
RFC 9459

CBOR Object Signing and Encryption (COSE): AES-

CTR and AES-CBC

Abstract

The Concise Binary Object Representation (CBOR) data format is designed for small code size and

small message size. CBOR Object Signing and Encryption (COSE) is specified in RFC 9052 to

provide basic security services using the CBOR data format. This document specifies the

conventions for using AES-CTR and AES-CBC as content encryption algorithms with COSE.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9459

Standards Track

September 2023

2070-1721

 R. Housley

Vigil Security

H. Tschofenig

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9459

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Housley & Tschofenig Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9459
https://www.rfc-editor.org/info/rfc9459
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Conventions and Terminology

3. AES Modes of Operation

4. AES Counter Mode

4.1. AES-CTR COSE Key

4.2. AES-CTR COSE Algorithm Identifiers

5. AES Cipher Block Chaining Mode

5.1. AES-CBC COSE Key

5.2. AES-CBC COSE Algorithm Identifiers

6. Implementation Considerations

7. IANA Considerations

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Acknowledgements

Authors' Addresses

2

3

3

3

4

4

5

5

5

6

6

6

8

8

9

9

10

1. Introduction

This document specifies the conventions for using AES-CTR and AES-CBC as content encryption

algorithms with the CBOR Object Signing and Encryption (COSE) syntax. Today,

encryption with COSE uses Authenticated Encryption with Associated Data (AEAD) algorithms

, which provide both confidentiality and integrity protection. However, there are

situations where another mechanism, such as a digital signature, is used to provide integrity. In

these cases, an AEAD algorithm is not needed. The software manifest being defined by the IETF

SUIT WG is one example where a digital signature is always present.

[RFC9052]

[RFC5116]

[SUIT-MANIFEST]

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 2

2. Conventions and Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. AES Modes of Operation

NIST has defined several modes of operation for the Advanced Encryption Standard

. AES supports three key sizes: 128 bits, 192 bits, and 256 bits. AES has a block size of 128

bits (16 octets). Each of these modes has different characteristics. The modes include: CBC (Cipher

Block Chaining), CFB (Cipher FeedBack), OFB (Output FeedBack), and CTR (Counter).

Only AES Counter (AES-CTR) mode and AES Cipher Block Chaining (AES-CBC) are discussed in

this document.

[AES]

[MODES]

4. AES Counter Mode

When AES-CTR is used as a COSE content encryption algorithm, the encryptor generates a unique

value that is communicated to the decryptor. This value is called an "Initialization Vector" (or

"IV") in this document. The same IV and AES key combination be used more than once.

The encryptor can generate the IV in any manner that ensures the same IV value is not used

more than once with the same AES key.

When using AES-CTR, each AES encrypt operation generates 128 bits of key stream. AES-CTR

encryption is the XOR of the key stream with the plaintext. AES-CTR decryption is the XOR of the

key stream with the ciphertext. If the generated key stream is longer than the plaintext or

ciphertext, the extra key stream bits are simply discarded. For this reason, AES-CTR does not

require the plaintext to be padded to a multiple of the block size.

AES-CTR has many properties that make it an attractive COSE content encryption algorithm. AES-

CTR uses the AES block cipher to create a stream cipher. Data is encrypted and decrypted by

XORing with the key stream produced by AES encrypting sequential IV block values, called

"counter blocks", where:

The first block of the key stream is the AES encryption of the IV.

The second block of the key stream is the AES encryption of (IV + 1) mod 2
128

.

The third block of the key stream is the AES encryption of (IV + 2) mod 2
128

, and so on.

AES-CTR is easy to implement, can be pipelined and parallelized, and supports key stream

precomputation. Sending of the IV is the only source of expansion because the plaintext and

ciphertext are the same size.

MUST NOT

•

•

•

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 3

When used correctly, AES-CTR provides a high level of confidentiality. Unfortunately, AES-CTR is

easy to use incorrectly. Being a stream cipher, reuse of the IV with the same key is catastrophic.

An IV collision immediately leaks information about the plaintext. For this reason, it is

inappropriate to use AES-CTR with static keys. Extraordinary measures would be needed to

prevent reuse of an IV value with the static key across power cycles. To be safe, implementations

 use fresh keys with AES-CTR.

AES-CTR keys may be obtained either from a key structure or from a recipient structure.

Implementations encrypting and decrypting validate that the key type, key length, and

algorithm are correct and appropriate for the entities involved.

With AES-CTR, it is trivial to use a valid ciphertext to forge other (valid to the decryptor)

ciphertexts. Thus, it is equally catastrophic to use AES-CTR without a companion authentication

and integrity mechanism. Implementations use AES-CTR in conjunction with an

authentication and integrity mechanism, such as a digital signature.

The instructions in are followed for AES-CTR. Since AES-CTR cannot

provide integrity protection for external additional authenticated data, the decryptor

ensure that no external additional authenticated data was supplied. See Section 6.

The 'protected' header be a zero-length byte string.

MUST

MUST

MUST

Section 5.4 of [RFC9052]

MUST

MUST

4.1. AES-CTR COSE Key

When using a COSE key for the AES-CTR algorithm, the following checks are made:

The 'kty' field be present, and it be 'Symmetric'.

If the 'alg' field is present, it match the AES-CTR algorithm being used.

If the 'key_ops' field is present, it include 'encrypt' when encrypting.

If the 'key_ops' field is present, it include 'decrypt' when decrypting.

• MUST MUST

• MUST

• MUST

• MUST

4.2. AES-CTR COSE Algorithm Identifiers

The following table defines the COSE AES-CTR algorithm values. Note that these algorithms are

being registered as "Deprecated" to avoid accidental use without a companion integrity

protection mechanism.

Name Value Key Size Description Recommended

A128CTR -65534 128 AES-CTR w/ 128-bit key Deprecated

A192CTR -65533 192 AES-CTR w/ 192-bit key Deprecated

A256CTR -65532 256 AES-CTR w/ 256-bit key Deprecated

Table 1

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 4

https://rfc-editor.org/rfc/rfc9052#section-5.4

5. AES Cipher Block Chaining Mode

AES-CBC mode requires a 16-octet IV. Use of a randomly or pseudorandomly generated IV

ensures that the encryption of the same plaintext will yield different ciphertext.

AES-CBC performs an XOR of the IV with the first plaintext block before it is encrypted. For

successive blocks, AES-CBC performs an XOR of the previous ciphertext block with the current

plaintext before it is encrypted.

AES-CBC requires padding of the plaintext; the padding algorithm specified in

 be used prior to encrypting the plaintext. This padding algorithm allows the

decryptor to unambiguously remove the padding.

The simplicity of AES-CBC makes it an attractive COSE content encryption algorithm. The need to

carry an IV and the need for padding lead to an increase in the overhead (when compared to

AES-CTR). AES-CBC is much safer for use with static keys than AES-CTR. That said, as described in

, the use of automated key management to generate fresh keys is greatly preferred.

AES-CBC does not provide integrity protection. Thus, an attacker can introduce undetectable

errors if AES-CBC is used without a companion authentication and integrity mechanism.

Implementations use AES-CBC in conjunction with an authentication and integrity

mechanism, such as a digital signature.

The instructions in are followed for AES-CBC. Since AES-CBC cannot

provide integrity protection for external additional authenticated data, the decryptor

ensure that no external additional authenticated data was supplied. See Section 6.

The 'protected' header be a zero-length byte string.

Section 6.3 of

[RFC5652] MUST

[RFC4107]

MUST

Section 5.4 of [RFC9052]

MUST

MUST

5.1. AES-CBC COSE Key

When using a COSE key for the AES-CBC algorithm, the following checks are made:

The 'kty' field be present, and it be 'Symmetric'.

If the 'alg' field is present, it match the AES-CBC algorithm being used.

If the 'key_ops' field is present, it include 'encrypt' when encrypting.

If the 'key_ops' field is present, it include 'decrypt' when decrypting.

• MUST MUST

• MUST

• MUST

• MUST

5.2. AES-CBC COSE Algorithm Identifiers

The following table defines the COSE AES-CBC algorithm values. Note that these algorithms are

being registered as "Deprecated" to avoid accidental use without a companion integrity

protection mechanism.

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 5

https://rfc-editor.org/rfc/rfc5652#section-6.3
https://rfc-editor.org/rfc/rfc9052#section-5.4

Name Value Key Size Description Recommended

A128CBC -65531 128 AES-CBC w/ 128-bit key Deprecated

A192CBC -65530 192 AES-CBC w/ 192-bit key Deprecated

A256CBC -65529 256 AES-CBC w/ 256-bit key Deprecated

Table 2

6. Implementation Considerations

COSE libraries that support either AES-CTR or AES-CBC and accept Additional Authenticated Data

(AAD) as input return an error if one of these non-AEAD content encryption algorithms is

selected. This ensures that a caller does not expect the AAD to be protected when the

cryptographic algorithm is unable to do so.

MUST

7. IANA Considerations

IANA has registered six COSE algorithm identifiers for AES-CTR and AES-CBC in the "COSE

Algorithms" registry .

The information for the six COSE algorithm identifiers is provided in Sections 4.2 and 5.2. Also,

for all six entries, the "Capabilities" column contains "[kty]", the "Change Controller" column

contains "IETF", and the "Reference" column contains a reference to this document.

[IANA-COSE]

8. Security Considerations

This document specifies AES-CTR and AES-CBC for COSE, which are not AEAD ciphers. The use of

the ciphers is limited to special use cases, such as firmware encryption, where integrity and

authentication is provided by another mechanism.

Since AES has a 128-bit block size, regardless of the mode employed, the ciphertext generated by

AES encryption becomes distinguishable from random values after 2
64

 blocks are encrypted with

a single key. Implementations should change the key before reaching this limit.

To avoid cross-protocol concerns, implementations use the same keying material with

more than one mode. For example, the same keying material must not be used with AES-CTR and

AES-CBC.

There are fairly generic precomputation attacks against all block cipher modes that allow a meet-

in-the-middle attack against the key. These attacks require the creation and searching of huge

tables of ciphertext associated with known plaintext and known keys. Assuming that the

memory and processor resources are available for a precomputation attack, then the theoretical

strength of AES-CTR and AES-CBC is limited to 2
(n/2)

 bits, where n is the number of bits in the key.

The use of long keys is the best countermeasure to precomputation attacks.

MUST NOT

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 6

When used properly, AES-CTR mode provides strong confidentiality. Unfortunately, it is very easy

to misuse this counter mode. If counter block values are ever used for more than one plaintext

with the same key, then the same key stream will be used to encrypt both plaintexts, and the

confidentiality guarantees are voided.

What happens if the encryptor XORs the same key stream with two different plaintexts? Suppose

two plaintext octet sequences P1, P2, P3 and Q1, Q2, Q3 are both encrypted with key stream K1,

K2, K3. The two corresponding ciphertexts are:

If both of these two ciphertext streams are exposed to an attacker, then a catastrophic failure of

confidentiality results, since:

Once the attacker obtains the two plaintexts XORed together, it is relatively straightforward to

separate them. Thus, using any stream cipher, including AES-CTR, to encrypt two plaintexts

under the same key stream leaks the plaintext.

Data forgery is trivial with AES-CTR mode. The demonstration of this attack is similar to the key

stream reuse discussion above. If a known plaintext octet sequence P1, P2, P3 is encrypted with

key stream K1, K2, K3, then the attacker can replace the plaintext with one of its own choosing.

The ciphertext is:

The attacker simply XORs a selected sequence Q1, Q2, Q3 with the ciphertext to obtain:

Which is the same as:

Decryption of the attacker-generated ciphertext will yield exactly what the attacker intended:

 (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

 (Q1 XOR K1), (Q2 XOR K2), (Q3 XOR K3)

 (P1 XOR K1) XOR (Q1 XOR K1) = P1 XOR Q1

 (P2 XOR K2) XOR (Q2 XOR K2) = P2 XOR Q2

 (P3 XOR K3) XOR (Q3 XOR K3) = P3 XOR Q3

 (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

 (Q1 XOR (P1 XOR K1)), (Q2 XOR (P2 XOR K2)), (Q3 XOR (P3 XOR K3))

 ((Q1 XOR P1) XOR K1), ((Q2 XOR P2) XOR K2), ((Q3 XOR P3) XOR K3)

 (Q1 XOR P1), (Q2 XOR P2), (Q3 XOR P3)

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 7

[AES]

[MODES]

[RFC2119]

[RFC4107]

9. References

9.1. Normative References

,

, , , May 2023,

.

,

, ,

, December 2001, .

, , ,

, , March 1997,

.

 and , ,

, , , June 2005,

.

AES-CBC does not provide integrity protection. Thus, an attacker can introduce undetectable

errors if AES-CBC is used without a companion authentication mechanism.

If an attacker is able to strip the authentication and integrity mechanism, then the attacker can

replace it with one of their own creation, even without knowing the plaintext. The usual defense

against such an attack is an Authenticated Encryption with Associated Data (AEAD) algorithm

. Of course, neither AES-CTR nor AES-CBC is an AEAD. Thus, an implementation should

provide integrity protection for the 'kid' field to prevent undetected stripping of the

authentication and integrity mechanism; this prevents an attacker from altering the 'kid' to trick

the recipient into using a different key.

With AES-CBC mode, implementers should perform integrity checks prior to decryption to avoid

padding oracle vulnerabilities .

With the assignment of COSE algorithm identifiers for AES-CTR and AES-CBC in the COSE

Algorithms Registry, an attacker can replace the COSE algorithm identifiers with one of these

identifiers. Then, the attacker might be able to manipulate the ciphertext to learn some of the

plaintext or extract the keying material used for authentication and integrity.

Since AES-CCM and AES-GCM use AES-CTR for encryption, an attacker

can switch the algorithm identifier to AES-CTR and then strip the authentication tag to bypass the

authentication and integrity, allowing the attacker to manipulate the ciphertext.

An attacker can switch the algorithm identifier from AES-GCM to AES-CBC, guessing 16 bytes of

plaintext at a time, and see if the recipient accepts the padding. Padding oracle vulnerabilities

are discussed further in .

[RFC5116]

[Vaudenay]

[RFC3610] [GCMMODE]

[Vaudenay]

National Institute of Standards and Technology (NIST) "Advanced Encryption

Standard (AES)" NIST FIPS 197 DOI 10.6028/NIST.FIPS.197-upd1

<https://doi.org/10.6028/NIST.FIPS.197-upd1>

Dworkin, M. "Recommendation for Block Cipher Modes of Operation: Methods

and Techniques" NIST Special Publication 800-38A DOI 10.6028/NIST.SP.

800-38A <https://doi.org/10.6028/NIST.SP.800-38A>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Bellovin, S. R. Housley "Guidelines for Cryptographic Key Management"

BCP 107 RFC 4107 DOI 10.17487/RFC4107 <https://www.rfc-

editor.org/info/rfc4107>

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 8

https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.SP.800-38A
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4107
https://www.rfc-editor.org/info/rfc4107

[RFC5652]

[RFC8174]

[RFC9052]

[GCMMODE]

[IANA-COSE]

[RFC3610]

[RFC5116]

[SUIT-MANIFEST]

[Vaudenay]

, , , ,

, September 2009, .

, ,

, , , May 2017,

.

,

, , , , August 2022,

.

9.2. Informative References

,

, ,

, November 2007,

.

, ,

.

, , and , ,

, , September 2003,

.

, ,

, , January 2008,

.

, , , , and ,

, ,

, 27 February 2023,

.

,

, , 2002,

.

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI

10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Structures and

Process" STD 96 RFC 9052 DOI 10.17487/RFC9052 <https://

www.rfc-editor.org/info/rfc9052>

Dworkin, M. "Recommendation for Block Cipher Modes of Operation: Galois/

Counter Mode (GCM) and GMAC" NIST Special Publication 800-38D DOI

10.6028/NIST.SP.800-38D <https://doi.org/10.6028/NIST.SP.

800-38D>

IANA "CBOR Object Signing and Encryption (COSE)" <https://www.iana.org/

assignments/cose>

Whiting, D. Housley, R. N. Ferguson "Counter with CBC-MAC (CCM)" RFC

3610 DOI 10.17487/RFC3610 <https://www.rfc-editor.org/info/

rfc3610>

McGrew, D. "An Interface and Algorithms for Authenticated Encryption" RFC

5116 DOI 10.17487/RFC5116 <https://www.rfc-editor.org/info/

rfc5116>

Moran, B. Tschofenig, H. Birkholz, H. Zandberg, K. Ø. Rønningstad "A

Concise Binary Object Representation (CBOR)-based Serialization Format for the

Software Updates for Internet of Things (SUIT) Manifest" Work in Progress

Internet-Draft, draft-ietf-suit-manifest-22 <https://

datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-22>

Vaudenay, S. "Security Flaws Induced by CBC Padding -- Applications to SSL,

IPSEC, WTLS..." EUROCRYPT 2002 <https://www.iacr.org/cryptodb/archive/

2002/EUROCRYPT/2850/2850.pdf>

Acknowledgements

Many thanks to for raising the need for non-AEAD algorithms to support

encryption within the SUIT manifest. Many thanks to , ,

, , , , ,

, , , , and for the review and

thoughtful comments.

David Brown

Ilari Liusvaara Scott Arciszewski John

Preuß Mattsson Laurence Lundblade Paul Wouters Roman Danyliw Sophie Schmieg Stephen

Farrell Carsten Bormann Scott Fluhrer Brendan Moran John Scudder

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 9

https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38D
https://www.iana.org/assignments/cose
https://www.iana.org/assignments/cose
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-22
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-22
https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf

Authors' Addresses

Russ Housley

Vigil Security, LLC

 housley@vigilsec.com Email:

Hannes Tschofenig

 hannes.tschofenig@gmx.net Email:

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 10

mailto:housley@vigilsec.com
mailto:hannes.tschofenig@gmx.net

	RFC 9459
	CBOR Object Signing and Encryption (COSE): AES-CTR and AES-CBC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. AES Modes of Operation
	4. AES Counter Mode
	4.1. AES-CTR COSE Key
	4.2. AES-CTR COSE Algorithm Identifiers

	5. AES Cipher Block Chaining Mode
	5.1. AES-CBC COSE Key
	5.2. AES-CBC COSE Algorithm Identifiers

	6. Implementation Considerations
	7. IANA Considerations
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses

 CBOR Object Signing and Encryption (COSE): AES-CTR and AES-CBC

 Vigil Security, LLC

 housley@vigilsec.com

 hannes.tschofenig@gmx.net

 sec
 cose

 The Concise Binary Object Representation (CBOR) data format is designed
for small code size and small message size. CBOR Object Signing and
Encryption (COSE) is specified in RFC 9052 to provide basic
security services using the CBOR data format. This document specifies the
conventions for using AES-CTR and AES-CBC as content encryption
algorithms with COSE.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Conventions and Terminology

 . AES Modes of Operation

 . AES Counter Mode

 . AES-CTR COSE Key

 . AES-CTR COSE Algorithm Identifiers

 . AES Cipher Block Chaining Mode

 . AES-CBC COSE Key

 . AES-CBC COSE Algorithm Identifiers

 . Implementation Considerations

 . IANA Considerations

 . Security Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 This document specifies the conventions for using AES-CTR and AES-CBC
as content encryption algorithms with the CBOR Object Signing and Encryption
(COSE) syntax. Today, encryption with COSE uses Authenticated
Encryption with Associated Data (AEAD) algorithms , which provide
both confidentiality and integrity protection. However, there are situations
where another mechanism, such as a digital signature, is used to provide
integrity. In these cases, an AEAD algorithm is not needed. The software
manifest being defined by the IETF SUIT WG is one
example where a digital signature is always present.

 Conventions and Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 AES Modes of Operation
 NIST has defined several modes of operation for the Advanced Encryption
Standard . AES supports three key sizes: 128 bits,
192 bits, and 256 bits. AES has a block size of 128 bits (16 octets).
Each of these modes has different characteristics. The modes include:
CBC (Cipher Block Chaining), CFB (Cipher FeedBack), OFB (Output FeedBack),
and CTR (Counter).
 Only AES Counter (AES-CTR) mode and AES Cipher Block Chaining (AES-CBC) are
discussed in this document.

 AES Counter Mode
 When AES-CTR is used as a COSE content encryption algorithm, the
encryptor generates a unique value that is communicated to the
decryptor. This value is called an "Initialization Vector" (or "IV") in this
document. The same IV and AES key combination MUST NOT be used more
than once. The encryptor can generate the IV in any manner that ensures
the same IV value is not used more than once with the same AES key.
 When using AES-CTR, each AES encrypt operation generates 128 bits of key
stream. AES-CTR encryption is the XOR of the key stream with the
plaintext. AES-CTR decryption is the XOR of the key stream with the
ciphertext. If the generated key stream is longer than the plaintext or
ciphertext, the extra key stream bits are simply discarded. For this reason,
AES-CTR does not require the plaintext to be padded to a multiple of the
 block size.
 AES-CTR has many properties that make it an attractive COSE content encryption
algorithm. AES-CTR uses the AES block cipher to create a stream cipher. Data
is encrypted and decrypted by XORing with the key stream produced by AES
 encrypting sequential IV block values, called "counter blocks", where:

 The first
 block of the key stream is the AES encryption of the IV.
 The second block of
 the key stream is the AES encryption of (IV + 1) mod 2 128.
 The third block of
the key stream is the AES encryption of (IV + 2) mod 2 128, and so on.

 AES-CTR
is easy to implement, can be pipelined and parallelized, and supports key stream precomputation. Sending of the IV is the only
source of expansion because the plaintext and ciphertext are the same size.
 When used correctly, AES-CTR provides a high level of confidentiality.
Unfortunately, AES-CTR is easy to use incorrectly. Being a stream
cipher, reuse of the IV with the same key is catastrophic. An IV
collision immediately leaks information about the plaintext. For
this reason, it is inappropriate to use AES-CTR with static
keys. Extraordinary measures would be needed to prevent reuse of an
IV value with the static key across power cycles. To be safe,
implementations MUST use fresh keys with AES-CTR.
 AES-CTR keys may be obtained either from a key structure or from a recipient
structure. Implementations encrypting and decrypting MUST validate that the
key type, key length, and algorithm are correct and appropriate for the
entities involved.
 With AES-CTR, it is trivial to use a valid ciphertext to forge other
(valid to the decryptor) ciphertexts. Thus, it is equally catastrophic to
use AES-CTR without a companion authentication and integrity
mechanism. Implementations MUST use AES-CTR in conjunction with an
authentication and integrity mechanism, such as a digital signature.
 The instructions in are followed for AES-CTR.
Since AES-CTR cannot provide integrity protection for external additional
authenticated data, the decryptor MUST ensure that no external additional
 authenticated data was supplied. See .
 The 'protected' header MUST be a zero-length byte string.

 AES-CTR COSE Key
 When using a COSE key for the AES-CTR algorithm, the following checks are made:

 The 'kty' field MUST be present, and it MUST be 'Symmetric'.
 If the 'alg' field is present, it MUST match the AES-CTR algorithm being used.
 If the 'key_ops' field is present, it MUST include 'encrypt' when encrypting.
 If the 'key_ops' field is present, it MUST include 'decrypt' when decrypting.

 AES-CTR COSE Algorithm Identifiers
 The following table defines the COSE AES-CTR algorithm values. Note that
these algorithms are being registered as "Deprecated" to avoid accidental
use without a companion integrity protection mechanism.

 Name
 Value
 Key Size
 Description
 Recommended

 A128CTR
 -65534
 128
 AES-CTR w/ 128-bit key
 Deprecated

 A192CTR
 -65533
 192
 AES-CTR w/ 192-bit key
 Deprecated

 A256CTR
 -65532
 256
 AES-CTR w/ 256-bit key
 Deprecated

 AES Cipher Block Chaining Mode
 AES-CBC mode requires a 16-octet IV. Use of a
randomly or pseudorandomly generated IV ensures that the encryption of the
same plaintext will yield different ciphertext.
 AES-CBC performs an XOR of the IV with the first plaintext block before it
is encrypted. For successive blocks, AES-CBC performs an XOR of the previous
ciphertext block with the current plaintext before it is encrypted.
 AES-CBC requires padding of the plaintext; the padding algorithm specified
in MUST be used prior to encrypting the
plaintext. This padding algorithm allows the decryptor to unambiguously
remove the padding.
 The simplicity of AES-CBC makes it an attractive COSE content encryption
algorithm. The need to carry an IV and the need for padding lead to an
increase in the overhead (when compared to AES-CTR). AES-CBC is much safer
for use with static keys than AES-CTR. That said, as described in ,
the use of automated key management to generate fresh keys is greatly
preferred.
 AES-CBC does not provide integrity protection. Thus, an attacker
can introduce undetectable errors if AES-CBC is used without a companion
authentication and integrity mechanism. Implementations MUST use AES-CBC
in conjunction with an authentication and integrity mechanism, such as a
digital signature.
 The instructions in are followed for AES-CBC.
Since AES-CBC cannot provide integrity protection for external additional
authenticated data, the decryptor MUST ensure that no external additional
 authenticated data was supplied. See .
 The 'protected' header MUST be a zero-length byte string.

 AES-CBC COSE Key
 When using a COSE key for the AES-CBC algorithm, the following checks are made:

 The 'kty' field MUST be present, and it MUST be 'Symmetric'.
 If the 'alg' field is present, it MUST match the AES-CBC algorithm being used.
 If the 'key_ops' field is present, it MUST include 'encrypt' when encrypting.
 If the 'key_ops' field is present, it MUST include 'decrypt' when decrypting.

 AES-CBC COSE Algorithm Identifiers
 The following table defines the COSE AES-CBC algorithm values. Note that
these algorithms are being registered as "Deprecated" to avoid accidental
use without a companion integrity protection mechanism.

 Name
 Value
 Key Size
 Description
 Recommended

 A128CBC
 -65531
 128
 AES-CBC w/ 128-bit key
 Deprecated

 A192CBC
 -65530
 192
 AES-CBC w/ 192-bit key
 Deprecated

 A256CBC
 -65529
 256
 AES-CBC w/ 256-bit key
 Deprecated

 Implementation Considerations
 COSE libraries that support either AES-CTR or AES-CBC and accept
Additional Authenticated Data (AAD) as input MUST return an
error if one of these non-AEAD content encryption algorithms is
selected. This ensures that a caller does not expect the AAD
to be protected when the cryptographic algorithm is unable to do so.

 IANA Considerations
 IANA has registered six COSE algorithm identifiers for AES-CTR and
AES-CBC in the "COSE Algorithms" registry .
 The information for the six COSE algorithm identifiers is provided in
Sections and . Also, for all six entries, the
"Capabilities" column contains "[kty]", the "Change Controller"
column contains "IETF", and the "Reference" column contains
a reference to this document.

 Security Considerations
 This document specifies AES-CTR and AES-CBC for COSE, which are not
AEAD ciphers. The use of the ciphers is limited to special use cases, such as firmware encryption, where integrity and authentication is provided by another mechanism.
 Since AES has a 128-bit block size, regardless of the mode
employed, the ciphertext generated by AES encryption becomes
distinguishable from random values after 2 64 blocks are encrypted
with a single key. Implementations should change the key before
reaching this limit.
 To avoid cross-protocol concerns, implementations MUST NOT use the same
keying material with more than one mode. For example, the same keying
material must not be used with AES-CTR and AES-CBC.
 There are fairly generic precomputation attacks against all block cipher
modes that allow a meet-in-the-middle attack against the key. These attacks
require the creation and searching of huge tables of ciphertext associated
with known plaintext and known keys. Assuming that the memory and processor
resources are available for a precomputation attack, then the theoretical
strength of AES-CTR and AES-CBC is limited to 2 (n/2) bits, where n is the
number of bits in the key. The use of long keys is the best countermeasure
to precomputation attacks.
 When used properly, AES-CTR mode provides strong confidentiality. Unfortunately,
it is very easy to misuse this counter mode. If counter block values are ever
used for more than one plaintext with the same key, then the same key stream
will be used to encrypt both plaintexts, and the confidentiality guarantees are
voided.
 What happens if the encryptor XORs the same key stream with two different
plaintexts? Suppose two plaintext octet sequences P1, P2, P3 and Q1, Q2, Q3
are both encrypted with key stream K1, K2, K3. The two corresponding
ciphertexts are:

 (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

 (Q1 XOR K1), (Q2 XOR K2), (Q3 XOR K3)

 If both of these two ciphertext streams are exposed to an attacker, then a
catastrophic failure of confidentiality results, since:

 (P1 XOR K1) XOR (Q1 XOR K1) = P1 XOR Q1
 (P2 XOR K2) XOR (Q2 XOR K2) = P2 XOR Q2
 (P3 XOR K3) XOR (Q3 XOR K3) = P3 XOR Q3

 Once the attacker obtains the two plaintexts XORed together, it is relatively
straightforward to separate them. Thus, using any stream cipher, including
AES-CTR, to encrypt two plaintexts under the same key stream leaks the
plaintext.
 Data forgery is trivial with AES-CTR mode. The demonstration of this attack
is similar to the key stream reuse discussion above. If a known plaintext
octet sequence P1, P2, P3 is encrypted with key stream K1, K2, K3, then the
attacker can replace the plaintext with one of its own choosing. The
ciphertext is:

 (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

 The attacker simply XORs a selected sequence Q1, Q2, Q3 with the
ciphertext to obtain:

 (Q1 XOR (P1 XOR K1)), (Q2 XOR (P2 XOR K2)), (Q3 XOR (P3 XOR K3))

 Which is the same as:

 ((Q1 XOR P1) XOR K1), ((Q2 XOR P2) XOR K2), ((Q3 XOR P3) XOR K3)

 Decryption of the attacker-generated ciphertext will yield exactly what
the attacker intended:

 (Q1 XOR P1), (Q2 XOR P2), (Q3 XOR P3)

 AES-CBC does not provide integrity protection. Thus, an attacker
can introduce undetectable errors if AES-CBC is used without a companion
 authentication mechanism.
 If an attacker is able to strip the authentication and integrity mechanism,
then the attacker can replace it with one of their own creation, even
without knowing the plaintext. The usual defense against such an attack is
an Authenticated Encryption with Associated Data (AEAD) algorithm . Of course, neither AES-CTR nor AES-CBC is an AEAD. Thus,
an implementation should provide integrity protection for the 'kid' field
to prevent undetected stripping of the authentication and integrity
mechanism; this prevents an attacker from altering the 'kid' to trick the
recipient into using a different key.
 With AES-CBC mode, implementers should perform integrity checks prior to
decryption to avoid padding oracle vulnerabilities .
 With the assignment of COSE algorithm identifiers for AES-CTR and
AES-CBC in the COSE Algorithms Registry, an attacker can replace the
COSE algorithm identifiers with one of these identifiers. Then, the
attacker might be able to manipulate the ciphertext to learn some of the
plaintext or extract the keying material used for authentication and
integrity.
 Since AES-CCM and AES-GCM use AES-CTR for encryption,
an attacker can switch the algorithm identifier to AES-CTR and then strip the
authentication tag to bypass the authentication and integrity, allowing the
 attacker to manipulate the ciphertext.
 An attacker can switch the algorithm identifier from AES-GCM to AES-CBC,
guessing 16 bytes of plaintext at a time, and see if the recipient
accepts the padding. Padding oracle vulnerabilities are discussed
further in .

 References

 Normative References

 Advanced Encryption Standard (AES)

 National Institute of Standards and Technology (NIST)

 Recommendation for Block Cipher Modes of Operation: Methods and Techniques

 National Institute of Standards and Technology (NIST)

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Guidelines for Cryptographic Key Management

 The question often arises of whether a given security system requires some form of automated key management, or whether manual keying is sufficient. This memo provides guidelines for making such decisions. When symmetric cryptographic mechanisms are used in a protocol, the presumption is that automated key management is generally but not always needed. If manual keying is proposed, the burden of proving that automated key management is not required falls to the proposer. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Cryptographic Message Syntax (CMS)

 This document describes the Cryptographic Message Syntax (CMS). This syntax is used to digitally sign, digest, authenticate, or encrypt arbitrary message content. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 CBOR Object Signing and Encryption (COSE): Structures and Process

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need to be able to define basic security services for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.
 This document, along with RFC 9053, obsoletes RFC 8152.

 Informative References

 Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC

 National Institute of Standards and Technology (NIST)

 CBOR Object Signing and Encryption (COSE)

 IANA

 Counter with CBC-MAC (CCM)

 Counter with CBC-MAC (CCM) is a generic authenticated encryption block cipher mode. CCM is defined for use with 128-bit block ciphers, such as the Advanced Encryption Standard (AES).

 An Interface and Algorithms for Authenticated Encryption

 This document defines algorithms for Authenticated Encryption with Associated Data (AEAD), and defines a uniform interface and a registry for such algorithms. The interface and registry can be used as an application-independent set of cryptoalgorithm suites. This approach provides advantages in efficiency and security, and promotes the reuse of crypto implementations. [STANDARDS-TRACK]

 A Concise Binary Object Representation (CBOR)-based Serialization Format for the Software Updates for Internet of Things (SUIT) Manifest

 Arm Limited

 Arm Limited

 Fraunhofer SIT

 Inria

 Nordic Semiconductor

 Work in Progress

 Security Flaws Induced by CBC Padding -- Applications to SSL, IPSEC, WTLS...

 Swiss Federal Institute of Technology (EPFL)

 Acknowledgements
 Many thanks to for raising the need for non-AEAD algorithms
to support encryption within the SUIT manifest. Many thanks to
 ,
 ,
 ,
 ,
 ,
 ,
 , , , , , and

for the review and thoughtful comments.

 Authors' Addresses

 Vigil Security, LLC

 housley@vigilsec.com

 hannes.tschofenig@gmx.net

