
RFC 9298

Proxying UDP in HTTP

Abstract

This document describes how to proxy UDP in HTTP, similar to how the HTTP CONNECT method

allows proxying TCP in HTTP. More specifically, this document defines a protocol that allows an

HTTP client to create a tunnel for UDP communications through an HTTP server that acts as a

proxy.

Stream:

RFC:

Category:

Published:

ISSN:

Author:

Internet Engineering Task Force (IETF)

9298

Standards Track

August 2022

2070-1721

 D. Schinazi

Google LLC

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9298

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Schinazi Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9298
https://www.rfc-editor.org/info/rfc9298
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Conventions and Definitions

2. Client Configuration

3. Tunneling UDP over HTTP

3.1. UDP Proxy Handling

3.2. HTTP/1.1 Request

3.3. HTTP/1.1 Response

3.4. HTTP/2 and HTTP/3 Requests

3.5. HTTP/2 and HTTP/3 Responses

4. Context Identifiers

5. HTTP Datagram Payload Format

6. Performance Considerations

6.1. MTU Considerations

6.2. Tunneling of ECN Marks

7. Security Considerations

8. IANA Considerations

8.1. HTTP Upgrade Token

8.2. Well-Known URI

9. References

9.1. Normative References

9.2. Informative References

Acknowledgments

Author's Address

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 2

1. Introduction

While HTTP provides the CONNECT method (see) for creating a TCP

tunnel to a proxy, it lacked a method for doing so for UDP traffic prior to this specification.

This document describes a protocol for tunneling UDP to a server acting as a UDP-specific proxy

over HTTP. UDP tunnels are commonly used to create an end-to-end virtual connection, which

can then be secured using QUIC or another protocol running over UDP. Unlike the HTTP

CONNECT method, the UDP proxy itself is identified with an absolute URL containing the traffic's

destination. Clients generate those URLs using a URI Template , as described in

Section 2.

This protocol supports all existing versions of HTTP by using HTTP Datagrams .

When using HTTP/2 or HTTP/3 , it uses HTTP Extended CONNECT as described

in and . When using HTTP/1.x , it uses HTTP

Upgrade as defined in .

Section 9.3.6 of [HTTP] [TCP]

[UDP]

[QUIC]

[TEMPLATE]

[HTTP-DGRAM]

[HTTP/2] [HTTP/3]

[EXT-CONNECT2] [EXT-CONNECT3] [HTTP/1.1]

Section 7.8 of [HTTP]

1.1. Conventions and Definitions

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

In this document, we use the term "UDP proxy" to refer to the HTTP server that acts upon the

client's UDP tunneling request to open a UDP socket to a target server and that generates the

response to this request. If there are HTTP intermediaries (as defined in)

between the client and the UDP proxy, those are referred to as "intermediaries" in this document.

Note that, when the HTTP version in use does not support multiplexing streams (such as HTTP/

1.1), any reference to "stream" in this document represents the entire connection.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 3.7 of [HTTP]

2. Client Configuration

HTTP clients are configured to use a UDP proxy with a URI Template that has the

variables "target_host" and "target_port". Examples are shown below:

[TEMPLATE]

Figure 1: URI Template Examples

https://example.org/.well-known/masque/udp/{target_host}/{target_port}/
https://proxy.example.org:4443/masque?h={target_host}&p={target_port}
https://proxy.example.org:4443/masque{?target_host,target_port}

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc9110#section-9.3.6
https://www.rfc-editor.org/rfc/rfc9110#section-7.8
https://www.rfc-editor.org/rfc/rfc9110#section-3.7

The following requirements apply to the URI Template:

The URI Template be a level 3 template or lower.

The URI Template be in absolute form and include non-empty scheme, authority,

and path components.

The path component of the URI Template start with a slash ("/").

All template variables be within the path or query components of the URI.

The URI Template contain the two variables "target_host" and "target_port" and

contain other variables.

The URI Template contain any non-ASCII Unicode characters and only

contain ASCII characters in the range 0x21-0x7E inclusive (note that percent-encoding is

allowed; see).

The URI Template use Reserved Expansion ("+" operator), Fragment Expansion

("#" operator), Label Expansion with Dot-Prefix, Path Segment Expansion with Slash-Prefix,

nor Path-Style Parameter Expansion with Semicolon-Prefix.

Clients validate the requirements above; however, clients use a general-purpose

URI Template implementation that lacks this specific validation. If a client detects that any of the

requirements above are not met by a URI Template, the client reject its configuration and

abort the request without sending it to the UDP proxy.

The original HTTP CONNECT method allowed for the conveyance of the target host and port, but

not the scheme, proxy authority, path, or query. Thus, clients with proxy configuration interfaces

that only allow the user to configure the proxy host and the proxy port exist. Client

implementations of this specification that are constrained by such limitations attempt to

access UDP proxying capabilities using the default template, which is defined as "https://

$PROXY_HOST:$PROXY_PORT/.well-known/masque/udp/{target_host}/{target_port}/", where

$PROXY_HOST and $PROXY_PORT are the configured host and port of the UDP proxy,

respectively. UDP proxy deployments offer service at this location if they need to

interoperate with such clients.

• MUST

• MUST MUST

• MUST

• MUST

• MUST MAY

• MUST NOT MUST

Section 2.1 of [URI]

• MUST NOT

SHOULD MAY

MUST

MAY

SHOULD

3. Tunneling UDP over HTTP

To allow negotiation of a tunnel for UDP over HTTP, this document defines the "connect-udp"

HTTP upgrade token. The resulting UDP tunnels use the Capsule Protocol (see

) with HTTP Datagrams in the format defined in Section 5.

To initiate a UDP tunnel associated with a single HTTP stream, a client issues a request

containing the "connect-udp" upgrade token. The target of the tunnel is indicated by the client to

the UDP proxy via the "target_host" and "target_port" variables of the URI Template; see Section

2.

Section 3.2 of

[HTTP-DGRAM]

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc3986#section-2.1
https://www.rfc-editor.org/rfc/rfc9297#section-3.2

"target_host" supports using DNS names, IPv6 literals and IPv4 literals. Note that IPv6 scoped

addressing zone identifiers are not supported. Using the terms IPv6address, IPv4address, reg-

name, and port from , the "target_host" and "target_port" variables adhere to the

format in Figure 2, using notation from . Additionally:

both the "target_host" and "target_port" variables be empty.

if "target_host" contains an IPv6 literal, the colons (":") be percent-encoded. For

example, if the target host is "2001:db8::42", it will be encoded in the URI as

"2001%3Adb8%3A%3A42".

"target_port" represent an integer between 1 and 65535 inclusive.

When sending its UDP proxying request, the client perform URI Template expansion to

determine the path and query of its request.

If the request is successful, the UDP proxy commits to converting received HTTP Datagrams into

UDP packets, and vice versa, until the tunnel is closed.

By virtue of the definition of the Capsule Protocol (see), UDP

proxying requests do not carry any message content. Similarly, successful UDP proxying

responses also do not carry any message content.

[URI] MUST

[ABNF]

• MUST NOT

• MUST

• MUST

Figure 2: URI Template Variable Format

target_host = IPv6address / IPv4address / reg-name
target_port = port

SHALL

Section 3.2 of [HTTP-DGRAM]

3.1. UDP Proxy Handling

Upon receiving a UDP proxying request:

if the recipient is configured to use another HTTP proxy, it will act as an intermediary by

forwarding the request to another HTTP server. Note that such intermediaries may need to

re-encode the request if they forward it using a version of HTTP that is different from the

one used to receive it, as the request encoding differs by version (see below).

otherwise, the recipient will act as a UDP proxy. It extracts the "target_host" and "target_port"

variables from the URI it has reconstructed from the request headers, decodes their percent-

encoding, and establishes a tunnel by directly opening a UDP socket to the requested target.

Unlike TCP, UDP is connectionless. The UDP proxy that opens the UDP socket has no way of

knowing whether the destination is reachable. Therefore, it needs to respond to the request

without waiting for a packet from the target. However, if the "target_host" is a DNS name, the

UDP proxy perform DNS resolution before replying to the HTTP request. If errors occur

during this process, the UDP proxy reject the request and send details using an

appropriate Proxy-Status header field . For example, if DNS resolution returns

an error, the proxy can use the dns_error Proxy Error Type from

.

•

•

MUST

MUST SHOULD

[PROXY-STATUS]

Section 2.3.2 of [PROXY-

STATUS]

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc9297#section-3.2
https://www.rfc-editor.org/rfc/rfc9209#section-2.3.2

UDP proxies can use connected UDP sockets if their operating system supports them, as that

allows the UDP proxy to rely on the kernel to only send it UDP packets that match the correct 5-

tuple. If the UDP proxy uses a non-connected socket, it validate the IP source address and

UDP source port on received packets to ensure they match the client's request. Packets that do

not match be discarded by the UDP proxy.

The lifetime of the socket is tied to the request stream. The UDP proxy keep the socket open

while the request stream is open. If a UDP proxy is notified by its operating system that its socket

is no longer usable, it close the request stream. For example, this can happen when an

ICMP Destination Unreachable message is received; see . UDP proxies

choose to close sockets due to a period of inactivity, but they close the request stream when

closing the socket. UDP proxies that close sockets after a period of inactivity use a

period lower than two minutes; see .

A successful response (as defined in Sections 3.3 and 3.5) indicates that the UDP proxy has

opened a socket to the requested target and is willing to proxy UDP payloads. Any response other

than a successful response indicates that the request has failed; thus, the client abort the

request.

UDP proxies introduce fragmentation at the IP layer when forwarding HTTP

Datagrams onto a UDP socket; overly large datagrams are silently dropped. In IPv4, the Don't

Fragment (DF) bit be set, if possible, to prevent fragmentation on the path. Future

extensions remove these requirements.

Implementers of UDP proxies will benefit from reading the guidance in .

MUST

MUST

MUST

MUST

Section 3.1 of [ICMP6] MAY

MUST

SHOULD NOT

Section 4.3 of [BEHAVE]

MUST

MUST NOT

MUST

MAY

[UDP-USAGE]

3.2. HTTP/1.1 Request

When using HTTP/1.1 , a UDP proxying request will meet the following requirements:

the method be "GET".

the request include a single Host header field containing the origin of the UDP proxy.

the request include a Connection header field with value "Upgrade" (note that this

requirement is case-insensitive as per).

the request include an Upgrade header field with value "connect-udp".

A UDP proxying request that does not conform to these restrictions is malformed. The recipient

of such a malformed request respond with an error and use the 400 (Bad Request)

status code.

For example, if the client is configured with URI Template "https://example.org/.well-known/

masque/udp/{target_host}/{target_port}/" and wishes to open a UDP proxying tunnel to target

192.0.2.6:443, it could send the following request:

[HTTP/1.1]

• SHALL

• SHALL

• SHALL

Section 7.6.1 of [HTTP]

• SHALL

MUST SHOULD

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc4443#section-3.1
https://www.rfc-editor.org/rfc/rfc4787#section-4.3
https://www.rfc-editor.org/rfc/rfc9110#section-7.6.1

In HTTP/1.1, this protocol uses the GET method to mimic the design of the WebSocket Protocol

.

Figure 3: Example HTTP/1.1 Request

GET https://example.org/.well-known/masque/udp/192.0.2.6/443/ HTTP/1.1
Host: example.org
Connection: Upgrade
Upgrade: connect-udp
Capsule-Protocol: ?1

[WEBSOCKET]

3.3. HTTP/1.1 Response

The UDP proxy indicate a successful response by replying with the following

requirements:

the HTTP status code on the response be 101 (Switching Protocols).

the response include a Connection header field with value "Upgrade" (note that this

requirement is case-insensitive as per).

the response include a single Upgrade header field with value "connect-udp".

the response meet the requirements of HTTP responses that start the Capsule

Protocol; see .

If any of these requirements are not met, the client treat this proxying attempt as failed

and abort the connection.

For example, the UDP proxy could respond with:

SHALL

• SHALL

• SHALL

Section 7.6.1 of [HTTP]

• SHALL

• SHALL

Section 3.2 of [HTTP-DGRAM]

MUST

Figure 4: Example HTTP/1.1 Response

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: connect-udp
Capsule-Protocol: ?1

3.4. HTTP/2 and HTTP/3 Requests

When using HTTP/2 or HTTP/3 , UDP proxying requests use HTTP Extended

CONNECT. This requires that servers send an HTTP Setting as specified in and

 and that requests use HTTP pseudo-header fields with the following

requirements:

The :method pseudo-header field be "CONNECT".

The :protocol pseudo-header field be "connect-udp".

The :authority pseudo-header field contain the authority of the UDP proxy.

[HTTP/2] [HTTP/3]

[EXT-CONNECT2]

[EXT-CONNECT3]

• SHALL

• SHALL

• SHALL

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc9110#section-7.6.1
https://www.rfc-editor.org/rfc/rfc9297#section-3.2

The :path and :scheme pseudo-header fields be empty. Their values

contain the scheme and path from the URI Template after the URI Template expansion

process has been completed.

A UDP proxying request that does not conform to these restrictions is malformed (see

 and).

For example, if the client is configured with URI Template "https://example.org/.well-known/

masque/udp/{target_host}/{target_port}/" and wishes to open a UDP proxying tunnel to target

192.0.2.6:443, it could send the following request:

• SHALL NOT SHALL

Section

8.1.1 of [HTTP/2] Section 4.1.2 of [HTTP/3]

Figure 5: Example HTTP/2 Request

HEADERS
:method = CONNECT
:protocol = connect-udp
:scheme = https
:path = /.well-known/masque/udp/192.0.2.6/443/
:authority = example.org
capsule-protocol = ?1

3.5. HTTP/2 and HTTP/3 Responses

The UDP proxy indicate a successful response by replying with the following

requirements:

the HTTP status code on the response be in the 2xx (Successful) range.

the response meet the requirements of HTTP responses that start the Capsule

Protocol; see .

If any of these requirements are not met, the client treat this proxying attempt as failed

and abort the request.

For example, the UDP proxy could respond with:

SHALL

• SHALL

• SHALL

Section 3.2 of [HTTP-DGRAM]

MUST

Figure 6: Example HTTP/2 Response

HEADERS
:status = 200
capsule-protocol = ?1

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc9113#section-8.1.1
https://www.rfc-editor.org/rfc/rfc9113#section-8.1.1
https://www.rfc-editor.org/rfc/rfc9114#section-4.1.2
https://www.rfc-editor.org/rfc/rfc9297#section-3.2

4. Context Identifiers

The mechanism for proxying UDP in HTTP defined in this document allows future extensions to

exchange HTTP Datagrams that carry different semantics from UDP payloads. Some of these

extensions can augment UDP payloads with additional data, while others can exchange data that

is completely separate from UDP payloads. In order to accomplish this, all HTTP Datagrams

associated with UDP Proxying request streams start with a Context ID field; see Section 5.

Context IDs are 62-bit integers (0 to 2
62

-1). Context IDs are encoded as variable-length integers;

see . The Context ID value of 0 is reserved for UDP payloads, while non-zero

values are dynamically allocated. Non-zero even-numbered Context IDs are client-allocated, and

odd-numbered Context IDs are proxy-allocated. The Context ID namespace is tied to a given

HTTP request; it is possible for a Context ID with the same numeric value to be simultaneously

allocated in distinct requests, potentially with different semantics. Context IDs be re-

allocated within a given HTTP namespace but be allocated in any order. The Context ID

allocation restrictions to the use of even-numbered and odd-numbered Context IDs exist in order

to avoid the need for synchronization between endpoints. However, once a Context ID has been

allocated, those restrictions do not apply to the use of the Context ID; it can be used by any client

or UDP proxy, independent of which endpoint initially allocated it.

Registration is the action by which an endpoint informs its peer of the semantics and format of a

given Context ID. This document does not define how registration occurs. Future extensions

use HTTP header fields or capsules to register Context IDs. Depending on the method being used,

it is possible for datagrams to be received with Context IDs that have not yet been registered. For

instance, this can be due to reordering of the packet containing the datagram and the packet

containing the registration message during transmission.

Section 16 of [QUIC]

MUST NOT

MAY

MAY

5. HTTP Datagram Payload Format

When HTTP Datagrams (see) are associated with UDP Proxying

request streams, the HTTP Datagram Payload field has the format defined in Figure 7, using

notation from . Note that when HTTP Datagrams are encoded using QUIC

DATAGRAM frames , the Context ID field defined below directly follows the

Quarter Stream ID field, which is at the start of the QUIC DATAGRAM frame payload; see

.

Section 2 of [HTTP-DGRAM]

Section 1.3 of [QUIC]

[QUIC-DGRAM]

Section

2.1 of [HTTP-DGRAM]

Figure 7: UDP Proxying HTTP Datagram Format

UDP Proxying HTTP Datagram Payload {
 Context ID (i),
 UDP Proxying Payload (..),
}

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9000#section-16
https://www.rfc-editor.org/rfc/rfc9297#section-2
https://www.rfc-editor.org/rfc/rfc9000#section-1.3
https://www.rfc-editor.org/rfc/rfc9297#section-2.1
https://www.rfc-editor.org/rfc/rfc9297#section-2.1

Context ID:

UDP Proxying Payload:

A variable-length integer (see) that contains the value of the

Context ID. If an HTTP/3 Datagram that carries an unknown Context ID is received, the

receiver either drop that datagram silently or buffer it temporarily (on the order of a

round trip) while awaiting the registration of the corresponding Context ID.

The payload of the datagram, whose semantics depend on the value of

the previous field. Note that this field can be empty.

UDP packets are encoded using HTTP Datagrams with the Context ID field set to zero. When the

Context ID field is set to zero, the UDP Proxying Payload field contains the unmodified payload of

a UDP packet (referred to as data octets in).

By virtue of the definition of the UDP header , it is not possible to encode UDP payloads

longer than 65527 bytes. Therefore, endpoints send HTTP Datagrams with a UDP

Proxying Payload field longer than 65527 using Context ID zero. An endpoint that receives an

HTTP Datagram using Context ID zero whose UDP Proxying Payload field is longer than 65527

 abort the corresponding stream. If a UDP proxy knows it can only send out UDP packets of

a certain length due to its underlying link MTU, it has no choice but to discard incoming HTTP

Datagrams using Context ID zero whose UDP Proxying Payload field is longer than that limit. If

the discarded HTTP Datagram was transported by a DATAGRAM capsule, the receiver

discard that capsule without buffering the capsule contents.

If a UDP proxy receives an HTTP Datagram before it has received the corresponding request, it

 either drop that HTTP Datagram silently or buffer it temporarily (on the order of a round

trip) while awaiting the corresponding request.

Note that buffering datagrams (either because the request was not yet received or because the

Context ID is not yet known) consumes resources. Receivers that buffer datagrams apply

buffering limits in order to reduce the risk of resource exhaustion occurring. For example,

receivers can limit the total number of buffered datagrams or the cumulative size of buffered

datagrams on a per-stream, per-context, or per-connection basis.

A client optimistically start sending UDP packets in HTTP Datagrams before receiving the

response to its UDP proxying request. However, implementers should note that such proxied

packets may not be processed by the UDP proxy if it responds to the request with a failure or if

the proxied packets are received by the UDP proxy before the request and the UDP proxy chooses

to not buffer them.

Section 16 of [QUIC]

SHALL

[UDP]

[UDP]

MUST NOT

MUST

SHOULD

SHALL

SHOULD

MAY

6. Performance Considerations

Bursty traffic can often lead to temporally correlated packet losses; in turn, this can lead to

suboptimal responses from congestion controllers in protocols running over UDP. To avoid this,

UDP proxies strive to avoid increasing burstiness of UDP traffic; they

queue packets in order to increase batching.

SHOULD SHOULD NOT

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc9000#section-16

When the protocol running over UDP that is being proxied uses congestion control (e.g.,),

the proxied traffic will incur at least two nested congestion controllers. The underlying HTTP

connection disable congestion control unless it has an out-of-band way of knowing

with absolute certainty that the inner traffic is congestion-controlled.

If a client or UDP proxy with a connection containing a UDP Proxying request stream disables

congestion control, it signal Explicit Congestion Notification (ECN) support on

that connection. That is, it mark all IP headers with the Not-ECT codepoint. It continue

to report ECN feedback via QUIC ACK_ECN frames or the TCP ECE bit, as the peer may not have

disabled congestion control.

When the protocol running over UDP that is being proxied uses loss recovery (e.g.,), and

the underlying HTTP connection runs over TCP, the proxied traffic will incur at least two nested

loss recovery mechanisms. This can reduce performance as both can sometimes independently

retransmit the same data. To avoid this, UDP proxying be performed over HTTP/3 to

allow leveraging the QUIC DATAGRAM frame.

[QUIC]

MUST NOT

MUST NOT [ECN]

MUST MAY

[QUIC]

SHOULD

6.1. MTU Considerations

When using HTTP/3 with the QUIC Datagram extension , UDP payloads are

transmitted in QUIC DATAGRAM frames. Since those cannot be fragmented, they can only carry

payloads up to a given length determined by the QUIC connection configuration and the Path

MTU (PMTU). If a UDP proxy is using QUIC DATAGRAM frames and it receives a UDP payload

from the target that will not fit inside a QUIC DATAGRAM frame, the UDP proxy

send the UDP payload in a DATAGRAM capsule, as that defeats the end-to-end unreliability

characteristic that methods such as Datagram Packetization Layer PMTU Discovery (DPLPMTUD)

depend on . In this scenario, the UDP proxy drop the UDP payload and send

an ICMP Packet Too Big message to the target; see .

[QUIC-DGRAM]

SHOULD NOT

[DPLPMTUD] SHOULD

Section 3.2 of [ICMP6]

6.2. Tunneling of ECN Marks

UDP proxying does not create an IP-in-IP tunnel, so the guidance in about

transferring ECN marks between inner and outer IP headers does not apply. There is no inner IP

header in UDP proxying tunnels.

In this specification, note that UDP proxying clients do not have the ability to control the ECN

codepoints on UDP packets the UDP proxy sends to the target, nor can UDP proxies communicate

the markings of each UDP packet from target to UDP proxy.

A UDP proxy ignore ECN bits in the IP header of UDP packets received from the target, and

it set the ECN bits to Not-ECT on UDP packets it sends to the target. These do not relate to

the ECN markings of packets sent between client and UDP proxy in any way.

[ECN-TUNNEL]

MUST

MUST

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc4443#section-3.2

7. Security Considerations

There are significant risks in allowing arbitrary clients to establish a tunnel to arbitrary targets,

as that could allow bad actors to send traffic and have it attributed to the UDP proxy. HTTP

servers that support UDP proxying ought to restrict its use to authenticated users.

There exist software and network deployments that perform access control checks based on the

source IP address of incoming requests. For example, some software allows unauthenticated

configuration changes if they originated from 127.0.0.1. Such software could be running on the

same host as the UDP proxy or in the same broadcast domain. Proxied UDP traffic would then be

received with a source IP address belonging to the UDP proxy. If this source address is used for

access control, UDP proxying clients could use the UDP proxy to escalate their access privileges

beyond those they might otherwise have. This could lead to unauthorized access by UDP

proxying clients unless the UDP proxy disallows UDP proxying requests to vulnerable targets,

such as the UDP proxy's own addresses and localhost, link-local, multicast, and broadcast

addresses. UDP proxies can use the destination_ip_prohibited Proxy Error Type from

 when rejecting such requests.

UDP proxies share many similarities with TCP CONNECT proxies when considering them as

infrastructure for abuse to enable denial-of-service (DoS) attacks. Both can obfuscate the

attacker's source address from the attack target. In the case of a stateless volumetric attack (e.g.,

a TCP SYN flood or a UDP flood), both types of proxies pass the traffic to the target host. With

stateful volumetric attacks (e.g., HTTP flooding) being sent over a TCP CONNECT proxy, the proxy

will only send data if the target has indicated its willingness to accept data by responding with a

TCP SYN-ACK. Once the path to the target is flooded, the TCP CONNECT proxy will no longer

receive replies from the target and will stop sending data. Since UDP does not establish shared

state between the UDP proxy and the target, the UDP proxy could continue sending data to the

target in such a situation. While a UDP proxy could potentially limit the number of UDP packets it

is willing to forward until it has observed a response from the target, that provides limited

protection against DoS attacks when attacks target open UDP ports where the protocol running

over UDP would respond and that would be interpreted as willingness to accept UDP by the UDP

proxy. Such a packet limit could also cause issues for valid traffic.

The security considerations described in also apply here. Since it is

possible to tunnel IP packets over UDP, the guidance in can apply.

Section

2.3.5 of [PROXY-STATUS]

Section 4 of [HTTP-DGRAM]

[TUNNEL-SECURITY]

8. IANA Considerations

Value:

8.1. HTTP Upgrade Token

IANA has registered "connect-udp" in the "HTTP Upgrade Tokens" registry maintained at <

>.

connect-udp

https://

www.iana.org/assignments/http-upgrade-tokens

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc9209#section-2.3.5
https://www.rfc-editor.org/rfc/rfc9209#section-2.3.5
https://www.rfc-editor.org/rfc/rfc9297#section-4
https://www.iana.org/assignments/http-upgrade-tokens
https://www.iana.org/assignments/http-upgrade-tokens

[ABNF]

[ECN]

[EXT-CONNECT2]

[EXT-CONNECT3]

[HTTP]

[HTTP-DGRAM]

9. References

9.1. Normative References

 and ,

, , , November 1997,

.

, , and ,

, , , September 2001,

.

, , ,

, September 2018, .

, , ,

, June 2022, .

, , and , ,

, , , June 2022,

.

 and , ,

, , August 2022,

.

Description:

Expected Version Tokens:

Reference:

Proxying of UDP Payloads

None

RFC 9298

URI Suffix:

Change Controller:

Reference:

Status:

Related Information:

8.2. Well-Known URI

IANA has registered "masque" in the "Well-Known URIs" registry maintained at <

>.

masque

IETF

RFC 9298

permanent

Includes all resources identified with the path prefix "/.well-known/

masque/udp/"

https://

www.iana.org/assignments/well-known-uris

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" RFC 2234 DOI 10.17487/RFC2234 <https://www.rfc-

editor.org/info/rfc2234>

Ramakrishnan, K. Floyd, S. D. Black "The Addition of Explicit Congestion

Notification (ECN) to IP" RFC 3168 DOI 10.17487/RFC3168

<https://www.rfc-editor.org/info/rfc3168>

McManus, P. "Bootstrapping WebSockets with HTTP/2" RFC 8441 DOI

10.17487/RFC8441 <https://www.rfc-editor.org/info/rfc8441>

Hamilton, R. "Bootstrapping WebSockets with HTTP/3" RFC 9220 DOI

10.17487/RFC9220 <https://www.rfc-editor.org/info/rfc9220>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Schinazi, D. L. Pardue "HTTP Datagrams and the Capsule Protocol" RFC

9297 DOI 10.17487/RFC9297 <https://www.rfc-editor.org/info/

rfc9297>

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 13

https://www.iana.org/assignments/well-known-uris
https://www.iana.org/assignments/well-known-uris
https://www.rfc-editor.org/info/rfc2234
https://www.rfc-editor.org/info/rfc2234
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc8441
https://www.rfc-editor.org/info/rfc9220
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9297
https://www.rfc-editor.org/info/rfc9297

[HTTP/1.1]

[HTTP/2]

[HTTP/3]

[PROXY-STATUS]

[QUIC]

[QUIC-DGRAM]

[RFC2119]

[RFC8174]

[TCP]

[TEMPLATE]

[UDP]

[URI]

[BEHAVE]

, , and , , ,

, , June 2022,

.

 and , , ,

, June 2022, .

, , , , June 2022,

.

 and ,

, , , June 2022,

.

 and ,

, , , May 2021,

.

, , and ,

, , , March 2022,

.

, , ,

, , March 1997,

.

, ,

, , , May 2017,

.

, , , ,

, August 2022, .

, , , , and ,

, , , March 2012,

.

, , , , ,

August 1980, .

, , and ,

, , , , January 2005,

.

9.2. Informative References

 and ,

, , , ,

January 2007, .

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP/1.1" STD 99 RFC

9112 DOI 10.17487/RFC9112 <https://www.rfc-editor.org/info/

rfc9112>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/

RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Bishop, M., Ed. "HTTP/3" RFC 9114 DOI 10.17487/RFC9114 <https://

www.rfc-editor.org/info/rfc9114>

Nottingham, M. P. Sikora "The Proxy-Status HTTP Response Header

Field" RFC 9209 DOI 10.17487/RFC9209 <https://www.rfc-editor.org/

info/rfc9209>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and

Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://

www.rfc-editor.org/info/rfc9000>

Pauly, T. Kinnear, E. D. Schinazi "An Unreliable Datagram Extension to

QUIC" RFC 9221 DOI 10.17487/RFC9221 <https://www.rfc-

editor.org/info/rfc9221>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Eddy, W., Ed. "Transmission Control Protocol (TCP)" STD 7 RFC 9293 DOI

10.17487/RFC9293 <https://www.rfc-editor.org/info/rfc9293>

Gregorio, J. Fielding, R. Hadley, M. Nottingham, M. D. Orchard "URI

Template" RFC 6570 DOI 10.17487/RFC6570 <https://www.rfc-

editor.org/info/rfc6570>

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768

<https://www.rfc-editor.org/info/rfc768>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

Audet, F., Ed. C. Jennings "Network Address Translation (NAT) Behavioral

Requirements for Unicast UDP" BCP 127 RFC 4787 DOI 10.17487/RFC4787

<https://www.rfc-editor.org/info/rfc4787>

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 14

https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9209
https://www.rfc-editor.org/info/rfc9209
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9221
https://www.rfc-editor.org/info/rfc9221
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4787

[DPLPMTUD]

[ECN-TUNNEL]

[HELIUM]

[HiNT]

[ICMP6]

[MASQUE-ORIGINAL]

[TUNNEL-SECURITY]

[UDP-USAGE]

[WEBSOCKET]

, , , , and ,

, ,

, September 2020, .

, , ,

, November 2010, .

,

, , ,

25 June 2018,

.

, , ,

, 2 July 2018,

.

, , and ,

, ,

, , March 2006,

.

, , ,

, 28 February 2019,

.

, , and ,

, , , April 2011,

.

, , and , , ,

, , March 2017,

.

 and , , ,

, December 2011, .

Fairhurst, G. Jones, T. Tüxen, M. Rüngeler, I. T. Völker "Packetization

Layer Path MTU Discovery for Datagram Transports" RFC 8899 DOI 10.17487/

RFC8899 <https://www.rfc-editor.org/info/rfc8899>

Briscoe, B. "Tunnelling of Explicit Congestion Notification" RFC 6040 DOI

10.17487/RFC6040 <https://www.rfc-editor.org/info/rfc6040>

Schwartz, B. M. "Hybrid Encapsulation Layer for IP and UDP Messages

(HELIUM)" Work in Progress Internet-Draft, draft-schwartz-httpbis-helium-00

<https://datatracker.ietf.org/doc/html/draft-schwartz-httpbis-

helium-00>

Pardue, L. "HTTP-initiated Network Tunnelling (HiNT)" Work in Progress

Internet-Draft, draft-pardue-httpbis-http-network-tunnelling-00

<https://datatracker.ietf.org/doc/html/draft-pardue-httpbis-http-network-

tunnelling-00>

Conta, A. Deering, S. M. Gupta, Ed. "Internet Control Message Protocol

(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification" STD 89 RFC

4443 DOI 10.17487/RFC4443 <https://www.rfc-editor.org/info/

rfc4443>

Schinazi, D. "The MASQUE Protocol" Work in Progress Internet-Draft,

draft-schinazi-masque-00 <https://datatracker.ietf.org/doc/

html/draft-schinazi-masque-00>

Krishnan, S. Thaler, D. J. Hoagland "Security Concerns with IP

Tunneling" RFC 6169 DOI 10.17487/RFC6169 <https://www.rfc-

editor.org/info/rfc6169>

Eggert, L. Fairhurst, G. G. Shepherd "UDP Usage Guidelines" BCP 145 RFC

8085 DOI 10.17487/RFC8085 <https://www.rfc-editor.org/info/

rfc8085>

Fette, I. A. Melnikov "The WebSocket Protocol" RFC 6455 DOI 10.17487/

RFC6455 <https://www.rfc-editor.org/info/rfc6455>

Acknowledgments

This document is a product of the MASQUE Working Group, and the author thanks all MASQUE

enthusiasts for their contributions. This proposal was inspired directly or indirectly by prior

work from many people, in particular by , by , and

the original MASQUE Protocol by the author of this document.

The author would like to thank for suggesting the use of an HTTP method to proxy

UDP. The author is indebted to and for the many improvements

they contributed to this document. The extensibility design in this document came out of the

[HELIUM] Ben Schwartz [HiNT] Lucas Pardue

[MASQUE-ORIGINAL]

Eric Rescorla

Mark Nottingham Lucas Pardue

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 15

https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc6040
https://datatracker.ietf.org/doc/html/draft-schwartz-httpbis-helium-00
https://datatracker.ietf.org/doc/html/draft-schwartz-httpbis-helium-00
https://datatracker.ietf.org/doc/html/draft-pardue-httpbis-http-network-tunnelling-00
https://datatracker.ietf.org/doc/html/draft-pardue-httpbis-http-network-tunnelling-00
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/draft-schinazi-masque-00
https://datatracker.ietf.org/doc/html/draft-schinazi-masque-00
https://www.rfc-editor.org/info/rfc6169
https://www.rfc-editor.org/info/rfc6169
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc6455

HTTP Datagrams Design Team, whose members were , ,

, , , , , ,

, , and the author of this document.

Alan Frindell Alex Chernyakhovsky Ben

Schwartz Eric Rescorla Lucas Pardue Marcus Ihlar Martin Thomson Mike Bishop Tommy

Pauly Victor Vasiliev

Author's Address

David Schinazi

Google LLC

1600 Amphitheatre Parkway

, Mountain View CA 94043

United States of America

 dschinazi.ietf@gmail.com Email:

RFC 9298 Proxying UDP in HTTP August 2022

Schinazi Standards Track Page 16

mailto:dschinazi.ietf@gmail.com

	RFC 9298
	Proxying UDP in HTTP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. Client Configuration
	3. Tunneling UDP over HTTP
	3.1. UDP Proxy Handling
	3.2. HTTP/1.1 Request
	3.3. HTTP/1.1 Response
	3.4. HTTP/2 and HTTP/3 Requests
	3.5. HTTP/2 and HTTP/3 Responses

	4. Context Identifiers
	5. HTTP Datagram Payload Format
	6. Performance Considerations
	6.1. MTU Considerations
	6.2. Tunneling of ECN Marks

	7. Security Considerations
	8. IANA Considerations
	8.1. HTTP Upgrade Token
	8.2. Well-Known URI

	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgments
	Author's Address

 Proxying UDP in HTTP

 Google LLC

 1600 Amphitheatre Parkway
 Mountain View
 CA
 94043
 United States of America

 dschinazi.ietf@gmail.com

 Transport
 MASQUE
 quic
 http
 datagram
 udp
 proxy
 tunnels
 quic in quic
 turtles all the way down
 masque
 http-ng

 This document describes how to proxy UDP in HTTP, similar to how the HTTP
CONNECT method allows proxying TCP in HTTP. More specifically, this document
defines a protocol that allows an HTTP client to create a tunnel for UDP
communications through an HTTP server that acts as a proxy.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Conventions and Definitions

 . Client Configuration

 . Tunneling UDP over HTTP

 . UDP Proxy Handling

 . HTTP/1.1 Request

 . HTTP/1.1 Response

 . HTTP/2 and HTTP/3 Requests

 . HTTP/2 and HTTP/3 Responses

 . Context Identifiers

 . HTTP Datagram Payload Format

 . Performance Considerations

 . MTU Considerations

 . Tunneling of ECN Marks

 . Security Considerations

 . IANA Considerations

 . HTTP Upgrade Token

 . Well-Known URI

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Author's Address

 Introduction
 While HTTP provides the CONNECT method (see)
for creating a TCP tunnel to a proxy, it lacked a method for
doing so for UDP traffic prior to this specification.
 This document describes a protocol for tunneling UDP to a server acting as a
UDP-specific proxy over HTTP. UDP tunnels are commonly used to create an
end-to-end virtual connection, which can then be secured using QUIC
 or another protocol running over UDP. Unlike the HTTP CONNECT
method, the UDP proxy itself is identified with an absolute URL containing the
traffic's destination. Clients generate those URLs using a URI Template
 , as described in .
 This protocol supports all existing versions of HTTP by using HTTP Datagrams
 . When using HTTP/2 or HTTP/3
 , it uses HTTP Extended CONNECT as described in
and . When using HTTP/1.x , it uses HTTP Upgrade
as defined in .

 Conventions and Definitions
 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
" MAY", and " OPTIONAL" in this document are to be interpreted as
described in BCP 14 when, and only when, they
appear in all capitals, as shown here.
 In this document, we use the term "UDP proxy" to refer to the HTTP server that
acts upon the client's UDP tunneling request to open a UDP socket to a target
server and that generates the response to this request. If there are HTTP
intermediaries (as defined in) between the client and
the UDP proxy, those are referred to as "intermediaries" in this document.
 Note that, when the HTTP version in use does not support multiplexing streams
(such as HTTP/1.1), any reference to "stream" in this document represents the
entire connection.

 Client Configuration
 HTTP clients are configured to use a UDP proxy with a URI Template
 that has the variables "target_host" and "target_port".
Examples are shown below:

 URI Template Examples

https://example.org/.well-known/masque/udp/{target_host}/{target_port}/
https://proxy.example.org:4443/masque?h={target_host}&p={target_port}
https://proxy.example.org:4443/masque{?target_host,target_port}

 The following requirements apply to the URI Template:

 The URI Template MUST be a level 3 template or lower.
 The URI Template MUST be in absolute form and MUST include non-empty scheme,
authority, and path components.
 The path component of the URI Template MUST start with a slash ("/").
 All template variables MUST be within the path or query components of the URI.
 The URI Template MUST contain the two variables "target_host" and
"target_port" and MAY contain other variables.
 The URI Template MUST NOT contain any non-ASCII Unicode characters and MUST
only contain ASCII characters in the range 0x21-0x7E inclusive (note that
percent-encoding is allowed; see).
 The URI Template MUST NOT use Reserved Expansion ("+" operator), Fragment
Expansion ("#" operator), Label Expansion with Dot-Prefix, Path Segment
Expansion with Slash-Prefix, nor Path-Style Parameter Expansion with
Semicolon-Prefix.

 Clients SHOULD validate the requirements above; however, clients MAY use a
general-purpose URI Template implementation that lacks this specific validation.
If a client detects that any of the requirements above are not met by a URI
Template, the client MUST reject its configuration and abort the request without
sending it to the UDP proxy.
 The original HTTP CONNECT method allowed for the conveyance of the target host
and port, but not the scheme, proxy authority, path, or query. Thus, clients
with proxy configuration interfaces that only allow the user to configure the
proxy host and the proxy port exist. Client implementations of this
specification that are constrained by such limitations MAY attempt to access UDP
proxying capabilities using the default template, which is defined as
"https://$PROXY_HOST:$PROXY_PORT/.well-known/masque/udp/{target_host}/{target_port}/",
where $PROXY_HOST and $PROXY_PORT are the configured host and port of the UDP
proxy, respectively. UDP proxy deployments SHOULD offer service at this location
if they need to interoperate with such clients.

 Tunneling UDP over HTTP
 To allow negotiation of a tunnel for UDP over HTTP, this document defines the
"connect-udp" HTTP upgrade token. The resulting UDP tunnels use the Capsule
Protocol (see) with HTTP Datagrams in the format
defined in .
 To initiate a UDP tunnel associated with a single HTTP stream, a client issues a
request containing the "connect-udp" upgrade token. The target of the tunnel is
indicated by the client to the UDP proxy via the "target_host" and "target_port"
variables of the URI Template; see .
 "target_host" supports using DNS names, IPv6 literals and IPv4 literals. Note
that IPv6 scoped addressing zone identifiers are not supported. Using the terms
IPv6address, IPv4address, reg-name, and port from , the "target_host" and
"target_port" variables MUST adhere to the format in , using
notation from . Additionally:

 both the "target_host" and "target_port" variables MUST NOT be empty.
 if "target_host" contains an IPv6 literal, the colons (":") MUST be
percent-encoded. For example, if the target host is "2001:db8::42", it will be
encoded in the URI as "2001%3Adb8%3A%3A42".
 "target_port" MUST represent an integer between 1 and 65535 inclusive.

 URI Template Variable Format

target_host = IPv6address / IPv4address / reg-name
target_port = port

 When sending its UDP proxying request, the client SHALL perform URI Template
expansion to determine the path and query of its request.
 If the request is successful, the UDP proxy commits to converting received HTTP
Datagrams into UDP packets, and vice versa, until the tunnel is closed.
 By virtue of the definition of the Capsule Protocol (see), UDP proxying requests do not carry any message content.
Similarly, successful UDP proxying responses also do not carry any message
content.

 UDP Proxy Handling
 Upon receiving a UDP proxying request:

 if the recipient is configured to use another HTTP proxy, it will act as an
intermediary by forwarding the request to another HTTP server. Note that such
intermediaries may need to re-encode the request if they forward it using a
version of HTTP that is different from the one used to receive it, as the
request encoding differs by version (see below).
 otherwise, the recipient will act as a UDP proxy. It extracts the
"target_host" and "target_port" variables from the URI it has reconstructed
from the request headers, decodes their percent-encoding, and establishes a
tunnel by directly opening a UDP socket to the requested target.

 Unlike TCP, UDP is connectionless. The UDP proxy that opens the UDP socket has
no way of knowing whether the destination is reachable. Therefore, it needs to
respond to the request without waiting for a packet from the target. However, if
the "target_host" is a DNS name, the UDP proxy MUST perform DNS resolution
before replying to the HTTP request. If errors occur during this process, the
UDP proxy MUST reject the request and SHOULD send details using an appropriate
Proxy-Status header field . For example, if DNS
resolution returns an error, the proxy can use the dns_error Proxy Error Type
from .
 UDP proxies can use connected UDP sockets if their operating system supports
them, as that allows the UDP proxy to rely on the kernel to only send it UDP
packets that match the correct 5-tuple. If the UDP proxy uses a non-connected
socket, it MUST validate the IP source address and UDP source port on received
packets to ensure they match the client's request. Packets that do not match
 MUST be discarded by the UDP proxy.
 The lifetime of the socket is tied to the request stream. The UDP proxy MUST
keep the socket open while the request stream is open. If a UDP proxy is
notified by its operating system that its socket is no longer usable, it MUST
close the request stream. For example, this can happen when an ICMP Destination
Unreachable message is received; see . UDP
proxies MAY choose to close sockets due to a period of inactivity, but they MUST
close the request stream when closing the socket. UDP proxies that close sockets
after a period of inactivity SHOULD NOT use a period lower than two minutes; see
 .
 A successful response (as defined in Sections and)
indicates that the UDP proxy has opened a socket to the requested target and is
willing to proxy UDP payloads. Any response other than a successful response
indicates that the request has failed; thus, the client MUST abort the request.
 UDP proxies MUST NOT introduce fragmentation at the IP layer when forwarding
HTTP Datagrams onto a UDP socket; overly large datagrams are silently dropped.
In IPv4, the Don't Fragment (DF) bit MUST be set, if possible, to prevent
fragmentation on the path. Future extensions MAY remove these requirements.
 Implementers of UDP proxies will benefit from reading the guidance in
 .

 HTTP/1.1 Request
 When using HTTP/1.1 , a UDP proxying request will meet the following
requirements:

 the method SHALL be "GET".
 the request SHALL include a single Host header field containing the origin
of the UDP proxy.
 the request SHALL include a Connection header field with value "Upgrade"
(note that this requirement is case-insensitive as per).
 the request SHALL include an Upgrade header field with value "connect-udp".

 A UDP proxying request that does not conform to these restrictions is malformed.
The recipient of such a malformed request MUST respond with an error and SHOULD
use the 400 (Bad Request) status code.
 For example, if the client is configured with URI Template
"https://example.org/.well-known/masque/udp/{target_host}/{target_port}/" and
wishes to open a UDP proxying tunnel to target 192.0.2.6:443, it could send the
following request:

 Example HTTP/1.1 Request

GET https://example.org/.well-known/masque/udp/192.0.2.6/443/ HTTP/1.1
Host: example.org
Connection: Upgrade
Upgrade: connect-udp
Capsule-Protocol: ?1

 In HTTP/1.1, this protocol uses the GET method to mimic the design of the
WebSocket Protocol .

 HTTP/1.1 Response
 The UDP proxy SHALL indicate a successful response by replying with the
following requirements:

 the HTTP status code on the response SHALL be 101 (Switching Protocols).
 the response SHALL include a Connection header field with value "Upgrade"
(note that this requirement is case-insensitive as per).
 the response SHALL include a single Upgrade header field with value
"connect-udp".
 the response SHALL meet the requirements of HTTP responses that start the
Capsule Protocol; see .

 If any of these requirements are not met, the client MUST treat this proxying
attempt as failed and abort the connection.
 For example, the UDP proxy could respond with:

 Example HTTP/1.1 Response

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: connect-udp
Capsule-Protocol: ?1

 HTTP/2 and HTTP/3 Requests
 When using HTTP/2 or HTTP/3 , UDP proxying requests use HTTP
Extended CONNECT. This requires that servers send an HTTP Setting as specified
in and and that requests use HTTP
pseudo-header fields with the following requirements:

 The :method pseudo-header field SHALL be "CONNECT".
 The :protocol pseudo-header field SHALL be "connect-udp".
 The :authority pseudo-header field SHALL contain the authority of the UDP
proxy.
 The :path and :scheme pseudo-header fields SHALL NOT be empty. Their
values SHALL contain the scheme and path from the URI Template after the URI
Template expansion process has been completed.

 A UDP proxying request that does not conform to these restrictions is
malformed (see and).
 For example, if the client is configured with URI Template
"https://example.org/.well-known/masque/udp/{target_host}/{target_port}/" and
wishes to open a UDP proxying tunnel to target 192.0.2.6:443, it could send the
following request:

 Example HTTP/2 Request

HEADERS
:method = CONNECT
:protocol = connect-udp
:scheme = https
:path = /.well-known/masque/udp/192.0.2.6/443/
:authority = example.org
capsule-protocol = ?1

 HTTP/2 and HTTP/3 Responses
 The UDP proxy SHALL indicate a successful response by replying with the
following requirements:

 the HTTP status code on the response SHALL be in the 2xx (Successful) range.
 the response SHALL meet the requirements of HTTP responses that start the
Capsule Protocol; see .

 If any of these requirements are not met, the client MUST treat this proxying
attempt as failed and abort the request.
 For example, the UDP proxy could respond with:

 Example HTTP/2 Response

HEADERS
:status = 200
capsule-protocol = ?1

 Context Identifiers
 The mechanism for proxying UDP in HTTP defined in this document allows future
extensions to exchange HTTP Datagrams that carry different semantics from UDP
payloads. Some of these extensions can augment UDP payloads with additional
data, while others can exchange data that is completely separate from UDP
payloads. In order to accomplish this, all HTTP Datagrams associated with UDP
Proxying request streams start with a Context ID field; see .
 Context IDs are 62-bit integers (0 to 2 62-1). Context IDs are encoded
as variable-length integers; see . The Context ID value of
0 is reserved for UDP payloads, while non-zero values are dynamically allocated.
Non-zero even-numbered Context IDs are client-allocated, and odd-numbered
Context IDs are proxy-allocated. The Context ID namespace is tied to a given
HTTP request; it is possible for a Context ID with the same numeric value to be
simultaneously allocated in distinct requests, potentially with different
semantics. Context IDs MUST NOT be re-allocated within a given HTTP namespace
but MAY be allocated in any order. The Context ID allocation restrictions to the
use of even-numbered and odd-numbered Context IDs exist in order to avoid the
need for synchronization between endpoints. However, once a Context ID has been
allocated, those restrictions do not apply to the use of the Context ID; it can
be used by any client or UDP proxy, independent of which endpoint initially
allocated it.
 Registration is the action by which an endpoint informs its peer of the
semantics and format of a given Context ID. This document does not define how
registration occurs. Future extensions MAY use HTTP header fields or capsules to
register Context IDs. Depending on the method being used, it is possible for
datagrams to be received with Context IDs that have not yet been registered. For
instance, this can be due to reordering of the packet containing the datagram
and the packet containing the registration message during transmission.

 HTTP Datagram Payload Format
 When HTTP Datagrams (see) are associated with UDP
Proxying request streams, the HTTP Datagram Payload field has the format defined
in , using notation from . Note that when
HTTP Datagrams are encoded using QUIC DATAGRAM frames ,
the Context ID field defined below directly follows the Quarter Stream ID field,
which is at the start of the QUIC DATAGRAM frame payload; see .

 UDP Proxying HTTP Datagram Format

UDP Proxying HTTP Datagram Payload {
 Context ID (i),
 UDP Proxying Payload (..),
}

 Context ID:

 A variable-length integer (see) that contains the value
of the Context ID. If an HTTP/3 Datagram that carries an unknown Context ID is
received, the receiver SHALL either drop that datagram silently or buffer it
temporarily (on the order of a round trip) while awaiting the registration of
the corresponding Context ID.

 UDP Proxying Payload:

 The payload of the datagram, whose semantics depend on the value of the
previous field. Note that this field can be empty.

 UDP packets are encoded using HTTP Datagrams with the Context ID field set to
zero. When the Context ID field is set to zero, the UDP Proxying Payload field
contains the unmodified payload of a UDP packet (referred to as data octets in
).
 By virtue of the definition of the UDP header , it is not possible to
encode UDP payloads longer than 65527 bytes. Therefore, endpoints MUST NOT send
HTTP Datagrams with a UDP Proxying Payload field longer than 65527 using Context
ID zero. An endpoint that receives an HTTP Datagram using Context ID zero whose
UDP Proxying Payload field is longer than 65527 MUST abort the corresponding
stream. If a UDP proxy knows it can only send out UDP packets of a certain
length due to its underlying link MTU, it has no choice but to discard incoming
HTTP Datagrams using Context ID zero whose UDP Proxying Payload field is longer
than that limit. If the discarded HTTP Datagram was transported by a DATAGRAM
capsule, the receiver SHOULD discard that capsule without buffering the capsule
contents.
 If a UDP proxy receives an HTTP Datagram before it has received the
corresponding request, it SHALL either drop that HTTP Datagram silently or
buffer it temporarily (on the order of a round trip) while awaiting the
corresponding request.
 Note that buffering datagrams (either because the request was not yet received
or because the Context ID is not yet known) consumes resources. Receivers that
buffer datagrams SHOULD apply buffering limits in order to reduce the risk of
resource exhaustion occurring. For example, receivers can limit the total number
of buffered datagrams or the cumulative size of buffered datagrams on a
per-stream, per-context, or per-connection basis.
 A client MAY optimistically start sending UDP packets in HTTP Datagrams before
receiving the response to its UDP proxying request. However, implementers should
note that such proxied packets may not be processed by the UDP proxy if it
responds to the request with a failure or if the proxied packets are received by
the UDP proxy before the request and the UDP proxy chooses to not buffer them.

 Performance Considerations
 Bursty traffic can often lead to temporally correlated packet losses; in turn,
this can lead to suboptimal responses from congestion controllers in protocols
running over UDP. To avoid this, UDP proxies SHOULD strive to avoid increasing
burstiness of UDP traffic; they SHOULD NOT queue packets in order to increase
batching.
 When the protocol running over UDP that is being proxied uses congestion control
(e.g.,), the proxied traffic will incur at least two nested congestion
controllers. The underlying HTTP connection MUST NOT disable congestion control
unless it has an out-of-band way of knowing with absolute certainty that the
inner traffic is congestion-controlled.
 If a client or UDP proxy with a connection containing a UDP Proxying request
stream disables congestion control, it MUST NOT signal Explicit Congestion
Notification (ECN) support on that connection. That is, it MUST
mark all IP headers with the Not-ECT codepoint. It MAY continue to report ECN
feedback via QUIC ACK_ECN frames or the TCP ECE bit, as the peer may not have
disabled congestion control.
 When the protocol running over UDP that is being proxied uses loss recovery
(e.g.,), and the underlying HTTP connection runs over TCP, the proxied
traffic will incur at least two nested loss recovery mechanisms. This can reduce
performance as both can sometimes independently retransmit the same data. To
avoid this, UDP proxying SHOULD be performed over HTTP/3 to allow leveraging the
QUIC DATAGRAM frame.

 MTU Considerations
 When using HTTP/3 with the QUIC Datagram extension , UDP payloads
are transmitted in QUIC DATAGRAM frames. Since those cannot be fragmented, they
can only carry payloads up to a given length determined by the QUIC connection
configuration and the Path MTU (PMTU). If a UDP proxy is using QUIC DATAGRAM
frames and it receives a UDP payload from the target that will not fit inside a
QUIC DATAGRAM frame, the UDP proxy SHOULD NOT send the UDP payload in a DATAGRAM
capsule, as that defeats the end-to-end unreliability characteristic that
methods such as Datagram Packetization Layer PMTU Discovery (DPLPMTUD) depend on
 . In this scenario, the UDP proxy SHOULD drop the UDP
payload and send an ICMP Packet Too Big message to the target; see .

 Tunneling of ECN Marks
 UDP proxying does not create an IP-in-IP tunnel, so the guidance in
 about transferring ECN marks between inner and outer IP
headers does not apply. There is no inner IP header in UDP proxying tunnels.
 In this specification, note that UDP proxying clients do not have the ability to
control the ECN codepoints on UDP packets the UDP proxy sends to the target, nor
can UDP proxies communicate the markings of each UDP packet from target to UDP
proxy.
 A UDP proxy MUST ignore ECN bits in the IP header of UDP packets received from
the target, and it MUST set the ECN bits to Not-ECT on UDP packets it sends to
the target. These do not relate to the ECN markings of packets sent between
client and UDP proxy in any way.

 Security Considerations
 There are significant risks in allowing arbitrary clients to establish a tunnel
to arbitrary targets, as that could allow bad actors to send traffic and have it
attributed to the UDP proxy. HTTP servers that support UDP proxying ought to
restrict its use to authenticated users.
 There exist software and network deployments that perform access control checks
based on the source IP address of incoming requests. For example, some software
allows unauthenticated configuration changes if they originated from 127.0.0.1.
Such software could be running on the same host as the UDP proxy or in the same
broadcast domain. Proxied UDP traffic would then be received with a source IP
address belonging to the UDP proxy. If this source address is used for access
control, UDP proxying clients could use the UDP proxy to escalate their access
privileges beyond those they might otherwise have. This could lead to
unauthorized access by UDP proxying clients unless the UDP proxy disallows UDP
proxying requests to vulnerable targets, such as the UDP proxy's own addresses
and localhost, link-local, multicast, and broadcast addresses. UDP proxies can
use the destination_ip_prohibited Proxy Error Type from when rejecting such requests.
 UDP proxies share many similarities with TCP CONNECT proxies when considering
them as infrastructure for abuse to enable denial-of-service (DoS) attacks. Both
can obfuscate the attacker's source address from the attack target. In the case
of a stateless volumetric attack (e.g., a TCP SYN flood or a UDP flood), both
types of proxies pass the traffic to the target host. With stateful volumetric
attacks (e.g., HTTP flooding) being sent over a TCP CONNECT proxy, the proxy
will only send data if the target has indicated its willingness to accept data
by responding with a TCP SYN-ACK. Once the path to the target is flooded, the
TCP CONNECT proxy will no longer receive replies from the target and will stop
sending data. Since UDP does not establish shared state between the UDP proxy
and the target, the UDP proxy could continue sending data to the target in such
a situation. While a UDP proxy could potentially limit the number of UDP packets
it is willing to forward until it has observed a response from the target, that
provides limited protection against DoS attacks when attacks target open UDP
ports where the protocol running over UDP would respond and that would be
interpreted as willingness to accept UDP by the UDP proxy. Such a packet limit
could also cause issues for valid traffic.
 The security considerations described in also apply
here. Since it is possible to tunnel IP packets over UDP, the guidance in
 can apply.

 IANA Considerations

 HTTP Upgrade Token
 IANA has registered "connect-udp" in the "HTTP Upgrade Tokens" registry
maintained at < >.

 Value:

 connect-udp

 Description:

 Proxying of UDP Payloads

 Expected Version Tokens:

 None

 Reference:

 RFC 9298

 Well-Known URI
 IANA has registered "masque" in the "Well-Known URIs" registry maintained at
< >.

 URI Suffix:

 masque

 Change Controller:

 IETF

 Reference:

 RFC 9298

 Status:

 permanent

 Related Information:

 Includes all resources identified with the path prefix
"/.well-known/masque/udp/"

 References

 Normative References

 Augmented BNF for Syntax Specifications: ABNF

 In the early days of the Arpanet, each specification contained its own definition of ABNF. This included the email specifications, RFC733 and then RFC822 which have come to be the common citations for defining ABNF. The current document separates out that definition, to permit selective reference. Predictably, it also provides some modifications and enhancements. [STANDARDS-TRACK]

 The Addition of Explicit Congestion Notification (ECN) to IP

 This memo specifies the incorporation of ECN (Explicit Congestion Notification) to TCP and IP, including ECN's use of two bits in the IP header. [STANDARDS-TRACK]

 Bootstrapping WebSockets with HTTP/2

 This document defines a mechanism for running the WebSocket Protocol (RFC 6455) over a single stream of an HTTP/2 connection.

 Bootstrapping WebSockets with HTTP/3

 The mechanism for running the WebSocket Protocol over a single stream of an HTTP/2 connection is equally applicable to HTTP/3, but the HTTP-version-specific details need to be specified. This document describes how the mechanism is adapted for HTTP/3.

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 HTTP Datagrams and the Capsule Protocol

 This document describes HTTP Datagrams, a convention for conveying multiplexed, potentially unreliable datagrams inside an HTTP connection.
 In HTTP/3, HTTP Datagrams can be sent unreliably using the QUIC DATAGRAM extension. When the QUIC DATAGRAM frame is unavailable or undesirable, HTTP Datagrams can be sent using the Capsule Protocol, which is a more general convention for conveying data in HTTP connections.
 HTTP Datagrams and the Capsule Protocol are intended for use by HTTP extensions, not applications.

 HTTP/1.1

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document specifies the HTTP/1.1 message syntax, message parsing, connection management, and related security concerns.
 This document obsoletes portions of RFC 7230.

 HTTP/2

 This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced latency by introducing field compression and allowing multiple concurrent exchanges on the same connection.
 This document obsoletes RFCs 7540 and 8740.

 HTTP/3

 The QUIC transport protocol has several features that are desirable in a transport for HTTP, such as stream multiplexing, per-stream flow control, and low-latency connection establishment. This document describes a mapping of HTTP semantics over QUIC. This document also identifies HTTP/2 features that are subsumed by QUIC and describes how HTTP/2 extensions can be ported to HTTP/3.

 The Proxy-Status HTTP Response Header Field

 This document defines the Proxy-Status HTTP response field to convey the details of an intermediary's response handling, including generated errors.

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 An Unreliable Datagram Extension to QUIC

 This document defines an extension to the QUIC transport protocol to add support for sending and receiving unreliable datagrams over a QUIC connection.

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Transmission Control Protocol (TCP)

 This document specifies the Transmission Control Protocol (TCP). TCP is an important transport-layer protocol in the Internet protocol stack, and it has continuously evolved over decades of use and growth of the Internet. Over this time, a number of changes have been made to TCP as it was specified in RFC 793, though these have only been documented in a piecemeal fashion. This document collects and brings those changes together with the protocol specification from RFC 793. This document obsoletes RFC 793, as well as RFCs 879, 2873, 6093, 6429, 6528, and 6691 that updated parts of RFC 793. It updates RFCs 1011 and 1122, and it should be considered as a replacement for the portions of those documents dealing with TCP requirements. It also updates RFC 5961 by adding a small clarification in reset handling while in the SYN-RECEIVED state. The TCP header control bits from RFC 793 have also been updated based on RFC 3168.

 URI Template

 A URI Template is a compact sequence of characters for describing a range of Uniform Resource Identifiers through variable expansion. This specification defines the URI Template syntax and the process for expanding a URI Template into a URI reference, along with guidelines for the use of URI Templates on the Internet. [STANDARDS-TRACK]

 User Datagram Protocol

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 Informative References

 Network Address Translation (NAT) Behavioral Requirements for Unicast UDP

 This document defines basic terminology for describing different types of Network Address Translation (NAT) behavior when handling Unicast UDP and also defines a set of requirements that would allow many applications, such as multimedia communications or online gaming, to work consistently. Developing NATs that meet this set of requirements will greatly increase the likelihood that these applications will function properly. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Packetization Layer Path MTU Discovery for Datagram Transports

 This document specifies Datagram Packetization Layer Path MTU Discovery (DPLPMTUD). This is a robust method for Path MTU Discovery (PMTUD) for datagram Packetization Layers (PLs). It allows a PL, or a datagram application that uses a PL, to discover whether a network path can support the current size of datagram. This can be used to detect and reduce the message size when a sender encounters a packet black hole. It can also probe a network path to discover whether the maximum packet size can be increased. This provides functionality for datagram transports that is equivalent to the PLPMTUD specification for TCP, specified in RFC 4821, which it updates. It also updates the UDP Usage Guidelines to refer to this method for use with UDP datagrams and updates SCTP.
 The document provides implementation notes for incorporating Datagram PMTUD into IETF datagram transports or applications that use datagram transports.
 This specification updates RFC 4960, RFC 4821, RFC 6951, RFC 8085, and RFC 8261.

 Tunnelling of Explicit Congestion Notification

 This document redefines how the explicit congestion notification (ECN) field of the IP header should be constructed on entry to and exit from any IP-in-IP tunnel. On encapsulation, it updates RFC 3168 to bring all IP-in-IP tunnels (v4 or v6) into line with RFC 4301 IPsec ECN processing. On decapsulation, it updates both RFC 3168 and RFC 4301 to add new behaviours for previously unused combinations of inner and outer headers. The new rules ensure the ECN field is correctly propagated across a tunnel whether it is used to signal one or two severity levels of congestion; whereas before, only one severity level was supported. Tunnel endpoints can be updated in any order without affecting pre-existing uses of the ECN field, thus ensuring backward compatibility. Nonetheless, operators wanting to support two severity levels (e.g., for pre-congestion notification -- PCN) can require compliance with this new specification. A thorough analysis of the reasoning for these changes and the implications is included. In the unlikely event that the new rules do not meet a specific need, RFC 4774 gives guidance on designing alternate ECN semantics, and this document extends that to include tunnelling issues. [STANDARDS-TRACK]

 Hybrid Encapsulation Layer for IP and UDP Messages (HELIUM)

 Google

 HELIUM is a protocol that can be used to implement a UDP proxy, a
 VPN, or a hybrid of these. It is intended to run over a reliable,
 secure substrate transport. It can serve a variety of use cases, but
 its initial purpose is to enable HTTP proxies to forward non-TCP
 flows.

 Work in Progress

 HTTP-initiated Network Tunnelling (HiNT)

 BBC Research & Development

 The HTTP CONNECT method allows an HTTP client to initiate, via a
 proxy, a TCP-based tunnel to a single destination origin. This memo
 explores options for expanding HTTP-initiated Network Tunnelling
 (HiNT) to cater for diverse UDP and IP associations.

 Work in Progress

 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification

 This document describes the format of a set of control messages used in ICMPv6 (Internet Control Message Protocol). ICMPv6 is the Internet Control Message Protocol for Internet Protocol version 6 (IPv6). [STANDARDS-TRACK]

 The MASQUE Protocol

 Google LLC

 This document describes MASQUE (Multiplexed Application Substrate
 over QUIC Encryption). MASQUE is a mechanism that allows co-locating
 and obfuscating networking applications behind an HTTPS web server.
 The currently prevalent use-case is to allow running a VPN server
 that is indistinguishable from an HTTPS server to any unauthenticated
 observer. We do not expect major providers and CDNs to deploy this
 behind their main TLS certificate, as they are not willing to take
 the risk of getting blocked, as shown when domain fronting was
 blocked. An expected use would be for individuals to enable this
 behind their personal websites via easy to configure open-source
 software.

 This document is a straw-man proposal. It does not contain enough
 details to implement the protocol, and is currently intended to spark
 discussions on the approach it is taking. As we have not yet found a
 home for this work, discussion is encouraged to happen on the GitHub
 repository which contains the draft:
 https://github.com/DavidSchinazi/masque-drafts [1].

 Work in Progress

 Security Concerns with IP Tunneling

 A number of security concerns with IP tunnels are documented in this memo. The intended audience of this document includes network administrators and future protocol developers. The primary intent of this document is to raise the awareness level regarding the security issues with IP tunnels as deployed and propose strategies for the mitigation of those issues. [STANDARDS-TRACK]

 UDP Usage Guidelines

 The User Datagram Protocol (UDP) provides a minimal message-passing transport that has no inherent congestion control mechanisms. This document provides guidelines on the use of UDP for the designers of applications, tunnels, and other protocols that use UDP. Congestion control guidelines are a primary focus, but the document also provides guidance on other topics, including message sizes, reliability, checksums, middlebox traversal, the use of Explicit Congestion Notification (ECN), Differentiated Services Code Points (DSCPs), and ports.
 Because congestion control is critical to the stable operation of the Internet, applications and other protocols that choose to use UDP as an Internet transport must employ mechanisms to prevent congestion collapse and to establish some degree of fairness with concurrent traffic. They may also need to implement additional mechanisms, depending on how they use UDP.
 Some guidance is also applicable to the design of other protocols (e.g., protocols layered directly on IP or via IP-based tunnels), especially when these protocols do not themselves provide congestion control.
 This document obsoletes RFC 5405 and adds guidelines for multicast UDP usage.

 The WebSocket Protocol

 The WebSocket Protocol enables two-way communication between a client running untrusted code in a controlled environment to a remote host that has opted-in to communications from that code. The security model used for this is the origin-based security model commonly used by web browsers. The protocol consists of an opening handshake followed by basic message framing, layered over TCP. The goal of this technology is to provide a mechanism for browser-based applications that need two-way communication with servers that does not rely on opening multiple HTTP connections (e.g., using XMLHttpRequest or <iframe>s and long polling). [STANDARDS-TRACK]

 Acknowledgments
 This document is a product of the MASQUE Working Group, and
 the author thanks all MASQUE enthusiasts for their
 contributions. This proposal was inspired directly or indirectly
 by prior work from many people, in particular
 by ,
 by , and the original MASQUE Protocol by the author of this document.
 The author would like to thank for suggesting the use of an HTTP method to proxy
 UDP. The author is indebted to and for the
 many improvements they contributed to this document. The
 extensibility design in this document came out of the HTTP
 Datagrams Design Team, whose members were , , , , ,
 , , , , ,
 and the author of this document.

 Author's Address

 Google LLC

 1600 Amphitheatre Parkway
 Mountain View
 CA
 94043
 United States of America

 dschinazi.ietf@gmail.com

