
ElmerSolver Input File (SIF)
Explained

Elmer course CSC, May 20181

Elmer Team
CSC – IT Center for Science Ltd.

Contents

• Elmer Modules

• Syntax of SIF

oParameters, etc.

• Sections of SIF:

oHeader

oConstants

oSimulation

oSolver

oBody

oEquation

oBody Force

oMaterial

oInitial Condition

oBoundary Condition

• Tables and Arrays

• MATC

• User Defined Functions

Elmer course CSC, May 20182

Elmer - Modules

3 Elmer course CSC, May 2018

Elmer - Modules

4 Elmer course CSC, May 2018

$ gmsh mymesh.geo

ElmerSolver myinput.sif

$ cd mymesh/
$ paraview &

$ ElmerGrid 14 2 mymesh.msh -autoclean

$ emacs myinput.sif

Sections of SIF

oHeader

oConstants

oSimulation

oSolver

oBody

oEquation

oBody Force

oMaterial

oInitial Condition

oBoundary Condition

Elmer course CSC, May 20185

• The SIF is structured into sections

The contents of each section is between the keyword
above and an End-statement

Sections of SIF: Header

Header

Mesh DB "." "dirname"

Include Path "includename"

Results Directory "resultdir"

End

Elmer course CSC, May 20186

• preceding path + directory name of mesh database

Mesh directory under dirname

• Shared objects, etc. under includename

• different output directory resultdir
By default under mesh-directory

• Declares search paths for main directories

Sections of SIF: Constants

Constants

Gas Constant = Real 8.314E00

Gravity(4) = 0 -1 0 9.81

End

Elmer course CSC, May 20187

• a casted scalar constant

• Gravity vector, an array with a

registered name (special setup

for certain solvers)

• Declares simulation-wide constants

Sections of SIF: Simulation

Simulation

Coordinate System = "Cartesian 2D"

Coordinate Mapping(3) = Integer 1 2 3

Coordinate Scaling(3) = Real 1.0 1.0 0.001

Simulation Type = "Transient"

Output Intervals(2) = 10 1

Elmer course CSC, May 20188

• choices: Cartesian{1D,2D,3D},

Polar{2D,3D}, Cylindric,

Cylindric Symmetric, Axi

Symmetric

• Permute, if you want to

interchange directions in mesh

• That would scale the 3rd direction

by 1/1000

• Steady State, Transient

or Scanning

• Interval of results being written to

disk

• Declares details of the simulation:

Sections of SIF: Simulation

Steady State Max Iterations = 10

Steady State Min Iterations = 2

Timestepping Method = "BDF"

BDF Order = 1

Timestep Intervals(2) = 10 100

Timestep Sizes(2) = 0.1 1.0

Output File = "name.result"

Post File = "name.vtu"

Elmer course CSC, May 20189

• How many min/max rounds on one timelevel/in a

steady state simulation (see later)

• Choices: BDF, Newmark or Crank-Nicholson

• This would be implicit Euler

• Has to match array dimension of Timestep Sizes

• The length of one time step

• Contains data for restarting

• Contains output data for ParaView (vtu)
• alternatively, suffix.ep would produce ElmerPost legacy output

• Declares details of the simulation:

Sections of SIF: Simulation

Restart File = “previous.result”

Restart Position = 10

Restart Time = 100

Initialize Dirichlet Condition = False

Restart Before Initial Conditions = True

Max Output Level = 5

End

Elmer course CSC, May 201810

• Restart from this file at file-entry (not necessarilly

timestep!) no. 10 and set time to 100 time-units

• Default is True. If false, Dirichlet conditions are called at

Solver execution and not at beginning

• Default is False. If True, then Initial Condition can overwrite

previous results

• Level of verbosity:
1 = errors

3 = warnings

4 = default

10 = all (sometimes too much) information

• Declares details of the simulation:

Sections of SIF: Solver

Solver 3

Equation = "Navier-Stokes"

Exec Solver = "Always"

Linear System Solver = "Iterative"

Linear System Iterative Method = "BiCGStab"

Linear System Convergence Tolerance = 1.0e-6

Linear System Abort Not Converged = True

Linear System Preconditioning = "ILU2"

Elmer course CSC, May 201811

• Numbering from 1 (priority)

• The name of the equation

• Always (default), Before/After

Simulation/Timestep/Saving

• Choices: Iterative, Direct,

MultiGrid

• Lots of choices here, if

• Convergence criterion

• If not True (default) continues simulation in any

case

• Pre-conditioning method

• Declares a physical model to be solved

Sections of SIF: Solver

Nonlinear System Convergence Tolerance= 1.0e-5

Nonlinear System Max Iterations = 20

Nonlinear System Min Iterations = 1

Nonlinear System Newton After Iterations=10

Nonlinear System Newton AfterTolerance=1.0e-3

Steady State Convergence Tolerance = 1.0e-3

Stabilization Method = Stabilized

End

Elmer course CSC, May 201812

• Convergence criterion for non-linear problem

• The maximum rounds

• The minimum rounds

• Switch from fixed-point to Newton scheme after 10

iterations ...

• ... or after this criterion (NV.: has to be smaller than

convergence criterion ot hit)

• The convergence on the time-level

• advection needs stabilization. Alternatives: Bubbles,

VMS, P2/P1

• Declares a physical model to be solved

Sections of SIF: Solver

13 Elmer course CSC, May 2018

𝜖𝑠

𝜖𝑛

𝜖𝑙 𝜖
𝑙
<
𝜖
𝑛
<
𝜖
𝑠

Sections of SIF: Solver

14 Elmer course CSC, May 2018

Before Simulation

Before Timestep/Saving

Always (default)

Never

After Timestep/Saving

After Simulation

Sections of SIF: Body

Body 2

Name = "pipe"

Equation = 2

Material = 2

Body Force = 1

Initial Condition = 2

End

Elmer course CSC, May 201815

• Numbering from 1 to number of bodies

• Identifier of the body

• The assigned set of equations

• The assigned material section

• The assigned body force

• The assigned initial condition

• Declares a physical model to be solved

Sections of SIF: Body

• Each Body has to have an Equation and

Material assigned

oBody Force, Initial Condition optional

• Two bodies can have the same

Material/Equation/

Body Force/Initial Condition

section assigned

Elmer course CSC, May 201816

Material 1

Body Force 1

Material 2

Equation 1

Body 2

Body 1

Equation 2

Sections of SIF: Equation

Equation 2

Active Solvers(2) = 1 3

Convection = Computed

End

Elmer course CSC, May 201817

• Numbering from 1 to number of equation sets

• Declares the solvers (according to their numbers)

to be solved within this set

• Important switch to account for convection term.

Alternatives: None and Constant (needs

Convection Velocity to be declared in the Material

section)

• Declares set of solvers for a body

Sections of SIF: Body Force

Body Force 3

Flow Body Force 1 = 0.0

Flow Body Force 2 = -9.81

MyVariable = Real 0.0

Heat Source = 1.0

End

Elmer course CSC, May 201818

• Numbering from 1 to number of body forces

• Gravity pointing in negative x-direction applied to Navier-

Stokes solver

• A Dirichlet condition for a variable set within the body

• Heat source for the heat equation

• Declares body forces and bulk and execution conditions for a body

Sections of SIF: Material

Material 1

Density = 1000.0

Heat Conductivity(3,3) = 1 0 0\

0 1 0\

0 0 2

Viscosity = Variable Temperature

Real MATC "viscosity(tx)"

Heat Capacity = Variable Temperature

Procedure "filename" "functionname"

MyMaterialParameter = Real 0.0

End
Elmer course CSC, May 201819

• Numbering from 1 to number of material

• Always declare a density

• Parameters can be arrays

• Or MATC functions of other variables

• Or Fortran functions with/without dependency on

input variables

• Non-keyword DB parameters have to be casted

• Declares set of material parameters for body

Sections of SIF: Initial Condition

Initial Condition 2

Velocity 1 = Variable Coordinate 2

Real MATC "42.0*(1.0 – tx/100.0)"

Velocity 2 = 0.0

Velocity 3 = Variable Coordinate 3

Procedure "filename" "functionname"

MyVariable = Real 20.0

End

Elmer course CSC, May 201820

• Numbering from 1 to number of IC’s

• Initial condition as a MATC function of a

variable ...

• ... and as a constant value

• … and as a user function

• Non-keyword DB parameters have to be

casted

• Declares initial conditions for a body (by default restart values are used)

Sections of SIF: Boundary Condition

Boundary Condition 3

Target Boundaries(2) = 1 4

Velocity 1 = Variable Coordinate 2

Real MATC "42.0*(1.0 – tx/100.0)"

Velocity 2 = 0.0

Velocity 3 = Variable Coordinate 3

Procedure "filename" "functionname"

Normal-Tangential Velocity = Logical True

End

Elmer course CSC, May 201821

• Numbering from 1 to number of BC’s

• The assigned mesh boundaries

• Variable as a MATC function and ...

... as a constant

… as a user function

• Set velocities in normal-tangential system

• Declares conditions at certain boundaries

Tables and Arrays

• Tables (piecewise linear

or cubic):

• Arrays:

• Expresions:

Density = Variable Temperature

Real cubic

0 900

273 1000

300 1020

400 1000

End

Target Boundaries(3) = 5 7 10

MyParamterArray(3,2) = Real 1 2\

3 4\

5 6

OneThird = Real $1.0/3.0

22 Elmer course CSC, May 2018

MATC

• Syntax close to C

• Even if-conditions and loops

• Can be use for on-the-fly functions inside the SIF

• Documentation on web-pages

• Do not use with simple numeric expressions:

is much faster than

OneThird = Real $1.0/3.0

OneThird = Real MATC "1.0/3.0"

23 Elmer course CSC, May 2018

MATC
• Use directly in section:

• Even with more than one dependency:

• Or declare functions (somewhere in SIF, outside a section)

being called by:

Heat Capacity = Variable Temperature

Real MATC "2.1275E3 + 7.253E0*(tx - 273.16)"

Temp = Variable Latitude, Coordinate 3

Real MATC "49.13 + 273.16 - 0.7576*tx(0)- 7.992E-03*tx(1)"

$ function stemp(X) {\

_stemp = 49.13 + 273.16 - 0.7576*X(0) - 7.992E-03*X(1)\

}

Temp = Variable Latitude, Coordinate 3

Real MATC "stemp(tx)"
24 Elmer course CSC, May 2018

User Defined Functions (UDF)

• Written in Fortran 90

• Dynamically linked to Elmer

• Faster, if more complicated computations involved

• Compilation command elmerf90

• Call from within section:

$ elmerf90 myUDF.f90 –o myUDF.so

MyVariable = Variable Temperature

Real Procedure "myUDF.so" "myRoutine"

25 Elmer course CSC, May 2018

User Defined Functions (UDF)

• Example:

oDefinitions loaded from DefUtils

oHeader: Model access-point to all ElmerSolver inside data; Node
number N; input value T

FUNCTION getdensity(Model, N, T) RESULT(dens)

USE DefUtils !important definitions

IMPLICIT None

TYPE(Model_t) :: Model

INTEGER :: N

REAL(KIND=dp) :: T, dens

dens = 1000.0_dp*(1.0_dp - 1.0d-04*(T - 273.0_dp))

END FUNCTION getdensity

26 Elmer course CSC, May 2018

Elmer
Software Development Practices

APIs for Solver and UDF

ElmerTeam

CSC – IT Center for Science, Finland

CSC, 2018

Elmer programming languages

• Fortran90 (and newer)

oElmerSolver (~¨300,000 lines of which ~50% in DLLs)

• C++

oElmerGUI (~18,000 lines)

oElmerSolver (~15,000 lines)

• C

oElmerGrid (~30,000 lines)

oMATC (~11,000 lines)

oElmerPost (~45,000 lines)

Tools for Elmer development

• Programming languages

o Fortran90 (and newer), C, C++

• Compilation

o Compiler (e.g. gnu), configure, automake, make, (cmake)

• Editing

o emacs, vi, notepad++,…

• Code hosting (git)

o https://github.com/ElmerCSC

• Consistency tests

o Currently around 450

• Code documentation

oDoxygen

• Theory documentation

Elmer libraries

• ElmerSolver

oRequired: Matc, HutIter, Lapack, Blas, Umfpack (GPL)

oOptional: Arpack, Mumps, Hypre, Pardiso, Trilinos,
SuperLU, Cholmod, NetCDF, HDF5, …

• ElmerGUI

oRequired: Qt, ElmerGrid, Netgen

oOptional: Tetgen, OpenCASCADE, VTK, QVT

Elmer licenses

• ElmerSolver library is published under LGPL

oEnables linking with all license types

oIt is possible to make a new solver even under proprierity license

oNote: some optional libraries may constrain this freedom due to use of
GPL licences

• Most other parts of Elmer published under GPL

oDerived work must also be under same license (“copyleft”)

• Proprierity modules linked with ElmerSolver may be freely

licensed if they are not derived work

oNote that you must not violete licences of other libraries

Elmer version control at GitHub

• In 2015 the official version control of Elmer was

transferred from svn at sf.net to git hosted at GitHub

• Git offers more flexibility over svn
oDistributed version control system

oEasier to maintain several development branches

oMore options and hence also steeper learning curve

oDeveloped by Linus Torvalds to host Linux kernel development

• GitHub is a portal providing Git and some additional

servives
oManagement of user rights

oControlling pull requests

Directory listing of elmerfem/trunk with TortoiseGIT:

ElmerGrid mesh manipulation
ElmerGUI graphical user interface

Elmer/ICE community developments
ElmerParam optimization module
ElmerSolver library and modules

HUTiter Krylov methods library
ElmerFront: Initial user interface (obsolite)

MATC library
Basic math libraries
Mesh2D (Delaunay triangularization,obsolite)

ElmerPost: Initial postprocessor (obsolite)
Umfpack sparse direct solver undel GPL

Cmake build system

• During 2014-2015 Elmer was migrated from gnu autotools into cmake

• Cmake offers several advantages

oEnables cross compilation for diffirent platforms
(e.g. Intel MICs)

oMore standardizes installation scripts

oStraight-forward package creation for many systems
(using cpack)

oGreat testing utility with ctest – now also in parallel

• Transition to cmake required significant code changes
oISO C-bindings & many changes in APIs

oBackward compatibility in compilation lost

Compiling fresh Elmer source from GitHub

clone the git repository.
$ git clone https://www.github.com/ElmerCSC/elmerfem

Switch to devel branch (currently the default branch)
$ cd elmerfem
$ git checkout devel
$ cd ..

create build directory
$ mkdir build
$ cd build

$ cmake <flags>
You can tune the compilation parameters graphically with $ ccmake or $cmake-gui .

$ make install
or alternatively compile in parallel (4 procs) $ make -j4 install

$ cmake -DWITH_ELMERGUI:BOOL=FALSE -
DWITH_MPI:BOOL=FALSE -
DCMAKE_INSTALL_PREFIX=../install ../elmerfem

Consistency tests

• Utilize ctest system to run a set of Elmer cases

oUpon success each case writes 1 to file TEST.PASSED,
and on failure 0, respectively

• There are more than 580 consistency tests (May 2018)

oLocated under fem/tests

• Each time a significant commit is made the tests are run with the fresh version

oAim: even devel version is a stable

oNew tests for each major new feature

• The consistency tests provide a good starting point for taking some Solver into

use

ocut-paste from sif file

Executing the consistency tests of Elmer
>ctest –j4 –LE elmerice

Start 143: mgdyn_torus_harmonic

Start 304: ThermalActuator

Start 344: RotatingBCMagnetoDynamicsGeneric

1/310 Test #344: RotatingBCMagnetoDynamicsGeneric ... Passed 43.18 sec

Start 293: mgdyn_lamstack_lowfreq_harmonic

2/310 Test #304: ThermalActuator Passed 59.78 sec

Start 222: mgdyn_transient_loss

3/310 Test #293: mgdyn_lamstack_lowfreq_harmonic Passed 21.80 sec

Start 322: mgdyn_bh

…

308/310 Test #46: CoupledPoisson7 Passed 0.38 sec

309/310 Test #212: CoordinateScaling Passed 0.38 sec

Start 54: RotatingBCPoisson3DSymmSkev

310/310 Test #54: RotatingBCPoisson3DSymmSkev Passed 6.34 sec

100% tests passed, 0 tests failed out of 310

Total Test time (real) = 365.62 sec

Doxygen –WWW documentation

Doxygen – Example in code

• Special comment indicators: !> and <!

!--

!> Subroutine for computing fluxes and gradients of scalar fields.

!> For example, one may compute the the heat flux as the negative gradient of temperature

!> field multiplied by the heat conductivity.

!> \ingroup Solvers

!--

SUBROUTINE FluxSolver(Model,Solver,dt,Transient)

!--

USE CoordinateSystems

USE DefUtils

IMPLICIT NONE

!--

TYPE(Solver_t) :: Solver !< Linear & nonlinear equation solver options

TYPE(Model_t) :: Model !< All model information (mesh, materials, BCs, etc...)

REAL(KIND=dp) :: dt !< Timestep size for time dependent simulations

LOGICAL :: Transient !< Steady state or transient simulation

!--

! Local variables

!--

TYPE(ValueList_t),POINTER :: SolverParams

Doxygen – Example in WWW

Installers

• Fresh Windows installers

oCurrently only 64 bit version

oAlso a parallel version with msmpi

ohttp://www.nic.funet.fi/pub/sci/physics/elmer/bin/
windows/

oSome version available also at sf.net

• Elmer for Debian & Ubuntu etc. at launchpad

oNightly builds from Git repository

oTo install
$ sudo apt-add-repository ppa:elmer-csc-
ubuntu/elmer-csc-ppa
$ sudo apt-get update
$ sudo apt-get install elmerfem-csc

http://www.nic.funet.fi/pub/sci/physics/elmer/bin/windows/

Compilation of a DLL module

• Applies both to Solvers and User Defined Functions (UDF)

• Assumes that there is a working compile environment that

provides ”elmerf90” script

oComes with the Windows installer, and Linux packages

oGenerated automatically when ElmerSolver is compiled

elmerf90 MySolver.F90 –o MySolver.so

User defined function API

!--

!> Standard API for UDF

!--

FUNCTION MyProperty(Model, n, t) RESULT(f)

!--

USE DefUtils

IMPLICIT NONE

!--

TYPE(Model_t) :: Model !< Handle to all data

INTEGER :: n !< Current node

REAL(KIND=dp) :: t !< Parameter(s)

REAL(KIND=dp) :: f !< Parameter value at node

!--

Actual code …

Function API

• User defined function (UDF) typically returns a real valued

property at a given point

• It can be located in any section that is used to fetch these

values from a list

oBoundary Condition, Initial Condition, Material,…

MyProperty = Variable time

”MyModule" ”MyProperty”

Solver API

!--

!> Standard API for Solver

!--

SUBROUTINE MySolver(Model,Solver,dt,Transient)

!--

USE DefUtils

IMPLICIT NONE

!--

TYPE(Solver_t) :: Solver !< Current solver

TYPE(Model_t) :: Model !< Handle to all data

REAL(KIND=dp) :: dt !< Timestep size

LOGICAL :: Transient !< Time-dependent or not

!--

Actual code …

Solver API

• Solver is typically a FEM implementation of a physical equation

• But it could also be an auxiliary solver that does something

completely different

• Solver is usually called once for each coupled system iteration

Solver 1

Equation = ”MySolver"

Procedure = ”MyModule" ”MySolver”

…

End

Elmer – High level abstractions

• The quite good success of Elmer as a multiphysics code may
be addressed to certain design choices
oSolver is an asbtract dynamically loaded object

oParameter value is an abstract property fecthed from a list

• The abstractions mean that new solvers may be implemented
without much need to touch the main library
oMinimizes need of central planning

oSeveral applications fields may live their life quite independently
(electromagnetics vs. glaceology)

• MATC – a poor man’s Matlab adds to flexibility as algebraic
expressions may be evalueted on-the-fly

Solver as an abstract object

• Solver is an dynamically loaded object (.dll or .so)
oMay be developed and compiled seperately

• Solver utilizes heavily common library utilities
oMost common ones have interfaces in DefUtils

• Any solver has a handle to all of the data

• Typically a solver solves a weak form of a differential equation

• Currently ~60 different Solvers,
roughly half presenting physical phenomena
oNo upper limit to the number of Solvers

oOften cases include ~10 solvers

• Solvers may be active in different domains,
and even meshes

• The menu structure of each solver in ElmerGUI may be defined by an .xml file

Property as an abstract object

• Properties are saved in a list structure by their name

• Namespace of properties is not fixed, they may be introduced in the command file
o E.g. ”MyProperty = Real 1.23” adds a property ”MyProperty” to a list structure related to the

solver block

• In code parameters are fetched from the list
o E.g. ”val = GetReal(Material,’MyProperty’,Found)” retrieves the above value 1.23 from

the list

• A ”Real” property may be any of the following
o Constant value

o Linear or cubic dependence via table of values

o Expression given by MATC (MatLab-type command language)

o User defined functions with arbitrary dependencies

o Real vector or tensor

• As a result solvers may be weakly coupled without any a priori defined manner

• There is a price to pay for the generic approach but usually it is less than 10%

• SOLVER.KEYWORDS file may be used to give the types for the keywords in the command file

Code structure

• Elmer code structure has evolved over the years

oThere has been no major restructuring operations

• Ufortunately there is no optimal hierarchy and the number of

subroutines is rather large

oElmerSolver library consists of more than ~40 modules

oThere are all-in-all around 1050 SUBROUTINES and
650 FUNCTIONS (both internal and external)

• To ease the learning curve the most important routines for

basic use have been collected into module DefUtils.F90

DefUtils

• DefUtils module includes wrappers to the basic tasks common

to standard solvers

oE.g. ”DefaultDirichlet()” sets Dirichlet boundary conditions to
the given variable of the Solver

oE.g. ”DefaultSolve()” solves linear systems with all available
direct, iterative and multilevel solvers, both in serial and parallel

• Programming new Solvers and UDFs may usually be done

without knowledge of other modules

DefUtils – some functions

Modules related to linear algebra
BandMatrix.F90
BandwidthOptimize.F90
BlockSolve.F90
cholmod.c
CircuitUtils.F90
ClusteringMethods.F90
CRSMatrix.F90
DirectSolve.F90
EigenSolve.F90
IterativeMethods.F90
IterSolve.F90
LinearAlgebra.F90
LUDecomposition.F90
MGPrec.F90
Multigrid.F90
Smoothers.F90
SolveBand.F90
SolveHypre.c
SolverUtils.F90
SolveSBand.F90
SolveSuperLU.c
SolveTrilinos.cxx

Modules related to space and time discretization

ElementDescription.F90
ElementUtils.F90
H1ElementBasisFunctions.F90
PElementBase.F90
PElementMaps.F90
TimeIntegrate.F90

Historical modules including physics
Differentials.F90
DiffuseConvectiveAnisotropic.F90
DiffuseConvectiveGeneralAnisotropic.F90
ExchangeCorrelations.F90
MaxwellAxiS.F90
Maxwell.F90
MaxwellGeneral.F90
NavierStokesCylindrical.F90
NavierStokes.F90
NavierStokesGeneral.F90
Stress.F90
StressGeneral.F90
VelocityUpdate.F90
Walls.F90

Example: Poisson equation

• Implemented as an dynamically linked solver

oAvailable under tests/1dtests

• Compilation by:

Elmerf90 Poisson.F90 –o Poisson.so

• Execution by:

ElmerSolver case.sif

• The example is ready to go massively parallel and with all a

plethora of elementtypes in 1D, 2D and 3D

Poisson equation: code Poisson.F90
!--
!> Solve the Poisson equation -\nabla\cdot\nabla \phi = \rho
!--
SUBROUTINE PoissonSolver(Model,Solver,dt,TransientSimulation)
!--

USE DefUtils
IMPLICIT NONE
…

!Initialize the system and do the assembly:
!--
CALL DefaultInitialize()

active = GetNOFActive()
DO t=1,active

Element => GetActiveElement(t)
n = GetElementNOFNodes()

LOAD = 0.0d0
BodyForce => GetBodyForce()
IF (ASSOCIATED(BodyForce)) &

Load(1:n) = GetReal(BodyForce, 'Source', Found)

! Get element local matrix and rhs vector:
!--
CALL LocalMatrix(STIFF, FORCE, LOAD, Element, n)

! Update global matrix and rhs vector from local contribs
!---
CALL DefaultUpdateEquations(STIFF, FORCE)

END DO

CALL DefaultFinishAssembly()
CALL DefaultDirichletBCs()
Norm = DefaultSolve()

CONTAINS

!--
SUBROUTINE LocalMatrix(STIFF, FORCE, LOAD, Element, n)

!--

…

CALL GetElementNodes(Nodes)
STIFF = 0.0d0
FORCE = 0.0d0

! Numerical integration:
!----------------------
IP = GaussPoints(Element)
DO t=1,IP % n

! Basis function values & derivatives at the integration point:
!--
stat = ElementInfo(Element, Nodes, IP % U(t), IP % V(t), &

IP % W(t), detJ, Basis, dBasisdx)

! The source term at the integration point:
!--
LoadAtIP = SUM(Basis(1:n) * LOAD(1:n))

! Finally, the elemental matrix & vector:
!--
STIFF(1:n,1:n) = STIFF(1:n,1:n) + IP % s(t) * DetJ * &

MATMUL(dBasisdx, TRANSPOSE(dBasisdx))
FORCE(1:n) = FORCE(1:n) + IP % s(t) * DetJ * LoadAtIP * Basis(1:n)

END DO
!--

END SUBROUTINE LocalMatrix
!--
END SUBROUTINE PoissonSolver
!--

Poisson equation: command file case.sif
Check Keywords "Warn"

Header
Mesh DB "." ”mesh"

End

Simulation
Coordinate System = "Cartesian"
Simulation Type = Steady State
Steady State Max Iterations = 50

End

Body 1
Equation = 1
Body Force = 1

End

Equation 1
Active Solvers(1) = 1

End

Solver 1
Equation = "Poisson"
Variable = "Potential"
Variable DOFs = 1
Procedure = "Poisson" "PoissonSolver"
Linear System Solver = "Direct”
Linear System Direct Method = umfpack
Steady State Convergence Tolerance = 1e-09

End

Body Force 1
Source = Variable Potential
Real Procedure "Source" "Source"

End

Boundary Condition 1
Target Boundaries(2) = 1 2
Potential = Real 0

End

Poisson equation: source term, examples

Constant source:

Source = 1.0

Source dependeing piecewise linear on x:

Source = Variable Coordinate 1

Real

0.0 0.0

1.0 3.0

2.0 4.0

End

Source depending on x and y:

Source = Variable Coordinate

Real MATC ”sin(2*pi*tx(0))*cos(2*pi(tx(1))”

Source depending on anything

Source = Variable Coordinate 1

Procedure ”Source” ”MySource”

Poisson equation: ElmerGUI menus
<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE edf>
<edf version="1.0" >

<PDE Name="Poisson" >
<Name>Poisson</Name>

<BodyForce>
<Parameter Widget="Label" > <Name> Properties </Name> </Parameter>

<Parameter Widget="Edit" >
<Name> Source </Name>
<Type> String </Type>
<Whatis> Give the source term. </Whatis>

</Parameter>
</BodyForce>

<Solver>
<Parameter Widget="Edit" >
<Name> Procedure </Name>
<DefaultValue> "Poisosn" "PoissonSolver" </DefaultValue>

</Parameter>
<Parameter Widget="Edit">

<Name> Variable </Name>
<DefaultValue> Potential</DefaultValue>

</Parameter>
</Solver>

<BoundaryCondition>
<Parameter Widget="Label" > <Name> Dirichlet conditions </Name> </Parameter>
<Parameter Widget="Edit">
<Name> Potential </Name>
<Whatis> Give potential value for this boundary. </Whatis>

</Parameter>
</BoundaryCondition>

</PDE>
</edf>

Development tools for ElmerSolver

• Basic use

oEditor (emacs, vi, notepad++, jEdit,…)

oelmerf90 script

• Advanced

oEditor

osvn client

oCompiler suite (gfortran, ifort, pathf90, pgf90,…)

oDocumentation tools (Doxygen, LaTeX)

oDebugger (gdb)

oProfiling tools

o…

Elmer – some best practices

• Use version control when possible

oIf the code is left to your own local disk, you might as well not write it at
all

oDo not fork! (userbase of 1000’s)

• Always make a consistency test for a new feature

oAlways be backward compatible

oIf not, implement a warning to the code

• Maximize the level of abstraction

oEssential for multiphysics software

oE.g. any number of physical equations,
any number of computational meshes,
any number of physical or numerical parameters – without the need for
recompilation

Mesh related features in Elmer

ElmerTeam
CSC – IT Center for Science, Finland

CSC, 2018

Outline

• Supported element types

oShapes

oBasic functions

• Mesh generation within ElmerSolver

oMesh multiplication

oMesh extrusion

• Adaptivity – very limited

• Mesh deformation & movement

• Mesh projectors

oMapping between meshes

oMortar finite elements
2

ElmerSolver – Finite element shapes

• All standard shaper of Finite Elements are

supported

o0D: point

o1D: segment

o2D: triangles, quadrilaterals

o3D: tetraherdons, wedges, pyramids, hexahedrons

• Meshes may have mixed element types

• There may be also several meshes in same

simulation

ElmerSolver – basis functions

•Element families
oNodal (up to 2-4th degree)

op-elements (up to 10th degree)

oEdge & face –elements

oH(div) - often associated with”face” elements)

oH(curl) - often associated with ”edge” elements)

•Formulations
oGalerkin, Discontinuous Galerkin

oStabilization

oResidual free bubbles
4

ElmerSolver – internal mesh generation

• Internal mesh division

o2^DIM^n -fold problem-size

oKnown as ”Mesh Multiplication”

oSimple inheritance of mesh grading

• Internal mesh extrusion

oExtruded given number of layers

• Idea is to remove bottle-necks from mesh generation

oThese can also be performed on a parallel level

• Limited by generality since the internal meshing

features cannot increase the geometry description

6

Mesh multiplication example

Mesh
Levels

Number of
Elements

1 7 920

2 63 360

3 506 880

4 4 055 040

Limitations of mesh multiplication

• Standard mesh multiplication does not

increase geometric accuracy
oPolygons retain their shape

oMesh multiplication could be made to honor boundary
shapes but this is not currently done

• Optimal mesh grading difficult to achieve

oThe coarsest mesh level does not usually have sufficient
information to implement fine level grading

ElmerSolver - Internal mesh extrusion

• Start from an initial 2D (1D) mesh and then extrude

into 3D (2D)

oMesh density may be given by arbitrary function

• Implemented also for partitioned meshes

oExtruded lines belong to the same partition by
construction!

• There are many problems of practical problems

where the mesh extrusion of a initial 2D mesh

provides a good solution

oOne such field is glasiology where glaciers are thin, yet
the 2D approach is not always sufficient in accurary

Extruded Mesh Levels = 21

Extruded Mesh Density =

Variable Coordinate 1

Real MATC "1+10*tx"

ElmerSolver - Internal extrusion example

2D mesh by Gmsh 3D internally extruded meshDesign Alvar
Aalto, 1936

Summary: Alternatives for increasing mesh resolution

• Use of higher order nodal elements

oElmer supports 2nd to 4th order nodal elements

oUnfortunately not all preprocessing steps are equally well supported for
higher order elements

o E.g. Netgen output supported only for linear elements

• Use of hierarhical p-element basis functions

oSupport up to 10th degree polynomials

oIn practice Element = p:2, or p:3

oNot supported in all Solvers

• Mesh multiplication

oSubdivision of elements by splitting

ElmerSolver – Mesh deformation

• Meshes may be internally deformed

• MeshUpdate solver uses linear elasticity

equation to deform the mesh

• RigidMeshMapper uses rigid deformations and their

their smooth transitions to deform the mesh

• Deforming meshes have number of uses

oDeforming structures in multiphysics simultion

o E.g. fluid-structure interaction, ALE

oRotating & sliding structures

oGeometry optimization

oMesh topology remains unchanged

Mapping & Projectors

• Ensuring continuity between conforming and

nonconforming meshes

oFor boundary and bulk meshes

• On-the-fly interpolation (no matrix created)

oMapping of finite element data

o from mesh to mesh

o From boundary to boundary

• Creation of interpolation and projection matrices

oStrong continuity, interpolation: 𝑥𝑙 = 𝑃𝑥𝑟
oWeak continuity, Mortar projector: 𝑄𝑥𝑙 − 𝑃𝑥𝑟 = 0

Tie contact in linear elasticity
using mortar finite elements

Example: Mesh utilities applied to rotational problems

• Rigid body movement may be used to

implement rotation

• One of several contact pairs are used to define

mortar projectors that ensure continuity of

soluton

• Most important application area has been the

simulation of electrical machines

24

Concluding remarks on internal meshing features

• Internal meshing features can be used to resolve number of

challenges related to meshes

oAccuracy

oI/O bottle-necks

oContinuity requirements

oMultiphysics coupling

oDeforming or moving computational domains

Post-processing utilities within
ElmerSolver

ElmerTeam

CSC – IT Center for Science, Finland

CSC, 2018

Postprocessing utilities in ElmerSolver

• Saving data

oFEM data

oLine data

oScalars data

oGrid data

• Computing data

oDerived fields (gradient, curl, divecgence,…)

oData reduction & filtering

oCreating fields of material properties

• The functionality is usually achieved by use of atomic auxialiry solvers

Computing derived fields

• Many solvers have internal options or dedicated post-processing solvers
for computing derived fields
oE.g. stress fields by the elasticity solvers

oE.g. MagnetoDynamicsCalcFields

• Elmer offers several auxiliary solvers that may be used in a more generic
way
oSaveMaterials: makes a material parameter into field variable

oStreamlineSolver: computes the streamlines of 2D flow

oFluxSolver: given potential, computes the flux q = - c

oVorticitySolver: computes the vorticity of flow, w = 

oPotentialSolver: given flux, compute the potential - c = q

oFilterTimeSeries: compute filtered data from time series
(mean, fourier coefficients,…)

o…

Derived nodal data

• By default Elmer operates on distributed fields but sometimes

nodal values are of interest

oMultiphysics coupling may also be performed alternatively using nodal
values for computing and setting loads

• Elmer computes the nodal loads from Ax-b where A, and b are

saved before boundary conditions are applied

oCalculate Loads = True

• This is the most consistant way of obtaining boundary loads

• Note: the nodal data is really pointwise

oexpressed in units N, C, W etc.
(rather than N/m^2, C/m^2, W/m^2 etc.)

oFor comparison with distributed data divided by the ~size of the surface
elements

Derived lower dimensional data

• Derived boundary data
oSaveLine: Computes fluxes on-the-fly

• Derived lumped (or 0D) data
oSaveScalars: Computes a large number of different quantities on-the-fly

oFluidicForce: compute the fluidic force acting on a surface

oElectricForce: compute the electrostatic froce using the Maxwell stress
tensor

oMany solvers compute lumped quantities internally for later use
(Capacitance, Lumped spring,…)

Exporting FEM data: ResultOutputSolve

• Currently recommened format is VTU

oXML based unstructured VTK

oHas the most complete set of features

oOld ElmerPost format (with suffix .ep) is becoming obsolite

oSimple way to save VTU files: Post File = file.vtu

• ResultOutputSolve offers additionally several formats

ovtk: Visualization tookit legacy format

ovtu: Visualization tookit XML format

oGid: GiD software from CIMNE: http://gid.cimne.upc.es

oGmsh: Gmsh software: http://www.geuz.org/gmsh

oDx: OpenDx software

Exporting 2D/3D data: ResultOutputSolve

An example shows how to save data in unstructured XML VTK (.vtu) files to directory ”results” in
single precision binary format.

Solver n

Exec Solver = after timestep

Equation = "result output"

Procedure = "ResultOutputSolve""ResultOutputSolver"

Output File Name = "case"

Output Format = String ”vtu”

Binary Output = True

Single Precision = True

End

Saving 1D data: SaveLine

• Lines of interest may be defined on-the-fly

• Data can either be saved in uniform 1D grid,

or where element faces and lines intersect

• Flux computation using integration points on the boundary –

not the most accurate

• By default saves all existing field variables

Saving 1D data: SaveLine…

Solver n

Equation = "SaveLine"

Procedure = File "SaveData" "SaveLine"

Filename = "g.dat"

File Append = Logical True

Polyline Coordinates(2,2) = Real 0.0 1.0 0.0 2.0

End

Boundary Condition m

Save Line = Logical True

End

Computing and saving 0D data: SaveScalars

Operators on bodies

• Statistical operators
oMin, max, min abs, max abs, mean, variance, deviation, rms

• Integral operators (quadratures on bodies)
o volume, int mean, int variance, int rms

oDiffusive energy, convective energy, potential energy

Operators on boundaries

• Statistical operators
o Boundary min, boundary max, boundary min abs, max abs, mean, boundary variance,

boundary deviation, boundary sum, boundary rms

oMin, max, minabs, maxabs, mean

• Integral operators (quadratures on boundary)
o area

oDiffusive flux, convective flux

Other operators
o nonlinear change, steady state change, time, timestep size,…

Saving 0D data: SaveScalars…

Solver n

Exec Solver = after timestep

Equation = String SaveScalars

Procedure = File "SaveData" "SaveScalars"

Filename = File "f.dat"

Variable 1 = String Temperature

Operator 1 = String max

Variable 2 = String Temperature

Operator 2 = String min

Variable 3 = String Temperature

Operator 3 = String mean

End

Boundary Condition m

Save Scalars = Logical True

End

Slots for executing postprocessing solvers

• Often the postprocessing solver need to computed only at desired
slots, not at every time-step or coupled system iteration

• The execution is controlled by the ”Exec Solver” keyword
oExec Solver = before simulation

oExec Solver = after simulation

oExec Solver = before timesteo

oExec Solver = after timestep

oExec Solver = before saving

oExec Solver = after saving

• The before/after saving slot is controlled by the output

intervals

oDerived solvers often use the ”before saving” slot

oData is often saved with the ”after saving” slot

12

Case: TwelveSolvers

Natural convection with ten auxialiary
solvers

Case: Motivation

• The purpose of the example is to show the flexibility of the

modular structure

• The users should not be afraid to add new atomistic solvers to

perform specific tasks

• A case of 12 solvers is rather rare, yet not totally unrealitistic

Case: preliminaries

• Square with hot wall on right

and cold wall on left

• Filled with viscous fluid

• Bouyancy modeled with

Boussinesq approximation

• Temperature difference initiates

a convection roll

Cold

wall

Hot

wall

Case: 12 solvers
1. HeatSolver

2. FlowSolver

3. FluxSolver: solve the heat flux

4. StreamSolver: solve the stream function

5. VorticitySolver: solve the vorticity field (curl of vector field)

6. DivergenceSolver: solve the divergence

7. ShearrateSolver: calculate the shearrate

8. IsosurfaceSolver: generate an isosurface at given value

9. ResultOutputSolver: write data

10. SaveGridData: save data on uniform grid

11. SaveLine: save data on given lines

12. SaveScalars: save various reductions

Mesh of 10000 bilinear elements

Primary fields for natural convection

Pressure Velocity Temperature

Derived fields for Navier-Stokes solution

Shearrate field Stream function Vorticity field Divergence field

Derived fields for heat equation

Heat flux Nodal heat loads

• Nodal loads only occur at

boundaries (nonzero

heat source)

• Nodal loads are

associated to continuous

heat flux by element size

factor

Visualization in differen postprocessors

GiD

gmsh

Paraview

Example: total flux

• Saved by SaveScalars

• Two ways of computing the

total flux give different

approximations

• When convergence is reached

the agreement is good

Example: boundary flux

• Saved by SaveLine

• Three ways of computing the

boundary flux give different

approximations

• At the corner the nodal flux

should be normalized using only

h/2

Example, saving boundaries in .sif file

Solver 2

Exec Solver = Always

Equation = "result output"

Procedure = "ResultOutputSolve”

"ResultOutputSolver"

Output File Name = case

Vtu Format = Logical True

Save Boundaries Only = Logical True

End

Example, File size in Swiss Cheese
• Memory consumption of vtu-files (for Paraview) was studied in the

”swiss cheese” case

• The ResultOutputSolver with different flags was used to write

output in parallel

• Saving just boundaries in single precision binary format may save

over 90% in files size compared to full data in ascii

• With larger problem sizes the benefits are amplified

Binary output Single Prec. Only bound. Bytes/node

- X - 376.0

X - - 236.5

X X - 184.5

X - X 67.2

X X X 38.5

Manually editing the command files

• Only the most important solvers and features are supported by the

GUI

• Minor modifications are most easily done by manual manipulation of

the files

• The tutorials, test cases and documentation all include usable sif file

pieces

• Use your favorite text editor (emacs, notepad++,…) and copy-paste

new definitions to your .sif file

• If your additiones were sensible you can rerun your case

• Note: you cannot read in the changes made in the .sif file

Exercise

• Study the command file with 12 solvers

• Copy-paste an appropriate solver from there to some existing

case of your own

oResultOutputSolver for VTU output

oStreamSolver, VorticitySolver, FluxSolver,…

• Note: Make sure that the numbering of Solvers is consistant

oSolvers that involve finite element solution you need to activate by
Active Solvers

• Run the modified case

• Visualize results in Paraview in different ways

Using tests as a starting point

• There are over 500 consistancy tests that come with the Elmer distribution

o The hope is to minimize the propability of new bugs

• The tests are small for speedy computation

• Step-by-step instructions

1. Go to tests at
$ELMER_HOME/tests

2. Choose a test case relevant to you (by name, or by grep)

 Look in Models manual for good search strings

3. Copy the tests to your working directory

4. Edit the sif file

 Activate the output writing: Post File

 Make the solver more verbose: Max Output Level

5. Run the case (see runtest.cmake for the meshing procedure)

 Often just: ElmerSolver

6. Open the result file to see what you got

7. Modify the case and rerun etc.

Conclusions

• It is good to think in advance what kind of data you need

o3D volume and 2D surface data

oDerived fields

o1D line data

o0D lumped data

• Internal strategies may allow better accuracy than doing the

analysis with external postprocessing software

oConsistent use of basis functions to evaluate the data

• Often the same reduction operations may be done also at later

stages but with significantly greater effort

Parallel computing with Elmer

ElmerTeam
CSC – IT Center for Science, Finland

CSC, 2018

Algorithm scalability

• Before going into parallel computation let’s study

where the bottle-necks will appear in the serial

system

• Each algorithm/procedure has a characteristic

scaling law that sets the lower limit to how the

solution time t increases with problem size n

oThe parallel implementation cannot hope to beat this
limit systematically

• Targeting very large problems the starting point

should be nearly optimal (=linear) algorithm!

n

t

Poisson equation at ”Winkel”

• Mesh generation is cheapest

• Success of various iterative

methods determined mainly by

preconditioning strategy

• Best preconditioner is clustering

multigrid method (CMG)

• For simple Poisson almost all

preconditioners work reasonable

well

• Direct solvers differe significantly

in scaling
23.5.20184

Mesh generation alpha beta

Gmsh 21.4 1.18

Linear solver alpha beta

BiCGStab+CMG0(SGS1) 178.30 1.09

GCR+CMG0(SGS2) 180.22 1.10

Idrs+CMG0(SGS1) 175.20 1.10

…

BiCgStab + ILU0 192.50 1.13

…

CG + vanka 282.07 1.16

Idrs(4) + vanka 295.18 1.16

…

CG + diag 257.98 1.17

BiCgStab(4) + diag 290.11 1.19

…

MUMPS(PosDef) 4753.99 1.77

MUMPS 12088.74 1.93

umfpack 74098.48 2.29

Motivation for using optimal linear solvers

• Comparison of algorithm scaling in linear elasticity between different preconditioners

o ILU1 vs. block preconditioning (Gauss-Seidel) with agglomeration multigrid for each component

• At smallest system performance about the same

• Increasing size with 8^3=512 gives the block solver

scalability of O(~1.03) while ILU1 fails to converge

BiCGstab(4)+ILU1 GCR+BP(AMG)

#dofs T(s) #iters T(s) #iters

7,662 1.12 36 1.19 34

40,890 11.77 76 6.90 45

300,129 168.72 215 70.68 82

2,303,472 >21,244* >5000* 756.45 116

* No convergence was obtainedSimulation Peter Råback, CSC.

Computer architectures

• Shared memory

oAll cores can access the whole memory

• Distributed memory

oAll cores have their own memory

oCommunication between cores is needed in
order to access the memory of other cores

• Current supercomputers combine the

distributed and shared memory (within

nodes) approaches

Programming models

• Threads (pthreads, OpenMP)

oCan be used only in shared memory computer

o Limited parallel scalability

o Simpler or less explicit programming

• Message passing (MPI)

oCan be used both in distributed and shared memory
computers

o Programming model allows good parallel scalability

o Programming is quite explicit

• Massively parallel FEM codes use typically MPI as

the main parallelization strategy

o As does Elmer!

Parallel computing concepts

23.5.20189

Strong scaling

• How the solution time T varies with the

number of processors P for a

fixed total problem size.

• Optimal case: P x T = const.

• A bad algorithm may have excellent strong

scaling

• Typically 104-105 dofs needed in FEM for

good strong scaling

Weak scaling

• How the solution time T varies with the

number of processors P for a fixed

problem size per processor.

• Optimal case: T=const.

• Weak scaling is limited by algorithmic

scaling

Weak vs. strong parallel scaling

23.5.201810

Serial workflow of Elmer

• All steps in the workflow are serial

• Typically solution of the linear system is the main bottle-neck

• For larger problems bottle-necks starts to appear in all phases

of the serial workflow

SOLUTION

VISUALIZATION

ASSEMBLY

MESHING

Basic Parallel workflow of Elmer

• Addiational partition step using ElmerGrid

• Both assembly and solution is done in parallel using MPI

• Assembly is trivially parallel

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

ElmerGrid

ElmerGrid partitioning commands

Basic volume mesh partitioning options

(geometric partitioning and Metis graph partitiong)

There are additional flags to control the partitioning of contact boundaries

and halo elements.
5/23/201813

-partition int[3] : the mesh will be partitioned in cartesian main directions

-partorder real[3] : in the 'partition' method set the direction of the ordering

-partcell int[3] : the mesh will be partitioned in cells of fixed sizes

-partcyl int[3] : the mesh will be partitioned in cylindrical main directions

-metis int : mesh will be partitioned with Metis using mesh routines

-metiskway int : mesh will be partitioned with Metis using Kway routine

-metisrec int : mesh will be partitioned with Metis using Recursive routine

-metiscontig : enforce that the metis partitions are contiguous

-partdual : use the dual graph in partition method (when available)

ElmerGrid partitioning examples

• ElmerGrid 2 2 mesh –partcell nx ny nz

oPartition elements in a uniform grid based on the bounding box

oNumber of partitions may be lower than the product if there are empty cells

oDoes not quarantee that partitions are of same size

• ElmerGrid 2 2 mesh –partition nx ny nz

oPartition elements recursively in the main coordinate directions

oPartitions are of same size

oGoodness depends heavily on the geometry

• ElmerGrid 2 2 mesh –metisrec n

oPartition elements using a recursive routine of Metis

oCannot beat the geometric strategy for some ideal shapes

oRobust in that partitioning is always reasonable

23.5.201814

5/23/201815

Mesh partitioning with ElmerGrid – structured mesh

-partcell 2 2 2 -partition 2 2 2

-metis 8 -partdual -metisrec 8

5/23/201816

Mesh partitioning with ElmerGrid – unstructured mesh

-metis 8

-partcell 2 2 2 -partition 2 2 2

-partdual -metisrec 8

Mesh structure of Elmer

Serial

meshdir/

• mesh.header

size info of the mesh

• mesh.nodes

node coordinates

• mesh.elements

bulk element defs

• mesh.boundary

boundary element defs with reference

to parents

Parallel

meshdir/partitioning.N/

• mesh.n.header

• mesh.n.nodes

• mesh.n.elements

• mesh.n.boundary

• mesh.n.shared

information on shared nodes

for each i in [0,N-1]

Iterative

• HUTITER

oKrylov methods initially coded at HUT

• Hypre

o Krylov solvers

o Algebraic multigrid: BoomerAMG

o Truly parallel ILU and Parasails preconditioning

• Trilinos

o Krylov solvers

o Algebraic multigrid: ML

o …

• ESPRESO

o FETI library of IT4I

http://espreso.it4i.cz/

Direct

• MUMPS

o Direct solver that may work when averything
else fails

• MKL Pardiso

oComes with the Intel MKL library

oMultihreaded

Parallel linear solvers in Elmer

23.5.201820

Partitioning and matrix structure

• ji 23.5.201821

• Shared nodes result to need for communication.

o Each dof has just one owner partiotion and we know the
neighbours for

oOwner partition usually handles the full row

oResults to point-to-point communication in MPI

• Matrix structure sets challenges to efficient

preconditioners in parallel

o It is more difficult to implement algorithms that are
sequential in nature, e.g. ILU

oKrylov methods require just matrix vector product, easy!

• Communication cannot be eliminated. It reflects the

local interactions of the underlying PDEContiguous parallel numbering used

Partitioning and matrix structure – unstructured mesh

23.5.201822

• Partitioning should try

to minimize

communication

• Relative fraction of

shared nodes goes as

N^(-1/DIM)

• For vector valued and

high order problems

more communication

with same dof count
Metis partitioning into 8

Differences in serial and parallel algorithms

• Some algorithms are slightly different in

parallel

• ILU in ElmerSolver library is performed only

blockwise which may result to inferior

convergence

• Diagonal and vanka preconditions are

exactly the same in parallel

Parallel computation in ElmerGUI

• If you have parallel environment it

can also be used interactively via

ElmerGUI

• Calls ElmerGrid automatically for

partiotioning (and fusing)

Parallel postprocessing using Paraview

• Use ResultOutputSolver to save data to .vtu files

• The operation is almost the same for parallel data as for serial

data

• There is a extra file .pvtu that holds is a wrapper for the

parallel .vtu data of each partition

• Serial mesh files

• Command file (.sif) may be given as an inline

parameter

• Execution with

ElmerSolver [case.sif]

• Writes results to one file

• Partitioned mesh files

• ELMERSOLVER_STARTINFO is always

needed to define the command file (.sif)

• Execution with

mpirun -np N ElmerSolver_mpi

• Calling convention is platform dependent

• Writes results to N files + 1 wrapper file

Summary: Files in serial vs. parallel solution

Serial Parallel

Example: Weak scaling of Elmer (FETI)

#Procs Dofs Time (s) Efficiency

8 0.8 47.80 -

64 6.3M 51.53 0.93

125 12.2M 51.98 0.92

343 33.7M 53.84 0.89

512 50.3M 53.90 0.89

1000 98.3M 54.54 0.88

1331 131M 55.32 0.87

1728 170M 55.87 0.86

2197 216M 56.43 0.85

2744 270M 56.38 0.85

3375 332M 57.24 0.84

Solution of Poisson equation with FETI method where local problem (of size 32^3=32,768
nodes) and coarse problem (distributed to 10 partitions) is solved with MUMPS. Simulation
with Cray XC (Sisu) by Juha Ruokolainen, CSC, 2013.

Block preconditioner: Weak scaling of 3D driven-cavity

Elems Dofs #procs Time (s)

34^3 171,500 16 44.2

43^3 340,736 32 60.3

54^3 665,500 64 66.7

68^3 1,314,036 128 73.6

86^3 2,634,012 256 83.5

108^3 5,180,116 512 102.0

132^3 9,410,548 1024 106.8

Velocity solves with Hypre: CG + BoomerAMG preconditioner for the
3D driven-cavity case (Re=100) on Cray XC (Sisu).
Simulation Mika Malinen, CSC, 2013.

O(~1.14)

Scalability of edge element AV solver for end-windings

Magnetic field strength (left) and electric potential (right)
of an electrical engine end-windings. Meshing M. Lyly,

ABB. Simulation (Cray XC, Sisu) J. Ruokolainen, CSC.

#Procs Time(s) T2P/TP

4 1366 -

8 906 1.5

16 260 3.5

32 122 2.1

64 58.1 2.1

128 38.2 1.8

256 18.1 2.1

• Monolithic parallel linear

system including

oElectric scalar potential using
nodal elements

oMagnetic vector potential using
edge elements (in 3D)

oMortar projector for the nodal
dofs 𝑃𝑣 (for conductors)

oMortar projector for the edge
dofs 𝑃𝑎 (in 3D)

oCurrent conditions for case
driven by external circuit
(few rather dense rows)

• Solved with Krylov method, e.g. GCR or

BiCGStab(l)

• Hybrid preconditioning strategy

oVector potential with diagonal

oScalar potential & mortar projectors with ILU

oElectrical circuits either with ILU or MUMPS

• Still some challenges on robustness!

Coupled model for electrical machines

23.5.201845

Hybrid partitioning scheme

• The linear system arising from the electromagentic

problem must be solved together with the continuity

constraints

• To minimize communication (and coding) effort we

partition the mesh cleverly

• Electrical machines have always rotating interface:

Partition the interface elements so that opposing

element layers on the cylinder are always within the

same partition

o Unstructured surface meshes are treated similarly except halo
elements are also saved on the boundary

• Other elements are partitioned with Metis

• Local mortar conditions much easier to deal with!

Parallel workflow for meshing bottle-necks

• Large meshes may be finilized at the parallel level

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

COARSE MESHING

FINE MESHING

Mesh Multiplication

Mesh #splits #elems #procs T_center
(s)

T_graded
(s)

A 2 4 M 12 0.469 0.769

2 4 M 128 0.039 0.069

3 32 M 128 0.310 0.549

B 2 4.20 M 12 0.369

2 4.20 M 128 0.019

3 33.63 M 128 0.201

Mesh grading nicely preserved

• Split elements edges after partitioning at parallel level

oeffectively eliminating memory and I/O bottle-necks

oEach multiplication creates 2^DIM-fold number of elements

oDoes not increase accuracy of geometry presentation

oMay inherit mesh grading

oCPU time used in neglible

Mesh A: structured, 62500 hexahedrons
Mesh B: unstructured, 65689 tetrahedrons

Overcoming bottle-necks in postprocessing

• Visualization

o Paraview and Visit excellent tools for parallel visualization

oAccess to all data is often an overkill

• Reducing data

o Saving only boundaries

oUniform point clouds

oA priori defined isosurfaces

oUsing coarser meshes for output when hierarchy of meshes exist

• Extracting data

oDimensional reduction (3D -> 2D)

oAveraging over time

o Integrals over BCs & bodies

• More robust I/O

oNot all cores should write to disk in massively parallel simulations

oHDF5+XDML output available for Elmer, mixed experiences

Binary
output

Single
Prec.

Only
bound.

Bytes/
node

- X - 376.0

X - - 236.5

X X - 184.5

X - X 67.2

X X X 38.5

Hybridization of the Finite Element code

• The number of cores in CPUs keep

increasing but the clock speed has

stagnated

• Significant effort has been invested for

the hybrization of Elmer

oAssembly process has been multithreaded and
vectorized

o”Coloring” of element to avoid race conditions

• Speed-up of assembly for typical

elements varies between 2 to 8.

• As an accompanion the multitreaded

assembly requires multithreaded linear

solvers.63

Multicore speedup, P=2
128 threads on KNL, 24 threads on HSW

Element (#ndofs,
#quadrature
points)

Speedup Optimized local
matrix

evaluations / s

KNL HSW KNL HSW

Line (3, 4) 0.7 2.0 4.2 M 14.5 M

Triangle (6, 16) 2.5 3.9 2.6 M 6.5 M

Quadrilateral (8, 16) 2.8 4.0 2.6 M 6.6 M

Tetrahedron (10, 64) 7.9 6.3 1.0 M 1.5 M

Prism (15, 64) 8.3 5.8 0.8 M 0.9 M

Hexahedron (20, 64) 7.2 5.8 0.6 M 0.9 M

Speed-up assembly process for poisson equation using
2nd order p-elements. Juhani Kataja, CSC, IXPUG Annual
Spring Conference 2017.

Recipes for resolving scalability bottle-necks

• Finalize mesh on a parallel level (no I/O)

oMesh multiplication or parallel mesh generation

• Use algorithms that scale well

oE.g. Multigrid methods

• If the initial problem is difficult to solve effectively divide it into simpler

sub-problems

oOne component at a time -> block preconditioners

oGCR + Block Gauss-Seidel + AMG + SGS

oOne domain at a time -> FETI

oSplitting schemes (e.g. Pressure correction in CFD)

• Analyze results on-the-fly and reduce the amount of data for

visualization

Future outlook

• Deeper integration of the workflow

oHeavy pre- and postprocessing internally or via API

• Cheaper flops from new multicore environments

o Interesting now also for the finite element solvers

oUsable via reasonable programming effort;
attention to algorithms and implementation

• Complex physics introduces always new bottle-necks

oRotating boundary conditions in parallel…

