

Basic programming with Elmer

Mikko Lyly

CSC

20.10.2009

Basic programming with Elmer

ElmerSolver is written in Fortan 90. It consists of
approximately 300 000 lines of source code
(including all 3rd party libraries).

The base FEM-code has a modular structure, in
the sense that it is possible to build additional
components without recompiling the whole FEM
package.

Basic concepts

Typical cases in which programming is needed
are the following:

- complicated boundary conditions or material
parameters need to be evaluated pointwise

- new finite element methods need to be
implemented for specific purposes

Basic concepts (example 1)
Suppose that we want to define boundary
condition #1 on boundary part #5 as follows:

 Temperature(x,y, t) = t * sin(x) * cos(y)

This can be accomplished by introducing the
following boundary condition block in the Solver
Input File:

Boundary condition 1
 Target bondaries(1) = 5
 Temperature = Variable Time
 Real Procedure ”MyDll” ”MyFunction”
End

Basic Conceps (example 1)

Here ”MyDll” is the name of a shared library
(loaded once and for all when Solver starts), and
”MyFunction” is a library function to execute. The
function ”MyFunction” will be called automatically
by ElmerSolver for each node.

Let ”MyDll.f90” be the source file for ”MyDll”. The
source should have the following structure:

Basic Concepts (example 1)

! File MyDll.f90

Function MyFunction(Model, n, time) RESULT(temp)
 Use List
 TYPE(Model_t) :: Model ! defined in Types.f90
 INTEGER :: n ! node number
 REAL(KIND=dp) :: time ! Variable Time in sif
 REAL(KIND=dp) :: temp ! Temperature in sif

 !...compute temp ...

END FUNCTION MyFunction

Basic Conceps (example 1)

In order to compute sin(x) and cos(y), we will have
to query coordinates from the Model structure:

REAL(KIND=dp) :: X, Y

X = Model % Nodes % x(n)
Y = Model % Nodes % y(n)

Time comes as an argument in the function call.
So, it remains to compute
temp = time * SIN(X) * COS(Y)

and we are done. Summing up, the full code is

Basic Concepts (example 1)

! File MyDll.f90

Function MyFunction(Model, n, time) RESULT(temp)
 Use Lists
 TYPE(Model_t) :: Model ! defined in Types.f90
 INTEGER :: n ! node number
 REAL(KIND=dp) :: time ! Variable Time in sif
 REAL(KIND=dp) :: temp ! Temperature in sif
 Real :: X, Y
 X = Model % Nodes % x(n)
 Y = Model % Nodes % y(n)
 temp = time * SIN(X) * COS(Y)
END FUNCTION MyFunction

Basic Concepts (example 1)

It remains to compile the function for ElmerSolver:

Linux:

$ elmerf90 MyDll.f90 -o MyDll.so

Windows:

> elmerf90 MyDll.f90 -o MyDll.dll

The users of ElmerGUI may compile the function
directly from menu (Run → Compiler...)

Basic Concepts
Local arrays (if needed) should be declared
ALLOCATABLE, SAVEd, and ALLOCATEd once
and for all:

LOGICAL :: FirstTime = .TRUE.
REAL(KIND=dp), ALLOCATABLE :: MyArray(:)
SAVE MyArray, FirstTime
...
IF(FirstTime) THEN
 ALLOCATE(MyArray(100))
 FirstTime = .FALSE.
END IF

Otherwise, arrays will be allocated everytime the
function is entered, and deallocated when out of
scope (=penalty in speed, memory usage).

Basic Conceps (custom solver)

Another important case in which programming is
needed is when the user wants to implement a
custom Solver for his/her equation. In the Solver
Input File the Solver block related a custom
equation should be defined as follows:

Solver 1
 Variable = String MyVariable
 Variable DOFs = Integer 1
 Procedure = ”MyDll” ”MyRoutine”
 ...
End

Basic Concepts (custom solver)

All custom solvers have the following fixed calling
convention:
SUBROUTINE MySolver(Model,Solver,dt,TransientSimulation)
 USE DefUtils
 TYPE(Model_t) :: Model
 TYPE(Solver_t) :: Solver
 REAL(KIND=dp) :: dt
 LOGICAL :: TransientSimulation
 ...
END SUBROUTINE MySolver

Basic Concepts (custom solver)

Again, all local arrays should be declared
ALLOCATABLE, SAVEd, and ALLOCATEd once
and for all. For example:
LOGICAL :: FirstTime = .TRUE.
REAL(KIND=dp), ALLOCATABLE :: Stiff(:,:), Force(:)
SAVE Stiff, Force
...
IF(FirstTime) THEN
 ALLOCATE(Stiff(12, 12), Force(12))
 FirstTime = .FALSE.
END IF

Basic Concepts (custom solver)
The fundamental task of a custom solver is to
form the global stiffness matrix related to a PDE.
This is done by performing a loop over elements,
computing the local stiffness matrices, and by
assembling the global matrix:

INTEGER :: t
TYPE(Element_t), POINTER :: Element
...
DO t = 1, GetNOFActive()
 Element => GetActiveElement(t)
 ...
END END

The functions GetNofActive() and
GetActiveElement() are defined in DefUtils.f90.

Basic Concepts (custom solver)

The type Element_t provides useful data for
individual elements, for example:

Element % ElementIndex ! index of the element
Element % BodyId ! index of the domain
Element % NumberofNodes ! number of nodes
Element % ElementCode ! type of the element
Element % hK ! size of the element
...

For more details, see fem/src/Types.f90

Basic Concepts (custom solver)
Next, the user usually wants to query the material
parameters and loads for a given element. This
can be done by calling the function GetReal()
defined in DefUtils:

TYPE(ValueList_t), POINTER :: Material
LOGICAL :: Found
INTEGER :: N
REAL(KIND=dp), ALLOCATABLE :: MatValues(:)
…
 Material => GetMaterial(Element)
 N = GetElementNofNodes(Element)
 MatValues(1:N) = GetReal(Material, 'MyName', Found)

The above will query nodal values of MyName
from the material block of the Solver Input File.

Basic Concepts (custom solver)

To be a little bit more rigorous, the user should
perform some tests and error checks to avoid
problems:

Material => GetMaterial(Element)
IF(ASSOCIATED(Material)) THEN
 N = GetElementNofNodes(Element)
 MatValues(1:N) = GetReal(Material, 'MyName', Found)
 IF(.NOT.Found) THEN
 ! Handle the missing material param appropriately
 END IF
END IF

Basic Concepts (custom solver)

Similarly, we could query the nodal values of a
load from the Body Force block of the SIF for
example as follows:

TYPE(ValueList_t), POINTER :: BodyForce
LOGICAL :: Found
INTEGER :: N
REAL(KIND=dp), ALLOCATABLE :: BFValues(:)
...
 BodyForce => GetBodyForce(Element)
 N = GetElementNofNodes(Element)
 BFValues(1:N) = GetReal(BodyForce, 'Fx', Found)

Basic Concepts (custom solver)
Once the parameters and loads are at hand, the
next step is to integrate the local stiffness matrix.
Usually, this is done in a separate subroutine
contained by the solver subroutine:
SUBROUTINE MySolver(Model, Solver, dt, TransientSimulation)
 USE DefUtils
 …
 DO t = 1, GetNOFActive()
 Element => GetActiveElement(t)
 CALL LocalStiff(Stiff, Force, Element, n)
 CALL DefaultUpdateEquations(STIFF, FORCE)
 END DO

CONTAINS
 SUBROUTINE LocalStiffness(Stiff, Force, Element, n)
 ...
 END SUBROUTINE LocalStiffness
END SUBROUTINE MySolver

Basic Concepts (custom solver)
To be a little more specific, the subroutine for
computing local entities has the following basic
declarations:

SUBROUTINE LocalStiffness(Stiff, Force, Element, n)
 REAL(KIND=dp) :: Stiff(:,:), Force(:)
 TYPE(Element_t) :: Element
 INTEGER :: n
 REAL(KIND=dp) :: Basis(n), dBasisdx(n,3), DetJ
 LOGICAL :: Stat
 INTEGER :: t
 TYPE(GaussIntegrationPoints_t) :: IP
 TYPE(Nodes_t) :: Nodes
 SAVE Nodes
 ...
END SUBROUTINE LocalStiffness

Basic Concepts (custom solver)

The first thing to do, before anything else, is to
query the node points for the Element under work,
and reset the local matrix and vector:

CALL GetElementNodes(Nodes)
STIFF = 0.0d0
FORCE = 0.0d0

Node coordinates are needed to contruct the
mapping from the reference element to the actual
geometry.

Basic Concepts (custom solver)
In order to evaluate the local stiffness related to a
PDE, we will first have to select a quadrature for
numerically evaluating integrals:
IP = GaussPoints(Element)

The variable IP is of the type
GaussIntergarionPoints_t :

IP % n ! number of integration points
IP % U(t) ! U-coordinate for point n
IP % V(t) ! V-coordinate for point n
IP % W(t) ! W-coordinate for point n
IP % S(t) ! weight for point n

Basic Concepts (custom solver)

The integration loop is then the following:

DO t = 1, IP % n
 stat = ElementInfo(Element, Nodes, IP % U(t),
 IP % V(t), IP % W(t), detJ, Basis, dBasisdx)
 …
END DO

The function ElementInfo returns the basis
functions and their gradients in the integration
point.

Basic Concepts (custom solver)

Given the basis and their gradients, it remains to
evaluate the inner products related to the PDE.
For the Poisson equation, for example, we do:

STIFF(1:n, 1:n) = STIFF(1:n,1:n) + IP % s(t) * DetJ * &
 MATMUL(dBasisdx, TRANSPOSE(dBasisdx))

FORCE(1:n) = FORCE(1:n) + IP % s(t) * DetJ * 1.0 * Basis

In the above, we computed the load for f=1.

Basic Concepts (custom solver)
Let us finally tune the local subroutine by passing
the nodal values of material parameters to it
(similar adjustments needed for the nodal load):

CALL LocalStiff(Stiff, Force, Element, MatValues, n)

SUBROUTINE LocalStiffness(Stiff,Force,Element,MatValues, n)
 REAL(KIND=dp) :: MatValues(:)
 REAL(KIND=dp) :: MatValueAtIP
 …
 DO t = 1, IP % n
 Stat = ElementInfo(...)
 MatValueAtIP = SUM(Basis(1:n) * MatValues(1:n))
 …
 STIFF(1:n, 1:n) = STIFF(1:n,1:n) + IP % s(t) * DetJ * &
 MatValueAtIP * MATMUL(dBasisdx,TRANSPOSE(dBasisdx))
 ...
 END DO

Basic Concepts (custom solver)

Once the loop over elements has finished, we
have the global matrix and vector at hand. It
remains to finalize the assembly and actually
solve the problem, and we are done:

DO t = 1, GetNOFActive()
 Element => GetActiveElement(t)
 CALL LocalStiff(Stiff, Force, Element, MyValues, n)
 CALL DefaultUpdateEquations(STIFF, FORCE)
END END

CALL DefaultFinishAssembly()
CALL DefaultDirichletBCs()
Norm = DefaultSolve()

Basic Concepts (custom solver)

A full example of programming a custom solver is
provided in the test case Poisson1D. The
compilation command is:

Linux:

$ elmerf90 MySolver.f90 -o MySolver.so

Windows:

> elmerf90 MySolver.f90 -o MySolver.dll

Basic Concepts

The programming interfce of Elmer has been
documented in the SolverManual. A good
reference for basic features is also the test set in
fem/tests.

Most of the data structures are undocumented,
but the source files Types.f90 and DefUtils.f90
should be more or less self explalatory.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

