ as the pre-
fix argument. For example, if the path is ‘/usr/local/mydir/3DLDF-1.1.5.1/’, configure
should be invoked as follows:

cd 3DLDF-1.1.5.1

configure --prefix=/usr/local/mydir/3DLDF-1.1.5.1/

configure generates a ‘Makefile’ from the ‘Makefile.in’ in ‘3DLDF-1.1.5.1/’,
and in each of the subdirectories ‘3DLDF-1.1.5.1/CWEB’, ‘3DLDF-1.1.5.1/DOC’, and
‘3DLDF-1.1.5.1/DOC/TEXINFO’. Now, make install causes the 3DLDF to be built. The
executable is called ‘3dldf’.

See the files ‘README’ and ‘INSTALL’ in the 3DLDF distribution for more information.

11.1.1 Template Functions

3DLDF 1.1.5 is the first release that contains template functions, namely template <class

C> C* create_new(), which is defined in ‘creatnew.web’, and template <class Real>

Real get_second_largest(), which is defined in gsltmplt.web. See Chapter 14 [Dynamic
Allocation of Shapes], page 84, and Section 15.3 [Get Second Largest Real], page 87.

In order for template functions to be instantiated correctly, their definitions must be
available in each compilation unit where specializations are declared or used. For non-
template functions, it suffices for their declarations to be available, and their definitions
are found at link-time. For this reason, the definitions of create_new() and get_second_

largest() are in their own CWEB files, and are written to their own header files. The
latter are included in the other CWEB files that need them.

In addition, ‘AM_CXXFLAGS = -frepo’ has been added to the file ‘Makefile.am’ in
‘3DLDF-1.1.5/CWEB/’, so that the C++ compiler is called using the ‘-frepo’ option. The
manual Using and Porting the GNU Compiler Collection explains this as follows:

Chapter 11: Installing and Running 3DLDF 75

“Compile your template-using code with ‘-frepo’. The compiler will generate
files with the extension ‘.rpo’ listing all of the template instantiations used
in the corresponding object files which could be instantiated there; the link
wrapper, ‘collect2’, will then update the ‘.rpo’ files to tell the compiler where
to place those instantiations and rebuild any affected object files. The link-time
overhead is negligible after the first pass, as the compiler will continue to place
the instantiations in the same files.”1

The first time the executable ‘3dldf’ is built, the files that use the template functions
are recompiled one or more times, and the linker is also called several times. This doesn’t
happen anymore, once the ‘.rpo’ files exist.

Template instantiation differs from compiler to compiler, so using template functions
will tend to make 3DLDF less portable. I am no longer able to compile it on the DECalpha
Personal Workstation I had been using with the DEC C++ compiler. See Section 1.6 [Ports],
page 8, for more information.

11.2 Running 3DLDF

To use 3DLDF, call make run from the command line in the shell. The working directory
should be ‘3DLDF-1.1.5.1/’ or ‘3DLDF-1.1.5.1/CWEB’. Either will work, but the latter
may be more convenient, because this is the location of the CWEB, TEX and MetaPost
files that you’ll be editing. Alternatively, call ldfr, which is merely a shell script that
calls make run. This takes care of running 3dldf, MetaPost, TEX, and dvips, producing a
PostScript file containing your drawings. You can display the latter on your terminal using
Ghostview or some other PostScript viewer, print it out, and whatever else you like to do
with PostScript files.

However, you can also perform the actions performed by make run by hand, by writing
your own shell scripts, by defining Emacs-Lisp commands, or in other ways. Even if you
choose to use make run, it’s important to understand what it does. The following explains
how to do this by hand.

The CWEB source files for 3DLDF are in the subdirectory ‘3DLDF-1.1.5.1/CWEB/’.
They must be ctangled, and the resulting C++ files must be compiled and linked, in
order to create the executable file ‘3dldf’. The C++ files and header files generated by
ctangle, the object files generated by the compiler, and the executable ‘3dldf’ all reside
in ‘3DLDF-1.1.5.1/CWEB/’. Therefore, the latter must be your working directory.

Since 3DLDF has no input routine as yet, as explained in Section 1.5.2 [No Input Rou-
tine], page 8, it is necessary to add C++ code to the function main() in ‘main.web’, and/or
in a separate function in another file. In the latter case, the function containing the user
code must be invoked in main(). Look for the line “Your code here!” in ‘main.web’.

This is an example of what you could write in main(). Feel free to make it more
complicated, if you wish.

beginfig(1);

default_focus.set(2, 3, -10, 2, 3, 10, 20);

Rectangle R(origin, 5, 3);

1 Stallman, Richard M. Using and Porting the GNU Compiler Collection, p. 285.

Chapter 11: Installing and Running 3DLDF 76

Circle C(origin, 3, 90);

C.half(180).filldraw(black, light_gray);

R.filldraw();

C.half().filldraw(black, light_gray);

Point p = C.get_point(4);

p.shift(0, -.5 * p.get_y());

p.label("C", "");

Point q = R.get_mid_point(0);

q.shift(0, 0, -.5 * q.get_z());

q.label("R", "");

current_picture.output(default_focus, PERSP, 1, NO_SORT);

endfig(1);

C

R

Figure 72.

1. Save ‘main.web’, and any other CWEB files you’ve changed. Since these files have
changed, they must be ctangled, and the resulting C++ files must be recompiled. If
you’ve changed any files other than ‘main.web’, ctangle will also generate a header
file for each of these files. If a header file differs from the version that existed before
ctangle was run, all of the C++ files that depend on it must be recompiled. Then
‘3dldf’ must be relinked. To do this, call make 3dldf from the command line.

If you’ve made any errors in typing your code, the compiler should have issued error
messages, so go back into the appropriate CWEB file and correct your errors. Then
call make 3dldf again.

2. Call CWEB/3dldf at the command line. It writes a file of MetaPost code called
‘3DLDFput.mp’.

3. Run MetaPost on the file ‘3DLDFmp.mp’, which inputs ‘3DLDFput.mp’.

mpost 3DLDFput

The result is an Encapsulated PostScript file ‘3DLDFput.’<integer> for each figure in
your drawing.

Chapter 11: Installing and Running 3DLDF 77

4. The file ‘3DLDFtex.tex’ should contain code for including the ‘3DLDFput.’<integer>

files. This is an example taken from the ‘3DLDFtex.tex’ included in the distribution.
You may change it to suit your purposes.

\vbox to \vsize{\vskip 2cm

\line{\hskip 2cm Figure 1.\hss}%

\vfil

\line{\hskip 2cm\epsffile{3DLDFmp.1}\hss}%

\vss}

5. Run TEX on ‘3DLDFtex.tex’ to produce the DVI file, ‘3DLDFtex.dvi’.

tex 3DLDFtex

6. Run dvips on the DVI file to produce the PostScript file, ‘3DLDFtex.ps’.

dvips -o 3DLDFtex.ps 3DLDFtex

7. ‘3DLDFtex.ps’ can be viewed using Ghostview, it can be printed using lpr (on a Unix-
like system), you can convert it to PDF with ps2pdf, or to some other format using
the appropriate program.

I sincerely hope that it worked. If it didn’t, ask your local computer wizard for help.

On the computer I’m using, I found that special arguments for setting landscape and
papersize in TEX files for DIN A3 landscape didn’t work. Ghostview cut off the right sides
of the drawings. Nor did it work to call dvips -t landscape -t a3. This caused an error
message which said that landscape would be ignored. When I called dvips with the ‘-t
landscape’ option alone, it worked, and Ghostview showed the entire drawing.

Another problem was Adobe Acrobat. It would display the entire DIN A3 page, but not
always in landscape format. I was unable to find a way of rotating the pages in Acrobat.
I finally found out, that if I included even a single letter of text in a label, Acrobat would
display the document correctly.

11.2.1 Converting EPS Files

ImageMagick (http://www.imagemagick.org) is a “collection of tools and libraries” for
image manipulation. It provides a ‘convert’ utility which can convert images from one for-
mat to another. It can convert structured PostScript (PS) to to Portable Network Graph-
ics (PNG) (http://www.libpng.org/pub/png/index.html), but not EPS (Encapsulated
PostScript) to PNG. Nor can it convert EPS to structured PostScript.

It is possible to have MetaPost generate structured PostScript directly by including
the command ‘prologues:=1;’ at the beginning of the MetaPost input. However, this
“generally doesn’t work when you use TEX fonts.”2 This is a significant problem if your
labels contain math mode material, and you haven’t already taken steps to ensure that
appropriate fonts will be used in the PS output.

In the following, I describe the only way I’ve found to convert an EPS image to PNG
format while still using TEX fonts. There may be other and better ways of doing this, but
I haven’t found them.

2 Hobby, A User’s Manual for MetaPost, pp. 21–22.

Chapter 11: Installing and Running 3DLDF 78

1. Assume the EPS image is in the file ‘3DLDFmp.1’ Include the EPS image in a TEX file
which looks like this:

\advance\voffset by -1in

\advance\hoffset by -1in

\nopagenumbers

\input epsf

\epsfverbosetrue

\def\epsfsize#1#2{#1}

\setbox0=\vbox{\epsffile{3DLDFmp.1}}

\vsize=\ht0

\hsize=\wd0

\special{papersize=\the\wd0,\the\ht0}

\box0

\bye

Do not name this file ‘3DLDFmp.1.tex’! While this worked fine for me on a DECalpha
Personal Workstation running under Tru64 Unix 5.1, with TEX, Version 3.1415 (C
version 6.1), and dvipsk 5.58f, it failed on a PC Pentium II XEON under Linux 2.4,
with TEX, Version 3.14159 (Web2C 7.4.5), and dvips(k) 5.92b, kpathsea version 3.4.5,
with the following error message:

“No BoundingBox comment found in file examples.1; using defaults”

The resulting PS image had the wrong size and the the graphic was positioned improp-
erly.

Apparently, it confuses the EPSF macros when the name of an included image is the
same as ‘\jobname’. So, for this example, let’s call it ‘3DLDFmp.1_.tex’.

You don’t really need to call the macro ‘\epsfverbosetrue’. If you do, it will print
the measurements of the bounding box and other information to standard output.3

2. Run ‘tex 3DLDFmp.1_.tex’.

3. Run ‘dvips -o 3DLDF.1.ps 3DLDFmp.1_.dvi’.

4. Run ‘convert 3DLDF.1.ps 3DLDFmp.1.png’.

ImageMagick supplies a ‘display’ utility, which can be used to display the PNG image:

display 3DLDFmp.1.png

It can be included in an HTML document as follows:

<img src="3DLDFmp.1.png"

alt="[Fig. 1]."

Please note! The PNG files for this manual are now called filename ‘3DLDF1.png’,
‘3DLDF2.png’, . . . , ‘3DLDF199.png’, because I wasn’t able to write files with names like
‘3DLDFmp.<number>.png’ to a CD-R (Compact Disk, Recordable), when ‘number ’ had more
than one digit.

3 Rokicki, Dvips: A DVI-to-PostScript Translator, p. 24.

Chapter 11: Installing and Running 3DLDF 79

11.2.1.1 Emacs-Lisp Functions

The file ‘3DLDF-1.1.5.1/CWEB/cnepspng.el’ contains definitions of two Emacs-Lisp
functions that can be used to convert Encapsulated PostScript (EPS) files to structured
PostScript (PS) and Portable Network Graphics (PNG) files.

[Emacs-Lisp function]convert-eps filename do-not-delete-files

Converts an EPS image file to the PS and PNG formats.

If called interactively, convert-eps prompts for the filename, including the extension,
of an EPS image file. It follows the procedure described above in Section 11.2.1
[Converting EPS Files], page 77, to create ‘filename.ps’ and ‘filename.png’.

If do-not-delete-files is nil, the ‘.tex’, ‘.dvi’, and ‘.log’ files will be deleted. This
is the case when convert-eps is called interactively with no prefix argument. If
convert-eps is called interactively with a prefix argument, or non-interactively with
a non-nil do-not-delete-files argument, these files will not be deleted.

[Emacs-Lisp function]convert-eps-loop arg start end

Converts a set of EPS image files to the PS and PNG formats. The files must all have
the same filename, and the extensions must form a range of positive integers. For ex-
ample, convert-eps-loop can be used to convert the files ‘3DLDFmp.1’, ‘3DLDFmp.2’,
and ‘3DLDFmp.3’ to ‘3DLDFmp.1.ps’, ‘3DLDFmp.2.ps’, and ‘3DLDFmp.3.ps’ on the one
hand, and ‘3DLDFmp.1.png’, ‘3DLDFmp.2.png’, ‘3DLDFmp.3.png’ on the other.

If convert-eps-loop is called interactively, it prompts for filename with no extension

and the starting and ending numbers of the range.

For all i ∈ Z and start ≤ i ≤ end, convert-eps-loop checks whether a file named
‘filename.i’ exists. If it does, it calls convert-eps, passing ‘filename.i’ as the
latter’s filename argument.

do-not-delete-files is also passed to convert-eps. If it’s nil, the ‘.tex’, ‘.dvi’, and
‘.log’ files will be deleted. This is the case when convert-eps-loop is called inter-
actively with no prefix argument. If convert-eps-loop is called interactively with
a prefix argument, or non-interactively with a non-nil do-not-delete-files argument,
these files will not be deleted.

11.2.2 Command Line Arguments

3dldf can be called with the following command line arguments.

--help Prints information about the valid command line options to standard output
and exits with return value 0.

--silent Suppresses some output to standard output and standard error when 3dldf is
run

--verbose

Causes status information to be printed to standard output when 3dldf is run.

--version

Prints the version number of 3DLDF to standard output and exits with return
value 0.

Chapter 11: Installing and Running 3DLDF 80

Currently, 3dldf can only handle long options. ‘-’ cannot be substituted for ‘--’. How-
ever, the names of the options themselves can be abbreviated, as long as the abbreviation
is unambigous. For example, ‘3dldf --h’ and ‘3dldf --verb’ are valid, but ‘3dldf --ver’
is not.

Chapter 12: Typedefs and Utility Structures 81

12 Typedefs and Utility Structures

3DLDF defines a number of data types for various reasons, e.g., for the sake of convenience,
for use in conditional compilation, or as return values of functions. Some of these data
types can be defined using typedef, while others are defined as structs.

The typedefs and utility structures described in this chapter are found in ‘pspglb.web’.
Others, that contain objects of types defined in 3DLDF, are described in subsequent chap-
ters.

[typedef]real
Synonymous either with float or double, depending on the values of the prepro-
cessor variables LDF_REAL_FLOAT and LDF_REAL_DOUBLE. The meaning of real is
determined by means of conditional compilation. If real is float, 3DLDF will re-
quire less memory than if real is double, but its calculations will be less precise.
real is “typedeffed” to float by default.

[typedef]real pair first second
Synonymous with pair<real, real>.

[struct]real triple first second third
All three data elements of real_triple are reals. It also has two constructors,
described below. There are no other member functions.

[Constructor]void real triple (void)
[Constructor]void real triple (real a, real b, real c)

The constructor taking no arguments sets first, second, and third to 0. The
constructor taking three real arguments sets first to a, second to b, and third to
c.

[typedef]Matrix
A Matrix is a 4 × 4 array of real, e.g., Matrix M; ≡ real M[4][4]. It is used in
class Transform for storing transformation matrices. See Chapter 4 [Transforms],
page 19, and See Chapter 19 [Transform Reference], page 96, for more information.

[typedef]real short first second
Synonymous with pair<real, signed short>. It is the return type of Plane::get_
distance().

[typedef]bool pair first second
Synonymous with pair<bool, bool>.

[typedef]bool real first second
Synonymous with pair<bool, real>.

Chapter 13: Global Constants and Variables 82

13 Global Constants and Variables

The global constants and variables described in this chapter are found in ‘pspglb.web’.
Others, of types defined in 3DLDF, are described in subsequent chapters.

[Constants]bool ldf real float
bool ldf real double

Set to 0 or 1 to match the values of the preprocessor macros LDF_REAL_FLOAT and
LDF_REAL_DOUBLE. The latter are used for conditional compilation and determine
whether real is “typedeffed” to float or double, i.e., whether real is made to be a
synonym of float or double using typedef.

ldf_real_float and ldf_real_double can be used to control conditional expressions
in non-conditionally compiled code.

[Constant]real PI
The value of PI (π) is calculated as 4.0 × arctan(1.0). I believe that a preprocessor
macro “PI” was available when I compiled 3DLDF using the DEC C++ compiler, and
that it wasn’t, when I used GNU CC under Linux, but I’m no longer sure.

[Variable]valarray <real> null coordinates
Contains four elements, all 0. Used for resetting the sets of coordinates belonging to
Points, but only when the DEC C++ compiler is used. This doesn’t work when GCC
is used.

[Constant]real INVALID REAL
Actually, INVALID_REAL is the largest possible real value (i.e., float or double) on
a given machine. So, from the point of view of the compiler, it’s not invalid at all.
However, 3DLDF uses it to indicate failure of some kind. For example, the return
value of a function returning real can be compared with INVALID_REAL to check
whether the function succeeded or failed.

An alternative approach would be to use the exception handling facilities of C++. I
do use these, but only in a couple of places, so far.

[Constant]real_pair INVALID REAL PAIR
first and second are both INVALID_REAL.

[Constant]real INVALID REAL SHORT
first is INVALID_REAL and second is 0.

[Variable]real MAX REAL
The largest real value permitted in the the elements of Transforms and the coor-
dinates of Points. It is the second largest real value (i.e., float or double) on a
given machine (INVALID_REAL is the largest).

MAX_REAL is a variable, but it should be used like a constant. In other words, users
should never reset its value. It can’t be declared const because its value must be
calculated using function calls, which can’t be done before the entry point of the
program, i.e., main(). Therefore, the value of MAX_REAL is calculated at the beginning
of main().

Chapter 13: Global Constants and Variables 83

[Variable]real MAX REAL SQRT
The square root of MAX_REAL.

MAX_REAL_SQRT is a variable, but it should be used like a constant. In other words,
users should never reset its value. It can’t be declared const because its value is
calculated using the sqrt() function, which can’t be done before the entry point
of the program, i.e., main(). Therefore, the value of MAX_REAL_SQRT is set after
MAX_REAL is calculated, at the beginning of main().

MAX_REAL_SQRT is used in Point::magnitude() (see Section 22.15 [Vector
Operations], page 136). The magnitude of a Point is found by using the formula
√

x2 + y2 + z2. x, y, and z are all tested against MAX_REAL_SQRT to ensure that x2,

y2, and z2 will all be less than or equal to MAX_REAL before trying to calculate them.

Metafont implements an operation called Pythagorean addition, notated as “++”which
can be used to calculate distances without first squaring and then taking square

roots:1 a++b ≡
√

a2 + b2 and a++b++c ≡
√

a2 + b2 + c2. This makes it possible

to calculate distances for greater values of a, b, and c, that would otherwise cause
floating point errors. Metafont also implements the inverse operation Pythagorean

subtraction, notated as “+-+”: a+−+b ≡
√

a2 − b2. Unfortunately, 3DLDF

implements neither Pythagorean addition nor subtraction as yet, but it’s on my list
of “things to do”.

1 Knuth, Donald E. The Metafontbook, p. 66.

Chapter 14: Dynamic Allocation of Shapes 84

14 Dynamic Allocation of Shapes

[Template function]template <class C> C* create new (const C* arg)
[Template function]template <class C> C* create new (const C& arg)

These functions dynamically allocate an object derived from Shape on the free store,
returning a pointer to the type of the Shape and setting on_free_store to true.

If a non-zero pointer or a reference is passed to create_new(), the new object will
be a copy of arg.

It is not possible to instantiate more than one specialization of create_new() that
takes no argument, because calls to these functions would be ambiguous. If the new
object is not meant to be a copy of an existing one, ‘0’ must be passed to create_

new() as its argument.

create_new is called like this:

Point* p = create_new<Point>(0);

p->show("*p:");

a *p: (0, 0, 0)

Color c(.3, .5, .25);

Color* d = create_new<Color>(c);

d->show("*d:");

a
*d:

name ==

use_name == 0

red_part == 0.3

green_part == 0.5

blue_part == 0.25

Point a0(3, 2.5, 6);

Point a1(10, 11, 14);

Path q(a0, a1);

Path* r = create_new<Path>(&q);

r->show("*r:");

a
*r:

points.size() == 2

connectors.size() == 1

(3, 2.5, 6) -- (10, 11, 14);

Specializations of this template function are currently declared for Color, Point,
Path, Reg_Polygon, Rectangle, Ellipse, Circle, Solid, and Cuboid.

Chapter 15: System Information 85

15 System Information

The functions described in this chapter are all declared in the namespace System. They
are for finding out information about the system on which 3DLDF is being run. They
are declared and defined in ‘pspglb.web’, except for the template function get_second_

largest(), which is declared and defined in ‘gsltmplt.web’.

There are two reasons for this. The first is that template definitions must be available in
the compilation units where specializations are instantiated. I therefore write the template
definition of get_second_largest() to ‘gsltmplt.h’, so it can be included by the CWEB
files that need it, currently ‘main.web’ only. If I wrote it to ‘pspglb.h’, it would be included
by all of the CWEB files except for ‘loader.web’, causing unnecessarily bloated object code.

The other reason is because of the way way 3DLDF is built using Automake and make. I
originally tried to define get_second_largest() in ‘pspglb.web’ and wrote the definition
to ‘gsltmplt.cc’, which is no problem with CWEB. However, I was unable to express the
dependencies among the CWEB, C++, and object files in such a way that 3DLDF was built
properly.

Therefore all template functions will be put into files either by themselves, or in small
groups.

15.1 Endianness

[Function]signed short get endianness ([const bool verbose = false])
Returns the following values:

0 if the processor is little-endian.

1 if the processor is big-endian.

-1 if the endianness cannot be determined.

It is called by is_little_endian() and is_big_endian().

If verbose is true, messages are printed to standard output.

This function has been adapted from Harbison, Samuel P., and Guy L. Steele Jr. C, A

Reference Manual, pp. 163–164. This book has the clearest explanation of endianness
that I’ve found so far.

This is the C++ code:

signed short

System::get_endianness(const bool verbose)

{

union {

long Long;

char Char[sizeof(long)];

} u;

u.Long = 1;

if (u.Char[0] == 1)

{

if (verbose)

Chapter 15: System Information 86

cout << "Processor is little-endian."

<< endl << endl << flush;

return 0;

}

else if (u.Char[sizeof(long) - 1] == 1)

{

if (verbose)

cout << "Processor is big-endian."

<< endl << endl << flush;

return 1;

}

else

{

cerr << "ERROR! In System::get_endianness():\n"

<< "Can’t determine endianness. Returning -1"

<< endl << endl << flush;

return -1;

}

}

[Function]bool is big endian ([const bool verbose = false])
Returns true if the processor is big-endian, otherwise false. If verbose is true,
messages are printed to standard output.

[Function]bool is little endian ([const bool verbose = false])
Returns true if the processor is little-endian, otherwise false. If verbose is true,
messages are printed to standard output.

15.2 Register Width

[Function]unsigned short get register width (void)
Returns the register width of the CPU of the system on which 3DLDF is being run.
This will normally be either 32 or 64 bits.

This is the C++ code:

return (sizeof(void*) * CHAR_BIT);

This assumes that an address will be the same size as the processor’s registers, and
that CHAR_BIT will be the number of bits in a byte. These are reasonable assumptions
that apply to all architectures I know about.

This function is called by is_32_bit() and is_64_bit().

[Function]bool is 32 bit (void)
Returns true if the CPU of the system on which 3DLDF is being run has a register
width of 32 bits, otherwise false.

[Function]bool is 64 bit (void)
Returns true if the CPU of the system on which 3DLDF is being run has a register
width of 64 bits, otherwise false.

Chapter 15: System Information 87

15.3 Get Second Largest Real

[Template function]template <class Real> Real get second largest (Real
MAX_VAL, [bool verbose = false])

[Template specialization]float get second largest (float, bool)
[Template specialization]double get second largest (double, bool)

get_second_largest returns the second largest floating point number of the type
specified the template paramater Real. If verbose is true, messages are printed to
standard output.

This function is used for setting the value of MAX_REAL. See Chapter 13 [Global
Constants and Variables], page 82.

get_second_largest depends on there being an unsigned integer type with the same
length as Real. This should always be the case for float and double, but may not
be long double.

MAX VAL should be the largest number of type Real on a given architecture. The
GNU C++ compiler GCC 3.3 does not currently supply the numeric_limits template,
so it is necessary to pass one of the macros FLT_MAX or DBL_MAX explicitly, depending
on which specialization you use1. When and if GCC supplies the numeric_limits

template, I will eliminate the MAX REAL argument.

1 If your system supplies an unsigned integer type with the same length as long double, then
you can instantiate get_second_largest<long double>() and call ‘get_second_largest<long
double>(LDBL_MAX)’. However, I doubt that this amount of precision would be worthwhile. If it ever
were required, 3DLDF would have to be changed in other ways, too. In particular, it would have to use
more precise trigonometric functions for rotations. See Section 1.5.1 [Accuracy], page 7.

Chapter 16: Color Reference 88

16 Color Reference

Class Color is defined in ‘colors.web’.

16.1 Data Members

[Variable]string name
The name of the Color.

[Variable]bool use name
If true, name is written to out_stream when the Color is used for drawing or filling.
Otherwise, the RGB (red-green-blue) values are written to out_stream.

[Variable]bool on free store
true, if the Color has been created by create_new<Color>(), which allocates mem-
ory for the Color on the free store. Otherwise false. Colors should only ever
be dynamically allocated by using create_new<Color>(). See Section 16.2 [Color
Reference;;Constructors and Setting Functions], page 88.

[Variable]real red part
[Variable]real green part
[Variable]real blue part

The RGB (red-green-blue) values of the Color. A real value r is valid for these
variables if and only if 0 ≤ r ≤ 1.

16.2 Constructors and Setting Functions

[Default constructor]void Color (void)
Creates a Color and initializes its red_part, green_part, and blue_part to 0. use_
name and on_free_store are set to false.

[Copy constructor]void Color (const Color& c, [const string n = "", [const
bool u = true]])

Creates a Color and makes it a copy of c. If n is not the empty string and u is true,
use_name is set to true. Otherwise, its set to false.

[Constructor]void Color (const string n, const unsigned short r, const

unsigned short g, const unsigned short b, [const bool u = true])
Creates a Color with name n. Its red_part, green_part, and blue_part are set to
r/255.0, g/255.0, and b/255.0, respectively. use_name is set to u.

[Setting function]void set (const string n, const unsigned short r, const

unsigned short g, const unsigned short b, [const bool u = false])
Corresponds to the constructor above, except that u is false by default.

[Constructor]void Color (const real r, const real g, const real b)
Creates an unnamed Color using the real values r, g, and b for its red_part, green_
part, and blue_part, respectively.

Chapter 16: Color Reference 89

[Setting function]void set (const real r, const real g, const real b)
Corresponds to the constructor above.

[Template specializations]Color* create new<Color> (const Color* c)
Color* create new<Color> (const Color& c)

Pseudo-constructors for dynamic allocation of Colors. They create a Color on the
free store and allocate memory for it using new(Color). They return a pointer to the
new Color.

If c is a non-zero pointer or a reference, the new Color will be a copy of c. If the new
object is not meant to be a copy of an existing one, ‘0’ must be passed to create_

new<Color>() as its argument. See Chapter 14 [Dynamic Allocation of Shapes],
page 84, for more information.

This function is used in the drawing and filling functions for Path and Solid.
Point::drawdot() should be changed to use it too, but I haven’t gotten around to
doing this yet.

16.3 Operators

[Assignment operator]void operator= (const Color& c)
Sets name to the empty string, use_name to false, and red_part, green_part, and
blue_part to c.red_part, c.green_part, and c.blue_part, respectively.

[const operator]bool operator== (const Color& c)
Equality operator. Returns true, if the red_parts, green_parts, and blue_parts of
*this and c are equal, otherwise false. The names and use_names are not compared.

[const operator]bool operator!= (const Color& c)
Inequality operator. Returns false, if the red_parts, green_parts, and blue_

parts of *this and c are equal, otherwise true. The names and use_names are not
compared.

[Non-member function]ostream& operator<< (ostream& o, const Color& c)
Output operator. Writes the MetaPost code for the Color to out_stream when a
Picture is output. This occurs when the Color has been used as an argument to
drawing or filling functions.

If use_name is true, name is written to out_stream. Otherwise, “(red_part, green_
part, blue_part)” is written to out_stream.

16.4 Modifying

[Function]void set name (const string s)
Sets name to s. use_name is not reset.

[Function]void set use name (const bool b)
Sets use_name to b.

Chapter 16: Color Reference 90

[Function]void modify (const real r, [const real g = 0, [const real b = 0]])
Adds r, g, and b to red_part, green_part, and blue_part, respectively. Following
the addition, if red_part, green_part, and/or blue_part is greater than 1, it is
reduced to 1. If it is less than 0, it is increased to 0.

[Function]void set red part (const real q)
[Function]void set green part (const real q)
[Function]void set blue part (const real q)

Let p stand for red_part, green_part, or blue_part, depending upon which function
is used. If 0 ≤ q ≤ 1, p is set to q. If q < 0, p is set to 0. If q > 1, p is set to 1.

16.5 Showing

[const function]void show ([string text = ""])
Prints information about the Color to standard output. If text is not the empty
string, prints text on a line of its own. Otherwise, it prints “Color:”. Then it prints
name, use_name, red_part, green_part, and blue_part.

16.6 Querying

[const function]bool is on free store (void)
Returns on_free_store. This will only be true, if the Color was created by create_

new<Color>(). See Section 16.2 [Color Reference; Constructors and Setting Func-
tions], page 88.

[Inline const function]real get red part ([bool decimal = false])
[Inline const function]real get green part ([bool decimal = false])
[Inline const function]real get blue part ([bool decimal = false])

These functions return the red_part, green_part, or blue_part of the Color, re-
spectively. If decimal is false (the default), the actual real value of the “part” is
returned. Otherwise, the corresponding whole number n such that 0 ≤ n ≤ 255 is
returned.

[const function]bool get use name (void)
Returns use_name.

[Inline const function]string get name (void)
Returns name.

16.7 Defining and Initializing Colors

[const function]void define color mp ()
Writes MetaPost code to out_stream, in order to define objects of type color within
MetaPost, and set their redparts, greenparts, and blueparts.

[Static function]void initialize colors (void)
Calls define_color_mp() (described above) for the Colors that are defined in
namespace Colors (see Section 16.8 [Namespace Colors], page 91).

Chapter 16: Color Reference 91

16.8 Namespace Colors.

[Constant]const Color red
[Constant]const Color green
[Constant]const Color blue
[Constant]const Color cyan
[Constant]const Color yellow
[Constant]const Color magenta
[Constant]const Color orange red
[Constant]const Color violet red
[Constant]const Color pink
[Constant]const Color green yellow
[Constant]const Color orange
[Constant]const Color violet
[Constant]const Color purple
[Constant]const Color blue violet
[Constant]const Color yellow green
[Constant]const Color black
[Constant]const Color white
[Constant]const Color gray
[Constant]const Color light gray

These constant Colors can be used in drawing and filling commands.

[Constant]const Color default background
The default background color. Equal to white per default.

[Pointer]const Color* background color
Points to default_background by default.

[Pointer]const Color* default color
Points to black by default.

[Pointer]const Color* help color
Points to green by default.

The following vectors of pointers to Color can be used in the drawing and filling functions
for Solid (see Section 34.13 [Solid Reference; Drawing and Filling], page 255).

[Vector]const vector <const Color*> default color vector
Contains one pointer, namely default_color.

[Vector]const vector <const Color*> help color vector
Contains one pointer, namely help_color.

[Vector]const vector <const Color*> background color vector
Contains one pointer, namely background_color.

Chapter 17: Input and Output 92

17 Input and Output

17.1 Global Variables

[Variable]ifstream in stream
Intended for inputting files of input code. However, 3DLDF does not currently
have a routine for reading input code. in_stream is currently attached to the file
‘ldfinput.ldf’ by initialize_io() (see Section 17.2 [I/O Functions], page 92).
in_stream is read in character-by-character in main(), however this serves no useful
purpose as yet.

[Variable]ofstream out stream
Used for writing the file of MetaPost code, which is 3DLDF’s output. Currently
attached to the file ‘subpersp.mp’ by initialize_io() (see Section 17.2 [I/O Func-
tions], page 92).

[Variable]ofstream tex stream
TEX code can be written to a file through tex_stream, if desired. 3DLDF makes
no use of it itself. Currently attached to ‘subpersp.tex’ by initialize_io() (see
Section 17.2 [I/O Functions], page 92).

17.2 I/O Functions

[Function]void initialize io (string in_stream_name, string out_stream_name,

string tex_stream_name, char* program_name)
Opens files with names specified by the first three arguments, and attaches them to
the file streams in_stream, out_stream, and tex_stream, respectively. Comments
are written at the beginning of the files, containing their names, a datestamp, and
the name of the program used to generate them.

[Function]void write footers (void)
Writes code at the end of the files attached to in_stream, out_stream, and tex_

stream, before the streams are closed. Currently, they write comments containing
local variable lists for use in Emacs.

[Inline function]void beginfig (unsigned short i)
Writes “beginfig(i)” to out_stream.

[Inline function]void endfig ([unsigned short i = 0])
Writes “endfig()” to out_stream. The argument i is “syntactic sugar”; it’s ignored
by endfig(), but may help the user keep track of what figure is being ended.

Chapter 18: Shape Reference 93

18 Shape Reference

Class Shape is defined in ‘shapes.web’.

Shape is an abstract class, which means that all of its member functions are pure virtual
functions, and that it’s only used as a base class, i.e., no objects of type Shape may be
declared.

All of the “drawable” types in 3DLDF, Point, Path, Ellipse, etc., are derived from
Shape.

Deriving all of the drawable types from Shape makes it possible to handle objects of
different types in the same way. This is especially important in the Picture functions,
where objects of various types (but all derived from Shape) are accessed through pointers
to Shape. See Chapter 21 [Picture Reference], page 111.

18.1 Data Members

[Protected static constants]signed short DRAWDOT
signed short DRAW
signed short FILL
signed short FILLDRAW
signed short UNDRAWDOT
signed short UNDRAW
signed short UNFILL
signed short UNFILLDRAW

Values used in the output() functions of the classes derived from Shape. For example,
in Path, if the data member fill_draw_value = DRAW, then the MetaPost command
draw is written to out_stream when that Path is output.

18.2 Operators

[Pure virtual function]Transform operator*= (const Transform& t)

18.3 Copying

[const pure virtual function]Shape* get copy (void)
Copies an object, allocating memory on the free store for the copy, and returns a
pointer to Shape for accessing the copy.

Used in the drawing and filling functions for copying the Shape, and putting a pointer
to the copy onto the vector<Shape*> shapes of the Picture.

18.4 Modifying

[Pure virtual function]bool set on free store (bool b = true)
Sets the data member on_free_store to b. All classes derived from Shape must
therefore also have a data member on_free_store.

Chapter 18: Shape Reference 94

This function is used in the template function create_new<type>. See Chapter 14
[Dynamic Allocation of Shapes], page 84, for more information.

18.5 Affine Transformations

[Pure virtual functions]Transform rotate (const real x, const real y, const

real z)
Transform scale (real x, real y, real z)
Transform shear (real xy, real xz, real yx, real yz, real zx, real zy)
Transform shift (real x, real y, real z)
Transform rotate (const Point& p0, const Point& p1, const real r)

See Section 22.12 [Point Reference; Affine Transformations], page 130.

18.6 Applying Transformations

[Pure virtual function]void apply transform (void)
Applies the Transform stored in the transform data member of the Points belonging
to the Shape to their world_coordinates. The transforms are subsequently reset
to the identity Transform.

18.7 Clearing

[Pure virtual function]void clear (void)
The precise definition of this function will depend on the nature of the derived class.
In general, it will call the destructor on dynamically allocated objects belonging to
the Shape, and deallocate the memory they occupied.

18.8 Querying

[const pure virtual function]bool is on free store (void)
Returns true if the object was allocated on the free store, otherwise false.

18.9 Showing

[const pure virtual function]void show ([string text = "", [char coords = ’w’,

[const bool do_persp = true, [const bool do_apply = true, [Focus* f = 0,

[const unsigned short proj = 0, [const real factor = 1]]]]]]])
Prints information about an object to standard output. See the descriptions of show()
for the classes derived from Shape for more information.

Chapter 18: Shape Reference 95

18.10 Outputting

[Pure virtual function]void output (void)
Called by Picture::output() for writing MetaPost code to out_stream for a Shape

pointed to by a pointer on the vector<Shape*> shapes belonging to the Picture.
Such a Shape will have been created by a drawing or filling function.

[Pure virtual function]vector<Shape*> extract (const Focus& f, const

unsigned short proj, real factor)
Called in Picture::output(). It determines whether a Shape can be output. If it
can, and an output() function for the type of the Shape exists, a vector<Shape*>

containing a pointer to the Shape is returned.

On the other hand, it is possible to define a type derived from Shape, without an
output() function of its own, and not derived from a type that has one. It may
then consist of one or more objects of types that do have output() functions. In this
case, the vector<Shape*> returned by extract() will contain pointers to all of these
subsidiary Shapes, and Picture::output() will treat them as independent objects.
In particular, if any one of them cannot be projected using the arguments passed to
Picture::output(), this will have no effect on whether the others are outputted or
not.

Currently, there are no Shapes without an output() function, either belonging to
the class, or inherited. However, it’s useful to be able to define Shapes in this way,
so that they can be tested without having to define an output() function first.

[Pure virtual function]bool set extremes (void)
Sets the values of projective_extremes for the Shape. This is needed in
Picture::output() for determining the order in which objects are output.

[const pure virtual functions]real get minimum z (void)
real get maximum z (void)
real get mean z (void)

These functions return the minimum, maximum, and mean z-value respectively of
the projected Points belonging to the Shape, i.e., from projective_extremes. The
values for the Shapes on the Picture are used for determining the order in which
they are output

[const pure virtual function]const valarray<real> get extremes (void)
Returns projective_extremes.

[Pure virtual function]void suppress output (void)
Sets do_output to false. This function is called in Picture::output(), if a Shape

on a Picture cannot be output using the arguments passed to Picture::output().

[Pure virtual function]void unsuppress output (void)
Sets do_output to true. Called in Picture::output() after output() is called
on the Shapes. This way, output of Shapes that couldn’t be output when
Picture::output() was called with a particular set of arguments won’t necessarily
be suppressed when Picture::output() is called again with different arguments.

f

Chapter 19: Transform Reference 96

19 Transform Reference

Class Transform is defined in ‘transfor.web’. Point is a friend of Transform.

19.1 Data Members

[Private variable]Matrix matrix
A 4× 4 matrix of real representing the actual transformation matrix.

19.2 Global Variables and Constants

[Variable]Transform user transform
Currently has no function. It is intended to be used for transforming the coordinates
of Points between the world coordinate system (WCS) and a user coordinate system
(UCS), when routines for managing user coordinate systems are implemented.

[Constant]const Transform INVALID TRANSFORM
Every member of matrix in INVALID_TRANSFORM is equal to INVALID_REAL.

[Constant]const Transform IDENTITY TRANSFORM
Homogeneous coordinates and Transforms are unchanged by multiplication with
IDENTITY_TRANSFORM. matrix is an identity matrix:









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









See Chapter 4 [Transforms], page 19.

19.3 Constructors

[Default constructor]void Transform (void)
Creates a Transform containing the identity matrix.

[Constructor]void Transform (real r)
Creates a Transform and sets all of the elements of matrix to r. Currently, this
constructor is never used, but who knows? Maybe someday it will be useful for
something.

[Constructor]void Transform (real r0_0, real r0_1, real r2, real r0_2, real

r0_3, real r1_0, real r1_1, real r1_2, real r1_3, real r2_0, real r2_1,

real r2_2, real r2_3, real r3_0, real r3_1, real r3_2, real r3_3)
Each of the sixteen real arguments is assigned to the corresponding element of ma-

trix: matrix[0][0] = r0_0, matrix[0][1] = r0_1, etc. Useful for specifying a trans-
formation matrix completely.

Chapter 19: Transform Reference 97

19.4 Operators

[Assignment operator]Transform operator= (const Transform& t)
Sets *this to t and returns t. Returning *this would, of course, have exactly the same
effect.

[Operator]real operator*= (real r)
Multiplication with assignment by a scalar. This operator multiplies each element E
of matrix by the scalar r. The return value is r. This makes it possible to chain
invocations of this function: For ax, bx, cx, . . . , px ∈ R, x ∈ N

Transform T0(a_0, b_0, c_0, d_0,

e_0, f_0, g_0, h_0,

i_0, j_0, k_0 l_0,

m_0, n_0, o_0, p_0);

Transform T1(a_1, b_1, c_1, d_1,

e_1, f_1, g_1, h_1,

i_1, j_1, k_1 l_1,

m_1, n_1, o_1, p_1);

Transform T2(a_2, b_2, c_2, d_2,

e_2, f_2, g_2, h_2,

i_2, j_2, k_2 l_2,

m_2, n_2, o_2, p_2);

real r = 5;

Let M0, M1, and M2 stand for T0.matrix, T1.matrix, and T2.matrix respectively:

M0 =









a0 b0 c0 d0

e0 f0 g0 h0

i0 j0 k0 l0
m0 m0 o0 p0









M1 =









a1 b1 c1 d1

e1 f1 g1 h1

i1 j1 k1 l1
m1 m1 o1 p1









M2 =









a2 b2 c2 d2

e2 f2 g2 h2

i2 j2 k2 l2
m2 m2 o2 p2









T0 *= T1 *= T2 *= r;

Now,

M0 =









5a0 5b0 5c0 5d0

5e0 5f0 5g0 5h0

5i0 5j0 5k0 5l0
5m0 5m0 5o0 5p0









M1 =









5a1 5b1 5c1 5d1

5e1 5f1 5g1 5h1

5i1 5j1 5k1 5l1
5m1 5m1 5o1 5p1









M2 =









5a2 5b2 5c2 5d2

5e2 5f2 5g2 5h2

5i2 5j2 5k2 5l2
5m2 5m2 5o2 5p2









Chapter 19: Transform Reference 98

This function is not currently used anywhere, but it may turn out to be useful for
something.

[const operator]Transform operator* (const real r)
Multiplication of a Transform by a scalar without assignment. The return value is
a Transform A. If this.matrix has elements ET , then A.matrix has elements EA

such that EA = r ×ET for all E.

[Operator]Transform operator*= (const Transform& t)
Performs matrix multiplication on matrix and t.matrix. The result is assigned to
matrix. t is returned, not *this! This makes it possible to chain invocations of this
function:

Transform a;

a.shift(1, 1, 1);

Transform b;

b.rotate(0, 90);

Transform c;

c.shear(5, 4);

Transform d;

d.scale(3, 4, 5);

Let am, bm, and cm stand for a.matrix, b.matrix, c.matrix, and d.matrix respec-
tively:

am =









1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1









bm =









0.5 0.5 0.707 0
0.146 0.854 −0.5 0
−0.854 0.146 0.5 0

0 0 0 1









cm =









1 12 14 0
10 1 15 0
11 13 1 0
0 0 0 1









dm =









3 0 0 0
0 4 0 0
0 0 5 0
0 0 0 1









a *= b *= c *= d;

a, b, and c are transformed by d, which remains unchanged.

Now,

am =









3 0 0 0
0 4 0 0
0 0 5 0
3 4 5 1









bm =









1.5 2 3.54 0
−0.439 3.41 −2.5 0
−2.56 0.586 2.5 0

0 0 0 1









cm =









3 48 70 0
30 4 75 0
33 52 5 0
0 0 0 1









dm is unchanged.

Chapter 19: Transform Reference 99

[const operator]Transform operator* (const Transform t)
Multiplication of a Transform by another Transform without assignment. The return
value is a Transform whose matrix contains values that are the result of the matrix
multiplication of matrix and t.matrix.

19.5 Matrix Inversion

[const function]Transform inverse (void)
[Function]Transform inverse ([bool assign = false])

Returns a Transform T with a T.matrix that is the inverse of matrix. If assign≡true,
then matrix is set to its inverse.

In the const version, matrix remains unchanged. The second should only ever be
called with true as its assign argument. If you’re tempted call inverse(false), you
might as well just leave out the argument, which issues a warning message, and calls
the const version.

19.6 Setting Values

[Function]void set element (const unsigned short row, const unsigned short

col, real r)
Sets the element of matrix indicated by the arguments to r.

Transform t;

t.set_element(0, 2, -3.45569);

t.show("t:");

a t:

1 0 -3.46 0

0 1 0 0

0 0 1 0

0 0 0 1

19.7 Querying

[Function]bool is identity (void)
Returns true if *this is the identity Transform, otherwise false. This function has
both a const and a non-const version. In the non-const version, clean() is called
on *this before comparing the elements of matrix with 1 (for the main diagonal)
and 0 (for the other elements). In the const version, *this is copied, clean() is
called on the copy, and the elements of the copy’s matrix are compared with 0 and
1.

[const function]real get element (const unsigned short row, const unsigned

short col)
Returns the value stored in the element of matrix indicated by the arguments.

Transform t;

t.shift(1, 2, 3);

Chapter 19: Transform Reference 100

t.scale(2.5, -1.2, 4);

t.rotate(30, 15, 60);

t.show("t:");

a t:

1.21 2.09 0.647 0

0.822 -0.654 0.58 0

-2.18 0.224 3.35 0

-3.69 1.45 11.8 1

cout << t.get_element(2, 1);

a 0.224

19.8 Returning Information

[Static function]real epsilon (void)
Returns the positive real value of smallest magnitude ε which an element of a
Transform should contain. An element of a Transform may also contain −ε.

The value ε is used for in the function clean() (see Section 19.13 [Transform Refer-
ence; Cleaning], page 107). It will also be used for comparing Transforms, when I’ve
added the equality operator Transform::operator==().

epsilon() returns different values, depending on whether real is float or double: If
real is float (the default), epsilon() returns 0.00001. If real is double, it returns
0.000000001.

Please note: I haven’t tested whether 0.000000001 is a good value yet, so users should
be aware of this if they set real to double!1 The way to test this is to transform two
different Transforms t1 and t2 using different rotations in such a way that the end
result should be the same for both Transforms. Let ε stand for the value returned
by epsilon(). If for all sets of corresponding elements E1 and E2 of t1 and t2,
||E1| − |E2|| ≤ ε, then ε is a good value. It will be easier to test this when I’ve added
Transform::operator==().

Rotation causes a significant loss of precision to due to the use of the sin() and
cos() functions. Therefore, neither Transform::epsilon() nor Point::epsilon()
(see Section 22.10 [Point Reference; Returning Information], page 129) can be as
small as I’d like them to be. If they are two small, operations that test for equality
of Transforms and Points will return false for objects that should be equal.

19.9 Showing

[const function]void show ([string text = ""])
If the optional argument text is used, and is not the empty string (""), text is
printed on a line of its own to the standard output first. Otherwise, "Transform:"
is printed on a line of its own to the standard output. Then, the elements of matrix
are printed to standard output.

1 For that matter, I haven’t really tested whether 0.00001 is a good value when real is float.

Chapter 19: Transform Reference 101

Transform t;

t.show("t:");

a t:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

t.scale(1, 2, 3);

t.shift(1, 1, 1);

t.rotate(90, 90, 90);

t.show("t:");

a t:

0 0 1 0

0 2 0 0

-3 0 0 0

-1 1 1 1

19.10 Affine Transformations

The affine transformation functions use their arguments to create a new Transform t (local
to the function) representing the appropriate transformation. Then, *this is multiplied
by t and t is returned. Returning t instead of *this makes it possible to put the affine
transformation function at the end of a chain of invocations of Transform::operator*=():

Transform t0, t1, t2, t3;

...

t0 *= t1 *= t2 *= t3.scale(2, 3.5, 9);

t0, t1, and t2 are all multiplied by the Transform with

matrix =









2 0 0 0
0 3.5 0 0
0 0 9 0
0 0 0 1









representing the scaling operation, not t3, which may represent a combination of transfor-
mations.

[Function]Transform scale (real x, [real y = 1, [real z = 1]])
Creates a Transform t representing the scaling operation locally, multiplies *this by
t, and returns t. A Transform representing scaling only, when applied to a Point p,
will cause its x-coordinate to be multiplied by x, its y-coordinate to be multiplied by
y, and its z-coordinate to be multiplied by z.

Transform t;

t.scale(x, y, z);

⇒ t.matrix =









x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1









Chapter 19: Transform Reference 102

Transform t;

t.scale(12.5, 20, 1.3);

t.show("t:");

a t:

12.5 0 0 0

0 20 0 0

0 0 1.3 0

0 0 0 1

[Function]Transform shear (real xy, [real xz = 0, [real yx = 0, [real yz = 0,

[real zx = 0, [real zy = 0]]]]])
Creates a Transform t representing the shearing operation locally, multiplies *this

by t, and returns t.

When applied to a Point, shearing causes each coordinate to be modified according
to the values of the other coordinates and the arguments to shear:

Point p(x,y,z);

Transform t;

t.shear(a, b, c, d, e, f);

p *= t;

⇒ p = ((x + ay + bz), (y + cx + dz), (z + ex + fy))

Transform t;

t.shear(2, 3, 4, 5, 6, 7);

t.show("t:");

a t:

1 4 6 0

2 1 7 0

3 5 1 0

0 0 0 1

[Function]Transform shift (real x, [real y = 0, [real z = 0]])
[Function]Transform shift (const Point& p)

These functions create a Transform t representing the shifting operation locally, mul-
tiplies *this by t, and returns t.

The version with the argument const Point& p passes the updated x, y, and z-
coordinates of p (from world_coordinates) to the version with three real argu-
ments.

When a Transform representing a single shifting operation only is applied to a Point,
the x, y, and z arguments are added to the corresponding coordinates of the Point:

Point p(x,y,z);

Transform t;

t.shift(a, b, c);

p *= t;

Chapter 19: Transform Reference 103

⇒ p = (x + a, y + b, z + c)

[Function]Transform shift times (real x, [real y = 1, [real z = 1]])
Multiplies the corresponding elements of matrix by the real arguments,
i.e., matrix[3][0] is multiplied by x, matrix[3][1] is multiplied by y, and
matrix[3][2] is multiplied by z. Returns *this.

Ordinary shifting is additive, so a special function is needed to multiply the ele-
ments of matrix responsible for shifting. The effect of shift_times() is to modify
a Transform representing a shifting operation such that the direction of the shift is
maintained, while changing the distance.

If the Transform represents other operations in addition to shifting, e.g., scaling
and/or shearing, the effect of shift_times() may be unpredictable.2

Transform t;

t.shift(1, 2, 3);

⇒ t.matrix =









1 0 0 0
0 1 0 0
0 0 1 0
1 2 3 1









t.shift_times(2, 2, 2);

⇒ t.matrix =









1 0 0 0
0 1 0 0
0 0 1 0
2 4 6 1









Rectangle r[4];

r[0].set(origin, 1, 1, 90);

r[3] = r[2] = r[1] = r[0];

Transform t;

t.shift(1.5, 1.5);

r[0] *= t;

r[0].draw();

t.shift_times(1.5, 1.5);

r[1] *= t;

r[1].draw();

t.shift_times(1.5, 1.5);

r[2] *= t;

r[2].draw();

t.shift_times(1.5, 1.5);

r[3] *= t;

r[3].draw();

2 For a person, not in the sense of the program behaving unpredictably.

Chapter 19: Transform Reference 104

r0

r1

r2

r3

Figure 73.

Cuboid c(origin, 1, 1, 1);

c.draw();

Transform t;

t.rotate(30, 30, 30);

t.shift(1, 0, 1);

c *= t;

c.draw();

t.shift_times(1.5, 0, 1.5);

c *= t;

c.draw();

t.shift_times(1.5, 0, 1.5);

c *= t;

c.draw();

t.shift_times(1.5, 0, 1.5);

c *= t;

c.draw();

t.shift_times(1.5, 0, 1.5);

c *= t;

c.draw();

Chapter 19: Transform Reference 105

Figure 74.

[Function]Transform rotate (real x, [real y = 0, [real z = 0]])
Rotation around the main axes. Creates a Transform t representing the rotation,
multiplies *this by t, and returns t.

[Function]Transform rotate (Point p0, Point p1, [const real angle = 180])
Rotation around an arbitrary axis. The Point arguments represent the end points of
the axis, and angle is the angle of rotation. Since 180◦ rotation is needed so often,
180 is the default for angle.

[Function]Transform rotate (const Path& p, [const real angle = 180])
Rotation around an arbitrary axis. Path argument. The Path p must be linear, i.e.,
p.is_linear() must return true. See Section 26.15 [Path Reference; Querying],
page 194.

19.11 Alignment with an Axis

[Function]Transform align with axis (Point p0, Point p1, [char axis = ’z’])
Returns the Transform that would align the line through p0 and p1 with the major
axis denoted by the axis argument. The default is the z-axis. This function is used
in the functions that find intersections.

Point P0(1, 1, 1);

Point P1(2, 3, 4);

P0.draw(P1);

P0.dotlabel("P_0");

P1.dotlabel("P_1");

Transform t;

t.align_with_axis(P0, P1, ’z’);

P0 *= P1 *= t;

t.show("t:");

a t:

0.949 -0.169 0.267 0

0 0.845 0.535 0

Chapter 19: Transform Reference 106

-0.316 -0.507 0.802 0

-0.632 -0.169 -1.6 1

P0.show("P0:");

a P0: (0, 0, 0)

P1.show("P1:");

a P1: (0, 0, 3.74)

The following example shows how align_with_axis() can be used for putting plane
figures into a major plane.

default_focus.set(2, 3, -10, 2, 3, 10, 10);

Circle c(origin, 3, 75, 25, 6);

c.shift(2, 3);

c.draw();

Point n = c.get_normal();

n.shift(c.get_center());

Transform t;

t.align_with_axis(c.get_center(), n, ’y’);

t.show("t:");

a t:

0.686 0.379 -0.621 0

0.543 0.3 0.784 0

0.483 -0.875 0 0

-3 -1.66 -1.11 1

n *= c *= t;

c.draw();

c.show("c:");

a c:

fill_draw_value == 0

(1.31, 0, -0.728) .. (1.49, 0, -0.171) ..

(1.44, 0, 0.413) .. (1.17, 0, 0.933) ..

(0.728, 0, 1.31) .. (0.171, 0, 1.49) ..

(-0.413, 0, 1.44) .. (-0.933, 0, 1.17) ..

(-1.31, 0, 0.728) .. (-1.49, 0, 0.171) ..

(-1.44, 0, -0.413) .. (-1.17, 0, -0.933) ..

(-0.728, 0, -1.31) .. (-0.171, 0, -1.49) ..

(0.413, 0, -1.44) .. (0.933, 0, -1.17) .. cycle;

n.show("n:");

a n: (0, 1, 0)

Chapter 19: Transform Reference 107

c

~n

c

~n

x

y

z

Figure 75.

19.12 Resetting

[Function]void reset (void)
Resets matrix to the identity matrix.

19.13 Cleaning

[Function]void clean (void)
Sets elements in matrix whose absolute values are < epsilon() to 0.

Chapter 20: Label Reference 108

20 Label Reference

Class Label is defined in ‘pictures.web’. Point and Picture are friends of Label.

Labels can be included in drawings by using the label() and dotlabel() functions,
which are currently defined for the classes Point and Path, and the classes derived from
them. See Section 22.19 [Point Reference; Labelling], page 147, and See Section 26.13 [Path
Reference; Labelling], page 191. They are currently not defined for Solid, and its derived
classes. I plan to add them for Solid soon.

Users will normally never need to declare objects of type Label, access its data members
or call its member functions directly.

When label() or dotlabel() is invoked, one or more Labels is allocated dynamically
and pointers to the new Labels are placed onto the vector<Label*> labels of a Picture:
current_picture, by default. There are no explicitly defined constructors for Label, nor
is it intended that Labels ever be created in any way other than through label() or
dotlabel(). When a Picture is copied, the Labels are copied, too, and when a Picture is
cleared (using Picture::clear()) or destroyed, the Labels are deallocated and destroyed.

20.1 Data Members

[Private variable]Point* pt
A pointer to the Point representing the location of the Label.

[Private variable]bool dot
true if the label should be dotted, otherwise false.

dot will be false, if the label was generated by a call to label() with the “dot” ar-
gument false (the default), true, if the label was generated by a call to dotlabel(),
or to label() with the “dot” argument true.

[Private variable]string text
The text of the label. text is always put between “btex” and “etex” in the MetaPost
code, so that TEX will be used to format the labels. In particular, this means that
TEX’s math mode can be used. However, double backslashes must be used instead of
single backslashes, in order that single backslashes be written to out_stream.

Point P(1, 1, 2);

origin.drawarrow(P);

P.label("$\\vec{P}$");

Chapter 20: Label Reference 109

~P

x

y

z

Figure 76.

[Private variable]string position
The position of the text with respect to *pt. Valid values are as in MetaPost: “top”,
“bot” (bottom), “lft” (left), “rt” (right), “ulft” (upper left), “llft” (lower left), “urt”
(upper right), “lrt” (lower right).

[Public static variable]bool DO LABELS
Enables or disables creation of Labels. If true, label and dotlabel() cause Labels
to be created and put onto a Picture. If false, they are not. Note that it is also
possible to suppress output of existing Labels when outputting a Picture.

20.2 Copying

[const Function]Label* get copy (void)
Creates a copy of the Label and returns a pointer to the copy. Called in
Picture::operator=() and Picture::operator+=() where Pictures are copied.
Users should never need to call this function directly. See Section 21.4 [Picture
Reference; Operators], page 112.

This function dynamically allocates a new Label and a new Point within the Label,
and copies the strings from *this to the new Label. The standard library functions
for strings take care of the allocation for the string members of Label.

20.3 Outputting

[Function]void output (const Focus& f, const unsigned short proj, real

factor, const Transform& t)
Writes MetaPost code for the labels to out_stream. It is called in
Picture::output() (see Section 21.8 [Picture Reference; Outputting], page 114).
Users should never need to call this function directly.

When Picture::output() is invoked, the MetaPost code for Labels is written to
out_stream after the code for the drawing and filling commands. This prevents the
Labels from being covered up. However, they can still be covered by other Labels, or

Chapter 20: Label Reference 110

by Shapes or Labels from subsequent invocations of Picture::output() within the
same figure (see Section 17.2 [I/O Functions], page 92, for descriptions of beginfig()
and endfig()).

Chapter 21: Picture Reference 111

21 Picture Reference

Class Picture is defined in ‘pictures.web’.

21.1 Data Members

[Private variable]Transform transform
Applied to the Shapes on the Picture when the latter is output. It is initialized
as the identity Transform, and can be modified by the transformation functions,
by Picture::operator*=(const Transform&) (see Section 21.4 [Picture Reference;
Operators], page 112), and by Picture::set_transform() (see Section 21.6 [Picture
Reference; Modifying], page 113).

[Private variable]vector<Shape*> shapes
Contains pointers to the Shapes on the Picture. When a drawing or filling function
is invoked for a Shape, a copy is dynamically allocated and a pointer to the copy is
placed onto shapes.

[Private variable]vector<Label*> labels
Contains pointers to the Labels on the Picture. When a Point is labelled, either
directly or through a call to label() or dotlabel() for another type of Shape1, a
Label is dynamically allocated, the Point is copied to *Label::pt, and a pointer to
the Label is placed onto labels.

[Private variable]bool do labels
Used for enabling or disabling output of Labels when outputting a Picture. The
default value is true. It is set to false by using suppress_labels() and can be
reset to true by using unsuppress_labels(). See Section 21.8.2 [Picture Reference;
Output Functions], page 115.

Often, when a Picture is copied, transformed, and output again in a single figure,
it’s undesirable to have the Labels output again in their new positions. To avoid
this, use suppress_labels() after outputting the Picture the first time.

21.2 Global Variables

[Variable]Variable Picture current picture
The Picture used as the default by the drawing and filling functions.

21.3 Constructors

[Default constructor]void Picture (void)
Creates an empty Picture.

1 label() and dotlabel() are currently only defined for Point and Path (and the latter’s derived classes),
i.e., not for Solid and its derived classes.

Chapter 21: Picture Reference 112

[Copy constructor]void Picture (const Picture& p)
Creates a copy of Picture p.

Circle c(origin, 3);

c.draw();

current_picture.output(Projections::PARALLEL_X_Z);

Picture new_picture(current_picture);

new_picture.shift(2);

new_picture.output(Projections::PARALLEL_X_Z);

current picture new picture

Figure 77.

21.4 Operators

[Assignment operator]void operator= (const Picture& p)
Makes *this a copy of p, destroying the old contents of *this.

[Operator]void operator+= (const Picture& p)
Adds the contents of p to *this. p remains unchanged.

[Operator]void operator+= (Shape* s)
Puts s onto shapes. Note that the pointer s itself is put onto shapes, so any allocation
and copying must be performed first. This is a low-level function that users normally
won’t need to use directly.

[Operator]void operator+= (Label* label)
Puts label onto labels. Note that the pointer label itself is put onto labels, so any
allocation and copying must be performed first. This is a low-level function that users
normally won’t need to invoke directly.

[Operator]Transform operator*= (const Transform& t)
Multiplies transform by t. This has the effect of transforming all of the Shapes on
shapes and all of the Points of the Labels on labels by t upon output.

Transform t;

t.rotate(0, 0, 180);

t.shift(3);

Reg_Polygon pl(origin, 5, 3, 90);

pl.draw();

pl.label();

Chapter 21: Picture Reference 113

current_picture.output(Projections::PARALLEL_X_Y);

current_picture *= t;

current_picture.output(Projections::PARALLEL_X_Y);

0

1

2 3

4

0

1

23

4

Figure 78.

21.5 Affine Transformations

The functions in this section all operate on the transform data member of the Picture

and return a Transform representing the transformation—not transform.

[Function]Transform scale (real x, [real y = 1, [real z = 1]])
Performs transform.scale(x, y, z) and returns the result. This has the effect of
scaling all of the elements of shapes and labels.

[Function]Transform shift (real x, [real y = 0, [real z = 0]])
Performs transform.shift(x, y, z) and returns the result. This has the effect of
shifting all of the Shapes and Labels on the Picture.

[Function]Transform shift (const Point& p)
Performs transform.shift(p) and returns the result. This has the effect of shifting
all of the Shapes and Labels on the Picture by the x, y, and z-coordinates of p.

[Function]Transform rotate (const real x, [const real y = 0, [const real z =

0]])
Performs transform.rotate(x, y, z) and returns the result. This has the effect of
rotating all of the elements of shapes and labels.

[Function]Transform rotate (const Point& p0, const Point& p1, [const real

angle = 180]);
Performs transform.rotate(p0, p1, angle) and returns the result. This has the
effect of rotating all of the elements of shapes and labels about the line −−→p0p1.

21.6 Modifying

[Function]void clear (void)
Destroys the Shapes and Labels on the Picture and removes all the Shape pointers
from shapes and the Label pointers from labels. All dynamically allocated objects

Chapter 21: Picture Reference 114

are deallocated, namely the Shapes, the Labels, and the Points belonging to the
Labels. transform is reset to the identity Transform.

[Function]void reset transform (void)
Resets transform to the identity Transform.

[Function]Transform set transform (const Transform& t)
Sets transform to t and returns t.

[Function]void kill labels (void)
Removes the Labels from the Picture.

21.7 Showing

[Function]void show ([string text = "", [bool stop = false]])
Prints information about the Picture to standard output.

show() first prints the string "Showing Picture:" to standard output, followed by
text, if the latter is not the empty string ("")2. Then it calls transform.show(),
prints the size of shapes and labels, and the value of do_labels. Then it calls
show() on each of the Shapes on shapes. Since show() is a virtual function in
class Shape, the appropriate show() is called for each Shape, i.e., Point::show()
for a Point, Path::show() for a Path, etc. If stop is true, execution stops and the
user is requested to type <RETURN> to continue. Finally, the string "Done showing

picture." is printed to standard output.

[Function]void show transform ([string text = "Transform from Picture:"])
Calls transform.show(), passing text as the argument to the latter function.

21.8 Outputting

21.8.1 Namespaces

21.8.1.1 Namespace Projections

The namespace Projections is defined in ‘pictures.web’.

[Constant]const unsigned short PERSP
[Constant]const unsigned short PARALLEL X Y
[Constant]const unsigned short PARALLEL X Z
[Constant]const unsigned short PARALLEL Z Y
[Constant]const unsigned short AXON
[Constant]const unsigned short ISO

These constants can be used for the projection argument in Picture::output(),
described in Section 21.8.2 [Picture Reference; Outputting; Functions], page 115,
below.

2 Actually, it’s printed to standard output even if it is the empty string, you just don’t see it.

Chapter 21: Picture Reference 115

21.8.1.2 Namespace Sorting

The namespace Sorting is defined in ‘pictures.web’.

[Constant]const unsigned short NO SORT
[Constant]const unsigned short MAX Z
[Constant]const unsigned short MIN Z
[Constant]const unsigned short MEAN Z

These constants can be used for the sort value argument in Picture::output(),
described in Section 21.8.2 [Picture Reference; Outputting; Functions], page 115,
below.

21.8.2 Output Functions

[Function]void output (const Focus& f, [const unsigned short projection =

Projections::PERSP, [real factor = 1, [const unsigned short sort_value

= Sorting::MAX_Z, [const bool do_warnings = true, [const real

min_x_proj = -40, [const real max_x_proj = 40, [const real min_y_proj =

-40, [const real max_y_proj = 40, [const real min_z_proj = -40, [const
real max_z_proj = 40]]]]]]]]]])

[Function]void output ([const unsigned short projection =

Projections::PERSP, [real factor = 1, [const unsigned short sort_value

= Sorting::MAX_Z, [const bool do_warnings = true, [const real

min_x_proj = -40, [const real max_x_proj = 40, [const real min_y_proj =

-40, [const real max_y_proj = 40, [const real min_z_proj = -40, [const
real max_z_proj = 40]]]]]]]]]])

These functions create a two-dimensional projection of the objects on the Picture

and write MetaPost code to out_stream for drawing it.

The arguments:

const Focus& f

The Focus used for projection, also known as the center of projection, or
the camera. This argument is used in the first version only. The second
version, without a const Focus& f argument, merely calls the first version
and passes it the global variable default_focus as its first argument, so
default_focus is effectively the default for f. Defining two versions in
this way makes it possible to call output() with projection as its first
(and possibly only) argument. If instead, f were an optional argument
with default_focus as its default, this wouldn’t have been possible. It
also wouldn’t be possible to have f have a default in the first version, and
to retain the second version, because the compiler wouldn’t be able to
resolve a call to output() with no arguments.

const unsigned short projection

Default: Projections::PERSP. The type of projection. Valid values
are const unsigned shorts defined in namespace Projections (see Sec-
tion 21.8.1.1 [Namespace Projections], page 114):
PERSP for the perspective projection,

Chapter 21: Picture Reference 116

PARALLEL_X_Y for parallel projection onto the x-y plane,
PARALLEL_X_Z for parallel projection onto the x-z plane, and
PARALLEL_Z_Y for parallel projection onto the z-y plane. %% !! TO DO:
I plan to add isometric and axionometric projections soon.

real factor

Default: 1. Passed from output() to extract() and from there to
project(). The world_coordinates of the Points that are projected
are multiplied by factor, which enlarges or shrinks the projected image
without altering the Picture itself. factor is probably most useful for
parallel projections, where the Focus f isn’t used; with a perspective
projection, the parameters of the Focus can be used to influence the size
of the projected image.

const unsigned short sort value

Default: Sorting::MAX_Z. The value used should be one of the con-
stants defined in namespace Sorting, See Section 21.8.1.2 [Namespace
Sorting], page 115, above. If MAX_Z (the default) is used, the Shapes

on the Picture are sorted according to the maximum z-value of the
projective_extremes of the Points belonging to the Shape. If MIN_Z
is used, they are sorted according to the minimum z-value, and if MEAN_Z
is used, they are sorted according to the mean of the maximum and min-
imum z-values. If NO_SORT is used, the Shapes are output in the order in
which they were put onto the Picture.

The surface hiding algorithm implemented in 3DLDF is quite primitive,
and doesn’t always work right. For Shapes that intersect, it can’t work
right. I plan to work on improving the surface hiding algorithm soon.
This is not a trivial problem. To solve it properly, each Shape on a
Picture must be tested for intersection with every other Shape on the
Picture. If two or more Shapes intersect, they must be broken up into
smaller objects until there are no more intersections. I don’t expect to
have a proper solution soon, but I expect that I will be able to make some
improvements. See Section 9.3 [Surface Hiding], page 67.

const bool do warnings

Default: true. If true, output() issues warnings to stderr (standard
error output) if a Shape cannot be output because it lies outside the
limits set by the following arguments. Sometimes, a user may only want
to project a portion of a Picture, in which case such warnings would not
be helpful. In this case, do warnings should be false.

const real min x proj

Default: -40. The minimum x-coordinate of the projection of a Shape

such that the Shape can be output. If projective_coordinates[0] of
any Point on a Shape is less than min x proj, the Shape will not be
projected at all.

const real max x proj

Default: 40. The maximum x-coordinate of the projection of a Shape

such that the Shape can be output. If projective_coordinates[0] of

Chapter 21: Picture Reference 117

any Point on a Shape is greater than max x proj, the Shape will not be
projected at all.

const real min y proj

Default: -40. The minimum y-coordinate of the projection of a Shape

such that the Shape can be output. If projective_coordinates[1] of
any Point on a Shape is less than min y proj, the Shape will not be
projected at all.

const real max y proj

Default: 40. The maximum y-coordinate of the projection of a Shape

such that the Shape can be output. If projective_coordinates[1] of
any Point on a Shape is greater than max y proj, the Shape will not be
projected at all.

const real min z proj

Default: -40. The minimum z-coordinate of the projection of a Shape

such that the Shape can be output. If projective_coordinates[2] of
any Point on a Shape is less than min z proj, the Shape will not be
projected at all.

const real max z proj

Default: 40. The maximum z-coordinate of the projection of a Shape

such that the Shape can be output. If projective_coordinates[2] of
any Point on a Shape is greater than max z proj, the Shape will not be
projected at all.

[Function]void suppress labels (void)
Suppresses output of the Labels on a Picture when output() is called. This can be
useful when a Picture is output, transformed, and output again, one or more times,
in a single figure. Usually, it will not be desirable to have the Labels output more
than once.

In Fig. 79, current_picture is output three times, but the Labels on it are only
output once.

Ellipse e(origin, 3, 5);

e.label();

e.draw();

Point pt0(-3);

Point pt1(3);

pt0.draw(pt1);

Point pt2(0, 0, -4);

Point pt3(0, 0, 4);

pt2.draw(pt3);

pt0.dotlabel("0", "lft");

pt1.dotlabel("1", "rt");

pt2.dotlabel("2", "bot");

pt3.dotlabel("3");

current_picture.output(Projections::PARALLEL_X_Z);

current_picture.rotate(0, 60);

Chapter 21: Picture Reference 118

current_picture.suppress_labels();

current_picture.output(Projections::PARALLEL_X_Z);

current_picture.rotate(0, 60);

current_picture.output(Projections::PARALLEL_X_Z);

a

b

c

d
e

f

g

h

i

j

k

l
m

n

o

p

0 1

2

3

Figure 79.

[Inline function]void unsuppress labels (void)
Sets do_labels to true. If a Picture contains Labels, unsuppress_labels() en-
sures that they will be output, when Picture::output() is called, so long as there
is no intervening call to suppress_labels() or kill_labels().

Chapter 22: Point Reference 119

22 Point Reference

Class Point is defined in ‘points.web’. It is derived from Shape using protected derivation.
The function Transform Transform::align_with_axis(Point, Point, char) is a friend
of Point.

22.1 Data Members

[Private variable]valarray<real> world coordinates
The set of four homogeneous coordinates x, y, z, and w that represent the position of
the Point within 3DLDF’s global coordinate system.

[Private variable]valarray<real> projective coordinates
The set of four homogeneous coordinates x, y, z, and w that represent the position
of the projection of the Point onto a two-dimensional plane for output. The x and y
values are used in the MetaPost code written to out_stream. The z value is used in
the hidden surface algorithm (which is currently rather primitive and doesn’t work
very well. see Section 9.3 [Surface Hiding], page 67). The w value can be 6= 1 ,
depending on the projection used; the perspective projection is non-affine, so w can
take on other values.

[Private variable]valarray<real> user coordinates
A set of four homogeneous coordinates x, y, z, and w.

user_coordinates currently has no function. It is intended for use in user-defined
coordinate systems. For example, a coordinate system could be defined with respect
to a plane surface that isn’t parallel to one of the major planes. Such a coordinate
system would be convenient for drawing on the plane. A Transform would make it
possible to convert between user_coordinates and world_coordinates.

[Private variable]valarray<real> view coordinates
A set of four homogeneous coordinates x, y, z, and w.

view_coordinates currently has no function. It may be useful for displaying multiple
views in an interactive graphical user interface, or for some other purpose.

[Private variable]Transform transform
Contains the product of the transformations applied to the Point. When apply_

transform() is called for the Point, directly or indirectly, the world_coordinates

are updated and transform is reset to the identity Transform. See Section 22.13
[Point Reference; Applying Transformations], page 135.

[Private variable]bool on free store
Returns on_free_store. This should only be true if the Point was dynamically allo-
cated on the free store. Points should only ever be dynamically allocated by create_

new<Point>(), which uses set_on_free_store() to set on_free_store to true. See
Section 22.4 [Point Reference; Constructors and Setting Functions], page 123, and
Section 22.11 [Point Reference; Modifying], page 130.

Chapter 22: Point Reference 120

[Private variable]signed short drawdot value
Used to tell Point::output() what MetaPost drawing command (drawdot() or
undrawdot()) to write to out_stream when outputting a Point.

When drawdot() or undrawdot() is called on a Point, the Point is copied and put
onto the Picture, which was passed to drawdot() or undrawdot() as an argument
(current_picture by default). drawdot_value is either set to Shape::DRAWDOT or
Shape::UNDRAWDOT on the copy; this->drawdot is not set.

[Private variable]const Color* drawdot color
Used to tell Point::output() what string to write to out_stream for the color when
outputting a Point.

[Private variable]string pen
Used to tell Point::output() what string to write to out_stream for the pen when
outputting a Point.

[Protected variable]valarray<real> projective extremes
A set of 6 real values indicating the maximum and minumum x, y, and z-coordinates
of the Point. Used for determining whether a Point is projectable with the param-
eters of a particular invocation of Picture::output(). See Section 21.8 [Picture
Reference; Outputting], page 114.

Obviously, the maxima and minima will always be the same for a Point, namely the x,
y, and z-coordinates. However, set_extremes() and get_extremes(), the functions
that access projective_extremes, are pure virtual functions in class Shape, so the
Point versions must be consistent with the versions for other types derived from
Shape.

[Protected variable]bool do output
true by default. Set to false by suppress_output(), which is called on a Shape

by Picture::output(), if the Shape is not projectable. See Section 21.8 [Picture
Reference; Outputting], page 114.

[Public static variable]string measurement units
The unit of measurement for all distances within a Picture, "cm" (for centimeters)
by default. The x and y-coordinates of the projected Points are always followed by
measurement_units when they’re written to out_stream. Unlike Metafont, units of
measurement cannot be indicated for individual coordinates. Nor can measurement_

unit be changed within a Picture.

When I write an input routine, I plan to make it behave the way Metafont does,
however, 3DLDF will probably also convert all of the input values to a standard unit,
as Metafont does.

[Public static variable]real CURR Y
[Public static variable]real CURR Z

Default values for the y and z-coordinate of Points, when the x-coordinate, or the x
and y-coordinates only are specified. Both are 0 by default.

Chapter 22: Point Reference 121

These values only used in the constructor and setting function taking one required
real value (for the x-coordinate), and two optional real values (for the y and z-
coordinates). They are not used when a Point is declared using the default construc-
tor with no arguments. In this case, the x, y, and z-coordinates will all be 0. See
Section 22.4 [Point Reference; Constructors and Setting Functions], page 123.

Point A(1);

A.show("A:");

a A: (1, 0, 0);

CURR_Y = 5;

A.set(2);

A.show("A:");

a A: (2, 5, 0);

CURR_Z = 12;

Point B(3);

B.show("B:");

a B: (3, 5, 12);

Point C;

C.show("C:");

a C: (0, 0, 0);

22.2 Typedefs and Utility Structures

[typedef]point pair first second
Synonymous with pair<Point, Point>.

[struct]bool point b pt
b is a bool and pt is a Point. bool_point also contains two constructors and an
assignment operator, described below.

[Default constructor]void bool point (void)
Creates a bool_point and sets b to false and pt to INVALID_POINT.

[Default constructor]void bool point (bool bb, const Point& ppt)
Creates a bool_point and sets b to bb and pt to ppt.

[Assignment operator]void bool point::operator= (const bool_point& bp)
Sets b to bp.b and pt to bp.pt.

[typedef]bool point pair first second
Synonymous with pair <bool_point, bool_point>.

[struct]bool point quadruple first second third fourth
This structure contains four bool_points. It also has two constructors and an as-
signment operator, described below.

[Default constructor]void bool point quadruple (void)
Creates a bool_point_quadruple, and sets first, second, third, and fourth all to
INVALID_BOOL_POINT.

Chapter 22: Point Reference 122

[Constructor]void bool point quadruple (bool_point a, bool_point b,

bool_point c, bool_point d)
Creates a bool_point_quadruple and sets first to a, second to b, third to c, and
fourth to d.

[Assignment operator]void bool point quadruple::operator= (const
bool_point_quadruple& arg)

Makes *this a copy of arg.

[struct]bool real point b r pt
b is a bool, r is a real, and pt is a Point. bool_real_point also contains three
constructors and an assignment operator, described below.

[Default constructor]void bool real point (void)
Creates a bool_real_point and sets b to false, r to INVALID_REAL and pt to
INVALID_POINT.

[Copy constructor]void bool real point (const bool_real_point& brp)
Creates a bool_real_point and sets b to brp.b, r to brp.r, and pt to brp.pt.

[Constructor]void bool real point (const bool& bb, const real& rr, const

Point& ppt)
Creates a bool_real_point and sets b to bb, r to rr, and pt to ppt.

[Assignment operator]void bool real point::operator= (const
bool_real_point& brp)

Makes *this a copy of brp.

22.3 Global Constants and Variables

[Constant]Point INVALID POINT
The x, y, and z-values in world_coordinates are all INVALID_REAL.

[Constant]Point origin
The x, y, and z-values in world_coordinates are all 0.

[Constant]bool_point INVALID BOOL POINT
b is false and pt is INVALID_POINT.

[Constant]bool_point_pair INVALID BOOL POINT PAIR
first and second are both INVALID_BOOL_POINT.

[Constant]bool_real_point INVALID BOOL REAL POINT
b is false, r is INVALID_REAL, and pt is INVALID_POINT.

[Constant]bool_point_quadruple
INVALID BOOL POINT QUADRUPLE

first, second, third, and fourth are all INVALID_BOOL_POINT.

Chapter 22: Point Reference 123

22.4 Constructors and Setting Functions

[Default constructor]void Point (void)
Creates a Point and initializes its x, y, and z-coordinates to 0.

[Constructor]void Point (const real x, [const real y = CURR_Y, [const real z =

CURR_Z]])
Creates a Point and initializes its x, y, and z-coordinates to the values of the argu-
ments x, y, and z. The arguments y and z are optional. If they are not specified, the
values of CURR_Y and CURR_Z are used. They are 0 by default, but can be changed
by the user. This can be convenient, if all of the Points being drawn in a particular
section of a program have the same z or y and z values.

[Setting function]void set (const real x, [const real y = CURR_Y, [const real z

= CURR_Z]])
Corresponds to the constructor above, but is used for resetting the coordinates of an
existing Point.

[Copy constructor]void Point (const Point& p)
Creates a Point and copies the values for its x, y, and z-coordinates from p.

[Setting function]void set (const Point& p)
Corresponds to the copy constructor above, but is used for resetting the coordinates
of an existing Point. This function exists purely as a convenience; the operator
operator=() (see Section 22.6 [Point Reference; Operators], page 124) performs ex-
actly the same function.

[Template specializations]Point* create new<Point> (const Point* p)
Point* create new<Point> (const Point& p)

Pseudo-constructors for dynamic allocation of Points. They create a Point on the
free store and allocate memory for it using new(Point). They return a pointer to the
new Point.

If p is a non-zero pointer or a reference, the new Point will be a copy of p. If
the new object is not meant to be a copy of an existing one, ‘0’ must be passed
to create_new<Point>() as its argument. See Chapter 14 [Dynamic Allocation of
Shapes], page 84, for more information.

One use for create_new<Point> is in the constructors for classes of objects that
can contain a variable number of Points, such as Path and Polygon. Another use is
in the drawing and filling functions, where objects are copied and the copies put onto
a Picture.

Programmers who dynamically allocate Points must ensure that they are deallocated
properly using delete!

Chapter 22: Point Reference 124

22.5 Destructor

[virtual Destructor]void ~Point (void)
This function currently has an empty definition, but its existence prevents GCC 3.3
from issuing the following warning: “\thinspace ‘class Point’ has virtual functions
but non-virtual destructor”.

22.6 Operators

[Assignment operator]void operator= (const Point& p)
Makes *this a copy of p.

[Operator]Transform operator*= (const Transform& t)
Multiplies transform by t. By multiplying a Point successively by one or more
Transforms, the effect of the transformations is “saved up” in transform. Only
when an operation that needs updated values for the world_coordinates is called
on a Point, or the Point is passed as an argument to such an operation, is the transfor-
mation stored in transform applied to world_coordinates by apply_transform(),
which subsequently, resets transform to the identity Transform. See Section 22.13
[Point Reference; Applying Transformations], page 135.

[const operator]Point operator+ (Point p)
Returns a Point with world_coordinates that are the sums of the corresponding
world_coordinates of *this and p, after they’ve been updated. *this remains
unchanged; as in many other functions with Point arguments, p is passed by value,
because apply_transform() must be called on it, in order to update its world_

coordinates. If p were a const Point&, it would have to copied within the function
anyway, because apply_transform() is a non-const operation.

Point p0(-2, -6, -28);

Point p1(3, 14, 92);

Point p2(p0 + p1);

p2.show("p2:");

a p2: (1, 8, 64)

[Operator]void operator+= (Point p)
Adds the updated world_coordinates of p to those of *this. Equivalent in
effect to shift(p) In fact, this function merely calls p.apply_transform()

and Point::shift(real, real, real) with p’s x, y, and z coordinates (from
world_coordinates) as its arguments. See Section 22.12 [Point Reference; Affine
Transformations], page 130.

[const operator]Point operator- (Point p)
Returns a Point with world_coordinates representing the difference between the
updated values of this->world_coordinates and p.world_coordinates.

[Operator]void operator-= (Point p)
Subtracts the updated values of p.world_coordinates from those of this->world_
coordinates.

Chapter 22: Point Reference 125

[Operator]real operator*= (const real r)
Multiplies the updated x, y, and z coordinates (world_coordinates) of the Point by
r and returns r. This makes it possible to chain invocations of this function.

If P is a Point then P *= r is equivalent in its effect to P.scale(r, r, r), except
that P.world_coordinates is modified directly and immediately, without changing
P.transform. This is possible, because this function calls apply_transform() to up-
date the world_coordinates before multiplying them r, so transform is the identity
Transform.

Point P(1, 2, 3);

P *= 7;

P.show("P:");

a P: (7, 14, 21);

Point Q(1.5, 2.7, 13.82);

Q *= P *= -1.28;

P.show("P:");

a P: (-8.96, -17.92, -26.88)

Q.show("Q:");

a Q: (-1.92, -3.456, -17.6896)

[const operator]Point operator* (const real r)
Returns a Point with x, y, and z coordinates (world_coordinates) equal to the
updated x, y, and z coordinates of *this multiplied by r.

[Non-member operator]Point operator* (const real r, const Point& p)
Equivalent to Point::operator*(const real r) (see above), but with r placed first.

Point p0(10, 11, 12);

real r = 2.5;

Point p1 = r * p0;

p1.show();

a Point:
a (25, 27.5, 30)

[const operator]Point operator- (void)
Unary minus (prefix). Returns a Point with x, y, and z coordinates (world_
coordinates) equal to the the x, y, and z-coordinates (world_coordinates) of
*this multiplied by -1.

[Operator]void operator/= (const real r)
Divides the updated x, y, and z coordinates (world_coordinates) of the Point by r.

[const operator]Point operator/ (const real r)
Returns a Point with x, y, and z coordinates (world_coordinates) equal to the
updated x, y, and z coordinates of *this divided by r.

[Operator]bool operator== (Point p)
[const operator]bool operator== (const Point& p)

Equality comparison for Points. These functions return true if the updated values
of the world_coordinates of the two Points differ by less than the value returned by

Chapter 22: Point Reference 126

Point::epsilon(), otherwise false. See Section 22.10 [Point Reference; Returning
Information], page 129.

[const operator]bool operator!= (const Point& p)
Inequality comparison for Points. Returns false if *this == p , otherwise true.

22.7 Copying

[const function]Shape* get copy (void)
Creates a copy of the Point, and allocates memory for it on the free store using
create_new<Point>(). It returns a pointer to Shape that points to the new Point.
This function is used in the drawing commands for putting Points onto Pictures.
See Section 22.18 [Point Reference; Drawing], page 144.

22.8 Querying

[inline function]bool is identity (void)
Returns true if transform is the identity Transform.

[const inline function]Transform get transform (void)
Returns transform.

[const function]bool is on free store (void)
Returns true if memory for the Point has been dynamically allocated on the free
store, i.e., if the Point has been created using create_new<Point>(). See Sec-
tion 22.4 [Point Reference; Constructors and Setting Functions], page 123.

[const function]bool is on plane (const Plane& p)
Returns true, if the Point lies on the Plane p, otherwise false.

Planes are conceived of as having infinite extension, so while the Point C in Fig. 80
does not lie within the Rectangle r, it does lie on q, so C.is_on_plane(q) returns
true.1

Point P(1, 1, 1);

Rectangle r(P, 4, 4, 20, 45, 35);

Plane q = r.get_plane();

Point A(2, 0, 2);

Point B(2, 1.64143, 2);

Point C(0.355028, 2.2185, 6.48628);

cout << A.is_on_plane(q);

a 0

cout << B.is_on_plane(q);

a 1

cout << "C.is_on_plane(q)";

1 It’s unlikely that Points will lie on a Plane, unless the user constructs the case specially. In Fig. 80, the
coordinates for B and C were found by using Plane::intersection_point(). See Section 25.6 [Planes;
Intersections], page 161.

Chapter 22: Point Reference 127

a 1

P

r

A

B

C

x

y

z

Figure 80.

[const function]bool is in triangle (const Point& p0, const Point& p1, const

Point& p2, [bool verbose = false, [bool test_points = true]])
Returns true, if *this lies within the triangle determined by the three Point argu-
ments, otherwise false.

If the code calling is_in_triangle() has ensured that p0, p1, and p2 determine a
plane, i.e., that they are not colinear, and that *this lies in that plane, then false

can be passed to is_in_triangle() as its test points argument.

If the verbose argument is true, information resulting from the execution of the
function are printed to standard output or standard error.

This function is needed for determining whether a line intersects with a polygon.

22.9 Returning Coordinates

The functions in this section return either a single coordinate or a set of coordinates. Each
has a const and a non-const version.

The arguments are the same, with one exception:

char c Only in get_coord(). Indicates which coordinate should be returned. Valid
values are ’x’, ’X’, ’y’, ’Y’, ’z’, ’Z’, ’w’, and ’W’.

char coords

Indicates the set of coordinates which should be returned or from which the
coordinate to be returned should be chosen from. Valid values are ’w’ for
world_coordinates (the default), ’p’ for projective_coordinates, ’u’ for
user_coordinates, and ’v’ for view_coordinates.

const bool do persp

Only relevant if projective_coordinates, or one of its elements is to be re-
turned. If true, the default, then project() is called, thereby generating

Chapter 22: Point Reference 128

values for projective_coordinates. If do persp is false, then projective_

coordinates, or one of its elements, is returned unchanged, which may some-
times be useful.

const bool do apply

If true (the default), apply_transform() is called, thereby updating
the world_coordinates. Otherwise, it’s not, so that the values stored
in world_coordinates remain unchanged. Note that if coords is ’p’

and do persp is true, apply_transform() will be called in project()

whether do_apply is true or false. If for some reason, one wanted get
projective_coordinates, or one of its values, based on the projection of
world_coordinates without first updating them, one would have to call
reset_transform() before calling one of these functions. It would probably
be a good idea to save transform before doing so.

Focus* f Indicates what Focus is to be used for projection. Only relevant if coords is
’p’, i.e., projective_coordinates, or one of its elements, is to be returned.
The default is 0, in which case f points to the global variable default_focus.

const unsigned short proj

Indicates what form of projection is to be used. Only relevant if coords is ’p’,
i.e., projective_coordinates, or one of its elements, is to be returned. The
default is Projections::PERSP, which causes the perspective projection to be
applied.

real factor

Passed to project(). The values of the x and y coordinates in projective_

coordinates are multiplied by factor. Only relevant if coords is ’p’, i.e.,
projective_coordinates, or one of its elements, is to be returned. The default
is 1.

[Function]valarray <real> get all coords ([char coords = ’w’, [const bool

do_persp = true, [const bool do_apply = true, [Focus* f = 0, [const
unsigned short proj = Projections::PERSP, [real factor = 1]]]]]])

Returns one of the sets of coordinates; world_coordinates by default. Returns
a complete set of coordinates: ’w’ for world_coordinates, ’p’ for projective_

coordinates, ’u’ for user_coordinates, or’v’ for view_coordinates.

[Function]real get coord (char c, [char coords = ’w’, [const bool do_persp =

true, [const bool do_apply = true, [Focus* f = 0, [const unsigned short

proj = Projections::PERSP, [real factor = 1]]]]]])
Returns one coordinate, x, y, z, or w, from the set of coordinates indicated (or
world_coordinates, by default).

[Function]real get x ([char coords = ’w’, [const bool do_persp = true, [const
bool do_apply = true, [Focus* f = 0, [const unsigned short proj =

Projections::PERSP, [real factor = 1]]]]]])
Returns the x-coordinate from the set of coordinates indicated (or world_

coordinates, by default).

Chapter 22: Point Reference 129

[Function]real get y ([char coords = ’w’, [const bool do_persp = true, [const
bool do_apply = true, [Focus* f = 0, [const unsigned short proj =

Projections::PERSP, [real factor = 1]]]]]])
Returns the y-coordinate from the set of coordinates indicated (or world_

coordinates, by default).

[Function]real get z ([char coords = ’w’, [const bool do_persp = true, [const
bool do_apply = true, [Focus* f = 0, [const unsigned short proj =

Projections::PERSP, [real factor = 1]]]]]])
Returns the z-coordinate from the set of coordinates indicated (or world_

coordinates, by default).

[Function]real get w ([char coords = ’w’, [const bool do_persp = true, [const
bool do_apply = true, [Focus* f = 0, [const unsigned short proj =

Projections::PERSP, [real factor = 1]]]]]])
Returns the w-coordinate from the set of coordinates indicated (or world_

coordinates, by default).

22.10 Returning Information

[Static function]real epsilon (void)
Returns the positive real value of smallest magnitude ε that should be used as a
coordinate value in a Point. A coordinate of a Point may also contain −ε.

The value ε is used for testing the equality of Points in Point::operator==() (see
Section 22.6 [Point Reference; Operators], page 124):

Let ε be the value returned by epsilon(), P and Q be Points, and Px, Qx, Py, Qy,
Pz, and Qz the updated x, y, and z-coordinates of P and Q, respectively. If and only
if ||Px| − |Qx|| < ε, ||Py| − |Qy|| < ε, and ||Pz | − |Qz|| < ε, then P = Q.

epsilon() returns different values, depending on whether real is float or double: If
real is float (the default), epsilon() returns 0.00001. If real is double, it returns
0.000000001.

Please note: I haven’t tested whether 0.000000001 is a good value yet, so users should
be aware of this if they set real to double!2 The way to test this is to start with
two Points P and Q at different locations. Then they should be transformed using
different rotations in such a way that they should end up at the same location. Let ε
stand for the value returned by epsilon(), and let x, y, and y stand for the world_

coordinates of the Points after apply_transform() has been called on them. If
xP = xQ, yP = yQ, and zP = zQ, ε is a good value.

Rotation causes a significant loss of precision to due to the use of the sin() and
cos() functions. Therefore, neither Point::epsilon() nor Transform::epsilon()
(see Section 19.8 [Tranform Reference; Returning Information], page 100) can be as
small as I’d like them to be. If they are two small, operations that test for equality
of Transforms and Points will return false for objects that should be equal.

2 For that matter, I haven’t really tested whether 0.00001 is a good value when real is float.

Chapter 22: Point Reference 130

22.11 Modifying

[Virtual function]bool set on free store ([bool b = true])
This function is used in the template function create_new(). It sets on_free_store
to true. See Section 22.1 [Point Reference; Data Members], page 119, and Section 22.4
[Point Reference; Constructors and Setting Functions], page 123.

[Function]void clear (void)
Sets all of the coordinates in all of the sets of coordinates (i.e., world_coordinates,
user_coordinates, view_coordinates, and projective_coordinates) to 0 and
resets transform

[Function]void clean ([int factor = 1])
Calls apply_transform() and sets the values of world_coordinates to 0, whose
absolute values are less than epsilon()× factor .

[Function]void reset transform (void)
Sets Transform to the identity Transform. Performed in apply_transform(), after
the latter updates world_coordinates. Section 22.13 [Point Reference; Applying
Transformations], page 135.

22.12 Affine Transformations

[Function]Transform rotate (const real x, [const real y = 0, [const real z =

0]])
[Function]Transform rotate (const Point& p0, const Point& p1, [const real

angle = 180])
[Function]Transform rotate (const Path& p, [const real angle = 180])

Each of these functions calls the corresponding version of Transform::rotate(), and
returns its return value, namely, a Transform representing the rotation only.

In the first version, taking three real arguments, the Point is rotated x degrees
around the x-axis, y degrees around the y-axis, and z degrees around the z-axis in
that order.

Point p0(1, 0, 2);

p0.rotate(90);

p0.show("p0:")

a p0: (1, 2, 0)

Point p1(-1, 1, 1);

p1.rotate(-90, 90, 90);

p1.show("pt1:");

a p1: (1, -1, -1)

Chapter 22: Point Reference 131

(1, 0, 2)

(1, 2, 0)

p0
(−1, 1, 1)

(1,−1,−1)

p1

x

y

z

Figure 81.

Please note that rotations are not commutative operations. Nor are they commutative
with other transformations. So, if you want to rotate a Point about the x, y and
z-axes in that order, you can do so with a single invocation of rotate(), as in the
previous example. However, if you want to rotate a Point first about the y-axis and
then about the x-axis, you must invoke rotate() twice.

Point pt0(1, 1, 1);

pt0.rotate(0, 45);

pt0.rotate(45);

pt0.show("pt0:");

a pt0: (0, 1.70711, 0.292893)

In the version taking two Point arguments p0 and p1, and a real argument angle,
the Point is rotated angle degrees around the axis determined by p0 and p1, 180◦

by default.

Point P(2, 0, 0);

Point A;

Point B(2, 2, 2);

P.rotate(A, B, 180);

Chapter 22: Point Reference 132

Pinitial

(2, 0, 0)A

B

Protated

(−0.666667, 1.33333, 1.33333)

x

y

z

Figure 82.

[Function]Transform scale (real x, [real y = 1, [real z = 1]])
Calls transform.scale(x, y, z) and returns its return value, namely, a Transform

representing the scaling operation only.

Scaling causes the x-coordinate of the Point to be multiplied by x, the y-coordinate
of the Point to be multiplied by y, and the z-coordinate of the Point to be multiplied
by z.

Point p0(1, 0, 3);

p0.scale(4);

p0.show("p0:");

a p0: (4, 0, 3)

Point p1(-2, -1, -2);

p1.scale(-2, -3, -4);

p1.show("p1:");

a p1: (4, 3, 8)

Chapter 22: Point Reference 133

(1, 0, 3) (4, 0, 3)p0

(−2,−1,−2)

(4, 3, 8)

p1

x

y

z

Figure 83.

[Function]Transform shear (real xy, [real xz = 0, [real yx = 0, [real yz = 0,

[real zx = 0, [real zy = 0]]]]])
Calls transform.shear() with the same arguments and returns its return value,
namely, a Transform representing the shearing operation only.

Shearing modifies each coordinate of a Point proportionately to the values of the
other two coordinates. Let x0, y0, and z0 stand for the coordinates of a Point P
before P.shear(α, β, γ, δ, ε, ζ), and x1, y1, and z1 for its coordinates afterwards.

x1 ≡ x0 + α y + β z
y1 ≡ y0 + γ x + δ z
z1 ≡ z0 + ε x + ζ y

Fig. 84 demonstrates the effect of shearing the four Points of a 3×3 Rectangle (i.e.,
a square) r in the x-y plane using only an xy argument, making it non-rectangular.

Point P0;

Point P1(3);

Point P2(3, 3);

Point P3(0, 3);

Rectangle r(p0, p1, p2, p3);

r.draw();

r.shear(1.5);

r.draw(black, "evenly");

Chapter 22: Point Reference 134

P0 = Q0 = (0, 0) P1 = Q1 = (3, 0)

P2 = (3, 3)P3 = (0, 3)

r q

Q2 = (7.5, 3)Q3 = (4.5, 3)

Figure 84.

[Function]Transform shift (real x, [real y = 0, [real z = 0]])
[Function]Transform shift (const Point& p)

Each of these functions calls the corresponding version of Transform::shift() on
transform, and returns its return value, namely, a Transform representing the shift-
ing operation only.

The Point is shifted x units in the direction of the positive x-axis, y units in the
direction of the positive y-axis, and z units in the direction of the positive z-axis.

p0(1, 2, 3);

p0.shift(2, 3, 5);

p0.show("p0:");

a p0: (3, 5, 8)

[Function]Transform shift times (real x, [real y = 1, [real z = 1]])
[Function]Transform shift times (const Point& p)

Each of these functions calls the corresponding version of Transform::shift_

times() on transform and returns its return value, namely the new value of
transform.

shift_times() makes it possible to increase the magnitude of a shift applied to a
Point, while maintaining its direction. Please note that shift_times() will only
have an effect if it’s called after a call to shift() and before transform is reset. This
is performed by reset_transform(), which is called in apply_transform(), and can
also be called directly. See Section 19.12 [Transform Reference; Resetting], page 107,
and Section 22.13 [Point Reference; Applying Transformations], page 135.

Point P;

P.drawdot();

P.shift(1, 1, 1);

P.drawdot();

P.shift_times(2, 2, 2);

P.drawdot();

P.shift_times(2, 2, 2);

P.drawdot();

P.shift_times(2, 2, 2);

P.drawdot();

Chapter 22: Point Reference 135

(0, 0, 0)

(1, 1, 1)

(2, 2, 2)

(4, 4, 4)

(8, 8, 8)

x

y

z

Figure 85.

22.13 Applying Transformations

[Function]void apply transform (void)
Updates world_coordinates by multiplying it by transform, which is subsequently
reset to the identity Transform.

22.14 Projecting

[Function]bool project (const Focus& f, [const unsigned short proj =

Projections::PERSP, [real factor = 1]])
[Function]bool project ([const unsigned short& proj = Projections::PERSP,

[real factor = 1]])
These functions calculate projective_coordinates. proj indicates which projection
is to be performed. If it is Projections::PERSP, then f indicates which Focus

is to be used (in the first version), or the global variable default_focus is used
(in the second). If Projections::PARALLEL_X_Y, Projections::PARALLEL_X_Z, or
Projections::PARALLEL_Z_Y is used, f is ignored, since these projections don’t use
a Focus. Currently, no other projections are defined. The x and y coordinates in
projective_coordinates are multiplied by factor with the default being 1.

Chapter 22: Point Reference 136

22.15 Vector Operations

Mathematically speaking, vectors and points are not the same. However, they can both
be represented as triples of real numbers (in a three-dimensional Cartesian space). It is
sometimes convenient to treat points as though they were vectors, and vice versa. In
particular, it is convenient to use the same data type, namely class Point, to represent
both points and vectors in 3DLDF.

[const function]real dot product (Point p)
Returns the dot or scalar product of *this and p.

If P and Q are Points,

P •Q = xP xQ + yP yQ + zP zQ = |P ||Q| cos(θ)

where |P | and |Q| are the magnitudes of P and Q, respectively, and θ is the angle
between P and Q.

Since

θ = arccos

(

P •Q

|P ||Q|

)

,

the dot product can be used for finding the angle between two vectors.

Point P(1, -1, -1);

Point Q(3, 2, 5);

cout << P.angle(Q);

a 112.002

cout << P.dot_product(Q);

a -4

real P_Q_angle = (180.0 / PI)

* acos(P.dot_product(Q)

/ (P.magnitude() * Q.magnitude()));

cout << P_Q_angle;

a 112.002

P
(1,−1,−1)

Q
(3, 2, 5)

θ
θ = 112.002◦

P •Q = −4

Figure 86.

If the angle θ between two vectors P and Q is 90◦, then cos(θ) is 0, so P • Q will
also be 0. Therefore, dot_product() can be used as a test for the orthogonality of
vectors.

Chapter 22: Point Reference 137

Point P(2);

Point Q(P);

Point Q0(P0);

Q0 *= Q.rotate(0, 0, 90);

P *= Q.rotate(0, 45, 45);

P *= Q.rotate(45);

cout << P.angle(Q);

a 90

cout << P.dot_product(Q);

a 0

P
(1, 1.70711, 0.292893)

Q

(−1.41421, 1,−1)
90◦

Figure 87.

[const function]Point cross product (Point p)
Returns the cross or vector product of *this and p.

If P and Q are Points,

P ×Q = ((yP zQ − zP yQ), (zP xQ − xP zQ), (xP yQ − yP xQ)) = |P ||Q| sin(θ)n̂,

where |P | and |Q| are the magnitudes of P and Q, respectively, θ is the angle between
P and Q, and n̂ is a unit vector perpendicular to both P and Q in the direction of
a right-hand screw from P towards Q. Therefore, cross_product() can be used to
find the normals to planes.

Point P(2, 2, 2);

Point Q(-2, 2, 2);

Point n = P.cross_product(Q);

n.show("n:");

a n: (0, -8, 8)

real theta = (PI / 180.0) * P.angle(Q);

cout << theta;

a 1.23096

real n_mag = P.magnitude() * Q.magnitude() * sin(theta);

cout << n_mag;

a 11.3137

n /= n_mag;

cout << n.magnitude();

a 1

Chapter 22: Point Reference 138

P
(2, 2, 2)

Q
(−2, 2, 2)

~n

(0,−8, 8)

θ θ = 70.5288◦

Figure 88.

If θ = 0◦ or 180◦, sin(θ) will be 0, and P ×Q will be (0, 0, 0). The cross product thus
provides a test for parallel vectors.

Point P(1, 2, 1);

Point Q(P);

Point R;

R *= Q.shift(-3, -1, 1);

Point s(Q - R);

Point n = P.cross_product(s);

n.show("n:");

a n: (0, 0, 0)

~s

origin

P

Q

R

Figure 89.

[const function]real magnitude (void)
Returns the magnitude of the Point. This is its distance from origin and is equal

to
√

x2 + y2 + z2.

Point P(13, 15.7, 22);

cout << P.magnitude();

a 29.9915

Chapter 22: Point Reference 139

[const function]real angle (Point p)
Returns the angle in degrees between two Points.

Point P(3.75, -1.25, 6.25);

Point Q(-5, 2.5, 6.25);

real angle = P.angle(Q);

cout << angle;

a 73.9084

Point n = origin.get_normal(P, Q);

n.show("n:");

a n: (0.393377, 0.91788, -0.0524503)

P

Q

~n
θ

θ = 73.9084◦

x

y

z

Figure 90.

[Function]Point unit vector (const bool assign, [const bool silent = false])
[const function]Point unit vector (void)

These functions return a Point with the x, y, and z-coordinates of world_

coordinates divided by the magnitude of the Point. The magnitude of the
resulting Point is thus 1. The first version assigns the result to *this and should
only ever be called with assign = true. Calling it with the argument false is
equivalent to calling the const version, with no assignment. If unit_vector() is
called with assign and silent both false, it issues a warning message is issued and
the const version is called. If silent is true, the message is suppressed.

Point P(21, 45.677, 91);

Point Q = P.unit_vector();

Q.show("Q:");

a Q: (0.201994, 0.439357, 0.875308)

P.rotate(30, 25, 10);

P.show("P:");

P: (-19.3213, 82.9627, 59.6009)

cout << P.magnitude();

a 103.963

P.unit_vector(true);

Chapter 22: Point Reference 140

P.show("P:");

a P: (-0.185847, 0.797999, 0.573287)

cout << P.magnitude();

a 1

22.16 Points and Lines

[const function]Line get line (const Point& p)
Returns the Line l corresponding to the line from *this to p. l.position will be
*this, and l.direction will be p - *this. See Chapter 24 [Line Reference], page 154.

[const function]real slope (Point p, [char m = ’x’, [char n = ’y’]])
Returns a real number representing the slope of the trace of the line defined by *this

and p on the plane indicated by the arguments m and n.

Point p0(3, 4, 5);

Point p1(2, 7, 12);

real r = p0.slope(p1, ’x’, ’y’);
⇒ r ≡ -3

r = p0.slope(p1, ’x’, ’z’);
⇒ r ≡ -7

r = p0.slope(p1, ’z’, ’y’);
⇒ r ≡ 0.428571

[Function]bool_real is on segment (Point p0, Point p1)
[const function]bool_real is on segment (const Point& p0, const Point& p1)

These functions return a bool_real, where the bool part is true, if the Point lies
on the line segment between p0 and p1, otherwise false. If the Point lies on the
line segment, the real part is a value r such that 0 ≤ r ≤ 1 indicating how far the
Point is along the way from p0 to p1. For example, if the Point is half of the way
from p0 to p1, r will be .5. If the Point does not lie on the line segment, but on the
line passing through p0 and p1, r will be < 0 or > 1.

If the Point doesn’t lie on the line passing through p0 and p1, r will be INVALID_REAL.

Point p0(-1, -2, 1);

Point p1(3, 2, 5);

Point p2(p0.mediate(p1, .75));

Point p3(p0.mediate(p1, 1.5));

Point p4(p2);

p4.shift(-2, 1, -1);

bool_real br = p2.is_on_segment(p0, p1);

cout << br.first;

a 1

cout << br.second;

a 0.75

bool_real br = p3.is_on_segment(p0, p1);

cout << br.first;

Chapter 22: Point Reference 141

a 0

cout << br.second;

a 1.5

bool_real br = p4.is_on_segment(p0, p1);

cout << br.first;

a 0

cout << br.second;

a 3.40282e+38

cout << (br.second == INVALID_REAL)

a 1

p0

p1

p2

p3

p4

Figure 91.

[const function]bool_real is on line (const Point& p0, const Point& p1)
Returns a bool_real where the bool part is true, if the Point lies on the line passing
through p0 and p1, otherwise false. If the Point lies on the line, the real part is a
value r indicating how how far the Point is along the way from p0 to p1, otherwise
INVALID_REAL. The following values of r are possible for a call to P.is_on_line(A,

B), where the Point P lies on the line
−−→
AB:

P ≡ A =⇒ r ≡ 0.

P ≡ B =⇒ r ≡ 1.

P lies on the opposite side of A from B =⇒ r < 0.

P lies between A and B =⇒ 0 < r < 1.

P lies on the opposite side of A from B =⇒ r > 1

Point A(-1, -2);

Point B(2, 3);

Point C(B.mediate(A, 1.25));

bool_real br = C.is_on_line(A, B);

Chapter 22: Point Reference 142

Point D(A.mediate(B));

br = D.is_on_line(A, B);

Point E(A.mediate(B, 1.25));

br = E.is_on_line(A, B);

Point F(D);

F.shift(-1, 1);

br = F.is_on_line(A, B);

A

B

C
r ≡ −0.25

D r ≡ 0.5

E r ≡ 1.25

F
r ≡ INVALID REAL

Figure 92.

[const function]Point mediate (Point p, [const real r = .5])
Returns a Point r of the way from *this to p.

Point p0(-1, 0, -1);

Point p1(10, 0, 10);

Point p2(5, 5, 5);

Point p3 = p0.mediate(p1, 1.5);

p3.show("p3:");

a p3: (15.5, 0, 15.5)

Point p4 = p0.mediate(p2, 1/3.0);

p4.show("p4:");

a p4: (1, 1.66667, 1)

Chapter 22: Point Reference 143

p0

p1

p2

p3

p4

x

y

z

Figure 93.

22.17 Intersections

[Static function]bool_point intersection point (Point p0, Point p1, Point

q0, Point q1)
[Static function]bool_point intersection point (Point p0, Point p1, Point

q0, Point q1, const bool trace)
These functions find the intersection point, if any, of the lines determined by p0 and
p1 on the one hand, and q0 and q1 on the other.

Let bp be the bool_point returned by intersection_point(). If an intersection
point is found, the corresponding Point will be stored in bp.pt, otherwise, bp.pt will
be set to INVALID_POINT. If the intersection point lies on both of the line segments,
bp.b will be true, otherwise, false.

The two versions use different methods of finding the intersection point. The first
uses a vector calculation, the second looks for the intersections of the traces of the
lines on the major planes. If the trace argument is used, the second version will be
called, whether trace is true or false. Ordinarily, there should be no need to use
the trace version.

Point A(-1, -1);

Point B(1, 1);

Point C(-1, 1);

Point D(1, -1);

bool_point bp = Point::intersection_point(A, B, C, D);

bp.pt.dotlabel("i");

cout << "bp.b == " << bp.b << endl << flush;

a bp.b == 1

Chapter 22: Point Reference 144

A

BC

D

i

Figure 94.

Point A(.5, .5);

Point B(1.5, 1.5);

Point C(-1, 1);

Point D(1, -1);

bool_point bp = Point::intersection_point(A, B, C, D, true);

bp.pt.dotlabel("i");

cout << "bp.b == " << bp.b << endl << flush;

a bp.b == 0

A

B

C

D

i

Figure 95.

22.18 Drawing

There are two versions for each of the drawing functions. The second one has the Picture

argument picture at the beginning of the argument list, rather than at the end. This is
convenient when passing a picture argument. Where picture is optional, the default is
always current_picture.

[const function]void drawdot ([const Color& ddrawdot_color =

*Colors::default_color, [const string ppen = "", [Picture& picture =

current_picture]]])
[const function]void drawdot ([Picture& picture = current_picture, [const

Color& ddrawdot_color = *Colors::default_color, [const string ppen =

"",]]])
Draws a dot on picture. If ppen is specified, a “pen expression” is included in the
drawdot command written to out_stream. Otherwise, MetaPost’s currentpen is
used. If ddrawdot color is specified, the dot will be drawn using that Color. Oth-
erwise, the Color currently pointed to by the pointer Colors::default_color will

Chapter 22: Point Reference 145

be used. This will normally be Colors::black. See Chapter 16 [Color Reference],
page 88, for more information about Colors and the namespace Colors.

Please note that the “dot” will always be parallel to the plane of projection. Even
where it appears to be a surface, as in Fig. 96, it is never put into perspective, but
will always have the same size and shape.

Point P(1, 1);

P.drawdot(gray, "pensquare scaled 1cm");

P

Figure 96.

[Function]void undrawdot ([string pen = "", [Picture& picture =

current_picture]])
[Function]void undrawdot ([Picture& picture = current_picture, [string pen

= ""]])
Undraws a dot on picture. If ppen is specified, a “pen expression” is included in the
undrawdot command written to out_stream. Otherwise, MetaPost’s currentpen is
used.

Point P(1, 1);

P.drawdot(gray, "pensquare scaled 1cm");

P.undrawdot("pencircle scaled .5cm");

P

Figure 97.

[Function]void draw (const Point& p, [const Color& ddraw_color =

*Colors::default_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture, [bool aarrow = false]]]]])
[Function]void draw (Picture& picture = current_picture, const Point& p,

[const Color& ddraw_color = *Colors::default_color, [string ddashed =

"", [string ppen = "", [bool aarrow = false]]]])
Draws a line from *this to p. Returns the Path *this -- p1. See Section 26.12
[Path Reference; Drawing and Filling], page 180, for more information.

Point P(-1, -1, -1);

Point Q(2, 3, 5);

P.draw(Q, Colors::gray, "", "pensquare scaled .5cm");

Chapter 22: Point Reference 146

P

Q

x

y

z

Figure 98.

[Function]void undraw (const Point& p, [string ddashed = "", [string ppen =

"", [Picture& picture = current_picture]]])
[Function]void undraw (Picture& picture, const Point& p, [string ddashed =

"", [string ppen = ""]])
Undraws a line from *this to p. Returns the Path *this -- p1. See Section 26.12
[Path Reference; Drawing and Filling], page 180, for more information.

Point P(-1, -1, -1);

Point Q(2, 3, 5);

P.draw(Q, Colors::gray, "", "pensquare scaled .5cm");

P.undraw(Q, "evenly scaled 6", "pencircle scaled .3cm");

P

Q

x

y

z

Figure 99.

Chapter 22: Point Reference 147

[Function]Path draw help (const Point& p, [const Color& ddraw_color =

*Colors::help_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture]]]])
[Function]Path draw help (Picture& picture, const Point& p, [const Color&

ddraw_color = *Colors::help_color, [string ddashed = "", [string ppen

= ""]]])
Draws a “help line” from *this to p , but only if the static Path data member
do_help_lines is true. See Section 26.1 [Path Reference; Data Members], page 165.

“Help lines” are lines that are used when constructing a drawing, but that should not
be printed in the final version.

[Function]Path drawarrow (const Point& p, [const Color& ddraw_color =

*Colors::default_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture]]]])
[Function]Path drawarrow (Picture& picture, const Point& p, [const Color&

ddraw_color = *Colors::default_color, [string ddashed = "", [string
ppen = ""]]])

Draws an arrow from *this to p and returns the Path *this -- p. The second
version is convenient for passing a Picture argument without having to specify all of
the other arguments.

Point P(-3, -2, 1);

Point Q(3, 3, 5);

P.drawarrow(Q);

P

Q

−−→
PQ

x

y

z

Figure 100.

22.19 Labelling

Labels make it possible to include TEX text within a drawing. Labels are implemented by
means of class Label. The functions label() and dotlabel(), described in this section,
create objects of type Label, and add them to the Picture, which was passed to them as

Chapter 22: Point Reference 148

an argument (current_picture, by default). See Chapter 20 [Label Reference], page 108,
for more information.

[const function]void label (const string text_str, [const string position_str

= "top", [const bool dot = false, [Picture& picture =

current_picture]]])
[const function]void label (const short text_short, [const string

position_str = "top", [const bool dot = false, [Picture& picture =

current_picture]]])
These functions cause a Point to be labelled in the drawing. The first argument is
the text of the label. It can either be a string, in the first version, or a short, in the
second. It will often be the name of the Point in the C++ code, for example, "p0". It
is not possible to automate this kind of labelling, because it is not possible to access
the names of variables through the variables themselves in C++.

text str is always placed between “btex’’ and “etex” in the MetaPost label com-
mand written to out_stream. This makes it possible to include math mode material
in the text of labels, as in the following example.

Point p0(2, 3);

p0.label("p_0");

p0

Figure 101.

If backslashes are needed in the text of the label, then text str must contain double
backslashes, so that single backslashes will be written to out_stream.

Point P;

Point Q(2, 2);

Point R(P.mediate(Q));

R.label("$\\overrightarrow{PQ}$", "ulft");

P

Q

−−→
PQ

Figure 102.

The position argument indicates where the text of the label should be located relative
to the Point. The valid values are the strings used in MetaPost for this purpose, i.e.,
‘top’, ‘bot’, ‘lft’, ‘rt’, ‘llft’ (lower left), ‘lrt’ (lower right), ‘ulft’ (upper left),
and ‘urt’ (upper right). The default is ‘top’. 3DLDF does not catch the error if an

Chapter 22: Point Reference 149

invalid position argument is used; the string is written to the output file and an
error will occur when MetaPost is run.

The dot argument is used to determine whether the label should be dotted or not.
The default is false. The function dotlabel() calls label(), passing true as the
latter’s dot argument.

[const function]void dotlabel ([const string text_str, [const string

position_str = "top", [Picture& picture = current_picture]]])
[const function]void dotlabel (const short text_short, [const string

position_str = "top", [Picture& picture = current_picture]])
These functions are like label() except that they always produces a dot.

Point p0(2, 3);

p0.dotlabel("p_0");

p0

Figure 103.

22.20 Showing

[const function]void show ([string text = "", [char coords = ’w’, [const bool

do_persp = true, [const bool do_apply = true, [Focus* f = 0, [const
unsigned short proj = Projections::persp, [const real factor = 1]]]]]]])

Prints text followed by the values of a set of coordinates to standard output (stdout).
The other arguments are similar to those used in the functions described in Sec-
tion 22.9 [Returning Coordinates], page 127.

Point P(1, 3, 5);

P.rotate(15, 67, 98);

P.show("P:");

a P: (-3.68621, -3.89112, 2.50421)

[Function]void show transform ([string text = ""])
Prints text to standard output (stdout), or "transform:", if text is the empty
string (the default), and then calls transform.show().

Point A(-1, 1, 1);

Point B(13, 12, 6);

Point Q(31, 17.31, 6);

Q.rotate(A, B, 32);

Q.show_transform("Q.transform:");

a Q.transform:

Transform:

0.935 0.212 -0.284 0

-0.0749 0.902 0.426 0

0.346 -0.377 0.859 0

-0.336 0.687 -0.569 1

Chapter 22: Point Reference 150

22.21 Outputting

[Non-member function]ostream& operator<< (ostream& o, Point& p)
Used in Path::output() for writing the x and y values of the projective_

coordinates of Points to out_stream. See Section 26.16 [Path Reference;
Outputting], page 197. This is a low-level function that ordinary users should never
have to invoke directly.

[Function]void output (void)
Writes the MetaPost code for drawing or undrawing a Point to out_stream. Called
by Picture::output(), when a Shape on the Picture is a Point. See Section 21.8
[Picture Reference; Outputting], page 114.

[Virtual function]void suppress output (void)
Sets do_output to false, which causes a Point not to be output. This function is
called in Picture::output(), when a Point cannot be projected. See Section 21.8
[Picture Reference; Outputting], page 114.

[Virtual function]virtual void unsuppress_output (void)
Resets do_output to true, so that a Point can potentially be output, if
Picture::output() is called again for the Picture the Point is on. This function
is called in Picture::output(). See Section 21.8 [Picture Reference; Outputting],
page 114.

[Function]vector<shape*> extract (const Focus& f, const unsigned short

proj, real factor)
Attempts to project the Point using the arguments passed to Picture::output(),
which calls this function. If extract() succeeds, it returns a vector<shape*> con-
taining only the Point. Otherwise, it returns an empty vector<shape*>.

[Virtual function]bool set extremes (void)
Sets “extreme” values for x, y, and z in projective_coordinates. This is, of course,
trivial for Points, because they only have one x, y and z-coordinate. So the maxima
and minima for each coordinate are always the same.

[Virtual inline const function]valarray <real> get extremes (void)
Returns projective_extremes.

[Virtual const function]real get minimum z (void)
[Virtual const function]real get maximum z (void)
[Virtual const function]real get mean z (void)

These functions return the minimum, maximum, and mean z-value of the Point.
get_minimum_z() returns projective_extremes[4], get_maximum_z() returns
projective_extremes[5], and get_mean_z() returns (projective_extremes[4]

+ projective_extremes[5]) / 2. However, since a Point has only one z-coordinate
(from world_coordinates), these values will all be the same.

These functions are pure virtual functions in Shape, and are called on Points through
pointers to Shape. Therefore, they must be consistent with the versions for other types
derived from Shape. See Section 18.10 [Outputting Shapes], page 95.

Chapter 23: Focus Reference 151

23 Focus Reference

Class Focus is defined in ‘points.web’. Focuses are used when creating a perspective
projection. They represent the center of projection and can be thought of like a camera
viewing the scene.

23.1 Data Members

[Private variable]Point position
The location of the Focus in the world coordinate system.

[Private variable]Point direction
The direction of view from position into the scene.

[Private variable]Point up
The direction that will be at the top of the projected drawing.

[Private variable]real distance
The distance of the Focus from the plane of projection.

[Private variable]real angle
Used for determining the up direction.

[Private variable]char axis
The main axis onto which the Focus is transformed in order to perform the perspective
projection, z by default.

It will normally not matter which axis is used, but it might be advantageous to use
a particular axis in some special situations.

[Private variable]Transform transform
The Transform, which will be applied to the Shapes on the Picture, when the latter
is output. The effect of this is equivalent to transforming the Focus, so that it lies on
a major axis.

Focus f(5, 5, -10, 2, 4, 10, 10, 180);
⇒

f.transform ≡









0.989 −0.00733 −0.148 0
0 0.999 −0.0494 0

0.148 0.0488 0.988 0
−3.46 −4.47 0.865 1









[Private variable]Transform persp
The Transform representing the perspective transformation for a particular Focus.
Let d stand for distance, then

persp ≡









1 0 0 0
0 1 0 0
0 0 0 1/d
0 0 0 1









Chapter 23: Focus Reference 152

23.2 Global Variables

[Variable]Focus default focus
Effectively, the default Focus in Picture::output(). See Section 21.8.2 [Picture
Reference; Outputting; Functions], page 115. It’s not really the default, but the
version of output() that doesn’t take a Focus argument calls another version that
does take one, passing default_focus to the latter as its Focus argument.

It’s necessary to do this in such a roundabout way, because Picture::output() must
be declared before class Focus is completely defined and default_focus is declared.

The declaration ‘Focus& f = default_focus;’ makes f a reference to default_

focus, i.e., it makes f another name for default_focus. This may be convenient, if
you don’t feel like typing default_focus.

23.3 Constructors and Setting Functions

[Default constructor]void Focus (void)
Creates an empty Focus

[Constructor]void Focus (const real pos_x, const real pos_y, const real

pos_z, const real dir_x, const real dir_y, const real dir_z, const

real dist, [const real ang = 0, [char ax = ’z’]])
Constructs a Focus using the first three real arguments as the x, y, and z-coordinates
of position, and the fourth through the sixth argument as the x, y, and z-coordinates
of direction. dist specifies the distance of the Focus from the plane of projection,
ang the angle of rotation, which affects which direction is considered to be “up”, and
ax the major axis to which the Focus is aligned.

[Setting function]void set (const real pos_x, const real pos_y, const real

pos_z, const real dir_x, const real dir_y, const real dir_z, const

real dist, [const real ang = 0, [char ax = ’z’]])
Resets an existing Focus. Corresponds to the constructor above.

[Constructor]void Focus (const Point& pos, const Point& dir, const real

dist, [const real ang = 0, [char ax = ’z’]])
Constructs a Focus using Point arguments for position and direction. Otherwise,
the arguments of this constructor correspond to those of the one above.

[Setting function]void set (const Point& pos, const Point& dir, const real

dist, [const real ang = 0, [char ax = ’z’]])
Resets an existing Focus. Corresponds to the constructor above.

23.4 Operators

[Assignment operator]const Focus& operator= (const Focus& f)
Sets the Focus to f.

Chapter 23: Focus Reference 153

23.5 Modifying

[Function]void reset angle (const real ang)
Resets the value of angle and recalculates the Transforms transform and persp.

23.6 Querying

[Inline const function]const Point& get position (void)
Returns position.

[Inline const function]const Point& get direction (void)
Returns direction.

[Inline const function]const real& get distance (void)
Returns distance.

[Inline const function]const Point& get up (void)
Returns up.

[Inline const function]const Transform& get transform (void)
Returns transform.

[Inline const function]const real& get transform element (const unsigned

int row, const unsigned int column)
Returns an element of transform, given two unsigned ints for the row and the
column.

[Inline const function]const Transform& get persp (void)
Returns persp.

[Inline const function]const real& get persp element (const unsigned int

row, const unsigned int column)
Returns an element of persp, given two unsigned ints for the row and the column.

23.7 Showing

[const function]void show ([const string text_str = "Focus:", [const bool

show_transforms = false]])
Prints text str to standard output (stdout), then calls Point::show() on position,
direction, and up. Then the values of distance, axis, and angle are printed to
stdout. If show transforms is true, transform and persp are shown as well.

Chapter 24: Line Reference 154

24 Line Reference

The struct Line is defined in ‘lines.web’. Lines are not Shapes. They are used for
performing vector operations. A Line is defined by a Point representing a position vector
and a Point representing a direction vector.

See also the descriptions of Point::get_line() in Section 22.16 [Points and Lines],
page 140, and Path::get_line() in Section 26.15 [Path Reference; Querying], page 194.

24.1 Data Members

[Public variable]Point position
Represents the position vector of the Line.

[Public variable]Point direction
Represents the direction vector of the Line.

24.2 Global Constants

[Constant]const Line INVALID LINE
position and direction are both INVALID_POINT.

24.3 Constructors

[Default constructor]void Line (const Point& pos = origin, const Point& dir =

origin)
Creates a Line, setting position to pos, and direction to dir. If this function is
called with no arguments, it creates a Line at the origin with no direction.

Point p(2, 1, 2);

Point d(-3, 3, 3.5);

Line L0(p, d);

Line L1 = p.get_line(d);

Chapter 24: Line Reference 155

x

y

z

p

(2, 1, 2)

d ≡ L0.direction ≡ (−3, 3, 3.5)

L1.direction ≡ (−5, 2, 1.5)

Figure 104.

[Copy constructor]void Line (const Line& l)
Creates a Line, making it a copy of l.

24.4 Operators

[Assignment operator]void operator= (const Line& l)
Sets *this to l.

24.5 Get Path

[const function]Path get path (void)
Returns a linear Path with two Points on the Line. The first Point will be position,
and the second will be position + direction.

24.6 Showing

[Function]void show ([string text = ""])
If text is not the empty string (the default), it is printed on a line of its own to
standard output. Otherwise, ‘Line:’ is printed. Following this, Point::show() is
called on position and direction.

Point p(1, -2, 3);

Point d(-12.3, 21, 36.002);

Line L0(p, d);

L0.show("L0:");

a L0:

position: (1, -2, 3)

direction: (-12.3, 21, 36.002)

Line L1 = p.get_line(d);

L1.show("L1:");

Chapter 24: Line Reference 156

a L1:

position: (1, -2, 3)

direction: (-13.3, 23, 33.002)

Path q = L1.get_path();

q.show("q:");

a q:

fill_draw_value == 0

(1, -2, 3) -- (-12.3, 21, 36.002);

Chapter 25: Plane Reference 157

25 Plane Reference

The struct Plane is defined in ‘planes.web’. Planes are not Shapes. They are used for
performing vector operations. A Plane is defined by a Point representing a point on the
plane, a Point representing the normal to the plane, and the distance of the plane from the
origin.

The most common use of Planes is to represent the plane in which an existing plane
figure lies. Therefore, they most likely to be created by using Path::get_plane(). See
Section 26.15 [Path Reference; Querying], page 194. However, class Plane does have
constructors for creating Planes directly, if desired. See Section 25.3 [Planes Reference;
Constructors], page 157.

25.1 Data Members

Because the main purpose of Plane is to provide information about Shapes, its data mem-
bers are all public.

[Public variable]Point point
Represents a point on the plane.

[Public variable]Point normal
Represents the normal to the plane.

[Public variable]real distance
The distance of the plane from the origin.

25.2 Global Constants

[Constant]const Plane INVALID PLANE
A Plane with point ≡ normal, and distance ≡ INVALID_REAL.

INVALID_PLANE is returned from Path::get_plane(), if the Path is not planar. See
Section 26.15 [Path Reference; Querying], page 194.

25.3 Constructors

[Default constructor]void Plane (void)
Creates a degenerate Plane with point ≡ normal ≡ origin, and distance ≡ 0.

Planes constructed using this constructor will probably be set using the assignment
operator or Path::get_plane() immediately, or very soon after being declared. See
Section 25.4 [Planes Reference; Operators], page 158, and Section 26.15 [Paths Ref-
erence; Querying], page 194.

[Copy constructor]void Plane (const Plane& p)
Creates a new Plane, making it a copy of p.

Chapter 25: Plane Reference 158

[Constructor]void Plane (const Point& p, const Point& n)
If p is not equal to n, this constructor creates a Plane and sets point to p. normal

is set to n, and made a unit vector. distance is calculated according to the following
formula: Let n stand for normal, p for point, and d for distance: d = −p · n. If
d = 0, origin lies in the Plane. If d > 0, origin lies on the side of the Plane that
normal points to, considered to be “outside”. If d < 0, origin lies on the side of the
Plane that normal does not point to, considered to be “inside”.

However, if p ≡ n, point and normal are both set to INVALID_POINT, and distance

is set to INVALID_REAL, i.e., *this will be equal to INVALID_PLANE (see Section 25.2
[Planes Reference; Global Constants], page 157).

Point P(1, 1, 1);

Point N(0, 1);

N.rotate(-35, 30, 20);

N.show("N:");

a N: (-0.549659, 0.671664, 0.496732)

Plane q(P, N);

cout << q.distance;

a -0.618736

N P

~n q

x

y

z

Figure 105.

25.4 Operators

[Assignment operator]const Plane& operator= (const Plane& p)
Sets point to p.point, normal to p.normal, and distance to p.distance. The return
value is p, so that invocations of this function can be chained.

Point pt(2, 2.3, 6);

Point norm(-1, 12, -36);

Plane A(pt, norm);

Plane B;

Chapter 25: Plane Reference 159

Plane C;

B = C = A;

A.show("A:");

a A:

normal: (-0.0263432, 0.316118, -0.948354)

point: (2, 2.3, 6)

distance == 5.01574

cout << (A == B && A == C && B == C);

a 1

[const operator]bool operator== (const Plane& p)
Equality operator. Compares *this and p, and returns true, if point ≡ p.point,
normal ≡ p.normal, and distance ≡ p.distance, otherwise false.

[const operator]bool operator!= (const Plane& p)
Inequality operator. Compares *this and p and returns true, if point 6= p.point,
or normal 6= p.normal, or distance 6= p.distance. Otherwise, it returns false.

25.5 Returning Information

[const function]real_short get distance (const Point& p)
[const function]real_short get distance (void)

The version of this function taking a Point argument returns a real_short r, whose
real part (r.first) represents the distance of p from the Plane. This value is always
positive. r.second can take on three values:

0 If the Point lies in the Plane.

1 If it lies on the side of the Plane pointed at by the normal to the Plane,
considered to be the “outside”.

-1 If it lies on the side of the Plane not pointed at by the normal to the
Plane, considered to be the “inside”.

The version taking no argument returns the absolute of the data member distance

and its sign, i.e., the distance of origin to the Plane, and which side of the Plane it
lies on.

It would have been possible to use origin as the default for an optional Point argu-
ment, but I’ve chosen to overload this function, because of problems that may arise,
when I implement user_coordinates and view_coordinates (see Section 22.1 [Point
Reference; Data Members], page 119).

Point N(0, 1);

N.rotate(-10, 20, 20);

Point P(1, 1, 1);

Plane q(P, N);

Point A(4, -2, 4);

Point B(-1, 3, 2);

Point C = q.intersection_point(A, B).pt;

real_short bp;

Chapter 25: Plane Reference 160

bp = q.get_distance();

cout << bp.first;

a 0.675646

cout << bp.second

a -1

bp = q.get_distance(A)

cout << bp.first;

a 3.40368

cout << bp.second;

a -1

bp = q.get_distance(B)

cout << bp.first;

a 2.75865

cout << bp.second;

a 1

bp = q.get_distance(C)

cout << bp.first;

a 0

cout << bp.second;

a 0

P

~n

q

A

B

C

x

y

z

Figure 106.

Chapter 25: Plane Reference 161

25.6 Intersections

[const function]bool_point intersection point (const Point& p0, const

Point& p1)
[const function]bool_point intersection point (const Path& p)

These functions find the intersection point of the Plane and a line. In the first version,
the line is defined by the two Point arguments. In the second version, the Path p

must be linear, i.e., p.is_linear() must be true.

Both versions of intersection_point() return a bool_point bp, where bp.pt is
the intersection point, or INVALID_POINT, if there is none. If an intersection point is
found, bp.b will be true, otherwise false. Returning a bool_point makes it possible
to test for success without comparing the Point returned against INVALID_POINT.

Point center(2, 2, 3.5);

Reg_Polygon h(center, 6, 4, 80, 30, 10);

Plane q = h.get_plane();

Point P0 = center.mediate(h.get_point(2));

P0.shift(5 * (N - center));

Point P1(P0);

P1.rotate(h.get_point(1), h.get_point(4));

P1 = 3 * (P1 - P0);

P1.shift(P0);

P1.shift(3, -.5, -2);

bool_point bp = q.intersection_point(P0, P1);

Point i_P = bp.pt;

Point P4 = h.get_point(3).mediate(h.get_point(0), .75);

P4.shift(N - center);

Point P5(P4);

P5.rotate(h.get_point(3), h.get_point(0));

P4.shift(-1, 2);

Path theta(P4, P5);

bp = q.intersection_point(theta);

Point i_theta = bp.pt;

draw_axes();

Chapter 25: Plane Reference 162

~n
P0

P1

iP

θ

iθ

x

y

z

Figure 107.

[const function]Line intersection line (const Plane& p)
Returns a Line l. representing the line of intersection of two Planes. See Chapter 24
[Line Reference], page 154.

In Fig. 108, intersection_line() is used to find the line of intersection of the
Planes derived from the Rectangles r0 and r1 using get_plane() (see Section 26.15
[Paths Reference; Querying], page 194). Please note that there is no guarantee that
l.position will be in a convenient place for your drawing. A bit of fiddling was needed
to find the Points P2 and P3. I plan to add functions for finding the intersection
lines of plane figures, but haven’t done so yet.

Rectangle r0(origin, 5, 5, 10, 15, 6);

Rectangle r1(origin, 5, 5, 90, 50, 10);

r1 *= r0.rotate(30, 30, 30);

r1 *= r0.shift(1, -1, 3);

Plane q0 = r0.get_plane();

Plane q1 = r1.get_plane();

Line l = q0.intersection_line(q1);

l.show("l:");

a l:

position: (0, 11.2193, 20.0759)

direction: (0.0466595, -0.570146, -0.796753)

Point P0(l.direction);

P0.shift(l.position);

P0.show("P0:");

a P0: (0.0466595, 10.6491, 19.2791)

Point P1(-l.direction);

P1.shift(l.position);

Point P2(P0 - P1);

P2 *= 12.5;

Chapter 25: Plane Reference 163

P2.shift(P0);

cout << P2.is_on_plane(q0);

a 1

cout << P2.is_on_plane(q1);

a 1

Point P3(P0 - P1);

P3 *= 7;

P3.shift(P0);

cout << P3.is_on_plane(q0);

a 1

cout << P3.is_on_plane(q1);

a 1

r0

r1

P2

P3

l

x

y

z

Figure 108.

25.7 Showing

[const function]void show ([string text = ""])
Prints information about the Plane to standard output. If text is not the empty
string, it is printed to the standard output. Otherwise, ‘Plane:’ is printed. Following
this, if the Plane is equal to INVALID_PLANE (see Section 25.2 [Planes Reference;
Global Constants], page 157), a message to this effect is printed to standard output.
Otherwise, normal and point are shown using Point::show() (see Section 22.20
[Point Reference; Showing], page 149). Finally, distance is printed.

Point A(1, 3, 2.5);

Rectangle r0(A, 5, 5, 10, 15, 6);

Plane p = r0.get_plane();

a p:

normal: (-0.0582432, 0.984111, -0.167731)

Chapter 25: Plane Reference 164

point: (-0.722481, 2.38245, -0.525176)

distance == -2.47476

Chapter 26: Path Reference 165

26 Path Reference

Class Path is defined in ‘paths.web’. It is derived from Shape using protected derivation.

26.1 Data Members

[Protected variable]bool line switch
true if the Path was created using the constructor Path(const Point& p0, const

Point& p1), directly or indirectly. See Section 26.2 [Path Reference; Constructors
and Setting Functions], page 167.

Point p0;

Point p1(1, 1);

Point p2(2, 3);

Path q0(p0, p1);

cout << q0.get_line_switch();

a 1

Path q1;

q1 = q0;

cout << q1.get_line_switch();

a 1

Path q2 = p0.draw(p1);

cout << q2.get_line_switch();

a 1

Path q3("..", false, &p1, &p2, &p0, 0);

cout << q3.get_line_switch();

a 0

p0

p1

p2

q0 ≡ q1 ≡ q2

q3

Figure 109.

Some Path functions only work on linear Paths, so it’s necessary to be able to dis-
tinguish them from non-linear ones. The function is_linear() should be enough
to ensure that all of these functions work, so I plan to make line_switch obsolete
soon. However, at the moment, it’s still needed. See Section 26.15 [Path Reference;
Querying], page 194.

Chapter 26: Path Reference 166

[Protected variable]bool cycle switch
true if the Path is cyclical, otherwise false.

[Protected variable]bool on free store
true if the Path was dynamically allocated on the free store. Otherwise false. Set
to true only in create_new<Path>(), which should be the only way Paths are ever
dynamically allocated. See Section 26.2 [Path Constructors and Setting Functions],
page 167.

[Protected variable]bool do output
Used in Picture::output(). Set to false if the Path isn’t projectable using the
arguments passed to Picture::output(). See Section 21.8 [Picture Reference; Out-
putting], page 114.

[Protected variable]signed short fill draw value
Set in the drawing and filling functions, and used in Path::output(), to determine
what MetaPost code to write to out_stream. See Section 26.12 [Path Reference;
Drawing and Filling], page 180, and Section 26.16 [Path Reference; Outputting],
page 197.

[Protected variable]const Color* draw color
Pointer to the Color used if the Path is drawn.

[Protected variable]const Color* fill color
Pointer to the Color used if the Path is filled.

[Protected variable]string dashed
String written to out_stream for the “dash pattern” in a MetaPost draw or undraw

command. If and only if dashed is not the empty string, “dashed <dash pattern>” is
written to out_stream.

Dash patterns have no meaning inside 3DLDF; dashed, if non-empty, is written un-
changed to out_stream. I may change this in the future.

[Protected variable]string pen
String written to out_stream for the pen to be used in a MetaPost draw, undraw,
filldraw, or unfilldraw command. If and only if pen is not the empty string,
“withpen <. . .>” is written to out_stream.

Pens have no meaning inside 3DLDF; pen, if non-empty, is written unchanged to
out_stream. I may change this in the future.

[Protected variable]bool arrow
Indicates whether an arrow should be drawn when outputting a Path. Set to true

on a Path created on the free store and put onto a Picture by drawarrow().

[Protected variable]valarray<real> projective extremes
Contains the maxima and minima of the x, y, and z-coordinates of the projections

of Points on a Path using a particular Focus. Set in set_extremes() and used in
Picture::output() for surface hiding.

Chapter 26: Path Reference 167

[Protected variable]vector<Point*> points
Pointers to the Points on the Path.

[Protected variable]vector<string> connectors
The connectors between the Points on the Path. Connectors are simply strings in
3DLDF, they are written unchanged to out_stream.

[Public static variable]const Color* help color
Pointer to a const Color, which becomes the default for draw_help(). See Sec-
tion 26.12 [Path Reference; Drawing and Filling], page 180.

Please note that help_color is a pointer to a const Color, not a const pointer to a
Color or a const pointer to a const Color! It’s easy to get confused by the syntax
for these types of pointers.1

[Public static variable]string help dash pattern
The default dash pattern for draw_help().

[Public static variable]bool do help lines
true if help lines should be output, otherwise false. If false, a call to draw_

help() does not cause a copy of the Path to be created and put onto a Picture. See
Section 26.12 [Path Reference; Drawing and Filling], page 180.

26.2 Constructors and Setting Functions

[Default constructor]void Path (void)
Creates an empty Path with no Points and no connectors.

[Constructor]void Path (const Point& p0, const Point& p1)
Creates a line (more precisely, a line segment) between p0 and p1. The single con-
nector between the two Points is set to "--" and the data member line_switch

(of type bool) is set to true. There are certain operations on Paths that are only
applicable to lines, so it’s necessary to store the information that a Path is a line.2

Point A(-2, -2.5, -1);

Point B(3, 2, 2.5)

Path p(A, B);

p.show("p:");

a p:

(-2, -2.5, -1) -- (3, 2, 2.5);

1 Stroustrup, The C++ Programming Language, p. 96.
2 It isn’t sufficient to check whether a Path consists of only two Points to determine whether it is a line or

not, since a connector with “curl” could cause it to be non-linear. On the other hand, Paths containing
only colinear Points and the connector "--" are perfectly legitimate lines. I’m in the process of changing
all of the code that tests for linearity by checking the value of line_switch, so that it uses is_linear()
instead. When I’ve done this, it may be possible to eliminate line_switch. See Section 26.1 [Path
Reference; Data Members], page 165, and Section 26.15 [Path Reference; Querying], page 194.

Chapter 26: Path Reference 168

A (−2,−2.5,−1)

B (3, 2, 2.5)

x

y

z

Figure 110.

[Setting function]void set (const Point& p0, const Point& p1)
Corresponds to the constructor above.

Point P0(1, 2, 3);

Point P1(3.5, -12, 75);

Path q;

q.set(P0, P1);

q.show("q:");

a q:

(1, 2, 3) -- (3.5, -12, 75);

[Constructor]void Path (string connector, bool cycle, Point* p, [...], 0)
For Paths with an arbitrary number of Points and one type of connector.

connector is passed unchanged to out_file, so it must be a valid connector in Meta-
Post.

cycle indicates whether the Path is a cycle or not. cycle_switch is set to cycle.
See Section 26.1 [Path Reference; Data Members], page 165. The filling and unfilling
functions only work for Paths that are cycles. See Section 26.12 [Path Reference;
Drawing and Filling], page 180. If a Path is a cycle, it is up to the user to make
sure that it has sensible Point and connector values; 3DLDF doesn’t check them. If
they are not sensible, for instance, if the Path crosses itself, and you try to fill it, this
will cause an error in MetaPost. It is possible that a Path will be “sensible” in some
projections and not in others, although I have not tested this.

p is a pointer to the first Point that should go onto the Path. The ellipsis points
(...) represent an arbitrary number of pointers to Points that should go onto the
Path. The final argument must be 0, which is interpreted by the C++ compiler as the
null pointer.3

It is admittedly a bit awkward to have to type “&p0” rather than “p0”, and I have
frequently forgotten to do it, which causes a compiler error, but all of the arguments

3 Stroustrup, The C++ Programming Language, p. 88.

Chapter 26: Path Reference 169

must be pointers in order to be able to use 0 to indicate the end of the argument list.
Convenience in typing function calls is not a high priority in 3DLDF, because once
I’ve written an input routine, these function calls should be generated automatically.
It will be more important to define a convenient syntax for the input routine.

Point P0;

Point P1(2);

Point P2(2,2);

Point P3(0,2);

Path p("..", true, &P0, &P1, &P2, &P3, 0);

p.draw();

P0 P1

P2P3

Figure 111.

[Setting function]void set (string connector, bool cycle, Point* p, [...], 0)
Corresponds to the constructor above.

Point P[4];

P[0].set(2, 1, 3);

P[3] = P[2] = P[1] = P[0];

P[3] *= P[2] *= P[1].rotate(3, 12, 18);

P[3] *= P[2].shift(-2, -1, 3);

P[3].shear(1.5, .5, 3.5);

Path q("...", false, &P[0], &P[1], &P[2], &P[3], 0);

q.show("q:");

a q:

(2, 1, 3) ... (0.92139, 1.51449, 3.29505) ...

(-1.07861, 0.514487, 6.29505) ... (2.84065, -3.26065, 6.29505);

Chapter 26: Path Reference 170

0
1

2

3

x

y

z

Figure 112.

[Constructor]void Path (Point* first_point_ptr, char* s, Point* p, [...], 0)
Constructor for Paths with an arbitrary number of Points and connectors. The first,
required, argument is a pointer to a Point, followed by pointers to char alternating
with pointers to Points.4 The last argument must be 0, i.e., the null pointer.

There is no need to indicate by means of an argument whether the Path is a cycle or
not: If it is, the last argument before the 0 will be a char* (pointer to char), if not,
it will be a Point*. The data member cycle_switch (of type bool) will be set to
true or false accordingly.

Point A;

Point B(2, 0);

Point C(3, 2);

Point D(1, 3);

Path p(&A, "..", &B, "..", &C, "--", &D, "...", 0);

A B

C

D

Figure 113.

[Setting function]void set (Point *first_point_ptr, string s, Point *p, [...],
0)

Corresponds to the constructor above.

4 Where possible, I prefer to use the C++ data type string rather than char*, however it was necessary
to use char* here because 0 is not a valid string, even though string may be implemented as char*,
and 0 must be a valid argument, since it is needed to indicate the end of the argument list.

Chapter 26: Path Reference 171

[Copy constructor]void Path (const Path& p)
Creates a new Path, making it a copy of p.

[Template specializations]Path* create new<Path> (const Path* p)
Path* create new<Path> (const Path& p)

Pseudo-constructors for dynamic allocation of Paths. They create a Path on the free
store and allocate memory for it using new(Path). They return a pointer to the new
Path.

If p is a non-zero pointer or a reference, the new Path will be a copy of p. If
the new object is not meant to be a copy of an existing one, ‘0’ must be passed
to create_new<Path>() as its argument. See Chapter 14 [Dynamic Allocation of
Shapes], page 84, for more information.

create_new<Path>() is used in the drawing and filling functions for copying a Path

and putting the copy onto a Picture. See Section 26.12 [Path Reference; Drawing
and Filling], page 180.

26.3 Destructor

[virtual Destructor]void ~Path (void)
All of the Points on a Path are created by create_new<Point>(), which allo-
cates them dynamically on the free store. Therefore, the destructor calls delete()

on all of the pointers on points. Following this, it calls points.clear() and
connectors.clear(). draw_color and fill_color may or may not have been allo-
cated on the free store, so ~Path() checks this first, and deletes them, if they were.
Then, it sets them to 0.

26.4 Operators

[Virtual function]Transform operator*= (const Transform& t)
Calls Point::operator*=(t) on each of the Points on the Path. See Section 22.6
[Point Reference; Operators], page 124. This has the effect of transforming the entire
Path by t. Please note that Path does not have a transform data member of its own.

[Function]void operator+= (const Point& pt)
Copies pt and pushes a pointer to the copy onto points. The last connector in the
Path will be used to connect the new Point and the previous one.

Point A(1, 2, 3);

Point B(3, 4, 5);

Path q;

q += A;

q += B;

q.show("q:");

a q:

(1, 2, 3) -- (3, 4, 5);

Chapter 26: Path Reference 172

[const function]Path operator+ (const Point& pt)
Copies the Path and pt, and pushes a pointer to the copy of pt onto points in the
new Path. The last connector in the new Path will be used to connect the new Point

and the previous one. The Path remains unchanged.

[Function]void operator&= (const Path& pa)
Concatenates two Paths. The result is assigned to *this. Neither *this nor pa may
be cyclical, i.e., cycle_switch must be false for both Paths.

[const function]Path operator& (const Path& pa)
Returns a Path representing the concatenation of *this and pa. *this remains
unchanged. Neither *this nor pa may be cyclical, i.e., cycle_switch must be false
for both Paths.

[Function]void operator+= (const string s)
Pushes s onto connectors.

26.5 Appending

[Function]Path append (const Path& pa, [string connector = "--", [bool
assign = true]])

Appends pa to *this using connector to join them and returns the resulting Path. If
assign ≡ true, then the return value is assigned to *this, otherwise, *this remains
unchanged.

If necessary, a const version could be added, for const Paths.

Point A(-2, 2);

Point B(-2, -2);

Point C(2, -2);

Point D(2, 2);

Path q("--", false, &A, &B, &C, &D, 0);

Point E(1, 2);

Point F(0, 4);

Point G(-.5, 3);

Path r("..", false, &E, &F, &G, 0);

q.append(r, "..", true);

q += "..";

q += "--";

q.set_cycle();

q.show("q:");

a q:

(-2, 2, 0) -- (-2, -2, 0) --

(2, -2, 0) -- (2, 2, 0) ..

(1, 2, 0) .. (0, 4, 0) ..

(-0.5, 3, 0) -- cycle;

Chapter 26: Path Reference 173

A

B C

DE

F

G

Figure 114.

26.6 Copying

[const virtual function]Shape* get copy (void)
Creates a copy of the Path using create_new<Path>(), which returns a pointer to
Path. get_copy() then casts this pointer to a pointer to Shape and returns it.

This function is used when copying Pictures and in Solid::output(), where objects
of types derived from Shape must be handled in the same way, without their actual
types being known.

26.7 Clearing

[Virtual function]void clear (void)
Does the same thing the destructor ~Path() does: Calls delete() on the pointers
to Points on points, clears points and connectors, deletes draw_color and fill_

color, if they point to Colors that were allocated on the free store, and sets them
to 0.

clear() is a pure virtual function in class Shape, so Path must be have a clear()

function. It is needed, because it is sometimes called through a pointer to Shape, so
that ~Path() cannot be accessed. At least, so far I haven’t found a way to call a
destructor through the virtual function facility.

26.8 Modifying

[Virtual function]bool set on free store ([bool b = true])
Sets on_free_store to b. This is used in the template function create_new(). See
Section 26.2 [Path Reference; Constructors and Setting Functions], page 167.

Chapter 26: Path Reference 174

[Virtual function]void set fill draw value (const signed short s)
Sets fill_draw_value to s, which should be one of Shape::DRAW, Shape::FILL,
Shape::FILLDRAW, Shape::UNDRAW, Shape::UNFILL, or Shape::UNFILLDRAW.

[Virtual function]void set draw color (const Color& c)
[Virtual function]void set draw color (const Color * c)

Sets draw_color (a pointer to a const Color) to &c or c, depending on whether the
version with a reference argument or the version with a pointer argument is used.

set_draw_color() is used in the Solid drawing and filling functions, because
Path::draw_color is protected, and the Solid cannot access it directly. See
Section 34.13 [Solid Reference; Drawing and Filling], page 255.

[Virtual function]void set fill color (const Color& c)
[Virtual function]void set fill color (const Color* c)

Sets fill_color (a pointer to a const Color) to &c or c, depending on whether the
version with a reference argument or the version with a pointer argument is used.

set_fill_color() is used in the Solid drawing and filling functions, because
Path::fill_color is protected, and the Solid cannot access it directly. See
Section 34.13 [Solid Reference; Drawing and Filling], page 255.

[Virtual function]void set dash pattern ([const string s = ""])
Sets dashed to s.

[Virtual function]void set pen ([const string s = ""])
Sets pen to s.

[Virtual function]void set connectors ([const string s = ".."])
Clears connectors and then pushes s onto it, making s the only connector. Ad-
ditional connectors can be added by using Path::operator+=(const string). See
Section 26.4 [Path Reference; Operators], page 171.

I plan to add a version of this function taking a vector of strings as its argument,
to make it possible to set several connectors at one time.

26.9 Affine Transformations

[Virtual function]Transform rotate (const real x, [const real y = 0, [const
real z = 0]])

Creates a Transform t locally and calls t.rotate(x, y, z). t is then applied to all
of the Points on points. The return value is t.

[Function]Transform scale (real x, [real y = 1, [real z = 1]])
Creates a Transform t locally and calls t.scale(x, y, z). t is then applied to all
of the Points on points. The return value is t.

The Points on the Path are scaled according to the arguments:

Point pt[8];

pt[0] = (-1, -1);

for (int i = 1; i < 8; ++i)

Chapter 26: Path Reference 175

{

pt[i] = pt[0];

pt[i].rotate(0, 0, i * 45);

}

Path p("--", true, &pt[0], &pt[1], &pt[2], &pt[3],

&pt[4], &pt[5], &pt[6],

&pt[7], 0);

p.draw();

p.scale(2, 2);

p.draw();

(0, 0, 0)

Figure 115.

[Function]Transform shear (real xy, [real xz = 0, [real yx = 0, [real yz = 0,

[real zx = 0, [real zy = 0]]]]])
Creates a Transform t locally and calls t.shear(xy, xz, yx, yz, zx, zy). t is then
applied to all of the Points on points. The return value is t.

Point p0;

Point p1(1);

Point p2(1, 1);

Point p3(0, 1);

Path q("--", true, &p0, &p1, &p2, &p3, 0);

q.rotate(0, 45);

q.shift(1);

q.filldraw(black, light_gray);

q.shear(1.5, 2, 2.5, 3, 3.5, 5);

q.filldraw(black, light_gray);

Chapter 26: Path Reference 176

(1, 0, 0)

(1.70711, 0, 0.707107)

(1.70711, 1, 0.707107)(1, 1, 0)

(1, 2.5, 3.5)

(3.12132, 6.38909, 6.68198) (4.62132, 7.38909, 11.682)

(2.5, 3.5, 8.5)

x

y

z

Figure 116.

[Function]Transform shift (real x, [real y = 0, [real z = 0]])
Creates a Transform t locally and calls t.shift(x, y, z). t is then applied to all
of the Points on points. The return value is t.

Shifts each of the Points on the Path according to the arguments.

default_focus.set(5, 10, -10, 0, 10, 10, 10);

Point pt[6];

pt[0].set(-2, -2);

pt[1].set(0, -3);

pt[2].set(2, -2);

pt[3].set(2, 2);

pt[4].set(0, 3);

pt[5].set(-2, 2);

Path p("--", true, &pt[0], &pt[1], &pt[2],

&pt[3], &pt[4], &pt[5], 0);

p.draw();

p.shift(3, 3, 3);

p.draw();

Chapter 26: Path Reference 177

x

y

z

p

p

Figure 117.

[Function]Transform shift (const Point& p)
Creates a Transform t locally and calls t.shift(p). t is then applied to all of the
Points on points. The return value is t.

This version of shift() uses the x, y, and z-coordinates of the Point p to shift the
Path.

default_focus.set(5, 10, -10, 0, 10, 10, 10);

Point pt[6];

pt[0].set(-2, -2);

pt[1].set(0, -3);

pt[2].set(2, -2);

pt[3].set(2, 2);

pt[4].set(0, 3);

pt[5].set(-2, 2);

Path p("--", true, &pt[0], &pt[1], &pt[2],

&pt[3], &pt[4], &pt[5], 0);

p.draw();

Point s(1, 1, 1);

p.shift(s);

p.draw();

Chapter 26: Path Reference 178

x

y

z

p

p

Figure 118.

[Virtual function]void shift times (real x, [real y = 1, [real z = 1]])
[Virtual function]void shift times (const Point& p)

Each of these functions calls the corresponding version of Point::shift_times() on
all of the Points on points. See Section 22.12 [Point Reference; Affine Transforma-
tions], page 130. The return value is void, because there is no guarantee that all of
the Points on a Path will have identical transform members (although it’s likely).

Please note that shift_times() will only have an effect on the Points on a Path

if it’s called after a call to shift() and before an operation is applied that causes
Point::apply_transform() to be called.

[Virtual function]Transform rotate (const Point& p0, const Point& p1, [const
real angle = 180])

Creates a Transform t locally and calls t.rotate(p0, p1, angle). t is then applied
to all of the Points on points. The return value is t.

[Function]Transform rotate (const Path& p, [const real angle = 180])
If p.is_linear() returns true, this function creates a Transform t locally and calls
t.rotate(p, angle). t is then applied to all of the Points on points. The return
value is t. Otherwise, it issues an error message and returns INVALID_TRANSFORM.

26.10 Aligning with an Axis

[const function]Transform align with axis ([const char axis = ’z’])
[Function]Transform align with axis (bool assign, [const char axis = ’z’])
[Function]Transform align with axis (const Point& p0, const Point& p1,

const char axis)
These functions return the Transform which, if applied to the Path, would align it
with the major axis indicated by the axis argument.

The first and second versions can only be called for Paths where line_switch is
true. The first version is const, so the Path remains unchanged. The second version
should only be called with assign = true, so that the Transform is applied to the

Chapter 26: Path Reference 179

Path, actually aligning it with the axis indicated. If the second version is called with
assign = false, a warning message is issued to the standard error output (stderr),
since one might as well use the first version in this case, but it won’t do any harm.
The third version creates a Transform t locally that would align the line from p0 to
p1 with the axis indicated, and applies t to the Path.

Point A(2, 3, 2);

Point B(-1, 1, 3);

Path p(A, B);

Transform t = p.align_with_axis(true, ’z’);

t.show("t:");

a t:

-0.316 0.507 -0.802 0

0 -0.845 -0.535 0

-0.949 -0.169 0.267 0

2.53 1.86 2.67 1

p *= t;

p.show("p:");

a p:

(2.53, 1.86, 2.67) -- (-1.02, 1.23, 3.67);

Point C(1);

C *= t.inverse();

Path q;

q += "..";

q += C;

for (int i = 0; i < 15; ++i)

{

C.rotate(A, B, 360.0/16);

q += C;

}

q.set_cycle(true);

q.show("q:");

a q:

(1.68, 3, 1.05) .. (1.9, 2.68, 1.06) ..

(2.13, 2.4, 1.21) .. (2.35, 2.22, 1.48) ..

(2.51, 2.15, 1.83) .. (2.59, 2.22, 2.21) ..

(2.58, 2.4, 2.55) .. (2.49, 2.68, 2.81) ..

(2.32, 3, 2.95) .. (2.1, 3.32, 2.94) ..

(1.87, 3.6, 2.79) .. (1.65, 3.78, 2.52) ..

(1.49, 3.85, 2.17) .. (1.41, 3.78, 1.79) ..

(1.42, 3.6, 1.45) .. (1.51, 3.32, 1.19) .. cycle;

q.align_with_axis(A, B, ’z’);

q.show("q:");

a q:

Chapter 26: Path Reference 180

(1, 0, 0) .. (0.924, 0.383, 0) ..

(0.707, 0.707, 0) .. (0.383, 0.924, 0) ..

(0, 1, 0) .. (-0.383, 0.924, 0) ..

(-0.707, 0.707, 0) .. (-0.924, 0.383, 0) ..

(-1, 0, 0) .. (-0.924, -0.383, 0) ..

(-0.707, -0.707, 0) .. (-0.383, -0.924, 0) ..

(0, -1, 0) .. (0.383, -0.924, 0) ..

(0.707, -0.707, 0) .. (0.924, -0.383, 0) .. cycle;

A

B

p

q

q

x

y

z

Figure 119.

26.11 Applying Transformations

[Virtual function]void apply transform (void)
Calls Point::apply_transform() on all of the Points on points. See Section 22.13
[Point Reference; Applying Transformations], page 135.

26.12 Drawing and Filling

[const virtual function]void draw ([const Color& ddraw_color =

*Colors::default_color, [const string ddashed = "", [const string ppen

= "", [Picture& picture = current_picture]]]])
[const Virtual function]void draw (Picture& picture, [const Color&

ddraw_color = *Colors::default_color, [string ddashed = "", [string
ppen = ""]]])

Allocates a copy of the Path on the free store, puts a pointer to the copy on
picture.shapes, sets its fill_draw_value to DRAW, and the values of its draw_color,
dashed, and pen according to the arguments.

The second version is convenient for passing a Picture argument without having to
specify all of the other arguments.

Chapter 26: Path Reference 181

All of the arguments to draw() are optional, so it can be invoked as follows:

Point A;

Point B(2);

Point C(3, 3);

Point D(1, 2);

Point E(-1, 1);

Path p("..", true, &A, &B, &C, &D, &E, 0);

p.draw();

A B

C

D

E

Figure 120.

The arguments:

ddraw color

Used to specify a color for the Path. ddraw color is a reference to a
Color. Colors are described in Chapter 16 [Color Reference], page 88.

The most basic Colors are predefined in 3DLDF (in the namespace

Colors), and users may create new Colors and specify their red-green-
blue values.

The Path p could be drawn in red by calling p.draw(Colors::red). This
manual isn’t intended to be printed in color, so there’s no figure to demon-
strate this. However, gray values can be printed on non-color printers.

using namespace Colors;

p.draw(gray, "", "pencircle scaled .25mm");

A B

C

D

E

A B

C

D

E

Figure 121.

Chapter 26: Path Reference 182

ddashed A string representing a “dash pattern”, as defined in MetaPost5. Dash
patterns have no meaning in 3DLDF, they are simply strings that are
written unchanged to out_stream.

p.draw(black, "evenly");

A B

C

D

E

Figure 122.

ppen A string representing a “pen”, as defined in Metafont and MetaPost6.
Pens have no meaning in 3DLDF, they are simply strings that are writ-
ten unchanged to out_stream.

p.draw(black, "", "pensquare xscaled 3mm

yscaled .25mm scaled .5mm");

A B

C

D

E

Figure 123.

picture Indicates the Picture on which the Path should be drawn.

The two versions of draw() differ in the position of the picture argument:
In the first version, it’s the last argument, while in the second version,
it’s the first argument. If a picture argument is used, it’s often more
convenient to use the second version.

The following example puts Path p onto temp_picture. It also
demonstrates how the labels are put onto temp_picture, and how

5 Hobby, A User’s Manual for MetaPost, p. 32.
6 Knuth, The METAFONTbook, Chapter 4, p. 21ff. Hobby, A User’s Manual for MetaPost, p. 32.

Chapter 26: Path Reference 183

temp_picture is output. In the previous examples, the commands for
making the labels and outputting current_picture were left out in
order to reduce clutter. See Section 22.19 [Point Reference; Labelling],
page 147, and Section 21.8.2 [Picture Reference; Outputting; Output
Functions], page 115.

Picture temp_picture;

p.draw(temp_picture);

A.dotlabel("A", "bot", temp_picture);

B.dotlabel("B", "bot", temp_picture);

C.dotlabel("C", "top", temp_picture);

D.dotlabel("D", "top", temp_picture);

E.dotlabel("E", "lft", temp_picture);

temp_picture.output(Projections::PARALLEL_X_Y);

A B

C

D

E

Figure 124.

[const function]void draw help ([const Color& ddraw_color = *help_color,

[string ddashed = help_dash_pattern, [string ppen = "", [Picture&
picture = current_picture]]]])

[const function]void draw help (Picture& picture, [const Color& ddraw_color

= *help_color, [string ddashed = help_dash_pattern, [string ppen =

""]]])
This functions are for drawing help lines. They are like draw(), except that draw_

help() returns immediately, if do_help_lines (a static data member in Path) is
false. Also, the defaults for ddraw color and ddashed differ from those for draw().

[const virtual function]void drawarrow ([const Color& ddraw_color =

*Colors::default_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture]]]])
[const virtual function]void drawarrow (Picture& picture, [const Color&

ddraw_color = *Colors::default_color, [string ddashed = "", [string
ppen = ""]]])

Like draw(), except that the MetaPost command drawarrow is written to out_stream
when picture is output. The second version is convenient for passing a Picture

argument without having to specify all of the other arguments.

Point m;

Chapter 26: Path Reference 184

Point n(2, 2);

m.dotlabel("m", "bot");

n.dotlabel("n");

m.drawarrow(n);

m

n

Figure 125.

[Non-member function]void draw axes ([real dist = 2.5, [string pos_x =

"bot", [string pos_y = "lft", [string pos_z = "bot", [const Color&

ddraw_color = *Colors::default_color, [const string ddashed = "",

[const string ppen = "", [const Point& shift_x = origin, [const Point&

shift_y = origin, [const Point& shift_z = origin, [Picture& picture =

current_picture]]]]]]]]]]])
[Non-member function]void draw axes (const Color& ddraw_color, [real dist

= 2.5, [string pos_x = "bot", [string pos_y = "lft", [string pos_z =

"bot", [const string ddashed = "", [const string ppen = "", [const
Point& shift_x = origin, [const Point& shift_y = origin, [const Point&

shift_z = origin, [Picture& picture = current_picture]]]]]]]]]])
These functions draw lines centered on the origin, and ending in arrows in the direc-
tions of the positive x, y, and z-axes, and labels them with the appropriate letters.
draw_axes() is used in many of the figures in this handbook. It can be helpful in
determining whether a Focus has a good “up” direction. See Section 23.1 [Focus
Reference; Data Members], page 151.

In the first version, all of the arguments are optional. In the second version,
ddraw color is required and has been moved to the front of the argument list. This
version is often convenient, when a Color other than the default is desired.

The arguments:

dist The length of the lines drawn. The default is 2.5. The value 0 can be
used as a dummy argument, if the default for dist is desired, but other
arguments must be specified.

pos x

pos y

pos z The position arguments for the labelling commands for each of the axes.
The defaults are "bot" for the x and z-axes, and "lft" for the y-axis.
The usual strings for the position of labels can be used, namely: "top",
"bot", "lft", "rt", "ulft", "urt", "llft", "lrt", and "". If "" is
used, that axis is not drawn. This can be useful for parallel projections

Chapter 26: Path Reference 185

onto one of the major planes7. In addition, "d" can be used to indicate
that the default should be used for that label. This can be useful if one
needs a placeholder, but doesn’t remember what the default is for that
label.

draw_axes(0, "bot", "rt", "");

current_picture.output(Projections::PARALLEL_X_Y);

x

y

Figure 126.

In addition, the arguments shift x, shift y, and shift z can be used to
adjust the positions of the labels further (see below).

ddraw color

ddashed

ppen Arguments for the drawarrow() command, described above, in this sec-
tion.

shift x

shift y

shift z Offsets for the labels. These arguments make it possible to adjust the
positions of the labels. The defaults are origin, so no shifting takes
place, if they are used. In Fig. 127, draw_axes is called without any
arguments, so the defaults are used.

draw_axes();

7 The usual interpretation of "" as a position argument to a labelling command would be to put it directly
onto *(Label.pt), which in this case would put it onto the arrowhead. Since this will probably never be
desirable, I’ve decided to use "" to suppress drawing axes. Formerly, draw_axes() used three additional
arguments for this purpose.

Chapter 26: Path Reference 186

x

y

z

Figure 127.

In Fig. 128, the Point P is used to shift the labels. Please note that
placeholders must be used for the first arguments.

Point P(.5, .5, .5);

draw_axes(0, "d", "d", "d", black, "", "", P, -P, P);

x

y

z

Figure 128.

Please note that the Points used for placing the labels are
three-dimensional Points, whether the shift x, shift y, and/or shift z

arguments are used or not. It is not currently possible to adjust the
positions of the labels on the two-dimensional projection itself. This
would probably be more useful, but would require changing the way
Picture::output() functions.

picture The Picture, onto which the Paths and Labels are put.

Chapter 26: Path Reference 187

[const function]void fill ([const Color& ffill_color =

*Colors::default_color, [Picture& picture = current_picture]])
[Function]void fill (Picture& picture, [const Color& ffill_color =

*Colors::default_color])
Allocates a copy of the Path on the free store, puts a pointer to it onto picture.shapes,
sets its fill_draw_value to FILL, and its fill_color to *ffill_color .

The second version is convenient for passing a Picture argument without having to
specify all of the other arguments.

The arguments are similar to those of draw(), except that the Color argument is
called ffill color instead of ddraw color.

p.fill(gray);

A B

C

D

E

Figure 129.

[const function]void filldraw ([const Color& ddraw_color =

*Colors::default_color, [const Color& ffill_color =

*Colors::background_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture]]]]])
[const function]void filldraw (Picture& picture, [const Color& ddraw_color =

*Colors::default_color, [const Color& ffill_color =

*Colors::background_color, [string ddashed = "", [string ppen = ""]]]])
Allocates a copy of the Path on the free store, puts a pointer to the copy onto
picture.shapes, sets its fill_draw_value to FILLDRAW, its draw_color and fill_

color to *ddraw_color and *ffill_color , respectively, its dashed to ddashed, and
its pen to ppen.

The second version is convenient for passing a Picture argument without having to
specify all of the other arguments.

The arguments are similar to those of draw() and fill(), except that both
ddraw color and ffill color are used.

3DLDF’s filldraw() differs from Metafont’s and MetaPost’s filldraw commands:
In Metafont and MetaPost, filldrawing is equivalent to filling a path and then
drawing its border using the pen. Metafont does not have colors. While MetaPost
does, its filldraw command does not foresee the use of different colors for drawing
and filling.

p.filldraw(black, gray, "", "pencircle scaled 2mm");

Chapter 26: Path Reference 188

A B

C

D

E

Figure 130.

It can often be useful to draw the outline of a Path, but to have it hide objects that
lie behind it. This is why the default for ffill color is *Colors::background_color.

default_focus.set(3, 0, -10, 3, 10, 10, 10);

Point p[8];

p[0] = p[1] = p[2] = p[3] = p[4]

= p[5] = p[6] = p[7].set(-1,-1, 5);

p[1] *= p[2] *= p[3] *= p[4] *= p[5]

*= p[6] *= p[7].rotate(0, 0, 45);

p[2] *= p[3] *= p[4]

*= p[5] *= p[6] *= p[7].rotate(0, 0, 45);

p[3] *= p[4] *= p[5] *= p[6]

*= p[7].rotate(0, 0, 45);

p[4] *= p[5] *= p[6] *= p[7].rotate(0, 0, 45);

p[5] *= p[6] *= p[7].rotate(0, 0, 45);

p[6] *= p[7].rotate(0, 0, 45);

p[7].rotate(0, 0, 45);

Path r0("..", true, &p[0], &p[1], &p[2],

&p[3], &p[4], &p[5], &p[6], &p[7], 0);

r0.filldraw(black, light_gray);

r0.scale(2, .5);

r0.shift(0, 0, -2.5);

r0.filldraw(black, gray);

r0.scale(.25, 3);

r0.shift(0, 0, -2.5);

r0.filldraw();

Chapter 26: Path Reference 189

Figure 131.

[Function]void undraw ([string ddashed = "", [string ppen = "", [Picture&
picture = current_picture]]])

[Function]void undraw (Picture& picture, [string ddashed = "", [string ppen

= ""]])
Allocates a copy of the Path on the free store, puts a pointer to it on picture.shapes,
sets its fill_draw_value to UNDRAW, and the values of its dashed and pen according
to the arguments.

The second version is convenient for passing a Picture argument without having to
specify all of the other arguments.

This function “undraws” a Path. This is equivalent to drawing the Path using the
background color (*Colors::background_color).

Undrawing is useful for removing a portion of a Path.

Point P0(1, 1);

Point P1(2, 1);

Point P2(2, 3);

Point P3(-1, 1);

Path p("--", false, &origin, &P0, &P1, &P2, &P3, 0);

p.draw(black, "", "pencircle scaled 3mm");

p.undraw("", "pencircle scaled 1mm");

Figure 132.

Chapter 26: Path Reference 190

[Function]void unfill ([Picture& picture = current_picture])
Allocates a copy of the Path on the free store, puts a pointer to it on picture.shapes
and sets its fill_draw_value to UNFILL

This function is useful for removing a portion of a filled region.

Point pt[4];

pt[0].set(-2, -2);

pt[1].set(2, -2);

pt[2].set(2, 2);

pt[3].set(-2, 2);

Path p("--", true, &pt[0], &pt[1], &pt[2], &pt[3], 0);

p.draw();

p.dotlabel();

p.filldraw(black, gray);

p.scale(.5, .5);

p.unfill();

Figure 133.

[Function]void unfilldraw ([const Color& ddraw_color =

*Colors::background_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture]]]])
[Function]void unfilldraw (Picture& picture, [const Color& ddraw_color =

*Colors::background_color, [string ddashed = "", [string ppen = ""]]])
Allocates a copy of the Path on the free store, puts a pointer to it on picture.shapes,
sets its fill_draw_value to UNFILLDRAW, and the values of its draw_color,
dashed, and pen according to the arguments. While the default for ddraw color is
*Colors::background_color, any other Color can be used, so that unfilldraw()

can unfill a Path and draw an outline around it.

The second version is convenient for passing a Picture argument without having to
specify all of the other arguments.

This function is similar to unfill() (see Section 26.12 [Path Reference; Drawing
and Filling], page 180), except that the outline of the Path will be “undrawn” using
the pen specified with the ppen argument, or MetaPost’s currentpen, if no ppen

argument is specified. In addition, the Path will be drawn using the Color specified

Chapter 26: Path Reference 191

in the ddraw color argument. Since the default is *Colors::background_color, the
Path will be “undrawn” unless a different Color is specified.

Point pt[6];

pt[0].set(-2, -2);

pt[1].set(0, -3);

pt[2].set(2, -2);

pt[3].set(2, 2);

pt[4].set(0, 3);

pt[5].set(-2, 2);

Path p("--", true, &pt[0], &pt[1], &pt[2],

&pt[3], &pt[4], &pt[5], 0);

p.fill(gray);

p.scale(.5, .5);

p.unfilldraw(black, "", "pensquare xscaled 3mm");

Figure 134.

26.13 Labelling

[const function]void label ([unsigned int i = 0, [string position_string =

"top", [short text_short = 0, [bool dot = false, [Picture& picture =

current_picture]]]]])
[const function]void label (Picture& picture, [unsigned int i = 0, [string

position_string = "top", [short text_short = 0, [bool dot = false]]]])
Calls Point::label() on all of the Points on points. They are numbered con-
secutively starting with i. The other arguments are used for all of the Points, so
it’s not possible to specify different positions for the labels for different Points. dot

will normally not be specified, unless a picture argument is used in the first version.
dotlabel() calls label() with dot = true.

Chapter 26: Path Reference 192

The second version is convenient for passing a Picture argument without having to
specify all of the other arguments.

[const function]void dotlabel ([unsigned int i = 0, [string position_string =

"top", [short text_short = 0, Picture& picture = current_picture]]])
[const function]void dotlabel (Picture& picture, [unsigned int i = 0, [string

position_string = "top", [short text_short = 0]]])
Like label(), except that the Points are dotted.

26.14 Showing

[const function]void show ([string text = "", [char coords = ’w’, [const bool

do_persp = true, [const bool do_apply = true, [Focus* f = 0, [const
unsigned short proj = Projections::PERSP, [const real factor = 1]]]]]]])

Prints information about the Path to standard output (stdout). text is simply printed
out, unless it’s the empty string, in which case "Path:" is printed out. coords indi-
cates which set of coordinates should be shown. Valid values are ’w’ for the world_

coordinates, ’p’ for the projective_coordinates, ’u’ for the user_coordinates,
and ’v’ for the view_coordinates, whereby the latter two are currently not in use
(see Section 22.1 [Point Reference; Data Members], page 119). If do apply is true,
apply_transform() is called on each Point, updating its world_coordinates and
resetting its transform. Otherwise, it’s not. The arguments do persp, f, proj, and
factor are only relevant when showing projective_coordinates. If do_persp is
true, the Points are projected using the values of f, proj, and factor (see Section 26.16
[Path Reference; Outputting], page 197). Otherwise, the values currently stored in
projective_coordinates are shown. The Points and connectors are printed out al-
ternately to standard output, followed by the word “cycle”, if cycle_switch = true.8

default_focus.set(0, 3, -10, 0, 3, 10, 10);

Reg_Polygon r(origin, 5, 3, 45);

r.fill(gray);

Point p[10];

for (int i = 0; i < 5; ++i)

p[i] = r.get_point(i);

p[5] = Point::intersection_point(p[4], p[0], p[2], p[1]).pt;

p[6] = Point::intersection_point(p[0], p[1], p[2], p[3]).pt;

p[7] = Point::intersection_point(p[1], p[2], p[4], p[3]).pt;

p[8] = Point::intersection_point(p[2], p[3], p[0], p[4]).pt;

p[9] = Point::intersection_point(p[3], p[4], p[0], p[1]).pt;

Path q("--", true, &p[0], &p[5], &p[1], &p[6], &p[2], &p[7],

&p[3], &p[8], &p[4], &p[9], 0);

q.draw();

q.show("q:");

a q:

fill_draw_value == 0

8 The following example shows only one Point per line. In actual use, two Points are shown, but this
causes overfull boxes in Texinfo.

Chapter 26: Path Reference 193

(0, 1.06066, 1.06066)

-- (-2.30826, 2.24651, 2.24651)

-- (-1.42658, 0.327762, 0.327762)

-- (-3.73485, -0.858092, -0.858092)

-- (-0.881678, -0.858092, -0.858092)

-- (4.92996e-07, -2.77684, -2.77684)

-- (0.881678, -0.858092, -0.858092)

-- (3.73485, -0.858092, -0.858092)

-- (1.42658, 0.327762, 0.327762)

-- (2.30826, 2.24651, 2.24651) -- cycle;

q.show("q:", ’p’);

a q:

fill_draw_value == 0

Projective coordinates.

(0, -1.75337, 0.0958948)

-- (-1.88483, -0.615265, 0.183441)

-- (-1.38131, -2.58743, 0.031736)

-- (-4.08541, -4.22023, -0.0938636)

-- (-0.964435, -4.22023, -0.0938636)

-- (0, -7.99767, -0.384436)

-- (0.964436, -4.22023, -0.0938636)

-- (4.08541, -4.22023, -0.0938636)

-- (1.38131, -2.58743, 0.031736)

-- (1.88483, -0.615266, 0.183441) -- cycle;

0

1

2 3

4

5

6

7

8

9

Figure 135.

Chapter 26: Path Reference 194

[Function]void show colors ([bool = false])
Shows the values of draw_color and fill_color. These will normally be 0, unless
the Path is on a Picture.

26.15 Querying

[const function]bool is on free store (void)
Returns true, if the Path was dynamically allocated on the free store, otherwise
false.

[const virtual function]bool is planar ([const bool verbose = false, [string
text = ""]])

Uses get_normal() to determine whether the Path is planar or not. Returns true,
if it is, otherwise false. If verbose is true, text is written to standard output, or
“Path:”, if text is the empty string, followed by a message saying whether the Path

is planar or not.

[const function]bool is linear ([const bool verbose = false, [string text =

""]])
Returns true, if line_switch is true. Otherwise, is_linear() uses get_normal()
to determine whether the Path is linear. If it is, is_linear() returns true, otherwise
false.

[Inline const function]bool is cycle (void)
Returns true if the Path is cyclical, i.e., cycle_switch = true, otherwise false.
Only cyclical Paths are fillable.

[Inline function]int size (void)
Returns the number of Points on points, i.e., points.size().

[Inline const function]bool get line switch (void)
Returns the value of line_switch. line_switch is only true, if the Path was created,
directly or indirectly, using the constructor taking two Point arguments only. See
Section 26.2 [Path Reference; Constructors and Setting Functions], page 167.

[Function]real slope ([char a = ’x’, [char b = ’y’]])
Returns the slope of the Path in the plane indicated by the arguments, if is_linear()
returns true. Otherwise, slope() issues an error message and returns INVALID_REAL.

[const function]Path subpath (size_t start, size_t end, [const bool cycle =

false, [const string connector = ""]])
Returns a new Path using points[start] through points[end - 1]. If cycle is
true, then the new Path will be a cycle, whether *this is or not. One optional
connector argument can be used. If it is, it will be the only connector. Otherwise,
the appropriate connectors from *this are used.

start must be < end. It is not possible to have start > end, even if *this is a cycle.

[const function]const Point& get point (const unsigned short a)
Returns the Point *points[a], if a < points.size() and the Path is non-empty,
otherwise INVALID_POINT.

Chapter 26: Path Reference 195

[const function]const Point& get last point (void)
Returns the Point pointed to by the last pointer on points. Equivalent to get_

point(get_size() - 1), but more convenient to type. Returns INVALID_POINT, if
the Path is empty.

[const inline virtual function]size_t get size (void)
Returns points.size().

[const function]Line get line (void)
Returns a Line corresponding to the Path, if the latter is linear. Otherwise, INVALID_
LINE is returned. See Chapter 24 [Line Reference], page 154.

[const virtual function]Point get normal (void)
Returns a Point representing a unit vector in the direction of the normal to the plane
of the Path, or INVALID_POINT, if the Path is non-planar.

Point P(1, 1, 1);

Rectangle r(P, 4, 4, 30, 30, 30);

Point N = r.get_normal();

P

0

1

2

3
~N

~N

x

y

z

Figure 136.

In 3DLDF, plane figures generally have constructors taking a |Point| argument for
the center, a variable number of |real| arguments for the dimensions, and three |real|
arguments for the rotation about the major axes. The object is first created in the x-z
plane, and the Points are generated to be traversed in the counter-clockwise direction,
when seen from a Point with a positive y-coordinate. If no rotation is specified, the
normal will point in the direction of the positive y-axis. If non-zero arguments are
used for rotation, the normal will be rotated accordingly. This direction considered
to be “outside”. However, according to Huw Jones, Computer Graphics Through

Key Mathematics, p. 197, “outside” is considered to be the side of a plane, where the
Points are meant to be traversed in the clockwise direction. I hope that no problems
arise from this discrepancy!

Chapter 26: Path Reference 196

[const virtual function]Plane get plane (void)
Creates and returns a Plane p corresponding to the Path, if the latter is planar,
otherwise INVALID_PLANE. If the Path is planar, p.point will be the Point pointed
to by this->points[0]. See Chapter 25 [Plane Reference], page 157.

Point P(1, 1, 1);

Rectangle r(P, 4, 4, 45, 20, 15);

Plane q = r.get_plane();

q.show("q:");

a q:

normal: (0.0505914, 0.745607, -0.664463)

point: (0.0178869, -0.727258, -1.01297)

distance == -0.131735

P

q.point

q.normal

r

x

y

z

Figure 137.

[Function]void set cycle ([const bool c = true])
Sets cycle_switch to c.

[Function]Path reverse (bool assign)
[const function]Path reverse (void)

These functions return a Path with the same Points and connectors as *this, but
in reversed order. reverse() can only be applied to non-cyclical Paths. If *this is
a cycle, reverse() issues an error message and returns *this unreversed.

If the first version is called with assign = true, *this itself is reversed. If *this
should remain unchanged, the const version without an argument should be called.
If, on the other hand, the first version is called with assign = false, a warning
message is issued, but the reversed Path is returned just the same, leaving *this

unchanged.

Chapter 26: Path Reference 197

26.16 Outputting

[Function]bool project (const Focus& f, const unsigned short proj, real

factor)
Calls Point::project(f, proj, factor) on the Points on the Path. If
Point::project() fails (i.e., returns false), for any of the Points, this function
returns false. Otherwise, it returns true.

[Function]vector<Shape*> extract (const Focus& f, const unsigned short

proj, real factor)
Checks that the Points on points can be projected using the values for f, proj, and
factor. If they can, a vector<Shape*> containing only this is returned. Called in
Picture::output().

[Virtual function]bool set extremes (void)
Sets the appropriate elements in projective_extremes to the minimum and max-
imum values of the x, y, and z-coordinates of the Points on the Path. Used in
Picture::output() for determining whether a Path can be output using the argu-
ments passed to Picture::output().

[Inline const virtual function]const valarray<real> get extremes (void)
Returns projective_extremes. Used in Picture::output().

[const virtual function]real get minimum z (void)
[const virtual function]real get mean z (void)
[const virtual function]real get maximum z (void)

These functions return the minimum, mean, or maximum value, respectively, of the
z-coordinates of the Points on the Path. Used in the surface hiding algorithm in
Picture::output().

[Virtual function]void suppress output (void)
Called in Picture::output(). Sets do_output to false, if the Path cannot be
output using the arguments passed to Picture::output().

[Virtual function]void unsuppress output (void)
Called in Picture::output(). Resets do_output to true after output() is
called on the Shapes on shapes in a Picture, so that the Path can be output
if Picture::output() is called again, with arguments that allow the Path to be
output.

[Virtual function]void output (void)
Called in Picture::output(). Writes the MetaPost code to out_stream for drawing,
filling, filldrawing, undrawing, unfilling, or unfilldrawing the Path, if the latter was
projectable using the arguments passed to Picture::output().

Chapter 26: Path Reference 198

26.17 Intersections

[Function]bool_point intersection point (const Path& p, const bool trace)
Finds the intersection point, if any, of two linear Paths. Let bp be the bool_point

returned by this function. bp.pt will contains the intersection point, if it exists. If
not, it will contain INVALID_POINT. If the intersection point exists and lies on both
of the line segments represented by the Path and p, bp.b will be true, otherwise,
false.

This function calls Point::intersection_points(), passing the first and last
Points on *this and p as its arguments. If the trace argument is false, the version
of Point::intersection_points() that finds the intersection point by means of a
vector calculation is used. If it’s true, the version that finds the intersection point
of the traces of the lines on the major planes is used. See Section 22.17 [Point
Reference; Intersections], page 143.

Point A(-1, -1, -1);

Point B(1, 1, 1);

Path p0(A, B);

Point C(-2, 1, 1);

Point D(1.75, 0.25, 0.25);

Path p1(C, D);

bool_point bp = p0.intersection_point(p1);

bp.pt.dotlabel("i");

bp.pt.show("bp.pt:");

a bp.pt: (0.5, 0.5, 0.5)

i

A

BC

D

x

y

z

Figure 138.

Chapter 27: Polygon Reference 199

27 Polygon Reference

Class Polygon is defined in ‘polygons.web’, and is derived from Path, using public deriva-
tion.

Polygon is mainly intended for use as a base class for more specialized kinds of polygons.
Currently, the classes Reg_Polygon (regular polygon) and Rectangle are defined. See
Chapter 28 [Regular Polygon Reference], page 205, and Chapter 29 [Rectangle Reference],
page 211.

27.1 Data Members

[Private variable]Point center
The center of the Polygon, if it has one. However, a Polygon need not have a center.
If it doesn’t, center should be set to INVALID_POINT.

27.2 Operators

[Virtual operator]Transform operator*= (const Transform& t)
Multiplies a Polygon by the Transform t. Similar to Path::operator*=(const

Transform& t), except that center is transformed as well. See Section 26.4 [Path
Reference; Operators], page 171.

27.3 Querying

[Virtual function]const Point& get center (void)
[const function]Point get center (void)

These functions return center. If the Polygon doesn’t contain any Points, a warning
is issued, and INVALID_POINT is returned.

Chapter 27: Polygon Reference 200

27.4 Affine Transformations

[Virtual function]Transform rotate (const real x, [const real y = 0, [const
real z = 0]])

[Virtual function]Transform rotate (const Point& p0, const Point& p1, [const
real angle = 180])

[Virtual function]Transform rotate (const Path& p, [const real angle = 180])
[Virtual function]Transform scale (real x, [real y = 1, [real z = 1]])
[Virtual function]Transform shear (real xy, [real xz = 0, [real yx = 0, [real

yz = 0, [real zx = 0, [real zy = 0]]]]])
[Virtual function]Transform shift (real x, [real y = 0, [real z = 0]])
[Virtual function]Transform shift (const Point& p)
[Virtual function]void shift times (real x, [real y = 1, [real z = 1]])
[Virtual function]void shift times (const Point& p)

The affine transformation functions for Polygon differ from the Path versions only
in that center is transformed as well. See Section 26.9 [Path Reference; Affine
Transformations], page 174.

Please note, that the classes currently derived from Polygon, namely Reg_Polygon

and Rectangle, currently inherit these functions from Polygon. The problem with
this is, that they have data members, which are not recalculated when a Reg_Polygon

or Rectangle is transformed. I plan to do something about this soon! It will also be
necessary to add the function Reg_Polygon::is_reg_polygonal(), in order to test
whether operations on a Reg_Polygon have caused it to become irregular and/or non-
polygonal. Similarly, the function Rectangle::is_rectangular()must be added, to
test whether operations on a Rectangle has caused it to become non-rectangular. See
Section 28.1 [Regular Polygon Reference; Data Members], page 205, and Section 29.1
[Rectangle Reference; Data Members], page 211.

27.5 Intersections

[const function]bool_point_pair intersection points (const Point& p0,

const Point& p1)
[const function]bool_point_pair intersection points (const Path& p)

These functions find the intersections of the Polygon and a line. In the first version,
the Point arguments are the end points of the line. The argument to the second
version must be a linear Path.

A line and a regular polygon or rectangle1 can intersect at two points at most. Let b be
a bool_point_pair returned by intersection_points(). If no intersection points
are found, b.first.pt and b.second.pt will be INVALID_POINT, and b.first.b

and b.second.b will be false. If a single intersection point is found, the correspond-
ing Point will be stored in b.first.pt. If the Point is on the line segment −−→p0p1,
b.first.b will be true, otherwise false. If a second intersection point is found, it
will be stored in b.second.pt, and b.second.b is set analogously to b.first.b.

1 Reg_Polygon and Rectangle are currently the only classes derived from Polygon.

Chapter 27: Polygon Reference 201

When the Point arguments and the Reg_Polygon are coplanar, as in Fig. 139, two
intersection points are possible. In this case, only intersection points of the line with
an edge of the Reg_Polygon are returned in the bool_point_pair.

Point A(1, 1, 1);

Reg_Polygon r(origin, 5, 3);

Transform t;

t.rotate(15, 12, 11);

t.shift(A);

Point P(-2, 0, -1);

Point Q(2, 0, 1);

P *= Q *= r *= t;

bool_point_pair bpp = r.intersection_points(P, Q);

bpp.first.pt.dotlabel("f", "rt");

bpp.second.pt.dotlabel("s");

P

Q

f

s

Figure 139.

In Fig. 140, the lines
−−→
BC and

−−→
PQ are not coplanar with the Reg_Polygon r. In each

case, only one intersection point is possible, and it can be either an intersection with
an edge of the Reg_Polygon, or lie within its perimeter.

Point B(r.get_point(3).mediate(r.get_point(4)));

Point C(B);

B.shift(0, 2, .5);

C.shift(0, -2, -.5);

Point P(-1, -2, -1);

Point Q(0, 2, 1);

B *= C *= P *= Q *= r *= t;

bool_point_pair bpp = r.intersection_points(B, C);

bpp.first.pt.dotlabel("i_0", "rt");

bpp = r.intersection_points(P, Q);

bpp.first.pt.dotlabel("i_1", "rt");

Chapter 27: Polygon Reference 202

B

C

P

Q

i0i1

Figure 140.

In Fig. 141, the intersection point of r with the line
−−→
PQ does not lie on the line

segment PQ.

bpp = r.intersection_points(P, Q);

bpp.first.pt.dotlabel("i", "rt");

cout << "bpp.first.b == " << bpp.first.b << endl << flush;

a bpp.first.b == 0

P

Q

i

Figure 141.

[const function]vector<Point> intersection points (const Polygon& r)
Finds the intersection points of two Polygons. Let v be the vector<Point> returned
by intersection_points(). If the Polygons are coplanar, v will contain the inter-
section points of the edges of the Polygons, as in Fig. 142.

Rectangle r(origin, 4, 4);

Reg_Polygon rp(origin, 5, 5, 0, 36);

rp.shift(0, 0, .25);

vector <Point> v = r.intersection_points(rp);

Chapter 27: Polygon Reference 203

0 1

2

3

4 5

6

7

Figure 142.

If the Polygons lie in parallel planes, there can be no intersection points. If they lie
in non-parallel, non-coplanar planes, intersection_points() first finds the intersec-
tion line of the two planes. Then it finds the intersection points of this line with the
two Polygons, if they exist. There can no more than four intersection points, in this
case. v[0] and v[1] will be the intersection points of the line with *this, while v[2] and
v[3] will be the intersection points of the line with r. If one or more of the intersection
points doesn’t exist, the corresponding member of v will contain INVALID_POINT as
a placeholder.

Point A(1, 1, 1);

Rectangle r(A, 4, 4);

Reg_Polygon p(A, 5, 5);

p.rotate(90, 30);

p.shift(2, 0, 3);

vector <Point> v = r.intersection_points(p);

r

p

0

1
2

3

Figure 143.

In Fig. 144, the Rectangle r and the Reg_Polygon p don’t overlap at all, nor does
the intersection line of the two planes intersect with p. However, it does intersect
with p at the labelled Points.

Point A(1, 1, 1);

Rectangle r(A, 4, 4);

Reg_Polygon p(A, 5, 5);

Chapter 27: Polygon Reference 204

p.rotate(90, 30);

p.shift(4, 3, 3);

vector <Point> v = r.intersection_points(p);

int i = 0;

for (vector<Point>::iterator iter = v.begin();

iter != v.end(); ++iter)

iter->dotlabel(i++, "bot");

r

p

0

1

Figure 144.

Chapter 28: Regular Polygon Reference 205

28 Regular Polygon Reference

Class Reg_Polygon is defined in ‘polygons.web’, and is derived from Polygon, using public
derivation.

As noted above in Section 27.4 [Polygon Reference; Affine Transformations], page 200,
class Reg_Polygon, like class Rectangle, currently inherits its transformation functions
and operator*=(const Transform&) from Polygon. Consequently, the data members of
a Reg_Polygon, except for center, are not recalculated when it’s transformed. I plan to
change this soon! It will also be necessary to add the function Reg_Polygon::is_reg_

polygonal(), in order to test whether a Reg_Polygon is still regular and polygonal.

28.1 Data Members

[Private variable]real internal angle
The angle at the center of the Reg_Polygon of the triangle formed by the center and
two adjacent corners. If n is the number of sides of a Reg_Polygon, internal_angle
will be 360.0/n, so internal_angle will be 120 for a regular triangle, 90 for a square,
72 for a pentagon, etc.

[Private variable]real radius
The radius of the surrounding circle for a Reg_Polygon (Umkreis).

[Private variable]unsigned short sides
The number of sides of a Reg_Polygon.

[Private variable]bool on free store
true, if the Reg_Polygon was dynamically allocated on the free store, otherwise
false. Dynamic allocation of Reg_Polygons should only be performed by create_

new<Reg_Polygon>(), which sets on_free_store to true.

28.2 Constructors and Setting Functions

[Default constructor]void Reg Polygon (void)
Creates an empty Reg_Polygon.

[Constructor]void Reg Polygon (const Point& ccenter, const unsigned short

ssides, const real ddiameter, [const real angle_x = 0, [const real

angle_y = 0, [const real angle_z = 0]]])
Creates a Reg_Polygon in the x-z plane, centered at the origin, with the number of
sides specified by ssides and with radius = ddiameter/2.

The Reg_Polygon is rotated about the x, y, and z-axes in that order by the angles
given by angle x, angle y, and angle z, respectively, if any one of them is non-zero.
Finally, the Reg_Polygon is shifted such that its center is located at ccenter.

Reg_Polygon r(origin, 3, 2.75, 10, 15, 12.5);

r.draw();

Chapter 28: Regular Polygon Reference 206

x

y

z

Figure 145.

[Setting function]void set (const Point& ccenter, const unsigned short ssides,

const real ddiameter, [const real angle_x = 0, [const real angle_y = 0,

[const real angle_z = 0]]])
Corresponds to the constructor above.

A Reg_Polygon can theoretically have any number of sides, however I haven’t tested
it for unreasonably large values. The following example demonstrates that set() can
be used to change a Reg_Polygon.

Reg_Polygon r;

real j = .5;

for (int i = 3; i <= 16; ++i)

{

r.set(origin, i, j);

r.draw();

j += .5;

}

Chapter 28: Regular Polygon Reference 207

Figure 146.

[Template specializations]Reg_Polygon* create new<Reg Polygon> (const
Reg_Polygon* r)

Reg_Polygon* create new<Reg Polygon> (const Reg_Polygon& r)
Pseudo-constructors for dynamic allocation of Reg_Polygons. They create a Reg_

Polygon on the free store and allocate memory for it using new(Reg_Polygon). They
return a pointer to the new Reg_Polygon. If r is a non-zero pointer or a reference, the
new Reg_Polygon will be a copy of r. If the new object is not meant to be a copy of
an existing one, ‘0’ must be passed to create_new<Reg_Polygon>() as its argument.
See Chapter 14 [Dynamic Allocation of Shapes], page 84, for more information.

28.3 Operators

[Operator]const Reg_Polygon& operator= (const Reg_Polygon& p)
Makes the Reg_Polygon a copy of p.

28.4 Querying

[const inline function]real get radius (void)
Returns radius.

28.5 Circles

[const function]Circle in circle (void)
Returns the enclosed Circle of the Reg_Polygon.

Point P(0, -1, 1);

Reg_Polygon h(P, 6, 4, 15, 12, 11.5);

h.filldraw(black, gray);

Chapter 28: Regular Polygon Reference 208

Circle c = h.in_circle();

c.unfilldraw(black);

h

c
x

y

z

Figure 147.

[const function]Circle draw in circle ([const Color& ddraw_color =

*Colors::default_color, [const string ddashed = "", [const string]
ppen = "", [Picture& picture = current_picture]]])

[const function]Circle draw in circle ([Picture& picture = current_picture,

[const Color& ddraw_color = *Colors::default_color, [const string

ddashed = "", [const string] ppen = ""]]])
Draws and returns the enclosed Circle of the Reg_Polygon.

Point P(0, 1, 1);

Reg_Polygon h(P, 7, 4, 80, 2, 5);

h.draw(black, "evenly");

h.draw_in_circle();

Chapter 28: Regular Polygon Reference 209

h

c

x

y

z

Figure 148.

[const function]Circle out circle (void)
Returns the surrounding Circle of the Reg_Polygon.

Point P(0, -1, 1);

Reg_Polygon h(P, 6, 4, 15, 12, 11.5);

Circle c = h.out_circle();

c.filldraw(black, gray);

h.unfilldraw(black);

h

c

x

y

z

Figure 149.

Chapter 28: Regular Polygon Reference 210

[const function]Circle draw out circle ([const Color& ddraw_color =

*Colors::default_color, [const string ddashed = "", [const string]
ppen = "", [Picture& picture = current_picture]]])

[const function]Circle draw out circle ([Picture& picture =

current_picture, [const Color& ddraw_color = *Colors::default_color,

[const string ddashed = "", [const string] ppen = ""]]])
Draws and returns the surrounding Circle of the Reg_Polygon.

Point P(0, 1, 1);

Reg_Polygon h(P, 7, 4, 80, 2, 5);

h.draw(black, "evenly");

h.draw_out_circle();

c

h

x

y

z

Figure 150.

Chapter 29: Rectangle Reference 211

29 Rectangle Reference

Class Rectangle is defined in ‘rectangs.web’, and is derived from Polygon, using public
derivation.

As noted above in Section 27.4 [Polygon Reference; Affine Transformations], page 200,
class Rectangle, like class Reg_Polygon, currently inherits its transformation functions
and operator*=(const Transform&) from Polygon. Consequently, the data members of a
Rectangle, except for center, are not recalculated when it’s transformed. I plan to change
this soon! It will also be necessary to add the function Rectangle::is_rectangular(), in
order to test whether a Rectangle is still rectangular.

29.1 Data Members

[Private variables]real axis h
real axis v

The lengths of the horizontal and vertical axes, respectively, of the Rectangle. Ac-
tually, they are merely the horizontal and vertical axes by convention, since there are
no restrictions on the orientation of an Rectangle.

Please note that axis_h and axis_v are currently not recalculated, when a Rectangle
is transformed. I plan to do something about this soon.

[Private variable]bool on free store
true, if the Rectangle was dynamically allocated on the free store, otherwise
false. Dynamic allocation of Rectangles should only be performed by
create_new<Rectangle>(), which sets on_free_store to true.

29.2 Constructors and Setting Functions

[Default constructor]void Rectangle (void)
Creates an empty Rectangle.

[Constructor]void Rectangle (const Point& ccenter, const real aaxis_h,

const real aaxis_v, [const real angle_x = 0, [const real angle_y = 0,

[const real angle_z = 0]]])
Creates a Rectangle in the x-z plane, centered at the origin, with width ≡ aaxis h

(in the ±x direction), and height ≡ aaxis v (in the ±z direction). If one or more of
the arguments angle x, angle y, or angle z are used, it is rotated by those amounts
around the appropriate axes. Finally, the Rectangle is shifted such that its center
lies at ccenter.

Point C(-1, -1, 1);

Rectangle r(C, 3, 4, 30, 30, 30);

Chapter 29: Rectangle Reference 212

r

x

y

z

Figure 151.

[Setting function]void set (const Point& ccenter, const real aaxis_h, const

real aaxis_v, [const real angle_x = 0, [const real angle_y = 0, [const
real angle_z = 0]]])

Corresponds to the constructor described above.

[Constructor]void Rectangle (const Point& p0, const Point& p1, const Point&

p2, const Point& p3)
Creates Rectangle using four Point arguments. The order of the arguments must
correspond with a path around the Rectangle.

This function does not currently check that the arguments yield a valid Rectangle,
therefore all code using it must ensure that they do.

[Setting function]void set (const Point& pt0, const Point& pt1, const Point&

pt2, const Point& pt3)
Corresponds to the constructor above.

[Template specializations]Rectangle* create new<Rectangle> (const
Rectangle* r)

Rectangle* create new<Rectangle> (const Rectangle& r)
Pseudo-constructors for dynamic allocation of Rectangles. They create a Rectangle

on the free store and allocate memory for it using new(Rectangle). They return a
pointer to the new Rectangle.

If r is a non-zero pointer or a reference, the new Rectangle will be a copy of r. If
the new object is not meant to be a copy of an existing one, ‘0’ must be passed to
create_new<Rectangle>() as its argument. See Chapter 14 [Dynamic Allocation of
Shapes], page 84, for more information.

29.3 Operators

[Assignment Operator]const Rectangle& operator= (const Rectangle& r)
Makes the Rectangle a copy of r.

Chapter 29: Rectangle Reference 213

29.4 Returning Points

[Function]Point corner (unsigned short c)
Returns the corner Point indicated by the argument c, which must be between 0 and
3.

[const function]Point mid point (unsigned short m)
Returns the mid-point of one of the sides. The argument c must be between 0 and 3.

29.5 Querying

[const functions]real get axis h (void)
real get axis v (void)

These functions return axis_h and axis_v, respectively.

Please note, that axis_h and axis_v are currently not recalculated, when a
Rectangle is transformed. I plan to do something about this soon.

[const function]bool is rectangular (void)
Returns true, if the Rectangle is rectangular, otherwise false. Transformations,
such as shearing, can cause Rectangles to become non-rectangular.

29.6 Ellipses

[const function]Ellipse out ellipse (void)
Returns the smallest Ellipse that surrounds the Rectangle.

Point P(-1, -1, 3);

Rectangle r(P, 3, 4, 60, 30, 15);

Ellipse e = r.out_ellipse();

e.filldraw(black, gray);

r.unfilldraw(black);

Chapter 29: Rectangle Reference 214

x

y

z

Figure 152.

[const function]Ellipse in ellipse (void)
Returns the Ellipse enclosed by the Rectangle.

Point P(-1, -1, 3);

Rectangle r(P, 3, 4, 60, 30, 15);

Ellipse e = r.in_ellipse();

r.filldraw(black, gray);

e.unfilldraw(black);

x

y

z

Figure 153.

Chapter 29: Rectangle Reference 215

[const function]Ellipse draw out ellipse ([const Color& ddraw_color =

*Colors::default_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture]]]])
Draws the smallest Ellipse that surrounds the Rectangle. The arguments are like
those of Path::draw() (see Section 26.12 [Path Reference; Drawing and Filling],
page 180). The return value is the surrounding Ellipse.

[const function]Ellipse draw in ellipse ([const Color& ddraw_color =

*Colors::default_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture]]]])
Draws the Ellipse enclosed by the Rectangle. The arguments are like those of
Path::draw() (see Section 26.12 [Path Reference; Drawing and Filling], page 180).
The return value is the enclosed Ellipse.

Chapter 30: Regular Closed Plane Curve Reference 216

30 Regular Closed Plane Curve Reference

Class Reg_Cl_Plane_Curve is defined in ‘curves.web’. It is derived from Path using public
derivation.

Reg_Cl_Plane_Curve is not called “Regular_Closed_Plane_Curve” because the longer
name causes too many “Overfull boxes”1 in the CWEAVE output of the program code. See
Section 1.3 [CWEB Documentation], page 5.

Reg_Cl_Plane_Curve is meant to be used as a base class; no objects should be declared
of type Reg_Cl_Plane_Curve. Currently, class Ellipses is derived from Reg_Cl_Plane_

Curve and class Circle is derived from Ellipse.

At present, I have no fixed definition of what constitutes “regularity” as far as Reg_

Cl_Plane_Curves are concerned. Ellipses and circles are “regular” in the sense that they
have axes of symmetry. There must be an equation for a Reg_Cl_Plane_Curve, such as
x2 + y2 = r2 for a circle. A derived class should have a solve() function that uses this
equation. Reg_Cl_Plane_Curve::intersection_points() in turn uses solve() to find
the intersection points of a line with the Reg_Cl_Plane_Curve. This way, the derived
classes don’t need their own functions for finding their intersections with a line. However,
such functions can be added, if desired.

It is assumed that classes derived from Reg_Cl_Plane_Curve are fillable, which implies
that they must be closed Paths. Reg_Cl_Plane_Curves inherit their drawing and filling
functions from Path.

The constructors and setting functions of classes derived from Reg_Cl_Plane_Curve

must ensure that the resulting geometric figures are planar, convex, and that the number
of Points they contain is a multiple of 4. The latter assumption is of importance in
intersection_points(), segment(), half(), and quarter(). See Section 30.3 [Regular
Closed Plane Curve Reference; Intersections], page 217, and Section 30.4 [Regular Closed
Plane Curve Reference; Segments], page 219.

30.1 Data Members

[Protected variable]Point center
The center of the Reg_Cl_Plane_Curve, if it has one.

[Protected variable]unsigned short number of points
The number of Points on points in a Reg_Cl_Plane_Curve.

30.2 Querying

[const inline virtual functions]bool is quadratic (void)
bool is cubic (void)
bool is quartic (void)

These functions all return false. They are intended to be overloaded by member
functions of derived classes.

1 If you don’t know what “overfull boxes” are, don’t worry about it. It has to do with TEX’s line and page
breaking algorithms. If you want to know more, see Knuth, Donald E., The TEXbook.

Chapter 30: Regular Closed Plane Curve Reference 217

[const inline virtual function]real_triple get coefficients (real Slope, real

v_intercept)
Returns a real_triple with all three values ≡ INVALID_REAL. Intended to be over-
loaded by member functions of derived classes.

[const inline virtual function]pair<real, real> solve (char axis_unknown, real

known)
Returns a pair<real, real> with first = second = INVALID_REAL. Intended to
be overloaded by member functions of derived classes.

[const virtual function]signed short location (Point ref_pt, Point p)
Returns a signed short indicating the location of p with respect to the Reg_Cl_

Plane_Curve, which must be planar. The Reg_Cl_Plane_Curve constructors should
ensure that Reg_Cl_Plane_Curves are, but there is no guarantee that they will not
have been manipulated into a non-planar state, by shearing, for example.

The argument ref pt is used within the function for shifting a copy of the Reg_Cl_

Plane_Curve to a convenient position. It need not be the |center| of the Reg_Cl_

Plane_Curve, however, classes derived from Reg_Cl_Plane_Curve will probably have
their own versions of location(), which will pass center as the ref pt argument to
this function. Reg_Cl_Plane_Curves need not have a meaningful |center|.

location() returns the following values:

-1 p and *this are coplanar, and p lies outside the perimeter of *this.

0 p and *this are coplanar, and p lies on the perimeter of *this.

1 p and *this are coplanar, and p lies inside the perimeter of *this.

-2 p and *this are not coplanar.

-3 Something has gone terribly wrong.

-4 The normal to *this has 0 magnitude, i.e., the |Points| on *this are
colinear.

-5 An error occurred in putting *this in one of the major planes.

[Virtual function]Point angle point (real angle)
Returns INVALID_POINT. Intended to be overloaded by member functions of derived
classes.

30.3 Intersections

[const function]bool_point_pair intersection points (Point ref_pt, Point

p0, Point p1)
[const function]bool_point_pair intersection points (const Point& ref_pt,

const Path& p)
The version of this function taking Point arguments finds the intersection points,
if any, of the Reg_Cl_Plane_Curve and the line p that passes through the Points

p0 and p1. In the other version, the Path argument must be a linear Path, and its

Chapter 30: Regular Closed Plane Curve Reference 218

first and last Points are passed to the first version of this function as p0 and p1,
respectively.

Let C be the Reg_Cl_Plane_Curve. C and p can intersect at at most two intersection
points i1 and i2. Let bpp be the return value of this function. The intersection points
need not be on the line segment between pt0 and pt1. bpp.first.pt will be set
to the first intersection point if it exists, or INVALID_POINT if it doesn’t. If the first
intersection point exists and is on the line segment between pt0 and pt1

In Fig. 154, the line
−−→
AB is normal to the Ellipse e, or, to put it another way,

−−→
AB

is perpendicular to the plane of e. The intersection point i0 lies within the perimeter
of e.

The line
−−→
DE is skew to the plane of e, and intersects e at i1, on the perimeter of e.

Point p0(2, 2, 3);

Ellipse e(p0, 3, 4, 30, -60, -5.2);

Point p1 = p0.mediate(e.get_point(11), .5);

Point A = e.get_normal();

A *= 2.5;

A.shift(p1);

Point B = A.mediate(p1, 2);

bool_point_pair bpp = e.intersection_points(A, B);

Point C(0, 2, 0);

Point D(0, -3.5, 0);

C *= D.rotate(2, 0, -5);

C *= D.shift(e.get_point(4));

bpp = e.intersection_points(C, D);

e

A

B

i0

C

D

i1

Figure 154.

In Fig. 155, q and e are coplanar. In this case, only the intersections of q with the
perimeter of e are returned by intersection_points().

A = p0.mediate(e.get_point(3), 1.5);

B = p0.mediate(e.get_point(11), 1.5);

Path q(A, B);

bpp = e.intersection_points(q);

Chapter 30: Regular Closed Plane Curve Reference 219

e

q0

q1

i0

i1

Figure 155.

30.4 Segments

[const function]Path segment (unsigned int factor, [real angle = 0, [bool
closed = true]])

Returns a Path representing a segment of the Reg_Cl_Plane_Curve. factor must be
> 1 and <= number_of_points. If it is not, an error message is issued and an empty
Path is returned.

If angle is non-zero, the segment Path is rotated by angle about a line from center

in the direction of the normal to the plane of the Reg_Cl_Plane_Curve. Please note,
that a Reg_Cl_Plane_Curve must have a meaningful center, in order for rotation
to work. If the absolute value of angle > 360, a warning is issued, and fmod(angle,

360) is used.

If closed is true, the Path will be a cycle, with the ends of the curved segment joined
using the connector ‘--’. The curved segment is joined to the line using ‘&’ on each
side.

Circle c(origin, 4, 30, 30, 30);

Path p = c.segment(3, 130);

p.show("p:");

a p:

points.size() == 8

connectors.size() == 8(-0.00662541, -0.888379, -1.79185) ..

(0.741088, -0.673392, -1.73128) ..

(1.37598, -0.355887, -1.40714) ..

(1.80139, 0.0157987, -0.868767) ..

(1.95255, 0.385079, -0.198137) .. (1.80646, 0.695735, 0.502658) &

(1.80646, 0.695735, 0.502658) --

(-0.00662541, -0.888379, -1.79185) & cycle;

Chapter 30: Regular Closed Plane Curve Reference 220

c

p

Figure 156.

[const inline function]Path half ([real angle = 0, [bool closed = true]])
Returns a Path using half of the Points on the Reg_Cl_Plane_Curve. The effect of
the arguments angle and closed is similar to that in segment(), above.

Ellipse e(origin, 3, 5, 20, 15, 12.5);

Path p = e.half(0, false);

e

p

Figure 157.

[const inline function]Path quarter ([real angle = 0, [bool closed = true]])
Returns a Path using a quarter of the Points on the Reg_Cl_Plane_Curve. The
effect of the arguments angle and closed is similar to that in segment(), above.

Ellipse e(origin, 3, 5, 60, 5, 2.5);

Path p = e.quarter(180, false);

Chapter 30: Regular Closed Plane Curve Reference 221

e

p

Figure 158.

Chapter 31: Ellipse Reference 222

31 Ellipse Reference

Class Ellipse is defined in ‘ellipses.web’. It is derived from Reg_Cl_Plane_Curve using
public derivation.

31.1 Data Members

[Protected variables]Point focus0
Point focus1

The foci of the Ellipse. They are located on the major axis of the Ellipse at a
distance of linear_eccentricity from center, on opposite sides of the minor axis.

[Protected variable]real linear eccentricity

The linear eccentricity of the Ellipse e, such that e =
√

a2 − b2, where a and b are

half the lengths of the major and minor axes, respectively. Let h stand for axis_h

and v for axis_v. If h > v, then a = h/2 and b = v/2. If v > h, then a = v/2 and
b = h/2. If h = v, then the Ellipse is circular (but not an object of type Circle!),
and a = b = v/2 = h/2.

The linear eccentricity is the distance along the major axis of the Ellipse from
center to focus0 and focus1.

[Protected variable]real numerical eccentricity
The numerical eccentricity ε of the Ellipse, such that ε = e/a < 1, where e is the
linear eccentricity of the Ellipse, and a is half the length of the major axis of the
Ellipse.

[Protected variables]real axis h
real axis v

The horizontal and vertical axes, respectively, of the Ellipse.

Actually, they are only or vertical horizontal by convention, since there are no restric-
tions on the orientation of an Ellipse.

[Protected static variable]unsigned short
DEFAULT NUMBER OF POINTS

The number of Points on an Ellipse, unless another number is specified when an
Ellipse constructor is invoked.

31.2 Constructors and Setting Functions

[Default constructor]void Ellipse (void)
Creates an empty Ellipse.

[Constructor]void Ellipse (const Point& ccenter, const real aaxis_h, const

real aaxis_v, [const real angle_x = 0, [const real angle_y = 0, [const
real angle_z = 0, [const unsigned short nnumber_of_points =

DEFAULT_NUMBER_OF_POINTS]]]])
Creates an Ellipse in the x-z plane, centered at the origin, with its horizontal axis

≡ aaxis h and its vertical axis ≡ aaxis v. If any of the arguments angle x, angle y,

Chapter 31: Ellipse Reference 223

or angle z is non-zero, the Ellipse is rotated about the x, y, and z-axis in that order,
by the amounts indicated by the corresponding arguments. Finally, the Ellipse is
shifted such that its center comes to lie at ccenter.

Ellipse e(origin, 6, 4);

e.draw();

x

z

Figure 159.

Point P(1, 1, 1);

Ellipse e(P, 6, 4, 15, 12, 11);

e.draw();

x

y

z

Figure 160.

Chapter 31: Ellipse Reference 224

[Setting function]void set (const Point& ccenter, const real aaxis_h, const

real aaxis_v, [const real angle_x = 0, [const real angle_y = 0, [const
real angle_z = 0, [const unsigned short nnumber_of_points =

DEFAULT_NUMBER_OF_POINTS]]]])
Corresponds to the constructor above.

[Template specializations]Ellipse* create new<Ellipse> (const Ellipse* e)
Ellipse* create new<Ellipse> (const Ellipse& e)

Pseudo-constructors for dynamic allocation of Ellipses. They create a Ellipse on
the free store and allocate memory for it using new(Ellipse). They return a pointer
to the new Ellipse.

If e is a non-zero pointer or a reference, the new Ellipse will be a copy of e. If
the new object is not meant to be a copy of an existing one, ‘0’ must be passed to
create_new<Ellipse>() as its argument. See Chapter 14 [Dynamic Allocation of
Shapes], page 84, for more information.

31.3 Performing Transformations

[Virtual function]Transform do transform (const Transform& t, [bool check =

false])
Performs a transformation on an Ellipse. The Points on the Ellipse are multiplied
by t. Then, if check is true, is_elliptical() is called on the Ellipse. If the
transformation has caused it to become non-elliptical, axis_h and axis_v are set to
INVALID_REAL, and a warning is issued to stderr. center, focus0, and focus1 are
not set to INVALID_POINT. They may may no longer really be the center and foci of
the (non-elliptical) Ellipse, but they may have some use for the programmer and/or
user.

If check is true, and the transformation does not cause *this to become
non-elliptical, axis_h, axis_v, linear_eccentricity, numerical_eccentricity,
focus0, and focus1 are recalculated.

31.4 Operators

[Assignment operator]Ellipse& operator= (const Ellipse& e)
Makes the Ellipse a copy of e.

[Virtual function]Transform operator*= (const Transform& t)
Calls do_transform(t, true), and returns the latter’s return value. See Section 31.3
[Ellipse Reference; Performing Transformations], page 224.

31.5 Labeling

[const function]void label ([const string pos = "top", [const bool dot =

false, [Picture& picture = current_picture]]])
Labels the Points on points, using lowercase letters. pos is used to position all of
the labels. It is currently not possible to have different positions for the labels.

Chapter 31: Ellipse Reference 225

Ellipse e(origin, 6, 4);

e.draw();

e.label();

a

b

c
def

g

h

i

j

k
l m n

o

p
x

z

Figure 161.

[Inline const function]void dotlabel ([string pos = "top", [Picture& picture =

current_picture]])
Like label(), except that the Points are dotted.

Ellipse e(origin, 6, 4);

e.draw();

e.dotlabel();

Chapter 31: Ellipse Reference 226

a

b

c
def

g

h

i

j

k
l m n

o

p
x

z

Figure 162.

31.6 Affine Transformations

[Virtual function]Transform rotate (const real x, [const real y = 0, [const
real z = 0]])

[Virtual function]Transform rotate (const Point& p0, const Point& p1, [const
real angle = 180])

[Virtual function]Transform rotate (const Path& p, [const real angle = 180])
[Virtual function]Transform scale (real x, [real y = 1, [real z = 1]])
[Virtual function]Transform shear (real xy, [real xz = 0, [real yx = 0, [real

yz = 0, [real zx = 0, [real zy = 0]]]]])
[Virtual function]Transform shift (real x, [real y = 0, [real z = 0]])
[Virtual function]Transform shift (const Point& p)
[Virtual function]void shift times (real x, [real y = 1, [real z = 1]])
[Virtual function]void shift times (const Point& p)

These create a Transform t locally, and call do_transform(t). See Section 31.3
[Ellipse Reference; Performing Transformations], page 224.

Rotating and shifting an Ellipse neither change the size of an Ellipse, nor cause it
to become non-elliptical. However, scaling and shearing can have these effects. For
this reason, in scale() and shear(), do_transform() is called with true as its check

argument, while it is false in rotate(), shift(), and shift_times().

If scaling or shearing is performed on an Ellipse, and it is still elliptical after
the transformation, focus0, focus1, axis_h, axis_v, linear_eccentricity, and
numerical_eccentricity are all recalculated. If the Ellipse is non-elliptical af-
ter the transformation, axis_h, axis_v, linear_eccentricity, and numerical_

eccentricity are all set to INVALID_REAL. center, focus0, and focus1 are not set
to INVALID_POINT. Although they are no longer the center and foci of an elliptical
Ellipse, they may still have some use for the user or programmer.

Chapter 31: Ellipse Reference 227

31.7 Querying

[const function]bool is elliptical (void)
Returns true if the Ellipse is elliptical, otherwise false.

Certain transformations, such as shearing and scaling, can cause Ellipses to become
non-elliptical.

[Inline const function]bool is quadratic (void)
Returns true, because the equation for an ellipse in the x-y plane with its center at
the origin is the quadratic equation

x2/a2 + y2/b2 = 1

where a is half the horizontal axis and b is half the vertical axis.

Ellipse e(origin, 5, 2, 90);

e.draw();

Point P(e.angle_point(-35));

cout << ((P.get_x() * P.get_x())

/ (e.get_axis_h()/2 * e.get_axis_h()/2))

+ ((P.get_y() * P.get_y())

/ (e.get_axis_v()/2 * e.get_axis_v()/2));

a 1

P
(1.24007, 0.868307)

Figure 163.

[const virtual functions]bool is cubic (void)
bool is quartic (void)

These functions both return false, because the equation of an ellipse is neither a
cubic nor a quartic function.

31.8 Returning Elements and Information

[Virtual function]Point& get center (void)
[const virtual function]Point get center (void)

These functions return center.

[Function]const Point& get focus (const unsigned short s)
[const function]Point get focus (const unsigned short s)

These functions return focus0 or focus1, depending on the value of s, which must
be 0 or 1. If s is not 0 or 1, get_focus() returns INVALID_POINT.

Chapter 31: Ellipse Reference 228

[const function]real get linear eccentricity (void)
Returns linear_eccentricity.

[const function]real get numerical eccentricity (void)
Returns numerical_eccentricity.

[Function]real get axis v (void)
[const function]real get axis v (void)

Calculates and returns the value of axis_h.

get_axis_v() first checks if the Ellipse is still elliptical, using is_elliptical()

(see Section 31.7 [Ellipse Reference; Querying], page 227). Operations such as
scale() and shear() can cause an Ellipse to become non-elliptical. If this is the
case, this function returns INVALID_REAL.

If the Ellipse is still elliptical, axis_v is recalculated and returned. In the non-const
version, axis_v is also reset to the new value.

[Function]real get axis h (void)
[const function]real get axis h (void)

Calculates and returns the value of axis_h.

get_axis_h() first checks if the Ellipse is still elliptical, using is_elliptical()

(see Section 31.7 [Ellipse Reference; Querying], page 227). Operations such as
scale() and shear() can cause an Ellipse to become non-elliptical. If this is the
case, this function returns INVALID_REAL.

If the Ellipse is still elliptical, axis_h is recalculated and returned. In the non-const
version, axis_h is also reset to the new value.

[const virtual function]signed short location (Point p)
Returns a value l indicating the location of the Point argument p with respect to the
Ellipse.

Let e stand for the Ellipse. The return values are as follows:

0 p lies on the perimeter of e.

1 p lies in the plane of e, within its perimeter.

-1 p lies in the plane of e, outside its perimeter.

-2 p and e do not lie in the same plane.

-3 e is not elliptical, possibly due to having been transformed.

Ellipse e(origin, 3, 5, 45, 15, 3);

e.shift(2, 1, 1);

Point A = e.get_point(7);

cout << e.location(A);

a 0

Point B = center.mediate(e.get_point(2));

cout << e.location(B);

a 1

Point C = center.mediate(e.get_point(2), 1.5);

cout << e.location(C);

Chapter 31: Ellipse Reference 229

a -1

Point D = A;

D.shift(-2, 0, 4);

e.location(D);

a WARNING! In Ellipse::location():

Point doesn’t lie in plane of Ellipse.

Returning -2.

e.scale(1.5, 0, 1.5);

e.location(A);

a WARNING! In Ellipse::do_transform(const Transform&):

This transformation has made *this non-elliptical!

ERROR! In Ellipse::location():

Ellipse is non-elliptical. Returning -3.

e

A
B

C

D

x

y

z

Figure 164.

[const function]Point angle point (real angle)
Returns a point on the Ellipse given an angle. A Point p is set to the zeroth Point

on the Ellipse and rotated about the line from the center of the Ellipse in the
direction of the normal to the plane of the Ellipse. Then, the intersection of the ray
from the center through p and the perimeter of the Ellipse is returned.

Ellipse e(origin, 6, 4);

Point P = e.angle_point(135);

current_picture.output(Projections::PARALLEL_X_Z);

Chapter 31: Ellipse Reference 230

e 0

θ = 135◦

P

x-z plane

Figure 165.

Fig. 166 demonstrates, that the rotation is unfortunately not always in the direction
one would prefer. I don’t have a solution to this problem yet.

Ellipse e(origin, 6, 4, 90);

Point P = e.angle_point(135);

Point Q = e.angle_point(-135);

e 0

1

2

θ = 135◦

P

φ = −135◦

Q

x-y plane

Figure 166.

31.9 Intersections

[const virtual function]bool_point_pair intersection points (const Point&

p0, const Point& p1)
[const virtual function]bool_point_pair intersection points (const Path& p)

These functions return the intersection points of a line with an Ellipse. In the
first version, the line is specified by the two Point arguments. In the second version,
p.is_linear()must return true, otherwise, intersection_points() issues an error
message and returns INVALID_BOOL_POINT_PAIR.

If the line and the Ellipse are coplanar, there can be at most two intersection points.
Otherwise, there can be at most one.

Ellipse e(origin, 5, 7, 30, 30, 30);

Chapter 31: Ellipse Reference 231

e.shift(3, 0, 3);

Point p0 = e.get_center().mediate(e.get_point(3));

Point normal = e.get_normal();

Point A = normal;

A *= 2.5;

A.shift(p0);

Point B = normal;

B *= -2.5;

B.shift(p0);

bool_point_pair bpp = e.intersection_points(A, B);

bpp.first.pt.dotlabel("i_0", "rt");

Point C = e.get_point(15).mediate(e.get_point(11), 1.25);

Point D = e.get_point(11).mediate(e.get_point(15), 1.5);

Path q = C.draw(D);

bpp = e.intersection_points(q);

bpp.first.pt.dotlabel("i_1", "llft");

bpp.second.pt.dotlabel("i_2", "ulft");

e

A

B

i0

C

D

i1

i2

x

y

z

Figure 167.

[const virtual function]bool_point_quadruple intersection points (Ellipse
e, [const real step = 3, [bool verbose = false]])

Returns the intersection points of two Ellipses. Two Ellipses can intersect at at
most four points.

Let bpq be the bool_point_quadruple returned by intersection_points(). If one
or more intersection points are found, the corresponding Points are stored in the pt

elements of the four bool_points belonging to bpq, otherwise INVALID_POINT. If a
Point is found, the b element of the bool_point will be true, otherwise false.

The step argument is used when the Ellipses are coplanar and either have different
centers or the vertical axis of one Ellipse is colinear with the horizontal axis of the
other (and vice versa). In these cases, the intersection points must be found by an

Chapter 31: Ellipse Reference 232

iterative routine. A Point p travels around the perimeter of *this, and its location
with respect to e is tested. step is the angle of rotation used for stepping around the
perimeter of *this. The default value, 3, should be adequate, unless the Ellipses

differ greatly in size.

If the verbose argument is true, intersection_points() will print information
about the intersection points to standard output.

In Fig. 168, the Ellipses e and f both lie in the x-z plane, are centered at the origin,
and intersect at four points.

Ellipse e(origin, 5, 2);

Ellipse f(origin, 2, 5);

bool_point_quadruple bpq = e.intersection_points(f);

bpq.first.pt.dotlabel(1, "llft");

bpq.second.pt.dotlabel(2, "urt");

bpq.third.pt.dotlabel(3, "ulft");

bpq.fourth.pt.dotlabel(4, "lrt");

e

f

1

23

4

x

z

Figure 168.

In Fig. 169, e and f are coplanar, but don’t lie in a major plane, have different centers,
and only intersect at two points.

Ellipse e(origin, 4, 2);

Ellipse f(origin, 2, 5);

f.shift(0, 0, 1);

f.rotate(0, 15);

f.shift(1, 0, 1);

e *= f.shift(-.25, 1, -1);

e *= f.rotate(10, -12.5, 3);

bool_point_quadruple bpq = e.intersection_points(f, true);

bpq.first.pt.dotlabel(1, "urt");

Chapter 31: Ellipse Reference 233

bpq.second.pt.dotlabel(2, "ulft");

e

f

1

2

x

y

z

Figure 169.

If the planes of the Ellipses are parallel, there are, of course, no intersection
points. If the Ellipses are non-coplanar, and their planes are not parallel to each
other, intersection_points() first finds the line of intersection of the planes of the
Ellipses. It then returns the Points of intersection of this line with the Ellipses, if
they exist. If the verbose argument is true, information about the Points is printed
to standard output.

In Fig. 170, the two Ellipses lie in skew planes. The plane of f intersects with e at
the Points labelled “1” and “2”, while the plane of e intersects with f at the Points

labelled “3” and “4”.

Ellipse e(origin, 5, 3);

Ellipse f(origin, 2, 5);

f.rotate(0, 0, 30);

f.rotate(0, 10);

f.rotate(45);

f.shift(1.5, 1);

bool_point_quadruple bpq = e.intersection_points(f, true);

bpq.first.pt.dotlabel(1);

bpq.second.pt.dotlabel(2);

bpq.third.pt.dotlabel(3, "rt");

bpq.fourth.pt.dotlabel(4, "urt");

a First point lies on the perimeter of *this.

First point lies inside e.

Second point lies on the perimeter of *this.

Second point lies outside e.

Chapter 31: Ellipse Reference 234

Third point lies outside *this.

Third point lies on the perimeter of e.

Fourth point lies inside *this.

Fourth point lies on the perimeter of e.

1

2

3

4e

f

Figure 170.

In Fig. 171, the two Ellipses lie in skew planes. The plane of f intersects with e
at the Points labelled “1” and “2”. The plane of e does not intersect with f , so
bpq.third.pt and bpq.fourth.pt are INVALID_POINT.

Ellipse e(origin, 5, 3);

Ellipse f(origin, 2, 5, 45);

f.shift(0, 2.5, 3);

bool_point_quadruple bpq = e.intersection_points(f, true);

bpq.first.pt.dotlabel(1);

bpq.second.pt.dotlabel(2);

a First point lies on the perimeter of *this.

First point lies outside e.

Second point lies on the perimeter of *this.

Second point lies outside e.

Third intersection point is INVALID_POINT.

Fourth intersection point is INVALID_POINT.

Chapter 31: Ellipse Reference 235

12
e

f

Figure 171.

31.10 Solving

[const function]real_pair solve (char axis_unknown, real known)
Returns two possible values for either the horizontal or vertical coordinate. This
function assumes that the Ellipse lies in a major plane with center at the origin.
Code that calls it must ensure that these conditions are fulfilled.

solve() is called in Reg_Cl_Plane_Curve::intersection_points(Point, Point,

Point) and Reg_Cl_Plane_Curve::location(), and resolves to this function, when
these functions are called on an Ellipse. However, Ellipse::location() over-
loads Reg_Cl_Plane_Curve::location(), so the latter won’t normally be called
on an Ellipse. See Section 30.3 [Regular Closed Plane Curve Reference; Intersec-
tions], page 217, and Section 30.2 [Regular Closed Plane Curve Reference; Querying],
page 216.

[const function]real_triple get coefficients (real Slope, real v_intercept)
Let x and y stand for the x and y-coordinates of a point on an ellipse in the x-y
plane, a for half of the horizontal axis (axis_h/2), and b for half of the vertical axis
(axis_v/2).

Further, let y = mx + i be the equation of a line in the x-y plane, where m is the
slope and i the y-intercept.

This function returns the coefficients of the quadratic equation that results from
replacing y with mx + i in the equation for the ellipse

x2/a2 + y2/b2 = 1

namely
x2/a2 + (mx + i)2/b2 − 1 = 0

≡ (b2x + a2m2)x2 + 2a2imx + (a2i2 − a2b2) = 0.

The coefficients are returned in the real_triple in the order one would expect:
r.first is the coefficient of x2, r.second of x and r.third of the constant term
(x0 ≡ 1).

Chapter 31: Ellipse Reference 236

get_coefficients() is called in Reg_Cl_Plane_Curve::intersection_

points(Point, Point, Point), and resolves to this function, when the latter is
called on an Ellipse. See Section 30.3 [Regular Closed Plane Curve Reference;
Intersections], page 217.

31.11 Rectangles

[const function]Rectangle out rectangle (void)
Returns the Rectangle that surrounds the Ellipse.

Ellipse e(origin, 3, 4, 45, 30, 17);

e.shift(1, -1, 2);

Rectangle r = e.out_rectangle();

r.filldraw(black, gray);

e.unfilldraw(black);

e

r

Figure 172.

[const function]Rectangle in rectangle (void)
Returns the Rectangle enclosed within the Ellipse.

Rectangle r = e.in_rectangle();

e.filldraw(black, gray);

r.unfilldraw(black);

e

r

Figure 173.

Chapter 31: Ellipse Reference 237

[const function]Rectangle draw out rectangle ([const Color& ddraw_color =

*Colors::default_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture]]]])
Draws the Rectangle that surrounds the Ellipse. The arguments are like those of
Path::draw(). The return value is the surrounding Rectangle. See Section 26.12
[Path Reference; Drawing and Filling], page 180.

Ellipse e(origin, 2.5, 5, 10, 12, 15.5);

e.shift(-1, 1, 1);

e.draw_out_rectangle(black, "evenly", "pencircle scaled .3mm");

e

r

Figure 174.

[const function]Rectangle draw in rectangle ([const Color& ddraw_color =

*Colors::default_color, [string ddashed = "", [string ppen = "",

[Picture& picture = current_picture]]]])
Draws the Rectangle enclosed within the Ellipse. The arguments are like those of
Path::draw(). The return value is the enclosed Rectangle. See Section 26.12 [Path
Reference; Drawing and Filling], page 180.

Ellipse e(origin, 3.5, 6, 10, 12, 15.5);

e.shift(-1, 1, 1);

e.draw_in_rectangle(black, "evenly", "pencircle scaled .3mm");

r

e

Figure 175.

Chapter 32: Circle Reference 238

32 Circle Reference

Class Circle is defined in ‘circles.web’. It is derived from Ellipse, using public deriva-
tion.

Since Circle is just a special kind of Ellipse, there is often no need to define special
functions for Circles.

Currently, Circle inherits the transformation functions and operator*=(const

Transform&) from Ellipse. Consequently, the data member radius, described below, is
not recalculated, when transformations are performed on a Circle. I plan to change this
soon!

32.1 Data Members

[Private variable]real radius
The radius of the Circle.

32.2 Constructors and Setting Functions

[Default constructor]void Circle (void)
Creates an empty Circle.

[Constructor]void Circle (const Point& ccenter, const real ddiameter, [const
real angle_x = 0, [const real angle_y = 0, [const real angle_z = 0,

[const unsigned short nnumber_of_points =

DEFAULT_NUMBER_OF_POINTS]]]])
Creates a Circle with radius ≡ ddiameter/2 in the x-z plane and centered at the
origin with nnumber of points Points. If any of the arguments angle x, angle y, or
angle z is 6= 0, the Circle is rotated around the major axes by the angles indicated
by the arguments. Finally, the Circle is shifted such that center comes to lie at
ccenter.

[Setting function]void set (const Point& ccenter, const real ddiameter, [const
real angle_x = 0, [const real angle_y = 0, [const real angle_z = 0]]])

Corresponds to the constructor above.

[Template specializations]Circle* create new<Circle> (const Circle* c)
Circle* create new<Circle> (const Circle& c)

Pseudo-constructors for dynamic allocation of Circles. They create a Circle on the
free store and allocate memory for it using new(Circle). They return a pointer to
the new Circle.

If c is a non-zero pointer or a reference, the new Circle will be a copy of c. If the new
object is not meant to be a copy of an existing one, ‘0’ must be passed to create_

new<Circle>() as its argument. See Chapter 14 [Dynamic Allocation of Shapes],
page 84, for more information.

Chapter 32: Circle Reference 239

32.3 Operators

[Assignment operator]Circle& operator= (const Circle& c)
Makes the Circle a copy of c.

[Assignment operator]Circle& operator= (const Ellipse& e)
Makes the Circle a copy of e, if e is circular. radius is set to e.axis_v /2 and *this

is returned.

If e is not circular, this function issues an error message and returns *this.

32.4 Querying

[const function]bool is circular (void)
Returns true if the Circle is circular, otherwise false.

Certain transformations, such as shearing and scaling, can cause Circles to become
non-circular.

Circle c(origin, 3, 90);

cout << c.is_circular();

a 1

Circle d = c;

d.shift(2.5);

d.scale(2, 3);

cout << d.is_circular();

a 0

Chapter 32: Circle Reference 240

c d

Figure 176.

[Inline function]real get radius (void)
Returns radius.

[Inline function]real get diameter (void)
Returns 2×radius.

32.5 Intersections

[Virtual const function]bool_point_quadruple intersection points (const
Circle& c, [const bool verbose = false])

Returns the intersection points of two Circles.

If the Circles are coplanar, they can intersect at at most two points. There
is an easy algebraic solution for this, so in this case, this function is faster
than Ellipse::intersection_points(Ellipse, bool), which uses an iterative
procedure to find the points.

If the Circles are non-coplanar, the intersection points of each Circle with the plane
of the other Circle are returned, so a maximum of four Points can be found.

Circle t(origin, 5, 90);

Circle c(origin, 3, 90);

c.shift(3);

c.rotate(0, 0, 45);

bool_point_quadruple bpq = t.intersection_points(c);

bpq.first.pt.dotlabel("f");

Chapter 32: Circle Reference 241

bpq.second.pt.dotlabel("s");

t

c

f

s

Figure 177.

Chapter 33: Pattern Reference 242

33 Pattern Reference

There is no currently no class “Pattern”. If it turns out to be useful for this purpose, I will
define a Pattern class, and perhaps additional derived classes.

33.1 Plane Tesselations

3DLDF can be used to make perspective projections of plane tesselations and other two-
dimensional patterns. These can be used for drawing tiled floors and other architectural
items, among other things. While patterns can be generated by using the basic facilities
of C++ and 3DLDF without any specially defined functions, it can be useful to define such
functions.

3DLDF currently contains only one function for drawing patterns based on a plane
tessellation. I plan to add more soon.

[Function]unsigned int hex pattern 1 ([real diameter_outer = 5, [real
diameter_middle = 0, [real diameter_inner = 0, [unsigned short

first_row = 5, [unsigned short double_rows = 10, [unsigned short

row_shift = 2, [Color draw_color_outer = *Colors::default_color,

[Color fill_color_outer = *Colors::background_color, [Color
draw_color_middle = *Colors::default_color, [Color fill_color_middle

= *Colors::background_color, [Color draw_color_inner =

*Colors::default_color, [Color fill_color_inner =

*Colors::background_color, [string pen_outer = "pencircle scaled

.5mm", [string pen_middle = "pencircle scaled .3mm", [string pen_inner

= "pencircle scaled .3mm", [Picture& picture = current_picture,

[unsigned int max_hexagons = 1000]]]]]]]]]]]]]]]]])
Draws a pattern consisting of hexagons forming a tesselation of the x-z plane, with
additional hexagons within them.

The arguments:

real diameter outer

Default: 5. The diameter of the outer hexagon in each set of three
hexagons. The outer hexagons form a tessellation of the plane.

real diameter middle

Default: 0. The diameter of the middle hexagon in a set of three hexagons.

real diameter inner

Default: 0. The diameter of the inner hexagon in a set of three hexagons.

unsigned short first row

Default: 5. The number of sets of hexagons in the first single row. The
second single row will have first row + 1 sets of hexagons.

unsigned short double rows

Default: 10. The number of double rows drawn.

Chapter 33: Pattern Reference 243

unsigned short row shift

Default: 2. For row shift 6= 0, the number of sets of hexagons in each
(single) row is increased by 2 every row shift rows. If row shift ≡ 0, the
number sets of hexagons remains constant. The rows remain centered
around the z-axis.

Color draw color outer

Default: *Colors::default_color. The Color used for drawing the
outer hexagons.

Color fill color outer

Default: *Colors::background_color. The Color used for filling the
outer hexagons.

Color draw color middle

Default: *Colors::default_color. The Color used for drawing the
middle hexagon.

Color fill color middle
Default: *Colors::background_color. The Color used for filling the
middle hexagons.

Color draw color inner

Default: *Colors::default_color. The Color used for drawing the
inner hexagons.

Color fill color inner

Default: *Colors::background_color. The Color used for filling the
inner hexagons.

string pen outer

Default: "pencircle scaled .5mm". The pen used for drawing the outer
hexagons.

string pen middle

Default: "pencircle scaled .3mm". The pen used for drawing the mid-
dle hexagons.

string pen inner
Default: "pencircle scaled .3mm". The pen used for drawing the inner
hexagons.

Picture& picture

Default: current_picture. The Picture onto which the pattern is put.

unsigned int max hexagons

Default: 1000. The maximum number of hexagons that will be drawn.

Draws a pattern in the x-z plane consisting of hexagons. The outer hexagons form
a tessellation. The middle and inner hexagons fit within the outer hexagons. The
hexagons are drawn in double rows. The tessellation can be repeated by copying a
double row and shifting the copy to lie directly behind the first double row. If the
Picture with the pattern is projected with the Focus in front of the pattern, looking
in the direction of the back of the pattern, the first row of hexagons will appear

Chapter 33: Pattern Reference 244

larger than the rows behind it. Therefore, in order for the perspective projection of
the pattern to fill a rectangular area on the plane of projection, it will generally be
necessary to increase the number of sets of hexagons in each double row. On the
other hand, if the same number of sets of hexagons were used in the front double
row, as will be needed for the back double row, many of them would probably be
unprojectable.

The return value of this function is the number of hexagons drawn.

default_focus.set(0, 10, -10, 0, 10, 25, 10);

hex_pattern_1(1, 0, 0, 5, 5);

Figure 178.

default_focus.set(-5, 5, -10, 0, 10, 25, 10);

hex_pattern_1(2, 1.5, 1, 2, 5, 2, black, gray, black,

light_gray, black);

Figure 179.

33.2 Roulettes and Involutes

“A roulette is the curve generated by a point which is carried by a curve which
rolls on a fixed curve. [. . .] The locus of a point carried by a circle rolling on
a straight line is a trochoid. If the point is inside the circle the trochoid has
inflexions; if it is outside the circle, but rigidly attached to it, the trochoid has
loops. [. . .] In the particular case when the point is on the circumference of the
rolling circle the roulette is a cycloid. When the circle rolls on the outside of

Chapter 33: Pattern Reference 245

another circle the corresponding curves are the epitrochoids and epicycloids; if
it rolls on the inside, they are the hypotrochoids and hypocycloids.”

H. Martyn Cundy and A. P. Rollett, Mathematical Models, p. 46.

33.2.1 Epicycloids

[Function]unsigned int epicycloid pattern 1 (real diameter_inner, real

diameter_outer_start, real diameter_outer_end, real step, int

arc_divisions, unsigned int offsets, [vector<const Color*> colors =

Colors::default_color_vector])
Draws a pattern consisting of epicycloids. The outer circle rolls around the circum-
ference of the inner circle and a Point on the outer circle traces an epicycloid.

If offsets is greater than 1, the outer circle is rotated offset times around the center
of the inner circle by 360/offsets (starting from the outer circle’s original position).
From each of these new positions, an epicycloid is drawn.

While diameter outer start is greater than or equal to diameter outer end, the diam-
eter of the outer circle is reduced by step, and another set of epicycloids is traced, as
described above. Each time the diameter of the outer circle is reduced, a new Color

is taken from colors for the drawing commands. If there are more iterations than
Colors, the last Color on colors is used for the remaining iterations.

The arguments:

real diameter inner

The diameter of the inner circle.

real diameter outer start

The diameter of the outer circle for the first iteration. It must be greater
than or equal to diameter outer end.

real diameter outer end

The diameter of the outer circle for the last iteration. It must be less
than or equal to diameter outer start.

real step The amount by which the diameter of the outer circle is reduced upon
each iteration.

int arc divisions

The number of divisions of the circle used for calculating Points on the
epicycloid. For instance, if arc divisions is 90, then the Path for each
epicycloid will only have 4 Points, since 360/90 = 4.

unsigned int offsets

The number of epicycloids drawn upon each iteration. Each one is rotated
by 360/offsets around the center of the inner circle. offsets must be
greater than or equal to 1.

vector<const Color*> colors

Default: Colors::default_color_vector. The Colors pointed to by
the pointers on this vector are used for drawing the epicycloids. One
Color is used for each iteration.

Chapter 33: Pattern Reference 246

Example:

epicycloid_pattern_1(5, 3, 3, 1, 72);

current_picture.output(Projections::PARALLEL_X_Z);

Figure 180.

Example:

default_focus.set(2, 5, -10, 2, 5, 10, 10);

epicycloid_pattern_1(5, 3, 3, 1, 36);

current_picture.output();

Chapter 33: Pattern Reference 247

Figure 181.

Chapter 34: Solid Reference 248

34 Solid Reference

Class Solid is defined in ‘solids.web’. It’s derived from Shape using public derivation. It
is intended to be used as a base class for more specialized classes representing solid figures,
e.g., cuboids, polyhedra, solids of rotation, etc.

34.1 Data Members

[Protected variable]bool on free store
true, if the Solid was dynamically allocated on the free store, otherwise false.
Solids should only be allocated on the free store by create_new<Solid>(), or anal-
ogous functions for derived classes. See Section 34.2 [Solid Reference; Constructors
and Setting Functions], page 249.

[Protected variable]Point center
The center of the Solid. An object of a type derived from Solid need not have a
meaningful center. However, many do, so it’s convenient to be able to access it using
the member functions of Solid.

[Protected variable]bool do output
Set to false in Picture::output(), if the Solid cannot be projected using the
arguments of that particular invocation of output(). Reset to true at the end of
Picture::output(), so that the Solid will be tested for projectability again, if
output() is called on the Picture again.

[Protected variables]vector<Path*> paths
vector<Circle*> circles
vector<Ellipse*> ellipses
vector <Reg_Polygon*> reg polygons
vector<Rectangle*> rectangles

Vectors of pointers to the Paths, Circles, Ellipses, Reg_Polygons, and
Rectangles, respectively, belonging to the Solid, if any exist.

[Protected variable]valarray<real> projective extremes
The maximum and minimum values for the x, y, and z-coordinates of the Points

belonging to the Solid. Used in Picture::output() for testing whether a Solid is
projectable using a particular set of arguments.

[Public static const variables]unsigned short CIRCLE
unsigned short ELLIPSE
unsigned short PATH
unsigned short RECTANGLE
unsigned short REG POLYGON

Used as arguments in the functions get_shape_ptr() and get_shape_center() (see
Section 34.8 [Returning Elements and Information], page 250).

Chapter 34: Solid Reference 249

34.2 Constructors and Setting Functions

[Default constructor]void Solid (void)
Creates an empty Solid.

[Copy constructor]void Solid (const Solid& s)
Creates a new Solid and makes it a copy of s.

[Template specializations]Solid* create new<Solid> (const Solid* s)
Solid* create new<Solid> (const Solid& s)

Pseudo-constructors for dynamic allocation of Solids. They create a Solid on the
free store and allocate memory for it using new(Solid). They return a pointer to the
new Solid.

If s is a non-zero pointer or a reference, the new Solid will be a copy of s. If the new
object is not meant to be a copy of an existing one, ‘0’ must be passed to create_

new<Solid>() as its argument. See Chapter 14 [Dynamic Allocation of Shapes],
page 84, for more information.

34.3 Destructor

[virtual Destructor]void ~Solid (void)
This function currently has an empty definition, but its existence prevents GCC 3.3
from issuing the following warning: “ ‘class Solid’ has virtual functions but non-virtual
destructor”.

34.4 Operators

[Virtual function]const Solid& operator= (const Solid& s)
Assignment operator. Makes *this a copy of s, discarding the old contents of *this.

[Virtual function]Transform operator*= (const Transform& t)
Multiplication by a Transform. All of the Shapes that make up the Solid are trans-
formed by t.

34.5 Copying

[const virtual function]Shape* get copy (void)
Dynamically allocates a new Solid on the free store, using create_new<Solid>(),
and makes it a copy of *this. Then, a pointer to Shape is pointed at the copy
and returned. Used for putting Solids onto Picture::shapes in the drawing and
filling functions for Solid. See Section 34.13 [Solid Reference; Drawing and Filling],
page 255.

Chapter 34: Solid Reference 250

34.6 Setting Members

[Virtual function]bool set on free store ([bool b = true])
Sets on_free_store to b. This function is called in the template function
create_new(). See Section 34.2 [Solid Reference; Constructors and Setting
Functions], page 249.

34.7 Querying

[const virtual function]bool is on free store (void)
Returns the value of on_free_store; true, if the Solid was dynamically allocated on
the free store, otherwise false. Solids, and objects of classes derived from Solid,
should only ever be allocated on the free store by a specialization of the template
function create_new(). See Section 34.2 [Solid Reference; Constructors and Setting
Functions], page 249.

34.8 Returning Elements and Information

[const virtual function]const Point& get center (void)
Returns center. If the Solid doesn’t have a meaningful center, the return value will
probably be INVALID_POINT.

Getting Shape Centers

[const virtual function]const Point& get shape center (const unsigned short

shape_type, const unsigned short s)
Returns the center of a Shape belonging to the Solid. Currently, the object can be
a Circle, Ellipse, Rectangle, or Reg_Polygon, and it is accessed through a pointer
on one of the following vectors of pointers to Shape: circles, ellipses, rectangles,
or reg_polygons. The type of object is specified using the shape type argument. The
following public static const data members of Solid can (and probably should) be
passed as the shape type argument: CIRCLE, ELLIPSE, RECTANGLE, and REG_POLYGON.

The argument s is used to index the vector.

This function is called within the more specialized functions in this section, namely:
get_circle_center(), get_ellipse_center(), get_rectangle_center(), and
get_reg_polygon_center(). I don’t expect it to be needed in user code very often.

Dodecahedron d(origin, 3);

d.filldraw();

Point C = d.get_shape_center(Solid::REG_POLYGON, 1);

C.dotlabel("C");

Chapter 34: Solid Reference 251

C

Figure 182.

Note that this function will have to be changed, if new vectors of Shape pointers are
added to class Solid!

[const virtual functions]const Point& get circle center (const unsigned

short s)
const Point& get ellipse center (const unsigned short s)
const Point& get rectangle center (const unsigned short s)
const Point& get reg polygon center (const unsigned short s)

These functions all return the center of the Shape pointed to by a pointer on one
of the vectors of Shapes belonging to the Solid. The argument s indicates which
element on the vector is to be accessed. For example, get_rectangle_center(2)
returns the center of the Rectangle pointed to by rectangles[2].

Cuboid c(origin, 3, 4, 5, 0, 30);

c.draw();

for (int i = 0; i < 6; ++i)

c.get_rectangle_center(i).label(i, "");

0

1

2
3

4

5

Figure 183.

Chapter 34: Solid Reference 252

Getting Shapes

The functions in this section all return const pointers to Shape, or one of its derived classes.
Therefore, they must be invoked in such a way, that the const qualifier is not discarded.
See the description of get_reg_polygon_ptr() below, for an example.

[const virtual function]Shape* get shape ptr (const unsigned short

shape_type, const unsigned short s)
Copies one of the objects belonging to the Solid, and returns a pointer to Shape that
points to the copy. The object is found by dereferencing one of the pointers on one of
the vectors of pointers belonging to the Solid. Currently, these vectors are circles,
ellipses, paths, rectangles, and reg_polygons. The argument shape type spec-
ifies the vector, and the argument s specifies which element of the vector should
be accessed. The following public static const data members of Solid can (and
probably should) be passed as the shape type argument: CIRCLE, ELLIPSE, PATH,
RECTANGLE, and REG_POLYGON.

This function was originally intended to be called within the more specialized func-
tions in this section, namely: get_circle_ptr(), get_ellipse_ptr(), get_path_
ptr(), get_rectangle_ptr, and get_reg_polygon_ptr. However, these functions
no longer use get_shape_ptr(), so this function is probably no longer needed.

Icosahedron I(origin, 3);

I.filldraw();

Reg_Polygon* t =

static_cast<Reg_Polygon*>(I.get_shape_ptr(Solid::REG_POLYGON, 9));

t->fill(gray);

Figure 184.

Chapter 34: Solid Reference 253

[const virtual functions]const Reg_Polygon* get circle ptr (const unsigned

short s)
const Reg_Polygon* get ellipse ptr (const unsigned short s)
const Reg_Polygon* get path ptr (const unsigned short s)
const Reg_Polygon* get rectangle ptr (const unsigned short s)
const Reg_Polygon* get reg polygon ptr (const unsigned short s)

Each of these functions returns a pointer from one of the vectors of Shape pointers
belonging to the Solid. The argument s specifies which element of the appropriate
vector should be returned. For example, get_reg_polygon_ptr(2) returns the Reg_

Polygon* in reg_polygons[2].

Since these functions return const pointers, they must be invoked in such a way, that
the const qualifier is not discarded, as noted at the beginning of this section. The
following example demonstrates two ways of invoking get_reg_polygon_ptr():

Dodecahedron d(origin, 3);

d.draw();

const Reg_Polygon* ptr = d.get_reg_polygon_ptr(0);

ptr->draw(black, "evenly scaled 4", "pencircle scaled 1mm");

Reg_Polygon A = *d.get_reg_polygon_ptr(5);

A.fill(gray);

Figure 185.

34.9 Showing

[const virtual function]void show ([string text = "", [char coords = ’w’,

[const bool do_persp = true, [const bool do_apply = true, [Focus* f = 0,

[const unsigned short proj = Projections::PERSP, [const real factor =

1]]]]]]])
Prints text and the value of on_free_store to the standard output (stdout), and
then calls show() on the objects pointed to by the pointers on paths, circles,
ellipses, reg_polygons, and rectangles, unless the vectors are empty. The argu-
ments are passed to Path::show(), Ellipse::show(), etc. If a vector is empty, a
message to this effect is printed to the standard output.

Chapter 34: Solid Reference 254

34.10 Affine Transformations

[Virtual functions]Transform scale (real x, [real y = 0, [real z = 0]])
Solid. Transform shear (real xy, [real xz = 0, [real yx = 0, [real yz = 0,

[real zx = 0, [real zy = 0]]]]])
Transform shift (real x, [real y = 0, [real z = 0]])
Transform shift (const Point& pt)
Transform rotate (const real x, [const real y = 0, [const real z = 0]])
Transform rotate (const Point& p0, const Point& p1, [const real angle =

180])
These functions perform the corresponding transformations on all of the Shapes be-
longing to the Solid. See Section 19.10 [Transform Reference; Affine Transforma-
tions], page 101.

34.11 Applying Transformations

[Virtual function]void apply transform (void)
Calls apply_transform() on all of the Shapes belonging to the Solid.

34.12 Outputting

The functions in this section are are called, directly or indirectly, by Picture::output().
See Section 21.8 [Picture Reference; Outputting], page 114.

[Virtual function]void output (void)
Writes the MetaPost code for drawing, filling, filldrawing, undrawing, unfilling, or
unfilldrawing the Solid to out_stream.

[Virtual function]void suppress output (void)
Used in Picture::output(). Sets do_output to false, if the Solid cannot be
projected using a particular set of arguments to Picture::output().

[Virtual function]void unsuppress output (void)
Used in Picture::output(). Resets do_output to true, so that the Solid will be
tested for projectability again, if the Picture it’s on is output again.

[Virtual function]vector<Shape*> extract (const Focus& f, const unsigned

short proj, real factor)
Tests whether all of the Shapes belonging to the Solid are projectable, using the
arguments passed to output(). If it is, this function returns a vector of pointers to
Shape containing a single pointer to the Solid. If not, an empty vector is returned.

[Virtual function]bool set extremes (void)
Sets projective_extremes to contain the maximum and minimum values for the x,
y, and z-coordinates of the Points on the Shape. Used for determining projectability
of a Solid using a particular set of arguments.

Chapter 34: Solid Reference 255

[const inline virtual function]const valarray<real> get extremes (void)
Returns projective_extremes.

[const virtual functions]real get minimum z (void)
real get maximum z (void)
real get mean z (void)

Returns the minimum, maximum, or mean z-value, respectively, of the Points be-
longing to the Solid. Used for surface hiding. See Section 9.3 [Surface Hiding],
page 67.

34.13 Drawing and Filling

[const virtual function]void draw ([const vector<const Color*> v =

Colors::default_color_vector, [const string ddashed = "", [const
string ppen = "", [Picture& picture = current_picture]]]])

Draws the Solid.

This function allocates a new Solid, makes it a copy of *this, and puts a pointer to
the copy onto picture.shapes. The data members of the Shapes belonging to the
copy are set appropriately, so that they can be drawn, when Picture::output() is
called.

The Colors used for drawing the various Paths, Circles, Ellipses, etc., belonging
to the Solid are passed in v. If the Solid contains more Shapes than v contains
pointers to Color, the Color pointed to by the last pointer on v is used to draw the
remaining Shapes.

Currently, a Solid can only be drawn with a single dash pattern (ddashed), and pen
(ppen).

[const virtual function]void fill ([const vector<const Color*> v =

Colors::default_color_vector, [Picture& picture = current_picture]])
Fills the Solid.

This function allocates a new Solid makes it a copy of *this, and puts a pointer to
it onto picture.shapes. The data members of the Shapes belonging to the copy are
set appropriately, so that they can be filled, when Picture::output() is called.

The Colors used for filling the various Paths, Circles, Ellipses, etc., belonging
to the Solid are passed in v. If the Solid contains more Shapes than v contains
pointers to Color, the Color pointed to by the last pointer on v is used to fill the
remaining Shapes.

[const virtual function]void filldraw ([const vector<const Color*> draw_colors

= Colors::default_color_vector, [const vector<const Color*>

fill_colors = Colors::background_color_vector, [const string ddashed

= "", [const string ppen = "", [Picture& picture = current_picture]]]]])
Filldraws the Solid.

This function allocates a new Solid, makes it a copy of *this, and puts a pointer to
it onto picture.shapes. The data members of the Shapes belonging to the copy are
set appropriately, so that they can be filldrawn, when Picture::output() is called.

Chapter 34: Solid Reference 256

The Colors used for drawing and filling the various Paths, Circles, Ellipses, etc.,
belonging to the Solid are passed in draw colors and fill colors. If the Solid contains
more Shapes than draw colors contains pointers to Color, the Color pointed to by
the last pointer on draw colors is used to draw the remaining Shapes. The same
applies to fill_colors.

Currently, a Solid can only be filldrawn with a single dash pattern (ddashed), and
pen (ppen).

[const virtual function]void undraw ([const string ddashed = "", [const
string ppen = "", [Picture& picture = current_picture]]])

Undraws the Solid.

This function allocates a new Solid, makes it a copy of *this, and puts a pointer to
it onto picture.shapes. The data members of the Shapes belonging to the copy are
set appropriately, so that they can be undrawn, when Picture::output() is called.

A Solid can currently only be undrawn using a single dash pattern (ddashed), and
pen (ppen).

[const virtual function]void unfill ([Picture& picture = current_picture])
Unfills the Solid.

This function allocates a new Solid makes it a copy of *this, and puts a pointer to
it onto picture.shapes. The data members of the Shapes belonging to the copy are
set appropriately, so that they can be unfilled, when Picture::output() is called.

[const virtual function]void unfilldraw ([const string ddashed = "", [const
string ppen = "", [Picture& picture = current_picture]]])

[const virtual function]void undraw ([const string ddashed = "", [const
string ppen = "", [Picture& picture = current_picture]]])

Unfilldraws the Solid.

This function allocates a new Solid, makes it a copy of *this, and puts a pointer
to it onto picture.shapes. The data members of the Shapes belonging to the copy
are set appropriately, so that they can be unfilldrawn, when Picture::output() is
called.

A Solid can currently only be unfilldrawn using a single dash pattern (ddashed), and
pen (ppen).

34.14 Clearing

[Virtual function]void clear (void)
Calls clear() on all the Shapes belonging to the Solid. Used in Picture::clear()

for deallocating and destroying Solids.

Currently, <Shape>.clear() always resolves to Path::clear(), since none of the
other types of Shape that a Solid can contain, e.g., Ellipse, Circle, etc., overloads
Path::clear().

Chapter 35: Faced Solid Reference 257

35 Faced Solid Reference

Class Solid_Faced is defined in ‘solfaced.web’. It is derived from Solid using public
derivation.

Solid_Faced currently has no member functions. It is intended for use as a base class.
The classes Cuboid and Polyhedron are derived from Solid_Faced. See Chapter 36 [Cuboid
Reference], page 258, and Chapter 37 [Polyhedron Reference], page 260.

35.1 Data Members

[Protected variable]unsigned short faces
The number of faces of the Solid_Faced.

[Protected variable]unsigned short vertices
The number of vertices of the Solid_Faced.

[Protected variable]unsigned short edges
The number of edges of the Solid_Faced.

Chapter 36: Cuboid Reference 258

36 Cuboid Reference

Class Cuboid is defined in ‘cuboid.web’. It is derived from Solid_Faced using public
derivation.

36.1 Data Members

[Protected variables]real height
real width
real depth

The height, width, and depth of the Cuboid, respectively.

Please note, that “height”, “width”, and “depth” are conventional terms. There are
no restrictions on the orientation of a Cuboid.

36.2 Constructors and Setting Functions

[Default constructor]void Cuboid (void)
Creates an empty Cuboid.

[Copy constructor]void Cuboid (const Cuboid& c)
Creates a new Cuboid and makes it a copy of c.

[Constructor]void Cuboid (const Point& c, const real h, const real w, const

real d, [const real x = 0, [const real y = 0, [const real z = 0]]])
Creates a Cuboid with center at the origin, with height ≡ h, width ≡ w, and
depth ≡ d. If x, y, or z is non-zero, the Cuboid is rotated by the amounts indicated
around the corresponding main axes. Finally, the Cuboid is shifted such that center
comes to lie at c.

Point P(-3, -2, 12);

Cuboid c(P, 3, 5, 2.93, 35, 10, 60);

Chapter 36: Cuboid Reference 259

P

x

y

z

Figure 186.

[Template specializations]Cuboid* create new<Cuboid> (const Cuboid* c)
Cuboid* create new<Cuboid> (const Cuboid& c)

Pseudo-constructors for dynamic allocation of Cuboids. They create a Cuboid on the
free store and allocate memory for it using new(Cuboid). They return a pointer to
the new Cuboid.

If c is a non-zero pointer or a reference, the new Cuboid will be a copy of c. If the new
object is not meant to be a copy of an existing one, ‘0’ must be passed to create_

new<Cuboid>() as its argument. See Chapter 14 [Dynamic Allocation of Shapes],
page 84, for more information.

[Destructor]void ~Cuboid (void)
Deallocates the Rectangles pointed to by the pointers on rectangles (a Solid data
member), and calls rectangles.clear(). Cuboids consist entirely of Rectangles,
so nothing must be done to the other vectors.

36.3 Operators

[Assignment operator]void operator= (const Cuboid& c)
Makes the Cuboid a copy of c. The old contents of *this are deallocated (where
necessary) and discarded.

Chapter 37: Polyhedron Reference 260

37 Polyhedron Reference

Class Polyhedron is defined in ‘polyhed.web’. It is derived from Solid_Faced using public
derivation. It is intended for use as a base class for specific types of polyhedra. Currently,
the classes Tetrahedron, Dodecahedron, Icosahedron, and Trunc_Octahedron (truncated
octahedron) are derived from Polyhedron.

There is a great deal of work left to do on the polyhedra.

37.1 Data Members

[Protected variable]unsigned short number of polygon types
The number of different types of polygon making up the faces of a Polyhedron. The
Platonic polyhedra have only one type of face, while the Archimedean can have more.

[Protected variable]real face radius
The radius of the sphere that touches the centers of the polygonal faces of the poly-
hedron (Inkugel, in German).

[Protected variable]real edge radius
The radius of the sphere that touches the centers of the edges of the polyhedron.

[Protected variable]real vertex radius
The radius of the sphere touching the vertices of the polyhedron (Umkugel, in Ger-
man).

37.2 Regular Platonic Polyhedra

3DLDF currently has classes for three of the five regular Platonic polyhedra: Tetrahedron,
Dodecahedron, and Icosahedron. There is no need for a special Cube class, because cubes
can be created using Cuboid with equal width, height, and depth arguments (see Chapter 36
[Cuboid Reference], page 258). Octahedron is missing at the moment, but I plan to add it
soon.

37.2.1 Tetrahedron

Class Tetrahedron is defined in ‘polyhed.web’. It is derived from Polyhedron using public
derivation.

37.2.1.1 Data Members

[Protected static const variable]real dihedral angle
The angle in radians between the faces of the Tetrahedron, namely 70◦ 32′. Only the
Platonic polyhedra have a single dihedral angle, so dihedral_angle is not a member
of Polyhedron. This means that it must be a member of all of the classes representing
Platonic polyhedra.

[Protected variable]real triangle radius
The radius of the circle enclosing a triangular face of the Tetrahedron.

Chapter 37: Polyhedron Reference 261

37.2.1.2 Constructors and Setting Functions

[Default constructor]void Tetrahedron (void)
Creates an empty Tetrahedron.

[Constructor]void Tetrahedron (const Point& p, const real

diameter_of_triangle, [real angle_x = 0, [real angle_y = 0, [real
angle_z = 0]]])

Creates a Tetrahedron with its center at the origin. The faces have enclosing circles
of diameter diameter of triangle. If any of angle x, angle y, or angle z is non-zero,
the Tetrahedron is rotated by the amounts specified around the corresponding axes.
Finally, if p is not the origin, the Tetrahedron is shifted such that center comes to
lie at p.

The center of a Tetrahedron is the intersection of the line segments connecting the
vertices with the centers of the opposite faces.

Tetrahedron t(origin, 3);

t.draw();

x

y

z

Figure 187.

Point P(1, 0, 1);

Tetrahedron t(P, 2.75, 30, 32.5, 20);

t.draw();

Chapter 37: Polyhedron Reference 262

P

x

y

z

Figure 188.

[Setting function]void set (const Point& p, const real diameter_of_triangle,

[real angle_x = 0, [real angle_y = 0, [real angle_z = 0]]])
Corresponds to the constructor above.

37.2.1.3 Net

[Static function]vector<Reg_Polygon*> get net (const real

triangle_diameter)
Returns the net of the Tetrahedron, i.e., the two-dimensional pattern of triangles
that can be folded into a model of a tetrahedron.1 The net lies in the x-z plane.
The triangles have enclosing circles of diameter triangle diameter. The center of the
middle triangle is at the origin.

vector<Reg_Polygon*> vrp = Tetrahedron::get_net(2);

for (vector<Reg_Polygon*>::iterator iter = vrp.begin();

iter != vrp.end();

++iter)

{

(**iter).draw();

}

1 Albrecht Dürer invented this method of constructing polyhedra.

Chapter 37: Polyhedron Reference 263

x

z

x

z

Figure 189.

This function is used in the non-default constructor. See Section 37.2.1.2 [Polyhedron
Reference; Regular Platonic Polyhedra; Tetrahedron; Constructors and Setting Func-
tions], page 261. The constructor starts with the net and rotates three of the triangles
about the adjacent vertices of the middle triangle. Currently, all of the Polyhedron

constructors work this way. However, this is not ideal, because rotation uses the sine
and cosine functions, which cause inaccuracies to creep in. I think there must be a
better way of constructing Polyhedra, but I haven’t found one yet.

The Polyhedron constructors are also especially sensitive to changes made to
Transform::align_with_axis(). I have already had to rewrite them twice, and
since Transform::align_with_axis() may need to be changed or rewritten again,
it’s possible that the Polyhedron constructors will have to be, too. It has also
occurred in the past, that the Polyhedra were constructed correctly on one platform,
using a particular compiler, but not on another platform, using a different compiler.

[Static function]void draw net (const real triangle_diameter, [bool
make_tabs = true])

Draws the net for a Tetrahedron in the x-y plane. The triangles have enclosing
circles of diameter triangle diameter. The origin is used as the center of the middle
triangle. The centers of the triangles are numbered. If the argument make tabs is
used, tabs for gluing and/or sewing a cardboard model of the Tetrahedron together
will be drawn, too. The dots on the tabs mark where to stick the needle through,
when sewing the model together (I’ve had good results with sewing).

Tetrahedron::draw_net(3, true);

Chapter 37: Polyhedron Reference 264

0

12

3

Figure 190.

The net is drawn in the x-y plane, because it currently doesn’t work to draw it in the
x-z plane. I haven’t gotten around to fixing this problem yet.

37.2.2 Dodecahedron

Class Dodecahedron is defined in ‘polyhed.web’. It is derived from Polyhedron using
public derivation.

Dodecahedra have 12 regular pentagonal faces.

37.2.2.1 Data Members

[Protected static const variable]real dihedral angle
The angle between the faces of the Dodecahedron, namely 116◦ 34′ = π − arctan(2).

[Protected variable]real pentagon radius
The radius of the circle enclosing a pentagonal face of the Dodecahedron.

37.2.2.2 Constructors and Setting Functions

[Default constructor]void Dodecahedron (void)
Creates an empty Dodecahedron.

[Constructor]void Dodecahedron (const Point& p, const real

pentagon_diameter, [real angle_x = 0, [real angle_y = 0, [real angle_z

= 0]]])
Creates a Dodecahedron with its center at the origin, where the pentagonal faces
have enclosing circles of diameter pentagon diameter. If any of angle x, angle y, or
angle z is non-zero, the Dodecahedron is rotated by the amounts specified around
the corresponding axes. Finally, if p is not the origin, the Dodecahedron is shifted
such that center comes to lie at p.

Point P(-1, -2, 4);

Dodecahedron d(P, 3, 12.5, 16, 2);

d.draw();

Chapter 37: Polyhedron Reference 265

P
x

y

z

Figure 191.

d.filldraw();

x

y

z

Figure 192.

37.2.2.3 Net

[Static function]vector<Reg_Polygon*> get net (const real

pentagon_diameter, [bool do_half = false])
Returns the net, i.e., the two-dimensional pattern of pentagons that can be folded
into a model of a dodecahedron. The net lies in the x-z plane. The pentagons have
enclosing circles of diameter pentagon diameter. The center of the center pentagon
of the first half of the net is at the origin. If the argument do half is true, only
the first half of the net is created. This is used in the non-default constructor. See
Section 37.2.2.2 [Polyhedron Reference; Regular Platonic Polyhedra; Dodecahedron;
Constructors and Setting Functions], page 264.

vector<Reg_Polygon*> vrp = Dodecahedron::get_net(1);

for(vector<Reg_Polygon*>::iterator iter = vrp.begin();

iter != vrp.end(); ++iter)

(**iter).draw();

Chapter 37: Polyhedron Reference 266

Figure 193.

[Static function]void draw net (const real pentagon_diameter, [bool portrait

= true, [bool make_tabs = true]])
Draws the net for a Dodecahedron in the x-z plane. The pentagons have enclosing
circles of diameter pentagon diameter. The origin is used as the center of the middle
pentagon of the first half of the net. The centers of the pentagons are numbered.

If the argument portrait is true (the default), the net is arranged for printing in
portrait format. If it’s false, it’s arranged for printing in landscape format.

The argument make tabs currently has no effect. When I get around to programming
this, it will be used for specifying whether tabs for gluing and/or sewing a cardboard
model should be drawn, too.

Dodecahedron::draw_net(1, false);

0

12

3

4

5 6

7 8

9

10

11

Figure 194.

37.2.3 Icosahedron

Class Icosahedron is defined in ‘polyhed.web’. It is derived from Polyhedron using public
derivation.

Icosahedra have 20 regular triangular faces.

37.2.3.1 Data Members

[Protected static const variable]real dihedral angle
The angle between the faces of the Icosahedron, namely 138◦ 11′ = π− arcsin(2/3).

[Protected variable]real triangle radius
The radius of the circle enclosing a triangular face of the Icosahedron.

Chapter 37: Polyhedron Reference 267

37.2.3.2 Constructors and Setting Functions

[Default constructor]void Icosahedron (void)
Creates an empty Icosahedron.

[Constructor]void Icosahedron (const Point& p, const real

diameter_of_triangle, [real angle_x = 0, [real angle_y = 0, [real
angle_z = 0]]])

Creates an Icosahedron with its center at the origin, where the triangular faces
have enclosing circles of diameter diameter of triangle. If any of angle x, angle y, or
angle z is non-zero, the Icosahedron is rotated by the amounts specified around the
corresponding axes. Finally, if p is not the origin, the Icosahedron is shifted such
that center comes to lie at p.

Icosahedron i(origin, 3, 0, 10);

i.draw();

Figure 195.

i.filldraw();

Figure 196.

Chapter 37: Polyhedron Reference 268

37.2.3.3 Net

[Static function]vector<Reg_Polygon*> get net (const real

triangle_diameter, [bool do_half = false])
Returns the net, i.e., the two-dimensional pattern of triangles that can be folded
into a model of an icosahedron. The net lies in the x-z plane. The triangles have
enclosing circles of diameter triangle diameter. If the argument do half = true,
only the first half of the net is created. This is used in the non-default constructor.
See Section 37.2.3.2 [Polyhedron Reference; Regular Platonic Polyhedra; Icosahedron;
Constructors and Setting Functions], page 267.

vector<Reg_Polygon*> vrp = Icosahedron::get_net(1.5);

for (vector<Reg_Polygon*>::iterator iter = vrp.begin();

iter != vrp.end(); ++iter)

(**iter).draw();

Figure 197.

[Static function]void draw net (const real triangle_diameter, [bool portrait

= true, [bool make_tabs = true]])
Draws the net for an Icosahedron in the x-z plane. The triangles have enclosing
circles of diameter triangle diameter. If the argument portrait is true (the default),
the net will be arranged for printing in portrait format. If it’s false, it will be
arranged for printing in landscape format. In portrait format, the center of the
bottom right triangle is at the origin. In landscape format, the center of the bottom
left triangle is at the origin. The triangles are numbered.

The argument make tabs currently has no effect. When I get around to programming
this, it will be used for specifying whether tabs for gluing and/or sewing a cardboard
model should be drawn, too.

Icosahedron::draw_net(2, false);

Chapter 37: Polyhedron Reference 269

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 198.

37.3 Semi-Regular Archimedean Polyhedra

Once I’ve added class Octahedron, the only Platonic polyhedron I haven’t programmed
yet, I plan to start adding classes for the semi-regular Archimedean polyhedra.

37.3.1 Truncated Octahedron

Class Trunc_Octahedron is defined in ‘polyhed.web’. It is derived from Polyhedron using
public derivation.

Trunc_Octahedron does not yet have a functioning constructor, so it cannot be used as
yet.

37.3.1.1 Data Members

[Protected static const variable]real angle hex square
The angle between the hexagonal and the square faces of the truncated octahedron,
namely 125◦ 16′.

[Protected static const variable]real angle hex hex
The angle between the hexagonal faces of the truncated octahedron, namely 109◦ 28′.

[Protected variable]real hexagon radius
The radius of the circle enclosing a hexagonal or square face of the Trunc_Octahedron.

37.3.1.2 Constructors and Setting Functions

[Default constructor]void Trunc Octahedron (void)
Creates an empty Trunc_Octahedron.

[Constructor]void Trunc Octahedron (const Point& p, const real

diameter_of_hexagon, [real angle_x = 0, [real angle_y = 0, [real
angle_z = 0]]])

This function does not yet exist! When it does, it will create a Trunc_Octahedron

with its center at the origin, where the hexagonal and square faces have enclosing

Chapter 37: Polyhedron Reference 270

circles of diameter diameter of hexagon. If any of angle x, angle y, or angle z is
non-zero, the Trunc_Octahedron will be rotated by the amounts specified around the
corresponding axes. Finally, if p is not the origin, the Trunc_Octahedron will be
shifted such that center comes to lie at p.

37.3.1.3 Net

[Static function]vector<Reg_Polygon*> get net (const real

hexagon_diameter, [bool do_half = false])
This function does not yet exist! When it does, it will return the net, i.e., the two-
dimensional pattern of hexagons and squares that can be folded into a model of a
truncated octahedron. The net will lie in the x-z plane. The hexagons and squares
will have enclosing circles of diameter hexagon diameter. If the argument do half is
true, only the first half of the net will be created. This will be used in the non-default
constructor. See Section 37.3.1.2 [Polyhedron Reference; Regular Platonic Polyhedra;
Truncated Octahedron Constructors and Setting Functions], page 269.

Chapter 38: Utility Functions 271

38 Utility Functions

[Function]double trunc (double d)
Defined in ‘pspglb.web’. For some reason, when I compile 3DLDF using GNU CC on
a PC Pentium II XEON under Linux 2.4.4 i686, the standard library function trunc()

is not available. Therefore, I’ve had to write one. This is a kludge! Someday, I’ll have
to try to find a better solution to this problem.

[Function]pair<real, real> solve quadratic (real a, real b, real c)
Defined in ‘pspglb.web’. This function tries to find the solutions S0 and S1 to the

quadratic equation ax2 + bx + c according to the formulae S0 ≡ (−b +
√

b2 − 4ac)/2a

and S1 ≡ (−b −
√

b2 − 4ac)/2a. Let r stand for the return value. If S0 cannot be

found, r.first will be INVALID_REAL, otherwise S0. If S1 cannot be found, r.second
will be INVALID_REAL, otherwise S1.

(x + 4)(x + 2) = x2 + 6x + 8 = 0

real_pair r = solve_quadratic(1, 6, 8);
⇒ r.first ≡ -2
⇒ r.second ≡ -4

real_pair r = solve_quadratic(1, -2, 4);
⇒ r.first ≡ INVALID_REAL
⇒ r.second ≡ INVALID_REAL

38.1 Perspective Functions

[Function]void persp 0 (const real front_corner_x, const real

front_corner_z, const real side_lft, const real side_rt, const real

angle_rt, const real f_2_cv, const real gl_2_cv, [const real

horizon_lft = 6, [real horizon_rt = 0, [real gl_lft = 0, [real gl_rt =

0]]]])
Defined in ‘utility.web’. This function is used for the figure in Section 9.1.2 [The
Perspective Projection], page 60, illustrating a perspective projection as it could be
done by hand. It draws a rectangle in the ground plane and the construction lines
used for putting it into perspective. It also labels the vanishing and measuring points.

The arguments:

const real front corner x

The x-coordinate of the front corner of the rectangle.

const real front corner z

The z-coordinate of the front corner of the rectangle.

const real side lft

The length of the left side of the rectangle.

const real side rt

The length of the right side of the rectangle.

Chapter 38: Utility Functions 272

const real angle rt

The angle at which the right side of the rectangle recedes to the horizon.

const real f 2 cv

The distance from the focus to the center of vision.

const real gl 2 cv

The distance of the ground line to the center of vision.

const real horizon lft

Default: 6. The length of the horizon line leftwards of the center of vision.

real horizon rt

Default: 0. The length of the horizon line rightwards of the center of
vision.

real gl lft

Default: 0. The length of the ground line leftwards of the line from the
focus to the center of vision.

real gl rt Default: 0. The length of the ground line rightwards of the line from the
focus to the center of vision.

Example:

persp_0(3, 2, 10, 5, 47.5, 7, 5, 8.5, 9.5, 8.5, 9.5);

focus

CV
horizon

ground line

VP 47.5◦rMP 47.5◦rVP 42.5◦l MP 42.5◦l

MP-CV

xr0
= 3zr0

= 2

r0

0 5

r1

010

r3

r2

R

CV: center of vision
VP: vanishing point
MP: measuring point

l: left
r: right

Figure 199.

Chapter 39: Adding a File 273

39 Adding a File

Version 1.1.1 was the first version of 3DLDF since it became a GNU package (the cur-
rent version is 1.1.5.1). In previous versions, recompilation was controlled by an auxilliary
program, which I wrote in C++ using CWEB. However, in the course of making 3DLDF
conformant to the GNU Coding Standards1, this has been changed. Recompilation is now
controlled by make, as is customary. The chapter “Compiling” in previous editions of this
manual, is therefore no longer needed.

Nonetheless, using CWEB still has consequences for the way recompilation must be
handled, and it was fairly tricky getting make to work for 3DLDF. Users who only put
code in ‘main.web’ and/or change code in existing files won’t have to worry about this; for
others, this chapter explains how to add files to 3DLDF.

Let’s say you want to add a file ‘widgets.web’ that defines a class Widget, and that the
latter needs access to class Rectangle, and is in turn required by class Ellipse. Code
must be added to ‘3DLDF-1.1.5.1/CWEB/Makefile’ for ctangling ‘widgets.web’, compiling
‘widgets.cxx’, and linking ‘widgets.o’ with the other object files to make the executable
‘3dldf’.

The best way to do this is to change ‘3DLDF-1.1.5.1/CWEB/Makefile.am’ and use Au-
tomake to generate a new ‘Makefile.in’. Then, configure can be used to generate a new
‘Makefile’. It would be possible to modify ‘Makefile’ by hand, but I don’t recommend
it. The following assumes that the user has access to Automake. If he or she is using a
GNU/Linux system, this is probably true.2

‘widgets.web’ must be added between ‘rectangs.web’ and ‘ellipses.web’ in the fol-
lowing variable declaration in ‘3DLDF-1.1.5.1/CWEB/Makefile.am’:

3dldf_SOME_CWEBS = pspglb.web io.web colors.web transfor.web \

shapes.web pictures.web points.web \

lines.web planes.web paths.web curves.web \

polygons.web rectangs.web ellipses.web \

circles.web patterns.web solids.web

solfaced.web cuboid.web polyhed.web \

utility.web parser.web examples.web

Now, add ‘widgets.o’ between ‘ellipses.o’ and ‘rectangs.o’ in the following variable
declaration:

3dldf_OBS_REVERSED = main.o examples.o parser.o utility.o \

polyhed.o cuboid.o solfaced.o solids.o \

patterns.o circles.o ellipses.o rectangs.o \

polygons.o curves.o paths.o \

planes.o lines.o points.o pictures.o shapes.o

transfor.o colors.o io.o pspglb.o

3dldf_OBS_REVERSED is needed, because 3DLDF fails with a “Segmentation fault”, if
the executable is linked using $(3dldf_OBJECTS). This may cause problems, if ‘3dldf’ isn’t
built using the GNU C++ compiler (GCC).

1 The GNU Coding Standards are available at http://www.gnu.org/prep/standards_toc.html.
2 Automake is available for downloading from http://ftp.gnu.org/gnu/automake/. The Automake web-

site is at http://www.gnu.org/software/automake/.

Chapter 39: Adding a File 274

Now add a target for ‘widgets.o’ between the targets for ‘rectangs.o’ and
‘ellipses.o’, and add ‘widgets.tim’ after ‘rectangs.tim’ in the list of prerequisites for
‘ellipses.o’:

rectangs.o: loader.tim pspglb.tim io.tim colors.tim transfor.tim \

shapes.tim pictures.tim points.tim lines.tim planes.tim \

paths.tim curves.tim polygons.tim rectangs.cxx

ellipses.o: loader.tim pspglb.tim io.tim colors.tim transfor.tim \

shapes.tim pictures.tim points.tim lines.tim planes.tim \

paths.tim curves.tim polygons.tim rectangs.tim ellipses.cxx

This is the result:

rectangs.o: loader.tim pspglb.tim io.tim colors.tim transfor.tim \

shapes.tim pictures.tim points.tim lines.tim planes.tim \

paths.tim curves.tim polygons.tim rectangs.cxx

widgets.o: loader.tim pspglb.tim io.tim colors.tim transfor.tim \

shapes.tim pictures.tim points.tim lines.tim planes.tim \

paths.tim curves.tim polygons.tim rectangs.tim \

widgets.cxx

ellipses.o: loader.tim pspglb.tim io.tim colors.tim transfor.tim \

shapes.tim pictures.tim points.tim lines.tim planes.tim \

paths.tim curves.tim polygons.tim rectangs.tim widgets.tim \

ellipses.cxx

In addition, ‘widgets.tim’ must be added to the list of prerequisites in all of the following
targets up to and including ‘examples.o’.

Chapter 40: Future Plans 275

40 Future Plans

3DLDF is a work-in-progress. In fact, it can never be finished, because the supply of
interesting geometric constructions is inexhaustible. However, presently 3DLDF still has a
number of major gaps.

If you’re interesting in contributing to 3DLDF, with respect to one of the topics below
and in the following sections, or if you have ideas of your own, see Section 1.7 [Contributing
to 3DLDF], page 9.

• Input routine. The lack of one is the most significant defect in 3DLDF, as mentioned
in Section 1.5.2 [No Input Routine], page 8.

• Port to other platforms. See Section 1.6 [Ports], page 8.

40.1 Geometry

3DLDF currently provides a set of basic plane and solid geometrical figures. However,
some important ones are still missing. There are many useful geometrical data types and
functions whose implementation would require no more than elementary geometry.

• Add constructors with a normal vector argument rather than angles of rotation about
the main axes.

• I have started defining class Triangle, which can be used for calculating triangle
solutions.

• Add a class Conic_Section and derive Ellipse from it. This will be the first case
of multiple inheritance1 in 3DLDF, since Ellipse is already derived from Path. See
Chapter 31 [Ellipse Reference], page 222. Add the classes Parabola and Hyperbola.

• Add more functions for finding the intersections of objects of various types, starting
with the plane figures. In particular, I believe I’ve found an algebraic solution for the
intersection of an Ellipse and a Circle in a plane, but I haven’t had a chance to try
implementing it yet.

If this works, I think it will make it possible to find the intersection of two coplanar
ellipses algebraically, because it will be possible to transform them both such that one
of them becomes circular.

• Class Octahedron will complete the set of regular Platonic polyhedra.

• Add classes for the Kepler-Poinsot polyhedra, the semi-regular Archimedean polyhedra,
the dual solids, the stellated Archimedean polyhedra, and the regular compounds.2

• Add class Ellipsoid and a derived class Sphere.

• Improve the specification of Solid and Solid_Faced. In particular, it would help to
store the vertices of Polyhedra as individual Points, rather than using Reg_Polygons.
I’d also like to find a better way of generating Solids, without using rotations, if
possible.

1 Stroustrup, The C++ Programming Language, §15.2 “Multiple Inheritance”, pp. 390–92.
2 Cundy and Rollet, Mathematical Models, Chapter 3, “Polyhedra”, pp. 76–160.

Chapter 40: Future Plans 276

40.2 Curves and Surfaces

3D modelling software usually supports the creation and manipulation of various kinds
of spline curves: Bézier curves, B-splines, and non-uniform rational B-splines or NURBS.
These curves can be used for generating surfaces.3

paths in Metafont and MetaPost are Bézier curves. It would be possible to implement
three-dimensional Bézier curves in 3DLDF, but unfortunately they are not projectively

invariant:

Let c0 represent a Bézier curve in three dimensions, P the control points of c0, and t a
projection transformation. Further, let Q represent the points generated from applying t to
P , and c1 the curve generated from Q. Finally, let R represent the points generated from
applying t to all of the points on c0, and c2 the curve through R: c1 6≡ c2.

NURBS, on the other hand, are projectively invariant,4 so I will probably concentrate on
implementing them. On the other hand, it would be nice to be able to implement Metafont’s
way of specifying paths using ‘curl’, ‘tension’, and ‘dir’ in 3DLDF. This may prove to
be difficult or impossible. I do not yet know whether Metafont’s path creation algorithm
can be generalized to three dimensions.5

Curves and surfaces are advanced topics, so it may be a while before I implement them
in 3DLDF.

40.3 Shadows, Reflections, and Rendering

Shadows and reflections are closely related to transformations and projections. A shadow
is the projection of the outline of an object onto a surface or surfaces, and reflection in a
plane is an affine transformation.

3D rendering software generally implements shadows, or more generally, shading, reflec-
tions, and certain other effects using methods involving the calculation of individual pixel
values. Surface hiding is also often implemented at the pixel level. 3DLDF does no scan
converting ((see Section 1.5.1 [Accuracy], page 7), and hence no calculation of pixel values
at all, so these methods cannot be used in 3DLDF at present.

However, it is possible to define functions for generating shadows and reflections within
3DLDF by other means.

I have defined the function Point::reflect() for reflecting a Point in a Plane, and
have begun definining versions for other classes.

However, in order for reflections to work, I must define functions for breaking up objects
into smaller units. This is also necessary for surface hiding to work properly.

For MetaPost output, I will have to implement shadows, reflections, and surface hiding
in this way. However, 3DLDF could be made to produce output in other formats. There
are two possibilities: implementing rendering functionality within 3DLDF, or interfacing to

3 Huw Jones, Computer Graphics through Key Mathematics, and David Salomon, Computer Graphics and

Geometric Modeling, are my main sources of information about spline curves.
4 Jones, Huw. Computer Graphics through Key Mathematics, p. 282.
5 Knuth, Donald Ervin. The METAFONTbook, p. 130, and Hobby, John D. Smooth, Easy to Compute

Interpolating Splines. Discrete and Computational Geometery 1(2).

Chapter 40: Future Plans 277

existing rendering software. If I decide to do the latter, there are again two possibilities:
having 3DLDF write output in a format that a renderer can input, or linking to a library
supplied by a rendering package.

I haven’t yet decided which course to pursue. However, in the long run, I’d like it to be
possible to use 3DLDF for fancier graphics than is currently possible using MetaPost and
PostScript alone.

40.4 Multi-Threading

When 3DLDF is run, there is only one thread of execution. However, it could benefit
from the use of multiple threads. In particular, it may be faster and more efficient to have
Picture::output() run in its own thread. In this case, it will no longer be possible to
share current_picture among figures.

It may also be worthwhile to execute the code for “figures”, i.e., the code between
‘beginfig()’ and ‘endfig()’, inclusive, in their own threads. This will require some changes
in the way data are handled. For example, if non-constant objects are shared among
figures, there may be no advantage to multi-threading because of the need to coordinate
the access of the threads to the objects. If threads are used, then non-constant objects
should be declared locally within the figure. They may be locally declared copies of global
objects. Alternatively, beginfig() could be changed so that objects could be passed to it
as arguments, perhaps as a vector<void*> and/or a vector<Shape*>.

Chapter 41: Changes 278

41 Changes

Updated 16 January 2004.

41.1 3DLDF 1.1.5.1

• Added missing Texinfo files to the 3dldf_TEXINFOS variable in ‘3DLDF-1.1.5.1/DOC/TEXINFO/Makefile.am’,
and reordered the filenames.

• Changed the names of the PNG (Portable Network Graphics) files included in the
HTML version of this manual. Changed the names in the commands for including
these files in the Texinfo files. I wasn’t able to write some of the files with the old
names to a CD-R (Compact Disk, Recordable).

41.2 3DLDF 1.1.5

In release 1.1.5, I’ve tied up some loose ends. I wanted to do this before starting on the
input routine.

• Added const real step argument to the version of Ellipse::intersection_points()
that takes an Ellipse argument. See Section 31.9 [Ellipse Reference; Intersections],
page 230.

• It is now possible to “typedef” real to either float or double. This means that real
can now be made a synonym for either float or double by using a typedef declaration.
real is typedeffed to float by default.

• Added const bool ldf_real_float and extern const bool ldf_real_double for
use in non-conditionally compiled code. They are set according to the values of
LDF_REAL_FLOAT and LDF_REAL_DOUBLE.

• Transform::epsilon() and Point::epsilon() now return different values, depending
on the values of the preprocessor macros LDF_REAL_FLOAT and LDF_REAL_DOUBLE. I
have not yet tested whether good values are returned when real is double.

• MAX_REAL and MAX_REAL_SQRT are no longer constants. Their values are set at the
beginning of main(). However, users should not change their values. MAX_REAL is the
second-largest float or double on a given machine. This now works for all common
architectures.

• Added namespace System containing the following functions: get_endianness(), is_
big_endian(), is_little_endian(), get_register_width(), is_32_bit(), is_64_
bit(), and the template function get_second_largest().

namespace System and its functions are documented in ‘system.texi’, which is new
in edition 1.1.5.1.

• Replaced the various create_new_<type>() functions with the template function
create_new(). The latter is documented in ‘creatnew.texi’, which is new in edition
1.1.5.1.

• Added the file ‘3DLDF-1.1.5.1/CWEB/cnepspng.el’ to the distribution. It contains the
definitions of the Emacs-Lisp functions convert-eps and convert-eps-loop. See Sec-
tion 11.2.1.1 [Running 3DLDF; Converting EPS Files; Emacs-Lisp Functions], page 79.

Chapter 41: Changes 279

• Added the files ‘3DLDF-1.1.5.1/CWEB/exampman.web’ and ‘3DLDF-1.1.5.1/CWEB/examples.mp’
to the distribution. They contain the C++ and MetaPost code, respectively, for
generating the illustrations in this manual.

41.3 3DLDF 1.1.4.2

• The illustrations in the HTML output are now scaled to magstep3.

41.4 3DLDF 1.1.4.1

• The HTML output now includes illustrations.

41.5 3DLDF 1.1.4

• MAX_REAL is now the second largest float value. However, the calculation is system
dependent, and will only work on 32-bit little-endian architectures. I will start working
on porting this soon.

• Fixed bug in ‘tsthdweb’, that caused files to be compiled more often than necessary.
It will be necessary to keep an eye on this.

• Added Rectangle::is_rectangular().

• Made mediate() a member function of Point.

• It is now possible to generate this manual in the Info and HTML formats.

41.6 3DLDF 1.1.1

3DLDF 1.1.1 was the first version of 3DLDF since it became a GNU package (the current
version is 1.1.5.1). It is now conformant to the GNU Coding Standards, except that a
functioning ‘3DLDF.info’ cannot be generated from ‘3DLDF.texi’. The distribution now
includes a configure script, ‘Makefile.in’ files, and other files generated by Autoconf
and Automake. Recompilation is now handled by make rather than the auxilliary program
3DLDFcpl. The files ‘3DLDFcpl.web’ and ‘3DLDFprc.web’ have been removed from the
distribution.

The extension of the C++ files generated by ctangle is changed from ‘c’ to ‘cxx’ before
they are compiled. After ctangle is run on a CWEB file, ‘<filename>.c’ is compared
to the old ‘<filename>.cxx’ using diff. Whitespace, comments, and #line preprocessor
commands are ignored. The ‘<filename>.c’ is only renamed to ‘<filename>.cxx’ and
compiled if they differ. This way, changes to the TEX text only in a CWEB file no longer
cause recompilation and relinking.

The main Texinfo file is now called ‘3DLDF.texi’. It was formerly called
‘3DLDFman.texi’. This is because Automake expects this name. For this reason, the
CWEB file passed as an argument to cweave has been renamed ‘3DLDFprg.web’. It was
formerly called ‘3DLDF.web’.

Bibliography 280

Bibliography

Cundy, H. Martyn and A.P. Rollet. Mathematical Models. Oxford 1961. Oxford University
Press.

Unfortunately out of print.

Finston, Laurence D. 3DLDF: The Program. Göttingen 2003.

Fischer, Gerd. Ebene algebraische Kurven. Vieweg Studium. Aufbaukurs Mathematik.
Friedr. Vieweg & Sohn Verlagsgesellschaft mbH. Braunschweig/Wiesbaden 1994.

Gill, Robert W. Creative Perspective. London 1975. Thames and Hudson Ltd.
ISBN 0-500-27056-2.

Harbison, Samuel P., and Guy L. Steele Jr. C, A Reference Manual. Pren-
tice Hall. Englewood Cliffs, New Jersey 1995. ISBN 0-13-326232-4 –Case˝.
ISBN~0-13-326224-3 –Paperback˝.

Hobby, John D. Smooth, Easy to Compute Interpolating Splines. Discrete and Computa-
tional Geometery 1(2). Springer-Verlag. New York 1986.

Hobby, John D. A User’s Manual for MetaPost. AT & T Bell Laboratories. Murray Hill,
NJ. No date.

Jones, Huw. Computer Graphics through Key Mathematics. Springer-Verlag London Lim-
ited 2001. ISBN 1-85233-422-3.

Knuth, Donald Ervin. Metafont: The Program. Computers and Typesetting; D. Addison
Wesley Publishing Company, Inc. Reading, Massachusetts 1986. ISBN 0-201-13438-1.

Knuth, Donald Ervin. The METAFONTbook. Computers and Typesetting; C. Addison
Wesley Publishing Company, Inc. Reading, Massachusetts 1986.

Knuth, Donald Ervin. TEX: The Program. Computers and Typesetting; B. Addison Wesley
Publishing Company, Inc. Reading, Massachusetts 1986. ISBN 0-201-13437-3.

Knuth, Donald E. The TEXbook. Computers and Typesetting; A. Addison Wesley Publish-
ing Company, Inc. Reading, Massachusetts 1986.

Knuth, Donald E. and Silvio Levy. The CWEB System of Structured Documentation.
Version 3.64—February 2002.

Rokicki, Tomas. Dvips: A DVI-to-PostScript Translator for version 5.66a. February 1997.
http://dante.ctan.org/CTAN/dviware/dvips/

Salomon, David. Computer Graphics and Geometric Modeling. Berlin 1999. Springer-
Verlag. ISBN: 0-387-98682-0.

Stallman, Richard M. and Roland McGrath. GNU Make. A Program for Directing

Recompilation. make Version 3.79. Boston 2000. Free Software Foundation, Inc.
ISBN: 1-882114-80-9.

Bibliography 281

Stallman, Richard M. Using and Porting the GNU Compiler Collection. For GCC Version
3.3.2. Boston 2003. Free Software Foundation, Inc.

Stroustrup, Bjarne. The C++ Programming Language. Special Edition. Reading, Mas-
sachusetts 2000. Addison-Wesley. ISBN 0-201-70073-5.

Stroustrup, Bjarne. The Design and Evolution of C++. Reading, Massachusetts 1994.
Addison-Wesley Publishing Company. ISBN 0-201-54330-3.

Vredeman de Vries, Jan. Perspective. New York 1968. Dover Publications, Inc.
Standard Book Number: 486-21086-4.

The beautiful perspective constructions in this volume are taken from
the original work, first published by Henricus Hondius in Leiden in 1604
and 1605.

White, Gwen. Perspective. A Guide for Artists, Architects and Designers. London 1968
and 1982. B T Batsford Ltd. ISBN 0-7134-3412-0.

Appendix A: GNU Free Documentation License 282

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 283

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a publicly
available dtd, and standard-conforming simple html, PostScript or pdf designed for
human modification. Examples of transparent image formats include png, xcf and
jpg. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, sgml or xml for which the dtd and/or processing
tools are not generally available, and the machine-generated html, PostScript or pdf

produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 284

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 285

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 286

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: GNU Free Documentation License 287

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

Appendix A: GNU Free Documentation License 288

A.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled

‘‘GNU Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Data Type and Variable Index 289

Data Type and Variable Index

A
angle . 151
angle_hex_hex . 269
angle_hex_square . 269
arrow . 166
axis . 151
axis_h . 211, 222
axis_v . 211, 222
AXON . 114

B
background_color . 91
background_color_vector 91
black . 91
blue . 91
blue_part . 88
blue_violet . 91
bool_pair . 81
bool_point . 121
bool_point_pair . 121
bool_point_quadruple. 121
bool_real . 81
bool_real_point . 122

C
center . 199, 216, 248
Circle . 36, 238
CIRCLE . 248
circles. 248
Color . 88
connectors . 167
Cuboid . 47, 258
CURR_Y . 120
CURR_Z . 120
cyan . 91
cycle_switch . 166

D
dashed . 166
default_background . 91
default_color . 91
default_color_vector. 91
default_focus . 152
DEFAULT_NUMBER_OF_POINTS 222
depth . 258
dihedral_angle 260, 264, 266
direction . 151, 154
distance . 151, 157
do_help_lines . 167
do_labels . 111
DO_LABELS . 109

do_output . 120, 166, 248
Dodecahedron . 49, 264
dot . 108
DRAW . 93
draw_color . 166
DRAWDOT . 93
drawdot_color . 120
drawdot_value . 120

E
edge_radius . 260
edges . 257
Ellipse . 36, 222
ELLIPSE. 248
ellipses . 248

F
face_radius . 260
faces . 257
FILL . 93
fill_color . 166
fill_draw_value . 166
FILLDRAW. 93
focus . 63
Focus . 151
focus0 . 222
focus1 . 222

G
gray . 91
green . 91
green_part . 88
green_yellow . 91

H
height . 258
help_color . 91, 167
help_color_vector . 91
help_dash_pattern . 167
hexagon_radius . 269

I
Icosahedron . 51, 266
IDENTITY_TRANSFORM . 96
in_stream . 92
internal_angle . 205
INVALID_BOOL_POINT . 122
INVALID_BOOL_POINT_PAIR 122
INVALID_BOOL_POINT_QUADRUPLE 122

Data Type and Variable Index 290

INVALID_BOOL_REAL_POINT 122

INVALID_LINE . 154

INVALID_PLANE . 157

INVALID_POINT . 122

INVALID_REAL . 82

INVALID_REAL_PAIR . 82

INVALID_REAL_SHORT . 82

INVALID_TRANSFORM . 96

ISO . 114

L
Label . 108

labels . 111

ldf_real_double . 82

ldf_real_float . 82

light_gray . 91

Line . 154

line_switch . 165

linear_eccentricity . 222

M
magenta . 91

matrix . 96

Matrix . 81

MAX_REAL. 82

MAX_REAL_SQRT . 83

MAX_Z . 115

MEAN_Z . 115

measurement_units . 120

measurement_units (Point). 10

MIN_Z . 115

N
name . 88

NO_SORT. 115

normal . 157

null_coordinates . 82

number_of_points . 216

number_of_polygon_types 260

numerical_eccentricity 222

O
on_free_store 88, 119, 166, 205, 211, 248

orange . 91

orange_red . 91

origin . 122

out_stream . 54, 92

P
PARALLEL_X_Y . 114
PARALLEL_X_Z . 114
PARALLEL_Z_Y . 114
Path . 28, 165
PATH . 248
paths . 248
pen . 120, 166
pentagon_radius . 264
persp . 151
PERSP . 114
PI . 82
Picture . 54, 111
pink . 91
Plane . 157
point . 157
Point . 10, 119
Point::measurement_units 10
Point::projective_coordinates 10
Point::user_coordinates 10
Point::view_coordinates 10
Point::world_coordinates 10
point_pair . 121
points . 167
Polygon . 36, 199
Polyhedron . 48, 260
position. 109, 151, 154
projective_coordinates 119
projective_coordinates (Point) 10
projective_extremes 120, 166, 248
pt . 108
purple . 91

R
radius . 205, 238
real . 81
real_pair . 81
real_short . 81
real_triple . 81
Rectangle . 36, 211
RECTANGLE . 248
rectangles . 248
red . 91
red_part. 88
Reg_Cl_Plane_Curve . 36, 216
Reg_Polygon . 36, 205
REG_POLYGON . 248
reg_polygons . 248

S
Shape . 93
shapes . 111
short . 205
Solid . 248
Solid_Faced . 257

Data Type and Variable Index 291

T
Tetrahedron . 48, 260
tex_stream . 92
text . 108
transform . 111, 119, 151
Transform . 19, 96
triangle_radius . 260, 266
Trunc_Octahedron . 269
Truncated Octahedron . 269

U
UNDRAW . 93
UNDRAWDOT . 93
UNFILL . 93
UNFILLDRAW . 93
up . 151
use_name. 88
user_coordinates . 119
user_coordinates (Point) 10
user_transform . 96

V
vertex_radius . 260
vertices . 257

view_coordinates . 119

view_coordinates (Point) 10
violet . 91

violet_red . 91

W
white . 91

width . 258
world_coordinates . 119

world_coordinates (Point). 10

Y
yellow . 91
yellow_green . 91

Function Index 292

Function Index

~

~Cuboid. 259
~Path . 171
~Point . 124
~Solid . 249

A
align_with_axis . 105, 178
angle . 139
angle_point . 217, 229
append . 172
apply_transform 94, 135, 180, 254

B
beginfig. 92
bool_point . 121
bool_point::operator= . 121
bool_point_quadruple 121, 122
bool_point_quadruple::operator= 122
bool_real_point . 122
bool_real_point::operator= 122

C
Circle . 238
clean . 107, 130
clear . 94, 113, 130, 173, 256
Color . 88
convert-eps . 79
convert-eps-loop . 79
corner . 213
create_new . 84
create_new<Circle> . 238
create_new<Color> . 89
create_new<Cuboid> . 259
create_new<Ellipse> . 224
create_new<Path> . 171
create_new<Point> . 123
create_new<Rectangle> . 212
create_new<Reg_Polygon> 207
create_new<Solid> . 249
cross_product . 137
Cuboid . 258

D
define_color_mp . 90
do_transform . 224
Dodecahedron . 264
dot_product . 136
dotlabel. 149, 192, 225
draw . 145, 180, 255

draw_axes . 184
draw_help . 146, 147, 183
draw_in_circle . 208
draw_in_ellipse . 215
draw_in_rectangle . 237
draw_net. 263, 266, 268
draw_out_circle . 209, 210
draw_out_ellipse . 214
draw_out_rectangle . 237
drawarrow . 147, 183
drawdot. 144

E
Ellipse. 222
endfig . 92
epicycloid_pattern_1. 245
epsilon . 100, 129
extract . 95, 150, 197, 254

F
fill . 186, 187, 255
filldraw . 187, 255
Focus . 152

G
get_all_coords . 128
get_axis_h . 213, 228
get_axis_v . 213, 228
get_blue_part . 90
get_center . 199, 227, 250
get_circle_center . 251
get_circle_ptr . 252
get_coefficients . 217, 235
get_coord . 128
get_copy 93, 109, 126, 173, 249
get_diameter . 240
get_direction . 153
get_distance . 153, 159
get_element . 99
get_ellipse_center . 251
get_ellipse_ptr . 253
get_endianness . 85
get_extremes 95, 150, 197, 255
get_focus . 227
get_green_part . 90
get_last_point . 195
get_line . 140, 195
get_line_switch . 194
get_linear_eccentricity 228
get_maximum_z 95, 150, 197, 255
get_mean_z . 95, 150, 197, 255
get_minimum_z 95, 150, 197, 255

Function Index 293

get_name. 90
get_net . 262, 265, 268, 270
get_normal . 195
get_numerical_eccentricity 228
get_path . 155
get_path_ptr . 253
get_persp . 153
get_persp_element . 153
get_plane . 195
get_point . 194
get_position . 153
get_radius . 207, 240
get_rectangle_center. 251
get_rectangle_ptr . 253
get_red_part . 90
get_reg_polygon_center 251
get_reg_polygon_ptr . 253
get_register_width . 86
get_second_largest . 87
get_shape_center . 250
get_shape_ptr . 252
get_size . 195
get_transform . 126, 153
get_transform_element . 153
get_up . 153
get_use_name . 90
get_w . 129
get_x . 128
get_y . 129
get_z . 129

H
half . 220
hex_pattern_1 . 242

I
Icosahedron . 267
in_circle . 207
in_ellipse . 214
in_rectangle . 236
initialize_colors . 90
initialize_io . 92
intersection_line . 162
intersection_point 143, 161, 198
intersection_points 200, 202, 217, 230, 231,

240
inverse . 99
is_32_bit . 86
is_64_bit . 86
is_big_endian . 86
is_circular . 239
is_cubic . 216, 227
is_cycle . 194
is_elliptical . 227
is_identity . 99, 126
is_in_triangle . 127

is_linear . 194

is_little_endian . 86

is_on_free_store 90, 94, 126, 194, 250

is_on_line . 141

is_on_plane . 126

is_on_segment . 140

is_planar . 194

is_quadratic . 216, 227

is_quartic . 216, 227

is_rectangular . 213

K
kill_labels . 114

L
label . 148, 191, 224

Line . 154, 155

location . 217, 228

M
magnitude . 138

mediate. 142

mid_point . 213

modify . 90

O
operator!= . 89, 126, 159

operator& . 172

operator&= . 172

operator* . 98, 99, 125

operator*= 93, 97, 98, 112, 124, 125, 171, 199,
224, 249

operator+ . 124, 172

operator+= . 112, 124

operator+= . 171, 172

operator- . 124, 125

operator-= . 124

operator/ . 125

operator/= . 125

operator<< . 89, 150

operator= 89, 97, 112, 124, 152, 155, 158, 207,
212, 224, 239, 249, 259

operator= (for Points) . 11

operator== . 89, 125, 159

out_circle . 209

out_ellipse . 213

out_rectangle . 236

output 95, 109, 115, 150, 197, 254

Function Index 294

P
Path . 167, 168, 170, 171
persp_0. 271
Picture . 111, 112
Plane . 157, 158
Point . 123
Point::intersection_points 73
Point::operator= . 11
Point::set . 11
project . 135, 197

Q
quarter. 220

R
real_triple . 81
Rectangle . 211, 212
Reg_Polygon . 205
reset . 107
reset_angle . 153
reset_transform . 114, 130
reverse. 196
rotate . . 94, 105, 113, 130, 174, 178, 200, 226, 254

S
scale. 94, 101, 113, 132, 174, 200, 226, 254
segment. 219
set 88, 89, 123, 152, 168, 169, 170, 206, 212,

223, 238, 262
set (for Points) . 11
set_blue_part . 90
set_connectors . 174
set_cycle . 196
set_dash_pattern . 174
set_draw_color . 174
set_element . 99
set_extremes 95, 150, 197, 254
set_fill_color . 174
set_fill_draw_value . 174
set_green_part . 90
set_name. 89

set_on_free_store 93, 130, 173, 250
set_pen. 174
set_red_part . 90
set_transform . 114
set_use_name . 89
shear 94, 102, 133, 175, 200, 226, 254
shift . . . 94, 102, 113, 134, 176, 177, 200, 226, 254
shift_times 103, 134, 178, 200, 226
show 90, 94, 100, 114, 149, 153, 155, 163, 192,

253
show_colors . 193
show_transform. 114, 149
size . 194
slope . 140, 194
Solid . 249
solve . 217, 235
solve_quadratic . 271
subpath. 194
suppress_labels . 117
suppress_output 95, 150, 197, 254

T
Tetrahedron . 261
Transform . 96
trunc . 271
Trunc_Octahedron . 269

U
undraw . 146, 189, 256
undrawdot . 145
unfill . 189, 256
unfilldraw . 190, 256
unit_vector . 139
unsuppress_labels . 118
unsuppress_output 95, 197, 254

V
void . 150

W
write_footers . 92

Concept Index 295

Concept Index

A
animation . 65, 66
arbitrary Path . 73

B
B-splines . 276
Bézier curves . 276
bugs . 18

C
CD-R (Compact Disk, Recordable) 78
Compact Disk, Recordable (CD-R) 78
Comprehensive TEX Archive Network (CTAN) . . 2
connecting Points . 24
connectors . 28, 73
contributing to 3DLDF. 73
control points . 28
controls . 28
convert (ImageMagick) . 77
CTAN (Comprehensive TEX Archive Network) . . 2
curl . 28

D
derivation . 275
derived classes . 275
display (ImageMagick) . 78
drawing and filling . 24

E
Emacs . 92
Emacs-Lisp. 79
Encapsulated PostScript (EPS) 4, 6, 77, 79
EPS (Encapsulated PostScript) 4, 6, 77, 79

F
FDL, GNU Free Documentation License 282
file, output . 144
function templates . 74
function, member . 3
future plans . 73

H
help lines . 146
hidden surface algorithm . 68
homogeneous coordinates . 19

I
identity matrix . 20
ImageMagick. 77, 78
ImageMagick convert . 77
ImageMagick display . 78
input routine . 10
intersection. 73
intersection points . 73
intersection theory . 73
invariance, projective . 276
inversion . 21

K
kludge . 271

L
linear Paths . 165
lines, drawing . 24
local variable lists . 92

M
matrix inversion . 21
matrix operations . 20
matrix, identity . 20
measurement units . 10
member function. 3
Metafont . 6
MetaPost . 6
multi-threading . 277
multiple inheritance . 275

N
non-arbitrary Path . 73
non-uniform rational B-splines (NURBS) 276
NURBS (non-uniform rational B-splines) 276

O
operations, matrix . 20
output file . 54, 73, 144
output files . 54

P
painter’s algorithm . 68
patches . 276
Path connectors . 73
Path intersections. 73
paths . 28

Concept Index 296

pen expression . 144
pens . 24
PNG (Portable Network Graphics) . . 4, 77, 79, 278
Points, connecting. 24
Portable Network Graphics (PNG) . . 4, 77, 79, 278
PostScript (PS) . 4, 77, 79
PostScript, structured . 77, 79
projective invariance . 276
PS (PostScript) . 4, 77, 79

R
raw MetaPost code . 58
reflections . 276
RGB (red-green-blue) . 88

S
shading . 276

shadows. 276
spline curves . 276
splines . 276
structured PostScript . 77, 79
surface hiding . 68
surface patches . 276
symbols . 4
system dependencies . 82

T
template functions . 74
templates . 74
tension . 28
theory of intersection . 73
TO DO . 58, 83

U
units of measurement . 10

