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Traditional model

• Tuned general purpose codes

Only good for dense

Not problem sensitive

Not architecture sensitive
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Goal of scientific libraries
Improve Productivity at optimal performance

Cray use four concentrations to achieve this
• Standardization

Use standard or “de facto” standard interfaces whenever available

• Hand tuning
Use extensive knowledge of target processor and network to optimize 
common code patterns

• Auto-tuning
Automate code generation and a huge number of empirical performance 
evaluations to configure software to the target platforms

• Adaptive Libraries
Make runtime decisions to choose the best kernel/library/routine
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Three separate classes of standardization, each with a 
corresponding definition of productivity
1. Standard interfaces (e.g., dense linear algebra)

Bend over backwards to keep everything the same despite increases inBend over backwards to keep everything the same despite increases in 
machine complexity. Innovate ‘behind-the-scenes’
Productivity -> innovation to keep things simple

2. Adoption of near-standard interfaces (e.g., sparse kernels)
Assume near-standards and promote those. Out-mode alternatives. 
Innovate ‘behind-the-scenes’
Productivity -> innovation in the simplest areas
o (requires the same innovation as #1 also)

3. Simplification of non-standard interfaces (e.g., FFT)
Productivity -> innovation to make things simpler than they are
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Algorithmic tuning
• Increased performance by exploiting algorithmic improvements

Sub-blocking, new algorithms
• LAPACK ScaLAPACK• LAPACK, ScaLAPACK

Kernel tuning
• Improve the numerical kernel performance in assembly language
• BLAS, FFT

Parallel tuning
• Exploit Cray’s custom network interfaces and MPT
• ScaLAPACK, P-CRAFFTScaLAPACK, P CRAFFT

September 21-24, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. 5

Automation of code optimization
• Includes automation of the following ‘components’

Code generation
CompilationCompilation
Parameter Search
Batch submission
Result Analysis

Allows many more optimizations to be studied
‘Search’ component means allows massive optimization 
space to be studied in realistic time
Currently employed in two projects at Cray
• Cray Adaptive Sparse Kernels (CASK)
• Cray Adaptive FFT (CRAFFT)

Cray ATF is the world’s first industrial Autotuner
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Cray Adaptive model
• Runtime analysis allows best library/kernel to be used dynamically
• Extensive offline testing allows library to make decisions or remove the 

need for those decisionsneed for those decisions
• Decision depends on the system, on previous performance info, 

obtained previously, and characteristics of calling problem

CASK: Cray Adaptive Sparse Kernels
• Optimize PETSc and Trilinos on Cray without the user even knowing
• Produces thousands of tuned variants of major sparse kernels
• At runtime, analyze matrix, select best kernel via performance model

CRAFFT: Cray Adaptive FFT
• Provides one very simple interface into all existing FFT libraries
• Uses previous performance information to decide where to go
• Allows ‘advanced’ performance with the simplest interface
• Sits above third party FFTs and CrayFFT

September 21-24, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. 7

LibSci CASK CRAFFT

BLAS

LAPACK

ScaLAPACK

CASK

PETSc

Trilinos

CRAFFT

FFTW

P CRAFFTIRT Trilinos P‐CRAFFT

IRT – Iterative Refinement Toolkit
CASK – Cray Adaptive Sparse Kernels
CRAFFT – Cray Adaptive FFT
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Serial and Parallel versions of sparse iterative linear solvers
• Suites of iterative solvers

CG GMRES BiCG QMRCG, GMRES, BiCG, QMR, etc.
• Suites of preconditioning methods

IC, ILU, diagonal block (ILU/IC), Additive Schwartz, Jacobi, SOR
• Support block sparse matrix data format for better performance 
• Interface to external packages (ScaLAPACK, SuperLU_DIST)
• Fortran and C support
• Newton-type nonlinear solvers

Large user community
• DoE Labs, PSC, CSCS, CSC, ERDC, AWE and more.

http://www-unix.mcs.anl.gov/petsc/petsc-as
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Cray provides state-of-the art scientific computing packages 
to strengthen the capability of PETSc
• Hypre: scalable parallel preconditioners

AMG (Very scalable and efficient for specific class of problems)AMG (Very scalable and efficient for specific class of problems)
2 different ILU (General purpose)
Sparse Approximate Inverse (General purpose)

• ParMetis: parallel graph partitioning package
• MUMPS: parallel multifrontal sparse direct solver
• SuperLU: sequential version of SuperLU_DIST
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The CASK Process
• Analyze matrix at minimal cost
• Categorize matrix against internal classes
• Based on offline experience find best CASK code for particular matrix• Based on offline experience, find best CASK code for particular matrix
• Previously assign “best” compiler flags to CASK code
• Assign best CASK kernel and perform Ax

CASK silently sits beneath PETSc on Cray systems
• Trilinos support coming soon

Released with PETSc 3.0 in February 2009
• Generic and blocked CSR format

Luiz DeRose (ldr@cray.com) © Cray Inc. 11September 21-24, 2009

• Highly portable

Large‐scale application

• User controlled

• Highly portable

• User controlled

PETSc / Trilinos / Hypre

CASK

All systems

Cray only

• XT4 & XT5 
specific / tuned

• Invisible to 
User
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Speedup on Parallel SpMV on 8 cores
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Block Jacobi Preconditioning

Performance of CASK VS PETSc Performance of CASK VS PETSc
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In FFTs, the relevant problems are 
• Which library choice to use?
• How to use complicated interfaces (e.g., FFTW)

Standard FFT practice
• Do a plan stage

Deduced machine and system information and run micro-kernels
Select best FFT strategy

• Do an execute• Do an execute

Our system knowledge can remove some of this cost!

Luiz DeRose (ldr@cray.com) © Cray Inc. 15September 21-24, 2009

CRAFFT is designed with simple-to-use interfaces
• Planning and execution stage can be combined into one function call
• Underneath the interfaces, CRAFFT calls the appropriate FFT kernel

CRAFFT provides both offline and online tuning
• Offline tuning

Which FFT kernel to use
Pre-computed PLANs for common-sized FFT
o No expensive plan stages

• Online tuning is performed as necessary at runtime as well

At ti CRAFFT ill d ti l l t th b t FFTAt runtime, CRAFFT will adaptively select the best FFT 
kernel to use based on both offline and online testing (e.g. 
FFTW, Custom FFT)
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Solves linear systems in single precision
Obtaining solutions accurate to double precision 
• For well conditioned problems

Serial and Parallel versions of LU Cholesky and QRSerial and Parallel versions of LU, Cholesky, and QR
2 usage methods
• IRT Benchmark routines

Uses IRT 'under-the-covers' without changing your code
o Simply set an environment variable 
o Useful when you cannot alter source code

• Advanced IRT API
If greater control of the iterative refinement process is requiredIf greater control of the iterative refinement process is required
o Allows

» condition number estimation 
» error bounds return
» minimization of either forward or backward error
» 'fall back' to full precision if the condition number is too high
» max number of iterations can be altered by users
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“High Power Electromagnetic 
Wave Heating in the ITER 
Burning Plasma’’

rf heating in tokamak

Maxwell-Bolzmann Eqns

FFT

Dense linear system

Calc Quasi-linear op

Courtesy
Richard Barrett 
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Theoretical
PeakPeak
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