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Cray Programming Environment Focus e

= |tis the role of the Programming Environment to close the gap between
observed performance and peak performance
e Help users achieve highest possible performance from the hardware

= The Cray Programming Environment addresses issues of scale and
complexity of high end HPC systems.
e The Cray Programming Environment helps users to be more productive
e |tis the place at which the complexity of a system is hidden from the user

= User productivity is enhanced with
e |ncreased automation
e Ease of use
e Extended functionality and improved Reliability

e Close interaction with users for feedback targeting functionality
enhancements
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THE BUFERCOMPUTER COMPANY

Cray Programming Environment

#: Under development

= Programming Languages = Tools
Fortran * Environment setup

C » Modules
* Debuggers

il > TotalView
e Chapel s o
e Python# s
n Compilers * Debugging Support Tools
e Cray > Fast Track Debugger
PGI » Abnormal Termination Process
* GNU > STAT*#
= Programming models > Comparative De_bugger#
 Distributed Memory * P?rf(gmagcte analysis
> MPI > CrayPal
> SHMEM > Cray Apprentice2
» Shared Memory O O.ptirﬂibzggiMath Libraries
> MP K
e PGAng&enGlobal View >4109pt0
> UPC > lterative Refinement Toolkit
> CAF > LAPACK
> Chapel > ScalLAPCK
> FFTW
= |/O Libraries > CRAFFT
* NetCDF « Cray PETSc
pRts » CASK
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Environment Setup e B

= The Cray XT system uses modules in the user environment
to support multiple software versions and to create integrated
software packages

¢ As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment, while earlier versions are retained to support legacy
applications

e You can use the default version of an application, or you can choose
another version by using Modules system commands

= By default, the PrgEnv-pgi and Base-opts modules are
loaded into your user environment
e You should never unload the Base-opts module because it contains

the setup for CLE.
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The module tool on the Cray XT )

= How can we get appropriate Compiler, Tools, and Libraries?
e The modules tool is used to handle different versions of packages
> e.g.: module load compiler_v1
> e.g.: module switch compiler_v1 compiler_v2
> e.g.: module load xt-craypat

= Taking care of changing of PATH, MANPATH,

LM_LICENSE_FILE,.... environment

e Modules also provide a simple mechanism for updating certain
environment variables, such as PATH, MANPATH, and
LD_LIBRARY_PATH

¢ In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts.
= |t is also easy to setup your own modules for your own
software
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Useful module commands

= | oad software
¢ module load xt-craypat

= Change software version

e module swap pgi/7.0.4 pgi/6.1.6

= | oad Cray Compiling Environment

e module swap PrgEnv-pgi PrgEnv-cray
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module list

THE BUFERCOMPUTER COMPANY

1
2)
3)
4)
5)
6)
7
8)
9

users/ldr> module list
Currently Loaded Modulefiles:

modules/3.1.6
Xtpe-target-cnl
xt-services/2.2.41
xt-0s/2.2.41
xt-boot/2.2.41
xt-lustre-ss/2.2.41 1.6.5
Base-opts/2.2.41
pgi/9.0.3
totalview-support/1.0.6

10)
11)
12)
13)
14)
15)
16)
17)

xt-totalview/8.6.0
xt-libsci/10.3.9
xt-mpt/3.4.2
xt-pe/2.2.41
xt-asyncpe/3.3
PrgEnv-pgi/z2.2.41
xt-craypat/5.0.0
apprentice2/5.0.0

4
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module show CRaN

users/ldr> module show cce

/opt/modulefiles/cce/7.1.3:

setenv CRAYLMD_LICENSE_FILE /opt/cray/cce/cce.lic

setenv CRAY_BINUTILS_ROOT /opt/cray/cce/7.1.3/cray-binutils

setenv CRAY_BINUTILS_VERSION /opt/cray/cce/7.1.3

setenv CRAY_BINUTILS_BIN /Zopt/cray/cce/7.1.3/cray-binutils/x86_64-unknown-linux-gnu/bin
setenv LINKER_X86_64 /opt/cray/cce/7.1.3/cray-binu s/x86_64-unknown-linux-gnu/bin/Id
setenv ASSEMBLER_X86_64 /opt/cray/cce/7.1.3/cray-binutils/x86_64-unknown-linux-gnu/bin/as
setenv CRAYLIBS_X86_64 /opt/cray/cce/7.1.3/craylibs/x86-64

setenv FTN_X86_64 /opt/cray/cce/7.1.3/cftn/x86-64

setenv CC_X86_64 /opt/cray/cce/7.1.3/CC/x86-64

setenv CRAY_FTN_VERSION 7.1.3

setenv CRAY_CC_VERSION 7.1.3

setenv PE_LEVEL 7.1

prepend-path FORTRAN_SYSTEM_MODULE_NAMES ftn_lib_definitions

prepend-path MANPATH

/opt/cray/cce/7.1.3/man:/opt/cray/cce/7.1.3/craylibs/man:/opt/cray/cce/7.1.3/CC/man:/opt/cray/cce/7.
1.3/cftn/man

prepend-path NLSPATH /Zopt/cray/cce/7.1.3/CC/x86-
64/nls/En/%N.cat:/opt/cray/cce/7.1.3/craylibs/x86-64/nls/En/%N.cat:/opt/cray/cce/7.1.3/cftn/x86-
64/nls/En/%N.cat

prepend-path INCLUDE_PATH_X86_64 /opt/cray/cce/7.1.3/craylibs/x86-64/include

prepend-path PATH /opt/cray/cce/7.1.3/cray-binutils/x86_64-unknown-linux-
gnu/bin:/opt/cray/cce/7.1.3/craylibs/x86-
64/bin:/opt/cray/cce/7.1.3/cftn/bin:/opt/cray/cce/7.1.3/CC/bin

append-path MANPATH /usr/share/man
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: R ANY
module avail Rty ik
(Idr@hawk) 105% module avail
——————————————————— /opt/cray/xt-asyncpe/3.3.11/modulefiles -----———————cmou——
xtpe-barcelona xtpe-network-seastar xtpe-target-native
Xxtpe-istanbul xtpe-quadcore
xtpe-network-gemini xtpe-shanghai
———————————————— /opt/totalview-support/1.0.6/modulefiles ----—-———————cu——
xt-totalview-mem-debug
/opt/modulefiles
Base-opts/2.0.48. lusrelsave pathscale/3.2(default)
Base-opts/2.0.49. lusrelsave pathscale/3.2.orig
Base-opts/2.0.54. lusrelsave pbs/8.1
Base-opts/2.0.58. lusrelsave pbs/default
Base-opts/2.0.61. lusrelsave petsc/3.0.0.1
Base-opts/2.0.62. lusrelsave petsc/3.0.0.2
Base-opts/2.0.63. lusrelsave petsc/3.0.0.3
Base-opts/2.1.41HD. lusrelsave petsc/3.0.0.3.1
Base-opts/2.1.50HD petsc/3.0.0.4
Base-opts/2.1.50HD. lusrelsave petsc/3.0.0.4.2
Base-opts/2.2.24 petsc/3.0.0.5(default)
Base-opts/2.2.24.lusrelsave petsc-complex/3.0.0.1
Base-opts/2.2.29 petsc-complex/3.0.0
Base-opts/2.2.29. lusrelsave petsc-complex/3.0.0.3
Base-opts/2.2.31 petsc-complex/3.0.0.3.1
Base-opts/2.2.31. lusrelsave petsc-complex/3.0.0.4
Base-opts/2.2.32DSL3 petsc-complex/3.0.0.4.2
Base-opts/2.2.32DSL3. lusrelsave petsc-complex/3.0.0.5(default)
Base-opts/2.2._41(default) pgi/7.1.6
Base-opts/2.2.41. lusrelsave pgi/7.2.4
PrgeEnv-cray/1.0.0(default) pgi/7.2.5
PrgEnv-gnu/2.1.50HD pgi/8.0.1
PrgEnv-gnu/2.2.24 pgi/8.0.2
PrgEnv-gnu/2.2.29 pgi/8.0.3
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Release Notes

THE BUPERCOMPUTER COMPANY

(ldr@hawk) 112% module help xt-craypat

——————————— Module Specific Help for "xt-craypat/5.0.0" -----——----

: August 20, 2009

Changes from CrayPat 4.4.1 release to 5.0.0 release

CrayPat 4.4.1 release revision: 2380
CrayPat 5.0.0 release revision: 2686

CrayPat
modulefile -DCRAYPAT is added to compilation options when
the xt-craypat module is loaded. (Add -UCRAYPAT
to a compiler invocation will undefine the macro.)
pat_hwpc removed - no longer supported
pat_build more complete evaluation of DWARF DIEs
pat_build no longer control tracing symbols in file by write permissions
pat_build add "trace-file" directive to control tracing symbols in file

Bugz closed since 4.4.1 release

(following fixed in revs <=2686 == 5.0 release)

September 21-24, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc.

ilil

Setting Your Target Architecture

THE BUFERCOMPUTER COMPANY

= Before you begin to compile programs, you must verify that the

target architecture is set correctly

= The compilers and linker use the target architecture in creating

executables to run on compute nodes

= The target architecture is set automatically when you log in

e The xtpe-target-cnl module should be loaded and the
XTPE_COMPILE_TARGET environment variable set to linux

users/ldr> module show xtpe-target-cnl

/opt/modulefiles/xtpe-target-cnl:

conflict xtpe-target-catamount
conflict X2pe-target-x2
setenv XTPE_COMPILE_TARGET linux
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Using the Compiler Driver Commands e

= You use compiler driver commands to launch all Cray XT
compilers

= The syntax for the compiler driver is:
e cc | CC | ftn [Cray_options | PGI_options | GNU_options] files [-lhugetlbfs]

= For example, to use the PGI Fortran compiler to compile
progl.fo0
¢ First use the module list command to verify that these modules have
been loaded:
> PrgEnv-pgi
> xtpe-target-cnl
e Then use this command:
> % ftn prog1.fo0
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Compiler man Pages )=

= The cc(1), CC(1), and ftn(1) man pages contain information about
the compiler driver commands

= The pgcc(l), pgCC(1), and pgf95(1) man pages contain
descriptions of the PGl compiler command options

= The craycc(1), crayCC(1), and crayftn(1) man pages contain
descriptions of the Cray compiler command options

= The gcc(1), g++(1), and gfortran(1) man pages contain
descriptions of the GNU compiler command options

= To verify that you are using the correct version of a compiler, use:
e -V option on a cc, CC, or ftn command with PGl and CCE
e --version option on a cc, CC, or ftn command with GNU
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Cross Compiling Environment e

Compiling on a Linux service node

Generating an executable for a CLE compute node

= Do not use pgf90, pgcc, gce, g++, ..., unless you want a
Linux executable for the service node

= |[nformation message:

> ftn: INFO: linux target is being used
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Using PGI Compilers e

= To use the PGI compilers, run the module list command to
verify that the PrgEnv-pgi module is loaded
e |fitis not, use a module swap command, such as:
> % module swap PrgEnv-gnu PrgEnv-pgi

> PrgEnv-pgi loads the product modules that define the system paths and
environment variables needed to use the PGI compilers

C compiler cc filename.c
C++ compiler CcC filename.CC
filename.cc

filename.cpp
filename.cxx

Fortran 90/95 compiler ftn filename.f (fixed source, no preprocessing)
filename.f90 (free source, no preprocessing)
filename.f95 (free source, no preprocessing)
filename.F (fixed source, preprocessing)
filename.F90 (free source, preprocessing)
filename.F95 (free source, preprocessing)
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PGI Basic Compiler Usage e B

= A compiler driver interprets options and invokes pre-
processors, compilers, assembler, linker, etc.

= Options precedence: if options conflict, last option on
command line takes precedence

= Use -Minfo to see a listing of optimizations and
transformations performed by the compiler

= Use -help to list all options or see details on how to use a
given option, e.g. pgf90 -Mvect —help

= Use man pages for more details on options
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PGI compiler flags for a first start ) s

Preprocessor Options:
-Mpreprocess runs the preprocessor on Fortran files
(default on .F, .F90, or .fpp files)

Optimization Options:

-fast (or -fastsse) chooses generally optimal flags
for the target platform
-Mipa=fast,inline Inter Procedural Analysis
-Minline=levels:number number of levels of inlining (default 1)
-Minline= [name:]function A non-numeric option is assumed to be
a function name
-Minfo Compiler optimization information

Overall Options:

-Mlist creates a listing file

-help displays command-line options
e.g., pgfos —fast -help
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-help e R

users/ldr> pgfa0 -fast -help
Reading rcfile /opt/pgi/9.0.3/linux86-64/9.0-3/bin/.pgfo0rc
-fast Common optimizations; includes -02 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline
== -Mvect=sse -Mscalarsse -Mcache_align -Mflushz
M[no]vect[=[no]altcode|[no] | cachesize:<c> | [no]fuse | [no]gather | [no]idiom | levels:<n> | [no]partial | [no]sizelimit[:n] | prefetch
| [no]short|[no]sse| [no]uniform]
Control automatic vector pipelining
[no]altcode  Generate appropriate alternative code for vectorized loops
[nolassoc  Allow [disallow] reassociation
cachesize:<c> Optimize for cache size ¢
[no]fuse Enable [disable] loop fusion
[no]gather  Enable [disable] vectorization of indirect array references
[nolidiom  Enable [disable] idiom recognition
levels:<n>  Maximum nest level of loops to optimize
[no]partial Enable [disable] partial loop vectorization via inner loop distribution
[no]sizelimit[:n]
Limit size of vectorized loops
prefetch Generate prefetch instructions
[nolshort  Enable [disable] short vector operations
[no]sse Generate [don't generate] SSE instructions
[no]uniform  Perform consistent optimizations in both vectorized and residual loops; this may affect the performance of the
residual loop
-M[no]scalarsse Generate scalar sse code with xmm registers; implies -Mflushz
-Mcache_align  Align long objects on cache-line boundaries
-M[no]flushz Set SSE to flush-to-zero mode
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PGl Flags for Debugging Aids e

= g generates symbolic debug information used by a debugger

= -gopt generates debug information in the presence of
optimization

= -Mbounds adds array bounds checking

= -y gives verbose output, useful for debugging system or build
problems

= -Mlist will generate a listing

= -Minfo provides feedback on optimizations made by the
compiler

= S or —Mkeepasm to see the exact assembly generated
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Basic optimization switches i

= Traditional optimization controlled through -O[<n>]
e nis0to4.

= -fast switch combines common set into one simple switch, is
equal to -O2 -Munroll=c:1 -Mnoframe -Mlre
e Same as —fastsse

e For -Munroll, c specifies completely unroll loops with this loop count or
less

e -Munroll=n:<m> says unroll other loops m times
e -Mire is loop-carried redundancy elimination

= -Mcache_align aligns top level arrays and objects on cache-
line boundaries

= _Mflushz flushes SSE denormal numbers to zero
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Node level tuning )=

= \ectorization — packed SSE instructions maximize
performance

Interprocedural Analysis (IPA) — use it!

Function Inlining — especially important for C and C++

Parallelization — for Cray multi-core processors

Miscellaneous Optimizations — hit or miss, but worth a try
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What can Interprocedural Analysis and Optimization with e
—Mipa do for You?

= |nterprocedural constant propagation

= Pointer disambiguation

= Alignment detection, Alignment propagation

Global variable mod/ref detection

F90 shape propagation

Function inlining

IPA optimization of libraries, including inlining
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Using Interprocedural Analysis N

= Must be used at both compile time and link time
= Non-disruptive to development process — edit/build/run
= Speed-ups of 5% - 10% are common

= —_Mipa=safe:<name> - safe to optimize functions which call or
are called from unknown function/library name

= —_Mipa=libopt — perform IPA optimizations on libraries
= —_Mipa=libinline — perform IPA inlining from libraries
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THE BUPERCOMPUTER COMPANY

—Minline[=[lib:]<inlib> | [name:]<func> | except:<func> | size:<n> | levels:<n>]
[lib:]<inlib> Inline extracted functions from inlib

[name:]<func> Inline function func

except:<func> Do not inline function func

size:<n> Inline only functions smaller than n statements (approximate)
levels:<n> Inline n levels of functions 7

= For C++ Codes, PGI Recommends IPA-based inlining or
—Minline=levels:10!
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Effect of IPA on the WUPWISE Benchmark o

Execution Time in
PGF95 Compiler Options Seconds
—fastsse 156.49
—fastsse —Mipa=fast 121.65
—fastsse —Mipa=fast,inline 91.72

= —Mipa=fast => constant propagation =>

e compiler sees complex matrices are all 4x3 => completely unrolls
loops

= _Mipa=fast,inline => small matrix multiplies are all inlined
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Other C++ recommendations CRaN

= Encapsulation, Data Hiding - small functions, inline!
= Exception Handling — use —no_exceptions until 7.0

= QOverloaded operators, overloaded functions — okay
= Pointer Chasing - -Msafeptr, restrict qualifer, 32 bits?
= Templates, Generic Programming — now okay

® |nheritance, polymorphism, virtual functions — runtime lookup
or check, no inlining, potential performance penalties
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SMP Parallelization SR

= —Mconcur for auto-parallelization on multi-core
e Compiler strives for parallel outer loops, vector SSE inner loops
e —Mconcur=innermost forces a vector/parallel innermost loop
e —Mconcur=cncall enables parallelization of loops with calls

= —mp to enable OpenMP parallel programming model
e  OpenMP programs compiled w/out —mp=nonuma

=  —Mconcur and —mp can be used together!
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CRANY

THE SUPERCOMPUTER COMPANY

The Cray Compiling Environment
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The Cray Compiling Environment e

= Ability and motivation to provide high-quality support for custom
Cray network hardware

= Cray technology focused on scientific applications
e Takes advantage of Cray’s extensive knowledge of automatic
vectorization

* Takes advantage of Cray’s extensive knowledge of automatic shared
memory parallelization

e Supplements, rather than replaces, the available compiler choices

= Standard conforming languages and programming models
e Fortran 2003 Compliant — Working on Fortran 2008
e OpenMP
> Fully integrated with other compiler optimizations, including automatic shared
memory parallelization
e UPC & CoArray Fortran
> Fully optimized and integrated into the compiler
> No preprocessor involved
> Target the network appropriately:
o GASNet with Portals
o DMAPP with Gemini
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CCE Main Features CRaN

= Fortran 2003 standard compliant
e Selected F2008 features

= C99 and C++ support

= PGAS functional support
e UPC1.2
e Fortran 2008 CAF

= OpenMP 3.0 support (with limitations)
= \/ectorization

= Cache optimizations
e Automatic Blocking
e Automatic Management of what stays in cache

= Automatic multithreading
= Prefetching, Interchange, Fusion
= Cray performance tools and debugger support
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OpenMP L e

= CCE 7.1 supports the OpenMP 3.0 specification, with minor
limitations:
e C++ random access iterator loops marked for work sharing may not get
work shared
e Task switching is not implemented
e Limitations to be removed in future releases

= OpenMP and automatic multithreading are fully integrated with the
compiler
e Share the same runtime and resource pool

e Aggressive loop restructuring and scalar optimization is done in the
presence of OpenMP

e Consistent interface for managing OpenMP and automatic multithreading

= Nested parallelism and OpenMP tasks can be used to take
advantage of increasing numbers of cores within a node

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 32




Performance Tests — May 11, 2009 e

Language| Compiler1 | Compiler 2 Compiler 3

FTN 193  48.1%| 182 45.4%| 186 46.4%

C 15  14.6% 9 87% 17 16.5%

CH++ 1 111% 1 11.1% 0  0.0%

Total 209 40.7%| 192 37.4%| 203 39.6%

FTN 281 70.1%| 282 70.3%| 265 66.1%

CCE on par or better C 60 58.3% 55 53.4% 49 47.6%

(> 95%) C++ 3 333% 5 55.6% 1 111%

Total 344  67.1%| 342 66.7%| 315 61.4%

FTN 120 29.9%| 119 29.7%| 136 33.9%

C 43  41.7%| 48 46.6%| 54 52.4%

CH++ 6 66.7% 4 444%| 8 88.9%

Total 169 32.9%| 171 33.3%| 198 38.6%
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CCE: Howtouseit ) e

= Make sure it is available
e module avail PrgEnv-cray
= To access the Cray compiler
e module load PrgEnv-cray
e or module switch PrgEnv-xxx PrgEnv-cray
= To target the shanghai chip
e module load xtpe-shanghai
= Once you have loaded the module “cc” and “ftn” are the Cray
compilers

e Recommend just using default options
e Use —rm (fortran) and —hlist=m (C) to find out what happened
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Cray Opteron Compiler: Directives e

= Cray compiler supports a full and growing set of directives
and pragmas

Idir$ concurrent

Idir$ ivdep

Idir$ interchange

1dir$ unroll

1dir$ loop_info [max_trips] [cache_na] ... Many more
1dir$ blockable

YV V.V V V V

e See
> man directives
> man loop_info
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Loopmark: Compiler Feedback )=

= Compiler can generate a “filename.lst” file
e ftn—rm ... or cc —hlist=m
¢ Contains annotated listing of your source code with letter indicating
important optimizations
%%% Loopmark Legend %%%
Primary Loop Type Modifiers
a - vector atomic memory operation
A - Pattern matched b — blocked

C - Collapsed f — fused

D - Deleted i — interchanged

E - Cloned m - streamed but not partitioned

| -Inlined p - conditional, partial and/or computed
M - Multithreaded r—unrolled

P - Parallel/Tasked s — shortloop

V - Vectorized t - array syntax temp used

W - Unwound w - unwound
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Example: Cray loopmark messages for Resid

29. b--—---—-- < do i3=2,n3-1
30. b b-----< do i2=2,n2-1

THE BUPERCOMPUTER COMPANY

31. bbVr--< doil=1,n1

32. bbVr ul(il) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33. bbVvr > +u(il,i2,i3-1) + u(i1,i2,i3+1)

34. bbVr u2(il) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
35. bbVr > +u(il,i2-1,i3+1) + u(il,i2+1,i3+1)
36. b b Vr--> enddo

37. bbVr-< doil=2,n1-1

38. bbVr r(i1,i2,i3) = v(i1,i2,i3)

39. bbVr > -a(0) * u(i1,i2,i3)

40. bb Vr > -a(2) * (u2(il1) + ul(il-1) + ul(i1+1))
41. bbVr > -a(3) * (u2(i1l-1) + u2(i1+1))
42. b b Vr--> enddo

43. b b---—--> enddo
44, D--m-mm- > enddo
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Example: Cray loopmark messages for Resid (cont)

ftn-6289 ftn: VECTOR File = resid.f, Line = 29

THE BUFERCOMPUTER COMPANY

A loop starting at line 29 was not vectorized because a recurrence was found on "U1"

between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30

A loop starting at line 30 was not vectorized because a recurrence was found on "U1"

between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30

A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31

A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31

A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37

A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37

A loop starting at line 37 was vectorized.
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On-line Documentation @ N emcoerencewn

= http://docs.cray.com/latest.html

e Cray XT Programming Environment User's Guide
> S-2396-22 - Jul 2009

e Using Cray Performance Analysis Tools
> S-2376-50 - Sep 2009
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Programming Environment for

the Cray XT system

Questions /| Comments
Thank You!
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