Basic Programming with Elmer
Mikko Lyly
Spring 2010

1 User defined functions

1.1 Calling convention

User defined functions (udf) can be used to compute complicated material parameters,
body forces, boundary conditions, etc. Udfs are written in Fortran90 with the following
calling convention:

! File: MyLibrary.f90

! Written by: ML, 5 May 2010

! Modified by: -

FUNCTION MyFunction(Model, n, f) RESULT(g)
USE DefUtils

TYPE (Model_t) :: Model
INTEGER :: n
REAL (KIND=dp) :: f, g

! code that computes g

END FUNCTION MyFunction

1.2 Compilation

Udfs are compiled into shared objects (Unix-like systems) or into a dlls (Windows)
by using the default compiler wrapper elmer£90 (here and in the sequel, $ stands for
the command prompt of a bash shell (Unix) and > is the input sign of the Command
Prompt in Windows):

$ elmerf90 -o MyLibrary.so MyLibrary.f90

> elmerf90 MyLibrary.f90

1.3 Using udfs

User defined functions are called automatically by ElmerSolver when needed. To fix
ideas, suppose that we want to compute the value of a material parameter as a function
of time. In this case, the user defined function is activated from the Solver Input File
e.g. as follows:

Material 1
MyParameter = Variable Time
Real Procedure "MyLibrary" "MyFunction"
End

The value of time will be passed to the function in £. The function is supposed to

compute the value of the material parameter in node n and return it to ElmerSolver in

The type Model_t is declared and defined in the source file Defutils.£90. The
structure contains a pointer to the mesh as well as all model data specified in the
Solver Input File. As an example, the coordinates of node n are obtained from Model
as follows:

REAL (KIND=dp) :: x, Yy, z
x = Model % Nodes % x(n)
y = Model % Nodes & y(n)

z = Model % Nodes % z(n)

If the value of the return value depends on a specific function (for example tem-
perature), we can fetch the nodal value of that function by using the generic DefUtils
routines (more details to follow in the next section):

TYPE (Variable_t), POINTER :: TemperatureVariable
REAL (KIND=dp) :: NodalTemperature
INTEGER :: DofIndex

TemperatureVariable => VariableGet (Model % Variables, ’Temperature’)
DofIndex = TemperatureVariable % Perm(n)
NodalTemperature = TemperatureVariable % Values (dofIndex)

! Compute heat conductivity from NodalTemperature

1.4 Excersices

Create a moderately small model for heat conduction (e.g. with ElmerGUI) and write
a user defined function that returns a constant heat conductivity. Print out the node
index and nodal coordinates to see if the function is actually called by ElmerSolver.
Modify your function so that it returns the value of the spatially varying heat con-
ductivity k = 1 + .
Finally, implement the temperature dependent heat conductivity k& = 1 + |T'(x)|

and visualize the result.

2 User defined solvers

2.1 Calling convention

All user defined subroutines that implement a custom solver are written with the fol-
lowing calling convention:

! File: MySolver.f90
! Written by: ML, 5 May 2010

! Modified by: -

SUBROUTINE MySolver (Model, Solver, dt, Transient)
Use DefUtils
IMPLICIT NONE

TYPE (Solver_t) :: Solver
TYPE (Model_t) :: Model
REAL (KIND=dp) :: dt
LOGICAL :: Transient

! User defined code

END MySolver

The types solver_t and Model_t are defined in the source file Types. £90.

2.2 Compilation

The subroutine is compiled into a shared library like a user defined function by using
the compiler wrapper elmer£90:

$ elmerf90 -o MyLibrary.so MyLibrary.£f90

> elmerf90 MyLibrary.£90

2.3 Solver Input File

The user defined solver is called automatically by ElmerSolver when an appropriate
Solver-block is found from the Solver Input File:

Solver 1

Procedure = "MyLibrary" "MySolver"

End

2.4 Excercises

Create a temporary work directory containing the following mesh files:

$ less mesh.nodes
1 -10.00.00.0

2 -10.0 -1.0 0.0
3 -11.0 -1.0 0.0
4 -11.0 1.0 0.0

5-1-1.0 1.0 0.0
6 -1 -1.0 0.0 0.0

less mesh.elements
1303123

1 3031
1 3031
1 3031

=sw N

3 4
4 5
56

less mesh.boundary
1 202 2

202
202
202
202
202

o U1 W NP
N NN PR
o O O O O O
o U W N

1
2
3
4
4

= oo o W

$ less mesh.header
6 4 6

2

202 6

303 4

Then consider the following minimalistic Solver Input File:

$ less case.sif
Header

Mesh DB n . n n . n
End

Simulation
Simulation Type = Steady state
Steady State Max Iterations =1
Post File = case.ep

End

Body 1
Equation = 1

End

Equation 1

Active Solvers(l) =1
End
Solver 1
Equation = "MyEquation"
Procedure = "MyLibrary" "MySolver"
Variable = -dofs 1 "MyScalar"
End

Finally, make sure that your work directory contains the following info file:

$ less ELMERSOLVER_STARTINFO
case.sif
1

Write and compile a user defined subroutine that simply prints out "Hello from My-
Solver!" when called by ElmerSolver:

$ ElmerSolver

ELMER SOLVER (v 5.5.0) STARTED AT: 2010/05/24 10:17:10
MAIN:
MAIN:
MAIN: ELMER SOLVER STARTTING
MAIN: Library version: 5.5.0 (Rev: 4455)
MAIN:
MAIN:

Hello from MySolver!

WriteToPost: Saving results in ElmerPost format to file ./case.ep
ElmerSolver: *xx Elmer Solver: ALL DONE *x%x%

ElmerSolver: The end

SOLVER TOTAL TIME (CPU,REAL) : 0.11 0.38

ELMER SOLVER FINISHED AT: 2010/05/24 10:17:10

3 Reading constant data from SIF

Relevant functions and subroutines (defined in DefUtils.f90):

RECURSIVE FUNCTION GetConstReal (List, Name, Found) RESULT (Value)
TYPE (ValuelList_t), POINTER : List

CHARACTER (LEN=x*) :: Name
LOGICAL, OPTIONAL :: Found
REAL (KIND=dp) :: Value

RECURSIVE SUBROUTINE GetConstRealArray (List, Value, Name, Found)
TYPE (ValueList_t), POINTER : List

CHARACTER (LEN=%) :: Name
LOGICAL, OPTIONAL :: Found
REAL (KIND=dp), POINTER :: Value(:,:)

3.1 Reading constant scalars

Solver Input File:
Constants

MyConstant = Real 123.456
End

Code (ElmerProgramming/case1/MyLibrary.f90):

SUBROUTINE MySolver (Model, Solver, dt, Transient)
Use DefUtils
IMPLICIT NONE
TYPE (Solver_t) :: Solver

TYPE (Model_t) :: Model
REAL (KIND=dp) :: dt
LOGICAL :: Transient

! Read constant scalar from Constants-block:

REAL (KIND=dp) :: MyConstant
LOGICAL :: Found

MyConstant = GetConstReal (Model % Constants, "MyConstant", Found)
IF (.NOT.Found) CALL Fatal ("MySolver", "Unable to find MyConstant")

PRINT %, "MyConstant =", MyConstant

END SUBROUTINE MySolver
Output:

MyConstant = 123.45600000

3.2 Reading constant vectors

Solver Input File:
Solver 1

MyVector(3) = Real 1.2 3.4 5.6
End

Code (ElmerProgramming/case2/MyLibrary.f90)

SUBROUTINE MySolver (Model, Solver, dt, Transient)
Use DefUtils
IMPLICIT NONE

TYPE (Solver_t) :: Solver
TYPE (Model_t) :: Model
REAL (KIND=dp) :: dt
LOGICAL :: Transient

! Read constant vector from Solver-block:

REAL (KIND=dp), POINTER :: MyVector(:,:)
LOGICAL :: Found

CALL GetConstRealArray(Solver % Values, MyVector, "MyVector", Found)
IF (.NOT.Found) CALL Fatal ("MySolver", "Unable to find MyVector")
PRINT %, "MyVector =", MyVector(:,1)

END SUBROUTINE MySolver

Output:

MyVector = 1.2000000000 3.4000000000 5.6000000000

3.3 Reading constant matrices

Solver Input File:
Material 1
MyMatrix(2,3) = Real 11 12 13 \
21 22 23
End

Code (ElmerProgramming/case3/MyLibrary.f90):

SUBROUTINE MySolver (Model, Solver, dt, Transient)
Use DefUtils
IMPLICIT NONE

TYPE (Solver_t) :: Solver
TYPE (Model_t) :: Model
REAL (KIND=dp) :: dt
LOGICAL :: Transient

! Read constant matrix from Material-block

REAL (KIND=dp), POINTER :: MyMatrix(:,:)
LOGICAL :: Found
TYPE (ValuelList_t), POINTER :: Material

Material => Model % Materials(l) % Values

CALL GetConstRealArray (Material, MyMatrix, "MyMatrix", Found)

IF (.NOT.Found) CALL Fatal ("MySolver", "Unable to find MyMatrix")

PRINT %, "Size of MyMatrix =", SIZE (MyMatrix,1l), "x", SIZE (MyMatrix,2)
PRINT %, "MyMatrix(l,:) =", MyMatrix(1l,:)

PRINT %, "MyMatrix(2,:) =", MyMatrix(2,:)

END SUBROUTINE MySolver

Output:

Size of MyMatrix = 2 x 3

MyMatrix(1,:) = 11.000000000 12.000000000 13.000000000
MyMatrix (2,:) = 21.000000000 22.000000000 23.000000000

3.4 Excercises

Modify casel such that your user defined subroutine reads and prints out an integer
from the Solver block of your SIF (see GetInteger () in DefUtils.£90). Implement

appropriate error handling.

4 Reading field data from SIF

Relevant functions and subroutines (defined in DefUtils.f90):

RECURSIVE FUNCTION GetReal (List, Name, Found, Element) RESULT (Value)
TYPE (ValuelList_t) : List

CHARACTER (LEN=%) :: Name
LOGICAL, OPTIONAL :: Found
TYPE (Element_t), OPTIONAL, TARGET :: Element

REAL (KIND=dp), POINTER :: Value(:)

4.1 Reading scalar fields
Solver Input File:

Material 1
MyParameter = Real 123.456
End

Code (ElmerProgramming/case4/MyLibrary.f90):

SUBROUTINE MySolver (Model, Solver, dt, Transient)
Use DefUtils
IMPLICIT NONE

TYPE (Solver_t) :: Solver
TYPE (Model_t) :: Model
REAL (KIND=dp) :: dt
LOGICAL :: Transient

TYPE (Mesh_t), POINTER :: Mesh

TYPE (Element_t), POINTER :: Element

TYPE (ValuelList_t), POINTER :: Material

REAL (KIND=dp), ALLOCATABLE :: MyParameter(:)
LOGICAL :: AllocationsDone = .FALSE.

LOGICAL :: Found

INTEGER :: N

SAVE MyParameter, AllocationsDone

IF (.NOT.AllocationsDone) THEN
Mesh => GetMesh (Solver)
N = Mesh % MaxElementNodes
ALLOCATE (MyParameter (N))
AllocationsDone = .TRUE.
END IF

N = GetNofActive (Solver)
IF(N < 1) CALL Fatal ("MySolver", "No elements in the mesh")

Element => GetActiveElement (3)
N = GetElementNofNodes (Element)

Material => GetMaterial (Element)

IF (.NOT.ASSOCIATED (Material)) CALL Fatal ("MySolver", "No material block")
MyParameter (1:N) = GetReal (Material, "MyParameter", Found)
IF (.NOT.Found) CALL Fatal ("MySolver", "MyParameter not found")

PRINT %, "Element 3:"
PRINT *, "Node indices:", Element % NodeIndexes (1:N)
PRINT %, "Nodal values of MyParameter:", MyParameter (1:N)

END SUBROUTINE MySolver

Output:

Element 3:

Node indices: 1 4 5

Nodal values of MyParameter: 123.45600000 123.45600000 123.45600000

4.2 Excercises

You can access your global solution vector in your subroutine as follows:

TYPE (Variable_t), POINTER :: MyVariable
REAL (KIND=dp), POINTER :: MyVector(:)
INTEGER, POINTER :: MyPermutation(:)
MyVariable => Solver % Variable
MyVector => MyVariable % Values

o

MyPermutation => MyVariable % Perm
In the case of a scalar field, you can then set the value of the field e.g. in node 3 as

MyVector (MyPermutation(3)) = 123.456

The vector MypPermutation is related to band width optimization and it is al-
ways on by default. You can turn the optimization off by adding the line Bandwidth
optimization = FALSE in the Solver-block of your SIF. In this case the permutation

vector MyPermutation becomes the identity map.

Write a user defined subroutine that loops over the elements, reads scalar field
data from the Body Force-block of the SIF, and copies the nodal data into the global
solution vector (that is, "solve" the equation © = f). Use the following Body Force
block:

Body Force 1

MyForce = Variable Coordinate 1

Real
-1.0 0.0
1.0 123.456
End
End

Visualize the solution with ElmerPost. The solution should grow linearly from left to

right.

5 Partial Differential Equations

5.1 Model problem

In this section, we will consider the boundary value problem
—Au=f in(),

w=0 on 0,

where 2 C R? is a smooth bounded domain (d = 1,2,3) and f = 1.

The problem can be written as

1/]Vu|2 dQ—/fudQ:min!
2 Ja Q

where the minimum is taken over all sufficiently smooth functions that satisfy the

kinematical boundary conditions on 0.

5.2 FEM

The Galerkin FEM for the problem is obtained by dividing (2 into finite elements
and by introducing a set of mesh dependent basis functions {¢1, ¢o,...,®,}. The
approximate solution is written as a linear combination of the basis and detemined

from the condition that it minimizes the energy:
n
Up = Z piu; (u; € R)
i=1

and

1
—/\VunIQ dQ—/fun dQ) = min!
2 Ja Q

The solution satisfies
n
ZAijuj:fia i:1,2,...,n,
j=1

with
Q

10

and

= /Q fé d2

In practice, the coefficients A;; are computed by summing over the elements:
E
Ay = Z Ajj
E

where

AP — / Vo - Vo, dS
E

The integrals over the elements are evaluated through a mapping [z : E — E, where

F is a fixed reference element:
Al = / Vi - Vo, | Jg| d
E

where |Jg| is the determinant of the Jacobian matrix of fr. In most cases, fg is
either an affine or an isoparametric map from the unit triangle, square, tetrahedron,
hexahedron etc., into the actual element.

Finally, the integral over the reference element is computed numerically with an
appropriate quadrature. Elmer uses the Gauss-quadrature by deault, as most of the
FE-codes:

N
AL = "Vil&) - V(&) wi | T(8)]
k=1

where & is the integration point and wy, is the integration weight.
So, the system matrices and vectors of the FEM are formed by implementing a loop
over the elements, by computing the local matrices and vectors with an appropriate

quadrature, and by assembling the global system from the local contributions.

5.3 Implementation

Let us next implement the method in Elmer by writing a user defined subroutine for
the Poisson equation. To begin with, let us allocate memory for the local matrices and
vectors. This is done once and for all in the beginning of the subroutine:

INTEGER :: N

TYPE (Mesh_t), POINTER :: Mesh

LOGICAL :: AllocationsDone = .FALSE.

REAL (KIND=dp), ALLOCATABLE :: Matrix(:,:), Vector(:)

SAVE AllocationsDone, LocalMatrix, LocalVector

11

IF(.NOT.AllocationsDone) THEN
Mesh => GetMesh (Solver)
N = Mesh % MaxElementNodes
ALLOCATE (Matrix (N,N))
ALLOCATE (Vector (N))

END IF

The next step is to implement a loop over all active elements, call a subroutine that
computes the local matrices and vectors (to be specified later), and assemble the global
system by using the DefUtils subroutine DefaultUpdateEquations ():

INTEGER :: 1
TYPE (Element_t), POINTER :: Element

DO i1 = 1, GetNOFActive (Solver)

Element => GetActiveElement (i)

N = GetElementNOFNodes (Element)

CALL ComputeLocal (Element, N, Matrix, Vector)

CALL DefaultUpdateEquations (Matrix, Vector, Element)
END DO

The assembly is finalized by calling the DefUtils subroutine efaultFinishAssembly ().
Dirichlet boundary conditions are set by calling the subroutine befaultDirichletBCs ().
The final algebraic system is solved by the DefUtils function befaultsSolve ():

REAL (KIND=dp) :: Norm

CALL DefaultFinishAssembly (Solver)
CALL DefaultDirichletBCs (Solver)

Norm = DefaultSolve (Solver)

It remains to implement the subroutine ComputeLocal () which performs the local
computations. We will contain this subroutine in the main subroutine to simplify
things:

SUBROUTINE MySolver (Model, Solver, dt, Transient)

CONTAINS

SUBROUTINE ComputeLocal (Element, N, Matrix, Vector)

TYPE (Element_t), POINTER :: Element
INTEGER :: N

REAL (KIND=dp) :: Matrix(:,:)

REAL (KIND=dp) :: Vector(:)

END SUBROUTINE ComputeLocal

END SUBROUTINE MySolver
The first thing to do in ComputeLocal () is to clear the local matrix and vector:

Matrix = 0.0d0
Vector = 0.0d0

12

Next, we will get information about the node points:

TYPE (Nodes_t) :: Nodes
SAVE Nodes

Matrix = 0.0d0
Vector = 0.0d0

CALL GetElementNodes (Nodes, Element)
The Gauss points for our element are returned by the function GaussPoints ()

TYPE (GaussIntegrationPoints_t) :: IP

IP = GaussPoints (Element)

The local matrix and vector are integrated numerically by implementing a loop over the
Gauss points, by evaluating the nodal basis functions in these points, and by computing
the inner products:

INTEGER :: 1
REAL (KIND=dp) :: detdJ, Basis(N), dBasisdx (N, 3)
LOGICAL :: stat

DO i =1, IP % n
stat = ElementInfo (Element, Nodes, &
IP % u(i), IP % v(i), IP % w(i), &
detJ, Basis, dBasisdx)

END DO

In this loop, we will finally compute the inner products of the basis and their gradients,
multiply the result by the weight of the Gauss point, and by the determinant of the
Jacobian matrix of the mapping from the reference element:

Matrix (1:N, 1:N) = Matrix(1l:N, 1:N) + &
MATMUL (dBasisdx, TRANSPOSE (dBasisdx)) * IP % s(i) = detd

Vector (1:N) = Vector(1l:N) + Basis * IP % s (i) * detd

The implementation is now complete.
Let us finally test the method by creating a finite element mesh e.g. with ElmerGrid
or ElmerGUI (1, 2, and 3d are all fine), and by using the following SIF:

Header
Mesh DB "." " "
End

Simulation
Simulation Type = Steady state
Steady State Max Iterations = 1
Post File = case.ep

End

13

Body 1
Equation = 1
End

Equation 1
Active Solvers(l) =1

End

Solver 1

Equation = "MyEquation"
Procedure = "MyLibrary" "MySolver"
Variable = -dofs 1 "MyScalar"

End

Boundary condition 1

Target boundaries(l) =1
MyScalar = Real O
End

5.4 Excersices

Modify the above solver for the heat equation
—V(kVu) = f inQ,

where k£ > 0 is the heat conduntion coefficient.

Modify the solver for a diffusion-reaction equation
—V(kVu) +au=f inQ,

where a > 0 is the reaction coeficient. When a is large, there will be a sharp boundary

layer. Adjust the mesh with appropriate refinements to resolve the layer accurately.

14

