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Deterministic Networking (DetNet) Bounded Latency

Abstract

This document presents a timing model for sources, destinations, and Deterministic Networking

(DetNet) transit nodes. Using the model, it provides a methodology to compute end-to-end latency

and backlog bounds for various queuing methods. The methodology can be used by the

management and control planes and by resource reservation algorithms to provide bounded

latency and zero congestion loss for the DetNet service.
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1. Introduction 

The ability for IETF Deterministic Networking (DetNet) or IEEE 802.1 Time-Sensitive Networking 

 to provide the DetNet services of bounded latency and zero congestion loss

depends upon

configuring and allocating network resources for the exclusive use of DetNet flows; 

identifying, in the data plane, the resources to be utilized by any given packet; and 

the detailed behavior of those resources, especially transmission queue selection, so that

latency bounds can be reliably assured. 

As explained in , DetNet flows are notably characterized by

a maximum bandwidth, guaranteed either by the transmitter or by strict input metering,

and 

a requirement for a guaranteed worst-case end-to-end latency. 

That latency guarantee, in turn, provides the opportunity for the network to supply enough

buffer space to guarantee zero congestion loss. In this document, it is assumed that the paths of

DetNet flows are fixed. Before the transmission of a DetNet flow, it is possible to calculate end-to-

end latency bounds and the amount of buffer space required at each hop to ensure zero

congestion loss; this can be used by the applications identified in .

This document presents a timing model for sources, destinations, and the DetNet transit nodes;

using this model, it provides a methodology to compute end-to-end latency and backlog bounds

for various queuing mechanisms that can be used by the management and control planes to

provide DetNet qualities of service. The methodology used in this document accounts for the

possibility of packet reordering within a DetNet node. The bounds on the amount of packet

reordering is out of the scope of this document and can be found in .

8.  Security Considerations

9.  IANA considerations

10. References

10.1.  Normative References
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Moreover, this document references specific queuing mechanisms, mentioned in , as

proofs of concept that can be used to control packet transmission at each output port and achieve

the DetNet quality of service (QoS).

Using the model presented in this document, it is possible for an implementer, user, or standards

development organization to select a set of queuing mechanisms for each device in a DetNet

network and to select a resource reservation algorithm for that network so that those elements

can work together to provide the DetNet service. Section 7 provides an example application of

the timing model introduced in this document on a DetNet IP network with a combination of

different queuing mechanisms.

This document does not specify any resource reservation protocol or control plane function. It

does not describe all of the requirements for that protocol or control plane function. It does

describe requirements for such resource reservation methods and for queuing mechanisms that,

if met, will enable them to work together.

2. Terminology and Definitions 

This document uses the terms defined in . Moreover, the following terms are used in

this document:

T-SPEC

TrafficSpecification, as defined in . 

arrival curve

An arrival curve function alpha(t) is an upper bound on the number of bits seen at an

observation point within any time interval t. 

CQF

Cyclic Queuing and Forwarding. 

CBS

Credit-Based Shaper. 

TSN

Time-Sensitive Networking. 

PREOF

A collective name for Packet Replication, Elimination, and Ordering Functions. 

POF

A Packet Ordering Function is a function that reorders packets within a DetNet flow that are

received out of order. This function can be implemented by a DetNet edge node, a DetNet

relay node, or an end system. 

[RFC8655]

[RFC8655]

Section 5.5 of [RFC9016]
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3. DetNet Bounded Latency Model 

3.1. Flow Admission 

This document assumes that the following paradigm is used to admit DetNet flows:

Perform any configuration required by the DetNet transit nodes in the network for

aggregates of DetNet flows. This configuration is done beforehand and not tied to any

particular DetNet flow. 

Characterize the new DetNet flow, particularly in terms of required bandwidth. 

Establish the path that the DetNet flow will take through the network from the source to the

destination(s). This can be a point-to-point or a point-to-multipoint path. 

Compute the worst-case end-to-end latency for the DetNet flow using one of the methods

below (Sections 3.1.1 and 3.1.2). In the process, determine whether sufficient resources are

available for the DetNet flow to guarantee the required latency and to provide zero

congestion loss. 

Assuming that the resources are available, commit those resources to the DetNet flow. This

may require adjusting the parameters that control the filtering and/or queuing mechanisms

at each hop along the DetNet flow's path. 

This paradigm can be implemented using peer-to-peer protocols or using a central controller. In

some situations, a lack of resources can require backtracking and recursing through the above

list.

Issues, such as service preemption of a DetNet flow in favor of another, when resources are

scarce, are not considered here. Also not addressed is the question of how to choose the path to

be taken by a DetNet flow.

1. 

2. 

3. 

4. 

5. 

3.1.1. Static Latency Calculation 

The static problem:

Given a network and a set of DetNet flows, compute an end-to-end latency bound (if

computable) for each DetNet flow and compute the resources, particularly buffer space,

required in each DetNet transit node to achieve zero congestion loss. 

In this calculation, all of the DetNet flows are known before the calculation commences. This

problem is of interest to relatively static networks or static parts of larger networks. It provides

bounds on latency and buffer size. The calculations can be extended to provide global

optimizations, such as altering the path of one DetNet flow in order to make resources available

to another DetNet flow with tighter constraints.
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This calculation may be more difficult to perform than the dynamic calculation (Section 3.1.2)

because the DetNet flows passing through one port on a DetNet transit node affect each other's

latency. The effects can even be circular, from node A to B to C and back to A. On the other hand,

the static calculation can often accommodate queuing methods, such as transmission selection by

strict priority, that are unsuitable for the dynamic calculation.

3.1.2. Dynamic Latency Calculation 

The dynamic problem:

Given a network whose maximum capacity for DetNet flows is bounded by a set of static

configuration parameters applied to the DetNet transit nodes and given just one DetNet

flow, compute the worst-case end-to-end latency that can be experienced by that flow, no

matter what other DetNet flows (within the network's configured parameters) might be

created or deleted in the future. Also, compute the resources, particularly buffer space,

required in each DetNet transit node to achieve zero congestion loss. 

This calculation is dynamic, in the sense that DetNet flows can be added or deleted at any time,

with a minimum of computation effort and without affecting the guarantees already given to

other DetNet flows.

Dynamic latency calculation can be done based on the static one described in Section 3.1.1; when

a new DetNet flow is created or deleted, the entire calculation for all DetNet flows is repeated. If

an already-established DetNet flow would be pushed beyond its latency requirements by the new

DetNet flow request, then the new DetNet flow request can be refused or some other suitable

action can be taken.

The choice of queuing methods is critical to the applicability of the dynamic calculation. Some

queuing methods (e.g., CQF, Section 6.6) make it easy to configure bounds on the network's

capacity and to make independent calculations for each DetNet flow. Some other queuing

methods (e.g., strict priority with the credit-based shaper defined in Section 8.6.8.2 of 

) can be used for dynamic DetNet flow creation but yield poorer latency and buffer

space guarantees than when that same queuing method is used for static DetNet flow creation

(Section 3.1.1).

[IEEE8021Q]

3.2. Relay Node Model 

A model for the operation of a DetNet transit node is required in order to define the latency and

buffer calculations. In Figure 1, we see a breakdown of the per-hop latency experienced by a

packet passing through a DetNet transit node in terms that are suitable for computing both hop-

by-hop latency and per-hop buffer requirements.
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In Figure 1, we see two DetNet transit nodes that are connected via a link. In this model, the only

queues that we deal with explicitly are attached to the output port; other queues are modeled as

variations in the other delay times (e.g., an input queue could be modeled as either a variation in

the link delay (2) or the processing delay (4)). There are six delays that a packet can experience

from hop to hop.

Output delay

This is the time taken from the selection of a packet for output from a queue to the

transmission of the first bit of the packet on the physical link. If the queue is directly

attached to the physical port, output delay can be a constant. However, in many

implementations, a multiplexed connection separates the queuing mechanism from a multi-

port Network Interface Card (NIC). This causes variations in the output delay that are hard

for the forwarding node to predict or control.

Link delay

This is the time taken from the transmission of the first bit of the packet to the reception of

the last bit, assuming that the transmission is not suspended by a frame preemption event.

This delay has two components: the first-bit-out to first-bit-in delay and the first-bit-in to last-

bit-in delay that varies with packet size. The former is typically constant. However, a virtual

"link" could exhibit a variable link delay.

Frame preemption delay

If the packet is interrupted in order to transmit another packet or packets (e.g., frame

preemption, as in , clause 99), an arbitrary delay can result.

Processing delay

This delay covers the time from the reception of the last bit of the packet to the time the

packet is enqueued in the regulator (queuing subsystem if there is no regulator), as shown in

Figure 1. This delay can be variable and depends on the details of the operation of the

forwarding node.

Regulator queuing delay

Figure 1: Timing Model for DetNet or TSN 

      DetNet transit node A            DetNet transit node B
   +-------------------------+       +------------------------+
   |              Queuing    |       |              Queuing   |
   |   Regulator subsystem   |       |   Regulator subsystem  |
   |   +-+-+-+-+ +-+-+-+-+   |       |   +-+-+-+-+ +-+-+-+-+  |
-->+   | | | | | | | | | +   +------>+   | | | | | | | | | +  +--->
   |   +-+-+-+-+ +-+-+-+-+   |       |   +-+-+-+-+ +-+-+-+-+  |
   |                         |       |                        |
   +-------------------------+       +------------------------+
   |<->|<------>|<------->|<->|<---->|<->|<------>|<------>|<->|<--
2,3  4      5        6      1    2,3   4      5        6     1   2,3
          1: Output delay             4: Processing delay
          2: Link delay               5: Regulation delay
          3: Frame preemption delay   6: Queuing subsystem delay

1. 

2. 

3. 

[IEEE8023]

4. 

5. 
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A regulator, also known as shaper in , delays some or all of the packets in a traffic

stream in order to bring the stream into compliance with an arrival curve; an arrival curve

'alpha(t)' is an upper bound on the number of bits observed within any interval t. The

regulator delay is the time spent from the insertion of the last bit of a packet into a

regulation queue until the time the packet is declared eligible according to its regulation

constraints. We assume that this time can be calculated based on the details of regulation

policy. If there is no regulation, this time is zero.

Queuing subsystem delay

This is the time spent for a packet from being declared eligible until being selected for output

on the next link. We assume that this time is calculable based on the details of the queuing

mechanism. If there is no regulation, this time is from the insertion of the packet into a

queue until it is selected for output on the next link.

Not shown in Figure 1 are the other output queues that we presume are also attached to that

same output port as the queue shown, and against which this shown queue competes for

transmission opportunities.

In this analysis, the measurement is from the point at which a packet is selected for output in a

node to the point at which it is selected for output in the next downstream node (i.e., the

definition of a "hop"). In general, any queue selection method that is suitable for use in a DetNet

network includes a detailed specification as to exactly when packets are selected for

transmission. Any variations in any of the delay times 1-4 result in a need for additional buffers

in the queue. If all delays 1-4 are constant, then any variation in the time at which packets are

inserted into a queue depends entirely on the timing of packet selection in the previous node. If

delays 1-4 are not constant, then additional buffers are required in the queue to absorb these

variations. Thus:

Variations in the output delay (1) require buffers to absorb that variation in the next hop, so

the output delay variations of the previous hop (on each input port) must be known in order

to calculate the buffer space required on this hop. 

Variations in the processing delay (4) require additional output buffers in the queues of that

same DetNet transit node. Depending on the details of the queuing subsystem delay (6)

calculations, these variations need not be visible outside the DetNet transit node. 

[RFC2475]

6. 

• 

• 

4. Computing End-to-End Delay Bounds 

4.1. Non-queuing Delay Bound 

End-to-end latency bounds can be computed using the delay model in Section 3.2. Here, it is

important to be aware that, for several queuing mechanisms, the end-to-end latency bound is

less than the sum of the per-hop latency bounds. An end-to-end latency bound for one DetNet

flow can be computed as

end_to_end_delay_bound = non_queuing_delay_bound + queuing_delay_bound

The two terms in the above formula are computed as follows.
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First, at the h-th hop along the path of this DetNet flow, obtain an upper-bound per-

hop_non_queuing_delay_bound[h] on the sum of the bounds over delays 1, 2, 3, and 4 of Figure 1.

These upper bounds are expected to depend on the specific technology of the DetNet transit node

at the h-th hop but not on the T-SPEC of this DetNet flow . Then, set

non_queuing_delay_bound = the sum of per-hop_non_queuing_delay_bound[h] over all hops h.

Second, compute queuing_delay_bound as an upper bound to the sum of the queuing delays

along the path. The value of queuing_delay_bound depends on the information on the arrival

curve of this DetNet flow and possibly of other flows in the network, as well as the specifics of the

queuing mechanisms deployed along the path of this DetNet flow. Note that arrival curve of the

DetNet flow at the source is immediately specified by the T-SPEC of this flow. The computation of

queuing_delay_bound is described in Section 4.2 as a separate section.

[RFC9016]

4.2. Queuing Delay Bound 

For several queuing mechanisms, queuing_delay_bound is less than the sum of upper bounds on

the queuing delays (5 and 6) at every hop. This occurs with (1) per-flow queuing and (2)

aggregate queuing with regulators, as explained in Sections 4.2.1, 4.2.2, and 6. For other queuing

mechanisms, the only available value of queuing_delay_bound is the sum of the per-hop queuing

delay bounds.

The computation of per-hop queuing delay bounds must account for the fact that the arrival

curve of a DetNet flow is no longer satisfied at the ingress of a hop, since burstiness increases as

one flow traverses one DetNet transit node. If a regulator is placed at a hop, an arrival curve of a

DetNet flow at the entrance of the queuing subsystem of this hop is the one configured at the

regulator (also called shaping curve in ); otherwise, an arrival curve of the flow can

be derived using the delay jitter of the flow from the last regulation point (the last regulator in

the path of the flow if there is any, otherwise the source of the flow) to the ingress of the hop;

more formally, assume a DetNet flow has an arrival curve at the last regulation point equal to

'alpha(t)' and the delay jitter from the last regulation point to the ingress of the hop is 'V'. Then,

the arrival curve at the ingress of the hop is 'alpha(t+V)'.

For example, consider a DetNet flow with T-SPEC "Interval: tau, MaxPacketsPerInterval: K,

MaxPayloadSize: L" at the source. Then, a leaky-bucket arrival curve for such flow at the source

is alpha(t)=r * t+ b, t>0; alpha(0)=0, where r is the rate and b is the bucket size, computed as

r = K * (L+L') / tau,

b = K * (L+L').

where L' is the size of any added networking technology-specific encapsulation (e.g., MPLS

label(s), UDP, or IP headers). Now, if the flow has a delay jitter of 'V' from the last regulation point

to the ingress of a hop, an arrival curve at this point is r * t + b + r * V, implying that the

burstiness is increased by r*V. More detailed information on arrival curves is available in 

.

[NetCalBook]

[NetCalBook]
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4.2.1. Per-Flow Queuing Mechanisms 

With such mechanisms, each flow uses a separate queue inside every node. The service for each

queue is abstracted with a guaranteed rate and a latency. For every DetNet flow, a per-node

latency bound, as well as an end-to-end latency bound, can be computed from the traffic

specification of this DetNet flow at its source and from the values of rates and latencies at all

nodes along its path. An instance of per-flow queuing is Guaranteed Service , for which

the details of latency bound calculation are presented in Section 6.5.

[RFC2212]

4.2.2. Aggregate Queuing Mechanisms 

With such mechanisms, multiple flows are aggregated into macro-flows and there is one FIFO

queue per macro-flow. A practical example is the credit-based shaper defined in Section 8.6.8.2 of

, where a macro-flow is called a "class". One key issue in this context is how to deal

with the burstiness cascade; individual flows that share a resource dedicated to a macro-flow

may see their burstiness increase, which may in turn cause increased burstiness to other flows

downstream of this resource. Computing delay upper bounds for such cases is difficult and, in

some conditions, impossible  . Also, when bounds are obtained,

they depend on the complete configuration and must be recomputed when one flow is added

(i.e., the dynamic calculation in Section 3.1.2).

A solution to deal with this issue for the DetNet flows is to reshape them at every hop. This can be

done with per-flow regulators (e.g., leaky-bucket shapers), but this requires per-flow queuing and

defeats the purpose of aggregate queuing. An alternative is the interleaved regulator, which

reshapes individual DetNet flows without per-flow queuing  . With an

interleaved regulator, the packet at the head of the queue is regulated based on its (flow)

regulation constraints; it is released at the earliest time at which this is possible without violating

the constraint. One key feature of a per-flow or interleaved regulator is that it does not increase

worst-case latency bounds . Specifically, when an interleaved regulator is

appended to a FIFO subsystem, it does not increase the worst-case delay of the latter. In Figure 1,

when the order of packets from the output of a queuing subsystem at node A to the entrance of a

regulator at node B is preserved, then the regulator does not increase the worst-case latency

bounds. This is made possible if all the systems are FIFO or a DetNet Packet Ordering Function

(POF) is implemented just before the regulator. This property does not hold if packet reordering

occurs from the output of a queuing subsystem to the entrance of the next downstream

interleaved regulator, e.g., at a non-FIFO switching fabric.

Figure 2 shows an example of a network with 5 nodes, an aggregate queuing mechanism, and

interleaved regulators, as in Figure 1. An end-to-end delay bound for DetNet flow f, traversing

nodes 1 to 5, is calculated as follows:

end_to_end_latency_bound_of_flow_f = C12 + C23 + C34 + S4

In the above formula, Cij is a bound on the delay of the queuing subsystem in node i and

interleaved regulator of node j, and S4 is a bound on the delay of the queuing subsystem in node

4 for DetNet flow f. In fact, using the delay definitions in Section 3.2, Cij is a bound on a sum of

[IEEE8021Q]

[CharnyDelay] [BennettDelay]

[SpechtUBS] [IEEE8021Qcr]

[LeBoudecTheory]
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delays 1, 2, 3, and 6 of node i and delays 4 and 5 of node j. Similarly, S4 is a bound on sum of

delays 1, 2, 3, and 6 of node 4. A practical example of the queuing model and delay calculation is

presented Section 6.4.

If packet reordering does not occur, the end-to-end latency bound calculation provided here

gives a tighter latency upper bound than would be obtained by adding the latency bounds of

each node in the path of a DetNet flow .

Figure 2: End-to-End Delay Computation Example 

            f
  ----------------------------->
+---+   +---+   +---+   +---+   +---+
| 1 |---| 2 |---| 3 |---| 4 |---| 5 |
+---+   +---+   +---+   +---+   +---+
   \__C12_/\__C23_/\__C34_/\_S4_/

[TSNwithATS]

4.3. Ingress Considerations 

A sender can be a DetNet node that uses exactly the same queuing methods as its adjacent DetNet

transit node so that the latency and buffer bounds calculations at the first hop are

indistinguishable from those at a later hop within the DetNet domain. On the other hand, the

sender may be DetNet unaware; in which case, some conditioning of the DetNet flow may be

necessary at the ingress DetNet transit node. The ingress conditioning typically consists of the

regulators described in Section 3.2.

4.4. Interspersed DetNet-Unaware Transit Nodes 

It is sometimes desirable to build a network that has both DetNet-aware transit nodes and

DetNet-unaware transit nodes and for a DetNet flow to traverse an island of DetNet-unaware

transit nodes while still allowing the network to offer delay and congestion loss guarantees. This

is possible under certain conditions.

In general, when passing through a DetNet-unaware island, the island may cause delay variation

in excess of what would be caused by DetNet nodes. That is, the DetNet flow might be "lumpier"

after traversing the DetNet-unaware island. DetNet guarantees for delay and buffer

requirements can still be calculated and met if and only if the following are true:

The latency variation across the DetNet-unaware island must be bounded and calculable. 

An ingress conditioning function (Section 4.3) is required at the reentry to the DetNet-aware

domain. This will, at least, require some extra buffering to accommodate the additional delay

variation and thus further increases the latency bound. 

The ingress conditioning is exactly the same problem as that of a sender at the edge of the DetNet

domain. The requirement for bounds on the latency variation across the DetNet-unaware island

is typically the most difficult to achieve. Without such a bound, it is obvious that DetNet cannot

deliver its guarantees, so a DetNet-unaware island that cannot offer bounded latency variation

cannot be used to carry a DetNet flow.

1. 

2. 
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5. Achieving Zero Congestion Loss 

When the input rate to an output queue exceeds the output rate for a sufficient length of time,

the queue must overflow. This is congestion loss, and this is what DetNet seeks to avoid.

To avoid congestion losses, an upper bound on the backlog present in the regulator and queuing

subsystem of Figure 1 must be computed during resource reservation. This bound depends on

the set of flows that use these queues, the details of the specific queuing mechanism, and an

upper bound on the processing delay (4). The queue must contain the packet in transmission,

plus all other packets that are waiting to be selected for output. A conservative backlog bound

that applies to all systems can be derived as follows.

The backlog bound is counted in data units (bytes or words of multiple bytes) that are relevant

for buffer allocation. For every flow or an aggregate of flows, we need one buffer space for the

packet in transmission, plus space for the packets that are waiting to be selected for output.

Let

total_in_rate be the sum of the line rates of all input ports that send traffic to this output port.

The value of total_in_rate is in data units (e.g., bytes) per second. 

nb_input_ports be the number of input ports that send traffic to this output port. 

max_packet_length be the maximum packet size for packets that may be sent to this output

port. This is counted in data units. 

max_delay456 be an upper bound, in seconds, on the sum of the processing delay (4) and the

queuing delays (5 and 6) for any packet at this output port. 

Then, a bound on the backlog of traffic in the queue at this output port is

backlog_bound = (nb_input_ports * max_packet_length) + (total_in_rate * max_delay456)

The above bound is over the backlog caused by the traffic entering the queue from the input

ports of a DetNet node. If the DetNet node also generates packets (e.g., creation of new packets or

replication of arriving packets), the bound must accordingly incorporate the introduced backlog.

• 

• 

• 

• 

6. Queuing Techniques 

In this section, we present a general queuing data model, as well as some examples of queuing

mechanisms. For simplicity of latency bound computation, we assume a leaky-bucket arrival

curve for each DetNet flow at the source. Also, at each DetNet transit node, the service for each

queue is abstracted with a minimum guaranteed rate and a latency .[NetCalBook]
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6.1. Queuing Data Model 

Sophisticated queuing mechanisms are available in Layer 3 (L3) (e.g., see  for an

overview). In general, we assume that "Layer 3" queues, shapers, meters, etc., are precisely the

"regulators" shown in Figure 1. The "queuing subsystems" in this figure are FIFO. They are not

the province solely of bridges; they are an essential part of any DetNet transit node. As illustrated

by numerous implementation examples, some of the "Layer 3" mechanisms described in

documents, such as , are often integrated in an implementation, with the "Layer 2"

mechanisms also implemented in the same node. An integrated model is needed in order to

successfully predict the interactions among the different queuing mechanisms needed in a

network carrying both DetNet flows and non-DetNet flows.

Figure 3 shows the general model for the flow of packets through the queues of a DetNet transit

node. The DetNet packets are mapped to a number of regulators. Here, we assume that the

Packet Replication, Elimination, and Ordering Functions (PREOF) are performed before the

DetNet packets enter the regulators. All packets are assigned to a set of queues. Packets compete

for the selection to be passed to queues in the queuing subsystem. Packets again are selected for

output from the queuing subsystem.

Some relevant mechanisms are hidden in this figure and are performed in the queue boxes:

discarding packets because a queue is full 

[RFC7806]

[RFC7806]

Figure 3: IEEE 802.1Q Queuing Model: Data Flow 

                                 |
+--------------------------------V----------------------------------+
|                          Queue assignment                         |
+--+------+----------+---------+-----------+-----+-------+-------+--+
   |      |          |         |           |     |       |       |
+--V-+ +--V-+     +--V--+   +--V--+     +--V--+  |       |       |
|Flow| |Flow|     |Flow |   |Flow |     |Flow |  |       |       |
|  0 | |  1 | ... |  i  |   | i+1 | ... |  n  |  |       |       |
| reg| | reg|     | reg |   | reg |     | reg |  |       |       |
+--+-+ +--+-+     +--+--+   +--+--+     +--+--+  |       |       |
   |      |          |         |           |     |       |       |
+--V------V----------V--+   +--V-----------V--+  |       |       |
|  Trans.  selection    |   | Trans. select.  |  |       |       |
+----------+------------+   +-----+-----------+  |       |       |
           |                      |              |       |       |
        +--V--+                +--V--+        +--V--+ +--V--+ +--V--+
        | out |                | out |        | out | | out | | out |
        |queue|                |queue|        |queue| |queue| |queue|
        |  1  |                |  2  |        |  3  | |  4  | |  5  |
        +--+--+                +--+--+        +--+--+ +--+--+ +--+--+
           |                      |              |       |       |
+----------V----------------------V--------------V-------V-------V--+
|                      Transmission selection                       |
+---------------------------------+---------------------------------+
                                  |
                                  V

• 

RFC 9320 DetNet Bounded Latency November 2022

Finn, et al. Informational Page 13



discarding packets marked "yellow" by a metering function in preference to discarding

"green" packets  

Ideally, neither of these actions are performed on DetNet packets. Full queues for DetNet packets

occur only when a DetNet flow is misbehaving, and the DetNet QoS does not include "yellow"

service for packets in excess of a committed rate.

The queue assignment function can be quite complex, even in a bridge , because of

the introduction of per-stream filtering and policing ( , clause 8.6.5.1). In addition to

the Layer 2 priority expressed in the 802.1Q VLAN tag, a DetNet transit node can utilize the

information from the non-exhaustive list below to assign a packet to a particular queue:

input port 

selector based on a rotating schedule that starts at regular, time-synchronized intervals and

has nanosecond precision 

MAC addresses, VLAN ID, IP addresses, Layer 4 port numbers, and Differentiated Services

Code Point (DSCP)   

the queue assignment function can contain metering and policing functions 

MPLS and/or pseudowire labels  

The "Transmission selection" function decides which queue is to transfer its oldest packet to the

output port when a transmission opportunity arises.

• 

[RFC2697]

[IEEE8021Q]

[IEEE8021Q]

• 

• 

• 

[RFC8939] [RFC8964]

• 

• [RFC6658]

6.2. Frame Preemption 

In  and , the transmission of a frame can be interrupted by one or more

"express" frames; then, the interrupted frame can continue transmission. The frame preemption

is modeled as consisting of two MAC/PHY stacks: one for packets that can be interrupted and one

for packets that can interrupt the interruptible packets. Only one layer of frame preemption is

supported -- a transmitter cannot have more than one interrupted frame in progress. DetNet

flows typically pass through the interrupting MAC. For those DetNet flows with T-SPEC, latency

bounds can be calculated by the methods provided in the following sections that account for the

effect of frame preemption, according to the specific queuing mechanism that is used in DetNet

nodes. Best-effort queues pass through the interruptible MAC and can thus be preempted.

[IEEE8021Q] [IEEE8023]

6.3. Time-Aware Shaper 

In , the notion of time-scheduling queue gates is described in Section 8.6.8.4. On each

node, the transmission selection for packets is controlled by time-synchronized gates; each

output queue is associated with a gate. The gates can be either open or closed. The states of the

gates are determined by the gate control list (GCL). The GCL specifies the opening and closing

times of the gates. The design of the GCL must satisfy the requirement of latency upper bounds of

all DetNet flows; therefore, those DetNet flows that traverse a network that uses this kind of

shaper must have bounded latency if the traffic and nodes are conformant.

[IEEE8021Q]
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Note that scheduled traffic service relies on a synchronized network and coordinated GCL

configuration. Synthesis of the GCL on multiple nodes in a network is a scheduling problem

considering all DetNet flows traversing the network, which is a nondeterministic polynomial-

time hard (NP-hard) problem . Also, at the time of writing, scheduled traffic service

supports no more than eight traffic queues, typically using up to seven priority queues and at

least one best effort.

[Sch8021Qbv]

6.4. Credit-Based Shaper with Asynchronous Traffic Shaping 

In this queuing model, it is assumed that the DetNet nodes are FIFO. We consider the four traffic

classes (Definition 3.268 of ): control-data traffic (CDT), class A, class B, and best

effort (BE) in decreasing order of priority. Flows of classes A and B are DetNet flows that are less

critical than CDT (such as studio audio and video traffic, as in IEEE 802.1BA Audio-Video-

Bridging). This model is a subset of Time-Sensitive Networking, as described next.

Based on the timing model described in Figure 1, contention occurs only at the output port of a

DetNet transit node; therefore, the focus of the rest of this subsection is on the regulator and

queuing subsystem in the output port of a DetNet transit node. The input flows are identified

using the information in ( ). Then, they are aggregated into eight macro-

flows based on their service requirements; we refer to each macro-flow as a class. The output

port performs aggregate scheduling with eight queues (queuing subsystems): one for CDT, one

for class A flows, one for class B flows, and five for BE traffic denoted as BE0-BE4. The queuing

policy for each queuing subsystem is FIFO. In addition, each node output port also performs per-

flow regulation for class A and B flows using an interleaved regulator (IR). This regulation is

called asynchronous traffic shaping . Thus, at each output port of a node, there is

one interleaved regulator per input port and per class; the interleaved regulator is mapped to the

regulator depicted in Figure 1. The detailed picture of scheduling and regulation architecture at a

node output port is given by Figure 4. The packets received at a node input port for a given class

are enqueued in the respective interleaved regulator at the output port. Then, the packets from

all the flows, including CDT and BE flows, are enqueued in a queuing subsystem; there is no

regulator for CDT and BE flows.

[IEEE8021Q]

Section 5.1 of [RFC8939]

[IEEE8021Qcr]
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Each of the queuing subsystems for classes A and B contains a credit-based shaper (CBS). The CBS

serves a packet from a class according to the available credit for that class. As described in

Section 8.6.8.2 and Annex L.1 of , the credit for each class A or B increases based on

the idle slope (as guaranteed rate) and decreases based on the sendslope (typically equal to the

difference between the guaranteed and the output link rates), both of which are parameters of

the CBS. The CDT and BE0-BE4 flows are served by separate queuing subsystems. Then, packets

from all flows are served by a transmission selection subsystem that serves packets from each

class based on its priority. All subsystems are non-preemptive. Guarantees for class A and B

traffic can be provided only if CDT is bounded. It is assumed that the CDT has a leaky-bucket

arrival curve with two parameters: r_h as rate and b_h as bucket size. That is, the amount of bits

entering a node within a time interval t is bounded by r_h * t + b_h.

Additionally, it is assumed that the class A and B flows are also regulated at their source

according to a leaky-bucket arrival curve. At the source, the traffic satisfies its regulation

constraint, i.e., the delay due to interleaved regulator at the source is ignored.

At each DetNet transit node implementing an interleaved regulator, packets of multiple flows are

processed in one FIFO queue. The packet at the head of the queue is regulated based on its leaky-

bucket parameters. It is released at the earliest time at which this is possible without violating

the constraint.

Figure 4: The Architecture of an Output Port inside a Relay Node with Interleaved Regulators (IRs)

and a Credit-Based Shaper (CBS) 

      +--+   +--+ +--+   +--+
      |  |   |  | |  |   |  |
      |IR|   |IR| |IR|   |IR|
      |  |   |  | |  |   |  |
      +-++XXX++-+ +-++XXX++-+
        |     |     |     |
        |     |     |     |
+---+ +-v-XXX-v-+ +-v-XXX-v-+ +-----+ +-----+ +-----+ +-----+ +-----+
|   | |         | |         | |Class| |Class| |Class| |Class| |Class|
|CDT| | Class A | | Class B | | BE4 | | BE3 | | BE2 | | BE1 | | BE0 |
|   | |         | |         | |     | |     | |     | |     | |     |
+-+-+ +----+----+ +----+----+ +--+--+ +--+--+ +--+--+ +--+--+ +--+--+
  |        |           |         |       |       |       |       |
  |      +-v-+       +-v-+       |       |       |       |       |
  |      |CBS|       |CBS|       |       |       |       |       |
  |      +-+-+       +-+-+       |       |       |       |       |
  |        |           |         |       |       |       |       |
+-v--------v-----------v---------v-------V-------v-------v-------v--+
|                     Strict Priority selection                     |
+--------------------------------+----------------------------------+
                                 |
                                 V

[IEEE8021Q]
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The regulation parameters for a flow (leaky-bucket rate and bucket size) are the same at its

source and at all DetNet transit nodes along its path in the case where all clocks are perfect.

However, in reality, there is clock non-ideality throughout the DetNet domain, even with clock

synchronization. This phenomenon causes inaccuracy in the rates configured at the regulators

that may lead to network instability. To avoid instability, the rates are set as the source rates with

some positive margin when configuring regulators.  describes and provides

solutions to this issue.

[ThomasTime]

6.4.1. Delay Bound Calculation 

A delay bound of the queuing subsystem ((4) in Figure 1) of a given DetNet node for a flow of

class A or B can be computed if the following condition holds:

The sum of leaky-bucket rates of all flows of this class at this transit node <= R, where R is

given below for every class

If the condition holds, the delay bounds for a flow of class X (A or B) is d_X and calculated as:

d_X = T_X + (b_t_X-L_min_X)/R_X - L_min_X/c

where L_min_X is the minimum packet lengths of class X (A or B); c is the output link

transmission rate; and b_t_X is the sum of the b term (bucket size) for all the flows of the class X.

Parameters R_X and T_X are calculated as follows for class A and B, separately.

If the flow is of class A:

R_A = I_A * (c-r_h)/ c

T_A = (L_nA + b_h + r_h * L_n/c)/(c-r_h)

where I_A is the idle slope for class A; L_nA is the maximum packet length of class B and BE

packets; L_n is the maximum packet length of classes A, B, and BE; and r_h is the rate and b_h is

the bucket size of CDT leaky-bucket arrival curve.

If the flow is of class B:

R_B = I_B * (c-r_h)/ c

T_B = (L_BE + L_A + L_nA * I_A/(c_h-I_A) + b_h + r_h * L_n/c)/(c-r_h)

where I_B is the idle slope for class B; L_A is the maximum packet length of class A; and L_BE is

the maximum packet length of class BE.

Then, as discussed in Section 4.2.2, an interleaved regulator does not increase the delay bound of

the upstream queuing subsystem; therefore, an end-to-end delay bound for a DetNet flow of class

X (A or B) is the sum of d_X_i for all node i in the path of the flow, where d_X_i is the delay bound

of queuing subsystem in node i, which is computed as above. According to the notation in Section

4.2.2, the delay bound of the queuing subsystem in a node i and interleaved regulator in node j,

i.e., Cij, is:
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Cij = d_X_i

More information of delay analysis in such a DetNet transit node is described in .[TSNwithATS]

6.4.2. Flow Admission 

The delay bound calculation requires some information about each node. For each node, it is

required to know the idle slope of the CBS for each class A and B (I_A and I_B), as well as the

transmission rate of the output link (c). Besides, it is necessary to have the information on each

class, i.e., maximum packet length of classes A, B, and BE. Moreover, the leaky-bucket parameters

of CDT (r_h, b_h) must be known. To admit a flow or flows of classes A and B, their delay

requirements must be guaranteed not to be violated. As described in Section 3.1, the two

problems (static and dynamic) are addressed separately. In either of the problems, the rate and

delay must be guaranteed. Thus,

The static admission control:

The leaky-bucket parameters of all class A or B flows are known; therefore, for each flow

f of either class A or B, a delay bound can be calculated. The computed delay bound for

every flow of class A or B must not be more than its delay requirement. Moreover, the

sum of the rate of each flow (r_f) must not be more than the rate allocated to each class

(R). If these two conditions hold, the configuration is declared admissible. 

The dynamic admission control:

For dynamic admission control, we allocate a static value for rate (R) and a maximum

bucket size (b_t) to every node and each class A or B. In addition, for every node and

each class A or B, two counters are maintained: 

R_acc is equal to the sum of the leaky-bucket rates of all flows of this class already

admitted at this node; at all times, we must have:

R_acc <= R, (Eq. 1)

b_acc is equal to the sum of the bucket sizes of all flows of this class already admitted

at this node; at all times, we must have:

b_acc <= b_t. (Eq. 2)

A new class A or B flow is admitted at this node if Eqs. (1) and (2) continue to be satisfied

after adding its leaky-bucket rate and bucket size to R_acc and b_acc. A class A or B flow

is admitted in the network if it is admitted at all nodes along its path. When this

happens, all variables R_acc and b_acc along its path must be incremented to reflect the

addition of the flow. Similarly, when a class A or B flow leaves the network, all variables

R_acc and b_acc along its path must be decremented to reflect the removal of the flow.

The choice of the static values of R and b_t at all nodes and classes must be done in a prior

configuration phase: R controls the bandwidth allocated to this class at this node, and b_t affects

the delay bound and the buffer requirement. The value of R must be set such that

R <= I_X*(c-r_h)/c
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where I_X is the idleslope of credit-based shaper for class X={A,B}, c is the transmission rate of

the output link, and r_h is the leaky-bucket rate of the CDT class.

6.5. Guaranteed Service 

The Guaranteed Service is defined in . The flow, at the source, has a leaky-bucket

arrival curve with two parameters: r as rate and b as bucket size, i.e., the amount of bits entering

a node within a time interval t is bounded by r * t + b.

If a resource reservation on a path is applied, a node provides a guaranteed rate R and maximum

service latency of T. This can be interpreted in a way that the bits might have to wait up to T

before being served with a rate greater or equal to R. The delay bound of the flow traversing the

node is T + b / R.

Consider a Guaranteed Service  path including a sequence of nodes, where the i-th

node provides a guaranteed rate R_i and maximum service latency of T_i. Then, the end-to-end

delay bound for a flow on this can be calculated as sum(T_i) + b / min(R_i).

The provided delay bound is based on a simple case of Guaranteed Service, where only a

guaranteed rate and maximum service latency and a leaky-bucket arrival curve are available. If

more information about the flow is known, e.g., the peak rate, the delay bound is more

complicated; the details are available in  and Section 1.4.1 of .

[RFC2212]

[RFC2212]

[RFC2212] [NetCalBook]

6.6. Cyclic Queuing and Forwarding 

Annex T of  describes Cyclic Queuing and Forwarding (CQF), which provides

bounded latency and zero congestion loss using the time-scheduled gates of Section 8.6.8.4 of 

. For a given class of DetNet flows, a set of two or more buffers is provided at the

output queue layer of Figure 3. A cycle time T_c is configured for each class of DetNet flows c, and

all of the buffer sets in a class of DetNet flows swap buffers simultaneously throughout the

DetNet domain at that cycle rate, all in phase. In such a mechanism, the regulator, as mentioned

in Figure 1, is not required.

In the case of two-buffer CQF, each class of DetNet flows c has two buffers, namely buffer1 and

buffer2. In a cycle (i) when buffer1 accumulates received packets from the node's reception

ports, buffer2 transmits the already stored packets from the previous cycle (i-1). In the next cycle

(i+1), buffer2 stores the received packets and buffer1 transmits the packets received in cycle (i).

The duration of each cycle is T_c.

The cycle time T_c must be carefully chosen; it needs to be large enough to accommodate all the

DetNet traffic, plus at least one maximum packet (or fragment) size from lower priority queues,

which might be received within a cycle. Also, the value of T_c includes a time interval, called

dead time (DT), which is the sum of delays 1, 2, 3, and 4 defined in Figure 1. The value of DT

guarantees that the last packet of one cycle in a node is fully delivered to a buffer of the next

node in the same cycle. A two-buffer CQF is recommended if DT is small compared to T_c. For a

large DT, CQF with more buffers can be used, and a cycle identification label can be added to the

packets.

[IEEE8021Q]

[IEEE8021Q]
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The per-hop latency is determined by the cycle time T_c: a packet transmitted from a node at a

cycle (i) is transmitted from the next node at cycle (i+1). Then, if the packet traverses h hops, the

maximum latency experienced by the packet is from the beginning of cycle (i) to the end of cycle

(i+h); also, the minimum latency is from the end of cycle (i), before the DT, to the beginning of

cycle (i+h). Then, the maximum latency is:

(h+1) T_c

and the minimum latency is:

(h-1) T_c + DT.

Ingress conditioning (Section 4.3) may be required if the source of a DetNet flow does not itself

employ CQF. Since there are no per-flow parameters in the CQF technique, per-hop configuration

is not required in the CQF forwarding nodes.

7. Example Application on DetNet IP Network 

This section provides an example application of the timing model presented in this document to

control the admission of a DetNet flow on a DetNet-enabled IP network. Consider Figure 5, taken

from , which shows a simple IP network:

End system 1 implements Guaranteed Service , as in Section 6.5, between itself and

relay node 1. 

Sub-network 1 is a TSN network. The nodes in sub-network 1 implement credit-based

shapers with asynchronous traffic shaping, as in Section 6.4. 

Sub-network 2 is a TSN network. The nodes in sub-network 2 implement Cyclic Queuing and

Forwarding with two buffers, as in Section 6.6. 

The relay nodes 1 and 2 implement credit-based shapers with asynchronous traffic shaping,

as in Section 6.4. They also perform the aggregation and mapping of IP DetNet flows to TSN

streams ( ). 

Section 3 of [RFC8939]

• [RFC2212]

• 

• 

• 

Section 4.4 of [RFC9023]
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8. Security Considerations 

Detailed security considerations for DetNet are cataloged in , and more general

security considerations are described in .

Consider a fully centralized control plane for the network of Figure 5, as described in 

. Suppose end system 1 wants to create a DetNet flow with a traffic

specification destined to end system 2 with end-to-end delay bound requirement D. Therefore,

the control plane receives a flow establishment request and calculates a number of valid paths

through the network ( ). To select a proper path, the

control plane needs to compute an end-to-end delay bound at every node of each selected path p.

The end-to-end delay bound is d1 + d2_p + d3_p, where d1 is the delay bound from end system 1

to the entrance of relay node 1, d2_p is the delay bound for path p from relay node 1 to the

entrance of the first node in sub-network 2, and d3_p is the delay bound of path p from the first

node in sub-network 2 to end system 2. The computation of d1 is explained in Section 6.5. Since

the relay node 1, sub-network 1, and relay node 2 implement aggregate queuing, we use the

results in Sections 4.2.2 and 6.4 to compute d2_p for the path p. Finally, d3_p is computed using

the delay bound computation of Section 6.6. Any path p, such that d1 + d2_p + d3_p <= D, satisfies

the delay bound requirement of the flow. If there is no such path, the control plane may compute

a new set of valid paths and redo the delay bound computation or reject the DetNet flow.

As soon as the control plane selects a path that satisfies the delay bound constraint, it allocates

and reserves the resources in the path for the DetNet flow (

).

Figure 5: A Simple DetNet-Enabled IP Network, Taken from RFC 8939 

 DetNet IP       Relay                        Relay       DetNet IP
 End System      Node 1                       Node 2      End System
     1                                                        2
+----------+                                             +----------+
|   Appl.  |<------------ End-to-End Service ----------->|   Appl.  |
+----------+  ............                 ...........   +----------+
| Service  |<-: Service  :-- DetNet flow --: Service  :->| Service  |
+----------+  +----------+                 +----------+  +----------+
|Forwarding|  |Forwarding|                 |Forwarding|  |Forwarding|
+--------.-+  +-.------.-+                 +-.---.----+  +-------.--+
         : Link :       \      ,-----.      /     \   ,-----.   /
         +......+        +----[  Sub- ]----+       +-[  Sub- ]-+
                              [Network]              [Network]
                               `--1--'                `--2--'

         |<--------------------- DetNet IP --------------------->|

|<--- d1 --->|<--------------- d2_p --------------->|<-- d3_p -->|

Section 3.2

of [DETNET-CONTROL-PLANE]

Section 3.2 of [DETNET-CONTROL-PLANE]

Section 4.2 of [DETNET-CONTROL-

PLANE]

[RFC9055]

[RFC8655]
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[IEEE8021Q]

[RFC2212]

Security aspects that are unique to DetNet are those whose aim is to provide the specific QoS

aspects of DetNet, specifically bounded end-to-end delivery latency and zero congestion loss.

Achieving such loss rates and bounded latency may not be possible in the face of a highly capable

adversary, such as the one envisioned by the Internet Threat Model of BCP 72 , which

can arbitrarily drop or delay any or all traffic. In order to present meaningful security

considerations, we consider a somewhat weaker attacker who does not control the physical links

of the DetNet domain but may have the ability to control or change the behavior of some

resources within the boundary of the DetNet domain.

Latency bound calculations use parameters that reflect physical quantities. If an attacker finds a

way to change the physical quantities, unknown to the control and management planes, the

latency calculations fail and may result in latency violation and/or congestion losses. An example

of such attacks is to make some traffic sources under the control of the attacker send more traffic

than their assumed T-SPECs. This type of attack is typically avoided by ingress conditioning at the

edge of a DetNet domain. However, it must be insured that such ingress conditioning is done per

flow and that the buffers are segregated such that if one flow exceeds its T-SPEC, it does not cause

buffer overflow for other flows.

Some queuing mechanisms require time synchronization and operate correctly only if the time

synchronization works correctly. In the case of CQF, the correct alignments of cycles can fail if an

attack against time synchronization fools a node into having an incorrect offset. Some of these

attacks can be prevented by cryptographic authentication as in Annex K of  for the

Precision Time Protocol (PTP). However, the attacks that change the physical latency of the links

used by the time synchronization protocol are still possible even if the time synchronization

protocol is protected by authentication and cryptography . Such attacks can be

detected only by their effects on latency bound violations and congestion losses, which do not

occur in normal DetNet operation.

9. IANA considerations 

This document has no IANA actions.
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       Introduction
       The ability for IETF Deterministic Networking (DetNet) or IEEE 802.1 Time-Sensitive
        Networking   to provide the DetNet services of bounded latency and zero congestion
        loss depends upon 
       
         configuring and allocating network resources for the exclusive use of DetNet flows; 
         identifying, in the data plane, the resources to be utilized by any given packet; and
         the detailed behavior of those resources, especially transmission queue selection, so that latency bounds can be reliably assured.
      
       
        As explained in  , DetNet
        flows are notably characterized by 
      
       
	 a maximum bandwidth, guaranteed either by the transmitter or by strict input metering, and 
         a requirement for a guaranteed worst-case end-to-end latency.
      
         That latency guarantee,
        in turn, provides the opportunity for the network to supply enough buffer
        space to guarantee zero congestion loss.
        In this document, it is assumed  that the paths of DetNet flows are fixed. Before the transmission of a DetNet flow, it is possible to calculate 
        end-to-end latency bounds and the amount of buffer space required at each hop to ensure zero congestion loss; this can be used by the applications identified in  .
      
       
        This document presents a timing model for sources, destinations, and the
        DetNet transit nodes; using this model, it provides a methodology to compute end-to-end latency and backlog bounds for various queuing mechanisms that can be used by the management and control planes to provide DetNet qualities of service. The methodology used in this document accounts for the possibility of packet reordering within a DetNet node. The bounds on the amount of packet reordering is out of the scope of this document and can be found in  . Moreover, this document references specific queuing mechanisms, mentioned in  , as proofs of concept that can be used to control packet transmission at each output port and achieve the DetNet quality of service (QoS). 
      
       
        Using the model presented in this document, it is possible for an
        implementer, user, or standards development organization to select
        a set of queuing mechanisms for each device in a DetNet network
        and to select a resource reservation algorithm for that network so that
        those elements can work together to provide the DetNet service.   provides an example application of the timing model introduced in this document on a DetNet IP network with a combination of different queuing mechanisms.
      
       
        This document does not specify any resource reservation protocol or control plane function.
        It does not describe all of the requirements for that protocol or control plane function.
        It does describe requirements for such resource reservation methods
        and for queuing mechanisms that, if met, will enable them to work together.
      
    
     
       Terminology and Definitions
       
    This document uses the terms defined in  . Moreover, the following terms are used in this document:
      
       
         T-SPEC
         TrafficSpecification, as defined in  .
            
         arrival curve
         An arrival curve function alpha(t) is an upper bound on the number of bits seen at an observation point within any time interval t.
            
         CQF
         Cyclic Queuing and Forwarding.
            
         CBS
         Credit-Based Shaper.
            
         TSN
         Time-Sensitive Networking.
            
         PREOF
         A collective name for Packet Replication, Elimination, and Ordering Functions.
            
         POF
         A Packet Ordering Function is a function that reorders packets within a DetNet flow that are received out of order.  This function can be implemented by a DetNet edge node, a DetNet relay node, or an end system.
            
      
    
     
       DetNet Bounded Latency Model
       
         Flow Admission
         
            This document assumes that the following paradigm is used to admit DetNet flows:
        
         
	   
                    Perform any configuration required by the DetNet transit nodes in the network for aggregates of DetNet flows.
                    This configuration is done beforehand and not tied to any particular DetNet flow.
                
           
                    Characterize the new DetNet flow, particularly in terms of required bandwidth.
                
           
                    Establish the path that the DetNet flow will take through the network
                    from the source to the destination(s).  This can be a point-to-point
                    or a point-to-multipoint path.
                
           
                    Compute the worst-case end-to-end latency for the DetNet flow using one
                    of the methods below (Sections   and
                     ).  In the process,
                    determine whether sufficient resources are available for the DetNet flow to
                    guarantee the required latency and to provide zero congestion loss.
                
           
                    Assuming that the resources are available, commit those resources to the
                    DetNet flow.  This may require adjusting the parameters that control
                    the filtering and/or queuing mechanisms at each hop along the DetNet flow's path.
                
        
         
            This paradigm can be implemented using peer-to-peer protocols or using a
            central controller.  In some situations, a lack of resources can require
            backtracking and recursing through the above list.
        
         
            Issues, such as service preemption of a DetNet flow in favor of another, when
            resources are scarce, are not considered here. Also not addressed is the question of
            how to choose the path to be taken by a DetNet flow.
        
         
           Static Latency Calculation
           
             The static problem:
             
                        Given a network and a set of DetNet flows, compute an
                        end-to-end latency bound (if computable) for each DetNet flow and compute
                        the resources, particularly buffer space, required in each DetNet transit node
                        to achieve zero congestion loss.
                    
          
           
                In this calculation, all of the DetNet flows are known before the
                calculation commences.  This problem is of interest to relatively
                static networks or static parts of larger networks. It provides 
                bounds on latency and buffer size.  The calculations can be extended
                to provide global optimizations, such as altering the path of one
                DetNet flow in order to make resources available to another DetNet
                flow with tighter constraints.
          
           
                This calculation may be more difficult to perform than the
                dynamic calculation ( ) because the
                DetNet flows passing through one port on a DetNet transit node affect each other's
                latency.  The effects can even be circular, from node A to B to C
                and back to A.  On the other hand, the static calculation can often
                accommodate queuing methods, such as transmission selection by
                strict priority, that are unsuitable for the dynamic calculation.
          
        
         
           Dynamic Latency Calculation
           
             The dynamic problem:
             
                        Given a network whose maximum capacity for DetNet flows is
                        bounded by a set of static configuration parameters applied to the
                        DetNet transit nodes and given just one DetNet flow, compute the worst-case
                        end-to-end latency that can be experienced by that flow, no
                        matter what other DetNet flows (within the network's configured parameters)
                        might be created or deleted in the future.  Also, compute the resources,
                        particularly buffer space, required in each DetNet transit node
                        to achieve zero congestion loss.
                    
          
           
                This calculation is dynamic, in the sense that DetNet flows can be added or deleted
                at any time, with a minimum of computation effort and without affecting
                the guarantees already given to other DetNet flows.
          
           
                Dynamic latency calculation can be done based on the static one described in  ;
                when a new DetNet flow is created or deleted, the entire calculation for all DetNet flows is
                repeated.  If an already-established DetNet flow would be pushed beyond its latency
                requirements by the new DetNet flow request, then the new DetNet flow request can be refused
                or some other suitable action can be taken.
          
           
                The choice of queuing methods is critical to the applicability of the
                dynamic calculation.  Some queuing methods (e.g., CQF,  ) make
                it easy to configure bounds on the network's capacity and to make
                independent calculations for each DetNet flow. Some other queuing methods (e.g., strict priority with the credit-based shaper
                defined in Section 8.6.8.2 of  ) can be used for dynamic DetNet flow creation
                but yield poorer latency and buffer space guarantees than when that same
                queuing method is used for static DetNet flow creation
                ( ).
          
        
      
       
         Relay Node Model
         A model for the operation of a DetNet transit node is required in order to
            define the latency and buffer calculations.
            In  , we see a breakdown of the per-hop latency experienced by a packet passing through a DetNet transit node in
        terms that are suitable for computing both hop-by-hop latency and per-hop buffer requirements.
         
           Timing Model for DetNet or TSN
           
      DetNet transit node A            DetNet transit node B
   +-------------------------+       +------------------------+
   |              Queuing    |       |              Queuing   |
   |   Regulator subsystem   |       |   Regulator subsystem  |
   |   +-+-+-+-+ +-+-+-+-+   |       |   +-+-+-+-+ +-+-+-+-+  |
-->+   | | | | | | | | | +   +------>+   | | | | | | | | | +  +--->
   |   +-+-+-+-+ +-+-+-+-+   |       |   +-+-+-+-+ +-+-+-+-+  |
   |                         |       |                        |
   +-------------------------+       +------------------------+
   |<->|<------>|<------->|<->|<---->|<->|<------>|<------>|<->|<--
2,3  4      5        6      1    2,3   4      5        6     1   2,3
          1: Output delay             4: Processing delay
          2: Link delay               5: Regulation delay
          3: Frame preemption delay   6: Queuing subsystem delay

        
         In  , we see two DetNet transit nodes that are connected via a link. In this model, the only queues that we deal
                with explicitly are attached to the output port; other queues are modeled as variations
                in the other delay times (e.g., an input queue could be modeled as either a variation
                in the link delay (2) or the processing delay (4)).  There are six delays that a packet
                can experience from hop to hop.
         
           
             Output delay
             
            This is the time taken from the selection of a packet for output from
	    a queue to the
                    transmission of the first bit of the packet on the physical link.  If the
                    queue is directly attached to the physical port, output delay can be a constant.
		    However, in many implementations, a multiplexed connection separates the queuing mechanism from a multi-port Network Interface Card (NIC).
                    This causes variations in the output delay that are hard for the forwarding node
                    to predict or control.
            
          
           
             Link delay
             
            This is the time taken from the transmission of the first bit of the
	    packet to the
                    reception of the last bit, assuming that the transmission is not suspended by
                    a frame preemption event.  This delay has two components: the first-bit-out to first-bit-in delay and the first-bit-in to last-bit-in delay that varies with packet  size.  The former is typically constant.  However,
                    a virtual "link" could exhibit a variable link delay.
          
           
             Frame preemption delay
             
            If the packet is interrupted in order to transmit another packet or packets
	    (e.g., frame preemption, as in  , clause 99),
                    an arbitrary delay can result.
          
           
             Processing delay
             
                    This delay covers the time from the reception of the last bit of the packet to the
                    time the packet is enqueued in the regulator (queuing subsystem if there is no regulator), as shown in  .
                    This delay can be variable and depends on the details of the operation of the forwarding node.
          
           
             Regulator queuing delay
             
                    A regulator, also known as shaper in  , delays some or all of the packets in a traffic stream in order to bring the stream into compliance with an arrival curve; an arrival curve 'alpha(t)' is an upper bound on the number of bits observed within any interval t. The regulator delay is the time spent from the insertion of the last bit of a packet into a regulation queue until the time the packet is declared eligible according to its regulation constraints. We assume that this time can be calculated based on the details of regulation policy. If there is no regulation, this time is zero.
          
           
             Queuing subsystem delay
             
                    This is the time spent for a packet from being declared eligible until being
                    selected for output on the next link.  We assume that this time is
                    calculable based on the details of the queuing mechanism. If there is no regulation, this time is from the insertion 
                    of the packet into a queue until it is selected for output on the next link.
            
          
        
         Not shown in   are the other output queues that we
                presume are also attached to that same output port as the queue shown, and against
                which this shown queue competes for transmission opportunities.
         In this analysis, the measurement is from the point at which a packet is selected for output in a node to the point at which it is selected for output in the next downstream node (i.e., the definition of a "hop").  In general,
                any queue selection method that is suitable for use in a DetNet network includes
                a detailed specification as to exactly when packets are selected for transmission.
                Any variations in any of the delay times 1-4 result in a need for additional
                buffers in the queue.  If all delays 1-4 are constant, then any variation in the
                time at which packets are inserted into a queue depends entirely on the timing
                of packet selection in the previous node.  If delays 1-4 are not constant,
                then additional buffers are required in the queue to absorb these variations.
                Thus:
        
         
           Variations in the output delay (1) require buffers to absorb that variation
                        in the next hop, so the output delay variations of the previous hop (on each
                        input port) must be known in order to calculate the buffer space required
                        on this hop.
           Variations in the processing delay (4) require additional output buffers
                        in the queues of that same DetNet transit node.  Depending on the details
                        of the queuing subsystem delay (6) calculations, these variations need not be
                        visible outside the DetNet transit node.
                    
        
      
    
     
       Computing End-to-End Delay Bounds
       
         Non-queuing Delay Bound
         End-to-end latency bounds can be computed using the delay model in  . Here, it is important
        to be aware that, for several queuing mechanisms, the end-to-end latency bound is less than the sum of the
        per-hop latency bounds.
        An end-to-end latency bound for one DetNet flow
        can be computed as
        
          end_to_end_delay_bound = non_queuing_delay_bound + queuing_delay_bound
        
         The two terms in the above formula are computed as follows. 
         
        First, at the h-th hop along the path of this DetNet flow, obtain an upper-bound
        per-hop_non_queuing_delay_bound[h] on the sum of the bounds over delays
        1, 2, 3, and 4
        of   . These upper bounds are expected to
        depend on the specific technology of the DetNet transit node at the h-th hop but not on
        the T-SPEC of this DetNet flow  . Then, set non_queuing_delay_bound = the sum
        of per-hop_non_queuing_delay_bound[h] over all hops h. 
        
         
        Second, compute queuing_delay_bound as an upper bound to the sum of the
        queuing delays along the path. The value of queuing_delay_bound depends
        on the information on the arrival curve of this DetNet flow and possibly
        of other flows in the network, as well as the specifics of the queuing
        mechanisms deployed along the path of this DetNet flow. Note that arrival curve of the DetNet flow at the source is immediately specified by the T-SPEC of this flow. The computation of queuing_delay_bound 
        is described in   as a separate section.
        
      
       
         Queuing Delay Bound
         
        For several queuing mechanisms, queuing_delay_bound is less than the sum of upper bounds on the queuing delays (5 and 6)
        at every hop.  This occurs with (1) per-flow queuing and (2) aggregate queuing with regulators, as explained in Sections  ,  , and  . For other queuing mechanisms, the only available value of queuing_delay_bound
        is the sum of the per-hop queuing delay bounds.
        
         
        The computation of per-hop queuing delay bounds must account for the fact that the arrival curve of a DetNet flow is no longer satisfied at the ingress of a hop, since burstiness increases as one flow traverses one DetNet transit node. If a regulator is placed at a hop, an arrival curve of a DetNet flow at the entrance of the queuing subsystem of this hop is the one configured at the regulator (also called shaping curve in  ); otherwise, an arrival curve of the flow can be derived using the delay jitter of the flow from the last regulation point (the last regulator in the path of the flow if there is any, otherwise the source of the flow) to the ingress of the hop; more formally, assume a DetNet flow has an arrival curve at the last regulation point equal to 'alpha(t)' and the delay jitter from the last regulation point to the ingress of the hop is 'V'. Then, the arrival curve at the ingress of the hop is 'alpha(t+V)'. 
        
         
        For example, consider a DetNet flow with T-SPEC "Interval: tau, MaxPacketsPerInterval: K, MaxPayloadSize: L" at the source. Then, a leaky-bucket arrival curve for such flow at the source is alpha(t)=r * t+ b, t>0; alpha(0)=0, where r is the rate and b is the bucket size, computed as
        
         r =  K * (L+L') / tau,
        
         b = K * (L+L').
        
          
        where L' is the size of any added networking technology-specific encapsulation (e.g., MPLS label(s), UDP, or IP headers). Now, if the flow has a delay jitter of 'V' from the last regulation point to the ingress of a hop, an arrival curve at this point is r * t + b + r * V, implying that the burstiness is increased by r*V. More detailed information on arrival curves is available in  .
        
         
           Per-Flow Queuing Mechanisms
           
            With such mechanisms, each flow uses a separate queue inside every node. The service for each queue is abstracted with a guaranteed rate and a latency. For every DetNet flow, a per-node latency bound, as well as an end-to-end latency bound, can be computed from the traffic specification of this DetNet flow at its source and from the values of rates and latencies at all nodes along its path. An instance of per-flow queuing is Guaranteed Service  , for which the details of latency bound calculation are presented in  .
          
        
         
           Aggregate Queuing Mechanisms
           
                With such mechanisms, multiple flows are aggregated into macro-flows and there is one FIFO queue per macro-flow. A practical example is the credit-based shaper defined in Section 8.6.8.2 of  , where a macro-flow is called a "class".  One key issue in this context is how to deal with the burstiness cascade; individual flows that share a resource dedicated to a macro-flow may see their burstiness increase, which may in turn cause increased burstiness to other flows downstream of this resource. Computing delay upper bounds for such cases is difficult and, in some conditions, impossible    . Also, when bounds are obtained, they depend on the complete configuration and must be recomputed when one flow is added (i.e., the dynamic calculation in  ).
          
           
                A solution to deal with this issue for the DetNet flows is to reshape them at every hop. This can be done with per-flow regulators (e.g., leaky-bucket shapers), but this requires per-flow queuing and defeats the purpose of aggregate queuing. An alternative is the interleaved regulator, which reshapes individual DetNet flows without per-flow queuing    . With  an interleaved regulator, the packet at the head of the queue is regulated based on
its (flow) regulation constraints; it is released at the earliest time at which this is possible without violating the constraint. One key feature of a per-flow or interleaved regulator is that it does not increase worst-case latency bounds  . Specifically, when an interleaved regulator is appended to a FIFO subsystem, it does not increase the worst-case delay of the latter. In  , when the order of packets from the output of a queuing subsystem at node A to the entrance of a regulator at node B is preserved, then the regulator does not increase the worst-case latency bounds. This is made possible if all the systems are FIFO or a DetNet Packet Ordering Function (POF) is implemented just before the regulator. This property does not hold if packet reordering occurs from the output of a queuing subsystem to the entrance of the next downstream interleaved regulator, e.g., at a non-FIFO switching fabric.
          
           
                  shows an example of a network with 5 nodes, an aggregate queuing mechanism, and interleaved regulators, as in  . 
                An end-to-end delay bound for DetNet flow f, traversing nodes 1 to 5, is calculated as follows:
          
            end_to_end_latency_bound_of_flow_f = C12 + C23 + C34 + S4
          
           
                In the above formula, Cij is a bound on the delay of the queuing subsystem in node i and interleaved regulator of node j, 
                and S4 is a bound on the delay of the queuing subsystem in node 4 for DetNet flow f. In fact, using the delay definitions in 
                 , Cij is a bound on a sum of delays 1, 2, 3, and 6 of node i and delays 4 and 5 of node j. Similarly, S4 is a bound on 
                sum of delays 1, 2, 3, and 6 of node 4. A practical example of the queuing model and delay calculation is presented  . 
          
           
             End-to-End Delay Computation Example
             
            f
  ----------------------------->
+---+   +---+   +---+   +---+   +---+
| 1 |---| 2 |---| 3 |---| 4 |---| 5 |
+---+   +---+   +---+   +---+   +---+
   \__C12_/\__C23_/\__C34_/\_S4_/

          
           
                If packet reordering does not occur, the end-to-end latency bound calculation provided here gives a tighter latency upper bound than would be obtained by adding the latency bounds of each node in the path of a DetNet flow  .
          
        
      
       
         Ingress Considerations
         
            A sender can be a DetNet node that uses exactly the same queuing methods as its adjacent DetNet transit node so that the latency and buffer bounds calculations at the first hop are indistinguishable from those at a later hop within the DetNet domain. On the other hand, the sender may be DetNet unaware; in which case, some conditioning of the DetNet flow may be necessary at the ingress DetNet transit node. The ingress conditioning typically consists of the regulators described in  .
        
      
       
         Interspersed DetNet-Unaware Transit Nodes
         
            It is sometimes desirable to build a network that has both DetNet-aware
            transit nodes and DetNet-unaware transit nodes and for a DetNet flow to
            traverse an island of DetNet-unaware transit nodes while still allowing the
            network to offer delay and congestion loss guarantees.  This is possible
            under certain conditions.
        
         
            In general, when passing through a DetNet-unaware island, the island may cause
            delay variation in excess of what would be caused by DetNet nodes.  That
            is, the DetNet flow might be "lumpier" after traversing the DetNet-unaware island.
            DetNet guarantees for delay and buffer requirements can still be
            calculated and met if and only if the following are true:
        
         
	   
                    The latency variation across the DetNet-unaware island must be
                    bounded and calculable.
                
           
                    An ingress conditioning function ( )
                    is required at the reentry to the DetNet-aware domain.
                    This will, at least, require some extra buffering to accommodate
                    the additional delay variation and thus further increases the
                    latency bound.
                
        
         
            The ingress conditioning is exactly the same problem as that of a sender
            at the edge of the DetNet domain.  The requirement for bounds on the
            latency variation across the DetNet-unaware island is typically the most
            difficult to achieve.  Without such a bound, it is obvious that DetNet
            cannot deliver its guarantees, so a DetNet-unaware island that cannot
            offer bounded latency variation cannot be used to carry a DetNet flow.
        
      
    
     
       Achieving Zero Congestion Loss
       
        When the input rate to an output queue exceeds the output rate for a sufficient
        length of time, the queue must overflow.  This is congestion loss, and this is
        what DetNet seeks to avoid.
      
       
        To avoid congestion losses, an upper bound on the backlog present in the regulator and queuing subsystem of  
    must be computed during resource reservation. This bound depends on the set of flows that use these queues, 
    the details of the specific queuing mechanism, and an 
    upper bound on the processing delay (4). The queue must contain the packet in transmission, plus all other packets that
    are waiting to be selected for output. A conservative backlog  bound that applies to all systems can be derived as follows.  
      
       
    The backlog bound is counted in data units (bytes or words of multiple bytes) that are relevant for buffer allocation.
    For every flow or an aggregate of flows, we need one buffer space for the packet in transmission, plus space for the packets that are waiting to be selected for output.
      
       Let 
      
       
          total_in_rate be the sum of the line rates of all input ports that send traffic to this output port. The value of total_in_rate
    is in data units (e.g., bytes) per second. 
    
         nb_input_ports be the number of input ports that send traffic to this output port.
         max_packet_length be the maximum packet size for packets that may be sent to this output port. This is counted in data units.
    
         max_delay456 be an upper bound, in seconds, on the sum of the processing delay (4) and the queuing delays (5 and 6) for any packet
     at this output port.
    
      
       Then, a bound on the backlog of traffic in the queue at this output port is
        backlog_bound = (nb_input_ports *  max_packet_length)  + (total_in_rate * max_delay456)
      
       The above bound is over the backlog caused by the traffic entering the queue from the input ports of a DetNet node. If the DetNet node also generates packets (e.g., creation of new packets or replication of arriving packets), the bound must accordingly incorporate the introduced backlog.
    
     
       Queuing Techniques
       In this section, we present a general queuing data model, as well as some examples of queuing mechanisms. For simplicity of latency bound computation, we assume a leaky-bucket arrival curve for each DetNet flow at the source.
     Also, at each DetNet transit node, the service for each queue is abstracted with a minimum guaranteed rate and a latency  .
       
         Queuing Data Model
         Sophisticated queuing mechanisms are available in Layer 3 (L3) (e.g., see   for an overview).
        In general, we assume that "Layer 3" queues, shapers, meters, etc., are precisely the "regulators"
        shown in  . The "queuing subsystems" in this figure are FIFO. They are not the province solely of bridges;
        they are an essential part of any DetNet transit node.  As illustrated by numerous implementation examples, some of the
        "Layer 3" mechanisms described in documents, such as  , are often integrated
        in an implementation, with the "Layer 2" mechanisms also implemented in the same node.  An integrated model
        is needed in order to successfully predict the interactions among the different queuing mechanisms
        needed in a network carrying both DetNet flows and non-DetNet flows.
        
           shows the general model for the flow of packets through
    the queues of a DetNet transit node. The DetNet packets are mapped to a number of regulators. Here, we assume that the Packet Replication, Elimination, and Ordering Functions (PREOF) are performed before the DetNet packets enter the regulators.
     All packets are assigned to a set of queues.  Packets compete for the selection to be passed to queues in the queuing subsystem. Packets again are selected for output from the
    queuing subsystem.
        
         
           IEEE 802.1Q Queuing Model: Data Flow
           
                                 |
+--------------------------------V----------------------------------+
|                          Queue assignment                         |
+--+------+----------+---------+-----------+-----+-------+-------+--+
   |      |          |         |           |     |       |       |
+--V-+ +--V-+     +--V--+   +--V--+     +--V--+  |       |       |
|Flow| |Flow|     |Flow |   |Flow |     |Flow |  |       |       |
|  0 | |  1 | ... |  i  |   | i+1 | ... |  n  |  |       |       |
| reg| | reg|     | reg |   | reg |     | reg |  |       |       |
+--+-+ +--+-+     +--+--+   +--+--+     +--+--+  |       |       |
   |      |          |         |           |     |       |       |
+--V------V----------V--+   +--V-----------V--+  |       |       |
|  Trans.  selection    |   | Trans. select.  |  |       |       |
+----------+------------+   +-----+-----------+  |       |       |
           |                      |              |       |       |
        +--V--+                +--V--+        +--V--+ +--V--+ +--V--+
        | out |                | out |        | out | | out | | out |
        |queue|                |queue|        |queue| |queue| |queue|
        |  1  |                |  2  |        |  3  | |  4  | |  5  |
        +--+--+                +--+--+        +--+--+ +--+--+ +--+--+
           |                      |              |       |       |
+----------V----------------------V--------------V-------V-------V--+
|                      Transmission selection                       |
+---------------------------------+---------------------------------+
                                  |
                                  V

        
         Some relevant mechanisms are hidden in this figure and are performed in the
        queue boxes:
        
         
           discarding packets because a queue is full
        
           
            discarding packets marked "yellow" by a metering function in preference
            to discarding "green" packets  
          
        
         
        Ideally, neither of these actions are performed on DetNet packets.  Full queues
        for DetNet packets occur only when a DetNet flow is misbehaving, and the DetNet
        QoS does not include "yellow" service for packets in excess
	of a committed rate.
        
         
        The queue assignment function can be quite complex, even in a
        bridge  , because of the
        introduction of per-stream filtering and policing ( , clause 8.6.5.1).
        In addition to the Layer 2 priority
        expressed in the 802.1Q VLAN tag, a DetNet transit node can utilize the information from the non-exhaustive list below to assign a packet to a particular queue:
        
         
           
                input port
            
           
                selector based on a rotating schedule that starts at regular, time-synchronized
                intervals and has nanosecond precision
            
           
                MAC addresses, VLAN ID, IP addresses, Layer 4 port numbers, and Differentiated Services Code Point (DSCP)    
          
           
                the queue assignment function can contain metering and policing
                functions
            
           
                MPLS and/or pseudowire labels  
          
        
         
        The "Transmission selection" function decides which queue is to transfer its
        oldest packet to the output port when a transmission opportunity arises.
        
      
       
         Frame Preemption
         
    In   and  , the transmission of a frame
    can be interrupted by one or more "express" frames; then, the interrupted frame can
    continue transmission.  The frame preemption is modeled as
    consisting of two MAC/PHY stacks: one for packets that
    can be interrupted and one for packets that can interrupt the interruptible packets.
    Only one layer of frame preemption is supported -- a transmitter cannot have more than one
    interrupted frame in progress.  DetNet flows typically pass through the interrupting
    MAC. For those DetNet flows with T-SPEC, latency bounds can be 
    calculated by the methods provided in the following sections that account for the effect of frame preemption, according to the specific 
    queuing mechanism that is used in DetNet nodes. Best-effort queues pass through the 
    interruptible MAC and can thus be preempted.
        
      
       
         Time-Aware Shaper
         
            In  , the notion of time-scheduling queue gates is
            described in Section 8.6.8.4. On each node, the transmission selection for packets 
            is controlled by time-synchronized gates; each output queue is associated with a gate.
            The gates can be either open or closed. The states of the gates are
            determined by the gate control list (GCL). The GCL specifies the opening and closing
            times of the gates. The design of the GCL must satisfy the requirement of 
            latency upper bounds of all DetNet flows; therefore, those DetNet flows that traverse a 
            network that uses this kind of shaper must have bounded latency if the traffic and nodes are conformant.
        
         
            Note that scheduled traffic service relies on a synchronized
            network and coordinated GCL configuration. Synthesis of the GCL on multiple
            nodes in a network is a scheduling problem considering all DetNet flows
            traversing the network, which is a nondeterministic polynomial-time hard
            (NP-hard) problem  . Also, at the time of writing, scheduled traffic service
            supports no more than eight traffic queues, typically using up to seven
            priority queues and at least one best effort.
        
      
       
         Credit-Based Shaper with Asynchronous Traffic Shaping
         
            In this queuing model, it is assumed that the DetNet nodes are FIFO. We consider the four traffic classes (Definition 3.268 of  ): control-data traffic (CDT),
            class A, class B, and best effort (BE) in decreasing order of priority. Flows of classes A and B are DetNet flows that are less critical than CDT (such as studio audio and video traffic, as in IEEE 802.1BA Audio-Video-Bridging). This model is a subset of Time-Sensitive Networking, as described next.
        
         
            Based on the timing model described in  , contention occurs only at the output port of a DetNet transit node; therefore, the focus of the rest of this subsection is on the regulator and queuing subsystem in the output port of a DetNet transit node. The input flows are identified using the information in ( ). Then, they are aggregated into eight macro-flows based
            on their service requirements; we refer to each macro-flow as a class.
             The output port performs aggregate scheduling with eight queues (queuing subsystems): one for CDT, one for class A flows, one for class B flows, and five for BE traffic denoted as BE0-BE4. The queuing policy for each queuing subsystem is FIFO. In addition, each node output port also performs per-flow regulation for 
            class A and B flows using an interleaved regulator (IR). This regulation is called 
   asynchronous traffic shaping  . Thus, at each output port of a node, there is one interleaved regulator per input 
            port and per class; the interleaved regulator is mapped to the regulator depicted in  . The detailed picture of scheduling and regulation architecture at a node output port is given by  . The packets received at a node input port for a given class are enqueued in the respective interleaved regulator at the output port.
            Then, the packets from all the flows, including CDT and BE flows, are enqueued in a queuing subsystem; there is no regulator for CDT and BE flows.
        
         
           The Architecture of an Output Port inside a Relay Node with Interleaved Regulators (IRs) and a Credit-Based Shaper (CBS)
           
      +--+   +--+ +--+   +--+
      |  |   |  | |  |   |  |
      |IR|   |IR| |IR|   |IR|
      |  |   |  | |  |   |  |
      +-++XXX++-+ +-++XXX++-+
        |     |     |     |
        |     |     |     |
+---+ +-v-XXX-v-+ +-v-XXX-v-+ +-----+ +-----+ +-----+ +-----+ +-----+
|   | |         | |         | |Class| |Class| |Class| |Class| |Class|
|CDT| | Class A | | Class B | | BE4 | | BE3 | | BE2 | | BE1 | | BE0 |
|   | |         | |         | |     | |     | |     | |     | |     |
+-+-+ +----+----+ +----+----+ +--+--+ +--+--+ +--+--+ +--+--+ +--+--+
  |        |           |         |       |       |       |       |
  |      +-v-+       +-v-+       |       |       |       |       |
  |      |CBS|       |CBS|       |       |       |       |       |
  |      +-+-+       +-+-+       |       |       |       |       |
  |        |           |         |       |       |       |       |
+-v--------v-----------v---------v-------V-------v-------v-------v--+
|                     Strict Priority selection                     |
+--------------------------------+----------------------------------+
                                 |
                                 V

        
         
            Each of the queuing subsystems for classes A and B contains a credit-based shaper (CBS). The CBS serves a packet from a class according to the available credit
            for that class. As described in Section 8.6.8.2 and Annex L.1 of  , the credit for each class A or B increases based on the idle slope (as guaranteed rate) and decreases based on the sendslope (typically equal to the difference between the guaranteed and the output link rates), both of which 
            are parameters of the CBS. The CDT and BE0-BE4 flows are served by separate queuing subsystems. Then, packets from all flows are
            served by a transmission selection subsystem that serves packets from each class based on its priority. All subsystems are non-preemptive.
            Guarantees for class A and B traffic can be provided only if CDT is bounded. It is assumed that the CDT has a leaky-bucket arrival curve with two parameters: r_h as rate and b_h as bucket size. That is, the amount of bits entering a node within a time interval t is bounded by r_h * t + b_h. 
        
         
            Additionally, it is assumed that the class A and B flows are also regulated at their source according to a leaky-bucket arrival curve. At the source, the traffic satisfies its regulation constraint, i.e., the delay due to interleaved regulator at the source is ignored.
        
         
            At each DetNet transit node implementing an interleaved regulator, packets of multiple flows are processed in one FIFO queue. The packet at the head
            of the queue is regulated based on its leaky-bucket parameters. It is released at the earliest time at which this is possible without violating 
            the constraint. 
        
         
                The regulation parameters for a flow (leaky-bucket rate and bucket size) are the same at its source and at all DetNet transit nodes along its path in the case where all clocks are perfect. However, in reality, there is clock non-ideality throughout the DetNet domain, even with clock synchronization. This phenomenon causes inaccuracy in the rates configured at the regulators that may lead to network instability. To avoid instability, the rates are set as the source rates with some positive margin when configuring regulators.   describes and provides solutions to this issue.
        
         
           Delay Bound Calculation
           
                A delay bound of the queuing subsystem ((4) in  ) of a given DetNet node for a flow of class A or B can be computed if the following condition holds:
          
           The sum of leaky-bucket rates of all flows of this class at this transit node <= R, where R is given below for every class
          
           If the condition holds, the delay bounds for a flow of class X (A or B) is d_X and calculated as:
            d_X = T_X + (b_t_X-L_min_X)/R_X - L_min_X/c
           
                where L_min_X is the minimum packet lengths of class X (A or B); c is the output link transmission rate; and b_t_X is the sum of the b term (bucket size) for all the flows of the class X. Parameters R_X and T_X are calculated as follows for class A and B, separately.
          
           If the flow is of class A:
            R_A = I_A * (c-r_h)/ c
           T_A = (L_nA + b_h + r_h * L_n/c)/(c-r_h)
           where I_A is the idle slope for class A; L_nA is the maximum packet length of class B and BE packets; L_n is the maximum packet length of classes A, B, and BE; and r_h is the rate and b_h is the bucket size of CDT leaky-bucket arrival curve. 
           If the flow is of class B:
           R_B = I_B * (c-r_h)/ c
           T_B = (L_BE + L_A + L_nA * I_A/(c_h-I_A) + b_h + r_h * L_n/c)/(c-r_h)
           
                where I_B is the idle slope for class B; L_A is the maximum packet length of class A; and L_BE is the maximum packet length of class BE.
          
           Then, as discussed in  , an interleaved regulator does not increase the delay bound of the upstream queuing subsystem; therefore, an end-to-end delay bound for a DetNet flow of class X (A or B) is the sum of d_X_i for all node i in the path of the flow, where d_X_i is the delay bound of queuing subsystem in node i, which is computed as above. According to the notation in  , the delay bound of the queuing subsystem in a node i and interleaved regulator in node j, i.e., Cij, is:
           Cij = d_X_i
           More information of delay analysis in such a DetNet transit node is described in  .
        
         
           Flow Admission
            
                The delay bound calculation requires some information about each node. For each node, it is required to know the idle slope of the CBS for each class A and B (I_A and I_B), as well as the transmission rate of the output link (c). Besides, it is necessary to have the information on each class, i.e., maximum packet length of classes A, B, and BE. Moreover, the leaky-bucket parameters of CDT (r_h, b_h) must be known. To admit a flow or flows of classes A and B, their delay requirements must be guaranteed not to be violated. As described in  , the two problems (static and dynamic) are addressed separately. In either of the problems, the rate and delay must be guaranteed. Thus,
          
           
             The static admission control:
             
                    The leaky-bucket parameters of all class A or B flows are known; therefore, for each flow f of either class A or B, a delay bound
           can be calculated.  The computed delay bound for every flow
           of class A or B must not be more than its delay requirement. Moreover, the sum of the rate of each flow (r_f) must not be more than the rate allocated to each class (R). If these two conditions hold, the configuration is declared admissible.
                    
             The dynamic admission control:
             
               
                   For dynamic admission control, we allocate 
          a static value for rate (R) and a maximum bucket
          size (b_t) to every node and each class A or B.  
          In addition, for every node and each class A
          or B, two counters are maintained:
                
                 
                   R_acc is equal to the sum of the leaky-bucket rates of all flows of this class already admitted at this node; at all times, we must have:
                   R_acc <= R, (Eq. 1)
                   b_acc is equal to the sum of the bucket sizes of all flows of this class already admitted at this node; at all times, we must have:
                   b_acc <= b_t.  (Eq. 2)
                
              
               
              A new class A or B flow is admitted at this node if Eqs. (1) and (2) continue to be satisfied after adding its leaky-bucket rate and bucket size to R_acc and b_acc. A class A or B flow is admitted in the network if it is admitted at all nodes along its path. When this happens, all variables R_acc and b_acc along its path must be incremented to reflect the addition of the flow. Similarly, when a class A or B flow leaves the network, all variables R_acc and b_acc along its path must be decremented to reflect the removal of the flow.
              
            
          
           
                The choice of the static values of R and b_t at all nodes and classes must be done in a prior configuration phase: R controls the bandwidth allocated to this class at this node, and b_t affects the delay bound and the buffer requirement. The value of R must be set such that
          
           R <= I_X*(c-r_h)/c
           
                where I_X is the idleslope of credit-based shaper for class X={A,B}, c is the transmission rate of the output link, and r_h is the leaky-bucket rate of the CDT class.
          
        
      
       
         Guaranteed Service
         The Guaranteed Service is defined in  . The flow, at the source, has a leaky-bucket arrival curve with two parameters: r as rate and b as bucket size, i.e., the amount of bits entering a node within a time interval t is bounded by r * t + b. 
         If a resource reservation on a path is applied, a node provides a guaranteed rate R and maximum service latency of T. This can be interpreted in a way that the bits might have to wait up to T before being served with a rate greater or equal to R. The delay bound of the flow traversing the node is T + b / R.
         Consider a Guaranteed Service   path including a sequence of nodes, where the i-th node provides a guaranteed rate R_i and maximum service latency of T_i. 
 Then, the end-to-end delay bound for a flow on this can be calculated as sum(T_i) + b / min(R_i).
        
         The provided delay bound is based on a simple case of Guaranteed Service, where only a guaranteed rate and maximum service latency and a leaky-bucket arrival curve are available.  If more information about the flow is known, e.g., the peak rate, the delay bound is more complicated; the details are available in   and Section 1.4.1 of  .
        
      
       
         Cyclic Queuing and Forwarding
         
         Annex T of   describes Cyclic Queuing
         and Forwarding (CQF), which provides bounded latency and zero congestion loss using
         the time-scheduled gates of Section 8.6.8.4 of  .  For a given class of DetNet
         flows, a set of two or more buffers is provided at the output queue layer of
          .  A cycle time T_c is configured for each class of DetNet
         flows c, and all of the buffer sets in a class of DetNet
         flows swap buffers simultaneously throughout the DetNet domain
         at that cycle rate, all in phase. In such a mechanism, the regulator, as mentioned in  , is not required.
        
         
        In the case of two-buffer CQF, each class of DetNet flows c has two buffers, namely buffer1 and buffer2. In a cycle (i) when buffer1 accumulates received packets from the node's reception ports, buffer2 transmits the already stored packets from the previous cycle (i-1). In the next cycle (i+1), buffer2 stores the received packets and buffer1 transmits the packets received in cycle (i). The duration of each cycle is T_c.
        
         
        The cycle time T_c must be carefully chosen; it needs to be large enough to accommodate all the DetNet traffic, plus at least one maximum packet (or fragment) size from lower priority queues, which might be received within a cycle. 
        Also, the value of T_c includes a time interval, called dead time (DT), which is the sum of delays 1, 2, 3, and 4 defined in  . The value of DT guarantees that the last packet of one cycle in a node is fully delivered to a buffer of the next node in the same cycle. A two-buffer CQF is recommended if DT is small compared to T_c. For a large DT, CQF with more buffers can be used, and a cycle identification label can be added to the packets.
        
         
        The per-hop latency is determined by the cycle time T_c: a packet transmitted from a node at a cycle (i) is transmitted from the next node at cycle (i+1). Then, if the packet traverses h hops, the maximum latency experienced by the packet is from 
         the beginning of cycle (i) to the end of cycle (i+h); also, the minimum latency is from the end of cycle (i), before the DT, to the beginning of cycle (i+h). Then, the maximum latency is:
        
         (h+1) T_c
          and the minimum latency is:
         (h-1) T_c + DT.
         
         Ingress conditioning ( ) may be required if the source of a DetNet flow does not itself employ CQF. Since there are no per-flow parameters in the CQF technique, per-hop configuration is not required in the CQF forwarding nodes.
        
      
    
     
       Example Application on DetNet IP Network
       
        This section provides an example application of the timing model presented in this document to control the admission of a DetNet flow on a DetNet-enabled IP network. Consider  , taken from  , which shows a simple IP network:
      
       
         
          End system 1 implements Guaranteed Service  , as in  , between itself and relay node 1. 
        
         
                Sub-network 1 is a TSN network. The nodes in sub-network 1 implement credit-based shapers with asynchronous traffic shaping, as in  .
            
         
                Sub-network 2 is a TSN network. The nodes in sub-network 2 implement Cyclic Queuing and Forwarding with two buffers, as in  .
            
         
                The relay nodes 1 and 2 implement credit-based shapers with asynchronous traffic shaping, as in  . They also perform the aggregation and mapping of IP DetNet flows to TSN streams ( ).
            
      
       
         A Simple DetNet-Enabled IP Network, Taken from RFC 8939
         
 DetNet IP       Relay                        Relay       DetNet IP
 End System      Node 1                       Node 2      End System
     1                                                        2
+----------+                                             +----------+
|   Appl.  |<------------ End-to-End Service ----------->|   Appl.  |
+----------+  ............                 ...........   +----------+
| Service  |<-: Service  :-- DetNet flow --: Service  :->| Service  |
+----------+  +----------+                 +----------+  +----------+
|Forwarding|  |Forwarding|                 |Forwarding|  |Forwarding|
+--------.-+  +-.------.-+                 +-.---.----+  +-------.--+
         : Link :       \      ,-----.      /     \   ,-----.   /
         +......+        +----[  Sub- ]----+       +-[  Sub- ]-+
                              [Network]              [Network]
                               `--1--'                `--2--'

         |<--------------------- DetNet IP --------------------->|
             
|<--- d1 --->|<--------------- d2_p --------------->|<-- d3_p -->|        

      
       Consider a fully centralized control plane for the network of  , as described in  . Suppose end system 1 wants to create a DetNet flow with a traffic specification destined to end system 2 with end-to-end delay bound requirement D. Therefore, the control plane receives a flow establishment request and calculates a number of valid paths through the network ( ). To select a proper path, the control plane needs to compute an end-to-end delay bound at every node of each selected path p. 

       
    The end-to-end delay bound is d1 + d2_p + d3_p, where d1 is the delay bound from end system 1 to the entrance of relay node 1, d2_p is the delay bound for path p from relay node 1 to the entrance of the first node in sub-network 2, and d3_p is the delay bound of path p from the first node in sub-network 2 to end system 2. The computation of d1 is explained in  . Since the relay node 1, sub-network 1, and relay node 2 implement aggregate queuing, we use the results in Sections   and   to compute d2_p for the path p. Finally, d3_p is computed using the delay bound computation of  . Any path p, such that d1 + d2_p + d3_p <= D, satisfies the delay bound requirement of the flow. If there is no such path, the control plane may compute a new set of valid paths and redo the delay bound computation or reject the DetNet flow.

       
    As soon as the control plane selects a path that satisfies the delay bound constraint, it allocates and reserves the resources in the path for the DetNet flow ( ).

    
     
       Security Considerations
       
    Detailed security considerations for DetNet are cataloged in  , and more general security considerations are described in  .
      
       
        Security aspects that are unique to DetNet are those whose aim is to provide the specific QoS aspects of DetNet, specifically bounded end-to-end delivery latency and zero congestion loss. Achieving such loss rates and bounded latency may not be possible in the face of a highly capable adversary, such as the one envisioned by the Internet Threat Model of BCP 72  , which can arbitrarily drop or delay any or all traffic. In order to present meaningful security considerations, we consider a somewhat weaker attacker who does not control the physical links of the DetNet domain but may have the ability to control or change the behavior of some resources within the boundary of the DetNet domain.
      
       
        Latency bound calculations use parameters that reflect physical quantities. If an attacker finds a way to change the physical quantities, unknown to the control and management planes, the latency calculations fail and may result in latency violation and/or congestion losses. An example of such attacks is to make some traffic sources under the control of the attacker send more traffic than their assumed T-SPECs. This type of attack is typically avoided by ingress conditioning at the edge of a DetNet domain. However, it must be insured that such ingress conditioning is done per flow and that the buffers are segregated such that if one flow exceeds its T-SPEC, it does not cause buffer overflow for other flows.
      
       
        Some queuing mechanisms require time synchronization and operate correctly only if the time synchronization works correctly. In the case of CQF, the correct alignments of cycles can fail if an attack against time synchronization fools a node into having an incorrect offset. Some of these attacks can be prevented by cryptographic authentication as in Annex K of   for the Precision Time Protocol (PTP). However, the attacks that change the physical latency of the links used by the time synchronization protocol are still possible even if the time synchronization protocol is protected by authentication and cryptography  . Such attacks can be detected only by their effects on latency bound violations and congestion losses, which do not occur in normal DetNet operation.
      
    
     
       IANA considerations
       
	This document has no IANA actions.
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