

Hardware Performance Counters

- AMD Opteron Hardware Performance Counters
 - Four 48-bit performance counters.
 - > Each counter can monitor a single event
 - Count specific processor events
 - » the processor increments the counter when it detects an occurrence of the event
 - » (e.g., cache misses)
 - Duration of events
 - » the processor counts the number of processor clocks it takes to complete an event
 - » (e.g., the number of clocks it takes to return data from memory after a cache miss)
 - Time Stamp Counters (TSC)
 - > Cycles (user time)

September 21-24, 2009

Luiz DeRose (Idr@cray.com) © Cray Inc

3

PAPI Predefined Events

- Common set of events deemed relevant and useful for application performance tuning
 - Accesses to the memory hierarchy, cycle and instruction counts, functional units, pipeline status, etc.
 - The "papi_avail" utility shows which predefined events are available on the system execute on compute node
- PAPI also provides access to native events
 - The "papi_native_avail" utility lists all AMD native events available on the system – execute on compute node
- Information on PAPI and AMD native events
 - pat_help counters
 - man papi_counters
 - For more information on AMD counters:
 - > http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/26049.PDF

September 21-24, 2009

Luiz DeRose (ldr@cray.com) © Cray Inc

4

Hardware Counters Selection

- PAT_RT_HWPC <set number> | <event list>
 - · Specifies hardware counter events to be monitored
 - A set number can be used to select a group of predefined hardware counters events (recommended)
 - o CrayPat provides 19 groups on the Cray XT systems
 - Alternatively a list of hardware performance counter event names can be used
 - Maximum of 4 events
 - Both formats can be specified at the same time, with later definitions overriding previous definitions
 - > Hardware counter events are not collected by default
 - Hardware counters collection is not supported with sampling on systems running Catamount on the compute nodes

September 21-24, 2009

Luiz DeRose (ldr@cray.com) © Cray Inc.

_

Accuracy Issues

- Granularity of the measured code
 - If not sufficiently large enough, overhead of the counter interfaces may dominate
- Pay attention to what is not measured:
 - Out-of-order processors
 - Speculation
 - · Lack of standard on what is counted
 - > Microbenchmarks can help determine accuracy of the hardware counters
- For more information on AMD counters:
 - · architecture manuals:
 - > http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/26049.PDF

September 21-24, 2009

Luiz DeRose (ldr@cray.com) © Cray Inc.

6

CRAY **Hardware Performance Counters** Hardware performance counter events: PAPI_L1_DCM Level 1 data cache misses CYCLES_RTC User Cycles (approx, from rtc) PAPI_TLB_DM Data translation lookaside buffer misses PAPI_FP_OPS Floating point operations Estimated minimum overhead per call of a traced function, which was subtracted from the data shown in this report (for raw data, use the option: -s overhead=include): PAPI_L1_DCM PAPI_TLB_DM 8.040 misses 0.005 misses PAPI_L1_DCA 474.080 refs PAPI_FP_OPS 0.000 ops CYCLES RTC 1863.680 cycles 0.693 microseconds Time September 21-24, 2009 Luiz DeRose (Idr@cray.com) © Cray Inc.


```
PAT RT HWPC=0 (Summary with Instructions)
  PAPI_TOT_INS Instructions count
PAPI_L1_DCA Level 1 data cache accesses
  PAPI_FP_OPS
PAPI_L1_DCM
                 Floating point operations
Data Cache Miss
  User_Cycles Virtual Cycles
USER
  Time%
                                                               98.6%
                                                           4.442352 secs
  Imb.Time
                                                                 -- secs
  Tmb. Time%
                                        0.001M/sec
                                                              4500.0 calls
  Calls
  PAPI_L1_DCM
PAPI_TOT_INS
                                      14.807M/sec
530.210M/sec
                                                        65771688 misses
2355221562 instr
  PAPI_L1_DCA
PAPI_FP_OPS
                                      332.718M/sec
                                                        1477953890 refs
                                        44.765M/sec 1975672594 ops
4.442 secs 11993557493 cycles 100.0%Time
                                      444.765M/sec
  User time (approx)
  Average Time per Call
CrayPat Overhead : Time
                                                           0.000987 sec
                                         0.1%
  HW FP Ops / User time
HW FP Ops / WCT
HW FP Ops / Inst
                                                       1975672594 ops 4.1%peak(DP)
                                      444.765M/sec
                                      444.736M/sec
                                                               83.9%
1.34 ops/ref
  Computational intensity
                                          0.16 ops/cycle
  Instr per cycle
                                                                0.20 inst/cycle
                                      2120.84M/sec
  MFLOPS (aggregate)
                                      1779.06M/sec
  Instructions per LD & ST 62.8% refs
D1 cache hit,miss ratios 95.5% hits
D1 cache utilization (misses) 22.47 refs/miss
                                                                1.59 inst/ref
                                                            4.5% misses
2.809 avg hits
______
September 21-24, 2009
                                          Luiz DeRose (ldr@cray.com) © Cray Inc.
```


How do I interpret these derived metrics?

- The following thresholds are guidelines to identify if optimization is needed:
 - Computational Intensity: < 0.5 ops/ref
 - > This is the ratio of FLOPS by L&S
 - > Measures how well the floating point unit is being used
 - FP Multiply / FP Ops or FP Add / FP Ops: < 25%
 - Vectorization: < 1.5

September 21-24, 2009

Luiz DeRose (Idr@cray.com) © Cray Inc.

15

Memory Hierarchy Thresholds

- TLB utilization: < 90.0%
 - Measures how well the memory hierarchy is being utilized with regards to TLB
 - This metric depends on the computation being single precision or double precision
 - A page has 4 Kbytes. So, one page fits 512 double precision words or 1024 single precision words
 - TLB utilization < 1 indicates that not all entries on the page are being utilized between two TLB misses
- D1 cache utilization: < 1 (D1+D2 cache utilization: < 1)</p>
 - A cache line has 64 bytes (8 double precision words or 16 single precision words)
 - D1 cache utilization < 1 indicates that not all entries on the cache line are being utilized between two cache misses
- D1 cache hit (or miss) ratios: < 90% (> 10%)
- D2 (L2) cache hit (or miss) ratios: < 95% (> 5%)
- D1 + D2 cache hit (or miss) ratios: < 92% (> 8%)
 - D1 and D2 caches on the Opteron are complementary
 - This metric provides a view of the Total Cache hit (miss) ratio

September 21-24, 2009

Luiz DeRose (ldr@cray.com) © Cray Inc

16

Using Hardware Performance Counters

Questions / Comments Thank You!

CSC, Finland

Luiz DeRose (Idr@cray.com) © Cray In

September 21-24, 2009