Programming Environment for

the Cray XT system

Luiz DeRose
Programming Environments Director

Cray Inc.
Idr@cray.com
CSC, Finland Luiz DeRose (Idr@cray.com) © Cray Inc. Septembel’ 21-24, 2009
Outline SRAaN
= Qverview
= Modules
= Compilers

= Programming Environment User Guide

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 2

Cray Programming Environment Focus e

= |tis the role of the Programming Environment to close the gap between
observed performance and peak performance
e Help users achieve highest possible performance from the hardware

= The Cray Programming Environment addresses issues of scale and
complexity of high end HPC systems.
e The Cray Programming Environment helps users to be more productive
e |tis the place at which the complexity of a system is hidden from the user

= User productivity is enhanced with
e |ncreased automation
e Ease of use
e Extended functionality and improved Reliability

e Close interaction with users for feedback targeting functionality
enhancements

21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 3

THE BUFERCOMPUTER COMPANY

Cray Programming Environment

#: Under development

= Programming Languages = Tools
Fortran * Environment setup

C » Modules
* Debuggers

il > TotalView
e Chapel s o
e Python# s
n Compilers * Debugging Support Tools
e Cray > Fast Track Debugger
PGI » Abnormal Termination Process
* GNU > STAT*#
= Programming models > Comparative De_bugger#
 Distributed Memory * P?rf(gmagcte analysis
> MPI > CrayPal
> SHMEM > Cray Apprentice2
» Shared Memory O O.ptirﬂibzggiMath Libraries
> MP K
e PGAng&enGlobal View >4109pt0
> UPC > lterative Refinement Toolkit
> CAF > LAPACK
> Chapel > ScalLAPCK
> FFTW
= |/O Libraries > CRAFFT
* NetCDF « Cray PETSc
pRts » CASK

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 4

Environment Setup e B

= The Cray XT system uses modules in the user environment
to support multiple software versions and to create integrated
software packages

¢ As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment, while earlier versions are retained to support legacy
applications

e You can use the default version of an application, or you can choose
another version by using Modules system commands

= By default, the PrgEnv-pgi and Base-opts modules are
loaded into your user environment
e You should never unload the Base-opts module because it contains

the setup for CLE.
21-24, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. 5
The module tool on the Cray XT)

= How can we get appropriate Compiler, Tools, and Libraries?
e The modules tool is used to handle different versions of packages
> e.g.: module load compiler_v1
> e.g.: module switch compiler_v1 compiler_v2
> e.g.: module load xt-craypat

= Taking care of changing of PATH, MANPATH,

LM_LICENSE_FILE,.... environment

e Modules also provide a simple mechanism for updating certain
environment variables, such as PATH, MANPATH, and
LD_LIBRARY_PATH

¢ In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts.
= |t is also easy to setup your own modules for your own
software

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 6

Useful module commands

= | oad software
¢ module load xt-craypat

= Change software version

e module swap pgi/7.0.4 pgi/6.1.6

= | oad Cray Compiling Environment

e module swap PrgEnv-pgi PrgEnv-cray

September 21-24, 2009

THE BUPERCOMPUTER COMPANY

Luiz DeRose (Idr@crax.com! © Cray Inc.

module list

THE BUFERCOMPUTER COMPANY

1
2)
3)
4)
5)
6)
7
8)
9

users/ldr> module list
Currently Loaded Modulefiles:

modules/3.1.6
Xtpe-target-cnl
xt-services/2.2.41
xt-0s/2.2.41
xt-boot/2.2.41
xt-lustre-ss/2.2.41 1.6.5
Base-opts/2.2.41
pgi/9.0.3
totalview-support/1.0.6

10)
11)
12)
13)
14)
15)
16)
17)

xt-totalview/8.6.0
xt-libsci/10.3.9
xt-mpt/3.4.2
xt-pe/2.2.41
xt-asyncpe/3.3
PrgEnv-pgi/z2.2.41
xt-craypat/5.0.0
apprentice2/5.0.0

4

September 21-24, 2009

Luiz DeRose (Idr@cray.com) © Cray Inc.

module show CRaN

users/ldr> module show cce

/opt/modulefiles/cce/7.1.3:

setenv CRAYLMD_LICENSE_FILE /opt/cray/cce/cce.lic

setenv CRAY_BINUTILS_ROOT /opt/cray/cce/7.1.3/cray-binutils

setenv CRAY_BINUTILS_VERSION /opt/cray/cce/7.1.3

setenv CRAY_BINUTILS_BIN /Zopt/cray/cce/7.1.3/cray-binutils/x86_64-unknown-linux-gnu/bin
setenv LINKER_X86_64 /opt/cray/cce/7.1.3/cray-binu s/x86_64-unknown-linux-gnu/bin/Id
setenv ASSEMBLER_X86_64 /opt/cray/cce/7.1.3/cray-binutils/x86_64-unknown-linux-gnu/bin/as
setenv CRAYLIBS_X86_64 /opt/cray/cce/7.1.3/craylibs/x86-64

setenv FTN_X86_64 /opt/cray/cce/7.1.3/cftn/x86-64

setenv CC_X86_64 /opt/cray/cce/7.1.3/CC/x86-64

setenv CRAY_FTN_VERSION 7.1.3

setenv CRAY_CC_VERSION 7.1.3

setenv PE_LEVEL 7.1

prepend-path FORTRAN_SYSTEM_MODULE_NAMES ftn_lib_definitions

prepend-path MANPATH

/opt/cray/cce/7.1.3/man:/opt/cray/cce/7.1.3/craylibs/man:/opt/cray/cce/7.1.3/CC/man:/opt/cray/cce/7.
1.3/cftn/man

prepend-path NLSPATH /Zopt/cray/cce/7.1.3/CC/x86-
64/nls/En/%N.cat:/opt/cray/cce/7.1.3/craylibs/x86-64/nls/En/%N.cat:/opt/cray/cce/7.1.3/cftn/x86-
64/nls/En/%N.cat

prepend-path INCLUDE_PATH_X86_64 /opt/cray/cce/7.1.3/craylibs/x86-64/include

prepend-path PATH /opt/cray/cce/7.1.3/cray-binutils/x86_64-unknown-linux-
gnu/bin:/opt/cray/cce/7.1.3/craylibs/x86-
64/bin:/opt/cray/cce/7.1.3/cftn/bin:/opt/cray/cce/7.1.3/CC/bin

append-path MANPATH /usr/share/man
September 21-24, 2009 Luiz DeRose (Idr@crax.com! © Cray Inc. 9
: R ANY
module avail Rty ik
(Idr@hawk) 105% module avail
——————————————————— /opt/cray/xt-asyncpe/3.3.11/modulefiles -----———————cmou——
xtpe-barcelona xtpe-network-seastar xtpe-target-native
Xxtpe-istanbul xtpe-quadcore
xtpe-network-gemini xtpe-shanghai
———————————————— /opt/totalview-support/1.0.6/modulefiles ----—-———————cu——
xt-totalview-mem-debug
/opt/modulefiles
Base-opts/2.0.48. lusrelsave pathscale/3.2(default)
Base-opts/2.0.49. lusrelsave pathscale/3.2.orig
Base-opts/2.0.54. lusrelsave pbs/8.1
Base-opts/2.0.58. lusrelsave pbs/default
Base-opts/2.0.61. lusrelsave petsc/3.0.0.1
Base-opts/2.0.62. lusrelsave petsc/3.0.0.2
Base-opts/2.0.63. lusrelsave petsc/3.0.0.3
Base-opts/2.1.41HD. lusrelsave petsc/3.0.0.3.1
Base-opts/2.1.50HD petsc/3.0.0.4
Base-opts/2.1.50HD. lusrelsave petsc/3.0.0.4.2
Base-opts/2.2.24 petsc/3.0.0.5(default)
Base-opts/2.2.24.lusrelsave petsc-complex/3.0.0.1
Base-opts/2.2.29 petsc-complex/3.0.0
Base-opts/2.2.29. lusrelsave petsc-complex/3.0.0.3
Base-opts/2.2.31 petsc-complex/3.0.0.3.1
Base-opts/2.2.31. lusrelsave petsc-complex/3.0.0.4
Base-opts/2.2.32DSL3 petsc-complex/3.0.0.4.2
Base-opts/2.2.32DSL3. lusrelsave petsc-complex/3.0.0.5(default)
Base-opts/2.2._41(default) pgi/7.1.6
Base-opts/2.2.41. lusrelsave pgi/7.2.4
PrgeEnv-cray/1.0.0(default) pgi/7.2.5
PrgEnv-gnu/2.1.50HD pgi/8.0.1
PrgEnv-gnu/2.2.24 pgi/8.0.2
PrgEnv-gnu/2.2.29 pgi/8.0.3

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 10

Release Notes

THE BUPERCOMPUTER COMPANY

(ldr@hawk) 112% module help xt-craypat

——————————— Module Specific Help for "xt-craypat/5.0.0" -----——----

: August 20, 2009

Changes from CrayPat 4.4.1 release to 5.0.0 release

CrayPat 4.4.1 release revision: 2380
CrayPat 5.0.0 release revision: 2686

CrayPat
modulefile -DCRAYPAT is added to compilation options when
the xt-craypat module is loaded. (Add -UCRAYPAT
to a compiler invocation will undefine the macro.)
pat_hwpc removed - no longer supported
pat_build more complete evaluation of DWARF DIEs
pat_build no longer control tracing symbols in file by write permissions
pat_build add "trace-file" directive to control tracing symbols in file

Bugz closed since 4.4.1 release

(following fixed in revs <=2686 == 5.0 release)

September 21-24, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc.

ilil

Setting Your Target Architecture

THE BUFERCOMPUTER COMPANY

= Before you begin to compile programs, you must verify that the

target architecture is set correctly

= The compilers and linker use the target architecture in creating

executables to run on compute nodes

= The target architecture is set automatically when you log in

e The xtpe-target-cnl module should be loaded and the
XTPE_COMPILE_TARGET environment variable set to linux

users/ldr> module show xtpe-target-cnl

/opt/modulefiles/xtpe-target-cnl:

conflict xtpe-target-catamount
conflict X2pe-target-x2
setenv XTPE_COMPILE_TARGET linux

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc.

12

Using the Compiler Driver Commands e

= You use compiler driver commands to launch all Cray XT
compilers

= The syntax for the compiler driver is:
e cc | CC | ftn [Cray_options | PGI_options | GNU_options] files [-lhugetlbfs]

= For example, to use the PGI Fortran compiler to compile
progl.fo0
¢ First use the module list command to verify that these modules have
been loaded:
> PrgEnv-pgi
> xtpe-target-cnl
e Then use this command:
> % ftn prog1.fo0

21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 13

Compiler man Pages)=

= The cc(1), CC(1), and ftn(1) man pages contain information about
the compiler driver commands

= The pgcc(l), pgCC(1), and pgf95(1) man pages contain
descriptions of the PGl compiler command options

= The craycc(1), crayCC(1), and crayftn(1) man pages contain
descriptions of the Cray compiler command options

= The gcc(1), g++(1), and gfortran(1) man pages contain
descriptions of the GNU compiler command options

= To verify that you are using the correct version of a compiler, use:
e -V option on a cc, CC, or ftn command with PGl and CCE
e --version option on a cc, CC, or ftn command with GNU

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 14

Cross Compiling Environment e

Compiling on a Linux service node

Generating an executable for a CLE compute node

= Do not use pgf90, pgcc, gce, g++, ..., unless you want a
Linux executable for the service node

= |[nformation message:

> ftn: INFO: linux target is being used
September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 15
Using PGI Compilers e

= To use the PGI compilers, run the module list command to
verify that the PrgEnv-pgi module is loaded
e |fitis not, use a module swap command, such as:
> % module swap PrgEnv-gnu PrgEnv-pgi

> PrgEnv-pgi loads the product modules that define the system paths and
environment variables needed to use the PGI compilers

C compiler cc filename.c
C++ compiler CcC filename.CC
filename.cc

filename.cpp
filename.cxx

Fortran 90/95 compiler ftn filename.f (fixed source, no preprocessing)
filename.f90 (free source, no preprocessing)
filename.f95 (free source, no preprocessing)
filename.F (fixed source, preprocessing)
filename.F90 (free source, preprocessing)
filename.F95 (free source, preprocessing)

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 16

PGI Basic Compiler Usage e B

= A compiler driver interprets options and invokes pre-
processors, compilers, assembler, linker, etc.

= Options precedence: if options conflict, last option on
command line takes precedence

= Use -Minfo to see a listing of optimizations and
transformations performed by the compiler

= Use -help to list all options or see details on how to use a
given option, e.g. pgf90 -Mvect —help

= Use man pages for more details on options

21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 17
PGI compiler flags for a first start) s

Preprocessor Options:
-Mpreprocess runs the preprocessor on Fortran files
(default on .F, .F90, or .fpp files)

Optimization Options:

-fast (or -fastsse) chooses generally optimal flags
for the target platform
-Mipa=fast,inline Inter Procedural Analysis
-Minline=levels:number number of levels of inlining (default 1)
-Minline= [name:]function A non-numeric option is assumed to be
a function name
-Minfo Compiler optimization information

Overall Options:

-Mlist creates a listing file

-help displays command-line options
e.g., pgfos —fast -help

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 18

-help e R

users/ldr> pgfa0 -fast -help
Reading rcfile /opt/pgi/9.0.3/linux86-64/9.0-3/bin/.pgfo0rc
-fast Common optimizations; includes -02 -Munroll=c:1 -Mnoframe -Mlre -Mautoinline
== -Mvect=sse -Mscalarsse -Mcache_align -Mflushz
M[no]vect[=[no]altcode|[no] | cachesize:<c> | [no]fuse | [no]gather | [no]idiom | levels:<n> | [no]partial | [no]sizelimit[:n] | prefetch
| [no]short|[no]sse| [no]uniform]
Control automatic vector pipelining
[no]altcode Generate appropriate alternative code for vectorized loops
[nolassoc Allow [disallow] reassociation
cachesize:<c> Optimize for cache size ¢
[no]fuse Enable [disable] loop fusion
[no]gather Enable [disable] vectorization of indirect array references
[nolidiom Enable [disable] idiom recognition
levels:<n> Maximum nest level of loops to optimize
[no]partial Enable [disable] partial loop vectorization via inner loop distribution
[no]sizelimit[:n]
Limit size of vectorized loops
prefetch Generate prefetch instructions
[nolshort Enable [disable] short vector operations
[no]sse Generate [don't generate] SSE instructions
[no]uniform Perform consistent optimizations in both vectorized and residual loops; this may affect the performance of the
residual loop
-M[no]scalarsse Generate scalar sse code with xmm registers; implies -Mflushz
-Mcache_align Align long objects on cache-line boundaries
-M[no]flushz Set SSE to flush-to-zero mode

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 19

PGl Flags for Debugging Aids e

= g generates symbolic debug information used by a debugger

= -gopt generates debug information in the presence of
optimization

= -Mbounds adds array bounds checking

= -y gives verbose output, useful for debugging system or build
problems

= -Mlist will generate a listing

= -Minfo provides feedback on optimizations made by the
compiler

= S or —Mkeepasm to see the exact assembly generated

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 20

Basic optimization switches i

= Traditional optimization controlled through -O[<n>]
e nis0to4.

= -fast switch combines common set into one simple switch, is
equal to -O2 -Munroll=c:1 -Mnoframe -Mlre
e Same as —fastsse

e For -Munroll, c specifies completely unroll loops with this loop count or
less

e -Munroll=n:<m> says unroll other loops m times
e -Mire is loop-carried redundancy elimination

= -Mcache_align aligns top level arrays and objects on cache-
line boundaries

= _Mflushz flushes SSE denormal numbers to zero

21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 21
Node level tuning)=

= \ectorization — packed SSE instructions maximize
performance

Interprocedural Analysis (IPA) — use it!

Function Inlining — especially important for C and C++

Parallelization — for Cray multi-core processors

Miscellaneous Optimizations — hit or miss, but worth a try

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 22

What can Interprocedural Analysis and Optimization with e
—Mipa do for You?

= |nterprocedural constant propagation

= Pointer disambiguation

= Alignment detection, Alignment propagation

Global variable mod/ref detection

F90 shape propagation

Function inlining

IPA optimization of libraries, including inlining

21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 23

Using Interprocedural Analysis N

= Must be used at both compile time and link time
= Non-disruptive to development process — edit/build/run
= Speed-ups of 5% - 10% are common

= —_Mipa=safe:<name> - safe to optimize functions which call or
are called from unknown function/library name

= —_Mipa=libopt — perform IPA optimizations on libraries
= —_Mipa=libinline — perform IPA inlining from libraries

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 24

THE BUPERCOMPUTER COMPANY

—Minline[=[lib:]<inlib> | [name:]<func> | except:<func> | size:<n> | levels:<n>]
[lib:]<inlib> Inline extracted functions from inlib

[name:]<func> Inline function func

except:<func> Do not inline function func

size:<n> Inline only functions smaller than n statements (approximate)
levels:<n> Inline n levels of functions 7

= For C++ Codes, PGI Recommends IPA-based inlining or
—Minline=levels:10!

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 25
Effect of IPA on the WUPWISE Benchmark o

Execution Time in
PGF95 Compiler Options Seconds
—fastsse 156.49
—fastsse —Mipa=fast 121.65
—fastsse —Mipa=fast,inline 91.72

= —Mipa=fast => constant propagation =>

e compiler sees complex matrices are all 4x3 => completely unrolls
loops

= _Mipa=fast,inline => small matrix multiplies are all inlined

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 26

Other C++ recommendations CRaN

= Encapsulation, Data Hiding - small functions, inline!
= Exception Handling — use —no_exceptions until 7.0

= QOverloaded operators, overloaded functions — okay
= Pointer Chasing - -Msafeptr, restrict qualifer, 32 bits?
= Templates, Generic Programming — now okay

® |nheritance, polymorphism, virtual functions — runtime lookup
or check, no inlining, potential performance penalties

21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 27

SMP Parallelization SR

= —Mconcur for auto-parallelization on multi-core
e Compiler strives for parallel outer loops, vector SSE inner loops
e —Mconcur=innermost forces a vector/parallel innermost loop
e —Mconcur=cncall enables parallelization of loops with calls

= —mp to enable OpenMP parallel programming model
e OpenMP programs compiled w/out —mp=nonuma

= —Mconcur and —mp can be used together!

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 28

CRANY

THE SUPERCOMPUTER COMPANY

The Cray Compiling Environment

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 29
The Cray Compiling Environment e

= Ability and motivation to provide high-quality support for custom
Cray network hardware

= Cray technology focused on scientific applications
e Takes advantage of Cray’s extensive knowledge of automatic
vectorization

* Takes advantage of Cray’s extensive knowledge of automatic shared
memory parallelization

e Supplements, rather than replaces, the available compiler choices

= Standard conforming languages and programming models
e Fortran 2003 Compliant — Working on Fortran 2008
e OpenMP
> Fully integrated with other compiler optimizations, including automatic shared
memory parallelization
e UPC & CoArray Fortran
> Fully optimized and integrated into the compiler
> No preprocessor involved
> Target the network appropriately:
o GASNet with Portals
o DMAPP with Gemini

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 30

CCE Main Features CRaN

= Fortran 2003 standard compliant
e Selected F2008 features

= C99 and C++ support

= PGAS functional support
e UPC1.2
e Fortran 2008 CAF

= OpenMP 3.0 support (with limitations)
= \/ectorization

= Cache optimizations
e Automatic Blocking
e Automatic Management of what stays in cache

= Automatic multithreading
= Prefetching, Interchange, Fusion
= Cray performance tools and debugger support

21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 31
OpenMP L e

= CCE 7.1 supports the OpenMP 3.0 specification, with minor
limitations:
e C++ random access iterator loops marked for work sharing may not get
work shared
e Task switching is not implemented
e Limitations to be removed in future releases

= OpenMP and automatic multithreading are fully integrated with the
compiler
e Share the same runtime and resource pool

e Aggressive loop restructuring and scalar optimization is done in the
presence of OpenMP

e Consistent interface for managing OpenMP and automatic multithreading

= Nested parallelism and OpenMP tasks can be used to take
advantage of increasing numbers of cores within a node

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 32

Performance Tests — May 11, 2009 e

Language| Compiler1 | Compiler 2 Compiler 3

FTN 193 48.1%| 182 45.4%| 186 46.4%

C 15 14.6% 9 87% 17 16.5%

CH++ 1 111% 1 11.1% 0 0.0%

Total 209 40.7%| 192 37.4%| 203 39.6%

FTN 281 70.1%| 282 70.3%| 265 66.1%

CCE on par or better C 60 58.3% 55 53.4% 49 47.6%

(> 95%) C++ 3 333% 5 55.6% 1 111%

Total 344 67.1%| 342 66.7%| 315 61.4%

FTN 120 29.9%| 119 29.7%| 136 33.9%

C 43 41.7%| 48 46.6%| 54 52.4%

CH++ 6 66.7% 4 444%| 8 88.9%

Total 169 32.9%| 171 33.3%| 198 38.6%
21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. =38
CCE: Howtouseit) e

= Make sure it is available
e module avail PrgEnv-cray
= To access the Cray compiler
e module load PrgEnv-cray
e or module switch PrgEnv-xxx PrgEnv-cray
= To target the shanghai chip
e module load xtpe-shanghai
= Once you have loaded the module “cc” and “ftn” are the Cray
compilers

e Recommend just using default options
e Use —rm (fortran) and —hlist=m (C) to find out what happened

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 34

Cray Opteron Compiler: Directives e

= Cray compiler supports a full and growing set of directives
and pragmas

Idir$ concurrent

Idir$ ivdep

Idir$ interchange

1dir$ unroll

1dir$ loop_info [max_trips] [cache_na] ... Many more
1dir$ blockable

YV V.V V V V

e See
> man directives
> man loop_info

21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 35
Loopmark: Compiler Feedback)=

= Compiler can generate a “filename.lst” file
e ftn—rm ... or cc —hlist=m
¢ Contains annotated listing of your source code with letter indicating
important optimizations
%%% Loopmark Legend %%%
Primary Loop Type Modifiers
a - vector atomic memory operation
A - Pattern matched b — blocked

C - Collapsed f — fused

D - Deleted i — interchanged

E - Cloned m - streamed but not partitioned

| -Inlined p - conditional, partial and/or computed
M - Multithreaded r—unrolled

P - Parallel/Tasked s — shortloop

V - Vectorized t - array syntax temp used

W - Unwound w - unwound

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 36

Example: Cray loopmark messages for Resid

29. b--—---—-- < do i3=2,n3-1
30. b b-----< do i2=2,n2-1

THE BUPERCOMPUTER COMPANY

31. bbVr--< doil=1,n1

32. bbVr ul(il) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33. bbVvr > +u(il,i2,i3-1) + u(i1,i2,i3+1)

34. bbVr u2(il) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
35. bbVr > +u(il,i2-1,i3+1) + u(il,i2+1,i3+1)
36. b b Vr--> enddo

37. bbVr-< doil=2,n1-1

38. bbVr r(i1,i2,i3) = v(i1,i2,i3)

39. bbVr > -a(0) * u(i1,i2,i3)

40. bb Vr > -a(2) * (u2(il1) + ul(il-1) + ul(i1+1))
41. bbVr > -a(3) * (u2(i1l-1) + u2(i1+1))
42. b b Vr--> enddo

43. b b---—--> enddo
44, D--m-mm- > enddo

21-24, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc.

37

Example: Cray loopmark messages for Resid (cont)

ftn-6289 ftn: VECTOR File = resid.f, Line = 29

THE BUFERCOMPUTER COMPANY

A loop starting at line 29 was not vectorized because a recurrence was found on "U1"

between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30

A loop starting at line 30 was not vectorized because a recurrence was found on "U1"

between lines 32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30

A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31

A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31

A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37

A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37

A loop starting at line 37 was vectorized.
September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc.

38

On-line Documentation @ N emcoerencewn

= http://docs.cray.com/latest.html

e Cray XT Programming Environment User's Guide
> S-2396-22 - Jul 2009

e Using Cray Performance Analysis Tools
> S-2376-50 - Sep 2009

September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc. 39

Programming Environment for

the Cray XT system

Questions /| Comments
Thank You!

CSC, Finland Luiz DeRose (Idr@cray.com) © Cray Inc. September 21-24, 2009

