
RFC 9459

CBOR Object Signing and Encryption (COSE): AES-

CTR and AES-CBC

Abstract

The Concise Binary Object Representation (CBOR) data format is designed for small code size and

small message size. CBOR Object Signing and Encryption (COSE) is specified in RFC 9052 to

provide basic security services using the CBOR data format. This document specifies the

conventions for using AES-CTR and AES-CBC as content encryption algorithms with COSE.
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1. Introduction 

This document specifies the conventions for using AES-CTR and AES-CBC as content encryption

algorithms with the CBOR Object Signing and Encryption (COSE)  syntax. Today,

encryption with COSE uses Authenticated Encryption with Associated Data (AEAD) algorithms 

, which provide both confidentiality and integrity protection. However, there are

situations where another mechanism, such as a digital signature, is used to provide integrity. In

these cases, an AEAD algorithm is not needed. The software manifest being defined by the IETF

SUIT WG  is one example where a digital signature is always present.

[RFC9052]

[RFC5116]

[SUIT-MANIFEST]
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2. Conventions and Terminology 

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14   when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. AES Modes of Operation 

NIST has defined several modes of operation for the Advanced Encryption Standard  

. AES supports three key sizes: 128 bits, 192 bits, and 256 bits. AES has a block size of 128

bits (16 octets). Each of these modes has different characteristics. The modes include: CBC (Cipher

Block Chaining), CFB (Cipher FeedBack), OFB (Output FeedBack), and CTR (Counter).

Only AES Counter (AES-CTR) mode and AES Cipher Block Chaining (AES-CBC) are discussed in

this document.

[AES]

[MODES]

4. AES Counter Mode 

When AES-CTR is used as a COSE content encryption algorithm, the encryptor generates a unique

value that is communicated to the decryptor. This value is called an "Initialization Vector" (or

"IV") in this document. The same IV and AES key combination  be used more than once.

The encryptor can generate the IV in any manner that ensures the same IV value is not used

more than once with the same AES key.

When using AES-CTR, each AES encrypt operation generates 128 bits of key stream. AES-CTR

encryption is the XOR of the key stream with the plaintext. AES-CTR decryption is the XOR of the

key stream with the ciphertext. If the generated key stream is longer than the plaintext or

ciphertext, the extra key stream bits are simply discarded. For this reason, AES-CTR does not

require the plaintext to be padded to a multiple of the block size.

AES-CTR has many properties that make it an attractive COSE content encryption algorithm. AES-

CTR uses the AES block cipher to create a stream cipher. Data is encrypted and decrypted by

XORing with the key stream produced by AES encrypting sequential IV block values, called

"counter blocks", where:

The first block of the key stream is the AES encryption of the IV. 

The second block of the key stream is the AES encryption of (IV + 1) mod 2
128

. 

The third block of the key stream is the AES encryption of (IV + 2) mod 2
128

, and so on. 

AES-CTR is easy to implement, can be pipelined and parallelized, and supports key stream

precomputation. Sending of the IV is the only source of expansion because the plaintext and

ciphertext are the same size.

MUST NOT

• 

• 

• 
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When used correctly, AES-CTR provides a high level of confidentiality. Unfortunately, AES-CTR is

easy to use incorrectly. Being a stream cipher, reuse of the IV with the same key is catastrophic.

An IV collision immediately leaks information about the plaintext. For this reason, it is

inappropriate to use AES-CTR with static keys. Extraordinary measures would be needed to

prevent reuse of an IV value with the static key across power cycles. To be safe, implementations 

 use fresh keys with AES-CTR.

AES-CTR keys may be obtained either from a key structure or from a recipient structure.

Implementations encrypting and decrypting  validate that the key type, key length, and

algorithm are correct and appropriate for the entities involved.

With AES-CTR, it is trivial to use a valid ciphertext to forge other (valid to the decryptor)

ciphertexts. Thus, it is equally catastrophic to use AES-CTR without a companion authentication

and integrity mechanism. Implementations  use AES-CTR in conjunction with an

authentication and integrity mechanism, such as a digital signature.

The instructions in  are followed for AES-CTR. Since AES-CTR cannot

provide integrity protection for external additional authenticated data, the decryptor 

ensure that no external additional authenticated data was supplied. See Section 6.

The 'protected' header  be a zero-length byte string.

MUST

MUST

MUST

Section 5.4 of [RFC9052]

MUST

MUST

4.1. AES-CTR COSE Key 

When using a COSE key for the AES-CTR algorithm, the following checks are made:

The 'kty' field  be present, and it  be 'Symmetric'. 

If the 'alg' field is present, it  match the AES-CTR algorithm being used. 

If the 'key_ops' field is present, it  include 'encrypt' when encrypting. 

If the 'key_ops' field is present, it  include 'decrypt' when decrypting. 

• MUST MUST

• MUST

• MUST

• MUST

4.2. AES-CTR COSE Algorithm Identifiers 

The following table defines the COSE AES-CTR algorithm values. Note that these algorithms are

being registered as "Deprecated" to avoid accidental use without a companion integrity

protection mechanism.

Name Value Key Size Description Recommended

A128CTR -65534 128 AES-CTR w/ 128-bit key Deprecated

A192CTR -65533 192 AES-CTR w/ 192-bit key Deprecated

A256CTR -65532 256 AES-CTR w/ 256-bit key Deprecated

Table 1

RFC 9459 AES-CTR and AES-CBC with COSE September 2023

Housley & Tschofenig Standards Track Page 4

https://rfc-editor.org/rfc/rfc9052#section-5.4


5. AES Cipher Block Chaining Mode 

AES-CBC mode requires a 16-octet IV. Use of a randomly or pseudorandomly generated IV

ensures that the encryption of the same plaintext will yield different ciphertext.

AES-CBC performs an XOR of the IV with the first plaintext block before it is encrypted. For

successive blocks, AES-CBC performs an XOR of the previous ciphertext block with the current

plaintext before it is encrypted.

AES-CBC requires padding of the plaintext; the padding algorithm specified in 

  be used prior to encrypting the plaintext. This padding algorithm allows the

decryptor to unambiguously remove the padding.

The simplicity of AES-CBC makes it an attractive COSE content encryption algorithm. The need to

carry an IV and the need for padding lead to an increase in the overhead (when compared to

AES-CTR). AES-CBC is much safer for use with static keys than AES-CTR. That said, as described in

, the use of automated key management to generate fresh keys is greatly preferred.

AES-CBC does not provide integrity protection. Thus, an attacker can introduce undetectable

errors if AES-CBC is used without a companion authentication and integrity mechanism.

Implementations  use AES-CBC in conjunction with an authentication and integrity

mechanism, such as a digital signature.

The instructions in  are followed for AES-CBC. Since AES-CBC cannot

provide integrity protection for external additional authenticated data, the decryptor 

ensure that no external additional authenticated data was supplied. See Section 6.

The 'protected' header  be a zero-length byte string.

Section 6.3 of

[RFC5652] MUST

[RFC4107]

MUST

Section 5.4 of [RFC9052]

MUST

MUST

5.1. AES-CBC COSE Key 

When using a COSE key for the AES-CBC algorithm, the following checks are made:

The 'kty' field  be present, and it  be 'Symmetric'. 

If the 'alg' field is present, it  match the AES-CBC algorithm being used. 

If the 'key_ops' field is present, it  include 'encrypt' when encrypting. 

If the 'key_ops' field is present, it  include 'decrypt' when decrypting. 

• MUST MUST

• MUST

• MUST

• MUST

5.2. AES-CBC COSE Algorithm Identifiers 

The following table defines the COSE AES-CBC algorithm values. Note that these algorithms are

being registered as "Deprecated" to avoid accidental use without a companion integrity

protection mechanism.
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Name Value Key Size Description Recommended

A128CBC -65531 128 AES-CBC w/ 128-bit key Deprecated

A192CBC -65530 192 AES-CBC w/ 192-bit key Deprecated

A256CBC -65529 256 AES-CBC w/ 256-bit key Deprecated

Table 2

6. Implementation Considerations 

COSE libraries that support either AES-CTR or AES-CBC and accept Additional Authenticated Data

(AAD) as input  return an error if one of these non-AEAD content encryption algorithms is

selected. This ensures that a caller does not expect the AAD to be protected when the

cryptographic algorithm is unable to do so.

MUST

7. IANA Considerations 

IANA has registered six COSE algorithm identifiers for AES-CTR and AES-CBC in the "COSE

Algorithms" registry .

The information for the six COSE algorithm identifiers is provided in Sections 4.2 and 5.2. Also,

for all six entries, the "Capabilities" column contains "[kty]", the "Change Controller" column

contains "IETF", and the "Reference" column contains a reference to this document.

[IANA-COSE]

8. Security Considerations 

This document specifies AES-CTR and AES-CBC for COSE, which are not AEAD ciphers. The use of

the ciphers is limited to special use cases, such as firmware encryption, where integrity and

authentication is provided by another mechanism.

Since AES has a 128-bit block size, regardless of the mode employed, the ciphertext generated by

AES encryption becomes distinguishable from random values after 2
64

 blocks are encrypted with

a single key. Implementations should change the key before reaching this limit.

To avoid cross-protocol concerns, implementations  use the same keying material with

more than one mode. For example, the same keying material must not be used with AES-CTR and

AES-CBC.

There are fairly generic precomputation attacks against all block cipher modes that allow a meet-

in-the-middle attack against the key. These attacks require the creation and searching of huge

tables of ciphertext associated with known plaintext and known keys. Assuming that the

memory and processor resources are available for a precomputation attack, then the theoretical

strength of AES-CTR and AES-CBC is limited to 2
(n/2)

 bits, where n is the number of bits in the key.

The use of long keys is the best countermeasure to precomputation attacks.

MUST NOT
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When used properly, AES-CTR mode provides strong confidentiality. Unfortunately, it is very easy

to misuse this counter mode. If counter block values are ever used for more than one plaintext

with the same key, then the same key stream will be used to encrypt both plaintexts, and the

confidentiality guarantees are voided.

What happens if the encryptor XORs the same key stream with two different plaintexts? Suppose

two plaintext octet sequences P1, P2, P3 and Q1, Q2, Q3 are both encrypted with key stream K1,

K2, K3. The two corresponding ciphertexts are:

If both of these two ciphertext streams are exposed to an attacker, then a catastrophic failure of

confidentiality results, since:

Once the attacker obtains the two plaintexts XORed together, it is relatively straightforward to

separate them. Thus, using any stream cipher, including AES-CTR, to encrypt two plaintexts

under the same key stream leaks the plaintext.

Data forgery is trivial with AES-CTR mode. The demonstration of this attack is similar to the key

stream reuse discussion above. If a known plaintext octet sequence P1, P2, P3 is encrypted with

key stream K1, K2, K3, then the attacker can replace the plaintext with one of its own choosing.

The ciphertext is:

The attacker simply XORs a selected sequence Q1, Q2, Q3 with the ciphertext to obtain:

Which is the same as:

Decryption of the attacker-generated ciphertext will yield exactly what the attacker intended:

   (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

   (Q1 XOR K1), (Q2 XOR K2), (Q3 XOR K3)

   (P1 XOR K1) XOR (Q1 XOR K1) = P1 XOR Q1

   (P2 XOR K2) XOR (Q2 XOR K2) = P2 XOR Q2

   (P3 XOR K3) XOR (Q3 XOR K3) = P3 XOR Q3

   (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

   (Q1 XOR (P1 XOR K1)), (Q2 XOR (P2 XOR K2)), (Q3 XOR (P3 XOR K3))

   ((Q1 XOR P1) XOR K1), ((Q2 XOR P2) XOR K2), ((Q3 XOR P3) XOR K3)

   (Q1 XOR P1), (Q2 XOR P2), (Q3 XOR P3)
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       This document specifies the conventions for using AES-CTR and AES-CBC 
as content encryption algorithms with the CBOR Object Signing and Encryption
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Encryption with Associated Data (AEAD) algorithms  , which provide
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where another mechanism, such as a digital signature, is used to provide
integrity.  In these cases, an AEAD algorithm is not needed.  The software
manifest being defined by the IETF SUIT WG   is one
example where a digital signature is always present.
    
     
       Conventions and Terminology
       
    The key words " MUST", " MUST NOT",
    " REQUIRED", " SHALL", " SHALL NOT",
    " SHOULD", " SHOULD NOT",
    " RECOMMENDED", " NOT RECOMMENDED",
    " MAY", and " OPTIONAL" in this document are to be
    interpreted as described in BCP 14     when, and only when, they appear in all capitals, as
    shown here.
      
    
     
       AES Modes of Operation
       NIST has defined several modes of operation for the Advanced Encryption
Standard    .  AES supports three key sizes: 128 bits,
192 bits, and 256 bits.  AES has a block size of 128 bits (16 octets).
Each of these modes has different characteristics.  The modes include:
CBC (Cipher Block Chaining), CFB (Cipher FeedBack), OFB (Output FeedBack),
and CTR (Counter).
       Only AES Counter (AES-CTR) mode and AES Cipher Block Chaining (AES-CBC) are
discussed in this document.
    
     
       AES Counter Mode
       When AES-CTR is used as a COSE content encryption algorithm, the
encryptor generates a unique value that is communicated to the
decryptor.  This value is called an "Initialization Vector" (or "IV") in this
document.  The same IV and AES key combination  MUST NOT be used more
than once.  The encryptor can generate the IV in any manner that ensures
the same IV value is not used more than once with the same AES key.
       When using AES-CTR, each AES encrypt operation generates 128 bits of key
stream.  AES-CTR encryption is the XOR of the key stream with the
plaintext.  AES-CTR decryption is the XOR of the key stream with the
ciphertext.  If the generated key stream is longer than the plaintext or
ciphertext, the extra key stream bits are simply discarded.  For this reason,
AES-CTR does not require the plaintext to be padded to a multiple of the
      block size.
       AES-CTR has many properties that make it an attractive COSE content encryption
algorithm.  AES-CTR uses the AES block cipher to create a stream cipher.  Data
is encrypted and decrypted by XORing with the key stream produced by AES
      encrypting sequential IV block values, called "counter blocks", where:
       
         The first
      block of the key stream is the AES encryption of the IV.
         The second block of
      the key stream is the AES encryption of (IV + 1) mod 2 128.
         The third block of
the key stream is the AES encryption of (IV + 2) mod 2 128, and so on.
      
       AES-CTR
is easy to implement, can be pipelined and parallelized, and supports key stream precomputation.  Sending of the IV is the only
source of expansion because the plaintext and ciphertext are the same size.
       When used correctly, AES-CTR provides a high level of confidentiality.
Unfortunately, AES-CTR is easy to use incorrectly.  Being a stream
cipher, reuse of the IV with the same key is catastrophic.  An IV
collision immediately leaks information about the plaintext.  For
this reason, it is inappropriate to use AES-CTR with static
keys.  Extraordinary measures would be needed to prevent reuse of an
IV value with the static key across power cycles.  To be safe,
implementations  MUST use fresh keys with AES-CTR.
       AES-CTR keys may be obtained either from a key structure or from a recipient
structure.  Implementations encrypting and decrypting  MUST validate that the
key type, key length, and algorithm are correct and appropriate for the
entities involved.
       With AES-CTR, it is trivial to use a valid ciphertext to forge other
(valid to the decryptor) ciphertexts.  Thus, it is equally catastrophic to
use AES-CTR without a companion authentication and integrity
mechanism.  Implementations  MUST use AES-CTR in conjunction with an
authentication and integrity mechanism, such as a digital signature.
       The instructions in   are followed for AES-CTR.
Since AES-CTR cannot provide integrity protection for external additional
authenticated data, the decryptor  MUST ensure that no external additional
      authenticated data was supplied.  See  .
       The 'protected' header  MUST be a zero-length byte string.
       
         AES-CTR COSE Key
         When using a COSE key for the AES-CTR algorithm, the following checks are made:
         
           The 'kty' field  MUST be present, and it  MUST be 'Symmetric'.
           If the 'alg' field is present, it  MUST match the AES-CTR algorithm being used.
           If the 'key_ops' field is present, it  MUST include 'encrypt' when encrypting.
           If the 'key_ops' field is present, it  MUST include 'decrypt' when decrypting.
        
      
       
         AES-CTR COSE Algorithm Identifiers
         The following table defines the COSE AES-CTR algorithm values.  Note that
these algorithms are being registered as "Deprecated" to avoid accidental
use without a companion integrity protection mechanism.
         
           
             
               Name
               Value
               Key Size
               Description
               Recommended
            
          
           
             
               A128CTR
               -65534
               128
               AES-CTR w/ 128-bit key
               Deprecated
            
             
               A192CTR
               -65533
               192
               AES-CTR w/ 192-bit key
               Deprecated
            
             
               A256CTR
               -65532
               256
               AES-CTR w/ 256-bit key
               Deprecated
            
          
        
      
    
     
       AES Cipher Block Chaining Mode
       AES-CBC mode requires a 16-octet IV.  Use of a
randomly or pseudorandomly generated IV ensures that the encryption of the
same plaintext will yield different ciphertext.
       AES-CBC performs an XOR of the IV with the first plaintext block before it
is encrypted.  For successive blocks, AES-CBC performs an XOR of the previous
ciphertext block with the current plaintext before it is encrypted.
       AES-CBC requires padding of the plaintext; the padding algorithm specified
in    MUST be used prior to encrypting the
plaintext.  This padding algorithm allows the decryptor to unambiguously
remove the padding.
       The simplicity of AES-CBC makes it an attractive COSE content encryption
algorithm.  The need to carry an IV and the need for padding lead to an
increase in the overhead (when compared to AES-CTR).  AES-CBC is much safer
for use with static keys than AES-CTR.  That said, as described in  ,
the use of automated key management to generate fresh keys is greatly
preferred.
       AES-CBC does not provide integrity protection.  Thus, an attacker
can introduce undetectable errors if AES-CBC is used without a companion
authentication and integrity mechanism.  Implementations  MUST use AES-CBC
in conjunction with an authentication and integrity mechanism, such as a
digital signature.
       The instructions in   are followed for AES-CBC.
Since AES-CBC cannot provide integrity protection for external additional
authenticated data, the decryptor  MUST ensure that no external additional
      authenticated data was supplied.  See  .
       The 'protected' header  MUST be a zero-length byte string.
       
         AES-CBC COSE Key
         When using a COSE key for the AES-CBC algorithm, the following checks are made:
         
           The 'kty' field  MUST be present, and it  MUST be 'Symmetric'.
           If the 'alg' field is present, it  MUST match the AES-CBC algorithm being used.
           If the 'key_ops' field is present, it  MUST include 'encrypt' when encrypting.
           If the 'key_ops' field is present, it  MUST include 'decrypt' when decrypting.
        
      
       
         AES-CBC COSE Algorithm Identifiers
         The following table defines the COSE AES-CBC algorithm values. Note that
these algorithms are being registered as "Deprecated" to avoid accidental
use without a companion integrity protection mechanism.
         
           
             
               Name
               Value
               Key Size
               Description
               Recommended
            
          
           
             
               A128CBC
               -65531
               128
               AES-CBC w/ 128-bit key
               Deprecated
            
             
               A192CBC
               -65530
               192
               AES-CBC w/ 192-bit key
               Deprecated
            
             
               A256CBC
               -65529
               256
               AES-CBC w/ 256-bit key
               Deprecated
            
          
        
      
    
     
       Implementation Considerations
       COSE libraries that support either AES-CTR or AES-CBC and accept
Additional Authenticated Data (AAD) as input  MUST return an
error if one of these non-AEAD content encryption algorithms is
selected.  This ensures that a caller does not expect the AAD
to be protected when the cryptographic algorithm is unable to do so.
    
     
       IANA Considerations
       IANA has registered six COSE algorithm identifiers for AES-CTR and
AES-CBC in the "COSE Algorithms" registry  .
       The information for the six COSE algorithm identifiers is provided in
Sections   and  .  Also, for all six entries, the
"Capabilities" column contains "[kty]", the "Change Controller"
column contains "IETF", and the "Reference" column contains
a reference to this document.
    
     
       Security Considerations
       This document specifies AES-CTR and AES-CBC for COSE, which are not
AEAD ciphers.  The use of the ciphers is limited to special use cases, such as firmware encryption, where integrity and authentication is provided by another mechanism.
       Since AES has a 128-bit block size, regardless of the mode
employed, the ciphertext generated by AES encryption becomes
distinguishable from random values after 2 64 blocks are encrypted
with a single key.  Implementations should change the key before
reaching this limit.
       To avoid cross-protocol concerns, implementations  MUST NOT use the same
keying material with more than one mode.  For example, the same keying
material must not be used with AES-CTR and AES-CBC.
       There are fairly generic precomputation attacks against all block cipher
modes that allow a meet-in-the-middle attack against the key.  These attacks
require the creation and searching of huge tables of ciphertext associated
with known plaintext and known keys.  Assuming that the memory and processor
resources are available for a precomputation attack, then the theoretical
strength of AES-CTR and AES-CBC is limited to 2 (n/2) bits, where n is the
number of bits in the key.  The use of long keys is the best countermeasure
to precomputation attacks.
       When used properly, AES-CTR mode provides strong confidentiality. Unfortunately,
it is very easy to misuse this counter mode.  If counter block values are ever
used for more than one plaintext with the same key, then the same key stream
will be used to encrypt both plaintexts, and the confidentiality guarantees are
voided.
       What happens if the encryptor XORs the same key stream with two different
plaintexts? Suppose two plaintext octet sequences P1, P2, P3 and Q1, Q2, Q3
are both encrypted with key stream K1, K2, K3. The two corresponding
ciphertexts are:
       
   (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

   (Q1 XOR K1), (Q2 XOR K2), (Q3 XOR K3)

       If both of these two ciphertext streams are exposed to an attacker, then a
catastrophic failure of confidentiality results, since:
       
   (P1 XOR K1) XOR (Q1 XOR K1) = P1 XOR Q1
   (P2 XOR K2) XOR (Q2 XOR K2) = P2 XOR Q2
   (P3 XOR K3) XOR (Q3 XOR K3) = P3 XOR Q3

       Once the attacker obtains the two plaintexts XORed together, it is relatively
straightforward to separate them.  Thus, using any stream cipher, including
AES-CTR, to encrypt two plaintexts under the same key stream leaks the
plaintext.
       Data forgery is trivial with AES-CTR mode. The demonstration of this attack
is similar to the key stream reuse discussion above.  If a known plaintext
octet sequence P1, P2, P3 is encrypted with key stream K1, K2, K3, then the
attacker can replace the plaintext with one of its own choosing.  The
ciphertext is:
       
   (P1 XOR K1), (P2 XOR K2), (P3 XOR K3)

       The attacker simply XORs a selected sequence Q1, Q2, Q3 with the
ciphertext to obtain:
       
   (Q1 XOR (P1 XOR K1)), (Q2 XOR (P2 XOR K2)), (Q3 XOR (P3 XOR K3))

       Which is the same as:
       
   ((Q1 XOR P1) XOR K1), ((Q2 XOR P2) XOR K2), ((Q3 XOR P3) XOR K3)

       Decryption of the attacker-generated ciphertext will yield exactly what
the attacker intended:
       
   (Q1 XOR P1), (Q2 XOR P2), (Q3 XOR P3)

       AES-CBC does not provide integrity protection.  Thus, an attacker
can introduce undetectable errors if AES-CBC is used without a companion
      authentication mechanism.
       If an attacker is able to strip the authentication and integrity mechanism,
then the attacker can replace it with one of their own creation, even
without knowing the plaintext.  The usual defense against such an attack is
an Authenticated Encryption with Associated Data (AEAD) algorithm  .  Of course, neither AES-CTR nor AES-CBC is an AEAD.  Thus,
an implementation should provide integrity protection for the 'kid' field
to prevent undetected stripping of the authentication and integrity
mechanism; this prevents an attacker from altering the 'kid' to trick the
recipient into using a different key.
       With AES-CBC mode, implementers should perform integrity checks prior to
decryption to avoid padding oracle vulnerabilities  .
       With the assignment of COSE algorithm identifiers for AES-CTR and
AES-CBC in the COSE Algorithms Registry, an attacker can replace the
COSE algorithm identifiers with one of these identifiers.  Then, the
attacker might be able to manipulate the ciphertext to learn some of the
plaintext or extract the keying material used for authentication and
integrity.
       Since AES-CCM   and AES-GCM   use AES-CTR for encryption,
an attacker can switch the algorithm identifier to AES-CTR and then strip the
authentication tag to bypass the authentication and integrity, allowing the
      attacker to manipulate the ciphertext.
       An attacker can switch the algorithm identifier from AES-GCM to AES-CBC,
guessing 16 bytes of plaintext at a time, and see if the recipient
accepts the padding. Padding oracle vulnerabilities are discussed
further in  .
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