
RFC 8656
Traversal Using Relays around NAT (TURN): Relay
Extensions to Session Traversal Utilities for NAT
(STUN)

Abstract
If a host is located behind a NAT, it can be impossible for that host to communicate directly with
other hosts (peers) in certain situations. In these situations, it is necessary for the host to use the
services of an intermediate node that acts as a communication relay. This specification defines a
protocol, called "Traversal Using Relays around NAT" (TURN), that allows the host to control the
operation of the relay and to exchange packets with its peers using the relay. TURN differs from
other relay control protocols in that it allows a client to communicate with multiple peers using a
single relay address.

The TURN protocol was designed to be used as part of the Interactive Connectivity Establishment
(ICE) approach to NAT traversal, though it can also be used without ICE.

This document obsoletes RFCs 5766 and 6156.

Stream: Internet Engineering Task Force (IETF)
RFC: 8656
Obsoletes: 5766, 6156
Category: Standards Track
Published: February 2020
ISSN: 2070-1721
Authors: T. Reddy, Ed.

McAfee
A. Johnston, Ed.
Villanova University

P. Matthews
Alcatel-Lucent

J. Rosenberg
jdrosen.net

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8656

Reddy, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8656
https://www.rfc-editor.org/rfc/rfc5766
https://www.rfc-editor.org/rfc/rfc6156
https://www.rfc-editor.org/info/rfc8656

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. Overview of Operation

3.1. Transports

3.2. Allocations

3.3. Permissions

3.4. Send Mechanism

3.5. Channels

3.6. Unprivileged TURN Servers

3.7. Avoiding IP Fragmentation

3.8. RTP Support

3.9. Happy Eyeballs for TURN

4. Discovery of TURN Server

4.1. TURN URI Scheme Semantics

5. General Behavior

6. Allocations

7. Creating an Allocation

7.1. Sending an Allocate Request

7.2. Receiving an Allocate Request

7.3. Receiving an Allocate Success Response

7.4. Receiving an Allocate Error Response

8. Refreshing an Allocation

8.1. Sending a Refresh Request

8.2. Receiving a Refresh Request

8.3. Receiving a Refresh Response

9. Permissions

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 3

10. CreatePermission

10.1. Forming a CreatePermission Request

10.2. Receiving a CreatePermission Request

10.3. Receiving a CreatePermission Response

11. Send and Data Methods

11.1. Forming a Send Indication

11.2. Receiving a Send Indication

11.3. Receiving a UDP Datagram

11.4. Receiving a Data Indication

11.5. Receiving an ICMP Packet

11.6. Receiving a Data Indication with an ICMP Attribute

12. Channels

12.1. Sending a ChannelBind Request

12.2. Receiving a ChannelBind Request

12.3. Receiving a ChannelBind Response

12.4. The ChannelData Message

12.5. Sending a ChannelData Message

12.6. Receiving a ChannelData Message

12.7. Relaying Data from the Peer

13. Packet Translations

13.1. IPv4-to-IPv6 Translations

13.2. IPv6-to-IPv6 Translations

13.3. IPv6-to-IPv4 Translations

14. UDP-to-UDP Relay

15. TCP-to-UDP Relay

16. UDP-to-TCP Relay

17. STUN Methods

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 4

18. STUN Attributes

18.1. CHANNEL-NUMBER

18.2. LIFETIME

18.3. XOR-PEER-ADDRESS

18.4. DATA

18.5. XOR-RELAYED-ADDRESS

18.6. REQUESTED-ADDRESS-FAMILY

18.7. EVEN-PORT

18.8. REQUESTED-TRANSPORT

18.9. DONT-FRAGMENT

18.10. RESERVATION-TOKEN

18.11. ADDITIONAL-ADDRESS-FAMILY

18.12. ADDRESS-ERROR-CODE

18.13. ICMP

19. STUN Error Response Codes

20. Detailed Example

21. Security Considerations

21.1. Outsider Attacks

21.1.1. Obtaining Unauthorized Allocations

21.1.2. Offline Dictionary Attacks

21.1.3. Faked Refreshes and Permissions

21.1.4. Fake Data

21.1.5. Impersonating a Server

21.1.6. Eavesdropping Traffic

21.1.7. TURN Loop Attack

21.2. Firewall Considerations

21.2.1. Faked Permissions

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 5

1. Introduction
A host behind a NAT may wish to exchange packets with other hosts, some of which may also be
behind NATs. To do this, the hosts involved can use "hole punching" techniques (see)
in an attempt to discover a direct communication path; that is, a communication path that goes
from one host to another through intervening NATs and routers but does not traverse any relays.

As described in and , hole punching techniques will fail if both hosts are
behind NATs that are not well behaved. For example, if both hosts are behind NATs that have a
mapping behavior of "address-dependent mapping" or "address- and port-dependent mapping"
(see), then hole punching techniques generally fail.

When a direct communication path cannot be found, it is necessary to use the services of an
intermediate host that acts as a relay for the packets. This relay typically sits in the public
Internet and relays packets between two hosts that both sit behind NATs.

21.2.2. Blacklisted IP Addresses

21.2.3. Running Servers on Well-Known Ports

21.3. Insider Attacks

21.3.1. DoS against TURN Server

21.3.2. Anonymous Relaying of Malicious Traffic

21.3.3. Manipulating Other Allocations

21.4. Tunnel Amplification Attack

21.5. Other Considerations

22. IANA Considerations

23. IAB Considerations

24. Changes since RFC 5766

25. Updates to RFC 6156

26. References

26.1. Normative References

26.2. Informative References

Acknowledgements

Authors' Addresses

[RFC5128]

[RFC5128] [RFC4787]

Section 4.1 of [RFC4787]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc4787#section-4.1

In many enterprise networks, direct UDP transmissions are not permitted between clients on the
internal networks and external IP addresses. To permit media sessions in such a situation to use
UDP and avoid forcing them through TCP, an Enterprise Firewall can be configured to allow UDP
traffic relayed through an Enterprise relay server. WebRTC requires support for this scenario
(see). Some users of SIP or WebRTC want IP location privacy from the
remote peer. In this scenario, the client can select a relay server offering IP location privacy and
only convey the relayed candidates to the peer for ICE connectivity checks (see

).

This specification defines a protocol, called "TURN", that allows a host behind a NAT (called the
"TURN client") to request that another host (called the "TURN server") act as a relay. The client
can arrange for the server to relay packets to and from certain other hosts (called "peers"), and
the client can control aspects of how the relaying is done. The client does this by obtaining an IP
address and port on the server, called the "relayed transport address". When a peer sends a
packet to the relayed transport address, the server relays the transport protocol data from the
packet to the client. The data encapsulated within a message header that allows the client to
know the peer from which the transport protocol data was relayed by the server. If the server
receives an ICMP error packet, the server also relays certain Layer 3 and 4 header fields from the
ICMP header to the client. When the client sends a message to the server, the server identifies the
remote peer from the message header and relays the message data to the intended peer.

A client using TURN must have some way to communicate the relayed transport address to its
peers and to learn each peer's IP address and port (more precisely, each peer's server-reflexive
transport address; see Section 3). How this is done is out of the scope of the TURN protocol. One
way this might be done is for the client and peers to exchange email messages. Another way is
for the client and its peers to use a special-purpose "introduction" or "rendezvous" protocol (see

 for more details).

If TURN is used with ICE , then the relayed transport address and the IP addresses and
ports of the peers are included in the ICE candidate information that the rendezvous protocol
must carry. For example, if TURN and ICE are used as part of a multimedia solution using SIP

, then SIP serves the role of the rendezvous protocol, carrying the ICE candidate
information inside the body of SIP messages . If TURN and ICE are used with some
other rendezvous protocol, then ICE provides guidance on the services the rendezvous protocol
must perform.

Though the use of a TURN server to enable communication between two hosts behind NATs is
very likely to work, it comes at a high cost to the provider of the TURN server since the server
typically needs a high-bandwidth connection to the Internet. As a consequence, it is best to use a
TURN server only when a direct communication path cannot be found. When the client and a
peer use ICE to determine the communication path, ICE will use hole punching techniques to
search for a direct path first and only use a TURN server when a direct path cannot be found.

TURN was originally invented to support multimedia sessions signaled using SIP. Since SIP
supports forking, TURN supports multiple peers per relayed transport address; a feature not
supported by other approaches (e.g., SOCKS). However, care has been taken to make
sure that TURN is suitable for other types of applications.

Section 2.3.5.1 of [RFC7478]

Section 4.2.4 of
[SEC-WEBRTC]

[RFC5128]

[RFC8445]

[RFC3261]
[SDP-ICE]

[RFC1928]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc7478#section-2.3.5.1
https://tools.ietf.org/html/draft-ietf-rtcweb-security-12#section-4.2.4

TURN was designed as one piece in the larger ICE approach to NAT traversal. Implementors of
TURN are urged to investigate ICE and seriously consider using it for their application. However,
it is possible to use TURN without ICE.

TURN is an extension to the Session Traversal Utilities for NAT (STUN) protocol . Most,
though not all, TURN messages are STUN-formatted messages. A reader of this document should
be familiar with STUN.

The TURN specification was originally published as , which was updated by
to add IPv6 support. This document supersedes and obsoletes both and .

2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Readers are expected to be familiar with and the terms defined there.

The following terms are used in this document:

TURN:
The protocol spoken between a TURN client and a TURN server. It is an extension to the
STUN protocol . The protocol allows a client to allocate and use a relayed
transport address.

TURN client:
A STUN client that implements this specification.

TURN server:
A STUN server that implements this specification. It relays data between a TURN client and
its peer(s).

Peer:
A host with which the TURN client wishes to communicate. The TURN server relays traffic
between the TURN client and its peer(s). The peer does not interact with the TURN server
using the protocol defined in this document; rather, the peer receives data sent by the
TURN server, and the peer sends data towards the TURN server.

Transport Address:
The combination of an IP address and a port.

Host Transport Address:
A transport address on a client or a peer.

Server-Reflexive Transport Address:
A transport address on the "external side" of a NAT. This address is allocated by the NAT to
correspond to a specific host transport address.

[RFC8489]

[RFC5766] [RFC6156]
[RFC5766] [RFC6156]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8489]

[RFC8489]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 8

Relayed Transport Address:
A transport address on the TURN server that is used for relaying packets between the
client and a peer. A peer sends to this address on the TURN server, and the packet is then
relayed to the client.

TURN Server Transport Address:
A transport address on the TURN server that is used for sending TURN messages to the
server. This is the transport address that the client uses to communicate with the server.

Peer Transport Address:
The transport address of the peer as seen by the server. When the peer is behind a NAT,
this is the peer's server-reflexive transport address.

Allocation:
The relayed transport address granted to a client through an Allocate request, along with
related state, such as permissions and expiration timers.

5-tuple:
The combination (client IP address and port, server IP address and port, and transport
protocol (currently one of UDP, TCP, DTLS/UDP, or TLS/TCP)) used to communicate between
the client and the server. The 5-tuple uniquely identifies this communication stream. The
5-tuple also uniquely identifies the Allocation on the server.

Transport Protocol:
The protocol above IP that carries TURN Requests, Responses, and Indications as well as
providing identifiable flows using a 5-tuple. In this specification, UDP and TCP are defined
as transport protocols; this document also describes the use of UDP and TCP in
combination with a security layer using DTLS and TLS, respectively.

Channel:
A channel number and associated peer transport address. Once a channel number is
bound to a peer's transport address, the client and server can use the more bandwidth-
efficient ChannelData message to exchange data.

Permission:
The IP address and transport protocol (but not the port) of a peer that is permitted to send
traffic to the TURN server and have that traffic relayed to the TURN client. The TURN
server will only forward traffic to its client from peers that match an existing permission.

Realm:
A string used to describe the server or a context within the server. The realm tells the
client which username and password combination to use to authenticate requests.

Nonce:
A string chosen at random by the server and included in the server response. To prevent
replay attacks, the server should change the nonce regularly.

(D)TLS:
This term is used for statements that apply to both Transport Layer Security and
Datagram Transport Layer Security .

[RFC8446]
[RFC6347]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 9

3. Overview of Operation
This section gives an overview of the operation of TURN. It is non-normative.

In a typical configuration, a TURN client is connected to a private network and,
through one or more NATs, to the public Internet. On the public Internet is a TURN server.
Elsewhere in the Internet are one or more peers with which the TURN client wishes to
communicate. These peers may or may not be behind one or more NATs. The client uses the
server as a relay to send packets to these peers and to receive packets from these peers.

Figure 1 shows a typical deployment. In this figure, the TURN client and the TURN server are
separated by a NAT, with the client on the private side and the server on the public side of the
NAT. This NAT is assumed to be a "bad" NAT; for example, it might have a mapping property of
"address-and-port-dependent mapping" (see).

The client talks to the server from a (IP address, port) combination called the client's "host
transport address". (The combination of an IP address and port is called a "transport address".)

[RFC1918]

Figure 1

 Peer A
 Server-Reflexive +---------+
 Transport Address | |
 192.0.2.150:32102 | |
 | /| |
 TURN | / ^| Peer A |
 Client's Server | / || |
 Host Transport Transport | // || |
 Address Address | // |+---------+
198.51.100.2:49721 192.0.2.15:3478 |+-+ // Peer A
 | | ||N| / Host Transport
 | +-+ | ||A|/ Address
 | | | | v|T| 203.0.113.2:49582
 | | | | /+-+
+---------+| | | |+---------+ / +---------+
			N				//		
TURN	v		v	TURN	/				
Client	----	A	-------	Server	------------------	Peer B			
			^		^ ^				
		T							
+---------+ | || +---------+| |+---------+
 | || | |
 | || | |
 +-+| | |
 | | |
 | | |
 Client's | Peer B
 Server-Reflexive Relayed Transport
 Transport Address Transport Address Address
 192.0.2.1:7000 192.0.2.15:50000 192.0.2.210:49191

[RFC4787]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 10

The client sends TURN messages from its host transport address to a transport address on the
TURN server that is known as the "TURN server transport address". The client learns the TURN
server transport address through some unspecified means (e.g., configuration), and this address
is typically used by many clients simultaneously.

Since the client is behind a NAT, the server sees packets from the client as coming from a
transport address on the NAT itself. This address is known as the client's "server-reflexive
transport address"; packets sent by the server to the client's server-reflexive transport address
will be forwarded by the NAT to the client's host transport address.

The client uses TURN commands to create and manipulate an ALLOCATION on the server. An
allocation is a data structure on the server. This data structure contains, amongst other things,
the relayed transport address for the allocation. The relayed transport address is the transport
address on the server that peers can use to have the server relay data to the client. An allocation
is uniquely identified by its relayed transport address.

Once an allocation is created, the client can send application data to the server along with an
indication of to which peer the data is to be sent, and the server will relay this data to the
intended peer. The client sends the application data to the server inside a TURN message; at the
server, the data is extracted from the TURN message and sent to the peer in a UDP datagram. In
the reverse direction, a peer can send application data in a UDP datagram to the relayed
transport address for the allocation; the server will then encapsulate this data inside a TURN
message and send it to the client along with an indication of which peer sent the data. Since the
TURN message always contains an indication of which peer the client is communicating with, the
client can use a single allocation to communicate with multiple peers.

When the peer is behind a NAT, the client must identify the peer using its server-reflexive
transport address rather than its host transport address. For example, to send application data to
Peer A in the example above, the client must specify 192.0.2.150:32102 (Peer A's server-reflexive
transport address) rather than 203.0.113.2:49582 (Peer A's host transport address).

Each allocation on the server belongs to a single client and has either one or two relayed
transport addresses that are used only by that allocation. Thus, when a packet arrives at a
relayed transport address on the server, the server knows for which client the data is intended.

The client may have multiple allocations on a server at the same time.

3.1. Transports
TURN, as defined in this specification, always uses UDP between the server and the peer.
However, this specification allows the use of any one of UDP, TCP, Transport Layer Security (TLS)
over TCP, or Datagram Transport Layer Security (DTLS) over UDP to carry the TURN messages
between the client and the server.

TURN client to TURN server TURN server to peer

UDP UDP

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 11

TURN client to TURN server TURN server to peer

TCP UDP

TLS-over-TCP UDP

DTLS-over-UDP UDP

Table 1

If TCP or TLS-over-TCP is used between the client and the server, then the server will convert
between these transports and UDP transport when relaying data to/from the peer.

Since this version of TURN only supports UDP between the server and the peer, it is expected that
most clients will prefer to use UDP between the client and the server as well. That being the case,
some readers may wonder: Why also support TCP and TLS-over-TCP?

TURN supports TCP transport between the client and the server because some firewalls are
configured to block UDP entirely. These firewalls block UDP but not TCP, in part because TCP has
properties that make the intention of the nodes being protected by the firewall more obvious to
the firewall. For example, TCP has a three-way handshake that makes it clearer that the protected
node really wishes to have that particular connection established, while for UDP, the best the
firewall can do is guess which flows are desired by using filtering rules. Also, TCP has explicit
connection teardown; while for UDP, the firewall has to use timers to guess when the flow is
finished.

TURN supports TLS-over-TCP transport and DTLS-over-UDP transport between the client and the
server because (D)TLS provides additional security properties not provided by TURN's default
digest authentication, properties that some clients may wish to take advantage of. In particular,
(D)TLS provides a way for the client to ascertain that it is talking to the correct server and
provides for confidentiality of TURN control messages. If (D)TLS transport is used between the
TURN client and the TURN server, refer to for more information about
cipher suites, server certificate validation, and authentication of TURN servers. The guidance
given in be followed to avoid attacks on (D)TLS. TURN does not require (D)TLS
because the overhead of using (D)TLS is higher than that of digest authentication; for example,
using (D)TLS likely means that most application data will be doubly encrypted (once by (D)TLS
and once to ensure it is still encrypted in the UDP datagram).

There is an extension to TURN for TCP transport between the server and the peers . For
this reason, allocations that use UDP between the server and the peers are known as "UDP
allocations", while allocations that use TCP between the server and the peers are known as "TCP
allocations". This specification describes only UDP allocations.

In some applications for TURN, the client may send and receive packets other than TURN packets
on the host transport address it uses to communicate with the server. This can happen, for
example, when using TURN with ICE. In these cases, the client can distinguish TURN packets

Section 6.2.3 of [RFC8489]

[RFC7525] MUST

[RFC6062]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc8489#section-6.2.3

3.2. Allocations
To create an allocation on the server, the client uses an Allocate transaction. The client sends an
Allocate request to the server, and the server replies with an Allocate success response
containing the allocated relayed transport address. The client can include attributes in the
Allocate request that describe the type of allocation it desires (e.g., the lifetime of the allocation).
Since relaying data has security implications, the server requires that the client authenticate
itself, typically using STUN's long-term credential mechanism or the STUN Extension for Third-
Party Authorization , to show that it is authorized to use the server.

Once a relayed transport address is allocated, a client must keep the allocation alive. To do this,
the client periodically sends a Refresh request to the server. TURN deliberately uses a different
method (Refresh rather than Allocate) for refreshes to ensure that the client is informed if the
allocation vanishes for some reason.

The frequency of the Refresh transaction is determined by the lifetime of the allocation. The
default lifetime of an allocation is 10 minutes; this value was chosen to be long enough so that
refreshing is not typically a burden on the client while expiring allocations where the client has
unexpectedly quit in a timely manner. However, the client can request a longer lifetime in the
Allocate request and may modify its request in a Refresh request, and the server always indicates
the actual lifetime in the response. The client must issue a new Refresh transaction within
"lifetime" seconds of the previous Allocate or Refresh transaction. Once a client no longer wishes
to use an allocation, it should delete the allocation using a Refresh request with a requested
lifetime of zero.

Both the server and client keep track of a value known as the "5-tuple". At the client, the 5-tuple
consists of the client's host transport address, the server transport address, and the transport
protocol used by the client to communicate with the server. At the server, the 5-tuple value is the
same except that the client's host transport address is replaced by the client's server-reflexive
address since that is the client's address as seen by the server.

Both the client and the server remember the 5-tuple used in the Allocate request. Subsequent
messages between the client and the server use the same 5-tuple. In this way, the client and
server know which allocation is being referred to. If the client wishes to allocate a second
relayed transport address, it must create a second allocation using a different 5-tuple (e.g., by
using a different client host address or port).

NOTE: While the terminology used in this document refers to 5-tuples, the TURN
server can store whatever identifier it likes that yields identical results. Specifically,
an implementation may use a file descriptor in place of a 5-tuple to represent a TCP
connection.

from other packets by examining the source address of the arriving packet; those arriving from
the TURN server will be TURN packets. The algorithm of demultiplexing packets received from
multiple protocols on the host transport address is discussed in .[RFC7983]

[RFC7635]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 13

In Figure 2, the client sends an Allocate request to the server with invalid or missing credentials.
Since the server requires that all requests be authenticated using STUN's long-term credential
mechanism, the server rejects the request with a 401 (Unauthorized) error code. The client then
tries again, this time including credentials. This time, the server accepts the Allocate request and
returns an Allocate success response containing (amongst other things) the relayed transport
address assigned to the allocation. Sometime later, the client decides to refresh the allocation;
thus, it sends a Refresh request to the server. The refresh is accepted and the server replies with
a Refresh success response.

Figure 2

TURN TURN Peer Peer
client server A B
-- Allocate request --------------->		
(invalid or missing credentials)		
<--------------- Allocate failure --		
(401 Unauthenticated)		
-- Allocate request --------------->		
(valid credentials)		
<---------- Allocate success resp --		
(192.0.2.15:50000)		
// // // //		
-- Refresh request ---------------->		
<----------- Refresh success resp --		

3.3. Permissions
To ease concerns amongst enterprise IT administrators that TURN could be used to bypass
corporate firewall security, TURN includes the notion of permissions. TURN permissions mimic
the address-restricted filtering mechanism of NATs that comply with .

An allocation can have zero or more permissions. Each permission consists of an IP address and
a lifetime. When the server receives a UDP datagram on the allocation's relayed transport
address, it first checks the list of permissions. If the source IP address of the datagram matches a
permission, the application data is relayed to the client; otherwise, the UDP datagram is silently
discarded.

A permission expires after 5 minutes if it is not refreshed, and there is no way to explicitly delete
a permission. This behavior was selected to match the behavior of a NAT that complies with

.

The client can install or refresh a permission using either a CreatePermission request or a
ChannelBind request. Using the CreatePermission request, multiple permissions can be installed
or refreshed with a single request; this is important for applications that use ICE. For security

[RFC4787]

[RFC4787]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 14

3.4. Send Mechanism
There are two mechanisms for the client and peers to exchange application data using the TURN
server. The first mechanism uses the Send and Data methods, the second mechanism uses
channels. Common to both mechanisms is the ability of the client to communicate with multiple
peers using a single allocated relayed transport address; thus, both mechanisms include a means
for the client to indicate to the server which peer should receive the data and for the server to
indicate to the client which peer sent the data.

The Send mechanism uses Send and Data indications. Send indications are used to send
application data from the client to the server, while Data indications are used to send application
data from the server to the client.

When using the Send mechanism, the client sends a Send indication to the TURN server
containing (a) an XOR-PEER-ADDRESS attribute specifying the (server-reflexive) transport
address of the peer and (b) a DATA attribute holding the application data. When the TURN server
receives the Send indication, it extracts the application data from the DATA attribute and sends it
in a UDP datagram to the peer, using the allocated relay address as the source address. Note that
there is no need to specify the relayed transport address since it is implied by the 5-tuple used for
the Send indication.

In the reverse direction, UDP datagrams arriving at the relayed transport address on the TURN
server are converted into Data indications and sent to the client, with the server-reflexive
transport address of the peer included in an XOR-PEER-ADDRESS attribute and the data itself in a
DATA attribute. Since the relayed transport address uniquely identified the allocation, the server
knows which client should receive the data.

Some ICMP (Internet Control Message Protocol) packets arriving at the relayed transport address
on the TURN server may be converted into Data indications and sent to the client, with the
transport address of the peer included in an XOR-PEER-ADDRESS attribute and the ICMP type
and code in an ICMP attribute. ICMP attribute forwarding always uses Data indications
containing the XOR-PEER-ADDRESS and ICMP attributes, even when using the channel
mechanism to forward UDP data.

Send and Data indications cannot be authenticated since the long-term credential mechanism of
STUN does not support authenticating indications. This is not as big an issue as it might first
appear since the client-to-server leg is only half of the total path to the peer. Applications that
want end-to-end security should encrypt the data sent between the client and a peer.

reasons, permissions can only be installed or refreshed by transactions that can be
authenticated; thus, Send indications and ChannelData messages (which are used to send data to
peers) do not install or refresh any permissions.

Note that permissions are within the context of an allocation, so adding or expiring a permission
in one allocation does not affect other allocations.

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 15

Because Send indications are not authenticated, it is possible for an attacker to send bogus Send
indications to the server, which will then relay these to a peer. To partly mitigate this attack,
TURN requires that the client install a permission towards a peer before sending data to it using
a Send indication. The technique to fully mitigate the attack is discussed in Section 21.1.4.

In Figure 3, the client has already created an allocation and now wishes to send data to its peers.
The client first creates a permission by sending the server a CreatePermission request specifying
Peer A's (server-reflexive) IP address in the XOR-PEER-ADDRESS attribute; if this was not done,
the server would not relay data between the client and the server. The client then sends data to
Peer A using a Send indication; at the server, the application data is extracted and forwarded in a
UDP datagram to Peer A, using the relayed transport address as the source transport address.
When a UDP datagram from Peer A is received at the relayed transport address, the contents are
placed into a Data indication and forwarded to the client. Later, the client attempts to exchange
data with Peer B; however, no permission has been installed for Peer B, so the Send indication
from the client and the UDP datagram from the peer are both dropped by the server.

3.5. Channels
For some applications (e.g., Voice over IP (VoIP)), the 36 bytes of overhead that a Send indication
or Data indication adds to the application data can substantially increase the bandwidth
required between the client and the server. To remedy this, TURN offers a second way for the
client and server to associate data with a specific peer.

Figure 3

TURN TURN Peer Peer
client server A B
-- CreatePermission req (Peer A) ->		
<- CreatePermission success resp --		
--- Send ind (Peer A)------------->		
	=== data ===>	
	<== data ====	
<------------- Data ind (Peer A) --		
--- Send ind (Peer B)------------->		
	dropped	
	<== data ==================	
dropped		

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 16

This second way uses an alternate packet format known as the "ChannelData message". The
ChannelData message does not use the STUN header used by other TURN messages, but instead
has a 4-byte header that includes a number known as a "channel number". Each channel number
in use is bound to a specific peer; thus, it serves as a shorthand for the peer's host transport
address.

To bind a channel to a peer, the client sends a ChannelBind request to the server and includes an
unbound channel number and the transport address of the peer. Once the channel is bound, the
client can use a ChannelData message to send the server data destined for the peer. Similarly, the
server can relay data from that peer towards the client using a ChannelData message.

Channel bindings last for 10 minutes unless refreshed; this lifetime was chosen to be longer than
the permission lifetime. Channel bindings are refreshed by sending another ChannelBind
request rebinding the channel to the peer. Like permissions (but unlike allocations), there is no
way to explicitly delete a channel binding; the client must simply wait for it to time out.

Figure 4 shows the channel mechanism in use. The client has already created an allocation and
now wishes to bind a channel to Peer A. To do this, the client sends a ChannelBind request to the
server, specifying the transport address of Peer A and a channel number (0x4001). After that, the
client can send application data encapsulated inside ChannelData messages to Peer A: this is
shown as "(0x4001) data" where 0x4001 is the channel number. When the ChannelData message
arrives at the server, the server transfers the data to a UDP datagram and sends it to Peer A
(which is the peer bound to channel number 0x4001).

Figure 4

TURN TURN Peer Peer
client server A B
-- ChannelBind req --------------->		
(Peer A to 0x4001)		
<---------- ChannelBind succ resp -		
-- (0x4001) data ----------------->		
	=== data ===>	
	<== data ====	
<------------------ (0x4001) data -		
--- Send ind (Peer A)------------->		
	=== data ===>	
	<== data ====	
<------------------ (0x4001) data -		

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 17

In the reverse direction, when Peer A sends a UDP datagram to the relayed transport address,
this UDP datagram arrives at the server on the relayed transport address assigned to the
allocation. Since the UDP datagram was received from Peer A, which has a channel number
assigned to it, the server encapsulates the data into a ChannelData message when sending the
data to the client.

Once a channel has been bound, the client is free to intermix ChannelData messages and Send
indications. In the figure, the client later decides to use a Send indication rather than a
ChannelData message to send additional data to Peer A. The client might decide to do this, for
example, so it can use the DONT-FRAGMENT attribute (see the next section). However, once a
channel is bound, the server will always use a ChannelData message, as shown in the call flow.

Note that ChannelData messages can only be used for peers to which the client has bound a
channel. In the example above, Peer A has been bound to a channel, but Peer B has not, so
application data to and from Peer B would use the Send mechanism.

3.7. Avoiding IP Fragmentation
For reasons described in , applications, especially those sending large volumes
of data, should avoid having their packets fragmented. discusses issues
associated with IP fragmentation and proposes alternatives to IP fragmentation. Applications
using TCP can, more or less, ignore this issue because fragmentation avoidance is now a standard
part of TCP, but applications using UDP (and, thus, any application using this version of TURN)
need to avoid IP fragmentation by sending sufficiently small messages or by using UDP
fragmentation . Note that the UDP fragmentation option needs to be supported by both
endpoints, and at the time of writing of this document, UDP fragmentation support is under
discussion and is not deployed.

3.6. Unprivileged TURN Servers
This version of TURN is designed so that the server can be implemented as an application that
runs in user space under commonly available operating systems without requiring special
privileges. This design decision was made to make it easy to deploy a TURN server: for example,
to allow a TURN server to be integrated into a peer-to-peer application so that one peer can offer
NAT traversal services to another peer and to use (D)TLS to secure the TURN connection.

This design decision has the following implications for data relayed by a TURN server:

The value of the Diffserv field may not be preserved across the server;
The Time to Live (TTL) field may be reset, rather than decremented, across the server;
The Explicit Congestion Notification (ECN) field may be reset by the server;
There is no end-to-end fragmentation since the packet is reassembled at the server.

Future work may specify alternate TURN semantics that address these limitations.

•
•
•
•

[FRAG-HARMFUL]
[FRAG-FRAGILE]

[UDP-OPT]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 18

The application running on the client and the peer can take one of two approaches to avoid IP
fragmentation until UDP fragmentation support is available. The first uses messages that are
limited to a predetermined fixed maximum, and the second relies on network feedback to adapt
that maximum.

The first approach is to avoid sending large amounts of application data in the TURN messages/
UDP datagrams exchanged between the client and the peer. This is the approach taken by most
VoIP applications. In this approach, the application assume a Path MTU (PMTU) of 1280
bytes because IPv6 requires that every link in the Internet has an MTU of 1280 octets or greater
as specified in . If IPv4 support on legacy or otherwise unusual networks is a
consideration, the application assume an effective MTU of 576 bytes for IPv4 datagrams, as
every IPv4 host must be capable of receiving a packet with a length equal to 576 bytes as
discussed in and .

The exact amount of application data that can be included while avoiding fragmentation
depends on the details of the TURN session between the client and the server: whether UDP, TCP,
or (D)TLS transport is used; whether ChannelData messages or Send/Data indications are used;
and whether any additional attributes (such as the DONT-FRAGMENT attribute) are included.
Another factor, which is hard to determine, is whether the MTU is reduced somewhere along the
path for other reasons, such as the use of IP-in-IP tunneling.

As a guideline, sending a maximum of 500 bytes of application data in a single TURN message (by
the client on the client-to-server leg) or a UDP datagram (by the peer on the peer-to-server leg)
will generally avoid IP fragmentation. To further reduce the chance of fragmentation, it is
recommended that the client use ChannelData messages when transferring significant volumes
of data since the overhead of the ChannelData message is less than Send and Data indications.

The second approach the client and peer can take to avoid fragmentation is to use a path MTU
discovery algorithm to determine the maximum amount of application data that can be sent
without fragmentation. The classic path MTU discovery algorithm defined in may not
be able to discover the MTU of the transmission path between the client and the peer since:

A probe packet with a Don't Fragment (DF) bit in the IPv4 header set to test a path for a
larger MTU can be dropped by routers, or
ICMP error messages can be dropped by middleboxes.

As a result, the client and server need to use a path MTU discovery algorithm that does not
require ICMP messages. The Packetized Path MTU Discovery algorithm defined in is
one such algorithm, and a set of algorithms is defined in .

 is an implementation of that uses STUN to discover the path MTU; so it
might be a suitable approach to be used in conjunction with a TURN server that supports the
DONT-FRAGMENT attribute. When the client includes the DONT-FRAGMENT attribute in a Send
indication, this tells the server to set the DF bit in the resulting UDP datagram that it sends to the
peer. Since some servers may be unable to set the DF bit, the client should also include this
attribute in the Allocate request; any server that does not support the DONT-FRAGMENT

MUST

[RFC8200]
MAY

[RFC0791] [RFC1122]

[RFC1191]

•

•

[RFC4821]
[MTU-DATAGRAM]

[MTU-STUN] [RFC4821]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 19

attribute will indicate this by rejecting the Allocate request. If the TURN server carrying out
packet translation from IPv4-to-IPv6 is unable to access the state of the Don't Fragment (DF) bit in
the IPv4 header, it reject the Allocate request with the DONT-FRAGMENT attribute.

3.8. RTP Support
One of the envisioned uses of TURN is as a relay for clients and peers wishing to exchange real-
time data (e.g., voice or video) using RTP. To facilitate the use of TURN for this purpose, TURN
includes some special support for older versions of RTP.

Old versions of RTP required that the RTP stream be on an even port number and the
associated RTP Control Protocol (RTCP) stream, if present, be on the next highest port. To allow
clients to work with peers that still require this, TURN allows the client to request that the server
allocate a relayed transport address with an even port number and optionally request the server
reserve the next-highest port number for a subsequent allocation.

3.9. Happy Eyeballs for TURN
If an IPv4 path to reach a TURN server is found, but the TURN server's IPv6 path is not working, a
dual-stack TURN client can experience a significant connection delay compared to an IPv4-only
TURN client. To overcome these connection setup problems, the TURN client needs to query both
A and AAAA records for the TURN server specified using a domain name and try connecting to
the TURN server using both IPv6 and IPv4 addresses in a fashion similar to the Happy Eyeballs
mechanism defined in . The TURN client performs the following steps based on the
transport protocol being used to connect to the TURN server.

For TCP or TLS-over-TCP, the results of the Happy Eyeballs procedure are used by
the TURN client for sending its TURN messages to the server.
For clear text UDP, send TURN Allocate requests to both IP address families as discussed in

 without authentication information. If the TURN server requires authentication, it
will send back a 401 unauthenticated response; the TURN client will use the first UDP
connection on which a 401 error response is received. If a 401 error response is received
from both IP address families, then the TURN client can silently abandon the UDP connection
on the IP address family with lower precedence. If the TURN server does not require
authentication (as described in), it is possible for both Allocate
requests to succeed. In this case, the TURN client sends a Refresh with a LIFETIME value of
zero on the allocation using the IP address family with lower precedence to delete the
allocation.
For DTLS over UDP, initiate a DTLS handshake to both IP address families as discussed in

, and use the first DTLS session that is established. If the DTLS session is
established on both IP address families, then the client sends a DTLS close_notify alert to
terminate the DTLS session using the IP address family with lower precedence. If the TURN
over DTLS server has been configured to require a cookie exchange (

) and a HelloVerifyRequest is received from the TURN servers on both IP address
families, then the client can silently abandon the connection on the IP address family with
lower precedence.

MUST

[RFC3550]

[RFC8305]

• [RFC8305]

•
[RFC8305]

Section 9 of [RFC8155]

•
[RFC8305]

Section 4.2 of
[RFC6347]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc8155#section-9
https://www.rfc-editor.org/rfc/rfc6347#section-4.2

4. Discovery of TURN Server
Methods of TURN server discovery, including using anycast, are described in . If a host
with multiple interfaces discovers a TURN server in each interface, the mechanism described in

 can be used by the TURN client to influence the TURN server selection. The syntax of
the "turn" and "turns" URIs are defined in . DTLS as a transport protocol
for TURN is defined in .

4.1. TURN URI Scheme Semantics
The "turn" and "turns" URI schemes are used to designate a TURN server (also known as a
"relay") on Internet hosts accessible using the TURN protocol. The TURN protocol supports
sending messages over UDP, TCP, TLS-over-TCP, or DTLS-over-UDP. The "turns" URI scheme
be used when TURN is run over TLS-over-TCP or in DTLS-over-UDP, and the "turn" scheme
be used otherwise. The required <host> part of the "turn" URI denotes the TURN server host. The
<port> part, if present, denotes the port on which the TURN server is awaiting connection
requests. If it is absent, the default port is 3478 for both UDP and TCP. The default port for TURN
over TLS and TURN over DTLS is 5349.

[RFC8155]

[RFC7982]
Section 3.1 of [RFC7065]

[RFC7350]

MUST
MUST

5. General Behavior
This section contains general TURN processing rules that apply to all TURN messages.

TURN is an extension to STUN. All TURN messages, with the exception of the ChannelData
message, are STUN-formatted messages. All the base processing rules described in
apply to STUN-formatted messages. This means that all the message-forming and message-
processing descriptions in this document are implicitly prefixed with the rules of .

 specifies an authentication mechanism called the "long-term credential mechanism".
TURN servers and clients implement this mechanism, and the authentication options are
discussed in Section 7.2.

Note that the long-term credential mechanism applies only to requests and cannot be used to
authenticate indications; thus, indications in TURN are never authenticated. If the server
requires requests to be authenticated, then the server's administrator choose a realm value
that will uniquely identify the username and password combination that the client must use,
even if the client uses multiple servers under different administrations. The server's
administrator choose to allocate a unique username to each client, or it choose to
allocate the same username to more than one client (for example, to all clients from the same
department or company). For each Allocate request, the server generate a new random
nonce when the allocation is first attempted following the randomness recommendations in

 and expire the nonce at least once every hour during the lifetime of the
allocation. The server uses the mechanism described in to indicate that
it supports .

[RFC8489]

[RFC8489]

[RFC8489]
MUST

MUST

MAY MAY

SHOULD

[RFC4086] SHOULD
Section 9.2 of [RFC8489]

[RFC8489]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 21

https://www.rfc-editor.org/rfc/rfc7065#section-3.1
https://www.rfc-editor.org/rfc/rfc8489#section-9.2

All requests after the initial Allocate must use the same username as that used to create the
allocation to prevent attackers from hijacking the client's allocation.

Specifically, if:

the server requires the use of the long-term credential mechanism, and;
a non-Allocate request passes authentication under this mechanism, and;
the 5-tuple identifies an existing allocation, but;
the request does not use the same username as used to create the allocation,

then the request be rejected with a 441 (Wrong Credentials) error.

When a TURN message arrives at the server from the client, the server uses the 5-tuple in the
message to identify the associated allocation. For all TURN messages (including ChannelData)
EXCEPT an Allocate request, if the 5-tuple does not identify an existing allocation, then the
message either be rejected with a 437 Allocation Mismatch error (if it is a request) or be
silently ignored (if it is an indication or a ChannelData message). A client receiving a 437 error
response to a request other than Allocate assume the allocation no longer exists.

 defines a number of attributes, including the SOFTWARE and FINGERPRINT attributes.
The client include the SOFTWARE attribute in all Allocate and Refresh requests and
include it in any other requests or indications. The server include the SOFTWARE
attribute in all Allocate and Refresh responses (either success or failure) and include it in
other responses or indications. The client and the server include the FINGERPRINT attribute
in any STUN-formatted messages defined in this document.

TURN does not use the backwards-compatibility mechanism described in .

TURN, as defined in this specification, supports both IPv4 and IPv6. IPv6 support in TURN
includes IPv4-to-IPv6, IPv6-to-IPv6, and IPv6-to-IPv4 relaying. When only a single address type is
desired, the REQUESTED-ADDRESS-FAMILY attribute is used to explicitly request the address type
the TURN server will allocate (e.g., an IPv4-only node may request the TURN server to allocate an
IPv6 address). If both IPv4 and IPv6 are desired, the single ADDITIONAL-ADDRESS-FAMILY
attribute indicates a request to the server to allocate one IPv4 and one IPv6 relay address in a
single Allocate request. This saves local ports on the client and reduces the number of messages
sent between the client and the TURN server.

By default, TURN runs on the same ports as STUN: 3478 for TURN over UDP and TCP, and 5349 for
TURN over (D)TLS. However, TURN has its own set of Service Record (SRV) names: "turn" for UDP
and TCP, and "turns" for (D)TLS. Either the DNS resolution procedures or the ALTERNATE-
SERVER procedures, both described in Section 7, can be used to run TURN on a different port.

To ensure interoperability, a TURN server support the use of UDP transport between the
client and the server, and it support the use of TCP, TLS-over-TCP, and DTLS-over-UDP
transports.

•
•
•
•

MUST

MUST

MUST

[RFC8489]
SHOULD MAY

SHOULD
MAY

MAY

[RFC8489]

MUST
SHOULD

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 22

When UDP or DTLS-over-UDP transport is used between the client and the server, the client will
retransmit a request if it does not receive a response within a certain timeout period. Because of
this, the server may receive two (or more) requests with the same 5-tuple and same transaction
id. STUN requires that the server recognize this case and treat the request as idempotent (see

). Some implementations may choose to meet this requirement by remembering all
received requests and the corresponding responses for 40 seconds ().
Other implementations may choose to reprocess the request and arrange that such reprocessing
returns essentially the same response. To aid implementors who choose the latter approach (the
so-called "stateless stack approach"), this specification includes some implementation notes on
how this might be done. Implementations are free to choose either approach or some other
approach that gives the same results.

To mitigate either intentional or unintentional denial-of-service attacks against the server by
clients with valid usernames and passwords, it is that the server impose limits
on both the number of allocations active at one time for a given username and on the amount of
bandwidth those allocations can use. The server should reject new allocations that would exceed
the limit on the allowed number of allocations active at one time with a 486 (Allocation Quota
Exceeded) (see Section 7.2), and since UDP does not include a congestion control mechanism, it
should discard application data traffic that exceeds the bandwidth quota.

[RFC8489]
Section 6.3.1 of [RFC8489]

RECOMMENDED

6. Allocations
All TURN operations revolve around allocations, and all TURN messages are associated with
either a single or dual allocation. An allocation conceptually consists of the following state data:

the relayed transport address or addresses;
the 5-tuple: (client's IP address, client's port, server IP address, server port, and transport
protocol);
the authentication information;
the time-to-expiry for each relayed transport address;
a list of permissions for each relayed transport address;
a list of channel-to-peer bindings for each relayed transport address.

The relayed transport address is the transport address allocated by the server for communicating
with peers, while the 5-tuple describes the communication path between the client and the
server. On the client, the 5-tuple uses the client's host transport address; on the server, the 5-
tuple uses the client's server-reflexive transport address. The relayed transport address be
unique across all allocations so it can be used to uniquely identify the allocation, and an
allocation in this context can be either a single or dual allocation.

The authentication information (e.g., username, password, realm, and nonce) is used to both
verify subsequent requests and to compute the message integrity of responses. The username,
realm, and nonce values are initially those used in the authenticated Allocate request that
creates the allocation, though the server can change the nonce value during the lifetime of the

•
•

•
•
•
•

MUST

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 23

https://www.rfc-editor.org/rfc/rfc8489#section-6.3.1

allocation using a 438 (Stale Nonce) reply. For security reasons, the server store the
password explicitly and store the key value, which is a cryptographic hash over the
username, realm, and password (see).

Note that if the response contains a PASSWORD-ALGORITHMS attribute and this attribute
contains both MD5 and SHA-256 algorithms, and the client also supports both the algorithms, the
request contain a PASSWORD-ALGORITHM attribute with the SHA-256 algorithm.

The time-to-expiry is the time in seconds left until the allocation expires. Each Allocate or Refresh
transaction sets this timer, which then ticks down towards zero. By default, each Allocate or
Refresh transaction resets this timer to the default lifetime value of 600 seconds (10 minutes), but
the client can request a different value in the Allocate and Refresh request. Allocations can only
be refreshed using the Refresh request; sending data to a peer does not refresh an allocation.
When an allocation expires, the state data associated with the allocation can be freed.

The list of permissions is described in Section 9 and the list of channels is described in Section 12.

MUST NOT
MUST

Section 16.1.3 of [RFC8489]

MUST

7. Creating an Allocation
An allocation on the server is created using an Allocate transaction.

7.1. Sending an Allocate Request
The client forms an Allocate request as follows.

The client first picks a host transport address. It is that the client pick a currently
unused transport address, typically by allowing the underlying OS to pick a currently unused
port.

The client then picks a transport protocol that the client supports to use between the client and
the server based on the transport protocols supported by the server. Since this specification only
allows UDP between the server and the peers, it is that the client pick UDP unless
it has a reason to use a different transport. One reason to pick a different transport would be that
the client believes, either through configuration or discovery or by experiment, that it is unable
to contact any TURN server using UDP. See Section 3.1 for more discussion.

The client also picks a server transport address, which be done as follows. The client
uses one or more procedures described in to discover a TURN server and uses the
TURN server resolution mechanism defined in and to get a list of server
transport addresses that can be tried to create a TURN allocation.

The client include a REQUESTED-TRANSPORT attribute in the request. This attribute
specifies the transport protocol between the server and the peers (note that this is *not* the
transport protocol that appears in the 5-tuple). In this specification, the REQUESTED-TRANSPORT
type is always UDP. This attribute is included to allow future extensions to specify other
protocols.

RECOMMENDED

RECOMMENDED

SHOULD
[RFC8155]

[RFC5928] [RFC7350]

MUST

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 24

https://www.rfc-editor.org/rfc/rfc8489#section-16.1.3

If the client wishes to obtain a relayed transport address of a specific address type, then it
includes a REQUESTED-ADDRESS-FAMILY attribute in the request. This attribute indicates the
specific address type the client wishes the TURN server to allocate. Clients include
more than one REQUESTED-ADDRESS-FAMILY attribute in an Allocate request. Clients
include a REQUESTED-ADDRESS-FAMILY attribute in an Allocate request that contains a
RESERVATION-TOKEN attribute, for the reason that the server uses the previously reserved
transport address corresponding to the included token and the client cannot obtain a relayed
transport address of a specific address type.

If the client wishes to obtain one IPv6 and one IPv4 relayed transport address, then it includes an
ADDITIONAL-ADDRESS-FAMILY attribute in the request. This attribute specifies that the server
must allocate both address types. The attribute value in the ADDITIONAL-ADDRESS-FAMILY

 be set to 0x02 (IPv6 address family). Clients include REQUESTED-ADDRESS-
FAMILY and ADDITIONAL-ADDRESS-FAMILY attributes in the same request. Clients
include the ADDITIONAL-ADDRESS-FAMILY attribute in an Allocate request that contains a
RESERVATION-TOKEN attribute. Clients include the ADDITIONAL-ADDRESS-FAMILY
attribute in an Allocate request that contains an EVEN-PORT attribute with the R (Reserved) bit
set to 1. The reason behind the restriction is that if the EVEN-PORT attribute with the R bit set to 1
is allowed with the ADDITIONAL-ADDRESS-FAMILY attribute, two tokens will have to be
returned in the success response and changes will be required to the way the RESERVATION-
TOKEN attribute is handled.

If the client wishes the server to initialize the time-to-expiry field of the allocation to some value
other than the default lifetime, then it include a LIFETIME attribute specifying its desired
value. This is just a hint, and the server may elect to use a different value. Note that the server
will ignore requests to initialize the field to less than the default value.

If the client wishes to later use the DONT-FRAGMENT attribute in one or more Send indications
on this allocation, then the client include the DONT-FRAGMENT attribute in the Allocate
request. This allows the client to test whether this attribute is supported by the server.

If the client requires the port number of the relayed transport address to be even, the client
includes the EVEN-PORT attribute. If this attribute is not included, then the port can be even or
odd. By setting the R bit in the EVEN-PORT attribute to 1, the client can request that the server
reserve the next highest port number (on the same IP address) for a subsequent allocation. If the
R bit is 0, no such request is made.

The client also include a RESERVATION-TOKEN attribute in the request to ask the server to
use a previously reserved port for the allocation. If the RESERVATION-TOKEN attribute is
included, then the client omit the EVEN-PORT attribute.

Once constructed, the client sends the Allocate request on the 5-tuple.

MUST NOT
MUST NOT

MUST MUST NOT
MUST NOT

MUST NOT

MAY

SHOULD

MAY

MUST

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 25

7.2. Receiving an Allocate Request
When the server receives an Allocate request, it performs the following checks:

The TURN server provided by the local or access network allow an unauthenticated
request in order to accept Allocation requests from new and/or guest users in the network
who do not necessarily possess long-term credentials for STUN authentication. The security
implications of STUN and making STUN authentication optional are discussed in .
Otherwise, the server require that the request be authenticated. If the request is
authenticated, the authentication be done either using the long-term credential
mechanism of or using the STUN Extension for Third-Party Authorization

 unless the client and server agree to use another mechanism through some
procedure outside the scope of this document.
The server checks if the 5-tuple is currently in use by an existing allocation. If yes, the server
rejects the request with a 437 (Allocation Mismatch) error.
The server checks if the request contains a REQUESTED-TRANSPORT attribute. If the
REQUESTED-TRANSPORT attribute is not included or is malformed, the server rejects the
request with a 400 (Bad Request) error. Otherwise, if the attribute is included but specifies a
protocol that is not supported by the server, the server rejects the request with a 442
(Unsupported Transport Protocol) error.
The request may contain a DONT-FRAGMENT attribute. If it does, but the server does not
support sending UDP datagrams with the DF bit set to 1 (see Sections 14 and 15), then the
server treats the DONT-FRAGMENT attribute in the Allocate request as an unknown
comprehension-required attribute.
The server checks if the request contains a RESERVATION-TOKEN attribute. If yes, and the
request also contains an EVEN-PORT or REQUESTED-ADDRESS-FAMILY or ADDITIONAL-
ADDRESS-FAMILY attribute, the server rejects the request with a 400 (Bad Request) error.
Otherwise, it checks to see if the token is valid (i.e., the token is in range and has not expired,
and the corresponding relayed transport address is still available). If the token is not valid
for some reason, the server rejects the request with a 508 (Insufficient Capacity) error.
The server checks if the request contains both REQUESTED-ADDRESS-FAMILY and
ADDITIONAL-ADDRESS-FAMILY attributes. If yes, then the server rejects the request with a
400 (Bad Request) error.
If the server does not support the address family requested by the client in REQUESTED-
ADDRESS-FAMILY, or if the allocation of the requested address family is disabled by local
policy, it generate an Allocate error response, and it include an ERROR-CODE
attribute with the 440 (Address Family not Supported) response code. If the REQUESTED-
ADDRESS-FAMILY attribute is absent and the server does not support the IPv4 address
family, the server include an ERROR-CODE attribute with the 440 (Address Family not
Supported) response code. If the REQUESTED-ADDRESS-FAMILY attribute is absent and the
server supports the IPv4 address family, the server allocate an IPv4 relayed transport
address for the TURN client.
The server checks if the request contains an EVEN-PORT attribute with the R bit set to 1. If
yes, and the request also contains an ADDITIONAL-ADDRESS-FAMILY attribute, the server

1. MAY

[RFC8155]
MUST

MUST
[RFC8489]

[RFC7635]

2.

3.

4.

5.

6.

7.

MUST MUST

MUST

MUST

8.

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 26

rejects the request with a 400 (Bad Request) error. Otherwise, the server checks if it can
satisfy the request (i.e., can allocate a relayed transport address as described below). If the
server cannot satisfy the request, then the server rejects the request with a 508 (Insufficient
Capacity) error.
The server checks if the request contains an ADDITIONAL-ADDRESS-FAMILY attribute. If yes,
and the attribute value is 0x01 (IPv4 address family), then the server rejects the request with
a 400 (Bad Request) error. Otherwise, the server checks if it can allocate relayed transport
addresses of both address types. If the server cannot satisfy the request, then the server
rejects the request with a 508 (Insufficient Capacity) error. If the server can partially meet
the request, i.e., if it can only allocate one relayed transport address of a specific address
type, then it includes ADDRESS-ERROR-CODE attribute in the success response to inform the
client the reason for partial failure of the request. The error code value signaled in the
ADDRESS-ERROR-CODE attribute could be 440 (Address Family not Supported) or 508
(Insufficient Capacity). If the server can fully meet the request, then the server allocates one
IPv4 and one IPv6 relay address and returns an Allocate success response containing the
relayed transport addresses assigned to the dual allocation in two XOR-RELAYED-ADDRESS
attributes.
At any point, the server choose to reject the request with a 486 (Allocation Quota
Reached) error if it feels the client is trying to exceed some locally defined allocation quota.
The server is free to define this allocation quota any way it wishes, but it define it
based on the username used to authenticate the request and not on the client's transport
address.
Also, at any point, the server choose to reject the request with a 300 (Try Alternate)
error if it wishes to redirect the client to a different server. The use of this error code and
attribute follows the specification in .

If all the checks pass, the server creates the allocation. The 5-tuple is set to the 5-tuple from the
Allocate request, while the list of permissions and the list of channels are initially empty.

The server chooses a relayed transport address for the allocation as follows:

If the request contains a RESERVATION-TOKEN attribute, the server uses the previously
reserved transport address corresponding to the included token (if it is still available). Note
that the reservation is a server-wide reservation and is not specific to a particular allocation
since the Allocate request containing the RESERVATION-TOKEN uses a different 5-tuple than
the Allocate request that made the reservation. The 5-tuple for the Allocate request
containing the RESERVATION-TOKEN attribute can be any allowed 5-tuple; it can use a
different client IP address and port, a different transport protocol, and even a different
server IP address and port (provided, of course, that the server IP address and port are ones
on which the server is listening for TURN requests).
If the request contains an EVEN-PORT attribute with the R bit set to 0, then the server
allocates a relayed transport address with an even port number.
If the request contains an EVEN-PORT attribute with the R bit set to 1, then the server looks
for a pair of port numbers N and N+1 on the same IP address, where N is even. Port N is used
in the current allocation, while the relayed transport address with port N+1 is assigned a

9.

10. MAY

SHOULD

11. MAY

[RFC8489]

•

•

•

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 27

token and reserved for a future allocation. The server hold this reservation for at least
30 seconds and choose to hold longer (e.g., until the allocation with port N expires). The
server then includes the token in a RESERVATION-TOKEN attribute in the success response.
Otherwise, the server allocates any available relayed transport address.

In all cases, the server only allocate ports from the range 49152 - 65535 (the Dynamic
and/or Private Port range), unless the TURN server application knows, through
some means not specified here, that other applications running on the same host as the TURN
server application will not be impacted by allocating ports outside this range. This condition can
often be satisfied by running the TURN server application on a dedicated machine and/or by
arranging that any other applications on the machine allocate ports before the TURN server
application starts. In any case, the TURN server allocate ports in the range 0 - 1023
(the Well-Known Port range) to discourage clients from using TURN to run standard services.

NOTE: The use of randomized port assignments to avoid certain types of attacks is
described in . It is that a TURN server implement a
randomized port assignment algorithm from . This is especially applicable
to servers that choose to pre-allocate a number of ports from the underlying OS and
then later assign them to allocations; for example, a server may choose this
technique to implement the EVEN-PORT attribute.

The server determines the initial value of the time-to-expiry field as follows. If the request
contains a LIFETIME attribute, then the server computes the minimum of the client's proposed
lifetime and the server's maximum allowed lifetime. If this computed value is greater than the
default lifetime, then the server uses the computed lifetime as the initial value of the time-to-
expiry field. Otherwise, the server uses the default lifetime. It is that the server
use a maximum allowed lifetime value of no more than 3600 seconds (1 hour). Servers that
implement allocation quotas or charge users for allocations in some way may wish to use a
smaller maximum allowed lifetime (perhaps as small as the default lifetime) to more quickly
remove orphaned allocations (that is, allocations where the corresponding client has crashed or
terminated, or the client connection has been lost for some reason). Also, note that the time- to-
expiry is recomputed with each successful Refresh request, and thus, the value computed here
applies only until the first refresh.

Once the allocation is created, the server replies with a success response. The success response
contains:

An XOR-RELAYED-ADDRESS attribute containing the relayed transport address or two XOR-
RELAYED-ADDRESS attributes containing the relayed transport addresses.
A LIFETIME attribute containing the current value of the time-to-expiry timer.
A RESERVATION-TOKEN attribute (if a second relayed transport address was reserved).
An XOR-MAPPED-ADDRESS attribute containing the client's IP address and port (from the 5-
tuple).

MUST
MAY

•

SHOULD
[PORT-NUMBERS]

SHOULD NOT

[RFC6056] RECOMMENDED
[RFC6056]

RECOMMENDED

•

•
•
•

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 28

7.3. Receiving an Allocate Success Response
If the client receives an Allocate success response, then it check that the mapped address
and the relayed transport address or addresses are part of an address family or families that the
client understands and is prepared to handle. If these addresses are not part of an address family
or families that the client is prepared to handle, then the client delete the allocation
(Section 8) and attempt to create another allocation on that server until it believes the
mismatch has been fixed.

Otherwise, the client creates its own copy of the allocation data structure to track what is
happening on the server. In particular, the client needs to remember the actual lifetime received
back from the server, rather than the value sent to the server in the request. The client must also

NOTE: The XOR-MAPPED-ADDRESS attribute is included in the response as a
convenience to the client. TURN itself does not make use of this value, but clients
running ICE can often need this value and can thus avoid having to do an extra
Binding transaction with some STUN server to learn it.

The response (either success or error) is sent back to the client on the 5-tuple.

NOTE: When the Allocate request is sent over UDP, requires that the
server handle the possible retransmissions of the request so that retransmissions do
not cause multiple allocations to be created. Implementations may achieve this
using the so-called "stateless stack approach" as follows. To detect retransmissions
when the original request was successful in creating an allocation, the server can
store the transaction id that created the request with the allocation data and
compare it with incoming Allocate requests on the same 5-tuple. Once such a
request is detected, the server can stop parsing the request and immediately
generate a success response. When building this response, the value of the
LIFETIME attribute can be taken from the time-to-expiry field in the allocate state
data, even though this value may differ slightly from the LIFETIME value originally
returned. In addition, the server may need to store an indication of any reservation
token returned in the original response so that this may be returned in any
retransmitted responses.

For the case where the original request was unsuccessful in creating an allocation,
the server may choose to do nothing special. Note, however, that there is a rare case
where the server rejects the original request but accepts the retransmitted request
(because conditions have changed in the brief intervening time period). If the client
receives the first failure response, it will ignore the second (success) response and
believe that an allocation was not created. An allocation created in this manner will
eventually time out since the client will not refresh it. Furthermore, if the client
later retries with the same 5-tuple but a different transaction id, it will receive a 437
(Allocation Mismatch) error response, which will cause it to retry with a different 5-
tuple. The server may use a smaller maximum lifetime value to minimize the
lifetime of allocations "orphaned" in this manner.

[RFC8489]

MUST

MUST
MUST NOT

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 29

remember the 5-tuple used for the request and the username and password it used to
authenticate the request to ensure that it reuses them for subsequent messages. The client also
needs to track the channels and permissions it establishes on the server.

If the client receives an Allocate success response but with an ADDRESS-ERROR-CODE attribute
in the response and the error code value signaled in the ADDRESS-ERROR-CODE attribute is 440
(Address Family not Supported), the client retry its request for the rejected address
type. If the client receives an ADDRESS-ERROR-CODE attribute in the response and the error code
value signaled in the ADDRESS-ERROR-CODE attribute is 508 (Insufficient Capacity), the client

 wait at least 1 minute before trying to request any more allocations on this server for
the rejected address type.

The client will probably wish to send the relayed transport address to peers (using some method
not specified here) so the peers can communicate with it. The client may also wish to use the
server-reflexive address it receives in the XOR-MAPPED-ADDRESS attribute in its ICE processing.

MUST NOT

SHOULD

7.4. Receiving an Allocate Error Response
If the client receives an Allocate error response, then the processing depends on the actual error
code returned:

408 (Request timed out):
There is either a problem with the server or a problem reaching the server with the
chosen transport. The client considers the current transaction as having failed but
choose to retry the Allocate request using a different transport (e.g., TCP instead of UDP).

300 (Try Alternate):
The server would like the client to use the server specified in the ALTERNATE-SERVER
attribute instead. The client considers the current transaction as having failed, but it

 try the Allocate request with the alternate server before trying any other servers
(e.g., other servers discovered using the DNS resolution procedures). When trying the
Allocate request with the alternate server, the client follows the ALTERNATE-SERVER
procedures specified in .

400 (Bad Request):
The server believes the client's request is malformed for some reason. The client considers
the current transaction as having failed. The client notify the user or operator and

 retry the request with this server until it believes the problem has been fixed.

401 (Unauthorized):
If the client has followed the procedures of the long-term credential mechanism and still
gets this error, then the server is not accepting the client's credentials. In this case, the
client considers the current transaction as having failed and notify the user or
operator. The client send any further requests to this server until it believes
the problem has been fixed.

403 (Forbidden):

MAY

SHOULD

[RFC8489]

MAY
SHOULD NOT

SHOULD
SHOULD NOT

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 30

The request is valid, but the server is refusing to perform it, likely due to administrative
restrictions. The client considers the current transaction as having failed. The client
notify the user or operator and retry the same request with this server until
it believes the problem has been fixed.

420 (Unknown Attribute):
If the client included a DONT-FRAGMENT attribute in the request and the server rejected
the request with a 420 error code and listed the DONT-FRAGMENT attribute in the
UNKNOWN-ATTRIBUTES attribute in the error response, then the client now knows that
the server does not support the DONT-FRAGMENT attribute. The client considers the
current transaction as having failed but choose to retry the Allocate request without
the DONT-FRAGMENT attribute.

437 (Allocation Mismatch):
This indicates that the client has picked a 5-tuple that the server sees as already in use. One
way this could happen is if an intervening NAT assigned a mapped transport address that
was used by another client that recently crashed. The client considers the current
transaction as having failed. The client pick another client transport address and
retry the Allocate request (using a different transaction id). The client try three
different client transport addresses before giving up on this server. Once the client gives
up on the server, it try to create another allocation on the server for 2
minutes.

438 (Stale Nonce):
See the procedures for the long-term credential mechanism .

440 (Address Family not Supported):
The server does not support the address family requested by the client. If the client
receives an Allocate error response with the 440 (Address Family not Supported) error
code, the client retry the request.

441 (Wrong Credentials):
The client should not receive this error in response to an Allocate request. The client
notify the user or operator and retry the same request with this server until
it believes the problem has been fixed.

442 (Unsupported Transport Address):
The client should not receive this error in response to a request for a UDP allocation. The
client notify the user or operator and reattempt the request with this
server until it believes the problem has been fixed.

486 (Allocation Quota Reached):
The server is currently unable to create any more allocations with this username. The
client considers the current transaction as having failed. The client wait at least 1
minute before trying to create any more allocations on the server.

508 (Insufficient Capacity):
The server has no more relayed transport addresses available or has none with the
requested properties, or the one that was reserved is no longer available. The client

MAY
SHOULD NOT

MAY

SHOULD
SHOULD

SHOULD NOT

[RFC8489]

MUST NOT

MAY
SHOULD NOT

MAY SHOULD NOT

SHOULD

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 31

considers the current operation as having failed. If the client is using either the EVEN-
PORT or the RESERVATION-TOKEN attribute, then the client choose to remove or
modify this attribute and try again immediately. Otherwise, the client wait at least
1 minute before trying to create any more allocations on this server.

Note that the error code values 486 and 508 indicate to a eavesdropper that several other users
are using the server at this time, similar to that of the HTTP error response code 503, but it does
not reveal any information about the users using the TURN server.

An unknown error response be handled as described in .

MAY
SHOULD

MUST [RFC8489]

8. Refreshing an Allocation
A Refresh transaction can be used to either (a) refresh an existing allocation and update its time-
to-expiry or (b) delete an existing allocation.

If a client wishes to continue using an allocation, then the client refresh it before it expires.
It is suggested that the client refresh the allocation roughly 1 minute before it expires. If a client
no longer wishes to use an allocation, then it explicitly delete the allocation. A client

 refresh an allocation at any time for other reasons.

8.1. Sending a Refresh Request
If the client wishes to immediately delete an existing allocation, it includes a LIFETIME attribute
with a value of zero. All other forms of the request refresh the allocation.

When refreshing a dual allocation, the client includes a REQUESTED-ADDRESS-FAMILY attribute
indicating the address family type that should be refreshed. If no REQUESTED-ADDRESS-FAMILY
attribute is included, then the request should be treated as applying to all current allocations.
The client only include a family type it previously allocated and has not yet deleted. This
process can also be used to delete an allocation of a specific address type by setting the lifetime of
that Refresh request to zero. Deleting a single allocation destroys any permissions or channels
associated with that particular allocation; it affect any permissions or channels
associated with allocations for the other address family.

The Refresh transaction updates the time-to-expiry timer of an allocation. If the client wishes the
server to set the time-to-expiry timer to something other than the default lifetime, it includes a
LIFETIME attribute with the requested value. The server then computes a new time-to-expiry
value in the same way as it does for an Allocate transaction, with the exception that a requested
lifetime of zero causes the server to immediately delete the allocation.

MUST

SHOULD
MAY

MUST

MUST NOT

8.2. Receiving a Refresh Request
When the server receives a Refresh request, it processes the request as per Section 5 plus the
specific rules mentioned here.

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 32

8.3. Receiving a Refresh Response
If the client receives a success response to its Refresh request with a non-zero lifetime, it updates
its copy of the allocation data structure with the time-to-expiry value contained in the response.
If the client receives a 437 (Allocation Mismatch) error response to its request to refresh the
allocation, it should consider the allocation no longer exists. If the client receives a 438 (Stale
Nonce) error to its request to refresh the allocation, it should reattempt the request with the new
nonce value.

If the client receives a 437 (Allocation Mismatch) error response to a request to delete the
allocation, then the allocation no longer exists and it should consider its request as having
effectively succeeded.

If the server receives a Refresh Request with a REQUESTED-ADDRESS-FAMILY attribute and the
attribute value does not match the address family of the allocation, the server reply with a
443 (Peer Address Family Mismatch) Refresh error response.

The server computes a value called the "desired lifetime" as follows: if the request contains a
LIFETIME attribute and the attribute value is zero, then the "desired lifetime" is zero. Otherwise,
if the request contains a LIFETIME attribute, then the server computes the minimum of the
client's requested lifetime and the server's maximum allowed lifetime. If this computed value is
greater than the default lifetime, then the "desired lifetime" is the computed value. Otherwise,
the "desired lifetime" is the default lifetime.

Subsequent processing depends on the "desired lifetime" value:

If the "desired lifetime" is zero, then the request succeeds and the allocation is deleted.
If the "desired lifetime" is non-zero, then the request succeeds and the allocation's time-to-
expiry is set to the "desired lifetime".

If the request succeeds, then the server sends a success response containing:

A LIFETIME attribute containing the current value of the time-to-expiry timer.

NOTE: A server need not do anything special to implement idempotency of Refresh
requests over UDP using the "stateless stack approach". Retransmitted Refresh
requests with a non-zero "desired lifetime" will simply refresh the allocation. A
retransmitted Refresh request with a zero "desired lifetime" will cause a 437
(Allocation Mismatch) response if the allocation has already been deleted, but the
client will treat this as equivalent to a success response (see below).

MUST

•
•

•

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 33

9. Permissions
For each allocation, the server keeps a list of zero or more permissions. Each permission consists
of an IP address and an associated time-to-expiry. While a permission exists, all peers using the
IP address in the permission are allowed to send data to the client. The time-to-expiry is the
number of seconds until the permission expires. Within the context of an allocation, a
permission is uniquely identified by its associated IP address.

By sending either CreatePermission requests or ChannelBind requests, the client can cause the
server to install or refresh a permission for a given IP address. This causes one of two things to
happen:

If no permission for that IP address exists, then a permission is created with the given IP
address and a time-to-expiry equal to Permission Lifetime.
If a permission for that IP address already exists, then the time-to-expiry for that permission
is reset to Permission Lifetime.

The Permission Lifetime be 300 seconds (= 5 minutes).

Each permission's time-to-expiry decreases down once per second until it reaches zero, at which
point, the permission expires and is deleted.

CreatePermission and ChannelBind requests may be freely intermixed on a permission. A given
permission may be initially installed and/or refreshed with a CreatePermission request and then
later refreshed with a ChannelBind request, or vice versa.

When a UDP datagram arrives at the relayed transport address for the allocation, the server
extracts the source IP address from the IP header. The server then compares this address with
the IP address associated with each permission in the list of permissions for the allocation. Note
that only addresses are compared and port numbers are not considered. If no match is found,
relaying is not permitted and the server silently discards the UDP datagram. If an exact match is
found, the permission check is considered to have succeeded and the server continues to process
the UDP datagram as specified elsewhere (Section 11.3).

The permissions for one allocation are totally unrelated to the permissions for a different
allocation. If an allocation expires, all its permissions expire with it.

NOTE: Though TURN permissions expire after 5 minutes, many NATs deployed at the
time of publication expire their UDP bindings considerably faster. Thus, an
application using TURN will probably wish to send some sort of keep-alive traffic at
a much faster rate. Applications using ICE should follow the keep-alive guidelines of
ICE , and applications not using ICE are advised to do something similar.

•

•

MUST

[RFC8445]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 34

10. CreatePermission
TURN supports two ways for the client to install or refresh permissions on the server. This
section describes one way: the CreatePermission request.

A CreatePermission request may be used in conjunction with either the Send mechanism in
Section 11 or the Channel mechanism in Section 12.

10.1. Forming a CreatePermission Request
The client who wishes to install or refresh one or more permissions can send a CreatePermission
request to the server.

When forming a CreatePermission request, the client include at least one XOR-PEER-
ADDRESS attribute and include more than one such attribute. The IP address portion of
each XOR-PEER-ADDRESS attribute contains the IP address for which a permission should be
installed or refreshed. The port portion of each XOR-PEER-ADDRESS attribute will be ignored and
can be any arbitrary value. The various XOR-PEER-ADDRESS attributes appear in any order.
The client only include XOR-PEER-ADDRESS attributes with addresses of the same address
family as that of the relayed transport address for the allocation. For dual allocations obtained
using the ADDITIONAL-ADDRESS-FAMILY attribute, the client include XOR-PEER-ADDRESS
attributes with addresses of IPv4 and IPv6 address families.

10.2. Receiving a CreatePermission Request
When the server receives the CreatePermission request, it processes as per Section 5 plus the
specific rules mentioned here.

The message is checked for validity. The CreatePermission request contain at least one
XOR-PEER-ADDRESS attribute and contain multiple such attributes. If no such attribute
exists, or if any of these attributes are invalid, then a 400 (Bad Request) error is returned. If the
request is valid, but the server is unable to satisfy the request due to some capacity limit or
similar, then a 508 (Insufficient Capacity) error is returned.

If an XOR-PEER-ADDRESS attribute contains an address of an address family that is not the same
as that of a relayed transport address for the allocation, the server generate an error
response with the 443 (Peer Address Family Mismatch) response code.

The server impose restrictions on the IP address allowed in the XOR-PEER-ADDRESS
attribute; if a value is not allowed, the server rejects the request with a 403 (Forbidden) error.

If the message is valid and the server is capable of carrying out the request, then the server
installs or refreshes a permission for the IP address contained in each XOR-PEER-ADDRESS
attribute as described in Section 9. The port portion of each attribute is ignored and may be any
arbitrary value.

MUST
MAY

MAY
MUST

MAY

MUST
MAY

MUST

MAY

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 35

The server then responds with a CreatePermission success response. There are no mandatory
attributes in the success response.

NOTE: A server need not do anything special to implement idempotency of
CreatePermission requests over UDP using the "stateless stack approach".
Retransmitted CreatePermission requests will simply refresh the permissions.

10.3. Receiving a CreatePermission Response
If the client receives a valid CreatePermission success response, then the client updates its data
structures to indicate that the permissions have been installed or refreshed.

11. Send and Data Methods
TURN supports two mechanisms for sending and receiving data from peers. This section
describes the use of the Send and Data mechanisms, while Section 12 describes the use of the
Channel mechanism.

11.2. Receiving a Send Indication
When the server receives a Send indication, it processes as per Section 5 plus the specific rules
mentioned here.

The message is first checked for validity. The Send indication contain both an XOR-PEER-
ADDRESS attribute and a DATA attribute. If one of these attributes is missing or invalid, then the
message is discarded. Note that the DATA attribute is allowed to contain zero bytes of data.

The Send indication may also contain the DONT-FRAGMENT attribute. If the server is unable to
set the DF bit on outgoing UDP datagrams when this attribute is present, then the server acts as if
the DONT-FRAGMENT attribute is an unknown comprehension-required attribute (and thus the
Send indication is discarded).

11.1. Forming a Send Indication
The client can use a Send indication to pass data to the server for relaying to a peer. A client may
use a Send indication even if a channel is bound to that peer. However, the client ensure
that there is a permission installed for the IP address of the peer to which the Send indication is
being sent; this prevents a third party from using a TURN server to send data to arbitrary
destinations.

When forming a Send indication, the client include an XOR-PEER-ADDRESS attribute and a
DATA attribute. The XOR-PEER-ADDRESS attribute contains the transport address of the peer to
which the data is to be sent, and the DATA attribute contains the actual application data to be
sent to the peer.

The client include a DONT-FRAGMENT attribute in the Send indication if it wishes the server
to set the DF bit on the UDP datagram sent to the peer.

MUST

MUST

MAY

MUST

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 36

The server also checks that there is a permission installed for the IP address contained in the
XOR-PEER-ADDRESS attribute. If no such permission exists, the message is discarded. Note that a
Send indication never causes the server to refresh the permission.

The server impose restrictions on the IP address and port values allowed in the XOR-PEER-
ADDRESS attribute; if a value is not allowed, the server silently discards the Send indication.

If everything is OK, then the server forms a UDP datagram as follows:

the source transport address is the relayed transport address of the allocation, where the
allocation is determined by the 5-tuple on which the Send indication arrived;
the destination transport address is taken from the XOR-PEER-ADDRESS attribute;
the data following the UDP header is the contents of the value field of the DATA attribute.

The handling of the DONT-FRAGMENT attribute (if present), is described in Sections 14 and 15.

The resulting UDP datagram is then sent to the peer.

11.4. Receiving a Data Indication
When the client receives a Data indication, it checks that the Data indication contains an XOR-
PEER-ADDRESS attribute and discards the indication if it does not. The client also check
that the XOR-PEER-ADDRESS attribute value contains an IP address with which the client
believes there is an active permission and discard the Data indication otherwise.

NOTE: The latter check protects the client against an attacker who somehow
manages to trick the server into installing permissions not desired by the client.

MAY

•

•
•

11.3. Receiving a UDP Datagram
When the server receives a UDP datagram at a currently allocated relayed transport address, the
server looks up the allocation associated with the relayed transport address. The server then
checks to see whether the set of permissions for the allocation allow the relaying of the UDP
datagram as described in Section 9.

If relaying is permitted, then the server checks if there is a channel bound to the peer that sent
the UDP datagram (see Section 12). If a channel is bound, then processing proceeds as described
in Section 12.7.

If relaying is permitted but no channel is bound to the peer, then the server forms and sends a
Data indication. The Data indication contain both an XOR-PEER-ADDRESS and a DATA
attribute. The DATA attribute is set to the value of the "data octets" field from the datagram, and
the XOR-PEER-ADDRESS attribute is set to the source transport address of the received UDP
datagram. The Data indication is then sent on the 5-tuple associated with the allocation.

MUST

SHOULD

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 37

If the XOR-PEER-ADDRESS is present and valid, the client checks that the Data indication contains
either a DATA attribute or an ICMP attribute and discards the indication if it does not. Note that a
DATA attribute is allowed to contain zero bytes of data. Processing of Data indications with an
ICMP attribute is described in Section 11.6.

If the Data indication passes the above checks, the client delivers the data octets inside the DATA
attribute to the application, along with an indication that they were received from the peer
whose transport address is given by the XOR-PEER-ADDRESS attribute.

11.5. Receiving an ICMP Packet
When the server receives an ICMP packet, the server verifies that the type is either 3 or 11 for an
ICMPv4 packet or either 1, 2, or 3 for an ICMPv6 packet. It also verifies that
the IP packet in the ICMP packet payload contains a UDP header. If either of these conditions fail,
then the ICMP packet is silently dropped. If a UDP header is present, the server extracts the
source and destination IP address and UDP port information.

The server looks up the allocation whose relayed transport address corresponds to the
encapsulated packet's source IP address and UDP port. If no such allocation exists, the packet is
silently dropped. The server then checks to see whether the set of permissions for the allocation
allows the relaying of the ICMP packet. For ICMP packets, the source IP address be
checked against the permissions list as it would be for UDP packets. Instead, the server extracts
the destination IP address from the encapsulated IP header. The server then compares this
address with the IP address associated with each permission in the list of permissions for the
allocation. If no match is found, relaying is not permitted and the server silently discards the
ICMP packet. Note that only addresses are compared and port numbers are not considered.

If relaying is permitted, then the server forms and sends a Data indication. The Data indication
 contain both an XOR-PEER-ADDRESS and an ICMP attribute. The ICMP attribute is set to the

value of the type and code fields from the ICMP packet. The IP address portion of XOR-PEER-
ADDRESS attribute is set to the destination IP address in the encapsulated IP header. At the time
of writing of this specification, Socket APIs on some operating systems do not deliver the
destination port in the encapsulated UDP header to applications without superuser privileges. If
destination port in the encapsulated UDP header is available to the server, then the port portion
of the XOR-PEER-ADDRESS attribute is set to the destination port; otherwise, the port portion is
set to zero. The Data indication is then sent on the 5-tuple associated with the allocation.

Implementation Note: New ICMP types or codes can be defined in future
specifications. If the server receives an ICMP error packet, and the new type or code
field can help the client to make use of the ICMP error notification and generate
feedback to the application layer, the server sends the Data indication with an ICMP
attribute conveying the new ICMP type or code.

[RFC0792] [RFC4443]

MUST NOT

MUST

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 38

11.6. Receiving a Data Indication with an ICMP Attribute
When the client receives a Data indication with an ICMP attribute, it checks that the Data
indication contains an XOR-PEER-ADDRESS attribute and discards the indication if it does not.
The client also check that the XOR-PEER-ADDRESS attribute value contains an IP address
with an active permission and discard the Data indication otherwise.

If the Data indication passes the above checks, the client signals the application of the error
condition along with an indication that it was received from the peer whose transport address is
given by the XOR-PEER-ADDRESS attribute. The application can make sense of the meaning of the
type and code values in the ICMP attribute by using the family field in the XOR-PEER-ADDRESS
attribute.

SHOULD

12. Channels
Channels provide a way for the client and server to send application data using ChannelData
messages, which have less overhead than Send and Data indications.

The ChannelData message (see Section 12.4) starts with a two-byte field that carries the channel
number. The values of this field are allocated as follows:

Note that the channel number range is not backwards compatible with , which could
prevent a client compliant with RFC 5766 from establishing channel bindings with a TURN server
that complies with this specification.

According to , ChannelData messages can be distinguished from other multiplexed
protocols by examining the first byte of the message:

0x0000 through
0x3FFF:

These values can never be used for channel numbers.

0x4000 through
0x4FFF:

These values are the allowed channel numbers (4096 possible
values).

0x5000 through
0xFFFF:

Reserved (For DTLS-SRTP multiplexing collision avoidance, see
).

Table 2

[RFC7983]

[RFC5766]

[RFC7983]

[0..3] STUN

[16..19] ZRTP

[20..63] DTLS

[64..79] TURN Channel

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 39

Reserved values may be used in the future by other protocols. When the client uses channel
binding, it comply with the demultiplexing scheme discussed above.

Channel bindings are always initiated by the client. The client can bind a channel to a peer at any
time during the lifetime of the allocation. The client may bind a channel to a peer before
exchanging data with it or after exchanging data with it (using Send and Data indications) for
some time, or may choose never to bind a channel to it. The client can also bind channels to some
peers while not binding channels to other peers.

Channel bindings are specific to an allocation so that the use of a channel number or peer
transport address in a channel binding in one allocation has no impact on their use in a different
allocation. If an allocation expires, all its channel bindings expire with it.

A channel binding consists of:

a channel number;
a transport address (of the peer); and
A time-to-expiry timer.

Within the context of an allocation, a channel binding is uniquely identified either by the
channel number or by the peer's transport address. Thus, the same channel cannot be bound to
two different transport addresses, nor can the same transport address be bound to two different
channels.

A channel binding lasts for 10 minutes unless refreshed. Refreshing the binding (by the server
receiving a ChannelBind request rebinding the channel to the same peer) resets the time-to-
expiry timer back to 10 minutes.

When the channel binding expires, the channel becomes unbound. Once unbound, the channel
number can be bound to a different transport address, and the transport address can be bound
to a different channel number. To prevent race conditions, the client wait 5 minutes after
the channel binding expires before attempting to bind the channel number to a different
transport address or the transport address to a different channel number.

When binding a channel to a peer, the client be prepared to receive ChannelData
messages on the channel from the server as soon as it has sent the ChannelBind request. Over
UDP, it is possible for the client to receive ChannelData messages from the server before it
receives a ChannelBind success response.

In the other direction, the client elect to send ChannelData messages before receiving the
ChannelBind success response. Doing so, however, runs the risk of having the ChannelData
messages dropped by the server if the ChannelBind request does not succeed for some reason

[128..191] RTP/RTCP

Others Reserved; be dropped and an alert be logged

Table 3

MUST MAY

MUST

•
•
•

MUST

SHOULD

MAY

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 40

(e.g., packet lost if the request is sent over UDP or the server being unable to fulfill the request). A
client that wishes to be safe should either queue the data or use Send indications until the
channel binding is confirmed.

12.1. Sending a ChannelBind Request
A channel binding is created or refreshed using a ChannelBind transaction. A ChannelBind
transaction also creates or refreshes a permission towards the peer (see Section 9).

To initiate the ChannelBind transaction, the client forms a ChannelBind request. The channel to
be bound is specified in a CHANNEL-NUMBER attribute, and the peer's transport address is
specified in an XOR-PEER-ADDRESS attribute. Section 12.2 describes the restrictions on these
attributes. The client only include an XOR-PEER-ADDRESS attribute with an address of the
same address family as that of a relayed transport address for the allocation.

Rebinding a channel to the same transport address that it is already bound to provides a way to
refresh a channel binding and the corresponding permission without sending data to the peer.
Note, however, that permissions need to be refreshed more frequently than channels.

MUST

12.2. Receiving a ChannelBind Request
When the server receives a ChannelBind request, it processes as per Section 5 plus the specific
rules mentioned here.

The server checks the following:

The request contains both a CHANNEL-NUMBER and an XOR-PEER-ADDRESS attribute;
The channel number is in the range 0x4000 through 0x4FFF (inclusive);
The channel number is not currently bound to a different transport address (same transport
address is OK);
The transport address is not currently bound to a different channel number.

If any of these tests fail, the server replies with a 400 (Bad Request) error. If the XOR-PEER-
ADDRESS attribute contains an address of an address family that is not the same as that of a
relayed transport address for the allocation, the server generate an error response with the
443 (Peer Address Family Mismatch) response code.

The server impose restrictions on the IP address and port values allowed in the XOR-PEER-
ADDRESS attribute; if a value is not allowed, the server rejects the request with a 403 (Forbidden)
error.

If the request is valid, but the server is unable to fulfill the request due to some capacity limit or
similar, the server replies with a 508 (Insufficient Capacity) error.

Otherwise, the server replies with a ChannelBind success response. There are no required
attributes in a successful ChannelBind response.

•
•
•

•

MUST

MAY

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 41

12.3. Receiving a ChannelBind Response
When the client receives a ChannelBind success response, it updates its data structures to record
that the channel binding is now active. It also updates its data structures to record that the
corresponding permission has been installed or refreshed.

If the client receives a ChannelBind failure response that indicates that the channel information
is out of sync between the client and the server (e.g., an unexpected 400 "Bad Request" response),
then it is that the client immediately delete the allocation and start afresh with a
new allocation.

If the server can satisfy the request, then the server creates or refreshes the channel binding
using the channel number in the CHANNEL-NUMBER attribute and the transport address in the
XOR-PEER-ADDRESS attribute. The server also installs or refreshes a permission for the IP
address in the XOR-PEER-ADDRESS attribute as described in Section 9.

NOTE: A server need not do anything special to implement idempotency of
ChannelBind requests over UDP using the "stateless stack approach". Retransmitted
ChannelBind requests will simply refresh the channel binding and the
corresponding permission. Furthermore, the client must wait 5 minutes before
binding a previously bound channel number or peer address to a different channel,
eliminating the possibility that the transaction would initially fail but succeed on a
retransmission.

RECOMMENDED

12.4. The ChannelData Message
The ChannelData message is used to carry application data between the client and the server. It
has the following format:

The Channel Number field specifies the number of the channel on which the data is traveling,
and thus, the address of the peer that is sending or is to receive the data.

Figure 5

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Channel Number | Length |
+-+
| |
/ Application Data /
/ /
| |
| +-------------------------------+
| |
+-------------------------------+

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 42

12.6. Receiving a ChannelData Message
The receiver of the ChannelData message uses the first byte to distinguish it from other
multiplexed protocols as described in Table 3. If the message uses a value in the reserved range
(0x5000 through 0xFFFF), then the message is silently discarded.

If the ChannelData message is received in a UDP datagram, and if the UDP datagram is too short
to contain the claimed length of the ChannelData message (i.e., the UDP header length field value
is less than the ChannelData header length field value + 4 + 8), then the message is silently
discarded.

If the ChannelData message is received over TCP or over TLS-over-TCP, then the actual length of
the ChannelData message is as described in Section 12.5.

If the ChannelData message is received on a channel that is not bound to any peer, then the
message is silently discarded.

On the client, it is that the client discard the ChannelData message if the client
believes there is no active permission towards the peer. On the server, the receipt of a
ChannelData message refresh either the channel binding or the permission towards
the peer.

The Length field specifies the length in bytes of the application data field (i.e., it does not include
the size of the ChannelData header). Note that 0 is a valid length.

The Application Data field carries the data the client is trying to send to the peer, or that the peer
is sending to the client.

12.5. Sending a ChannelData Message
Once a client has bound a channel to a peer, then when the client has data to send to that peer, it
may use either a ChannelData message or a Send indication; that is, the client is not obligated to
use the channel when it exists and may freely intermix the two message types when sending
data to the peer. The server, on the other hand, use the ChannelData message if a channel
has been bound to the peer. The server uses a Data indication to signal the XOR-PEER-ADDRESS
and ICMP attributes to the client even if a channel has been bound to the peer.

The fields of the ChannelData message are filled in as described in Section 12.4.

Over TCP and TLS-over-TCP, the ChannelData message be padded to a multiple of four
bytes in order to ensure the alignment of subsequent messages. The padding is not reflected in
the length field of the ChannelData message, so the actual size of a ChannelData message
(including padding) is (4 + Length) rounded up to the nearest multiple of 4 (see

). Over UDP, the padding is not required but be included.

The ChannelData message is then sent on the 5-tuple associated with the allocation.

MUST

MUST

Section 14 of
[RFC8489] MAY

RECOMMENDED

MUST NOT

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 43

https://www.rfc-editor.org/rfc/rfc8489#section-14

13. Packet Translations
This section addresses IPv4-to-IPv6, IPv6-to-IPv4, and IPv6-to-IPv6 translations. Requirements for
translation of the IP addresses and port numbers of the packets are described above. The
following sections specify how to translate other header fields.

As discussed in Section 3.6, translations in TURN are designed so that a TURN server can be
implemented as an application that runs in user space under commonly available operating
systems and that does not require special privileges. The translations specified in the following
sections follow this principle.

The descriptions below have two parts: a preferred behavior and an alternate behavior. The
server implement the preferred behavior, but if that is not possible for a particular field,
the server implement the alternate behavior and do anything else for the
reasons detailed in . The TURN server solely relies on the DF bit in the IPv4 header and
the Fragment header in the IPv6 header to handle fragmentation using the approach described
in and does not rely on the DONT-FRAGMENT attribute; ignoring the DONT-
FRAGMENT attribute is only applicable for UDP-to-UDP relay and not for TCP-to-UDP relay.

13.1. IPv4-to-IPv6 Translations
Time to Live (TTL) field

Preferred Behavior: As specified in .

On the server, if no errors are detected, the server relays the application data to the peer by
forming a UDP datagram as follows:

the source transport address is the relayed transport address of the allocation, where the
allocation is determined by the 5-tuple on which the ChannelData message arrived;
the destination transport address is the transport address to which the channel is bound;
the data following the UDP header is the contents of the data field of the ChannelData
message.

The resulting UDP datagram is then sent to the peer. Note that if the Length field in the
ChannelData message is 0, then there will be no data in the UDP datagram, but the UDP datagram
is still formed and sent ().

•

•
•

Section 4.1 of [RFC6263]

12.7. Relaying Data from the Peer
When the server receives a UDP datagram on the relayed transport address associated with an
allocation, the server processes it as described in Section 11.3. If that section indicates that a
ChannelData message should be sent (because there is a channel bound to the peer that sent to
the UDP datagram), then the server forms and sends a ChannelData message as described in
Section 12.5.

When the server receives an ICMP packet, the server processes it as described in Section 11.5.

SHOULD
MUST MUST NOT

[RFC7915]

[RFC7915]

Section 4 of [RFC7915]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 44

https://www.rfc-editor.org/rfc/rfc6263#section-4.1
https://www.rfc-editor.org/rfc/rfc7915#section-4

Alternate Behavior: Set the outgoing value to the default for outgoing packets.

Traffic Class

Preferred behavior: As specified in .

Alternate behavior: The TURN server sets the Traffic Class to the default value for outgoing
packets.

Flow Label

Preferred behavior: The TURN server can use the 5-tuple of relayed transport address, peer
transport address, and UDP protocol number to identify each flow and to generate and set
the flow label value in the IPv6 packet as discussed in . If the TURN
server is incapable of generating the flow label value from the IPv6 packet's 5-tuple, it sets
the Flow label to zero.

Alternate behavior: The alternate behavior is the same as the preferred behavior for a TURN
server that does not support flow labels.

Hop Limit

Preferred behavior: As specified in .

Alternate behavior: The TURN server sets the Hop Limit to the default value for outgoing
packets.

Fragmentation

Preferred behavior: As specified in .

Alternate behavior: The TURN server assembles incoming fragments. The TURN server
follows its default behavior to send outgoing packets.

For both preferred and alternate behavior, the DONT-FRAGMENT attribute be ignored
by the server.

Extension Headers

Preferred behavior: The outgoing packet uses the system defaults for IPv6 extension headers,
with the exception of the Fragment header as described above.

Alternate behavior: Same as preferred.

13.2. IPv6-to-IPv6 Translations
Flow Label

NOTE: The TURN server should consider that it is handling two different IPv6 flows. Therefore,
the Flow label be copied as part of the translation.

Preferred behavior: The TURN server can use the 5-tuple of relayed transport address, peer
transport address, and UDP protocol number to identify each flow and to generate and set

Section 4 of [RFC7915]

Section 3 of [RFC6437]

Section 4 of [RFC7915]

Section 4 of [RFC7915]

MUST

[RFC6437] SHOULD NOT

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 45

https://www.rfc-editor.org/rfc/rfc7915#section-4
https://www.rfc-editor.org/rfc/rfc6437#section-3
https://www.rfc-editor.org/rfc/rfc7915#section-4
https://www.rfc-editor.org/rfc/rfc7915#section-4

the flow label value in the IPv6 packet as discussed in . If the TURN
server is incapable of generating the flow label value from the IPv6 packet's 5-tuple, it sets
the Flow label to zero.

Alternate behavior: The alternate behavior is the same as the preferred behavior for a TURN
server that does not support flow labels.

Hop Limit

Preferred behavior: The TURN server acts as a regular router with respect to decrementing
the Hop Limit and generating an ICMPv6 error if it reaches zero.

Alternate behavior: The TURN server sets the Hop Limit to the default value for outgoing
packets.

Fragmentation

Preferred behavior: If the incoming packet did not include a Fragment header and the
outgoing packet size does not exceed the outgoing link's MTU, the TURN server sends the
outgoing packet without a Fragment header.

If the incoming packet did not include a Fragment header and the outgoing packet size
exceeds the outgoing link's MTU, the TURN server drops the outgoing packet and sends an
ICMP message of type 2 code 0 ("Packet too big") to the sender of the incoming packet. If the
ICMPv6 packet ("Packet too big") is being sent to the peer, the TURN server reduce
the MTU reported in the ICMP message by 48 bytes to allow room for the overhead of a Data
indication.

If the incoming packet included a Fragment header and the outgoing packet size (with a
Fragment header included) does not exceed the outgoing link's MTU, the TURN server sends
the outgoing packet with a Fragment header. The TURN server sets the fields of the Fragment
header as appropriate for a packet originating from the server.

If the incoming packet included a Fragment header and the outgoing packet size exceeds the
outgoing link's MTU, the TURN server fragment the outgoing packet into fragments of
no more than 1280 bytes. The TURN server sets the fields of the Fragment header as
appropriate for a packet originating from the server.

Alternate behavior: The TURN server assembles incoming fragments. The TURN server
follows its default behavior to send outgoing packets.

For both preferred and alternate behavior, the DONT-FRAGMENT attribute be ignored
by the server.

Extension Headers

Preferred behavior: The outgoing packet uses the system defaults for IPv6 extension headers,
with the exception of the Fragment header as described above.

Alternate behavior: Same as preferred.

Section 3 of [RFC6437]

SHOULD

MUST

MUST

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 46

https://www.rfc-editor.org/rfc/rfc6437#section-3

13.3. IPv6-to-IPv4 Translations
Type of Service and Precedence

Preferred behavior: As specified in .

Alternate behavior: The TURN server sets the Type of Service and Precedence to the default
value for outgoing packets.

Time to Live

Preferred behavior: As specified in .

Alternate behavior: The TURN server sets the Time to Live to the default value for outgoing
packets.

Fragmentation

Preferred behavior: As specified in . Additionally, when the outgoing
packet's size exceeds the outgoing link's MTU, the TURN server needs to generate an ICMP
error (ICMPv6 "Packet too big") reporting the MTU size. If the ICMPv4 packet (Destination
Unreachable (Type 3) with Code 4) is being sent to the peer, the TURN server reduce
the MTU reported in the ICMP message by 48 bytes to allow room for the overhead of a Data
indication.

Alternate behavior: The TURN server assembles incoming fragments. The TURN server
follows its default behavior to send outgoing packets.

For both preferred and alternate behavior, the DONT-FRAGMENT attribute be ignored
by the server.

Section 5 of [RFC7915]

Section 5 of [RFC7915]

Section 5 of [RFC7915]

SHOULD

MUST

14. UDP-to-UDP Relay
This section describes how the server sets various fields in the IP header for UDP-to-UDP relay
from the client to the peer or vice versa. The descriptions in this section apply (a) when the
server sends a UDP datagram to the peer or (b) when the server sends a Data indication or
ChannelData message to the client over UDP transport. The descriptions in this section do not
apply to TURN messages sent over TCP or TLS transport from the server to the client.

The descriptions below have two parts: a preferred behavior and an alternate behavior. The
server implement the preferred behavior, but if that is not possible for a particular field,
then it implement the alternative behavior.

Differentiated Services Code Point (DSCP) field

Preferred Behavior: Set the outgoing value to the incoming value unless the server includes a
differentiated services classifier and marker .

Alternate Behavior: Set the outgoing value to a fixed value, which by default is Best Effort
unless configured otherwise.

SHOULD
SHOULD

[RFC2474]

[RFC2474]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 47

https://www.rfc-editor.org/rfc/rfc7915#section-5
https://www.rfc-editor.org/rfc/rfc7915#section-5
https://www.rfc-editor.org/rfc/rfc7915#section-5

In both cases, if the server is immediately adjacent to a differentiated services classifier and
marker, then DSCP be set to any arbitrary value in the direction towards the classifier.

Explicit Congestion Notification (ECN) field

Preferred Behavior: Set the outgoing value to the incoming value. The server may perform
Active Queue Management, in which case it behave as an ECN-aware router

 and can mark traffic with Congestion Experienced (CE) instead of dropping the
packet. The use of ECT(1) is subject to experimental usage .

Alternate Behavior: Set the outgoing value to Not-ECT (=0b00).

IPv4 Fragmentation fields (applicable only for IPv4-to-IPv4 relay)

Preferred Behavior: When the server sends a packet to a peer in response to a Send
indication containing the DONT-FRAGMENT attribute, then set the outgoing UDP packet to
not fragment. In all other cases, when sending an outgoing packet containing application
data (e.g., Data indication, a ChannelData message, or the DONT-FRAGMENT attribute not
included in the Send indication), copy the DF bit from the DF bit of the incoming packet that
contained the application data.

Set the other fragmentation fields (Identification, More Fragments, Fragment Offset) as
appropriate for a packet originating from the server.

Alternate Behavior: As described in the Preferred Behavior, except always assume the
incoming DF bit is 0.

In both the Preferred and Alternate Behaviors, the resulting packet may be too large for the
outgoing link. If this is the case, then the normal fragmentation rules apply .

IPv4 Options

Preferred Behavior: The outgoing packet uses the system defaults for IPv4 options.

Alternate Behavior: Same as preferred.

MAY

[RFC3168]

SHOULD
[RFC3168]

[RFC8311]

[RFC1122]

15. TCP-to-UDP Relay
This section describes how the server sets various fields in the IP header for TCP-to-UDP relay
from the client to the peer. The descriptions in this section apply when the server sends a UDP
datagram to the peer. Note that the server does not perform per-packet translation for TCP-to-
UDP relaying.

Multipath TCP is not supported by this version of TURN because TCP multipath is not
used by either SIP or WebRTC protocols for media and non-media data. TCP
connection between the TURN client and server can use the TCP Authentication Option (TCP-AO)

, but UDP does not provide a similar type of authentication, though it might be added
in the future . Even if both TCP-AO and UDP authentication would be used between
TURN client and server, it would not change the end-to-end security properties of the application

[TCP-EXT]
[RFC7478]

[RFC5925]
[UDP-OPT]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 48

payload being relayed. Therefore, applications using TURN will need to secure their application
data end to end appropriately, e.g., Secure Real-time Transport Protocol (SRTP) for RTP
applications. Note that the TCP-AO option obsoletes the TCP MD5 option.

Unlike UDP, TCP without the TCP Fast Open extension does not support 0-RTT session
resumption. The TCP user timeout equivalent for application data relayed by the
TURN is the use of RTP control protocol (RTCP). As a reminder, RTCP is a fundamental and
integral part of RTP.

The descriptions below have two parts: a preferred behavior and an alternate behavior. The
server implement the preferred behavior, but if that is not possible for a particular field,
then it implement the alternative behavior.

For the UDP datagram sent to the peer based on a Send Indication or ChannelData message
arriving at the TURN server over a TCP Transport, the server sets various fields in the IP header
as follows:

Differentiated Services Code Point (DSCP) field

Preferred Behavior: The TCP connection can only use a single DSCP, so inter-flow
differentiation is not possible; see . The server sets the outgoing
value to the DSCP used by the TCP connection, unless the server includes a differentiated
services classifier and marker .

Alternate Behavior: Set the outgoing value to a fixed value, which by default is Best Effort
unless configured otherwise.

In both cases, if the server is immediately adjacent to a differentiated services classifier and
marker, then DSCP be set to any arbitrary value in the direction towards the classifier.

Explicit Congestion Notification (ECN) field

Preferred Behavior: No mechanism is defined to indicate what ECN value should be used for
the outgoing UDP datagrams of an allocation; therefore, set the outgoing value to Not-ECT
(=0b00).

Alternate Behavior: Same as preferred.

IPv4 Fragmentation fields (applicable only for IPv4-to-IPv4 relay)

Preferred Behavior: When the server sends a packet to a peer in response to a Send
indication containing the DONT-FRAGMENT attribute, set the outgoing UDP packet to not
fragment. In all other cases, when sending an outgoing UDP packet containing application
data (e.g., Data indication, ChannelData message, or DONT-FRAGMENT attribute not included
in the Send indication), set the DF bit in the outgoing IP header to 0.

Alternate Behavior: Same as preferred.

[RFC7413]
[RFC5482]

SHOULD
SHOULD

[RFC2474]

Section 5.1 of [RFC7657]

[RFC2474]

MAY

[RFC3168]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 49

https://www.rfc-editor.org/rfc/rfc7657#section-5.1

IPv6 Fragmentation fields

Preferred Behavior: If the TCP traffic arrives over IPv6, the server relies on the presence of
the DONT-FRAGMENT attribute in the send indication to set the outgoing UDP packet to not
fragment.

Alternate Behavior: Same as preferred.

IPv4 Options

Preferred Behavior: The outgoing packet uses the system defaults for IPv4 options.

Alternate Behavior: Same as preferred.

16. UDP-to-TCP Relay
This section describes how the server sets various fields in the IP header for UDP-to-TCP relay
from the peer to the client. The descriptions in this section apply when the server sends a Data
indication or ChannelData message to the client over TCP or TLS transport. Note that the server
does not perform per-packet translation for UDP-to-TCP relaying.

The descriptions below have two parts: a preferred behavior and an alternate behavior. The
server implement the preferred behavior, but if that is not possible for a particular field,
then it implement the alternative behavior.

The TURN server sets IP header fields in the TCP packets on a per-connection basis for the TCP
connection as follows:

Differentiated Services Code Point (DSCP) field

Preferred Behavior: Ignore the incoming DSCP value. When TCP is used between the client
and the server, a single DSCP should be used for all traffic on that TCP connection. Note,
TURN/ICE occurs before application data is exchanged.

Alternate Behavior: Same as preferred.

Explicit Congestion Notification (ECN) field

Preferred Behavior: Ignore; ECN signals are dropped in the TURN server for the incoming
UDP datagrams from the peer.

Alternate Behavior: Same as preferred.

Fragmentation

Preferred Behavior: Any fragmented packets are reassembled in the server and then
forwarded to the client over the TCP connection. ICMP messages resulting from the UDP
datagrams sent to the peer are processed by the server as described in Section 11.5 and
forwarded to the client using TURN's mechanism for relevant ICMP types and codes.

Alternate Behavior: Same as preferred.

SHOULD
SHOULD

[RFC2474]

[RFC3168]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 50

Extension Headers

Preferred behavior: The outgoing packet uses the system defaults for IPv6 extension headers.

Alternate behavior: Same as preferred.

IPv4 Options

Preferred Behavior: The outgoing packet uses the system defaults for IPv4 options.

Alternate Behavior: Same as preferred.

17. STUN Methods
This section lists the code points for the STUN methods defined in this specification. See
elsewhere in this document for the semantics of these methods.

0x003 Allocate (only request/response semantics defined)

0x004 Refresh (only request/response semantics defined)

0x006 Send (only indication semantics defined)

0x007 Data (only indication semantics defined)

0x008 CreatePermission (only request/response semantics defined)

0x009 ChannelBind (only request/response semantics defined)

Table 4

18. STUN Attributes
This STUN extension defines the following attributes:

0x000C CHANNEL-NUMBER

0x000D LIFETIME

0x0010 Reserved (was BANDWIDTH)

0x0012 XOR-PEER-ADDRESS

0x0013 DATA

0x0016 XOR-RELAYED-ADDRESS

0x0017 REQUESTED-ADDRESS-FAMILY

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 51

Some of these attributes have lengths that are not multiples of 4. By the rules of STUN, any
attribute whose length is not a multiple of 4 bytes be immediately followed by 1 to 3
padding bytes to ensure the next attribute (if any) would start on a 4-byte boundary (see

).

18.2. LIFETIME
The LIFETIME attribute represents the duration for which the server will maintain an allocation
in the absence of a refresh. The TURN client can include the LIFETIME attribute with the desired
lifetime in Allocate and Refresh requests. The value portion of this attribute is 4 bytes long and
consists of a 32-bit unsigned integral value representing the number of seconds remaining until
expiration.

0x0018 EVEN-PORT

0x0019 REQUESTED-TRANSPORT

0x001A DONT-FRAGMENT

0x0021 Reserved (was TIMER-VAL)

0x0022 RESERVATION-TOKEN

0x8000 ADDITIONAL-ADDRESS-FAMILY

0x8001 ADDRESS-ERROR-CODE

0x8004 ICMP

Table 5

MUST

[RFC8489]

18.1. CHANNEL-NUMBER
The CHANNEL-NUMBER attribute contains the number of the channel. The value portion of this
attribute is 4 bytes long and consists of a 16-bit unsigned integer followed by a two-octet RFFU
(Reserved For Future Use) field, which be set to 0 on transmission and be ignored on
reception.

MUST MUST

Figure 6

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Channel Number | RFFU = 0 |
+-+

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 52

18.3. XOR-PEER-ADDRESS
The XOR-PEER-ADDRESS attribute specifies the address and port of the peer as seen from the
TURN server. (For example, the peer's server-reflexive transport address if the peer is behind a
NAT.) It is encoded in the same way as the XOR-MAPPED-ADDRESS attribute .

18.4. DATA
The DATA attribute is present in all Send indications. If the ICMP attribute is not present in a Data
indication, it contains a DATA attribute. The value portion of this attribute is variable length and
consists of the application data (that is, the data that would immediately follow the UDP header if
the data was sent directly between the client and the peer). The application data is equivalent to
the "UDP user data" and does not include the "surplus area" defined in . If
the length of this attribute is not a multiple of 4, then padding must be added after this attribute.

18.5. XOR-RELAYED-ADDRESS
The XOR-RELAYED-ADDRESS attribute is present in Allocate responses. It specifies the address
and port that the server allocated to the client. It is encoded in the same way as the XOR-
MAPPED-ADDRESS attribute .

18.7. EVEN-PORT
This attribute allows the client to request that the port in the relayed transport address be even
and (optionally) that the server reserve the next-higher port number. The value portion of this
attribute is 1 byte long. Its format is:

[RFC8489]

Section 4 of [UDP-OPT]

[RFC8489]

Family:

Reserved:

18.6. REQUESTED-ADDRESS-FAMILY
This attribute is used in Allocate and Refresh requests to specify the address type requested by
the client. The value of this attribute is 4 bytes with the following format:

There are two values defined for this field and specified in :
0x01 for IPv4 addresses and 0x02 for IPv6 addresses.

At this point, the 24 bits in the Reserved field be set to zero by the client and
 be ignored by the server.

Figure 7

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Family | Reserved |
+-+

Section 14.1 of [RFC8489]

MUST
MUST

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 53

https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-08#section-4
https://www.rfc-editor.org/rfc/rfc8489#section-14.1

R:

RFFU:

The value contains a single 1-bit flag:

If 1, the server is requested to reserve the next-higher port number (on the same IP
address) for a subsequent allocation. If 0, no such reservation is requested.

Reserved For Future Use.

The RFFU field must be set to zero on transmission and ignored on reception.

Since the length of this attribute is not a multiple of 4, padding must immediately follow this
attribute.

18.9. DONT-FRAGMENT
This attribute is used by the client to request that the server set the DF (Don't Fragment) bit in the
IP header when relaying the application data onward to the peer and for determining the server
capability in Allocate requests. This attribute has no value part, and thus, the attribute length
field is 0.

Figure 8

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |R| RFFU |
 +-+-+-+-+-+-+-+-+

18.8. REQUESTED-TRANSPORT
This attribute is used by the client to request a specific transport protocol for the allocated
transport address. The value of this attribute is 4 bytes with the following format:

The Protocol field specifies the desired protocol. The code points used in this field are taken from
those allowed in the Protocol field in the IPv4 header and the NextHeader field in the IPv6
header . This specification only allows the use of code point 17 (User
Datagram Protocol).

The RFFU field be set to zero on transmission and be ignored on reception. It is
reserved for future uses.

Figure 9

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Protocol | RFFU |
+-+

[PROTOCOL-NUMBERS]

MUST MUST

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 54

18.10. RESERVATION-TOKEN
The RESERVATION-TOKEN attribute contains a token that uniquely identifies a relayed transport
address being held in reserve by the server. The server includes this attribute in a success
response to tell the client about the token, and the client includes this attribute in a subsequent
Allocate request to request the server use that relayed transport address for the allocation.

The attribute value is 8 bytes and contains the token value.

18.11. ADDITIONAL-ADDRESS-FAMILY
This attribute is used by clients to request the allocation of an IPv4 and IPv6 address type from a
server. It is encoded in the same way as the REQUESTED-ADDRESS-FAMILY attribute; see Section
18.6. The ADDITIONAL-ADDRESS-FAMILY attribute be present in the Allocate request. The
attribute value of 0x02 (IPv6 address) is the only valid value in Allocate request.

MAY

Family:

Reserved:

Class:

Number:

Reason Phrase:

18.12. ADDRESS-ERROR-CODE
This attribute is used by servers to signal the reason for not allocating the requested address
family. The value portion of this attribute is variable length with the following format:

There are two values defined for this field and specified in :
0x01 for IPv4 addresses and 0x02 for IPv6 addresses.

At this point, the 13 bits in the Reserved field be set to zero by the server and
 be ignored by the client.

The Class represents the hundreds digit of the error code and is defined in
.

This 8-bit field contains the reason the server cannot allocate one of the requested
address types. The error code values could be either 440 (Address Family not Supported)
or 508 (Insufficient Capacity). The number representation is defined in

.

The recommended reason phrases for error codes 440 and 508 are explained in
Section 19. The reason phrase be a UTF-8 encoded sequence of less than

Figure 10

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Family | Reserved |Class| Number |
 +-+
 | Reason Phrase (variable) ..
 +-+

Section 14.1 of [RFC8489]

MUST
MUST

Section 14.8 of
[RFC8489]

Section 14.8 of
[RFC8489]

MUST [RFC3629]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 55

https://www.rfc-editor.org/rfc/rfc8489#section-14.1
https://www.rfc-editor.org/rfc/rfc8489#section-14.8
https://www.rfc-editor.org/rfc/rfc8489#section-14.8

128 characters (which can be as long as 509 bytes when encoding them or 763 bytes when
decoding them).

Reserved:

ICMP Type:

ICMP Code:

Error Data:

18.13. ICMP
This attribute is used by servers to signal the reason a UDP packet was dropped. The following is
the format of the ICMP attribute.

This field be set to 0 when sent and be ignored when received.

The field contains the value of the ICMP type. Its interpretation depends on
whether the ICMP was received over IPv4 or IPv6.

The field contains the value of the ICMP code. Its interpretation depends on
whether the ICMP was received over IPv4 or IPv6.

This field size is 4 bytes long. If the ICMPv6 type is 2 ("Packet too big" message) or
ICMPv4 type is 3 (Destination Unreachable) and Code is 4 (fragmentation needed and DF
set), the Error Data field will be set to the Maximum Transmission Unit of the next-hop link
(and). For other ICMPv6 types and ICMPv4
types and codes, the Error Data field be set to zero.

Figure 11

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reserved | ICMP Type | ICMP Code |
 +-+
 | Error Data |
 +-+

MUST MUST

Section 3.2 of [RFC4443] Section 4 of [RFC1191]
MUST

19. STUN Error Response Codes
This document defines the following error response codes:

403 (Forbidden):
The request was valid but cannot be performed due to administrative or similar
restrictions.

437 (Allocation Mismatch):
A request was received by the server that requires an allocation to be in place, but no
allocation exists, or a request was received that requires no allocation, but an allocation
exists.

440 (Address Family not Supported):
The server does not support the address family requested by the client.

441 (Wrong Credentials):

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 56

https://www.rfc-editor.org/rfc/rfc4443#section-3.2
https://www.rfc-editor.org/rfc/rfc1191#section-4

20. Detailed Example
This section gives an example of the use of TURN, showing in detail the contents of the messages
exchanged. The example uses the network diagram shown in the Overview (Figure 1).

For each message, the attributes included in the message and their values are shown. For
convenience, values are shown in a human-readable format rather than showing the actual
octets; for example, "XOR-RELAYED-ADDRESS=192.0.2.15:9000" shows that the XOR-RELAYED-
ADDRESS attribute is included with an address of 192.0.2.15 and a port of 9000; here, the address
and port are shown before the xor-ing is done. For attributes with string-like values (e.g.,
SOFTWARE="Example client, version 1.03" and
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"), the value of the attribute is shown in quotes
for readability, but these quotes do not appear in the actual value.

(Wrong Credentials): The credentials in the (non-Allocate) request do not match those used
to create the allocation.

442 (Unsupported Transport Protocol):
The Allocate request asked the server to use a transport protocol between the server and
the peer that the server does not support. NOTE: This does NOT refer to the transport
protocol used in the 5-tuple.

443 (Peer Address Family Mismatch):
A peer address is part of a different address family than that of the relayed transport
address of the allocation.

486 (Allocation Quota Reached):
No more allocations using this username can be created at the present time.

508 (Insufficient Capacity):
The server is unable to carry out the request due to some capacity limit being reached. In
an Allocate response, this could be due to the server having no more relayed transport
addresses available at that time, having none with the requested properties, or the one
that corresponds to the specified reservation token is not available.

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 57

The client begins by selecting a host transport address to use for the TURN session; in this
example, the client has selected 198.51.100.2:49721 as shown in Figure 1. The client then sends an
Allocate request to the server at the server transport address. The client randomly selects a 96-bit
transaction id of 0xA56250D3F17ABE679422DE85 for this transaction; this is encoded in the
transaction id field in the fixed header. The client includes a SOFTWARE attribute that gives
information about the client's software; here, the value is "Example client, version 1.03" to
indicate that this is version 1.03 of something called the "Example client". The client includes the
LIFETIME attribute because it wishes the allocation to have a longer lifetime than the default of
10 minutes; the value of this attribute is 3600 seconds, which corresponds to 1 hour. The client
must always include a REQUESTED-TRANSPORT attribute in an Allocate request, and the only
value allowed by this specification is 17, which indicates UDP transport between the server and
the peers. The client also includes the DONT-FRAGMENT attribute because it wishes to use the

Figure 12

TURN TURN Peer Peer
client server A B
--- Allocate request -------------->		
Transaction-Id=0xA56250D3F17ABE679422DE85		
SOFTWARE="Example client, version 1.03"		
LIFETIME=3600 (1 hour)		
REQUESTED-TRANSPORT=17 (UDP)		
DONT-FRAGMENT		
<-- Allocate error response --------		
Transaction-Id=0xA56250D3F17ABE679422DE85		
SOFTWARE="Example server, version 1.17"		
ERROR-CODE=401 (Unauthorized)		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
--- Allocate request -------------->		
Transaction-Id=0xC271E932AD7446A32C234492		
SOFTWARE="Example client 1.03"		
LIFETIME=3600 (1 hour)		
REQUESTED-TRANSPORT=17 (UDP)		
DONT-FRAGMENT		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY=...		
MESSAGE-INTEGRITY-SHA256=...		
<-- Allocate success response ------		
Transaction-Id=0xC271E932AD7446A32C234492		
SOFTWARE="Example server, version 1.17"		
LIFETIME=1200 (20 minutes)		
XOR-RELAYED-ADDRESS=192.0.2.15:50000		
XOR-MAPPED-ADDRESS=192.0.2.1:7000		
MESSAGE-INTEGRITY-SHA256=...		

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 58

DONT-FRAGMENT attribute later in Send indications; this attribute consists of only an attribute
header; there is no value part. We assume the client has not recently interacted with the server;
thus, the client does not include the USERNAME, USERHASH, REALM, NONCE, PASSWORD-
ALGORITHMS, PASSWORD-ALGORITHM, MESSAGE-INTEGRITY, or MESSAGE-INTEGRITY-SHA256
attribute. Finally, note that the order of attributes in a message is arbitrary (except for the
MESSAGE-INTEGRITY, MESSAGE-INTEGRITY-SHA256 and FINGERPRINT attributes), and the
client could have used a different order.

Servers require any request to be authenticated. Thus, when the server receives the initial
Allocate request, it rejects the request because the request does not contain the authentication
attributes. Following the procedures of the long-term credential mechanism of STUN ,
the server includes an ERROR-CODE attribute with a value of 401 (Unauthorized), a REALM
attribute that specifies the authentication realm used by the server (in this case, the server's
domain "example.com"), and a nonce value in a NONCE attribute. The NONCE attribute starts
with the "nonce cookie" with the STUN Security Feature "Password algorithm" bit set to 1. The
server includes a PASSWORD-ALGORITHMS attribute that specifies the list of algorithms that the
server can use to derive the long-term password. If the server sets the STUN Security Feature
"Username anonymity" bit to 1, then the client uses the USERHASH attribute instead of the
USERNAME attribute in the Allocate request to anonymize the username. The server also
includes a SOFTWARE attribute that gives information about the server's software.

The client, upon receipt of the 401 error, reattempts the Allocate request, this time including the
authentication attributes. The client selects a new transaction id and then populates the new
Allocate request with the same attributes as before. The client includes a USERNAME attribute
and uses the realm value received from the server to help it determine which value to use; here,
the client is configured to use the username "George" for the realm "example.com". The client
includes the PASSWORD-ALGORITHM attribute indicating the algorithm that the server must use
to derive the long-term password. The client also includes the REALM, PASSWORD-ALGORITHMS,
and NONCE attributes, which are just copied from the 401 error response. Finally, the client
includes MESSAGE-INTEGRITY-SHA256 attribute as the last attributes in the message whose
value is Hashed Message Authentication Code - Secure Hash Algorithm 2 (HMAC-SHA2) hash over
the contents of the message (shown as just "..." above); this HMAC-SHA2 computation includes a
password value. Thus, an attacker cannot compute the message integrity value without somehow
knowing the secret password.

The server, upon receipt of the authenticated Allocate request, checks that everything is OK, then
creates an allocation. The server replies with an Allocate success response. The server includes a
LIFETIME attribute giving the lifetime of the allocation; here, the server has reduced the client's
requested 1-hour lifetime to just 20 minutes because this particular server doesn't allow lifetimes
longer than 20 minutes. The server includes an XOR-RELAYED-ADDRESS attribute whose value is
the relayed transport address of the allocation. The server includes an XOR-MAPPED-ADDRESS
attribute whose value is the server-reflexive address of the client; this value is not used
otherwise in TURN but is returned as a convenience to the client. The server includes a
MESSAGE-INTEGRITY-SHA256 attribute to authenticate the response and to ensure its integrity;
note that the response does not contain the USERNAME, REALM, and NONCE attributes. The
server also includes a SOFTWARE attribute.

[RFC8489]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 59

The client then creates a permission towards Peer A in preparation for sending it some
application data. This is done through a CreatePermission request. The XOR-PEER-ADDRESS
attribute contains the IP address for which a permission is established (the IP address of peer A);
note that the port number in the attribute is ignored when used in a CreatePermission request,
and here it has been set to 0; also, note how the client uses Peer A's server-reflexive IP address
and not its (private) host address. The client uses the same username, realm, and nonce values as
in the previous request on the allocation. Though it is allowed to do so, the client has chosen not
to include a SOFTWARE attribute in this request.

The server receives the CreatePermission request, creates the corresponding permission, and
then replies with a CreatePermission success response. Like the client, the server chooses not to
include the SOFTWARE attribute in its reply. Again, note how success responses contain a
MESSAGE-INTEGRITY-SHA256 attribute (assuming the server uses the long-term credential
mechanism) but no USERNAME, REALM, and NONCE attributes.

Figure 13

TURN TURN Peer Peer
client server A B
--- CreatePermission request ------>		
Transaction-Id=0xE5913A8F460956CA277D3319		
XOR-PEER-ADDRESS=192.0.2.150:0		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- CreatePermission success resp.--		
Transaction-Id=0xE5913A8F460956CA277D3319		
MESSAGE-INTEGRITY-SHA256=...		

Figure 14

TURN TURN Peer Peer
client server A B
--- Send indication --------------->		
Transaction-Id=0x1278E9ACA2711637EF7D3328		
XOR-PEER-ADDRESS=192.0.2.150:32102		
DONT-FRAGMENT		
DATA=...		
	- UDP dgm ->	
	data=...	
	<- UDP dgm -	
	data=...	
<-- Data indication ----------------		
Transaction-Id=0x8231AE8F9242DA9FF287FEFF		
XOR-PEER-ADDRESS=192.0.2.150:32102		
DATA=...		

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 60

The client now sends application data to Peer A using a Send indication. Peer A's server-reflexive
transport address is specified in the XOR-PEER-ADDRESS attribute, and the application data
(shown here as just "...") is specified in the DATA attribute. The client is doing a form of path MTU
discovery at the application layer and, thus, specifies (by including the DONT-FRAGMENT
attribute) that the server should set the DF bit in the UDP datagram to send to the peer.
Indications cannot be authenticated using the long-term credential mechanism of STUN, so no
MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256 attribute is included in the message. An
application wishing to ensure that its data is not altered or forged must integrity-protect its data
at the application level.

Upon receipt of the Send indication, the server extracts the application data and sends it in a UDP
datagram to Peer A, with the relayed transport address as the source transport address of the
datagram and with the DF bit set as requested. Note that had the client not previously established
a permission for Peer A's server-reflexive IP address, the server would have silently discarded
the Send indication instead.

Peer A then replies with its own UDP datagram containing application data. The datagram is sent
to the relayed transport address on the server. When this arrives, the server creates a Data
indication containing the source of the UDP datagram in the XOR-PEER-ADDRESS attribute, and
the data from the UDP datagram in the DATA attribute. The resulting Data indication is then sent
to the client.

The client now binds a channel to Peer B, specifying a free channel number (0x4000) in the
CHANNEL-NUMBER attribute, and Peer B's transport address in the XOR-PEER-ADDRESS
attribute. As before, the client reuses the username, realm, and nonce from its last request in the
message.

Upon receipt of the request, the server binds the channel number to the peer, installs a
permission for Peer B's IP address, and then replies with a ChannelBind success response.

Figure 15

TURN TURN Peer Peer
client server A B
--- ChannelBind request ----------->		
Transaction-Id=0x6490D3BC175AFF3D84513212		
CHANNEL-NUMBER=0x4000		
XOR-PEER-ADDRESS=192.0.2.210:49191		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- ChannelBind success response ---		
Transaction-Id=0x6490D3BC175AFF3D84513212		
MESSAGE-INTEGRITY-SHA256=...		

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 61

The client now sends a ChannelData message to the server with data destined for Peer B. The
ChannelData message is not a STUN message; thus, it has no transaction id. Instead, it has only
three fields: a channel number, data, and data length; here, the channel number field is 0x4000
(the channel the client just bound to Peer B). When the server receives the ChannelData message,
it checks that the channel is currently bound (which it is) and then sends the data onward to Peer
B in a UDP datagram, using the relayed transport address as the source transport address, and
192.0.2.210:49191 (the value of the XOR-PEER-ADDRESS attribute in the ChannelBind request) as
the destination transport address.

Later, Peer B sends a UDP datagram back to the relayed transport address. This causes the server
to send a ChannelData message to the client containing the data from the UDP datagram. The
server knows to which client to send the ChannelData message because of the relayed transport
address at which the UDP datagram arrived, and it knows to use channel 0x4000 because this is
the channel bound to 192.0.2.210:49191. Note that if there had not been any channel number
bound to that address, the server would have used a Data indication instead.

Figure 16

TURN TURN Peer Peer
client server A B
--- ChannelData ------------------>		
Channel-number=0x4000	--- UDP datagram --------->	
Data=...	Data=...	
	<-- UDP datagram ----------	
	Data=...	
<-- ChannelData -------------------		
Channel-number=0x4000		
Data=...		

Figure 17

TURN TURN Peer Peer
client server A B
--- ChannelBind request ----------->		
Transaction-Id=0xE5913A8F46091637EF7D3328		
CHANNEL-NUMBER=0x4000		
XOR-PEER-ADDRESS=192.0.2.210:49191		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- ChannelBind success response ---		
Transaction-Id=0xE5913A8F46091637EF7D3328		
MESSAGE-INTEGRITY-SHA256=...		

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 62

The channel binding lasts for 10 minutes unless refreshed. The TURN client refreshes the binding
by sending a ChannelBind request rebinding the channel to the same peer (Peer B's IP address).
The server processes the ChannelBind request, rebinds the channel to the same peer, and resets
the time-to-expiry timer back to 10 minutes.

Sometime before the 20-minute lifetime is up, the client refreshes the allocation. This is done
using a Refresh request. As before, the client includes the latest username, realm, and nonce
values in the request. The client also includes the SOFTWARE attribute, following the
recommended practice of always including this attribute in Allocate and Refresh messages.
When the server receives the Refresh request, it notices that the nonce value has expired and so
replies with a 438 (Stale Nonce) error given a new nonce value. The client then reattempts the
request, this time with the new nonce value. This second attempt is accepted, and the server

Figure 18

TURN TURN Peer Peer
client server A B
--- Refresh request --------------->		
Transaction-Id=0x0864B3C27ADE9354B4312414		
SOFTWARE="Example client 1.03"		
USERNAME="George"		
REALM="example.com"		
NONCE="oobMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- Refresh error response ---------		
Transaction-Id=0x0864B3C27ADE9354B4312414		
SOFTWARE="Example server, version 1.17"		
ERROR-CODE=438 (Stale Nonce)		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
--- Refresh request --------------->		
Transaction-Id=0x427BD3E625A85FC731DC4191		
SOFTWARE="Example client 1.03"		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- Refresh success response -------		
Transaction-Id=0x427BD3E625A85FC731DC4191		
SOFTWARE="Example server, version 1.17"		
LIFETIME=600 (10 minutes)		
MESSAGE-INTEGRITY=...		

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 63

replies with a success response. Note that the client did not include a LIFETIME attribute in the
request, so the server refreshes the allocation for the default lifetime of 10 minutes (as can be
seen by the LIFETIME attribute in the success response).

21. Security Considerations
This section considers attacks that are possible in a TURN deployment and discusses how they
are mitigated by mechanisms in the protocol or recommended practices in the implementation.

Most of the attacks on TURN are mitigated by the server requiring requests be authenticated.
Thus, this specification requires the use of authentication. The mandatory-to-implement
mechanism is the long- term credential mechanism of STUN. Other authentication mechanisms
of equal or stronger security properties may be used. However, it is important to ensure that
they can be invoked in an interoperable way.

21.1. Outsider Attacks
Outsider attacks are ones where the attacker has no credentials in the system and is attempting
to disrupt the service seen by the client or the server.

21.1.1. Obtaining Unauthorized Allocations

An attacker might wish to obtain allocations on a TURN server for any number of nefarious
purposes. A TURN server provides a mechanism for sending and receiving packets while
cloaking the actual IP address of the client. This makes TURN servers an attractive target for
attackers who wish to use it to mask their true identity.

An attacker might also wish to simply utilize the services of a TURN server without paying for
them. Since TURN services require resources from the provider, it is anticipated that their usage
will come with a cost.

These attacks are prevented using the long-term credential mechanism, which allows the TURN
server to determine the identity of the requestor and whether the requestor is allowed to obtain
the allocation.

21.1.2. Offline Dictionary Attacks

The long-term credential mechanism used by TURN is subject to offline dictionary attacks. An
attacker that is capable of eavesdropping on a message exchange between a client and server can
determine the password by trying a number of candidate passwords and seeing if one of them is
correct. This attack works when the passwords are low entropy such as a word from the
dictionary. This attack can be mitigated by using strong passwords with large entropy. In
situations where even stronger mitigation is required, (D)TLS transport between the client and
the server can be used.

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 64

21.1.3. Faked Refreshes and Permissions

An attacker might wish to attack an active allocation by sending it a Refresh request with an
immediate expiration in order to delete it and disrupt service to the client. This is prevented by
authentication of refreshes. Similarly, an attacker wishing to send CreatePermission requests to
create permissions to undesirable destinations is prevented from doing so through
authentication. The motivations for such an attack are described in Section 21.2.

21.1.4. Fake Data

An attacker might wish to send data to the client or the peer as if they came from the peer or
client, respectively. To do that, the attacker can send the client a faked Data indication or
ChannelData message, or send the TURN server a faked Send indication or ChannelData message.

Since indications and ChannelData messages are not authenticated, this attack is not prevented
by TURN. However, this attack is generally present in IP-based communications and is not
substantially worsened by TURN. Consider a normal, non-TURN IP session between hosts A and
B. An attacker can send packets to B as if they came from A by sending packets towards B with a
spoofed IP address of A. This attack requires the attacker to know the IP addresses of A and B.
With TURN, an attacker wishing to send packets towards a client using a Data indication needs to
know its IP address (and port), the IP address and port of the TURN server, and the IP address
and port of the peer (for inclusion in the XOR-PEER-ADDRESS attribute). To send a fake
ChannelData message to a client, an attacker needs to know the IP address and port of the client,
the IP address and port of the TURN server, and the channel number. This particular
combination is mildly more guessable than in the non-TURN case.

These attacks are more properly mitigated by application-layer authentication techniques. In the
case of real-time traffic, usage of SRTP prevents these attacks.

In some situations, the TURN server may be situated in the network such that it is able to send to
hosts to which the client cannot directly send. This can happen, for example, if the server is
located behind a firewall that allows packets from outside the firewall to be delivered to the
server, but not to other hosts behind the firewall. In these situations, an attacker could send the
server a Send indication with an XOR-PEER-ADDRESS attribute containing the transport address
of one of the other hosts behind the firewall. If the server was to allow relaying of traffic to
arbitrary peers, then this would provide a way for the attacker to attack arbitrary hosts behind
the firewall.

To mitigate this attack, TURN requires that the client establish a permission to a host before
sending it data. Thus, an attacker can only attack hosts with which the client is already
communicating unless the attacker is able to create authenticated requests. Furthermore, the
server administrator may configure the server to restrict the range of IP addresses and ports to
which it will relay data. To provide even greater security, the server administrator can require
that the client use (D)TLS for all communication between the client and the server.

[RFC3711]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 65

21.1.5. Impersonating a Server

When a client learns a relayed address from a TURN server, it uses that relayed address in
application protocols to receive traffic. Therefore, an attacker wishing to intercept or redirect
that traffic might try to impersonate a TURN server and provide the client with a faked relayed
address.

This attack is prevented through the long-term credential mechanism, which provides message
integrity for responses in addition to verifying that they came from the server. Furthermore, an
attacker cannot replay old server responses as the transaction id in the STUN header prevents
this. Replay attacks are further thwarted through frequent changes to the nonce value.

21.1.6. Eavesdropping Traffic

If the TURN client and server use the STUN Extension for Third-Party Authorization
(for example, it is used in WebRTC), the username does not reveal the real user's identity; the
USERNAME attribute carries an ephemeral and unique key identifier. If the TURN client and
server use the STUN long-term credential mechanism and the username reveals the real user's
identity, the client either use the USERHASH attribute instead of the USERNAME attribute
to anonymize the username or use (D)TLS transport between the client and the server.

If the TURN client and server use the STUN long-term credential mechanism, and realm
information is privacy sensitive, TURN can be run over (D)TLS. As a reminder, STUN Extension
for Third-Party Authorization does not use realm.

The SOFTWARE attribute can reveal the specific software version of the TURN client and server
to the eavesdropper, and it might possibly allow attacks against vulnerable software that is
known to contain security vulnerabilities. If the software version is known to contain security
vulnerabilities, TURN be run over (D)TLS to prevent leaking the SOFTWARE attribute in
clear text. If zero-day vulnerabilities are detected in the software version, the endpoint policy
can be modified to mandate the use of (D)TLS until the patch is in place to fix the flaw.

TURN concerns itself primarily with authentication and message integrity. Confidentiality is only
a secondary concern as TURN control messages do not include information that is particularly
sensitive with the exception of USERNAME, REALM, and SOFTWARE. The primary protocol
content of the messages is the IP address of the peer. If it is important to prevent an
eavesdropper on a TURN connection from learning this, TURN can be run over (D)TLS.

Confidentiality for the application data relayed by TURN is best provided by the application
protocol itself since running TURN over (D)TLS does not protect application data between the
server and the peer. If confidentiality of application data is important, then the application
should encrypt or otherwise protect its data. For example, for real-time media, confidentiality
can be provided by using SRTP.

[RFC7635]

MUST

SHOULD

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 66

21.1.7. TURN Loop Attack

An attacker might attempt to cause data packets to loop indefinitely between two TURN servers.
The attack goes as follows: first, the attacker sends an Allocate request to server A using the
source address of server B. Server A will send its response to server B, and for the attack to
succeed, the attacker must have the ability to either view or guess the contents of this response
so that the attacker can learn the allocated relayed transport address. The attacker then sends an
Allocate request to server B using the source address of server A. Again, the attacker must be
able to view or guess the contents of the response so it can learn the allocated relayed transport
address. Using the same spoofed source address technique, the attacker then binds a channel
number on server A to the relayed transport address on server B and similarly binds the same
channel number on server B to the relayed transport address on server A. Finally, the attacker
sends a ChannelData message to server A.

The result is a data packet that loops from the relayed transport address on server A to the
relayed transport address on server B, then from server B's transport address to server A's
transport address, and then around the loop again.

This attack is mitigated as follows: by requiring all requests to be authenticated and/or by
randomizing the port number allocated for the relayed transport address, the server forces the
attacker to either intercept or view responses sent to a third party (in this case, the other server)
so that the attacker can authenticate the requests and learn the relayed transport address.
Without one of these two measures, an attacker can guess the contents of the responses without
needing to see them, which makes the attack much easier to perform. Furthermore, by requiring
authenticated requests, the server forces the attacker to have credentials acceptable to the
server, which turns this from an outsider attack into an insider attack and allows the attack to be
traced back to the client initiating it.

The attack can be further mitigated by imposing a per-username limit on the bandwidth used to
relay data by allocations owned by that username to limit the impact of this attack on other
allocations. More mitigation can be achieved by decrementing the TTL when relaying data
packets (if the underlying OS allows this).

21.2. Firewall Considerations
A key security consideration of TURN is that TURN should not weaken the protections afforded
by firewalls deployed between a client and a TURN server. It is anticipated that TURN servers
will often be present on the public Internet, and clients may often be inside enterprise networks
with corporate firewalls. If TURN servers provide a "backdoor" for reaching into the enterprise,
TURN will be blocked by these firewalls.

TURN servers therefore emulate the behavior of NAT devices that implement address-dependent
filtering , a property common in many firewalls as well. When a NAT or firewall
implements this behavior, packets from an outside IP address are only allowed to be sent to an
internal IP address and port if the internal IP address and port had recently sent a packet to that

[RFC4787]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 67

21.3. Insider Attacks
In insider attacks, a client has legitimate credentials but defies the trust relationship that goes
with those credentials. These attacks cannot be prevented by cryptographic means but need to be
considered in the design of the protocol.

outside IP address. TURN servers introduce the concept of permissions, which provide exactly
this same behavior on the TURN server. An attacker cannot send a packet to a TURN server and
expect it to be relayed towards the client, unless the client has tried to contact the attacker first.

It is important to note that some firewalls have policies that are even more restrictive than
address-dependent filtering. Firewalls can also be configured with address- and port-dependent
filtering, or they can be configured to disallow inbound traffic entirely. In these cases, if a client is
allowed to connect the TURN server, communications to the client will be less restrictive than
what the firewall would normally allow.

21.2.1. Faked Permissions

In firewalls and NAT devices, permissions are granted implicitly through the traversal of a packet
from the inside of the network towards the outside peer. Thus, a permission cannot, by
definition, be created by any entity except one inside the firewall or NAT. With TURN, this
restriction no longer holds. Since the TURN server sits outside the firewall, an attacker outside
the firewall can now send a message to the TURN server and try to create a permission for itself.

This attack is prevented because all messages that create permissions (i.e., ChannelBind and
CreatePermission) are authenticated.

21.2.2. Blacklisted IP Addresses

Many firewalls can be configured with blacklists that prevent a client behind the firewall from
sending packets to, or receiving packets from, ranges of blacklisted IP addresses. This is
accomplished by inspecting the source and destination addresses of packets entering and exiting
the firewall, respectively.

This feature is also present in TURN since TURN servers are allowed to arbitrarily restrict the
range of addresses of peers that they will relay to.

21.2.3. Running Servers on Well-Known Ports

A malicious client behind a firewall might try to connect to a TURN server and obtain an
allocation that it then uses to run a server. For example, a client might try to run a DNS server or
FTP server.

This is not possible in TURN. A TURN server will never accept traffic from a peer for which the
client has not installed a permission. Thus, peers cannot just connect to the allocated port in
order to obtain the service.

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 68

21.3.1. DoS against TURN Server

A client wishing to disrupt service to other clients might obtain an allocation and then flood it
with traffic in an attempt to swamp the server and prevent it from servicing other legitimate
clients. This is mitigated by the recommendation that the server limit the amount of bandwidth it
will relay for a given username. This won't prevent a client from sending a large amount of
traffic, but it allows the server to immediately discard traffic in excess.

Since each allocation uses a port number on the IP address of the TURN server, the number of
allocations on a server is finite. An attacker might attempt to consume all of them by requesting a
large number of allocations. This is prevented by the recommendation that the server impose a
limit on the number of allocations active at a time for a given username.

21.3.2. Anonymous Relaying of Malicious Traffic

TURN servers provide a degree of anonymization. A client can send data to peers without
revealing its own IP address. TURN servers may therefore become attractive vehicles for
attackers to launch attacks against targets without fear of detection. Indeed, it is possible for a
client to chain together multiple TURN servers such that any number of relays can be used
before a target receives a packet.

Administrators who are worried about this attack can maintain logs that capture the actual
source IP and port of the client and perhaps even every permission that client installs. This will
allow for forensic tracing to determine the original source should it be discovered that an attack
is being relayed through a TURN server.

21.3.3. Manipulating Other Allocations

An attacker might attempt to disrupt service to other users of the TURN server by sending
Refresh requests or CreatePermission requests that (through source address spoofing) appear to
be coming from another user of the TURN server. TURN prevents this by requiring that the
credentials used in CreatePermission, Refresh, and ChannelBind messages match those used to
create the initial allocation. Thus, the fake requests from the attacker will be rejected.

21.4. Tunnel Amplification Attack
An attacker might attempt to cause data packets to loop numerous times between a TURN server
and a tunnel between IPv4 and IPv6. The attack goes as follows:

Suppose an attacker knows that a tunnel endpoint will forward encapsulated packets from a
given IPv6 address (this doesn't necessarily need to be the tunnel endpoint's address). Suppose he
then spoofs two packets from this address:

An Allocate request asking for a v4 address, and
A ChannelBind request establishing a channel to the IPv4 address of the tunnel endpoint.

1.
2.

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 69

22. IANA Considerations
The code points for the STUN methods defined in this specification are listed in Section 17. IANA
has updated the references from to this document (for the STUN methods listed in
Section 17).

Then, he has set up an amplification attack:

The TURN server will re-encapsulate IPv6 UDP data in v4 and send it to the tunnel endpoint.
The tunnel endpoint will de-encapsulate packets from the v4 interface and send them to v6.

So, if the attacker sends a packet of the following form:

then the TURN server and the tunnel endpoint will send it back and forth until the last TURN
header is consumed, at which point the TURN server will send an empty packet that the tunnel
endpoint will drop.

The amplification potential here is limited by the MTU, so it's not huge: IPv6+UDP+TURN takes
334 bytes, so a four-to-one amplification out of a 1500-byte packet is possible. But, the attacker
could still increase traffic volume by sending multiple packets or by establishing multiple
channels spoofed from different addresses behind the same tunnel endpoint.

The attack is mitigated as follows. It is that TURN servers not accept allocation or
channel-binding requests from addresses known to be tunneled, and that they not forward data
to such addresses. In particular, a TURN server accept Teredo or 6to4 addresses in
these requests.

21.5. Other Considerations
Any relay addresses learned through an Allocate request will not operate properly with IPsec
Authentication Header (AH) in transport or tunnel mode. However, tunnel-mode IPsec
Encapsulating Security Payload (ESP) should still operate.

•
•

Figure 19

 IPv6: src=2001:DB8:1::1 dst=2001:DB8::2
 UDP: <ports>
 TURN: <channel id>
 IPv6: src=2001:DB8:1::1 dst=2001:DB8::2
 UDP: <ports>
 TURN: <channel id>
 IPv6: src=2001:DB8:1::1 dst=2001:DB8::2
 UDP: <ports>
 TURN: <channel id>
 ...

RECOMMENDED

MUST NOT

[RFC4302]
[RFC4303]

[RFC5766]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 70

The code points for the STUN attributes defined in this specification are listed in Section 18. IANA
has updated the references from to this document (for the STUN attributes CHANNEL-
NUMBER, LIFETIME, Reserved (was BANDWIDTH), XOR-PEER-ADDRESS, DATA, XOR-RELAYED-
ADDRESS, REQUESTED-ADDRESS-FAMILY, EVEN-PORT, REQUESTED-TRANSPORT, DONT-
FRAGMENT, Reserved (was TIMER-VAL), and RESERVATION-TOKEN listed in Section 18).

The code points for the STUN error codes defined in this specification are listed in Section 19.
IANA has updated the references from and to this document (for the STUN
error codes listed in Section 19).

IANA has updated the references to to this document for the SRV service name of
"turn" for TURN over UDP or TCP and the service name of "turns" for TURN over (D)TLS.

IANA has created a registry for TURN channel numbers (the "Traversal Using Relays around NAT
(TURN) Channel Numbers" registry), initially populated as follows:

Any change to this registry must be made through an IETF Standards Action.

23. IAB Considerations
The IAB has studied the problem of Unilateral Self-Address Fixing (UNSAF), which is the general
process by which a client attempts to determine its address in another realm on the other side of
a NAT through a collaborative protocol reflection mechanism . The TURN extension is
an example of a protocol that performs this type of function. The IAB has mandated that any
protocols developed for this purpose document a specific set of considerations. These
considerations and the responses for TURN are documented in this section.

Consideration 1: Precise definition of a specific, limited-scope problem that is to be solved with
the UNSAF proposal. A short-term fix should not be generalized to solve other problems. Such
generalizations lead to the prolonged dependence on and usage of the supposed short-term fix,
meaning that it is no longer accurate to call it "short-term".

Response: TURN is a protocol for communication between a relay (= TURN server) and its client.
The protocol allows a client that is behind a NAT to obtain and use a public IP address on the
relay. As a convenience to the client, TURN also allows the client to determine its server-reflexive
transport address.

[RFC5766]

[RFC5766] [RFC6156]

[RFC5766]

0x0000 through
0x3FFF:

Reserved and not available for use since they conflict with the STUN
header.

0x4000 through
0x4FFF:

A TURN implementation is free to use channel numbers in this
range.

0x5000 through
0xFFFF:

Reserved (For DTLS-SRTP multiplexing collision avoidance, see
)

Table 6

[RFC7983]

[RFC3424]

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 71

Consideration 2: Description of an exit strategy/transition plan. The better short-term fixes are
the ones that will naturally see less and less use as the appropriate technology is deployed.

Response: TURN will no longer be needed once there are no longer any NATs. Unfortunately, as
of the date of publication of this document, it no longer seems very likely that NATs will go away
any time soon. However, the need for TURN will also decrease as the number of NATs with the
mapping property of Endpoint-Independent Mapping increases.

Consideration 3: Discussion of specific issues that may render systems more "brittle". For
example, approaches that involve using data at multiple network layers create more
dependencies, increase debugging challenges, and make it harder to transition.

Response: TURN is "brittle" in that it requires the NAT bindings between the client and the server
to be maintained unchanged for the lifetime of the allocation. This is typically done using keep-
alives. If this is not done, then the client will lose its allocation and can no longer exchange data
with its peers.

Consideration 4: Identify requirements for longer-term, sound technical solutions; contribute to
the process of finding the right longer-term solution.

Response: The need for TURN will be reduced once NATs implement the recommendations for
NAT UDP behavior documented in . Applications are also strongly urged to use ICE

 to communicate with peers; though ICE uses TURN, it does so only as a last resort, and
it uses it in a controlled manner.

Consideration 5: Discussion of the impact of the noted practical issues with existing deployed
NATs and experience reports.

Response: Some NATs deployed today exhibit a mapping behavior other than Endpoint-
Independent mapping. These NATs are difficult to work with, as they make it difficult or
impossible for protocols like ICE to use server-reflexive transport addresses on those NATs. A
client behind such a NAT is often forced to use a relay protocol like TURN because "UDP hole
punching" techniques do not work.

24. Changes since RFC 5766
This section lists the major changes in the TURN protocol from the original
specification.

IPv6 support.
REQUESTED-ADDRESS-FAMILY attribute.
Description of the tunnel amplification attack.
DTLS support.
Add support for receiving ICMP packets.
Updates PMTUD.
Discovery of TURN server.

[RFC4787]

[RFC4787]
[RFC8445]

[RFC5128]

[RFC5766]

•
•
•
•
•
•
•

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 72

[PROTOCOL-NUMBERS]

[RFC0792]

[RFC1122]

[RFC2119]

[RFC2474]

[RFC3168]

[RFC3629]

[RFC4443]

TURN URI Scheme Semantics.
Happy Eyeballs for TURN.
Align with the changes in STUN .

25. Updates to RFC 6156
This section lists the major updates to in this specification.

ADDITIONAL-ADDRESS-FAMILY and ADDRESS-ERROR-CODE attributes.
440 (Address Family not Supported) and 443 (Peer Address Family Mismatch) responses.
More details on packet translation.
TCP-to-UDP and UDP-to-TCP relaying.

26. References

26.1. Normative References

, , ,
.

, , , ,
, September 1981, .

, ,
, , , October 1989,

.

, , ,
, , March 1997,
.

,
, ,

, December 1998, .

,
, , , September 2001,

.

, , , ,
, November 2003,

.

,
, ,

, , March 2006,
.

•
•
• [RFC8489]

[RFC6156]

•
•
•
•

IANA "Protocol Numbers" <https://www.iana.org/assignments/
protocol-numbers>

Postel, J. "Internet Control Message Protocol" STD 5 RFC 792 DOI 10.17487/
RFC0792 <https://www.rfc-editor.org/info/rfc792>

Braden, R., Ed. "Requirements for Internet Hosts - Communication Layers" STD
3 RFC 1122 DOI 10.17487/RFC1122 <https://www.rfc-editor.org/
info/rfc1122>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Nichols, K., Blake, S., Baker, F., and D. Black "Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers" RFC 2474 DOI 10.17487/
RFC2474 <https://www.rfc-editor.org/info/rfc2474>

Ramakrishnan, K., Floyd, S., and D. Black "The Addition of Explicit Congestion
Notification (ECN) to IP" RFC 3168 DOI 10.17487/RFC3168
<https://www.rfc-editor.org/info/rfc3168>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Conta, A., Deering, S., and M. Gupta, Ed. "Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification" STD 89 RFC
4443 DOI 10.17487/RFC4443 <https://www.rfc-editor.org/info/
rfc4443>

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 73

https://www.iana.org/assignments/protocol-numbers
https://www.iana.org/assignments/protocol-numbers
https://www.rfc-editor.org/info/rfc792
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2474
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4443
https://www.rfc-editor.org/info/rfc4443

[RFC6347]

[RFC6437]

[RFC7065]

[RFC7350]

[RFC7525]

[RFC7915]

[RFC7982]

[RFC8174]

[RFC8200]

[RFC8305]

[RFC8446]

[RFC8489]

, ,
, , January 2012,
.

,
, , , November 2011,

.

,
, ,

, November 2013, .

,
, ,

, August 2014, .

,
,

, , , May 2015,
.

,
, , , June 2016,

.

,
,

, , September 2016,
.

, ,
, , , May 2017,

.

, ,
, , , July 2017,

.

,
, , , December 2017,

.

, , ,
, August 2018, .

, , ,
, February 2020, .

26.2. Informative References

Rescorla, E. and N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Amante, S., Carpenter, B., Jiang, S., and J. Rajahalme "IPv6 Flow Label
Specification" RFC 6437 DOI 10.17487/RFC6437 <https://
www.rfc-editor.org/info/rfc6437>

Petit-Huguenin, M., Nandakumar, S., Salgueiro, G., and P. Jones "Traversal Using
Relays around NAT (TURN) Uniform Resource Identifiers" RFC 7065 DOI
10.17487/RFC7065 <https://www.rfc-editor.org/info/rfc7065>

Petit-Huguenin, M. and G. Salgueiro "Datagram Transport Layer Security (DTLS)
as Transport for Session Traversal Utilities for NAT (STUN)" RFC 7350 DOI
10.17487/RFC7350 <https://www.rfc-editor.org/info/rfc7350>

Sheffer, Y., Holz, R., and P. Saint-Andre "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 7525 DOI 10.17487/RFC7525 <https://www.rfc-
editor.org/info/rfc7525>

Bao, C., Li, X., Baker, F., Anderson, T., and F. Gont "IP/ICMP Translation
Algorithm" RFC 7915 DOI 10.17487/RFC7915 <https://www.rfc-
editor.org/info/rfc7915>

Martinsen, P., Reddy, T., Wing, D., and V. Singh "Measurement of Round-Trip
Time and Fractional Loss Using Session Traversal Utilities for NAT (STUN)" RFC
7982 DOI 10.17487/RFC7982 <https://www.rfc-editor.org/info/
rfc7982>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Deering, S. and R. Hinden "Internet Protocol, Version 6 (IPv6) Specification" STD
86 RFC 8200 DOI 10.17487/RFC8200 <https://www.rfc-editor.org/info/
rfc8200>

Schinazi, D. and T. Pauly "Happy Eyeballs Version 2: Better Connectivity Using
Concurrency" RFC 8305 DOI 10.17487/RFC8305 <https://
www.rfc-editor.org/info/rfc8305>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing, D., Mahy, R., and P.
Matthews "Session Traversal Utilities for NAT (STUN)" RFC 8489 DOI 10.17487/
RFC8489 <https://www.rfc-editor.org/info/rfc8489>

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 74

https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6437
https://www.rfc-editor.org/info/rfc6437
https://www.rfc-editor.org/info/rfc7065
https://www.rfc-editor.org/info/rfc7350
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7915
https://www.rfc-editor.org/info/rfc7915
https://www.rfc-editor.org/info/rfc7982
https://www.rfc-editor.org/info/rfc7982
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8489

[FRAG-FRAGILE]

[FRAG-HARMFUL]

[MTU-DATAGRAM]

[MTU-STUN]

[PORT-NUMBERS]

[RFC0791]

[RFC1191]

[RFC1918]

[RFC1928]

[RFC3261]

[RFC3424]

[RFC3550]

[RFC3711]

,
, ,

, 30 September 2019,
.

, , December
1987, .

,
,

, , 12 February
2020, .

,

, , , 17
December 2019, .

, , ,
.

, , , , , September
1981, .

, , ,
, November 1990, .

,
, , , ,

February 1996, .

,
, , , March 1996,

.

, , ,
, June 2002, .

,
, , ,

November 2002, .

,
, , , ,

July 2003, .

,
, , , March

2004, .

Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O., and F. Gont "IP
Fragmentation Considered Fragile" Work in Progress Internet-Draft, draft-ietf-
intarea-frag-fragile-17 <https://tools.ietf.org/html/draft-ietf-
intarea-frag-fragile-17>

Kent, C. and J. Mogul "Fragmentation Considered Harmful"
<https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf>

Fairhurst, G., Jones, T., Tuexen, M., Ruengeler, I., and T. Voelker
"Packetization Layer Path MTU Discovery for Datagram Transports" Work in
Progress Internet-Draft, draft-ietf-tsvwg-datagram-plpmtud-14

<https://tools.ietf.org/html/draft-ietf-tsvwg-datagram-plpmtud-14>

Petit-Huguenin, M., Salgueiro, G., and F. Garrido "Packetization Layer Path MTU
Discovery (PLMTUD) For UDP Transports Using Session Traversal Utilities for
NAT (STUN)" Work in Progress Internet-Draft, draft-ietf-tram-stun-pmtud-15

<https://tools.ietf.org/html/draft-ietf-tram-stun-pmtud-15>

IANA "Service Name and Transport Protocol Port Number Registry"
<https://www.iana.org/assignments/port-numbers>

Postel, J. "Internet Protocol" STD 5 RFC 791 DOI 10.17487/RFC0791
<https://www.rfc-editor.org/info/rfc791>

Mogul, J. and S. Deering "Path MTU discovery" RFC 1191 DOI 10.17487/
RFC1191 <https://www.rfc-editor.org/info/rfc1191>

Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G. J., and E. Lear "Address
Allocation for Private Internets" BCP 5 RFC 1918 DOI 10.17487/RFC1918

<https://www.rfc-editor.org/info/rfc1918>

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and L. Jones "SOCKS Protocol
Version 5" RFC 1928 DOI 10.17487/RFC1928 <https://www.rfc-
editor.org/info/rfc1928>

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,
Handley, M., and E. Schooler "SIP: Session Initiation Protocol" RFC 3261 DOI
10.17487/RFC3261 <https://www.rfc-editor.org/info/rfc3261>

Daigle, L., Ed. and IAB "IAB Considerations for UNilateral Self-Address Fixing
(UNSAF) Across Network Address Translation" RFC 3424 DOI 10.17487/RFC3424

<https://www.rfc-editor.org/info/rfc3424>

Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson "RTP: A Transport
Protocol for Real-Time Applications" STD 64 RFC 3550 DOI 10.17487/RFC3550

<https://www.rfc-editor.org/info/rfc3550>

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K. Norrman "The Secure
Real-time Transport Protocol (SRTP)" RFC 3711 DOI 10.17487/RFC3711

<https://www.rfc-editor.org/info/rfc3711>

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 75

https://tools.ietf.org/html/draft-ietf-intarea-frag-fragile-17
https://tools.ietf.org/html/draft-ietf-intarea-frag-fragile-17
https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-87-3.pdf
https://tools.ietf.org/html/draft-ietf-tsvwg-datagram-plpmtud-14
https://tools.ietf.org/html/draft-ietf-tram-stun-pmtud-15
https://www.iana.org/assignments/port-numbers
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc1918
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3424
https://www.rfc-editor.org/info/rfc3550
https://www.rfc-editor.org/info/rfc3711

[RFC4086]

[RFC4302]

[RFC4303]

[RFC4787]

[RFC4821]

[RFC5128]

[RFC5482]

[RFC5766]

[RFC5925]

[RFC5928]

[RFC6056]

[RFC6062]

[RFC6156]

[RFC6263]

,
, , , , June 2005,

.

, , , , December
2005, .

, , ,
, December 2005, .

,
, , , ,

January 2007, .

, , ,
, March 2007, .

,
, , ,

March 2008, .

, , ,
, March 2009, .

,
,

, , April 2010,
.

, , ,
, June 2010, .

,
, , , August 2010,

.

,
, , , , January 2011,

.

,
, , , November

2010, .

,
, , , April 2011,

.

,
, ,

, June 2011, .

Eastlake 3rd, D., Schiller, J., and S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Kent, S. "IP Authentication Header" RFC 4302 DOI 10.17487/RFC4302
<https://www.rfc-editor.org/info/rfc4302>

Kent, S. "IP Encapsulating Security Payload (ESP)" RFC 4303 DOI 10.17487/
RFC4303 <https://www.rfc-editor.org/info/rfc4303>

Audet, F., Ed. and C. Jennings "Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP" BCP 127 RFC 4787 DOI 10.17487/RFC4787

<https://www.rfc-editor.org/info/rfc4787>

Mathis, M. and J. Heffner "Packetization Layer Path MTU Discovery" RFC 4821
DOI 10.17487/RFC4821 <https://www.rfc-editor.org/info/rfc4821>

Srisuresh, P., Ford, B., and D. Kegel "State of Peer-to-Peer (P2P) Communication
across Network Address Translators (NATs)" RFC 5128 DOI 10.17487/RFC5128

<https://www.rfc-editor.org/info/rfc5128>

Eggert, L. and F. Gont "TCP User Timeout Option" RFC 5482 DOI 10.17487/
RFC5482 <https://www.rfc-editor.org/info/rfc5482>

Mahy, R., Matthews, P., and J. Rosenberg "Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)" RFC
5766 DOI 10.17487/RFC5766 <https://www.rfc-editor.org/info/
rfc5766>

Touch, J., Mankin, A., and R. Bonica "The TCP Authentication Option" RFC 5925
DOI 10.17487/RFC5925 <https://www.rfc-editor.org/info/rfc5925>

Petit-Huguenin, M. "Traversal Using Relays around NAT (TURN) Resolution
Mechanism" RFC 5928 DOI 10.17487/RFC5928 <https://www.rfc-
editor.org/info/rfc5928>

Larsen, M. and F. Gont "Recommendations for Transport-Protocol Port
Randomization" BCP 156 RFC 6056 DOI 10.17487/RFC6056
<https://www.rfc-editor.org/info/rfc6056>

Perreault, S., Ed. and J. Rosenberg "Traversal Using Relays around NAT (TURN)
Extensions for TCP Allocations" RFC 6062 DOI 10.17487/RFC6062

<https://www.rfc-editor.org/info/rfc6062>

Camarillo, G., Novo, O., and S. Perreault, Ed. "Traversal Using Relays around
NAT (TURN) Extension for IPv6" RFC 6156 DOI 10.17487/RFC6156
<https://www.rfc-editor.org/info/rfc6156>

Marjou, X. and A. Sollaud "Application Mechanism for Keeping Alive the NAT
Mappings Associated with RTP / RTP Control Protocol (RTCP) Flows" RFC 6263
DOI 10.17487/RFC6263 <https://www.rfc-editor.org/info/rfc6263>

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 76

https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4302
https://www.rfc-editor.org/info/rfc4303
https://www.rfc-editor.org/info/rfc4787
https://www.rfc-editor.org/info/rfc4821
https://www.rfc-editor.org/info/rfc5128
https://www.rfc-editor.org/info/rfc5482
https://www.rfc-editor.org/info/rfc5766
https://www.rfc-editor.org/info/rfc5766
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc5928
https://www.rfc-editor.org/info/rfc5928
https://www.rfc-editor.org/info/rfc6056
https://www.rfc-editor.org/info/rfc6062
https://www.rfc-editor.org/info/rfc6156
https://www.rfc-editor.org/info/rfc6263

[RFC7413]

[RFC7478]

[RFC7635]

[RFC7657]

[RFC7983]

[RFC8155]

[RFC8311]

[RFC8445]

[SDP-ICE]

[SEC-WEBRTC]

[TCP-EXT]

[UDP-OPT]

, , ,
, December 2014, .

,
, , , March 2015,

.

,
, ,

, August 2015, .

,
, , , November 2015,

.

,

, , , September 2016,
.

,
, , , April 2017,

.

,
, , , January 2018,

.

,

, , , July 2018,
.

,

, ,
, 13 August 2019,

.

, , ,
, 5 July 2019,

.

,
, ,

, 8 June 2019,
.

Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain "TCP Fast Open" RFC 7413 DOI
10.17487/RFC7413 <https://www.rfc-editor.org/info/rfc7413>

Holmberg, C., Hakansson, S., and G. Eriksson "Web Real-Time Communication
Use Cases and Requirements" RFC 7478 DOI 10.17487/RFC7478
<https://www.rfc-editor.org/info/rfc7478>

Reddy, T., Patil, P., Ravindranath, R., and J. Uberti "Session Traversal Utilities for
NAT (STUN) Extension for Third-Party Authorization" RFC 7635 DOI 10.17487/
RFC7635 <https://www.rfc-editor.org/info/rfc7635>

Black, D., Ed. and P. Jones "Differentiated Services (Diffserv) and Real-Time
Communication" RFC 7657 DOI 10.17487/RFC7657 <https://
www.rfc-editor.org/info/rfc7657>

Petit-Huguenin, M. and G. Salgueiro "Multiplexing Scheme Updates for Secure
Real-time Transport Protocol (SRTP) Extension for Datagram Transport Layer
Security (DTLS)" RFC 7983 DOI 10.17487/RFC7983 <https://
www.rfc-editor.org/info/rfc7983>

Patil, P., Reddy, T., and D. Wing "Traversal Using Relays around NAT (TURN)
Server Auto Discovery" RFC 8155 DOI 10.17487/RFC8155 <https://
www.rfc-editor.org/info/rfc8155>

Black, D. "Relaxing Restrictions on Explicit Congestion Notification (ECN)
Experimentation" RFC 8311 DOI 10.17487/RFC8311 <https://
www.rfc-editor.org/info/rfc8311>

Keranen, A., Holmberg, C., and J. Rosenberg "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal" RFC 8445 DOI 10.17487/RFC8445 <https://www.rfc-
editor.org/info/rfc8445>

Petit-Huguenin, M., Nandakumar, S., Holmberg, C., Keranen, A., and R. Shpount
"Session Description Protocol (SDP) Offer/Answer procedures for Interactive
Connectivity Establishment (ICE)" Work in Progress Internet-Draft, draft-ietf-
mmusic-ice-sip-sdp-39 <https://tools.ietf.org/html/draft-ietf-
mmusic-ice-sip-sdp-39>

Rescorla, E. "Security Considerations for WebRTC" Work in Progress Internet-
Draft, draft-ietf-rtcweb-security-12 <https://tools.ietf.org/html/draft-
ietf-rtcweb-security-12>

Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C. Paasch "TCP Extensions
for Multipath Operation with Multiple Addresses" Work in Progress Internet-
Draft, draft-ietf-mptcp-rfc6824bis-18 <https://tools.ietf.org/html/
draft-ietf-mptcp-rfc6824bis-18>

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 77

https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc7478
https://www.rfc-editor.org/info/rfc7635
https://www.rfc-editor.org/info/rfc7657
https://www.rfc-editor.org/info/rfc7657
https://www.rfc-editor.org/info/rfc7983
https://www.rfc-editor.org/info/rfc7983
https://www.rfc-editor.org/info/rfc8155
https://www.rfc-editor.org/info/rfc8155
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://tools.ietf.org/html/draft-ietf-mmusic-ice-sip-sdp-39
https://tools.ietf.org/html/draft-ietf-mmusic-ice-sip-sdp-39
https://tools.ietf.org/html/draft-ietf-rtcweb-security-12
https://tools.ietf.org/html/draft-ietf-rtcweb-security-12
https://tools.ietf.org/html/draft-ietf-mptcp-rfc6824bis-18
https://tools.ietf.org/html/draft-ietf-mptcp-rfc6824bis-18

, , ,
, 12 September 2019,

.

Acknowledgements
Most of the text in this note comes from the original TURN specification, . The authors
would like to thank , coauthor of the original TURN specification, and everyone who
had contributed to that document. The authors would also like to acknowledge that this
document inherits material from .

Thanks to , , , , and for
their help on the ADDITIONAL-ADDRESS-FAMILY mechanism. The authors would like to thank

, , , , ,
, , , , , , ,

, , , , ,
, and for comments and review. The authors would like to thank

 for his contributions to the text.

Special thanks to for the detailed AD review.

Touch, J. "Transport Options for UDP" Work in Progress Internet-Draft, draft-
ietf-tsvwg-udp-options-08 <https://tools.ietf.org/html/draft-
ietf-tsvwg-udp-options-08>

[RFC5766]
Rohan Mahy

[RFC6156]

Justin Uberti Pal Martinsen Oleg Moskalenko Aijun Wang Simon Perreault

Gonzalo Salgueiro Simon Perreault Jonathan Lennox Brandon Williams Karl Stahl Noriyuki
Torii Nils Ohlmeier Dan Wing Vijay Gurbani Joseph Touch Justin Uberti Christopher Wood
Roman Danyliw Eric Vyncke Adam Roach Suresh Krishnan Mirja Kuehlewind Benjamin
Kaduk Oleg Moskalenko Marc
Petit-Huguenin

Magnus Westerlund

Authors' Addresses
Tirumaleswar Reddy ()������
McAfee, Inc.
Embassy Golf Link Business Park

 Bangalore 560071
Karnataka
India

 kondtir@gmail.com Email:

Alan Johnston ()������
Villanova University

, Villanova PA
United States of America

 alan.b.johnston@gmail.com Email:

Philip Matthews
Alcatel-Lucent
600 March Road

 Ottawa Ontario
Canada

 philip_matthews@magma.ca Email:

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 78

https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-08
https://tools.ietf.org/html/draft-ietf-tsvwg-udp-options-08
mailto:kondtir@gmail.com
mailto:alan.b.johnston@gmail.com
mailto:philip_matthews@magma.ca

Jonathan Rosenberg
jdrosen.net

, Edison NJ
United States of America

 jdrosen@jdrosen.net Email:
 http://www.jdrosen.net URI:

RFC 8656 TURN February 2020

Reddy, et al. Standards Track Page 79

mailto:jdrosen@jdrosen.net
http://www.jdrosen.net

	RFC 8656
	Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overview of Operation
	3.1. Transports
	3.2. Allocations
	3.3. Permissions
	3.4. Send Mechanism
	3.5. Channels
	3.6. Unprivileged TURN Servers
	3.7. Avoiding IP Fragmentation
	3.8. RTP Support
	3.9. Happy Eyeballs for TURN

	4. Discovery of TURN Server
	4.1. TURN URI Scheme Semantics

	5. General Behavior
	6. Allocations
	7. Creating an Allocation
	7.1. Sending an Allocate Request
	7.2. Receiving an Allocate Request
	7.3. Receiving an Allocate Success Response
	7.4. Receiving an Allocate Error Response

	8. Refreshing an Allocation
	8.1. Sending a Refresh Request
	8.2. Receiving a Refresh Request
	8.3. Receiving a Refresh Response

	9. Permissions
	10. CreatePermission
	10.1. Forming a CreatePermission Request
	10.2. Receiving a CreatePermission Request
	10.3. Receiving a CreatePermission Response

	11. Send and Data Methods
	11.1. Forming a Send Indication
	11.2. Receiving a Send Indication
	11.3. Receiving a UDP Datagram
	11.4. Receiving a Data Indication
	11.5. Receiving an ICMP Packet
	11.6. Receiving a Data Indication with an ICMP Attribute

	12. Channels
	12.1. Sending a ChannelBind Request
	12.2. Receiving a ChannelBind Request
	12.3. Receiving a ChannelBind Response
	12.4. The ChannelData Message
	12.5. Sending a ChannelData Message
	12.6. Receiving a ChannelData Message
	12.7. Relaying Data from the Peer

	13. Packet Translations
	13.1. IPv4-to-IPv6 Translations
	13.2. IPv6-to-IPv6 Translations
	13.3. IPv6-to-IPv4 Translations

	14. UDP-to-UDP Relay
	15. TCP-to-UDP Relay
	16. UDP-to-TCP Relay
	17. STUN Methods
	18. STUN Attributes
	18.1. CHANNEL-NUMBER
	18.2. LIFETIME
	18.3. XOR-PEER-ADDRESS
	18.4. DATA
	18.5. XOR-RELAYED-ADDRESS
	18.6. REQUESTED-ADDRESS-FAMILY
	18.7. EVEN-PORT
	18.8. REQUESTED-TRANSPORT
	18.9. DONT-FRAGMENT
	18.10. RESERVATION-TOKEN
	18.11. ADDITIONAL-ADDRESS-FAMILY
	18.12. ADDRESS-ERROR-CODE
	18.13. ICMP

	19. STUN Error Response Codes
	20. Detailed Example
	21. Security Considerations
	21.1. Outsider Attacks
	21.1.1. Obtaining Unauthorized Allocations
	21.1.2. Offline Dictionary Attacks
	21.1.3. Faked Refreshes and Permissions
	21.1.4. Fake Data
	21.1.5. Impersonating a Server
	21.1.6. Eavesdropping Traffic
	21.1.7. TURN Loop Attack

	21.2. Firewall Considerations
	21.2.1. Faked Permissions
	21.2.2. Blacklisted IP Addresses
	21.2.3. Running Servers on Well-Known Ports

	21.3. Insider Attacks
	21.3.1. DoS against TURN Server
	21.3.2. Anonymous Relaying of Malicious Traffic
	21.3.3. Manipulating Other Allocations

	21.4. Tunnel Amplification Attack
	21.5. Other Considerations

	22. IANA Considerations
	23. IAB Considerations
	24. Changes since RFC 5766
	25. Updates to RFC 6156
	26. References
	26.1. Normative References
	26.2. Informative References

	Acknowledgements
	Authors' Addresses

 Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)

 McAfee, Inc.

 Embassy Golf Link Business Park
 Bangalore
 Karnataka
 560071
 India

 kondtir@gmail.com

 Villanova University

 Villanova
 PA

 United States of America

 alan.b.johnston@gmail.com

 Alcatel-Lucent

 600 March Road
 Ottawa
 Ontario

 Canada

 philip_matthews@magma.ca

 jdrosen.net

 Edison
 NJ
 United States of America

 jdrosen@jdrosen.net
 http://www.jdrosen.net

 Transport
 TRAM WG
 NAT
 TURN
 STUN
 ICE

 If a host is located behind a NAT, it can be impossible for that host
 to communicate directly with other hosts (peers) in certain
 situations. In these situations, it is necessary for the host to use the
 services of an intermediate node that acts as a communication relay.
 This specification defines a protocol, called "Traversal Using Relays
 around NAT" (TURN), that allows the host to control the operation of the
 relay and to exchange packets with its peers using the relay. TURN
 differs from other relay control protocols in that it allows a client to
 communicate with multiple peers using a single relay address.
 The TURN protocol was designed to be used as part of the Interactive
 Connectivity Establishment (ICE) approach to NAT traversal,
 though it can also be used without ICE.
 This document obsoletes RFCs 5766 and 6156.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Overview of Operation

 . Transports

 . Allocations

 . Permissions

 . Send Mechanism

 . Channels

 . Unprivileged TURN Servers

 . Avoiding IP Fragmentation

 . RTP Support

 . Happy Eyeballs for TURN

 . Discovery of TURN Server

 . TURN URI Scheme Semantics

 . General Behavior

 . Allocations

 . Creating an Allocation

 . Sending an Allocate Request

 . Receiving an Allocate Request

 . Receiving an Allocate Success Response

 . Receiving an Allocate Error Response

 . Refreshing an Allocation

 . Sending a Refresh Request

 . Receiving a Refresh Request

 . Receiving a Refresh Response

 . Permissions

 . CreatePermission

 . Forming a CreatePermission Request

 . Receiving a CreatePermission Request

 . Receiving a CreatePermission Response

 . Send and Data Methods

 . Forming a Send Indication

 . Receiving a Send Indication

 . Receiving a UDP Datagram

 . Receiving a Data Indication

 . Receiving an ICMP Packet

 . Receiving a Data Indication with an ICMP Attribute

 . Channels

 . Sending a ChannelBind Request

 . Receiving a ChannelBind Request

 . Receiving a ChannelBind Response

 . The ChannelData Message

 . Sending a ChannelData Message

 . Receiving a ChannelData Message

 . Relaying Data from the Peer

 . Packet Translations

 . IPv4-to-IPv6 Translations

 . IPv6-to-IPv6 Translations

 . IPv6-to-IPv4 Translations

 . UDP-to-UDP Relay

 . TCP-to-UDP Relay

 . UDP-to-TCP Relay

 . STUN Methods

 . STUN Attributes

 . CHANNEL-NUMBER

 . LIFETIME

 . XOR-PEER-ADDRESS

 . DATA

 . XOR-RELAYED-ADDRESS

 . REQUESTED-ADDRESS-FAMILY

 . EVEN-PORT

 . REQUESTED-TRANSPORT

 . DONT-FRAGMENT

 . RESERVATION-TOKEN

 . ADDITIONAL-ADDRESS-FAMILY

 . ADDRESS-ERROR-CODE

 . ICMP

 . STUN Error Response Codes

 . Detailed Example

 . Security Considerations

 . Outsider Attacks

 . Obtaining Unauthorized Allocations

 . Offline Dictionary Attacks

 . Faked Refreshes and Permissions

 . Fake Data

 . Impersonating a Server

 . Eavesdropping Traffic

 . TURN Loop Attack

 . Firewall Considerations

 . Faked Permissions

 . Blacklisted IP Addresses

 . Running Servers on Well-Known Ports

 . Insider Attacks

 . DoS against TURN Server

 . Anonymous Relaying of Malicious Traffic

 . Manipulating Other Allocations

 . Tunnel Amplification Attack

 . Other Considerations

 . IANA Considerations

 . IAB Considerations

 . Changes since RFC 5766

 . Updates to RFC 6156

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 A host behind a NAT may wish to exchange packets with other hosts,
 some of which may also be behind NATs. To do this, the hosts involved
 can use "hole punching" techniques (see)
 in an attempt to discover a direct communication path; that is, a
 communication path that goes from one host to another through
 intervening NATs and routers but does not traverse any relays.
 As described in and , hole punching techniques will fail
 if both hosts are behind NATs that are not well behaved. For example, if
 both hosts are behind NATs that have a mapping behavior of
 "address-dependent mapping" or "address- and port-dependent mapping"
 (see), then
 hole punching techniques generally fail.
 When a direct communication path cannot be found, it is necessary to
 use the services of an intermediate host that acts as a relay for the
 packets. This relay typically sits in the public Internet and relays
 packets between two hosts that both sit behind NATs.
 In many enterprise networks, direct UDP transmissions are not
 permitted between clients on the internal networks and external IP
 addresses. To permit media sessions in such a situation to use UDP and
 avoid forcing them through TCP, an Enterprise Firewall can be configured
 to allow UDP traffic relayed through an Enterprise relay server. WebRTC
 requires support for this scenario (see). Some users of SIP or WebRTC
 want IP location privacy from the remote peer. In this scenario, the
 client can select a relay server offering IP location privacy and only
 convey the relayed candidates to the peer for ICE connectivity checks
 (see).
 This specification defines a protocol, called "TURN", that allows a
 host behind a NAT (called the "TURN client") to request that another host
 (called the "TURN server") act as a relay.

 The client can arrange for the server to relay packets to and from
 certain other hosts (called "peers"), and the client can control aspects
 of how the relaying is done. The client does this by obtaining an IP
 address and port on the server, called the "relayed transport
 address". When a peer sends a packet to the relayed transport address,
 the server relays the transport protocol data from the packet to the
 client. The data encapsulated within a message header that allows the
 client to know the peer from which the transport protocol data was
 relayed by the server.

 If the server receives an ICMP error packet, the server also relays
 certain Layer 3 and 4 header fields from the ICMP header to the
 client. When the client sends a message to the server, the server
 identifies the remote peer from the message header and relays the
 message data to the intended peer.
 A client using TURN must have some way to communicate the relayed
 transport address to its peers and to learn each peer's IP address and
 port (more precisely, each peer's server-reflexive transport address;
 see). How this is done is out of the
 scope of the TURN protocol. One way this might be done is for the client
 and peers to exchange email messages. Another way is for the client and
 its peers to use a special-purpose "introduction" or "rendezvous"
 protocol (see for more details).
 If TURN is used with ICE ,
 then the relayed transport address and the IP addresses and ports of the
 peers are included in the ICE candidate information that the rendezvous
 protocol must carry. For example, if TURN and ICE are used as part of a
 multimedia solution using SIP ,
 then SIP serves the role of the rendezvous protocol, carrying the ICE
 candidate information inside the body of SIP messages . If TURN and ICE are used with some
 other rendezvous protocol, then ICE provides guidance on the services
 the rendezvous protocol must perform.
 Though the use of a TURN server to enable communication between two
 hosts behind NATs is very likely to work, it comes at a high cost to the
 provider of the TURN server since the server typically needs a
 high-bandwidth connection to the Internet. As a consequence, it is best
 to use a TURN server only when a direct communication path cannot be
 found. When the client and a peer use ICE to determine the communication
 path, ICE will use hole punching techniques to search for a direct path
 first and only use a TURN server when a direct path cannot be found.
 TURN was originally invented to support multimedia sessions signaled
 using SIP. Since SIP supports forking, TURN supports multiple peers per
 relayed transport address; a feature not supported by other approaches
 (e.g., SOCKS). However, care has been
 taken to make sure that TURN is suitable for other types of
 applications.
 TURN was designed as one piece in the larger ICE approach to NAT
 traversal. Implementors of TURN are urged to investigate ICE and
 seriously consider using it for their application. However, it is
 possible to use TURN without ICE.
 TURN is an extension to the Session Traversal Utilities for NAT
 (STUN) protocol . Most, though
 not all, TURN messages are STUN-formatted messages. A reader of this
 document should be familiar with STUN.
 The TURN specification was originally published as , which was updated by to add IPv6 support. This document supersedes
 and obsoletes both and .

 Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Readers are expected to be familiar with and the terms defined there.
 The following terms are used in this document:

 TURN:
 The protocol spoken between a TURN client and a
 TURN server. It is an extension to the STUN protocol . The protocol allows a client
 to allocate and use a relayed transport address.
 TURN client:
 A STUN client that implements this
 specification.
 TURN server:
 A STUN server that implements this
 specification. It relays data between a TURN client and its
 peer(s).
 Peer:
 A host with which the TURN client wishes to
 communicate. The TURN server relays traffic between the TURN client
 and its peer(s). The peer does not interact with the TURN server
 using the protocol defined in this document; rather, the peer
 receives data sent by the TURN server, and the peer sends data
 towards the TURN server.
 Transport Address:
 The combination of an IP address
 and a port.
 Host Transport Address:
 A transport address on a
 client or a peer.
 Server-Reflexive Transport Address:
 A transport
 address on the "external side" of a NAT. This address is allocated
 by the NAT to correspond to a specific host transport address.
 Relayed Transport Address:
 A transport address on the
 TURN server that is used for relaying packets between the client and
 a peer. A peer sends to this address on the TURN server, and the
 packet is then relayed to the client.
 TURN Server Transport Address:
 A transport address on
 the TURN server that is used for sending TURN messages to the
 server. This is the transport address that the client uses to
 communicate with the server.
 Peer Transport Address:
 The transport address of the
 peer as seen by the server. When the peer is behind a NAT, this is
 the peer's server-reflexive transport address.
 Allocation:
 The relayed transport address granted to a
 client through an Allocate request, along with related state, such
 as permissions and expiration timers.
 5-tuple:
 The combination (client IP address and port, server IP address and
 port, and transport protocol (currently one of UDP, TCP, DTLS/UDP, or
 TLS/TCP)) used to communicate between the client and the server. The
 5-tuple uniquely identifies this communication stream. The 5-tuple
 also uniquely identifies the Allocation on the server.
 Transport Protocol:
 The protocol above IP that carries TURN Requests, Responses, and
 Indications as well as providing identifiable flows using a
 5-tuple. In this specification, UDP and TCP are defined as transport
 protocols; this document also describes the use of UDP and TCP in
 combination with a security layer using DTLS and TLS,
 respectively.
 Channel:
 A channel number and associated peer
 transport address. Once a channel number is bound to a peer's
 transport address, the client and server can use the more
 bandwidth-efficient ChannelData message to exchange data.
 Permission:
 The IP address and transport protocol (but
 not the port) of a peer that is permitted to send traffic to the
 TURN server and have that traffic relayed to the TURN client. The
 TURN server will only forward traffic to its client from peers that
 match an existing permission.
 Realm:
 A string used to describe the server or a
 context within the server. The realm tells the client which username
 and password combination to use to authenticate requests.
 Nonce:
 A string chosen at random by the server and
 included in the server response. To prevent replay attacks, the
 server should change the nonce regularly.
 (D)TLS:
 This term is used for statements that apply to
 both Transport Layer Security and
 Datagram Transport Layer Security .

 Overview of Operation
 This section gives an overview of the operation of TURN. It is
 non-normative.
 In a typical configuration, a TURN client is connected to a private
 network and, through one or more
 NATs, to the public Internet. On the public Internet is a TURN
 server. Elsewhere in the Internet are one or more peers with which the
 TURN client wishes to communicate. These peers may or may not be behind
 one or more NATs. The client uses the server as a relay to send packets
 to these peers and to receive packets from these peers.

 Peer A
 Server-Reflexive +---------+
 Transport Address | |
 192.0.2.150:32102 | |
 | /| |
 TURN | / ^| Peer A |
 Client's Server | / || |
 Host Transport Transport | // || |
 Address Address | // |+---------+
198.51.100.2:49721 192.0.2.15:3478 |+-+ // Peer A
 | | ||N| / Host Transport
 | +-+ | ||A|/ Address
 | | | | v|T| 203.0.113.2:49582
 | | | | /+-+
+---------+| | | |+---------+ / +---------+
			N				//		
TURN	v		v	TURN	/				
Client	----	A	-------	Server	------------------	Peer B			
			^		^ ^				
		T							
+---------+ | || +---------+| |+---------+
 | || | |
 | || | |
 +-+| | |
 | | |
 | | |
 Client's | Peer B
 Server-Reflexive Relayed Transport
 Transport Address Transport Address Address
 192.0.2.1:7000 192.0.2.15:50000 192.0.2.210:49191

 shows a typical deployment. In
 this figure, the TURN client and the TURN server are separated by a NAT,
 with the client on the private side and the server on the public side of
 the NAT. This NAT is assumed to be a "bad" NAT; for example,
 it might have a mapping property of "address-and-port-dependent mapping"
 (see).
 The client talks to the server from a (IP address, port) combination
 called the client's "host transport address". (The combination of an IP
 address and port is called a "transport address".)
 The client sends TURN messages from its host transport address to a
 transport address on the TURN server that is known as the "TURN server
 transport address". The client learns the TURN server transport address
 through some unspecified means (e.g., configuration), and this address
 is typically used by many clients simultaneously.
 Since the client is behind a NAT, the server sees packets from the
 client as coming from a transport address on the NAT itself. This
 address is known as the client's "server-reflexive transport
 address"; packets sent by the server to the client's
 server-reflexive transport address will be forwarded by the NAT to the
 client's host transport address.
 The client uses TURN commands to create and manipulate an ALLOCATION
 on the server. An allocation is a data structure on the server. This
 data structure contains, amongst other things, the relayed transport
 address for the allocation. The relayed transport address is the
 transport address on the server that peers can use to have the server
 relay data to the client. An allocation is uniquely identified by its
 relayed transport address.
 Once an allocation is created, the client can send application data
 to the server along with an indication of to which peer the data is to
 be sent, and the server will relay this data to the intended peer. The
 client sends the application data to the server inside a TURN message;
 at the server, the data is extracted from the TURN message and sent to
 the peer in a UDP datagram. In the reverse direction, a peer can send
 application data in a UDP datagram to the relayed transport address for
 the allocation; the server will then encapsulate this data inside a TURN
 message and send it to the client along with an indication of which peer
 sent the data. Since the TURN message always contains an indication of
 which peer the client is communicating with, the client can use a single
 allocation to communicate with multiple peers.
 When the peer is behind a NAT, the client must identify the peer
 using its server-reflexive transport address rather than its host
 transport address. For example, to send application data to Peer A in
 the example above, the client must specify 192.0.2.150:32102 (Peer A's
 server-reflexive transport address) rather than 203.0.113.2:49582 (Peer
 A's host transport address).
 Each allocation on the server belongs to a single client and has
 either one or two relayed transport addresses that are used only by that
 allocation. Thus, when a packet arrives at a relayed transport address
 on the server, the server knows for which client the data is
 intended.
 The client may have multiple allocations on a server at the same
 time.

 Transports
 TURN, as defined in this specification, always uses UDP between the
 server and the peer. However, this specification allows the use of any
 one of UDP, TCP, Transport Layer Security (TLS) over TCP, or Datagram
 Transport Layer Security (DTLS) over UDP to carry the TURN messages
 between the client and the server.

 TURN client to TURN server
 TURN server to peer

 UDP
 UDP

 TCP
 UDP

 TLS-over-TCP
 UDP

 DTLS-over-UDP
 UDP

 If TCP or TLS-over-TCP is used between the client and the server,
 then the server will convert between these transports and UDP
 transport when relaying data to/from the peer.
 Since this version of TURN only supports UDP between the server and
 the peer, it is expected that most clients will prefer to use UDP
 between the client and the server as well. That being the case, some
 readers may wonder: Why also support TCP and TLS-over-TCP?
 TURN supports TCP transport between the client and the server
 because some firewalls are configured to block UDP entirely. These
 firewalls block UDP but not TCP, in part because TCP has properties
 that make the intention of the nodes being protected by the firewall
 more obvious to the firewall. For example, TCP has a three-way
 handshake that makes it clearer that the protected node really wishes
 to have that particular connection established, while for UDP, the best
 the firewall can do is guess which flows are desired by using
 filtering rules. Also, TCP has explicit connection teardown; while for
 UDP, the firewall has to use timers to guess when the flow is
 finished.
 TURN supports TLS-over-TCP transport and DTLS-over-UDP transport
 between the client and the server because (D)TLS provides additional
 security properties not provided by TURN's default digest
 authentication, properties that some clients may wish to take
 advantage of. In particular, (D)TLS provides a way for the client to
 ascertain that it is talking to the correct server and provides for
 confidentiality of TURN control messages.

If (D)TLS transport is used between the TURN client and the TURN server, refer
to for more
information about cipher suites, server certificate validation, and
authentication of TURN servers.

The guidance given in
 MUST be followed to avoid attacks on (D)TLS. TURN does not
require (D)TLS because the overhead of using (D)TLS is higher than that of
digest authentication; for example, using (D)TLS likely means that most
application data will be doubly encrypted (once by (D)TLS and once to ensure
it is still encrypted in the UDP datagram).
 There is an extension to TURN for TCP transport between the server
 and the peers . For this
 reason, allocations that use UDP between the server and the peers are
 known as "UDP allocations", while allocations that use TCP between the
 server and the peers are known as "TCP allocations". This specification
 describes only UDP allocations.
 In some applications for TURN, the client may send and receive
 packets other than TURN packets on the host transport address it uses
 to communicate with the server. This can happen, for example, when
 using TURN with ICE. In these cases, the client can distinguish TURN
 packets from other packets by examining the source address of the
 arriving packet; those arriving from the TURN server will be TURN
 packets. The algorithm of demultiplexing packets received from
 multiple protocols on the host transport address is discussed in .

 Allocations
 To create an allocation on the server, the client uses an Allocate
 transaction. The client sends an Allocate request to the server, and
 the server replies with an Allocate success response containing the
 allocated relayed transport address. The client can include attributes
 in the Allocate request that describe the type of allocation it
 desires (e.g., the lifetime of the allocation). Since relaying data
 has security implications, the server requires that the client
 authenticate itself, typically using STUN's long-term credential
 mechanism or the STUN Extension for Third-Party Authorization , to show that it is authorized to use the
 server.
 Once a relayed transport address is allocated, a client must keep
 the allocation alive. To do this, the client periodically sends a
 Refresh request to the server. TURN deliberately uses a different
 method (Refresh rather than Allocate) for refreshes to ensure that the
 client is informed if the allocation vanishes for some reason.
 The frequency of the Refresh transaction is determined by the
 lifetime of the allocation. The default lifetime of an allocation is
 10 minutes; this value was chosen to be long enough so that
 refreshing is not typically a burden on the client while expiring
 allocations where the client has unexpectedly quit in a timely manner.
 However, the client can request a longer lifetime in the Allocate
 request and may modify its request in a Refresh request, and the
 server always indicates the actual lifetime in the response. The
 client must issue a new Refresh transaction within "lifetime" seconds
 of the previous Allocate or Refresh transaction. Once a client no
 longer wishes to use an allocation, it should delete the allocation
 using a Refresh request with a requested lifetime of zero.
 Both the server and client keep track of a value known as the
 "5-tuple". At the client, the 5-tuple consists of the client's host
 transport address, the server transport address, and the transport
 protocol used by the client to communicate with the server. At the
 server, the 5-tuple value is the same except that the client's host
 transport address is replaced by the client's server-reflexive
 address since that is the client's address as seen by the server.
 Both the client and the server remember the 5-tuple used in the
 Allocate request. Subsequent messages between the client and the
 server use the same 5-tuple. In this way, the client and server know
 which allocation is being referred to. If the client wishes to
 allocate a second relayed transport address, it must create a second
 allocation using a different 5-tuple (e.g., by using a different
 client host address or port).

 NOTE: While the terminology used in this document refers to
 5-tuples, the TURN server can store whatever identifier it likes
 that yields identical results. Specifically, an implementation may
 use a file descriptor in place of a 5-tuple to represent a TCP
 connection.

TURN TURN Peer Peer
client server A B
-- Allocate request --------------->		
(invalid or missing credentials)		
<--------------- Allocate failure --		
(401 Unauthenticated)		
-- Allocate request --------------->		
(valid credentials)		
<---------- Allocate success resp --		
(192.0.2.15:50000)		
// // // //		
-- Refresh request ---------------->		
<----------- Refresh success resp --		

 In , the client sends an
 Allocate request to the server with invalid or missing credentials.
 Since the server requires that all requests be authenticated using
 STUN's long-term credential mechanism, the server rejects the request
 with a 401 (Unauthorized) error code. The client then tries again,
 this time including credentials. This time, the server accepts the
 Allocate request and returns an Allocate success response containing
 (amongst other things) the relayed transport address assigned to the
 allocation. Sometime later, the client decides to refresh the
 allocation; thus, it sends a Refresh request to the server. The refresh
 is accepted and the server replies with a Refresh success
 response.

 Permissions
 To ease concerns amongst enterprise IT administrators that TURN
 could be used to bypass corporate firewall security, TURN includes the
 notion of permissions. TURN permissions mimic the address-restricted
 filtering mechanism of NATs that comply with .
 An allocation can have zero or more permissions. Each permission
 consists of an IP address and a lifetime. When the server receives a
 UDP datagram on the allocation's relayed transport address, it first
 checks the list of permissions. If the source IP address of the
 datagram matches a permission, the application data is relayed to the
 client; otherwise, the UDP datagram is silently discarded.
 A permission expires after 5 minutes if it is not refreshed, and
 there is no way to explicitly delete a permission. This behavior was
 selected to match the behavior of a NAT that complies with .
 The client can install or refresh a permission using either a
 CreatePermission request or a ChannelBind request. Using the
 CreatePermission request, multiple permissions can be installed or
 refreshed with a single request; this is important for applications
 that use ICE. For security reasons, permissions can only be installed
 or refreshed by transactions that can be authenticated; thus, Send
 indications and ChannelData messages (which are used to send data to
 peers) do not install or refresh any permissions.
 Note that permissions are within the context of an allocation, so
 adding or expiring a permission in one allocation does not affect
 other allocations.

 Send Mechanism
 There are two mechanisms for the client and peers to exchange
 application data using the TURN server. The first mechanism uses the
 Send and Data methods, the second mechanism uses channels. Common to
 both mechanisms is the ability of the client to communicate with
 multiple peers using a single allocated relayed transport address;
 thus, both mechanisms include a means for the client to indicate to
 the server which peer should receive the data and for the server to
 indicate to the client which peer sent the data.
 The Send mechanism uses Send and Data indications. Send indications
 are used to send application data from the client to the server, while
 Data indications are used to send application data from the server to
 the client.
 When using the Send mechanism, the client sends a Send indication
 to the TURN server containing (a) an XOR-PEER-ADDRESS attribute
 specifying the (server-reflexive) transport address of the peer and
 (b) a DATA attribute holding the application data. When the TURN
 server receives the Send indication, it extracts the application data
 from the DATA attribute and sends it in a UDP datagram to the peer,
 using the allocated relay address as the source address. Note that
 there is no need to specify the relayed transport address since it is
 implied by the 5-tuple used for the Send indication.
 In the reverse direction, UDP datagrams arriving at the relayed
 transport address on the TURN server are converted into Data
 indications and sent to the client, with the server-reflexive
 transport address of the peer included in an XOR-PEER-ADDRESS
 attribute and the data itself in a DATA attribute. Since the relayed
 transport address uniquely identified the allocation, the server knows
 which client should receive the data.
 Some ICMP (Internet Control Message Protocol) packets arriving at
 the relayed transport address on the TURN server may be converted into
 Data indications and sent to the client, with the transport address of
 the peer included in an XOR-PEER-ADDRESS attribute and the ICMP type
 and code in an ICMP attribute. ICMP attribute forwarding always uses
 Data indications containing the XOR-PEER-ADDRESS and ICMP attributes,
 even when using the channel mechanism to forward UDP data.
 Send and Data indications cannot be authenticated since the
 long-term credential mechanism of STUN does not support authenticating
 indications. This is not as big an issue as it might first appear
 since the client-to-server leg is only half of the total path to the
 peer. Applications that want end-to-end security should encrypt the
 data sent between the client and a peer.
 Because Send indications are not authenticated, it is possible for
 an attacker to send bogus Send indications to the server, which will
 then relay these to a peer. To partly mitigate this attack, TURN
 requires that the client install a permission towards a peer before
 sending data to it using a Send indication. The technique to fully
 mitigate the attack is discussed in .

TURN TURN Peer Peer
client server A B
-- CreatePermission req (Peer A) ->		
<- CreatePermission success resp --		
--- Send ind (Peer A)------------->		
	=== data ===>	
	<== data ====	
<------------- Data ind (Peer A) --		
--- Send ind (Peer B)------------->		
	dropped	
	<== data ==================	
dropped		

 In , the client has already
 created an allocation and now wishes to send data to its peers. The
 client first creates a permission by sending the server a
 CreatePermission request specifying Peer A's (server-reflexive) IP
 address in the XOR-PEER-ADDRESS attribute; if this was not done, the
 server would not relay data between the client and the server. The
 client then sends data to Peer A using a Send indication; at the
 server, the application data is extracted and forwarded in a UDP
 datagram to Peer A, using the relayed transport address as the source
 transport address. When a UDP datagram from Peer A is received at the
 relayed transport address, the contents are placed into a Data
 indication and forwarded to the client. Later, the client attempts to
 exchange data with Peer B; however, no permission has been installed
 for Peer B, so the Send indication from the client and the UDP
 datagram from the peer are both dropped by the server.

 Channels
 For some applications (e.g., Voice over IP (VoIP)), the 36 bytes of
 overhead that a Send indication or Data indication adds to the
 application data can substantially increase the bandwidth required
 between the client and the server. To remedy this, TURN offers a
 second way for the client and server to associate data with a specific
 peer.
 This second way uses an alternate packet format known as the
 "ChannelData message". The ChannelData message does not use the STUN
 header used by other TURN messages, but instead has a 4-byte header
 that includes a number known as a "channel number". Each channel number
 in use is bound to a specific peer; thus, it serves as a shorthand for
 the peer's host transport address.
 To bind a channel to a peer, the client sends a ChannelBind request
 to the server and includes an unbound channel number and the
 transport address of the peer. Once the channel is bound, the client
 can use a ChannelData message to send the server data destined for the
 peer. Similarly, the server can relay data from that peer towards the
 client using a ChannelData message.
 Channel bindings last for 10 minutes unless refreshed; this
 lifetime was chosen to be longer than the permission lifetime. Channel
 bindings are refreshed by sending another ChannelBind request
 rebinding the channel to the peer. Like permissions (but unlike
 allocations), there is no way to explicitly delete a channel binding;
 the client must simply wait for it to time out.

TURN TURN Peer Peer
client server A B
-- ChannelBind req --------------->		
(Peer A to 0x4001)		
<---------- ChannelBind succ resp -		
-- (0x4001) data ----------------->		
	=== data ===>	
	<== data ====	
<------------------ (0x4001) data -		
--- Send ind (Peer A)------------->		
	=== data ===>	
	<== data ====	
<------------------ (0x4001) data -		

 shows the channel mechanism in
 use. The client has already created an allocation and now wishes to
 bind a channel to Peer A. To do this, the client sends a ChannelBind
 request to the server, specifying the transport address of Peer A and
 a channel number (0x4001). After that, the client can send application
 data encapsulated inside ChannelData messages to Peer A: this is shown
 as "(0x4001) data" where 0x4001 is the channel number. When the
 ChannelData message arrives at the server, the server transfers the
 data to a UDP datagram and sends it to Peer A (which is the peer bound
 to channel number 0x4001).
 In the reverse direction, when Peer A sends a UDP datagram to the
 relayed transport address, this UDP datagram arrives at the server on
 the relayed transport address assigned to the allocation. Since the
 UDP datagram was received from Peer A, which has a channel number
 assigned to it, the server encapsulates the data into a ChannelData
 message when sending the data to the client.
 Once a channel has been bound, the client is free to intermix
 ChannelData messages and Send indications. In the figure, the client
 later decides to use a Send indication rather than a ChannelData
 message to send additional data to Peer A. The client might decide to
 do this, for example, so it can use the DONT-FRAGMENT attribute (see
 the next section). However, once a channel is bound, the server will
 always use a ChannelData message, as shown in the call flow.
 Note that ChannelData messages can only be used for peers to which
 the client has bound a channel. In the example above, Peer A has been
 bound to a channel, but Peer B has not, so application data to and
 from Peer B would use the Send mechanism.

 Unprivileged TURN Servers
 This version of TURN is designed so that the server can be
 implemented as an application that runs in user space under commonly
 available operating systems without requiring special privileges. This
 design decision was made to make it easy to deploy a TURN server: for
 example, to allow a TURN server to be integrated into a peer-to-peer
 application so that one peer can offer NAT traversal services to
 another peer and to use (D)TLS to secure the TURN connection.
 This design decision has the following implications for data
 relayed by a TURN server:

 The value of the Diffserv field may not be preserved across the
 server;
 The Time to Live (TTL) field may be reset, rather than
 decremented, across the server;
 The Explicit Congestion Notification (ECN) field may be reset
 by the server;
 There is no end-to-end fragmentation since the packet is
 reassembled at the server.

 Future work may specify alternate TURN semantics that address
 these limitations.

 Avoiding IP Fragmentation
 For reasons described in , applications, especially those sending large
 volumes of data, should avoid having their packets fragmented. discusses issues associated
 with IP fragmentation and proposes alternatives to IP
 fragmentation.

	Applications using TCP can, more or less, ignore this
 issue because fragmentation avoidance is now a standard part of TCP,
 but applications using UDP (and, thus, any application using this
 version of TURN) need to avoid IP fragmentation by sending
 sufficiently small messages or by using UDP fragmentation . Note that the UDP
 fragmentation option needs to be supported by both endpoints, and at
 the time of writing of this document, UDP fragmentation support is
 under discussion and is not deployed.
 The application running on the client and the peer can take one of
 two approaches to avoid IP fragmentation until UDP fragmentation
 support is available. The first uses messages that are limited to a
 predetermined fixed maximum, and the second relies on network feedback
 to adapt that maximum.
 The first approach is to avoid sending large amounts of application
 data in the TURN messages/UDP datagrams exchanged between the client
 and the peer. This is the approach taken by most VoIP
 applications. In this approach, the application MUST
 assume a Path MTU (PMTU) of 1280 bytes because IPv6 requires that every
 link in the Internet has an MTU of 1280 octets or greater as
 specified in . If IPv4
 support on legacy or otherwise unusual networks is a consideration,
 the application MAY assume an effective MTU of 576
 bytes for IPv4 datagrams, as every IPv4 host must be capable of
 receiving a packet with a length equal to 576 bytes as discussed in
 and .
 The exact amount of application data that can be included while
 avoiding fragmentation depends on the details of the TURN session
 between the client and the server: whether UDP, TCP, or (D)TLS
 transport is used; whether ChannelData messages or Send/Data
 indications are used; and whether any additional attributes (such as
 the DONT-FRAGMENT attribute) are included. Another factor, which is
 hard to determine, is whether the MTU is reduced somewhere along the
 path for other reasons, such as the use of IP-in-IP tunneling.
 As a guideline, sending a maximum of 500 bytes of application data
 in a single TURN message (by the client on the client-to-server leg)
 or a UDP datagram (by the peer on the peer-to-server leg) will
 generally avoid IP fragmentation. To further reduce the chance of
 fragmentation, it is recommended that the client use ChannelData
 messages when transferring significant volumes of data since the
 overhead of the ChannelData message is less than Send and Data
 indications.
 The second approach the client and peer can take to avoid
 fragmentation is to use a path MTU discovery algorithm to determine
 the maximum amount of application data that can be sent without
 fragmentation. The classic path MTU discovery algorithm defined in
 may not be able to discover the MTU of
 the transmission path between the client and the peer since:

 A probe packet with a Don't Fragment (DF) bit in the IPv4 header set to test a
 path for a larger MTU can be dropped by routers, or
 ICMP error messages can be dropped by middleboxes.

 As a result, the client and server need to use a path MTU discovery
 algorithm that does not require ICMP messages. The Packetized Path MTU
 Discovery algorithm defined in is one
 such algorithm, and a set of algorithms is defined in .
 is an
 implementation of that uses STUN to
 discover the path MTU; so it might be a suitable approach to be used
 in conjunction with a TURN server that supports the DONT-FRAGMENT
 attribute. When the client includes the DONT-FRAGMENT attribute in a
 Send indication, this tells the server to set the DF bit in the
 resulting UDP datagram that it sends to the peer. Since some servers
 may be unable to set the DF bit, the client should also include this
 attribute in the Allocate request; any server that does not support
 the DONT-FRAGMENT attribute will indicate this by rejecting the
 Allocate request. If the TURN server carrying out packet translation
 from IPv4-to-IPv6 is unable to access the state of the Don't Fragment (DF)
 bit in the IPv4 header, it MUST reject the Allocate request with
 the DONT-FRAGMENT attribute.

 RTP Support
 One of the envisioned uses of TURN is as a relay for clients and
 peers wishing to exchange real-time data (e.g., voice or video) using
 RTP. To facilitate the use of TURN for this purpose, TURN includes
 some special support for older versions of RTP.
 Old versions of RTP required that
 the RTP stream be on an even port number and the associated RTP
 Control Protocol (RTCP) stream, if present, be on the next highest
 port. To allow clients to work with peers that still require this,
 TURN allows the client to request that the server allocate a relayed
 transport address with an even port number and optionally request
 the server reserve the next-highest port number for a subsequent
 allocation.

 Happy Eyeballs for TURN
 If an IPv4 path to reach a TURN server is found, but the TURN
 server's IPv6 path is not working, a dual-stack TURN client can
 experience a significant connection delay compared to an IPv4-only
 TURN client. To overcome these connection setup problems, the TURN
 client needs to query both A and AAAA records for the TURN server
 specified using a domain name and try connecting to the TURN server
 using both IPv6 and IPv4 addresses in a fashion similar to the Happy
 Eyeballs mechanism defined in . The TURN
 client performs the following steps based on the transport protocol
 being used to connect to the TURN server.

 For TCP or TLS-over-TCP, the results of the Happy Eyeballs
 procedure are used by the TURN
 client for sending its TURN messages to the server.
 For clear text UDP, send TURN Allocate requests to both IP
 address families as discussed in
 without authentication information.

	 If the TURN server requires
 authentication, it will send back a 401 unauthenticated response;
 the TURN client will use the first UDP connection on which a 401
 error response is received. If a 401 error response is received
 from both IP address families, then the TURN client can silently
 abandon the UDP connection on the IP address family with lower
 precedence. If the TURN server does not require authentication (as
 described in), it is
 possible for both Allocate requests to succeed. In this case, the
 TURN client sends a Refresh with a LIFETIME value of zero on the
 allocation using the IP address family with lower precedence to
 delete the allocation.
 For DTLS over UDP, initiate a DTLS handshake to both IP address
 families as discussed in ,
 and use the first DTLS session that is established. If the DTLS
 session is established on both IP address families, then the client
 sends a DTLS close_notify alert to terminate the DTLS session using
 the IP address family with lower precedence. If the TURN over DTLS
 server has been configured to require a cookie exchange () and
 a HelloVerifyRequest is received from the TURN servers on both IP
 address families, then the client can silently abandon the
 connection on the IP address family with lower precedence.

 Discovery of TURN Server
 Methods of TURN server discovery, including using anycast, are
 described in . If a host with
 multiple interfaces discovers a TURN server in each interface, the
 mechanism described in can be
 used by the TURN client to influence the TURN server selection. The
 syntax of the "turn" and "turns" URIs are defined in . DTLS as a transport
 protocol for TURN is defined in .

 TURN URI Scheme Semantics
 The "turn" and "turns" URI schemes are used to designate a TURN
 server (also known as a "relay") on Internet hosts accessible using the
 TURN protocol. The TURN protocol supports sending messages over UDP,
 TCP, TLS-over-TCP, or DTLS-over-UDP. The "turns" URI scheme MUST be
 used when TURN is run over TLS-over-TCP or in DTLS-over-UDP, and the
 "turn" scheme MUST be used otherwise. The required <host> part
 of the "turn" URI denotes the TURN server host. The <port> part,
 if present, denotes the port on which the TURN server is awaiting
 connection requests. If it is absent, the default port is 3478 for
 both UDP and TCP. The default port for TURN over TLS and TURN over
 DTLS is 5349.

 General Behavior
 This section contains general TURN processing rules that apply to all
 TURN messages.
 TURN is an extension to STUN. All TURN messages, with the exception
 of the ChannelData message, are STUN-formatted messages. All the base
 processing rules described in apply to STUN-formatted messages.
 This means that all the message-forming and message-processing
 descriptions in this document are implicitly prefixed with the rules of
 .
 specifies an
 authentication mechanism called the "long-term credential mechanism". TURN
 servers and clients MUST implement this mechanism, and the
 authentication options are discussed in .
 Note that the long-term credential mechanism applies only to requests
 and cannot be used to authenticate indications; thus, indications in
 TURN are never authenticated. If the server requires requests to be
 authenticated, then the server's administrator MUST choose a realm value
 that will uniquely identify the username and password combination that
 the client must use, even if the client uses multiple servers under
 different administrations. The server's administrator MAY choose to
 allocate a unique username to each client, or it MAY choose to allocate the
 same username to more than one client (for example, to all clients from
 the same department or company). For each Allocate request, the server
 SHOULD generate a new random nonce when the allocation is first
 attempted following the randomness recommendations in and SHOULD expire the nonce at least once every
 hour during the lifetime of the allocation. The server uses the
 mechanism described in to indicate that it supports
 .
 All requests after the initial Allocate must use the same username as
 that used to create the allocation to prevent attackers from hijacking
 the client's allocation.
 Specifically, if:

 the server requires the use of the long-term credential mechanism, and;

 a non-Allocate request passes authentication under this mechanism, and;

 the 5-tuple identifies an existing allocation, but;

 the request does not use the same username as used to create the allocation,

 then the request MUST be rejected with a 441 (Wrong
Credentials) error.
 When a TURN message arrives at the server from the client, the server
 uses the 5-tuple in the message to identify the associated allocation.
 For all TURN messages (including ChannelData) EXCEPT an Allocate
 request, if the 5-tuple does not identify an existing allocation, then
 the message MUST either be rejected with a 437 Allocation Mismatch error
 (if it is a request) or be silently ignored (if it is an indication or a
 ChannelData message). A client receiving a 437 error response to a
 request other than Allocate MUST assume the allocation no longer
 exists.
 defines a number of
 attributes, including the SOFTWARE and FINGERPRINT attributes. The
 client SHOULD include the SOFTWARE attribute in all Allocate and Refresh
 requests and MAY include it in any other requests or indications. The
 server SHOULD include the SOFTWARE attribute in all Allocate and Refresh
 responses (either success or failure) and MAY include it in other
 responses or indications. The client and the server MAY include the
 FINGERPRINT attribute in any STUN-formatted messages defined in this
 document.
 TURN does not use the backwards-compatibility mechanism described in
 .
 TURN, as defined in this specification, supports both IPv4 and IPv6.
 IPv6 support in TURN includes IPv4-to-IPv6, IPv6-to-IPv6, and
 IPv6-to-IPv4 relaying. When only a single address type is desired, the
 REQUESTED-ADDRESS-FAMILY attribute is used to explicitly request the
 address type the TURN server will allocate (e.g., an IPv4-only node may
 request the TURN server to allocate an IPv6 address). If both IPv4 and
 IPv6 are desired, the single ADDITIONAL-ADDRESS-FAMILY attribute
 indicates a request to the server to allocate one IPv4 and one IPv6
 relay address in a single Allocate request. This saves local ports on
 the client and reduces the number of messages sent between the client
 and the TURN server.
 By default, TURN runs on the same ports as STUN: 3478 for TURN over
 UDP and TCP, and 5349 for TURN over (D)TLS. However, TURN has its own
 set of Service Record (SRV) names: "turn" for UDP and TCP, and "turns"
 for (D)TLS. Either the DNS resolution procedures or the ALTERNATE-SERVER
 procedures, both described in , can be used to run TURN on a
 different port.
 To ensure interoperability, a TURN server MUST support the use of UDP
 transport between the client and the server, and it SHOULD support the use
 of TCP, TLS-over-TCP, and DTLS-over-UDP transports.
 When UDP or DTLS-over-UDP transport is used between the client and
 the server, the client will retransmit a request if it does not receive
 a response within a certain timeout period. Because of this, the server
 may receive two (or more) requests with the same 5-tuple and same
 transaction id. STUN requires that the server recognize this case and
 treat the request as idempotent (see). Some implementations may choose
 to meet this requirement by remembering all received requests and the
 corresponding responses for 40 seconds (). Other implementations may
 choose to reprocess the request and arrange that such reprocessing
 returns essentially the same response. To aid implementors who choose
 the latter approach (the so-called "stateless stack approach"), this
 specification includes some implementation notes on how this might be
 done. Implementations are free to choose either approach or some
 other approach that gives the same results.
 To mitigate either intentional or unintentional denial-of-service
 attacks against the server by clients with valid usernames and
 passwords, it is RECOMMENDED that the server impose limits on both the
 number of allocations active at one time for a given username and on the
 amount of bandwidth those allocations can use. The server should reject
 new allocations that would exceed the limit on the allowed number of
 allocations active at one time with a 486 (Allocation Quota Exceeded)
 (see), and since UDP does not
 include a congestion control mechanism, it should discard application
 data traffic that exceeds the bandwidth quota.

 Allocations
 All TURN operations revolve around allocations, and all TURN messages
 are associated with either a single or dual allocation. An allocation
 conceptually consists of the following state data:

 the relayed transport address or addresses;
 the 5-tuple: (client's IP address, client's port, server IP
 address, server port, and transport protocol);
 the authentication information;
 the time-to-expiry for each relayed transport address;
 a list of permissions for each relayed transport address;
 a list of channel-to-peer bindings for each relayed transport
 address.

 The relayed transport address is the transport address
 allocated by the server for communicating with peers, while the 5-tuple
 describes the communication path between the client and the server. On
 the client, the 5-tuple uses the client's host transport address; on the
 server, the 5-tuple uses the client's server-reflexive transport
 address. The relayed transport address MUST be unique across all
 allocations so it can be used to uniquely identify the allocation, and
 an allocation in this context can be either a single or dual
 allocation.
 The authentication information (e.g., username, password, realm, and
 nonce) is used to both verify subsequent requests and to compute the
 message integrity of responses. The username, realm, and nonce values
 are initially those used in the authenticated Allocate request that
 creates the allocation, though the server can change the nonce value
 during the lifetime of the allocation using a 438 (Stale Nonce) reply.
 For security reasons, the server MUST NOT store the
 password explicitly and MUST store the key value, which
 is a cryptographic hash over the username, realm, and password (see
).
 Note that if the response contains a PASSWORD-ALGORITHMS attribute
 and this attribute contains both MD5 and SHA-256 algorithms, and the
 client also supports both the algorithms, the request MUST contain a
 PASSWORD-ALGORITHM attribute with the SHA-256 algorithm.
 The time-to-expiry is the time in seconds left until the allocation
 expires. Each Allocate or Refresh transaction sets this timer, which
 then ticks down towards zero. By default, each Allocate or Refresh
 transaction resets this timer to the default lifetime value of 600
 seconds (10 minutes), but the client can request a different value in
 the Allocate and Refresh request. Allocations can only be refreshed
 using the Refresh request; sending data to a peer does not refresh an
 allocation. When an allocation expires, the state data associated with
 the allocation can be freed.
 The list of permissions is described in and the list of channels is described
 in .

 Creating an Allocation
 An allocation on the server is created using an Allocate
 transaction.

 Sending an Allocate Request
 The client forms an Allocate request as follows.
 The client first picks a host transport address. It is RECOMMENDED
 that the client pick a currently unused transport address, typically
 by allowing the underlying OS to pick a currently unused port.
 The client then picks a transport protocol that the client supports
 to use between the client and the server based on the transport
 protocols supported by the server. Since this specification only
 allows UDP between the server and the peers, it is RECOMMENDED that
 the client pick UDP unless it has a reason to use a different
 transport. One reason to pick a different transport would be that the
 client believes, either through configuration or discovery or by
 experiment, that it is unable to contact any TURN server using UDP.
 See for more discussion.
 The client also picks a server transport address, which SHOULD be
 done as follows. The client uses one or more procedures described in
 to discover a TURN server and uses the
 TURN server resolution mechanism defined in and to get a
 list of server transport addresses that can be tried to create a TURN
 allocation.
 The client MUST include a REQUESTED-TRANSPORT attribute in the
 request.

	This attribute specifies the transport protocol between the
 server and the peers (note that this is *not* the transport protocol
 that appears in the 5-tuple). In this specification, the
 REQUESTED-TRANSPORT type is always UDP. This attribute is included to
 allow future extensions to specify other protocols.
 If the client wishes to obtain a relayed transport address of a
 specific address type, then it includes a REQUESTED-ADDRESS-FAMILY
 attribute in the request. This attribute indicates the specific
 address type the client wishes the TURN server to allocate. Clients
 MUST NOT include more than one REQUESTED-ADDRESS-FAMILY attribute in
 an Allocate request. Clients MUST NOT include a
 REQUESTED-ADDRESS-FAMILY attribute in an Allocate request that
 contains a RESERVATION-TOKEN attribute, for the reason that the server
 uses the previously reserved transport address corresponding to the
 included token and the client cannot obtain a relayed transport
 address of a specific address type.
 If the client wishes to obtain one IPv6 and one IPv4 relayed
 transport address, then it includes an ADDITIONAL-ADDRESS-FAMILY
 attribute in the request. This attribute specifies that the server
 must allocate both address types. The attribute value in the
 ADDITIONAL-ADDRESS-FAMILY MUST be set to 0x02 (IPv6 address family).
 Clients MUST NOT include REQUESTED-ADDRESS-FAMILY and
 ADDITIONAL-ADDRESS-FAMILY attributes in the same request. Clients MUST NOT include the ADDITIONAL-ADDRESS-FAMILY attribute in an Allocate request
 that contains a RESERVATION-TOKEN attribute.

	Clients MUST NOT include
 the ADDITIONAL-ADDRESS-FAMILY attribute in an Allocate request that
 contains an EVEN-PORT attribute with the R (Reserved) bit set to 1.

	

 The reason behind the restriction is that if the EVEN-PORT attribute with the R bit set to 1 is allowed
 with the ADDITIONAL-ADDRESS-FAMILY attribute, two tokens will have to
 be returned in the success response and changes will be required to the way
 the RESERVATION-TOKEN attribute is handled.
 If the client wishes the server to initialize the time-to-expiry
 field of the allocation to some value other than the default lifetime,
 then it MAY include a LIFETIME attribute specifying its desired value.
 This is just a hint, and the server may elect to use a different
 value. Note that the server will ignore requests to initialize the
 field to less than the default value.
 If the client wishes to later use the DONT-FRAGMENT attribute in
 one or more Send indications on this allocation, then the client
 SHOULD include the DONT-FRAGMENT attribute in the Allocate request.
 This allows the client to test whether this attribute is supported by
 the server.
 If the client requires the port number of the relayed transport
 address to be even, the client includes the EVEN-PORT attribute. If this
 attribute is not included, then the port can be even or odd. By
 setting the R bit in the EVEN-PORT attribute to 1, the client can
 request that the server reserve the next highest port number (on the
 same IP address) for a subsequent allocation. If the R bit is 0, no
 such request is made.
 The client MAY also include a RESERVATION-TOKEN attribute in the
 request to ask the server to use a previously reserved port for the
 allocation. If the RESERVATION-TOKEN attribute is included, then the
 client MUST omit the EVEN-PORT attribute.
 Once constructed, the client sends the Allocate request on the
 5-tuple.

 Receiving an Allocate Request
 When the server receives an Allocate request, it performs the
 following checks:

 The TURN server provided by the local or access network
 MAY allow an unauthenticated request in order to
 accept Allocation requests from new and/or guest users in the
 network who do not necessarily possess long-term credentials for
 STUN authentication. The security implications of STUN and making
 STUN authentication optional are discussed in . Otherwise, the server MUST
 require that the request be authenticated. If the request is
 authenticated, the authentication MUST be done either
 using the long-term credential mechanism of or using the STUN Extension for Third-Party
 Authorization unless the
 client and server agree to use another mechanism through some
 procedure outside the scope of this document.
 The server checks if the 5-tuple is currently in use by an
 existing allocation. If yes, the server rejects the request with a
 437 (Allocation Mismatch) error.
 The server checks if the request contains a REQUESTED-TRANSPORT
 attribute. If the REQUESTED-TRANSPORT attribute is not included or
 is malformed, the server rejects the request with a 400 (Bad
 Request) error. Otherwise, if the attribute is included but
 specifies a protocol that is not supported by the server, the
 server rejects the request with a 442 (Unsupported Transport
 Protocol) error.
 The request may contain a DONT-FRAGMENT attribute. If it does,
 but the server does not support sending UDP datagrams with the DF
 bit set to 1 (see Sections and
), then the
 server treats the DONT-FRAGMENT attribute in the Allocate request
 as an unknown comprehension-required attribute.
 The server checks if the request contains a RESERVATION-TOKEN
 attribute. If yes, and the request also contains an EVEN-PORT or
 REQUESTED-ADDRESS-FAMILY or ADDITIONAL-ADDRESS-FAMILY attribute,
 the server rejects the request with a 400 (Bad Request) error.
 Otherwise, it checks to see if the token is valid (i.e., the token
 is in range and has not expired, and the corresponding relayed
 transport address is still available). If the token is not valid
 for some reason, the server rejects the request with a 508
 (Insufficient Capacity) error.
 The server checks if the request contains both
 REQUESTED-ADDRESS-FAMILY and ADDITIONAL-ADDRESS-FAMILY attributes.
 If yes, then the server rejects the request with a 400 (Bad
 Request) error.
 If the server does not support the address family requested by
 the client in REQUESTED-ADDRESS-FAMILY, or if the allocation of the
 requested address family is disabled by local policy, it MUST
 generate an Allocate error response, and it MUST include an
 ERROR-CODE attribute with the 440 (Address Family not Supported)
 response code. If the REQUESTED-ADDRESS-FAMILY attribute is absent
 and the server does not support the IPv4 address family, the server
 MUST include an ERROR-CODE attribute with the 440 (Address Family
 not Supported) response code. If the REQUESTED-ADDRESS-FAMILY
 attribute is absent and the server supports the IPv4 address family,
 the server MUST allocate an IPv4 relayed transport address for the
 TURN client.
 The server checks if the request contains an EVEN-PORT
 attribute with the R bit set to 1. If yes, and the request also
 contains an ADDITIONAL-ADDRESS-FAMILY attribute, the server
 rejects the request with a 400 (Bad Request) error. Otherwise, the
 server checks if it can satisfy the request (i.e., can allocate a
 relayed transport address as described below). If the server
 cannot satisfy the request, then the server rejects the request
 with a 508 (Insufficient Capacity) error.
 The server checks if the request contains an
 ADDITIONAL-ADDRESS-FAMILY attribute. If yes, and the attribute
 value is 0x01 (IPv4 address family), then the server rejects the
 request with a 400 (Bad Request) error. Otherwise, the server
 checks if it can allocate relayed transport addresses of both
 address types. If the server cannot satisfy the request, then the
 server rejects the request with a 508 (Insufficient Capacity)
 error. If the server can partially meet the request, i.e., if it
 can only allocate one relayed transport address of a specific
 address type, then it includes ADDRESS-ERROR-CODE attribute in the
 success response to inform the client the reason for partial
 failure of the request. The error code value signaled in the
 ADDRESS-ERROR-CODE attribute could be 440 (Address Family not
 Supported) or 508 (Insufficient Capacity). If the server can fully
 meet the request, then the server allocates one IPv4 and one IPv6
 relay address and returns an Allocate success response containing
 the relayed transport addresses assigned to the dual allocation in
 two XOR-RELAYED-ADDRESS attributes.
 At any point, the server MAY choose to reject the
 request with a 486 (Allocation Quota Reached) error if it feels the
 client is trying to exceed some locally defined allocation
 quota. The server is free to define this allocation quota any way it
 wishes, but it SHOULD define it based on the username
 used to authenticate the request and not on the client's transport
 address.
 Also, at any point, the server MAY choose to reject the request
 with a 300 (Try Alternate) error if it wishes to redirect the
 client to a different server. The use of this error code and
 attribute follows the specification in .

 If all the checks pass, the server creates the allocation. The
 5-tuple is set to the 5-tuple from the Allocate request, while the
 list of permissions and the list of channels are initially empty.
 The server chooses a relayed transport address for the allocation
 as follows:

 If the request contains a RESERVATION-TOKEN attribute, the
 server uses the previously reserved transport address
 corresponding to the included token (if it is still available).
 Note that the reservation is a server-wide reservation and is not
 specific to a particular allocation since the Allocate request
 containing the RESERVATION-TOKEN uses a different 5-tuple than the
 Allocate request that made the reservation. The 5-tuple for the
 Allocate request containing the RESERVATION-TOKEN attribute can be
 any allowed 5-tuple; it can use a different client IP address and
 port, a different transport protocol, and even a different server IP
 address and port (provided, of course, that the server IP address
 and port are ones on which the server is listening for TURN
 requests).
 If the request contains an EVEN-PORT attribute with the R bit
 set to 0, then the server allocates a relayed transport address
 with an even port number.
 If the request contains an EVEN-PORT attribute with the R bit
 set to 1, then the server looks for a pair of port numbers N and
 N+1 on the same IP address, where N is even. Port N is used in the
 current allocation, while the relayed transport address with port
 N+1 is assigned a token and reserved for a future allocation. The
 server MUST hold this reservation for at least 30 seconds and MAY
 choose to hold longer (e.g., until the allocation with port N
 expires). The server then includes the token in a
 RESERVATION-TOKEN attribute in the success response.
 Otherwise, the server allocates any available relayed transport
 address.

 In all cases, the server SHOULD only allocate ports from the range
 49152 - 65535 (the Dynamic and/or Private Port range), unless the TURN server application
 knows, through some means not specified here, that other applications
 running on the same host as the TURN server application will not be
 impacted by allocating ports outside this range. This condition can
 often be satisfied by running the TURN server application on a
 dedicated machine and/or by arranging that any other applications on
 the machine allocate ports before the TURN server application starts.
 In any case, the TURN server SHOULD NOT allocate ports in the range 0
 - 1023 (the Well-Known Port range) to discourage clients from using
 TURN to run standard services.

 NOTE: The use of randomized port assignments to avoid certain
 types of attacks is described in .
 It is RECOMMENDED that a TURN server implement a randomized port
 assignment algorithm from . This is
 especially applicable to servers that choose to pre-allocate a
 number of ports from the underlying OS and then later assign them
 to allocations; for example, a server may choose this technique to
 implement the EVEN-PORT attribute.

 The server determines the initial value of the time-to-expiry field
 as follows. If the request contains a LIFETIME attribute, then the
 server computes the minimum of the client's proposed lifetime and the
 server's maximum allowed lifetime. If this computed value is greater
 than the default lifetime, then the server uses the computed lifetime
 as the initial value of the time-to-expiry field. Otherwise, the
 server uses the default lifetime. It is RECOMMENDED that the server
 use a maximum allowed lifetime value of no more than 3600 seconds (1
 hour). Servers that implement allocation quotas or charge users for
 allocations in some way may wish to use a smaller maximum allowed
 lifetime (perhaps as small as the default lifetime) to more quickly
 remove orphaned allocations (that is, allocations where the
 corresponding client has crashed or terminated, or the client
 connection has been lost for some reason). Also, note that the time-
 to-expiry is recomputed with each successful Refresh request, and thus,
 the value computed here applies only until the first refresh.
 Once the allocation is created, the server replies with a success
 response. The success response contains:

 An XOR-RELAYED-ADDRESS attribute containing the relayed
 transport address or two XOR-RELAYED-ADDRESS attributes containing
 the relayed transport addresses.
 A LIFETIME attribute containing the current value of the
 time-to-expiry timer.
 A RESERVATION-TOKEN attribute (if a second relayed transport
 address was reserved).
 An XOR-MAPPED-ADDRESS attribute containing the client's IP
 address and port (from the 5-tuple).

 NOTE: The XOR-MAPPED-ADDRESS attribute is included in the
 response as a convenience to the client. TURN itself does not make
 use of this value, but clients running ICE can often need this
 value and can thus avoid having to do an extra Binding transaction
 with some STUN server to learn it.

 The response (either success or error) is sent back to the client
 on the 5-tuple.

 NOTE: When the Allocate request is sent over UDP, requires that the server
 handle the possible retransmissions of the request so that
 retransmissions do not cause multiple allocations to be created.
 Implementations may achieve this using the so-called "stateless
 stack approach" as follows. To detect retransmissions when the
 original request was successful in creating an allocation, the
 server can store the transaction id that created the request with
 the allocation data and compare it with incoming Allocate requests
 on the same 5-tuple. Once such a request is detected, the server
 can stop parsing the request and immediately generate a success
 response. When building this response, the value of the LIFETIME
 attribute can be taken from the time-to-expiry field in the
 allocate state data, even though this value may differ slightly
 from the LIFETIME value originally returned. In addition, the
 server may need to store an indication of any reservation token
 returned in the original response so that this may be returned in
 any retransmitted responses.
 For the case where the original request was unsuccessful in
 creating an allocation, the server may choose to do nothing
 special. Note, however, that there is a rare case where the server
 rejects the original request but accepts the retransmitted request
 (because conditions have changed in the brief intervening time
 period). If the client receives the first failure response, it
 will ignore the second (success) response and believe that an
 allocation was not created.

	 An allocation created in this manner
 will eventually time out since the client will not refresh it.
 Furthermore, if the client later retries with the same 5-tuple but
 a different transaction id, it will receive a 437 (Allocation
 Mismatch) error response, which will cause it to retry with a different 5-tuple.
 The server may use a smaller maximum lifetime value to minimize
 the lifetime of allocations "orphaned" in this manner.

 Receiving an Allocate Success Response
 If the client receives an Allocate success response, then it MUST
 check that the mapped address and the relayed transport address or
 addresses are part of an address family or families that the client
 understands and is prepared to handle. If these addresses are not part
 of an address family or families that the client is prepared to
 handle, then the client MUST delete the allocation () and MUST NOT attempt to
 create another allocation on that server until it believes the
 mismatch has been fixed.
 Otherwise, the client creates its own copy of the allocation data
 structure to track what is happening on the server. In particular, the
 client needs to remember the actual lifetime received back from the
 server, rather than the value sent to the server in the request. The
 client must also remember the 5-tuple used for the request and the
 username and password it used to authenticate the request to ensure
 that it reuses them for subsequent messages. The client also needs to
 track the channels and permissions it establishes on the server.
 If the client receives an Allocate success response but with an
 ADDRESS-ERROR-CODE attribute in the response and the error code value
 signaled in the ADDRESS-ERROR-CODE attribute is 440 (Address Family
 not Supported), the client MUST NOT retry its request
 for the rejected address type. If the client receives an
 ADDRESS-ERROR-CODE attribute in the response and the error code value
 signaled in the ADDRESS-ERROR-CODE attribute is 508 (Insufficient
 Capacity), the client SHOULD wait at least 1 minute
 before trying to request any more allocations on this server for the
 rejected address type.
 The client will probably wish to send the relayed transport address
 to peers (using some method not specified here) so the peers can
 communicate with it. The client may also wish to use the
 server-reflexive address it receives in the XOR-MAPPED-ADDRESS
 attribute in its ICE processing.

 Receiving an Allocate Error Response
 If the client receives an Allocate error response, then the
 processing depends on the actual error code returned:

 408 (Request timed out):
 There is either a problem with the
 server or a problem reaching the server with the chosen
 transport. The client considers the current transaction as having
 failed but MAY choose to retry the Allocate request
 using a different transport (e.g., TCP instead of UDP).
 300 (Try Alternate):
 The server would like the client to use
 the server specified in the ALTERNATE-SERVER attribute instead.
 The client considers the current transaction as having failed, but it
 SHOULD try the Allocate request with the alternate server before
 trying any other servers (e.g., other servers discovered using the
 DNS resolution procedures). When trying the Allocate request with
 the alternate server, the client follows the ALTERNATE-SERVER
 procedures specified in .
 400 (Bad Request):
 The server believes the client's request is
 malformed for some reason. The client considers the current
 transaction as having failed. The client MAY notify the user or
 operator and SHOULD NOT retry the request with this server until
 it believes the problem has been fixed.
 401 (Unauthorized):
 If the client has followed the procedures
 of the long-term credential mechanism and still gets this error,
 then the server is not accepting the client's credentials. In this
 case, the client considers the current transaction as having
 failed and SHOULD notify the user or operator. The client SHOULD NOT send any further requests to this server until it believes the
 problem has been fixed.
 403 (Forbidden):
 The request is valid, but the server is
 refusing to perform it, likely due to administrative restrictions.
 The client considers the current transaction as having failed. The
 client MAY notify the user or operator and SHOULD NOT retry the
 same request with this server until it believes the problem has
 been fixed.
 420 (Unknown Attribute):
 If the client included a DONT-FRAGMENT
 attribute in the request and the server rejected the request with
 a 420 error code and listed the DONT-FRAGMENT attribute in the
 UNKNOWN-ATTRIBUTES attribute in the error response, then the
 client now knows that the server does not support the
 DONT-FRAGMENT attribute. The client considers the current
 transaction as having failed but MAY choose to retry the Allocate
 request without the DONT-FRAGMENT attribute.
 437 (Allocation Mismatch):
 This indicates that the client has
 picked a 5-tuple that the server sees as already in use. One way
 this could happen is if an intervening NAT assigned a mapped
 transport address that was used by another client that recently
 crashed. The client considers the current transaction as having
 failed. The client SHOULD pick another client transport address
 and retry the Allocate request (using a different transaction id).
 The client SHOULD try three different client transport addresses
 before giving up on this server. Once the client gives up on the
 server, it SHOULD NOT try to create another allocation on the
 server for 2 minutes.
 438 (Stale Nonce):
 See the procedures for the long-term
 credential mechanism .
 440 (Address Family not Supported):
 The server does not support
 the address family requested by the client. If the client receives
 an Allocate error response with the 440 (Address Family not
	 Supported) error code, the client MUST NOT retry the request.
 441 (Wrong Credentials):
 The client should not receive this
 error in response to an Allocate request. The client MAY notify the
 user or operator and SHOULD NOT retry the same request with this
 server until it believes the problem has been fixed.
 442 (Unsupported Transport Address):
 The client should not
 receive this error in response to a request for a UDP allocation.
 The client MAY notify the user or operator and SHOULD NOT
 reattempt the request with this server until it believes the
 problem has been fixed.
 486 (Allocation Quota Reached):
 The server is currently unable
 to create any more allocations with this username. The client
 considers the current transaction as having failed. The client
 SHOULD wait at least 1 minute before trying to create any more
 allocations on the server.
 508 (Insufficient Capacity):

	 The server has no more relayed transport addresses available or has
	 none with the requested properties, or the one that was reserved
	 is no longer available. The client considers the current
	 operation as having failed. If the client is using either the
	 EVEN-PORT or the RESERVATION-TOKEN attribute, then the client
	 MAY choose to remove or modify this attribute and
	 try again immediately. Otherwise, the client SHOULD
	 wait at least 1 minute before trying to create any more
	 allocations on this server.

 Note that the error code values 486 and 508 indicate to a
 eavesdropper that several other users are using the server at this
 time, similar to that of the HTTP error response code 503, but
	it does
 not reveal any information about the users using the TURN server.
 An unknown error response MUST be handled as described in .

 Refreshing an Allocation
 A Refresh transaction can be used to either (a) refresh an existing
 allocation and update its time-to-expiry or (b) delete an existing
 allocation.
 If a client wishes to continue using an allocation, then the client
 MUST refresh it before it expires. It is suggested that the client
 refresh the allocation roughly 1 minute before it expires. If a client
 no longer wishes to use an allocation, then it SHOULD explicitly delete
 the allocation. A client MAY refresh an allocation at any time for other
 reasons.

 Sending a Refresh Request
 If the client wishes to immediately delete an existing allocation,
 it includes a LIFETIME attribute with a value of zero. All other forms of
 the request refresh the allocation.
 When refreshing a dual allocation, the client includes
 a REQUESTED-ADDRESS-FAMILY attribute indicating the address family type
 that should be refreshed. If no REQUESTED-ADDRESS-FAMILY attribute is included,
 then the request should be treated as applying to all current
 allocations. The client MUST only include a family type it previously
 allocated and has not yet deleted. This process can also be used to
 delete an allocation of a specific address type by setting the
 lifetime of that Refresh request to zero. Deleting a single allocation
 destroys any permissions or channels associated with that particular
 allocation; it MUST NOT affect any permissions or channels associated
 with allocations for the other address family.
 The Refresh transaction updates the time-to-expiry timer of an
 allocation. If the client wishes the server to set the time-to-expiry
 timer to something other than the default lifetime, it includes a
 LIFETIME attribute with the requested value. The server then computes
 a new time-to-expiry value in the same way as it does for an Allocate
 transaction, with the exception that a requested lifetime of zero causes
 the server to immediately delete the allocation.

 Receiving a Refresh Request
 When the server receives a Refresh request, it processes the
 request as per plus the
 specific rules mentioned here.
 If the server receives a Refresh Request with a
 REQUESTED-ADDRESS-FAMILY attribute and the attribute value does not
 match the address family of the allocation, the server MUST reply with
 a 443 (Peer Address Family Mismatch) Refresh error response.
 The server computes a value called the "desired lifetime" as
 follows: if the request contains a LIFETIME attribute and the
 attribute value is zero, then the "desired lifetime" is zero. Otherwise, if
 the request contains a LIFETIME attribute, then the server computes
 the minimum of the client's requested lifetime and the server's
 maximum allowed lifetime. If this computed value is greater than the
 default lifetime, then the "desired lifetime" is the computed value.
 Otherwise, the "desired lifetime" is the default lifetime.
 Subsequent processing depends on the "desired lifetime" value:

 If the "desired lifetime" is zero, then the request succeeds and
 the allocation is deleted.
 If the "desired lifetime" is non-zero, then the request
 succeeds and the allocation's time-to-expiry is set to the
 "desired lifetime".

 If the request succeeds, then the server sends a success
 response containing:

 A LIFETIME attribute containing the current value of the
 time-to-expiry timer.

 NOTE: A server need not do anything special to implement
 idempotency of Refresh requests over UDP using the "stateless
 stack approach". Retransmitted Refresh requests with a non-zero
 "desired lifetime" will simply refresh the allocation. A
 retransmitted Refresh request with a zero "desired lifetime" will
 cause a 437 (Allocation Mismatch) response if the allocation has
 already been deleted, but the client will treat this as equivalent
 to a success response (see below).

 Receiving a Refresh Response
 If the client receives a success response to its Refresh request
 with a non-zero lifetime, it updates its copy of the allocation data
 structure with the time-to-expiry value contained in the response. If
 the client receives a 437 (Allocation Mismatch) error response to its
 request to refresh the allocation, it should consider the allocation
 no longer exists. If the client receives a 438 (Stale Nonce) error to
 its request to refresh the allocation, it should reattempt the request
 with the new nonce value.
 If the client receives a 437 (Allocation Mismatch) error response
 to a request to delete the allocation, then the allocation no longer
 exists and it should consider its request as having effectively
 succeeded.

 Permissions
 For each allocation, the server keeps a list of zero or more
 permissions. Each permission consists of an IP address and an associated
 time-to-expiry. While a permission exists, all peers using the IP
 address in the permission are allowed to send data to the client. The
 time-to-expiry is the number of seconds until the permission expires.
 Within the context of an allocation, a permission is uniquely identified
 by its associated IP address.
 By sending either CreatePermission requests or ChannelBind requests,
 the client can cause the server to install or refresh a permission for a
 given IP address. This causes one of two things to happen:

 If no permission for that IP address exists, then a permission is
 created with the given IP address and a time-to-expiry equal to
 Permission Lifetime.
 If a permission for that IP address already exists, then the
 time-to-expiry for that permission is reset to Permission
 Lifetime.

 The Permission Lifetime MUST be 300 seconds (= 5 minutes).
 Each permission's time-to-expiry decreases down once per second
 until it reaches zero, at which point, the permission expires and is
 deleted.
 CreatePermission and ChannelBind requests may be freely intermixed on
 a permission. A given permission may be initially installed and/or
 refreshed with a CreatePermission request and then later refreshed with
 a ChannelBind request, or vice versa.
 When a UDP datagram arrives at the relayed transport address for the
 allocation, the server extracts the source IP address from the IP
 header. The server then compares this address with the IP address
 associated with each permission in the list of permissions for the
 allocation. Note that only addresses are compared and port numbers are
 not considered. If no match is found, relaying is not permitted and the
 server silently discards the UDP datagram. If an exact match is found,
 the permission check is considered to have succeeded and the server
 continues to process the UDP datagram as specified elsewhere ().
 The permissions for one allocation are totally unrelated to the
 permissions for a different allocation. If an allocation expires, all
 its permissions expire with it.

 NOTE: Though TURN permissions expire after 5 minutes, many NATs
 deployed at the time of publication expire their UDP bindings
 considerably faster. Thus, an application using TURN will probably
 wish to send some sort of keep-alive traffic at a much faster rate.
 Applications using ICE should follow the keep-alive guidelines of
 ICE , and applications not using ICE
 are advised to do something similar.

 CreatePermission
 TURN supports two ways for the client to install or refresh
 permissions on the server. This section describes one way: the
 CreatePermission request.
 A CreatePermission request may be used in conjunction with either the
 Send mechanism in or the Channel
 mechanism in .

 Forming a CreatePermission Request
 The client who wishes to install or refresh one or more permissions
 can send a CreatePermission request to the server.
 When forming a CreatePermission request, the client MUST include at
 least one XOR-PEER-ADDRESS attribute and MAY include more than one
 such attribute. The IP address portion of each XOR-PEER-ADDRESS
 attribute contains the IP address for which a permission should be
 installed or refreshed. The port portion of each XOR-PEER-ADDRESS
 attribute will be ignored and can be any arbitrary value. The various
 XOR-PEER-ADDRESS attributes MAY appear in any order. The client MUST
 only include XOR-PEER-ADDRESS attributes with addresses of the same
 address family as that of the relayed transport address for the
 allocation. For dual allocations obtained using the
 ADDITIONAL-ADDRESS-FAMILY attribute, the client MAY include
 XOR-PEER-ADDRESS attributes with addresses of IPv4 and IPv6 address
 families.

 Receiving a CreatePermission Request
 When the server receives the CreatePermission request, it processes
 as per plus the specific
 rules mentioned here.
 The message is checked for validity. The CreatePermission request
 MUST contain at least one XOR-PEER-ADDRESS attribute and MAY contain
 multiple such attributes. If no such attribute exists, or if any of
 these attributes are invalid, then a 400 (Bad Request) error is
 returned. If the request is valid, but the server is unable to satisfy
 the request due to some capacity limit or similar, then a 508
 (Insufficient Capacity) error is returned.
 If an XOR-PEER-ADDRESS attribute contains an address of an address
 family that is not the same as that of a relayed transport address for
 the allocation, the server MUST generate an error response with the
 443 (Peer Address Family Mismatch) response code.
 The server MAY impose restrictions on the IP address allowed in the
 XOR-PEER-ADDRESS attribute; if a value is not allowed, the server
 rejects the request with a 403 (Forbidden) error.
 If the message is valid and the server is capable of carrying out
 the request, then the server installs or refreshes a permission for
 the IP address contained in each XOR-PEER-ADDRESS attribute as
 described in . The port portion
 of each attribute is ignored and may be any arbitrary value.
 The server then responds with a CreatePermission success response.
 There are no mandatory attributes in the success response.

 NOTE: A server need not do anything special to implement
 idempotency of CreatePermission requests over UDP using the
 "stateless stack approach". Retransmitted CreatePermission
 requests will simply refresh the permissions.

 Receiving a CreatePermission Response
 If the client receives a valid CreatePermission success response,
 then the client updates its data structures to indicate that the
 permissions have been installed or refreshed.

 Send and Data Methods
 TURN supports two mechanisms for sending and receiving data from
 peers. This section describes the use of the Send and Data mechanisms,
 while describes the use of the
 Channel mechanism.

 Forming a Send Indication
 The client can use a Send indication to pass data to the server for
 relaying to a peer. A client may use a Send indication even if a
 channel is bound to that peer. However, the client MUST ensure that
 there is a permission installed for the IP address of the peer to
 which the Send indication is being sent; this prevents a third party
 from using a TURN server to send data to arbitrary destinations.
 When forming a Send indication, the client MUST include an
 XOR-PEER-ADDRESS attribute and a DATA attribute. The XOR-PEER-ADDRESS
 attribute contains the transport address of the peer to which the data
 is to be sent, and the DATA attribute contains the actual application
 data to be sent to the peer.
 The client MAY include a DONT-FRAGMENT attribute in the Send
 indication if it wishes the server to set the DF bit on the UDP
 datagram sent to the peer.

 Receiving a Send Indication
 When the server receives a Send indication, it processes as per
 plus the specific rules
 mentioned here.
 The message is first checked for validity. The Send indication MUST
 contain both an XOR-PEER-ADDRESS attribute and a DATA attribute. If
 one of these attributes is missing or invalid, then the message is
 discarded. Note that the DATA attribute is allowed to contain zero
 bytes of data.
 The Send indication may also contain the DONT-FRAGMENT attribute.
 If the server is unable to set the DF bit on outgoing UDP datagrams
 when this attribute is present, then the server acts as if the
 DONT-FRAGMENT attribute is an unknown comprehension-required attribute
 (and thus the Send indication is discarded).
 The server also checks that there is a permission installed for the
 IP address contained in the XOR-PEER-ADDRESS attribute. If no such
 permission exists, the message is discarded. Note that a Send
 indication never causes the server to refresh the permission.
 The server MAY impose restrictions on the IP address and port
 values allowed in the XOR-PEER-ADDRESS attribute; if a value is not
 allowed, the server silently discards the Send indication.
 If everything is OK, then the server forms a UDP datagram as
 follows:

 the source transport address is the relayed transport address
 of the allocation, where the allocation is determined by the
 5-tuple on which the Send indication arrived;
 the destination transport address is taken from the
 XOR-PEER-ADDRESS attribute;
 the data following the UDP header is the contents of the value
 field of the DATA attribute.

 The handling of the DONT-FRAGMENT attribute (if present), is
 described in Sections and .
 The resulting UDP datagram is then sent to the peer.

 Receiving a UDP Datagram
 When the server receives a UDP datagram at a currently allocated
 relayed transport address, the server looks up the allocation
 associated with the relayed transport address. The server then checks
 to see whether the set of permissions for the allocation allow the
 relaying of the UDP datagram as described in .
 If relaying is permitted, then the server checks if there is a
 channel bound to the peer that sent the UDP datagram (see). If a channel is bound, then processing
 proceeds as described in .
 If relaying is permitted but no channel is bound to the peer, then
 the server forms and sends a Data indication. The Data indication MUST
 contain both an XOR-PEER-ADDRESS and a DATA attribute. The DATA
 attribute is set to the value of the "data octets" field
 from the datagram, and the XOR-PEER-ADDRESS attribute is set to the
 source transport address of the received UDP datagram. The Data
 indication is then sent on the 5-tuple associated with the
 allocation.

 Receiving a Data Indication
 When the client receives a Data indication, it checks that the Data
 indication contains an XOR-PEER-ADDRESS attribute and discards the
 indication if it does not. The client SHOULD also check that the
 XOR-PEER-ADDRESS attribute value contains an IP address with which the
 client believes there is an active permission and discard the Data
 indication otherwise.

 NOTE: The latter check protects the client against an attacker
 who somehow manages to trick the server into installing
 permissions not desired by the client.

 If the XOR-PEER-ADDRESS is present and valid, the client checks
 that the Data indication contains either a DATA attribute or an ICMP
 attribute and discards the indication if it does not. Note that a DATA
 attribute is allowed to contain zero bytes of data. Processing of Data
 indications with an ICMP attribute is described in .
 If the Data indication passes the above checks, the client delivers
 the data octets inside the DATA attribute to the application, along
 with an indication that they were received from the peer whose
 transport address is given by the XOR-PEER-ADDRESS attribute.

 Receiving an ICMP Packet
 When the server receives an ICMP packet, the server verifies that
 the type is either 3 or 11 for an ICMPv4 packet or either 1, 2, or 3 for an ICMPv6
 packet. It also verifies that the IP
 packet in the ICMP packet payload contains a UDP header. If either of
 these conditions fail, then the ICMP packet is silently dropped. If a
 UDP header is present, the server extracts the source and destination
 IP address and UDP port information.
 The server looks up the allocation whose relayed transport address
 corresponds to the encapsulated packet's source IP address and UDP
 port. If no such allocation exists, the packet is silently dropped.
 The server then checks to see whether the set of permissions for the
 allocation allows the relaying of the ICMP packet. For ICMP packets,
 the source IP address MUST NOT be checked against the permissions list
 as it would be for UDP packets. Instead, the server extracts the
 destination IP address from the encapsulated IP header. The server
 then compares this address with the IP address associated with each
 permission in the list of permissions for the allocation. If no match
 is found, relaying is not permitted and the server silently discards
 the ICMP packet. Note that only addresses are compared and port
 numbers are not considered.
 If relaying is permitted, then the server forms and sends a Data
 indication. The Data indication MUST contain both an XOR-PEER-ADDRESS
 and an ICMP attribute. The ICMP attribute is set to the value of the
 type and code fields from the ICMP packet. The IP address portion of
 XOR-PEER-ADDRESS attribute is set to the destination IP address in the
 encapsulated IP header. At the time of writing of this specification,
 Socket APIs on some operating systems do not deliver the destination
 port in the encapsulated UDP header to applications without superuser
 privileges. If destination port in the encapsulated UDP header is
 available to the server, then the port portion of the XOR-PEER-ADDRESS
 attribute is set to the destination port; otherwise, the port portion is
 set to zero. The Data indication is then sent on the 5-tuple associated
 with the allocation.

 Implementation Note: New ICMP types or codes can be defined in
 future specifications. If the server receives an ICMP error packet,
 and the new type or code field can help the client to make use of the
 ICMP error notification and generate feedback to the application
 layer, the server sends the Data indication with an ICMP attribute
 conveying the new ICMP type or code.

 Receiving a Data Indication with an ICMP Attribute
 When the client receives a Data indication with an ICMP attribute,
 it checks that the Data indication contains an XOR-PEER-ADDRESS
 attribute and discards the indication if it does not. The client
 SHOULD also check that the XOR-PEER-ADDRESS attribute value contains
 an IP address with an active permission and discard the Data
 indication otherwise.
 If the Data indication passes the above checks, the client signals
 the application of the error condition along with an indication that
 it was received from the peer whose transport address is given by the
 XOR-PEER-ADDRESS attribute. The application can make sense of the
 meaning of the type and code values in the ICMP attribute by using the
 family field in the XOR-PEER-ADDRESS attribute.

 Channels
 Channels provide a way for the client and server to send application
 data using ChannelData messages, which have less overhead than Send and
 Data indications.
 The ChannelData message (see) starts with a two-byte field that
 carries the channel number. The values of this field are allocated as
 follows:

 0x0000 through 0x3FFF:
 These values can never be used for channel numbers.

 0x4000 through 0x4FFF:
 These values are the allowed channel numbers (4096 possible values).

 0x5000 through 0xFFFF:
 Reserved (For DTLS-SRTP multiplexing collision avoidance, see).

 Note that the channel number range is not backwards compatible with
 , which could prevent a client
 compliant with RFC 5766 from establishing channel bindings with a
 TURN server that complies with this specification.
 According to , ChannelData messages can
 be distinguished from other multiplexed protocols by examining the first
 byte of the message:

 [0..3]
 STUN

 [16..19]
 ZRTP

 [20..63]
 DTLS

 [64..79]
 TURN Channel

 [128..191]
 RTP/RTCP

 Others
 Reserved; MUST be dropped and an alert
 MAY be logged

 Reserved values may be used in the future by other protocols. When
 the client uses channel binding, it MUST comply with the demultiplexing
 scheme discussed above.
 Channel bindings are always initiated by the client. The client can
 bind a channel to a peer at any time during the lifetime of the
 allocation. The client may bind a channel to a peer before exchanging
 data with it or after exchanging data with it (using Send and Data
 indications) for some time, or may choose never to bind a channel to it.
 The client can also bind channels to some peers while not binding
 channels to other peers.
 Channel bindings are specific to an allocation so that the use of a
 channel number or peer transport address in a channel binding in one
 allocation has no impact on their use in a different allocation. If an
 allocation expires, all its channel bindings expire with it.
 A channel binding consists of:

 a channel number;
 a transport address (of the peer); and
 A time-to-expiry timer.

 Within the context of an allocation, a channel binding is
 uniquely identified either by the channel number or by the peer's
 transport address. Thus, the same channel cannot be bound to two
 different transport addresses, nor can the same transport address be
 bound to two different channels.
 A channel binding lasts for 10 minutes unless refreshed. Refreshing
 the binding (by the server receiving a ChannelBind request rebinding the
 channel to the same peer) resets the time-to-expiry timer back to 10
 minutes.
 When the channel binding expires, the channel becomes unbound. Once
 unbound, the channel number can be bound to a different transport
 address, and the transport address can be bound to a different channel
 number. To prevent race conditions, the client MUST wait 5 minutes after
 the channel binding expires before attempting to bind the channel number
 to a different transport address or the transport address to a different
 channel number.
 When binding a channel to a peer, the client SHOULD be prepared to
 receive ChannelData messages on the channel from the server as soon as
 it has sent the ChannelBind request. Over UDP, it is possible for the
 client to receive ChannelData messages from the server before it
 receives a ChannelBind success response.
 In the other direction, the client MAY elect to send ChannelData
 messages before receiving the ChannelBind success response. Doing so,
 however, runs the risk of having the ChannelData messages dropped by the
 server if the ChannelBind request does not succeed for some reason
 (e.g., packet lost if the request is sent over UDP or the server being
 unable to fulfill the request). A client that wishes to be safe should
 either queue the data or use Send indications until the channel binding
 is confirmed.

 Sending a ChannelBind Request
 A channel binding is created or refreshed using a ChannelBind
 transaction. A ChannelBind transaction also creates or refreshes a
 permission towards the peer (see).
 To initiate the ChannelBind transaction, the client forms a
 ChannelBind request. The channel to be bound is specified in a
 CHANNEL-NUMBER attribute, and the peer's transport address is
 specified in an XOR-PEER-ADDRESS attribute. describes the restrictions
 on these attributes. The client MUST only include an XOR-PEER-ADDRESS
 attribute with an address of the same address family as that of a
 relayed transport address for the allocation.
 Rebinding a channel to the same transport address that it is
 already bound to provides a way to refresh a channel binding and the
 corresponding permission without sending data to the peer. Note,
 however, that permissions need to be refreshed more frequently than
 channels.

 Receiving a ChannelBind Request
 When the server receives a ChannelBind request, it processes as per
 plus the specific rules
 mentioned here.
 The server checks the following:

 The request contains both a CHANNEL-NUMBER and an
 XOR-PEER-ADDRESS attribute;
 The channel number is in the range 0x4000 through 0x4FFF
 (inclusive);
 The channel number is not currently bound to a different
 transport address (same transport address is OK);
 The transport address is not currently bound to a different
 channel number.

 If any of these tests fail, the server replies with a 400 (Bad
 Request) error. If the XOR-PEER-ADDRESS attribute contains an address
 of an address family that is not the same as that of a relayed
 transport address for the allocation, the server MUST generate an
 error response with the 443 (Peer Address Family Mismatch) response
 code.
 The server MAY impose restrictions on the IP address and port
 values allowed in the XOR-PEER-ADDRESS attribute; if a value is not
 allowed, the server rejects the request with a 403 (Forbidden)
 error.
 If the request is valid, but the server is unable to fulfill the
 request due to some capacity limit or similar, the server replies with
 a 508 (Insufficient Capacity) error.
 Otherwise, the server replies with a ChannelBind success response.
 There are no required attributes in a successful ChannelBind
 response.
 If the server can satisfy the request, then the server creates or
 refreshes the channel binding using the channel number in the
 CHANNEL-NUMBER attribute and the transport address in the
 XOR-PEER-ADDRESS attribute. The server also installs or refreshes a
 permission for the IP address in the XOR-PEER-ADDRESS attribute as
 described in .

 NOTE: A server need not do anything special to implement
 idempotency of ChannelBind requests over UDP using the "stateless
 stack approach". Retransmitted ChannelBind requests will simply
 refresh the channel binding and the corresponding permission.
 Furthermore, the client must wait 5 minutes before binding a
 previously bound channel number or peer address to a different
 channel, eliminating the possibility that the transaction would
 initially fail but succeed on a retransmission.

 Receiving a ChannelBind Response
 When the client receives a ChannelBind success response, it updates
 its data structures to record that the channel binding is now active.
 It also updates its data structures to record that the corresponding
 permission has been installed or refreshed.
 If the client receives a ChannelBind failure response that
 indicates that the channel information is out of sync between the
 client and the server (e.g., an unexpected 400 "Bad Request"
 response), then it is RECOMMENDED that the client immediately delete
 the allocation and start afresh with a new allocation.

 The ChannelData Message
 The ChannelData message is used to carry application data between
 the client and the server. It has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Channel Number | Length |
+-+
| |
/ Application Data /
/ /
| |
| +-------------------------------+
| |
+-------------------------------+

 The Channel Number field specifies the number of the channel on
 which the data is traveling, and thus, the address of the peer that is
 sending or is to receive the data.
 The Length field specifies the length in bytes of the application
 data field (i.e., it does not include the size of the ChannelData
 header). Note that 0 is a valid length.
 The Application Data field carries the data the client is trying to
 send to the peer, or that the peer is sending to the client.

 Sending a ChannelData Message
 Once a client has bound a channel to a peer, then when the client
 has data to send to that peer, it may use either a ChannelData message
 or a Send indication; that is, the client is not obligated to use the
 channel when it exists and may freely intermix the two message types
 when sending data to the peer. The server, on the other hand, MUST use
 the ChannelData message if a channel has been bound to the peer. The
 server uses a Data indication to signal the XOR-PEER-ADDRESS and ICMP
 attributes to the client even if a channel has been bound to the
 peer.
 The fields of the ChannelData message are filled in as described in
 .
 Over TCP and TLS-over-TCP, the ChannelData message MUST be padded
 to a multiple of four bytes in order to ensure the alignment of
 subsequent messages. The padding is not reflected in the length field
 of the ChannelData message, so the actual size of a ChannelData
 message (including padding) is (4 + Length) rounded up to the nearest
 multiple of 4 (see). Over UDP, the padding is not
 required but MAY be included.
 The ChannelData message is then sent on the 5-tuple associated with
 the allocation.

 Receiving a ChannelData Message
 The receiver of the ChannelData message uses the first byte to
 distinguish it from other multiplexed protocols as described in . If the message uses a
 value in the reserved range (0x5000 through 0xFFFF), then the message
 is silently discarded.
 If the ChannelData message is received in a UDP datagram, and if
 the UDP datagram is too short to contain the claimed length of the
 ChannelData message (i.e., the UDP header length field value is less
 than the ChannelData header length field value + 4 + 8), then the
 message is silently discarded.
 If the ChannelData message is received over TCP or over
 TLS-over-TCP, then the actual length of the ChannelData message is as
 described in .
 If the ChannelData message is received on a channel that is not
 bound to any peer, then the message is silently discarded.
 On the client, it is RECOMMENDED that the client discard the
 ChannelData message if the client believes there is no active
 permission towards the peer. On the server, the receipt of a
 ChannelData message MUST NOT refresh either the channel binding or the
 permission towards the peer.
 On the server, if no errors are detected, the server relays the
 application data to the peer by forming a UDP datagram as
 follows:

 the source transport address is the relayed transport address
 of the allocation, where the allocation is determined by the
 5-tuple on which the ChannelData message arrived;
 the destination transport address is the transport address to
 which the channel is bound;
 the data following the UDP header is the contents of the data
 field of the ChannelData message.

 The resulting UDP datagram is then sent to the peer. Note
 that if the Length field in the ChannelData message is 0, then there
 will be no data in the UDP datagram, but the UDP datagram is still
 formed and sent ().

 Relaying Data from the Peer
 When the server receives a UDP datagram on the relayed transport
 address associated with an allocation, the server processes it as
 described in . If
 that section indicates that a ChannelData message should be sent
 (because there is a channel bound to the peer that sent to the UDP
 datagram), then the server forms and sends a ChannelData message as
 described in .
 When the server receives an ICMP packet, the server processes it as
 described in .

 Packet Translations
 This section addresses IPv4-to-IPv6, IPv6-to-IPv4, and IPv6-to-IPv6
 translations. Requirements for translation of the IP addresses and port
 numbers of the packets are described above. The following sections
 specify how to translate other header fields.
 As discussed in , translations in TURN
 are designed so that a TURN server can be implemented as an application
 that runs in user space under commonly available operating systems and
 that does not require special privileges. The translations specified in
 the following sections follow this principle.
 The descriptions below have two parts: a preferred behavior and an
 alternate behavior. The server SHOULD implement the preferred behavior,
 but if that is not possible for a particular field, the server MUST
 implement the alternate behavior and MUST NOT do anything else for the
 reasons detailed in . The TURN server
 solely relies on the DF bit in the IPv4 header and the Fragment header
 in the IPv6 header to handle fragmentation using the approach described in
 and does not rely on the DONT-FRAGMENT
 attribute; ignoring the DONT-FRAGMENT attribute is only applicable for UDP-to-UDP
 relay and not for TCP-to-UDP relay.

 IPv4-to-IPv6 Translations
 Time to Live (TTL) field

 Preferred Behavior: As specified in .
 Alternate Behavior: Set the outgoing value to the default for
 outgoing packets.

 Traffic Class

 Preferred behavior: As specified in .
 Alternate behavior: The TURN server sets the Traffic Class to
 the default value for outgoing packets.

 Flow Label

 Preferred behavior: The TURN server can use the 5-tuple of
 relayed transport address, peer transport address, and UDP protocol
 number to identify each flow and to generate and set the flow
 label value in the IPv6 packet as discussed in . If the TURN server is incapable of
 generating the flow label value from the IPv6 packet's 5-tuple, it
 sets the Flow label to zero.
 Alternate behavior: The alternate behavior is the same as the
 preferred behavior for a TURN server that does not support flow
 labels.

 Hop Limit

 Preferred behavior: As specified in .
 Alternate behavior: The TURN server sets the Hop Limit to the
 default value for outgoing packets.

 Fragmentation

 Preferred behavior: As specified in .
 Alternate behavior: The TURN server assembles incoming
 fragments. The TURN server follows its default behavior to send
 outgoing packets.
 For both preferred and alternate behavior, the DONT-FRAGMENT
 attribute MUST be ignored by the server.

 Extension Headers

 Preferred behavior: The outgoing packet uses the system
 defaults for IPv6 extension headers, with the exception of the
 Fragment header as described above.
 Alternate behavior: Same as preferred.

 IPv6-to-IPv6 Translations
 Flow Label
 NOTE: The TURN server should consider that it is handling two different
 IPv6 flows. Therefore, the Flow label
 SHOULD NOT be copied as part of the translation.

 Preferred behavior: The TURN server can use the 5-tuple of relayed
 transport address, peer transport address, and UDP protocol number to
 identify each flow and to generate and set the flow label value in the IPv6
 packet as discussed in . If the TURN server is incapable of generating the flow
 label value from the IPv6 packet's 5-tuple, it sets the Flow label to
 zero.
 Alternate behavior: The alternate behavior is the same as the
 preferred behavior for a TURN server that does not support flow
 labels.

 Hop Limit

 Preferred behavior: The TURN server acts as a regular router
 with respect to decrementing the Hop Limit and generating an
 ICMPv6 error if it reaches zero.
 Alternate behavior: The TURN server sets the Hop Limit to the
 default value for outgoing packets.

 Fragmentation

 Preferred behavior: If the incoming packet did not include a
 Fragment header and the outgoing packet size does not exceed the
 outgoing link's MTU, the TURN server sends the outgoing packet
 without a Fragment header.
 If the incoming packet did not include a Fragment header and
 the outgoing packet size exceeds the outgoing link's MTU, the TURN
 server drops the outgoing packet and sends an ICMP message of type
 2 code 0 ("Packet too big") to the sender of the incoming packet.
 If the ICMPv6 packet ("Packet too big") is being sent to the peer,
 the TURN server SHOULD reduce the MTU reported in the ICMP message
 by 48 bytes to allow room for the overhead of a Data
 indication.
 If the incoming packet included a Fragment header and the
 outgoing packet size (with a Fragment header included) does not
 exceed the outgoing link's MTU, the TURN server sends the outgoing
 packet with a Fragment header. The TURN server sets the fields of
 the Fragment header as appropriate for a packet originating from
 the server.
 If the incoming packet included a Fragment header and the
 outgoing packet size exceeds the outgoing link's MTU, the TURN
 server MUST fragment the outgoing packet into fragments of no more
 than 1280 bytes. The TURN server sets the fields of the Fragment
 header as appropriate for a packet originating from the
 server.
 Alternate behavior: The TURN server assembles incoming
 fragments. The TURN server follows its default behavior to send
 outgoing packets.
 For both preferred and alternate behavior, the DONT-FRAGMENT
 attribute MUST be ignored by the server.

 Extension Headers

 Preferred behavior: The outgoing packet uses the system
 defaults for IPv6 extension headers, with the exception of the
 Fragment header as described above.
 Alternate behavior: Same as preferred.

 IPv6-to-IPv4 Translations
 Type of Service and Precedence

 Preferred behavior: As specified in .
 Alternate behavior: The TURN server sets the Type of Service
 and Precedence to the default value for outgoing packets.

 Time to Live

 Preferred behavior: As specified in .
 Alternate behavior: The TURN server sets the Time to Live to
 the default value for outgoing packets.

 Fragmentation

 Preferred behavior: As specified in . Additionally, when the outgoing packet's
 size exceeds the outgoing link's MTU, the TURN server needs to
 generate an ICMP error (ICMPv6 "Packet too big") reporting the MTU
 size. If the ICMPv4 packet (Destination Unreachable (Type 3) with
 Code 4) is being sent to the peer, the TURN server SHOULD reduce
 the MTU reported in the ICMP message by 48 bytes to allow room for
 the overhead of a Data indication.
 Alternate behavior: The TURN server assembles incoming
 fragments. The TURN server follows its default behavior to send
 outgoing packets.
 For both preferred and alternate behavior, the DONT-FRAGMENT
 attribute MUST be ignored by the server.

 UDP-to-UDP Relay
 This section describes how the server sets various fields in the IP
 header for UDP-to-UDP relay from the client to the peer or vice versa.
 The descriptions in this section apply (a) when the server sends a UDP
 datagram to the peer or (b) when the server sends a Data indication or
 ChannelData message to the client over UDP transport. The descriptions
 in this section do not apply to TURN messages sent over TCP or TLS
 transport from the server to the client.
 The descriptions below have two parts: a preferred behavior and an
 alternate behavior. The server SHOULD implement the preferred behavior,
 but if that is not possible for a particular field, then it SHOULD
 implement the alternative behavior.
 Differentiated Services Code Point (DSCP) field

 Preferred Behavior: Set the outgoing value to the incoming value
 unless the server includes a differentiated services classifier and
 marker .
 Alternate Behavior: Set the outgoing value to a fixed value,
 which by default is Best Effort unless configured otherwise.
 In both cases, if the server is immediately adjacent to a
 differentiated services classifier and marker, then DSCP MAY be set
 to any arbitrary value in the direction towards the classifier.

 Explicit Congestion Notification (ECN) field

 Preferred Behavior: Set the outgoing value to the incoming value.
 The server may perform Active Queue Management, in which case it
 SHOULD behave as an ECN-aware router
 and can mark traffic with Congestion Experienced (CE) instead of
 dropping the packet. The use of ECT(1) is subject to experimental
 usage .
 Alternate Behavior: Set the outgoing value to Not-ECT
 (=0b00).

 IPv4 Fragmentation fields (applicable only for IPv4-to-IPv4
 relay)

 Preferred Behavior: When the server sends a packet to a peer in
 response to a Send indication containing the DONT-FRAGMENT
 attribute, then set the outgoing UDP packet to not fragment. In all
 other cases, when sending an outgoing packet containing application
 data (e.g., Data indication, a ChannelData message, or the DONT-FRAGMENT
 attribute not included in the Send indication), copy the DF bit from
 the DF bit of the incoming packet that contained the application
 data.
 Set the other fragmentation fields (Identification, More
 Fragments, Fragment Offset) as appropriate for a packet originating
 from the server.
 Alternate Behavior: As described in the Preferred Behavior,
 except always assume the incoming DF bit is 0.
 In both the Preferred and Alternate Behaviors, the resulting
 packet may be too large for the outgoing link. If this is the case,
 then the normal fragmentation rules apply .

 IPv4 Options

 Preferred Behavior: The outgoing packet uses the system defaults
 for IPv4 options.
 Alternate Behavior: Same as preferred.

 TCP-to-UDP Relay
 This section describes how the server sets various fields in the IP
 header for TCP-to-UDP relay from the client to the peer. The
 descriptions in this section apply when the server sends a UDP datagram
 to the peer. Note that the server does not perform per-packet
 translation for TCP-to-UDP relaying.
 Multipath TCP is not supported by this version of TURN because TCP
 multipath is not used by either SIP or WebRTC protocols for media and non-media data. TCP
 connection between the TURN client and server can use the TCP
 Authentication Option (TCP-AO) , but UDP does not provide a similar type of
 authentication, though it might be added in the future . Even if both
 TCP-AO and UDP authentication would be used between TURN client and
 server, it would not change the end-to-end security properties of the
 application payload being relayed. Therefore, applications using TURN
 will need to secure their application data end to end appropriately,
 e.g., Secure Real-time Transport Protocol (SRTP) for RTP
 applications. Note that the TCP-AO option obsoletes the TCP MD5
 option.
 Unlike UDP, TCP without the TCP Fast Open extension does not support 0-RTT session
 resumption. The TCP user timeout equivalent for application data relayed by the TURN
 is the use of RTP control protocol (RTCP). As a reminder, RTCP is a
 fundamental and integral part of RTP.
 The descriptions below have two parts: a preferred behavior and an
 alternate behavior. The server SHOULD implement the preferred behavior,
 but if that is not possible for a particular field, then it SHOULD
 implement the alternative behavior.
 For the UDP datagram sent to the peer based on a Send Indication or
 ChannelData message arriving at the TURN server over a TCP Transport,
 the server sets various fields in the IP header as follows:
 Differentiated Services Code Point (DSCP) field

 Preferred Behavior: The TCP connection can only use a single DSCP,
 so inter-flow differentiation is not possible; see
 . The server sets the
 outgoing value to the DSCP used by the TCP connection,
 unless the server includes a differentiated services classifier and
 marker .
 Alternate Behavior: Set the outgoing value to a fixed value,
 which by default is Best Effort unless configured otherwise.
 In both cases, if the server is immediately adjacent to a
 differentiated services classifier and marker, then DSCP MAY be set
 to any arbitrary value in the direction towards the classifier.

 Explicit Congestion Notification (ECN) field

 Preferred Behavior: No mechanism is defined to indicate what ECN
 value should be used for the outgoing UDP datagrams of an
 allocation; therefore, set the outgoing value to Not-ECT (=0b00).
 Alternate Behavior: Same as preferred.

 IPv4 Fragmentation fields (applicable only for IPv4-to-IPv4
 relay)

 Preferred Behavior: When the server sends a packet to a peer in
 response to a Send indication containing the DONT-FRAGMENT
 attribute, set the outgoing UDP packet to not fragment. In all
 other cases, when sending an outgoing UDP packet containing
 application data (e.g., Data indication, ChannelData message, or
 DONT-FRAGMENT attribute not included in the Send indication), set
 the DF bit in the outgoing IP header to 0.
 Alternate Behavior: Same as preferred.

 IPv6 Fragmentation fields

 Preferred Behavior: If the TCP traffic arrives over IPv6, the
 server relies on the presence of the DONT-FRAGMENT attribute in the send
 indication to set the outgoing UDP packet to not fragment.
 Alternate Behavior: Same as preferred.

 IPv4 Options

 Preferred Behavior: The outgoing packet uses the system defaults
 for IPv4 options.
 Alternate Behavior: Same as preferred.

 UDP-to-TCP Relay
 This section describes how the server sets various fields in the IP
 header for UDP-to-TCP relay from the peer to the client. The
 descriptions in this section apply when the server sends a Data
 indication or ChannelData message to the client over TCP or TLS
 transport. Note that the server does not perform per-packet translation
 for UDP-to-TCP relaying.
 The descriptions below have two parts: a preferred behavior and an
 alternate behavior. The server SHOULD implement the preferred behavior,
 but if that is not possible for a particular field, then it SHOULD
 implement the alternative behavior.
 The TURN server sets IP header fields in the TCP packets on a
 per-connection basis for the TCP connection as follows:
 Differentiated Services Code Point (DSCP) field

 Preferred Behavior: Ignore the incoming DSCP value. When TCP is
 used between the client and the server, a single DSCP should be used
 for all traffic on that TCP connection. Note, TURN/ICE occurs before
 application data is exchanged.
 Alternate Behavior: Same as preferred.

 Explicit Congestion Notification (ECN) field

 Preferred Behavior: Ignore; ECN signals are dropped in the TURN
 server for the incoming UDP datagrams from the peer.
 Alternate Behavior: Same as preferred.

 Fragmentation

 Preferred Behavior: Any fragmented packets are reassembled in the
 server and then forwarded to the client over the TCP connection.
 ICMP messages resulting from the UDP datagrams sent to the peer are
 processed by the server as described in and forwarded to
 the client using TURN's mechanism for relevant ICMP types and
 codes.
 Alternate Behavior: Same as preferred.

 Extension Headers

 Preferred behavior: The outgoing packet uses the system defaults
 for IPv6 extension headers.
 Alternate behavior: Same as preferred.

 IPv4 Options

 Preferred Behavior: The outgoing packet uses the system defaults
 for IPv4 options.
 Alternate Behavior: Same as preferred.

 STUN Methods
 This section lists the code points for the STUN methods defined in
 this specification. See elsewhere in this document for the semantics of
 these methods.

 0x003
 Allocate
 (only request/response semantics defined)

 0x004
 Refresh
 (only request/response semantics defined)

 0x006
 Send
 (only indication semantics defined)

 0x007
 Data
 (only indication semantics defined)

 0x008
 CreatePermission
 (only request/response semantics defined)

 0x009
 ChannelBind
 (only request/response semantics defined)

 STUN Attributes
 This STUN extension defines the following
 attributes:

 0x000C
 CHANNEL-NUMBER

 0x000D
 LIFETIME

 0x0010
 Reserved (was BANDWIDTH)

 0x0012
 XOR-PEER-ADDRESS

 0x0013
 DATA

 0x0016
 XOR-RELAYED-ADDRESS

 0x0017
 REQUESTED-ADDRESS-FAMILY

 0x0018
 EVEN-PORT

 0x0019
 REQUESTED-TRANSPORT

 0x001A
 DONT-FRAGMENT

 0x0021
 Reserved (was TIMER-VAL)

 0x0022
 RESERVATION-TOKEN

 0x8000
 ADDITIONAL-ADDRESS-FAMILY

 0x8001
 ADDRESS-ERROR-CODE

 0x8004
 ICMP

 Some of these attributes have lengths that are not multiples of 4. By
 the rules of STUN, any attribute whose length is not a multiple of 4
 bytes MUST be immediately followed by 1 to 3 padding bytes to ensure the
 next attribute (if any) would start on a 4-byte boundary (see).

 CHANNEL-NUMBER
 The CHANNEL-NUMBER attribute contains the number of the channel.
 The value portion of this attribute is 4 bytes long and consists of a
 16-bit unsigned integer followed by a two-octet RFFU (Reserved For
 Future Use) field, which MUST be set to 0 on transmission and MUST be
 ignored on reception.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Channel Number | RFFU = 0 |
+-+

 LIFETIME
 The LIFETIME attribute represents the duration for which the server
 will maintain an allocation in the absence of a refresh. The TURN
 client can include the LIFETIME attribute with the desired lifetime in
 Allocate and Refresh requests. The value portion of this attribute is
 4 bytes long and consists of a 32-bit unsigned integral value
 representing the number of seconds remaining until expiration.

 XOR-PEER-ADDRESS
 The XOR-PEER-ADDRESS attribute specifies the address and port of the peer as
 seen from the TURN server. (For example, the peer's server-reflexive
 transport address if the peer is behind a NAT.) It is encoded in the
 same way as the XOR-MAPPED-ADDRESS attribute .

 DATA
 The DATA attribute is present in all Send indications. If the ICMP
 attribute is not present in a Data indication, it contains a DATA
 attribute. The value portion of this attribute is variable length and
 consists of the application data (that is, the data that would
 immediately follow the UDP header if the data was sent directly
 between the client and the peer). The application data is equivalent
 to the "UDP user data" and does not include the "surplus area" defined
 in . If
 the length of this attribute is not a multiple of 4, then padding must
 be added after this attribute.

 XOR-RELAYED-ADDRESS
 The XOR-RELAYED-ADDRESS attribute is present in Allocate responses. It
 specifies the address and port that the server allocated to the
 client. It is encoded in the same way as the XOR-MAPPED-ADDRESS
	attribute .

 REQUESTED-ADDRESS-FAMILY
 This attribute is used in Allocate and Refresh requests to specify
 the address type requested by the client. The value of this attribute
 is 4 bytes with the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Family | Reserved |
+-+

 Family:
 There are two values defined for this field and specified in
 : 0x01 for
 IPv4 addresses and 0x02 for IPv6 addresses.
 Reserved:
 At this point, the 24 bits in the Reserved
 field MUST be set to zero by the client and MUST be ignored by the
 server.

 EVEN-PORT
 This attribute allows the client to request that the port in the
 relayed transport address be even and (optionally) that the server
 reserve the next-higher port number. The value portion of this
 attribute is 1 byte long. Its format is:

 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |R| RFFU |
 +-+-+-+-+-+-+-+-+

 The value contains a single 1-bit flag:

 R:
 If 1, the server is requested to reserve the
 next-higher port number (on the same IP address) for a subsequent
 allocation. If 0, no such reservation is requested.
 RFFU:
 Reserved For Future Use.

 The RFFU field must be set to zero on transmission and
 ignored on reception.
 Since the length of this attribute is not a multiple of 4, padding
 must immediately follow this attribute.

 REQUESTED-TRANSPORT
 This attribute is used by the client to request a specific
 transport protocol for the allocated transport address. The value of
 this attribute is 4 bytes with the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Protocol | RFFU |
+-+

 The Protocol field specifies the desired protocol. The code points
 used in this field are taken from those allowed in the Protocol field
 in the IPv4 header and the NextHeader field in the IPv6 header . This specification only
 allows the use of code point 17 (User Datagram Protocol).
 The RFFU field MUST be set to zero on transmission and MUST be
 ignored on reception. It is reserved for future uses.

 DONT-FRAGMENT
 This attribute is used by the client to request that the server set
 the DF (Don't Fragment) bit in the IP header when relaying the
 application data onward to the peer and for determining the server
 capability in Allocate requests. This attribute has no value part, and
 thus, the attribute length field is 0.

 RESERVATION-TOKEN
 The RESERVATION-TOKEN attribute contains a token that uniquely
 identifies a relayed transport address being held in reserve by the
 server. The server includes this attribute in a success response to
 tell the client about the token, and the client includes this
 attribute in a subsequent Allocate request to request the server use
 that relayed transport address for the allocation.
 The attribute value is 8 bytes and contains the token value.

 ADDITIONAL-ADDRESS-FAMILY
 This attribute is used by clients to request the allocation of an
 IPv4 and IPv6 address type from a server. It is encoded in the same
 way as the REQUESTED-ADDRESS-FAMILY attribute; see . The
 ADDITIONAL-ADDRESS-FAMILY attribute MAY be present in
 the Allocate request. The attribute value of 0x02 (IPv6 address) is
 the only valid value in Allocate request.

 ADDRESS-ERROR-CODE
 This attribute is used by servers to signal the reason for not
 allocating the requested address family. The value portion of this
 attribute is variable length with the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Family | Reserved |Class| Number |
 +-+
 | Reason Phrase (variable) ..
 +-+

 Family:
 There are two values defined for this field and specified in
 : 0x01 for
 IPv4 addresses and 0x02 for IPv6 addresses.
 Reserved:
 At this point, the 13 bits in the Reserved
 field MUST be set to zero by the server and MUST be ignored by the
 client.
 Class:
 The Class represents the hundreds digit of
 the error code and is defined in .
 Number:
 This 8-bit field contains the reason the server
 cannot allocate one of the requested address types. The error code
 values could be either 440 (Address Family not Supported) or 508
 (Insufficient Capacity). The number representation is defined in
 .
 Reason Phrase:
 The recommended reason phrases for
 error codes 440 and 508 are explained in . The reason phrase MUST be a
 UTF-8 encoded sequence of less than
 128 characters (which can be as long as 509 bytes when encoding
 them or 763 bytes when decoding them).

 ICMP
 This attribute is used by servers to signal the reason a UDP
 packet was dropped. The following is the format of the ICMP
 attribute.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Reserved | ICMP Type | ICMP Code |
 +-+
 | Error Data |
 +-+

 Reserved:
 This field MUST be set to 0 when sent and
 MUST be ignored when received.
 ICMP Type:
 The field contains the value of the ICMP
 type. Its interpretation depends on whether the ICMP was received
 over IPv4 or IPv6.
 ICMP Code:
 The field contains the value of the ICMP
 code. Its interpretation depends on whether the ICMP was received
 over IPv4 or IPv6.
 Error Data:
 This field size is 4 bytes long. If the ICMPv6 type is 2
 ("Packet too big" message) or ICMPv4 type is 3 (Destination
 Unreachable) and Code is 4 (fragmentation needed and DF set), the
 Error Data field will be set to the Maximum Transmission Unit of the
 next-hop link (and). For other ICMPv6 types and ICMPv4 types and
 codes, the Error Data field MUST be set to zero.

 STUN Error Response Codes
 This document defines the following error response codes:

 403 (Forbidden):
 The request was valid but cannot be
 performed due to administrative or similar restrictions.
 437 (Allocation Mismatch):
 A request was received by
 the server that requires an allocation to be in place, but no
 allocation exists, or a request was received that requires no
 allocation, but an allocation exists.
 440 (Address Family not Supported):
 The server does
 not support the address family requested by the client.
 441 (Wrong Credentials):
 (Wrong Credentials): The credentials in the
 (non-Allocate) request do not match those used to create the
 allocation.
 442 (Unsupported Transport Protocol):
 The Allocate
 request asked the server to use a transport protocol between the
 server and the peer that the server does not support. NOTE: This
 does NOT refer to the transport protocol used in the 5-tuple.
 443 (Peer Address Family Mismatch):
 A peer address is
 part of a different address family than that of the relayed
 transport address of the allocation.
 486 (Allocation Quota Reached):
 No more allocations
 using this username can be created at the present time.
 508 (Insufficient Capacity):
 The server is unable to
 carry out the request due to some capacity limit being reached. In
 an Allocate response, this could be due to the server having no more
 relayed transport addresses available at that time, having none with
 the requested properties, or the one that corresponds to the
 specified reservation token is not available.

 Detailed Example
 This section gives an example of the use of TURN, showing in detail
 the contents of the messages exchanged. The example uses the network
 diagram shown in the Overview ().
 For each message, the attributes included in the message and their
 values are shown. For convenience, values are shown in a human-readable
 format rather than showing the actual octets; for example,
 "XOR-RELAYED-ADDRESS=192.0.2.15:9000" shows that the XOR-RELAYED-ADDRESS
 attribute is included with an address of 192.0.2.15 and a port of 9000;
 here, the address and port are shown before the xor-ing is done. For
 attributes with string-like values (e.g., SOFTWARE="Example client,
 version 1.03" and NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"), the value
 of the attribute is shown in quotes for readability, but these quotes do
 not appear in the actual value.

TURN TURN Peer Peer
client server A B
--- Allocate request -------------->		
Transaction-Id=0xA56250D3F17ABE679422DE85		
SOFTWARE="Example client, version 1.03"		
LIFETIME=3600 (1 hour)		
REQUESTED-TRANSPORT=17 (UDP)		
DONT-FRAGMENT		
<-- Allocate error response --------		
Transaction-Id=0xA56250D3F17ABE679422DE85		
SOFTWARE="Example server, version 1.17"		
ERROR-CODE=401 (Unauthorized)		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
--- Allocate request -------------->		
Transaction-Id=0xC271E932AD7446A32C234492		
SOFTWARE="Example client 1.03"		
LIFETIME=3600 (1 hour)		
REQUESTED-TRANSPORT=17 (UDP)		
DONT-FRAGMENT		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY=...		
MESSAGE-INTEGRITY-SHA256=...		
<-- Allocate success response ------		
Transaction-Id=0xC271E932AD7446A32C234492		
SOFTWARE="Example server, version 1.17"		
LIFETIME=1200 (20 minutes)		
XOR-RELAYED-ADDRESS=192.0.2.15:50000		
XOR-MAPPED-ADDRESS=192.0.2.1:7000		
MESSAGE-INTEGRITY-SHA256=...		

 The client begins by selecting a host transport address to use for
 the TURN session; in this example, the client has selected
 198.51.100.2:49721 as shown in .
 The client then sends an Allocate request to the server at the server
 transport address. The client randomly selects a 96-bit transaction id
 of 0xA56250D3F17ABE679422DE85 for this transaction; this is encoded in
 the transaction id field in the fixed header. The client includes a
 SOFTWARE attribute that gives information about the client's software;
 here, the value is "Example client, version 1.03" to indicate that this
 is version 1.03 of something called the "Example client". The client
 includes the LIFETIME attribute because it wishes the allocation to have
 a longer lifetime than the default of 10 minutes; the value of this
 attribute is 3600 seconds, which corresponds to 1 hour. The client must
 always include a REQUESTED-TRANSPORT attribute in an Allocate request,
 and the only value allowed by this specification is 17, which indicates
 UDP transport between the server and the peers. The client also includes
 the DONT-FRAGMENT attribute because it wishes to use the DONT-FRAGMENT
 attribute later in Send indications; this attribute consists of only an
 attribute header; there is no value part. We assume the client has not
 recently interacted with the server; thus, the client does not include
 the USERNAME, USERHASH, REALM, NONCE, PASSWORD-ALGORITHMS,
 PASSWORD-ALGORITHM, MESSAGE-INTEGRITY, or MESSAGE-INTEGRITY-SHA256
 attribute. Finally, note that the order of attributes in a message is
 arbitrary (except for the MESSAGE-INTEGRITY, MESSAGE-INTEGRITY-SHA256
 and FINGERPRINT attributes), and the client could have used a different
 order.
 Servers require any request to be authenticated. Thus, when the
 server receives the initial Allocate request, it rejects the request
 because the request does not contain the authentication attributes.
 Following the procedures of the long-term credential mechanism of STUN
 , the server includes an
 ERROR-CODE attribute with a value of 401 (Unauthorized), a REALM
 attribute that specifies the authentication realm used by the server (in
 this case, the server's domain "example.com"), and a nonce value in a
 NONCE attribute. The NONCE attribute starts with the "nonce cookie" with
 the STUN Security Feature "Password algorithm" bit set to 1. The server
 includes a PASSWORD-ALGORITHMS attribute that specifies the list of
 algorithms that the server can use to derive the long-term password. If
 the server sets the STUN Security Feature "Username anonymity" bit to 1,
 then the client uses the USERHASH attribute instead of the USERNAME
 attribute in the Allocate request to anonymize the username. The server
 also includes a SOFTWARE attribute that gives information about the
 server's software.
 The client, upon receipt of the 401 error, reattempts the Allocate
 request, this time including the authentication attributes. The client
 selects a new transaction id and then populates the new Allocate
 request with the same attributes as before. The client includes a
 USERNAME attribute and uses the realm value received from the server to
 help it determine which value to use; here, the client is configured to
 use the username "George" for the realm "example.com". The client
 includes the PASSWORD-ALGORITHM attribute indicating the algorithm that
 the server must use to derive the long-term password. The client also
 includes the REALM, PASSWORD-ALGORITHMS, and NONCE attributes, which are
 just copied from the 401 error response. Finally, the client includes
 MESSAGE-INTEGRITY-SHA256 attribute as the last attributes in the
 message whose value is Hashed Message Authentication Code - Secure Hash
 Algorithm 2 (HMAC-SHA2) hash over the contents of the message (shown as
 just "..." above); this HMAC-SHA2 computation includes a password value.
 Thus, an attacker cannot compute the message integrity value without
 somehow knowing the secret password.
 The server, upon receipt of the authenticated Allocate request,
 checks that everything is OK, then creates an allocation. The server
 replies with an Allocate success response. The server includes a
 LIFETIME attribute giving the lifetime of the allocation; here, the
 server has reduced the client's requested 1-hour lifetime to just 20
 minutes because this particular server doesn't allow lifetimes longer
 than 20 minutes. The server includes an XOR-RELAYED-ADDRESS attribute
 whose value is the relayed transport address of the allocation. The
 server includes an XOR-MAPPED-ADDRESS attribute whose value is the
 server-reflexive address of the client; this value is not used otherwise
 in TURN but is returned as a convenience to the client. The server
 includes a MESSAGE-INTEGRITY-SHA256 attribute to authenticate the
 response and to ensure its integrity; note that the response does not
 contain the USERNAME, REALM, and NONCE attributes. The server also
 includes a SOFTWARE attribute.

TURN TURN Peer Peer
client server A B
--- CreatePermission request ------>		
Transaction-Id=0xE5913A8F460956CA277D3319		
XOR-PEER-ADDRESS=192.0.2.150:0		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- CreatePermission success resp.--		
Transaction-Id=0xE5913A8F460956CA277D3319		
MESSAGE-INTEGRITY-SHA256=...		

 The client then creates a permission towards Peer A in preparation
 for sending it some application data. This is done through a
 CreatePermission request. The XOR-PEER-ADDRESS attribute contains the IP
 address for which a permission is established (the IP address of peer
 A); note that the port number in the attribute is ignored when used in a
 CreatePermission request, and here it has been set to 0; also, note how
 the client uses Peer A's server-reflexive IP address and not its
 (private) host address. The client uses the same username, realm, and
 nonce values as in the previous request on the allocation. Though it is
 allowed to do so, the client has chosen not to include a SOFTWARE
 attribute in this request.
 The server receives the CreatePermission request, creates the
 corresponding permission, and then replies with a CreatePermission
 success response. Like the client, the server chooses not to include the
 SOFTWARE attribute in its reply. Again, note how success responses
 contain a MESSAGE-INTEGRITY-SHA256 attribute (assuming the server uses
 the long-term credential mechanism) but no USERNAME, REALM, and NONCE
 attributes.

TURN TURN Peer Peer
client server A B
--- Send indication --------------->		
Transaction-Id=0x1278E9ACA2711637EF7D3328		
XOR-PEER-ADDRESS=192.0.2.150:32102		
DONT-FRAGMENT		
DATA=...		
	- UDP dgm ->	
	data=...	
	<- UDP dgm -	
	data=...	
<-- Data indication ----------------		
Transaction-Id=0x8231AE8F9242DA9FF287FEFF		
XOR-PEER-ADDRESS=192.0.2.150:32102		
DATA=...		

 The client now sends application data to Peer A using a Send
 indication. Peer A's server-reflexive transport address is specified in
 the XOR-PEER-ADDRESS attribute, and the application data (shown here as
 just "...") is specified in the DATA attribute. The client is doing a
 form of path MTU discovery at the application layer and, thus, specifies
 (by including the DONT-FRAGMENT attribute) that the server should set
 the DF bit in the UDP datagram to send to the peer. Indications cannot
 be authenticated using the long-term credential mechanism of STUN, so no
 MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256 attribute is included in
 the message. An application wishing to ensure that its data is not
 altered or forged must integrity-protect its data at the application
 level.
 Upon receipt of the Send indication, the server extracts the
 application data and sends it in a UDP datagram to Peer A, with the
 relayed transport address as the source transport address of the
 datagram and with the DF bit set as requested. Note that had the
 client not previously established a permission for Peer A's
 server-reflexive IP address, the server would have silently
 discarded the Send indication instead.
 Peer A then replies with its own UDP datagram containing application
 data. The datagram is sent to the relayed transport address on the
 server. When this arrives, the server creates a Data indication
 containing the source of the UDP datagram in the XOR-PEER-ADDRESS
 attribute, and the data from the UDP datagram in the DATA attribute. The
 resulting Data indication is then sent to the client.

TURN TURN Peer Peer
client server A B
--- ChannelBind request ----------->		
Transaction-Id=0x6490D3BC175AFF3D84513212		
CHANNEL-NUMBER=0x4000		
XOR-PEER-ADDRESS=192.0.2.210:49191		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- ChannelBind success response ---		
Transaction-Id=0x6490D3BC175AFF3D84513212		
MESSAGE-INTEGRITY-SHA256=...		

 The client now binds a channel to Peer B, specifying a free channel
 number (0x4000) in the CHANNEL-NUMBER attribute, and Peer B's transport
 address in the XOR-PEER-ADDRESS attribute. As before, the client reuses
 the username, realm, and nonce from its last request in the message.
 Upon receipt of the request, the server binds the channel number to
 the peer, installs a permission for Peer B's IP address, and then
 replies with a ChannelBind success response.

TURN TURN Peer Peer
client server A B
--- ChannelData ------------------>		
Channel-number=0x4000	--- UDP datagram --------->	
Data=...	Data=...	
	<-- UDP datagram ----------	
	Data=...	
<-- ChannelData -------------------		
Channel-number=0x4000		
Data=...		

 The client now sends a ChannelData message to the server with data
 destined for Peer B. The ChannelData message is not a STUN message;
 thus, it has no transaction id. Instead, it has only three fields: a channel
 number, data, and data length; here, the channel number field is 0x4000
 (the channel the client just bound to Peer B). When the server receives
 the ChannelData message, it checks that the channel is currently bound
 (which it is) and then sends the data onward to Peer B in a UDP
 datagram, using the relayed transport address as the source transport
 address, and 192.0.2.210:49191 (the value of the XOR-PEER-ADDRESS
 attribute in the ChannelBind request) as the destination transport
 address.
 Later, Peer B sends a UDP datagram back to the relayed transport
 address. This causes the server to send a ChannelData message to the
 client containing the data from the UDP datagram. The server knows to
 which client to send the ChannelData message because of the relayed
 transport address at which the UDP datagram arrived, and it knows to use
 channel 0x4000 because this is the channel bound to 192.0.2.210:49191.
 Note that if there had not been any channel number bound to that
 address, the server would have used a Data indication instead.

TURN TURN Peer Peer
client server A B
--- ChannelBind request ----------->		
Transaction-Id=0xE5913A8F46091637EF7D3328		
CHANNEL-NUMBER=0x4000		
XOR-PEER-ADDRESS=192.0.2.210:49191		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- ChannelBind success response ---		
Transaction-Id=0xE5913A8F46091637EF7D3328		
MESSAGE-INTEGRITY-SHA256=...		

 The channel binding lasts for 10 minutes unless refreshed. The TURN
 client refreshes the binding by sending a ChannelBind request rebinding
 the channel to the same peer (Peer B's IP address). The server processes
 the ChannelBind request, rebinds the channel to the same peer, and resets
 the time-to-expiry timer back to 10 minutes.

TURN TURN Peer Peer
client server A B
--- Refresh request --------------->		
Transaction-Id=0x0864B3C27ADE9354B4312414		
SOFTWARE="Example client 1.03"		
USERNAME="George"		
REALM="example.com"		
NONCE="oobMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- Refresh error response ---------		
Transaction-Id=0x0864B3C27ADE9354B4312414		
SOFTWARE="Example server, version 1.17"		
ERROR-CODE=438 (Stale Nonce)		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
--- Refresh request --------------->		
Transaction-Id=0x427BD3E625A85FC731DC4191		
SOFTWARE="Example client 1.03"		
USERNAME="George"		
REALM="example.com"		
NONCE="obMatJos2gAAAadl7W7PeDU4hKE72jda"		
PASSWORD-ALGORITHMS=MD5 and SHA256		
PASSWORD-ALGORITHM=SHA256		
MESSAGE-INTEGRITY-SHA256=...		
<-- Refresh success response -------		
Transaction-Id=0x427BD3E625A85FC731DC4191		
SOFTWARE="Example server, version 1.17"		
LIFETIME=600 (10 minutes)		
MESSAGE-INTEGRITY=...		

 Sometime before the 20-minute lifetime is up, the client refreshes
 the allocation. This is done using a Refresh request. As before, the
 client includes the latest username, realm, and nonce values in the
 request. The client also includes the SOFTWARE attribute, following the
 recommended practice of always including this attribute in Allocate and
 Refresh messages. When the server receives the Refresh request, it
 notices that the nonce value has expired and so replies with a 438 (Stale
 Nonce) error given a new nonce value. The client then reattempts the
 request, this time with the new nonce value. This second attempt is
 accepted, and the server replies with a success response. Note that the
 client did not include a LIFETIME attribute in the request, so the
 server refreshes the allocation for the default lifetime of 10 minutes
 (as can be seen by the LIFETIME attribute in the success response).

 Security Considerations
 This section considers attacks that are possible in a TURN
 deployment and discusses how they are mitigated by mechanisms in the
 protocol or recommended practices in the implementation.
 Most of the attacks on TURN are mitigated by the server requiring
 requests be authenticated. Thus, this specification requires the use of
 authentication. The mandatory-to-implement mechanism is the long- term
 credential mechanism of STUN. Other authentication mechanisms of equal
 or stronger security properties may be used. However, it is important to
 ensure that they can be invoked in an interoperable way.

 Outsider Attacks
 Outsider attacks are ones where the attacker has no credentials in
 the system and is attempting to disrupt the service seen by the
 client or the server.

 Obtaining Unauthorized Allocations
 An attacker might wish to obtain allocations on a TURN server for
 any number of nefarious purposes. A TURN server provides a mechanism
 for sending and receiving packets while cloaking the actual IP
 address of the client. This makes TURN servers an attractive target
 for attackers who wish to use it to mask their true identity.
 An attacker might also wish to simply utilize the services of a
 TURN server without paying for them. Since TURN services require
 resources from the provider, it is anticipated that their usage will
 come with a cost.
 These attacks are prevented using the long-term credential
 mechanism, which allows the TURN server to determine the identity of
 the requestor and whether the requestor is allowed to obtain the
 allocation.

 Offline Dictionary Attacks
 The long-term credential mechanism used by TURN is subject to
 offline dictionary attacks. An attacker that is capable of
 eavesdropping on a message exchange between a client and server can
 determine the password by trying a number of candidate passwords and
 seeing if one of them is correct. This attack works when the
 passwords are low entropy such as a word from the dictionary. This
 attack can be mitigated by using strong passwords with large
 entropy. In situations where even stronger mitigation is required,
 (D)TLS transport between the client and the server can be used.

 Faked Refreshes and Permissions
 An attacker might wish to attack an active allocation by sending
 it a Refresh request with an immediate expiration in order to
 delete it and disrupt service to the client. This is prevented by
 authentication of refreshes. Similarly, an attacker wishing to send
 CreatePermission requests to create permissions to undesirable
 destinations is prevented from doing so through authentication. The
 motivations for such an attack are described in .

 Fake Data
 An attacker might wish to send data to the client or the peer as
 if they came from the peer or client, respectively. To do that, the
 attacker can send the client a faked Data indication or ChannelData
 message, or send the TURN server a faked Send indication or
 ChannelData message.
 Since indications and ChannelData messages are not authenticated,
 this attack is not prevented by TURN. However, this attack is
 generally present in IP-based communications and is not
 substantially worsened by TURN. Consider a normal, non-TURN IP
 session between hosts A and B. An attacker can send packets to B as
 if they came from A by sending packets towards B with a spoofed IP
 address of A. This attack requires the attacker to know the IP
 addresses of A and B. With TURN, an attacker wishing to send packets
 towards a client using a Data indication needs to know its IP
 address (and port), the IP address and port of the TURN server, and
 the IP address and port of the peer (for inclusion in the
 XOR-PEER-ADDRESS attribute). To send a fake ChannelData message to a
 client, an attacker needs to know the IP address and port of the
 client, the IP address and port of the TURN server, and the channel
 number. This particular combination is mildly more guessable than in
 the non-TURN case.
 These attacks are more properly mitigated by application-layer
 authentication techniques. In the case of real-time traffic, usage
 of SRTP prevents these attacks.
 In some situations, the TURN server may be situated in the
 network such that it is able to send to hosts to which the client
 cannot directly send. This can happen, for example, if the server is
 located behind a firewall that allows packets from outside the
 firewall to be delivered to the server, but not to other hosts
 behind the firewall. In these situations, an attacker could send the
 server a Send indication with an XOR-PEER-ADDRESS attribute
 containing the transport address of one of the other hosts behind
 the firewall. If the server was to allow relaying of traffic to
 arbitrary peers, then this would provide a way for the attacker to
 attack arbitrary hosts behind the firewall.
 To mitigate this attack, TURN requires that the client establish
 a permission to a host before sending it data. Thus, an attacker can
 only attack hosts with which the client is already communicating
 unless the attacker is able to create authenticated requests.
 Furthermore, the server administrator may configure the server to
 restrict the range of IP addresses and ports to which it will relay
 data. To provide even greater security, the server administrator can
 require that the client use (D)TLS for all communication between the
 client and the server.

 Impersonating a Server
 When a client learns a relayed address from a TURN server, it
 uses that relayed address in application protocols to receive
 traffic. Therefore, an attacker wishing to intercept or redirect
 that traffic might try to impersonate a TURN server and provide the
 client with a faked relayed address.
 This attack is prevented through the long-term credential
 mechanism, which provides message integrity for responses in
 addition to verifying that they came from the server. Furthermore,
 an attacker cannot replay old server responses as the transaction id
 in the STUN header prevents this. Replay attacks are further
 thwarted through frequent changes to the nonce value.

 Eavesdropping Traffic
 If the TURN client and server use the STUN Extension for
 Third-Party Authorization (for
 example, it is used in WebRTC), the username does not reveal the real
 user's identity; the USERNAME attribute carries an ephemeral and
 unique key identifier. If the TURN client and server use the STUN
 long-term credential mechanism and the username reveals the real
 user's identity, the client MUST either use the USERHASH attribute
 instead of the USERNAME attribute to anonymize the username or use
 (D)TLS transport between the client and the server.
 If the TURN client and server use the STUN long-term credential
 mechanism, and realm information is privacy sensitive, TURN can be
 run over (D)TLS. As a reminder, STUN Extension for Third-Party
 Authorization does not use realm.
 The SOFTWARE attribute can reveal the specific software version
 of the TURN client and server to the eavesdropper, and it might possibly
 allow attacks against vulnerable software that is known to contain
 security vulnerabilities. If the software version is known to
 contain security vulnerabilities, TURN SHOULD be run over (D)TLS to
 prevent leaking the SOFTWARE attribute in clear text. If zero-day
 vulnerabilities are detected in the software version, the endpoint
 policy can be modified to mandate the use of (D)TLS until the patch
 is in place to fix the flaw.
 TURN concerns itself primarily with authentication and message
 integrity. Confidentiality is only a secondary concern as TURN
 control messages do not include information that is particularly
 sensitive with the exception of USERNAME, REALM, and SOFTWARE. The
 primary protocol content of the messages is the IP address of the
 peer. If it is important to prevent an eavesdropper on a TURN
 connection from learning this, TURN can be run over (D)TLS.
 Confidentiality for the application data relayed by TURN is best
 provided by the application protocol itself since running TURN over
 (D)TLS does not protect application data between the server and the
 peer. If confidentiality of application data is important, then the
 application should encrypt or otherwise protect its data. For
 example, for real-time media, confidentiality can be provided by
 using SRTP.

 TURN Loop Attack
 An attacker might attempt to cause data packets to loop
 indefinitely between two TURN servers. The attack goes as follows:
 first, the attacker sends an Allocate request to server A using the
 source address of server B. Server A will send its response to
 server B, and for the attack to succeed, the attacker must have the
 ability to either view or guess the contents of this response so
 that the attacker can learn the allocated relayed transport address.
 The attacker then sends an Allocate request to server B using the
 source address of server A. Again, the attacker must be able to view
 or guess the contents of the response so it can learn the
 allocated relayed transport address. Using the same spoofed source
 address technique, the attacker then binds a channel number on
 server A to the relayed transport address on server B and similarly
 binds the same channel number on server B to the relayed transport
 address on server A. Finally, the attacker sends a ChannelData
 message to server A.
 The result is a data packet that loops from the relayed transport
 address on server A to the relayed transport address on server B,
 then from server B's transport address to server A's transport
 address, and then around the loop again.
 This attack is mitigated as follows: by requiring all requests to
 be authenticated and/or by randomizing the port number allocated for
 the relayed transport address, the server forces the attacker to
 either intercept or view responses sent to a third party (in this
 case, the other server) so that the attacker can authenticate the
 requests and learn the relayed transport address. Without one of
 these two measures, an attacker can guess the contents of the
 responses without needing to see them, which makes the attack much
 easier to perform. Furthermore, by requiring authenticated requests,
 the server forces the attacker to have credentials acceptable to the
 server, which turns this from an outsider attack into an insider
 attack and allows the attack to be traced back to the client
 initiating it.
 The attack can be further mitigated by imposing a per-username
 limit on the bandwidth used to relay data by allocations owned by
 that username to limit the impact of this attack on other
 allocations. More mitigation can be achieved by decrementing the TTL
 when relaying data packets (if the underlying OS allows this).

 Firewall Considerations
 A key security consideration of TURN is that TURN should not weaken
 the protections afforded by firewalls deployed between a client and a
 TURN server. It is anticipated that TURN servers will often be present
 on the public Internet, and clients may often be inside enterprise
 networks with corporate firewalls. If TURN servers provide a
 "backdoor" for reaching into the enterprise, TURN will be blocked by
 these firewalls.
 TURN servers therefore emulate the behavior of NAT devices that
 implement address-dependent filtering ,
 a property common in many firewalls as well. When a NAT or firewall
 implements this behavior, packets from an outside IP address are only
 allowed to be sent to an internal IP address and port if the internal
 IP address and port had recently sent a packet to that outside IP
 address. TURN servers introduce the concept of permissions, which
 provide exactly this same behavior on the TURN server. An attacker
 cannot send a packet to a TURN server and expect it to be relayed
 towards the client, unless the client has tried to contact the
 attacker first.
 It is important to note that some firewalls have policies that are
 even more restrictive than address-dependent filtering. Firewalls can
 also be configured with address- and port-dependent filtering, or they
 can be configured to disallow inbound traffic entirely. In these
 cases, if a client is allowed to connect the TURN server,
 communications to the client will be less restrictive than what the
 firewall would normally allow.

 Faked Permissions
 In firewalls and NAT devices, permissions are granted implicitly
 through the traversal of a packet from the inside of the network
 towards the outside peer. Thus, a permission cannot, by definition,
 be created by any entity except one inside the firewall or NAT. With
 TURN, this restriction no longer holds. Since the TURN server sits
 outside the firewall, an attacker outside the firewall can now send
 a message to the TURN server and try to create a permission for
 itself.
 This attack is prevented because all messages that create
 permissions (i.e., ChannelBind and CreatePermission) are
 authenticated.

 Blacklisted IP Addresses
 Many firewalls can be configured with blacklists that prevent a
 client behind the firewall from sending packets to, or receiving
 packets from, ranges of blacklisted IP addresses. This is
 accomplished by inspecting the source and destination addresses of
 packets entering and exiting the firewall, respectively.
 This feature is also present in TURN since TURN servers are
 allowed to arbitrarily restrict the range of addresses of peers that
 they will relay to.

 Running Servers on Well-Known Ports
 A malicious client behind a firewall might try to connect to a
 TURN server and obtain an allocation that it then uses to run a
 server. For example, a client might try to run a DNS server or FTP
 server.
 This is not possible in TURN. A TURN server will never accept
 traffic from a peer for which the client has not installed a
 permission. Thus, peers cannot just connect to the allocated port in
 order to obtain the service.

 Insider Attacks
 In insider attacks, a client has legitimate credentials but defies
 the trust relationship that goes with those credentials. These attacks
 cannot be prevented by cryptographic means but need to be considered
 in the design of the protocol.

 DoS against TURN Server
 A client wishing to disrupt service to other clients might obtain
 an allocation and then flood it with traffic in an attempt to swamp
 the server and prevent it from servicing other legitimate clients.
 This is mitigated by the recommendation that the server limit the
 amount of bandwidth it will relay for a given username. This won't
 prevent a client from sending a large amount of traffic, but it
 allows the server to immediately discard traffic in excess.
 Since each allocation uses a port number on the IP address of the
 TURN server, the number of allocations on a server is finite. An
 attacker might attempt to consume all of them by requesting a large
 number of allocations. This is prevented by the recommendation that
 the server impose a limit on the number of allocations active at a
 time for a given username.

 Anonymous Relaying of Malicious Traffic
 TURN servers provide a degree of anonymization. A client can send
 data to peers without revealing its own IP address. TURN servers may
 therefore become attractive vehicles for attackers to launch attacks
 against targets without fear of detection. Indeed, it is possible
 for a client to chain together multiple TURN servers such that any
 number of relays can be used before a target receives a packet.
 Administrators who are worried about this attack can maintain
 logs that capture the actual source IP and port of the client and
 perhaps even every permission that client installs. This will allow
 for forensic tracing to determine the original source should it be
 discovered that an attack is being relayed through a TURN
 server.

 Manipulating Other Allocations
 An attacker might attempt to disrupt service to other users of
 the TURN server by sending Refresh requests or CreatePermission
 requests that (through source address spoofing) appear to be coming
 from another user of the TURN server. TURN prevents this by
 requiring that the credentials used in CreatePermission, Refresh,
 and ChannelBind messages match those used to create the initial
 allocation. Thus, the fake requests from the attacker will be
 rejected.

 Tunnel Amplification Attack
 An attacker might attempt to cause data packets to loop numerous
 times between a TURN server and a tunnel between IPv4 and IPv6. The
 attack goes as follows:
 Suppose an attacker knows that a tunnel endpoint will forward
 encapsulated packets from a given IPv6 address (this doesn't
 necessarily need to be the tunnel endpoint's address). Suppose he then
 spoofs two packets from this address:

 An Allocate request asking for a v4 address, and
 A ChannelBind request establishing a channel to the IPv4
 address of the tunnel endpoint.

 Then, he has set up an amplification attack:

 The TURN server will re-encapsulate IPv6 UDP data in v4 and
 send it to the tunnel endpoint.
 The tunnel endpoint will de-encapsulate packets from the v4
 interface and send them to v6.

 So, if the attacker sends a packet of the following form:

 IPv6: src=2001:DB8:1::1 dst=2001:DB8::2
 UDP: <ports>
 TURN: <channel id>
 IPv6: src=2001:DB8:1::1 dst=2001:DB8::2
 UDP: <ports>
 TURN: <channel id>
 IPv6: src=2001:DB8:1::1 dst=2001:DB8::2
 UDP: <ports>
 TURN: <channel id>
 ...

 then the TURN server and the tunnel endpoint will send it
 back and forth until the last TURN header is consumed, at which point
 the TURN server will send an empty packet that the tunnel endpoint
 will drop.
 The amplification potential here is limited by the MTU, so it's not
 huge: IPv6+UDP+TURN takes 334 bytes, so a four-to-one amplification
 out of a 1500-byte packet is possible. But, the attacker could still
 increase traffic volume by sending multiple packets or by establishing
 multiple channels spoofed from different addresses behind the same
 tunnel endpoint.
 The attack is mitigated as follows. It is RECOMMENDED that TURN
 servers not accept allocation or channel-binding requests from
 addresses known to be tunneled, and that they not forward data to such
 addresses. In particular, a TURN server MUST NOT accept Teredo or 6to4
 addresses in these requests.

 Other Considerations
 Any relay addresses learned through an Allocate request will not
 operate properly with IPsec Authentication Header (AH) in transport or tunnel
 mode. However, tunnel-mode IPsec Encapsulating Security Payload (ESP)
 should still operate.

 IANA Considerations
 The code points for the STUN methods defined in this specification are
 listed in . IANA has
 updated the references from to
 this document (for the STUN methods listed in).
 The code points for the STUN attributes defined in this specification
 are listed in . IANA has
 updated the references from to
 this document (for the STUN attributes CHANNEL-NUMBER, LIFETIME, Reserved
 (was BANDWIDTH), XOR-PEER-ADDRESS, DATA, XOR-RELAYED-ADDRESS,
 REQUESTED-ADDRESS-FAMILY, EVEN-PORT, REQUESTED-TRANSPORT, DONT-FRAGMENT,
 Reserved (was TIMER-VAL), and RESERVATION-TOKEN listed in).
 The code points for the STUN error codes defined in this specification
 are listed in . IANA has
 updated the references from
 and to this document (for the STUN error codes listed in
).
 IANA has updated the references to to this document for the SRV service name of "turn" for TURN over UDP
 or TCP and the service name of "turns" for TURN over (D)TLS.
 IANA has created a registry for TURN channel numbers (the "Traversal
 Using Relays around NAT (TURN) Channel Numbers" registry), initially
 populated as follows:

 0x0000 through 0x3FFF:
 Reserved and not available for use since they conflict with the STUN
 header.

 0x4000 through 0x4FFF:
 A TURN implementation is free to use channel numbers in this range.

 0x5000 through 0xFFFF:
 Reserved (For DTLS-SRTP multiplexing collision avoidance, see)

 Any change to this registry must be made through an IETF
 Standards Action.

 IAB Considerations
 The IAB has studied the problem of Unilateral Self-Address Fixing
 (UNSAF), which is the general process by which a client attempts to
 determine its address in another realm on the other side of a NAT
 through a collaborative protocol reflection mechanism . The TURN extension is an example of
 a protocol that performs this type of function. The IAB has mandated
 that any protocols developed for this purpose document a specific set of
 considerations. These considerations and the responses for TURN are
 documented in this section.
 Consideration 1: Precise definition of a specific, limited-scope
 problem that is to be solved with the UNSAF proposal. A short-term fix
 should not be generalized to solve other problems. Such generalizations
 lead to the prolonged dependence on and usage of the supposed short-term
 fix, meaning that it is no longer accurate to call it
 "short-term".
 Response: TURN is a protocol for communication between a relay (=
 TURN server) and its client. The protocol allows a client that is behind
 a NAT to obtain and use a public IP address on the relay. As a
 convenience to the client, TURN also allows the client to determine its
 server-reflexive transport address.
 Consideration 2: Description of an exit strategy/transition plan. The
 better short-term fixes are the ones that will naturally see less and
 less use as the appropriate technology is deployed.
 Response: TURN will no longer be needed once there are no longer any
 NATs. Unfortunately, as of the date of publication of this document, it
 no longer seems very likely that NATs will go away any time soon.
 However, the need for TURN will also decrease as the number of NATs with
 the mapping property of Endpoint-Independent Mapping increases.
 Consideration 3: Discussion of specific issues that may render
 systems more "brittle". For example, approaches that involve using data
 at multiple network layers create more dependencies, increase debugging
 challenges, and make it harder to transition.
 Response: TURN is "brittle" in that it requires the NAT bindings
 between the client and the server to be maintained unchanged for the
 lifetime of the allocation. This is typically done using keep-alives. If
 this is not done, then the client will lose its allocation and can no
 longer exchange data with its peers.
 Consideration 4: Identify requirements for longer-term, sound
 technical solutions; contribute to the process of finding the right
 longer-term solution.
 Response: The need for TURN will be reduced once NATs implement the
 recommendations for NAT UDP behavior documented in . Applications are also strongly
 urged to use ICE to
 communicate with peers; though ICE uses TURN, it does so only as a last
 resort, and it uses it in a controlled manner.
 Consideration 5: Discussion of the impact of the noted practical
 issues with existing deployed NATs and experience reports.
 Response: Some NATs deployed today exhibit a mapping behavior other
 than Endpoint-Independent mapping. These NATs are difficult to work
 with, as they make it difficult or impossible for protocols like ICE to
 use server-reflexive transport addresses on those NATs. A client behind
 such a NAT is often forced to use a relay protocol like TURN because
 "UDP hole punching" techniques do not
 work.

 Changes since RFC 5766
 This section lists the major changes in the TURN protocol from the
 original specification.

 IPv6 support.
 REQUESTED-ADDRESS-FAMILY attribute.
 Description of the tunnel amplification attack.
 DTLS support.
 Add support for receiving ICMP packets.
 Updates PMTUD.
 Discovery of TURN server.
 TURN URI Scheme Semantics.
 Happy Eyeballs for TURN.
 Align with the changes in STUN .

 Updates to RFC 6156
 This section lists the major updates to in this specification.

 ADDITIONAL-ADDRESS-FAMILY and ADDRESS-ERROR-CODE attributes.
 440 (Address Family not Supported) and 443 (Peer Address Family
 Mismatch) responses.
 More details on packet translation.
 TCP-to-UDP and UDP-to-TCP relaying.

 References

 Normative References

 Protocol Numbers

 IANA

 Internet Control Message Protocol

 Requirements for Internet Hosts - Communication Layers

 This RFC is an official specification for the Internet community. It incorporates by reference, amends, corrects, and supplements the primary protocol standards documents relating to hosts. [STANDARDS-TRACK]

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers

 This document defines the IP header field, called the DS (for differentiated services) field. [STANDARDS-TRACK]

 The Addition of Explicit Congestion Notification (ECN) to IP

 This memo specifies the incorporation of ECN (Explicit Congestion Notification) to TCP and IP, including ECN's use of two bits in the IP header. [STANDARDS-TRACK]

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification

 This document describes the format of a set of control messages used in ICMPv6 (Internet Control Message Protocol). ICMPv6 is the Internet Control Message Protocol for Internet Protocol version 6 (IPv6). [STANDARDS-TRACK]

 Datagram Transport Layer Security Version 1.2

 This document specifies version 1.2 of the Datagram Transport Layer Security (DTLS) protocol. The DTLS protocol provides communications privacy for datagram protocols. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees. Datagram semantics of the underlying transport are preserved by the DTLS protocol. This document updates DTLS 1.0 to work with TLS version 1.2. [STANDARDS-TRACK]

 IPv6 Flow Label Specification

 This document specifies the IPv6 Flow Label field and the minimum requirements for IPv6 nodes labeling flows, IPv6 nodes forwarding labeled packets, and flow state establishment methods. Even when mentioned as examples of possible uses of the flow labeling, more detailed requirements for specific use cases are out of the scope for this document.
 The usage of the Flow Label field enables efficient IPv6 flow classification based only on IPv6 main header fields in fixed positions. [STANDARDS-TRACK]

 Traversal Using Relays around NAT (TURN) Uniform Resource Identifiers

 This document specifies the syntax of Uniform Resource Identifier (URI) schemes for the Traversal Using Relays around NAT (TURN) protocol. It defines two URI schemes to provision the TURN Resolution Mechanism (RFC 5928).

 Datagram Transport Layer Security (DTLS) as Transport for Session Traversal Utilities for NAT (STUN)

 This document specifies the usage of Datagram Transport Layer Security (DTLS) as a transport protocol for Session Traversal Utilities for NAT (STUN). It provides guidance on when and how to use DTLS with the currently standardized STUN usages. It also specifies modifications to the STUN and Traversal Using Relay NAT (TURN) URIs and to the TURN resolution mechanism to facilitate the resolution of STUN and TURN URIs into the IP address and port of STUN and TURN servers supporting DTLS as a transport protocol. This document updates RFCs 5389 and 5928.

 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are widely used to protect data exchanged over application protocols such as HTTP, SMTP, IMAP, POP, SIP, and XMPP. Over the last few years, several serious attacks on TLS have emerged, including attacks on its most commonly used cipher suites and their modes of operation. This document provides recommendations for improving the security of deployed services that use TLS and DTLS. The recommendations are applicable to the majority of use cases.

 IP/ICMP Translation Algorithm

 This document describes the Stateless IP/ICMP Translation Algorithm (SIIT), which translates between IPv4 and IPv6 packet headers (including ICMP headers). This document obsoletes RFC 6145.

 Measurement of Round-Trip Time and Fractional Loss Using Session Traversal Utilities for NAT (STUN)

 A host with multiple interfaces needs to choose the best interface for communication. Oftentimes, this decision is based on a static configuration and does not consider the path characteristics, which may affect the user experience.
 This document describes a mechanism for an endpoint to measure the path characteristics fractional loss and RTT using Session Traversal Utilities for NAT (STUN) messages.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Internet Protocol, Version 6 (IPv6) Specification

 This document specifies version 6 of the Internet Protocol (IPv6). It obsoletes RFC 2460.

 Happy Eyeballs Version 2: Better Connectivity Using Concurrency

 Many communication protocols operating over the modern Internet use hostnames. These often resolve to multiple IP addresses, each of which may have different performance and connectivity characteristics. Since specific addresses or address families (IPv4 or IPv6) may be blocked, broken, or sub-optimal on a network, clients that attempt multiple connections in parallel have a chance of establishing a connection more quickly. This document specifies requirements for algorithms that reduce this user-visible delay and provides an example algorithm, referred to as "Happy Eyeballs". This document obsoletes the original algorithm description in RFC 6555.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Session Traversal Utilities for NAT (STUN)

 Informative References

 IP Fragmentation Considered Fragile

 This document describes IP fragmentation and explains how it introduces fragility to Internet communication. This document also proposes alternatives to IP fragmentation and provides recommendations for developers and network operators.

 Work in Progress

 Fragmentation Considered Harmful

 Packetization Layer Path MTU Discovery for Datagram Transports

 This document describes a robust method for Path MTU Discovery (PMTUD) for datagram Packetization Layers (PLs). It describes an extension to RFC 1191 and RFC 8201, which specifies ICMP-based Path MTU Discovery for IPv4 and IPv6. The method allows a PL, or a datagram application that uses a PL, to discover whether a network path can support the current size of datagram. This can be used to detect and reduce the message size when a sender encounters a packet black hole (where packets are discarded). The method can probe a network path with progressively larger packets to discover whether the maximum packet size can be increased. This allows a sender to determine an appropriate packet size, providing functionality for datagram transports that is equivalent to the Packetization Layer PMTUD specification for TCP, specified in RFC 4821. The document updates RFC 4821 to specify the method for datagram PLs, and updates RFC 8085 as the method to use in place of RFC 4821 with UDP datagrams. Section 7.3 of RFC4960 recommends an endpoint apply the techniques in RFC4821 on a per-destination-address basis. RFC4960 is updated to recommend that SCTP uses the method specified in this document instead of the method in RFC4821. The document also provides implementation notes for incorporating Datagram PMTUD into IETF datagram transports or applications that use datagram transports. When published, this specification updates RFC 4821 and RFC 8085.

 Work in Progress

 Packetization Layer Path MTU Discovery (PLMTUD) For UDP Transports Using Session Traversal Utilities for NAT (STUN)

 The datagram exchanged between two Internet endpoints have to go through a series of physical and virtual links that may have different limits on the upper size of the datagram they can transmit without fragmentation. Because fragmentation is considered harmful, most transports and protocols are designed with a mechanism that permits dynamic measurement of the maximum size of a datagram. This mechanism is called Packetization Layer Path MTU Discovery (PLPMTUD). But the UDP transport and some of the protocols that use UDP were designed without that feature. The Session Traversal Utilities for NAT (STUN) Usage described in this document permits retrofitting an existing UDP-based protocol with such a feature. Similarly, a new UDP-based protocol could simply reuse the mechanism described in this document.

 Work in Progress

 Service Name and Transport Protocol Port Number Registry

 IANA

 Internet Protocol

 Path MTU discovery

 This memo describes a technique for dynamically discovering the maximum transmission unit (MTU) of an arbitrary internet path. It specifies a small change to the way routers generate one type of ICMP message. For a path that passes through a router that has not been so changed, this technique might not discover the correct Path MTU, but it will always choose a Path MTU as accurate as, and in many cases more accurate than, the Path MTU that would be chosen by current practice. [STANDARDS-TRACK]

 Address Allocation for Private Internets

 This document describes address allocation for private internets. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 SOCKS Protocol Version 5

 This memo describes a protocol that is an evolution of the previous version of the protocol, version 4 [1]. This new protocol stems from active discussions and prototype implementations. [STANDARDS-TRACK]

 SIP: Session Initiation Protocol

 This document describes Session Initiation Protocol (SIP), an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences. [STANDARDS-TRACK]

 IAB Considerations for UNilateral Self-Address Fixing (UNSAF) Across Network Address Translation

 IAB

 As a result of the nature of Network Address Translation (NAT) Middleboxes, communicating endpoints that are separated by one or more NATs do not know how to refer to themselves using addresses that are valid in the addressing realms of their (current and future) peers. Various proposals have been made for "UNilateral Self-Address Fixing (UNSAF)" processes. These are processes whereby some originating endpoint attempts to determine or fix the address (and port) by which it is known to another endpoint - e.g., to be able to use address data in the protocol exchange, or to advertise a public address from which it will receive connections. This document outlines the reasons for which these proposals can be considered at best as short term fixes to specific problems and the specific issues to be carefully evaluated before creating an UNSAF proposal. This memo provides information for the Internet community.

 RTP: A Transport Protocol for Real-Time Applications

 This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not address resource reservation and does not guarantee quality-of- service for real-time services. The data transport is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers. Most of the text in this memorandum is identical to RFC 1889 which it obsoletes. There are no changes in the packet formats on the wire, only changes to the rules and algorithms governing how the protocol is used. The biggest change is an enhancement to the scalable timer algorithm for calculating when to send RTCP packets in order to minimize transmission in excess of the intended rate when many participants join a session simultaneously. [STANDARDS-TRACK]

 The Secure Real-time Transport Protocol (SRTP)

 This document describes the Secure Real-time Transport Protocol (SRTP), a profile of the Real-time Transport Protocol (RTP), which can provide confidentiality, message authentication, and replay protection to the RTP traffic and to the control traffic for RTP, the Real-time Transport Control Protocol (RTCP). [STANDARDS-TRACK]

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 IP Authentication Header

 This document describes an updated version of the IP Authentication Header (AH), which is designed to provide authentication services in IPv4 and IPv6. This document obsoletes RFC 2402 (November 1998). [STANDARDS-TRACK]

 IP Encapsulating Security Payload (ESP)

 This document describes an updated version of the Encapsulating Security Payload (ESP) protocol, which is designed to provide a mix of security services in IPv4 and IPv6. ESP is used to provide confidentiality, data origin authentication, connectionless integrity, an anti-replay service (a form of partial sequence integrity), and limited traffic flow confidentiality. This document obsoletes RFC 2406 (November 1998). [STANDARDS-TRACK]

 Network Address Translation (NAT) Behavioral Requirements for Unicast UDP

 This document defines basic terminology for describing different types of Network Address Translation (NAT) behavior when handling Unicast UDP and also defines a set of requirements that would allow many applications, such as multimedia communications or online gaming, to work consistently. Developing NATs that meet this set of requirements will greatly increase the likelihood that these applications will function properly. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Packetization Layer Path MTU Discovery

 This document describes a robust method for Path MTU Discovery (PMTUD) that relies on TCP or some other Packetization Layer to probe an Internet path with progressively larger packets. This method is described as an extension to RFC 1191 and RFC 1981, which specify ICMP-based Path MTU Discovery for IP versions 4 and 6, respectively. [STANDARDS-TRACK]

 State of Peer-to-Peer (P2P) Communication across Network Address Translators (NATs)

 This memo documents the various methods known to be in use by applications to establish direct communication in the presence of Network Address Translators (NATs) at the current time. Although this memo is intended to be mainly descriptive, the Security Considerations section makes some purely advisory recommendations about how to deal with security vulnerabilities the applications could inadvertently create when using the methods described. This memo covers NAT traversal approaches used by both TCP- and UDP-based applications. This memo is not an endorsement of the methods described, but merely an attempt to capture them in a document. This memo provides information for the Internet community.

 TCP User Timeout Option

 The TCP user timeout controls how long transmitted data may remain unacknowledged before a connection is forcefully closed. It is a local, per-connection parameter. This document specifies a new TCP option -- the TCP User Timeout Option -- that allows one end of a TCP connection to advertise its current user timeout value. This information provides advice to the other end of the TCP connection to adapt its user timeout accordingly. Increasing the user timeouts on both ends of a TCP connection allows it to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows busy servers to explicitly notify their clients that they will maintain the connection state only for a short time without connectivity. [STANDARDS-TRACK]

 Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)

 If a host is located behind a NAT, then in certain situations it can be impossible for that host to communicate directly with other hosts (peers). In these situations, it is necessary for the host to use the services of an intermediate node that acts as a communication relay. This specification defines a protocol, called TURN (Traversal Using Relays around NAT), that allows the host to control the operation of the relay and to exchange packets with its peers using the relay. TURN differs from some other relay control protocols in that it allows a client to communicate with multiple peers using a single relay address. [STANDARDS-TRACK]

 The TCP Authentication Option

 This document specifies the TCP Authentication Option (TCP-AO), which obsoletes the TCP MD5 Signature option of RFC 2385 (TCP MD5). TCP-AO specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details on the association of security with TCP connections than TCP MD5. TCP-AO is compatible with either a static Master Key Tuple (MKT) configuration or an external, out-of-band MKT management mechanism; in either case, TCP-AO also protects connections when using the same MKT across repeated instances of a connection, using traffic keys derived from the MKT, and coordinates MKT changes between endpoints. The result is intended to support current infrastructure uses of TCP MD5, such as to protect long-lived connections (as used, e.g., in BGP and LDP), and to support a larger set of MACs with minimal other system and operational changes. TCP-AO uses a different option identifier than TCP MD5, even though TCP-AO and TCP MD5 are never permitted to be used simultaneously. TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5. [STANDARDS-TRACK]

 Traversal Using Relays around NAT (TURN) Resolution Mechanism

 This document defines a resolution mechanism to generate a list of server transport addresses that can be tried to create a Traversal Using Relays around NAT (TURN) allocation. [STANDARDS-TRACK]

 Recommendations for Transport-Protocol Port Randomization

 During the last few years, awareness has been raised about a number of "blind" attacks that can be performed against the Transmission Control Protocol (TCP) and similar protocols. The consequences of these attacks range from throughput reduction to broken connections or data corruption. These attacks rely on the attacker's ability to guess or know the five-tuple (Protocol, Source Address, Destination Address, Source Port, Destination Port) that identifies the transport protocol instance to be attacked. This document describes a number of simple and efficient methods for the selection of the client port number, such that the possibility of an attacker guessing the exact value is reduced. While this is not a replacement for cryptographic methods for protecting the transport-protocol instance, the aforementioned port selection algorithms provide improved security with very little effort and without any key management overhead. The algorithms described in this document are local policies that may be incrementally deployed and that do not violate the specifications of any of the transport protocols that may benefit from them, such as TCP, UDP, UDP-lite, Stream Control Transmission Protocol (SCTP), Datagram Congestion Control Protocol (DCCP), and RTP (provided that the RTP application explicitly signals the RTP and RTCP port numbers). This memo documents an Internet Best Current Practice.

 Traversal Using Relays around NAT (TURN) Extensions for TCP Allocations

 This specification defines an extension of Traversal Using Relays around NAT (TURN), a relay protocol for Network Address Translator (NAT) traversal. This extension allows a TURN client to request TCP allocations, and defines new requests and indications for the TURN server to open and accept TCP connections with the client\'s peers. TURN and this extension both purposefully restrict the ways in which the relayed address can be used. In particular, it prevents users from running general-purpose servers from ports obtained from the TURN server. [STANDARDS-TRACK]

 Traversal Using Relays around NAT (TURN) Extension for IPv6

 This document adds IPv6 support to Traversal Using Relays around NAT (TURN). IPv6 support in TURN includes IPv4-to-IPv6, IPv6-to-IPv6, and IPv6-to-IPv4 relaying. This document defines the REQUESTED- ADDRESS-FAMILY attribute for TURN. The REQUESTED-ADDRESS-FAMILY attribute allows a client to explicitly request the address type the TURN server will allocate (e.g., an IPv4-only node may request the TURN server to allocate an IPv6 address). [STANDARDS-TRACK]

 Application Mechanism for Keeping Alive the NAT Mappings Associated with RTP / RTP Control Protocol (RTCP) Flows

 This document lists the different mechanisms that enable applications using the Real-time Transport Protocol (RTP) and the RTP Control Protocol (RTCP) to keep their RTP Network Address Translator (NAT) mappings alive. It also makes a recommendation for a preferred mechanism. This document is not applicable to Interactive Connectivity Establishment (ICE) agents. [STANDARDS-TRACK]

 TCP Fast Open

 This document describes an experimental TCP mechanism called TCP Fast Open (TFO). TFO allows data to be carried in the SYN and SYN-ACK packets and consumed by the receiving end during the initial connection handshake, and saves up to one full round-trip time (RTT) compared to the standard TCP, which requires a three-way handshake (3WHS) to complete before data can be exchanged. However, TFO deviates from the standard TCP semantics, since the data in the SYN could be replayed to an application in some rare circumstances. Applications should not use TFO unless they can tolerate this issue, as detailed in the Applicability section.

 Web Real-Time Communication Use Cases and Requirements

 This document describes web-based real-time communication use cases. Requirements on the browser functionality are derived from the use cases.
 This document was developed in an initial phase of the work with rather minor updates at later stages. It has not really served as a tool in deciding features or scope for the WG's efforts so far. It is being published to record the early conclusions of the WG. It will not be used as a set of rigid guidelines that specifications and implementations will be held to in the future.

 Session Traversal Utilities for NAT (STUN) Extension for Third-Party Authorization

 This document proposes the use of OAuth 2.0 to obtain and validate ephemeral tokens that can be used for Session Traversal Utilities for NAT (STUN) authentication. The usage of ephemeral tokens ensures that access to a STUN server can be controlled even if the tokens are compromised.

 Differentiated Services (Diffserv) and Real-Time Communication

 This memo describes the interaction between Differentiated Services (Diffserv) network quality-of-service (QoS) functionality and real- time network communication, including communication based on the Real-time Transport Protocol (RTP). Diffserv is based on network nodes applying different forwarding treatments to packets whose IP headers are marked with different Diffserv Codepoints (DSCPs). WebRTC applications, as well as some conferencing applications, have begun using the Session Description Protocol (SDP) bundle negotiation mechanism to send multiple traffic streams with different QoS requirements using the same network 5-tuple. The results of using multiple DSCPs to obtain different QoS treatments within a single network 5-tuple have transport protocol interactions, particularly with congestion control functionality (e.g., reordering). In addition, DSCP markings may be changed or removed between the traffic source and destination. This memo covers the implications of these Diffserv aspects for real-time network communication, including WebRTC.

 Multiplexing Scheme Updates for Secure Real-time Transport Protocol (SRTP) Extension for Datagram Transport Layer Security (DTLS)

 This document defines how Datagram Transport Layer Security (DTLS), Real-time Transport Protocol (RTP), RTP Control Protocol (RTCP), Session Traversal Utilities for NAT (STUN), Traversal Using Relays around NAT (TURN), and ZRTP packets are multiplexed on a single receiving socket. It overrides the guidance from RFC 5764 ("SRTP Extension for DTLS"), which suffered from four issues described and fixed in this document.
 This document updates RFC 5764.

 Traversal Using Relays around NAT (TURN) Server Auto Discovery

 Current Traversal Using Relays around NAT (TURN) server discovery mechanisms are relatively static and limited to explicit configuration. These are usually under the administrative control of the application or TURN service provider, and not the enterprise, ISP, or the network in which the client is located. Enterprises and ISPs wishing to provide their own TURN servers need auto-discovery mechanisms that a TURN client could use with minimal or no configuration. This document describes three such mechanisms for TURN server discovery.
 This document updates RFC 5766 to relax the requirement for mutual authentication in certain cases.

 Relaxing Restrictions on Explicit Congestion Notification (ECN) Experimentation

 This memo updates RFC 3168, which specifies Explicit Congestion Notification (ECN) as an alternative to packet drops for indicating network congestion to endpoints. It relaxes restrictions in RFC 3168 that hinder experimentation towards benefits beyond just removal of loss. This memo summarizes the anticipated areas of experimentation and updates RFC 3168 to enable experimentation in these areas. An Experimental RFC in the IETF document stream is required to take advantage of any of these enabling updates. In addition, this memo makes related updates to the ECN specifications for RTP in RFC 6679 and for the Datagram Congestion Control Protocol (DCCP) in RFCs 4341, 4342, and 5622. This memo also records the conclusion of the ECN nonce experiment in RFC 3540 and provides the rationale for reclassification of RFC 3540 from Experimental to Historic; this reclassification enables new experimental use of the ECT(1) codepoint.

 Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal

 This document describes a protocol for Network Address Translator (NAT) traversal for UDP-based communication. This protocol is called Interactive Connectivity Establishment (ICE). ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT (TURN).
 This document obsoletes RFC 5245.

 Session Description Protocol (SDP) Offer/Answer procedures for Interactive Connectivity Establishment (ICE)

 This document describes Session Description Protocol (SDP) Offer/ Answer procedures for carrying out Interactive Connectivity Establishment (ICE) between the agents. This document obsoletes RFC 5245.

 Work in Progress

 Security Considerations for WebRTC

 WebRTC is a protocol suite for use with real-time applications that can be deployed in browsers - "real time communication on the Web". This document defines the WebRTC threat model and analyzes the security threats of WebRTC in that model.

 Work in Progress

 TCP Extensions for Multipath Operation with Multiple Addresses

 TCP/IP communication is currently restricted to a single path per connection, yet multiple paths often exist between peers. The simultaneous use of these multiple paths for a TCP/IP session would improve resource usage within the network and, thus, improve user experience through higher throughput and improved resilience to network failure. Multipath TCP provides the ability to simultaneously use multiple paths between peers. This document presents a set of extensions to traditional TCP to support multipath operation. The protocol offers the same type of service to applications as TCP (i.e., reliable bytestream), and it provides the components necessary to establish and use multiple TCP flows across potentially disjoint paths. This document specifies v1 of Multipath TCP, obsoleting v0 as specified in RFC6824, through clarifications and modifications primarily driven by deployment experience.

 Work in Progress

 Transport Options for UDP

 Transport protocols are extended through the use of transport header options. This document extends UDP by indicating the location, syntax, and semantics for UDP transport layer options.

 Work in Progress

 Acknowledgements
 Most of the text in this note comes from the original TURN
 specification, . The authors would like to
 thank , coauthor of the original TURN specification, and everyone
 who had contributed to that document. The authors would also like to
 acknowledge that this document inherits material from .
 Thanks to , , , , and for
 their help on the ADDITIONAL-ADDRESS-FAMILY mechanism. The authors would
 like to thank , , ,
 , , , , , , , , ,
 , ,
 , ,
 , , and for comments and
 review. The authors would like to thank for his
 contributions to the text.
 Special thanks to for the detailed AD review.

 Authors' Addresses

 McAfee, Inc.

 Embassy Golf Link Business Park
 Bangalore
 Karnataka
 560071
 India

 kondtir@gmail.com

 Villanova University

 Villanova
 PA

 United States of America

 alan.b.johnston@gmail.com

 Alcatel-Lucent

 600 March Road
 Ottawa
 Ontario

 Canada

 philip_matthews@magma.ca

 jdrosen.net

 Edison
 NJ
 United States of America

 jdrosen@jdrosen.net
 http://www.jdrosen.net

