The
MDL

Programming Language

S. W. Calley and Greg Pfister

Laboratory for Computer Science

Massachusetts Institute of Technology

Massachusetts 02139

2 The MDL Progranming Language

Abstract

The MDIL programming language began existence in late 1970 (under the name Muddle) as a
successor to Lisp (Moon, 1974), a candidate vehicle for the Dynamic Modeling System, and a possible
base for implementation of Planner (Hewitt, 1969). The original design goals included an
interactive integraled environment for programming, debugging, loading, and editing: ease in
learning and use: facilities for structured, modular, shared programs; extensibility of syntax, data
types and operators: data-type checking for debugging and optional data-type declarations for
compiled ef ficiency: associative storage, coroutining, and graphics. Along the way to reaching those
goals, it developed flexible input/output (including the ARPA Network), and flexible interrupt and
signal handling. It now serves as a base for software prototyping, research, development, education,
and implementation of the majority of programs al MIT-DMS: a library of sharable modules, a
coherent user interface, special research projects, autonomous daeinons, etc.

This document was originally intended to be a simple low-level introduction to MDL. It has,
however, acquired a case of clephantiacis and now amounts to a discursive description of the whole
interpreter. as realized in MDL release numbers 55 (ITS version) and 105 (Tenex and Tops-20
versions). (Significant changes from the previous edition are marked in the margin.) A low-level
introduction may still be had by restricting one’s attention to specially-marked sections only. The
scope of the dncument is confined as much as possible to the interpreter itself. Other adjuncts
{compiler. assembler. pre-loaded user programs, library) are mentioned as little as possible, despite
their value in promating the language seen by a user from “basic survival® to "comfortable living~.
Indeed. MDI could not fulfill the above design goals without the compiler, assembler, structure
editor. control-stack printer, context printer, pretty-printer, dynamic loader, and library system - all
of which are not part of the interpreter but programs written in MDL and symbiotic with one
another. Further information on these ad juncts can be found in Lebling's (1979) document.

KEY WORDS: MDL
Muddle
Programming Languages

(¢) Copyright 1979 Massachusetts Institute of Technology. All rights reserved.

The MDL Programming Language 3

Acknowledgements

I was not a member of the original group which labored for two years in the design and initial
implementation of Muddle: that group was composed principally of Gerald Sussman, Carl Hewitt,
Chris Reeve, Dave Cressey, and later Bruce Daniels. I would therefore like to take this opportunity
to thank my Muddle mentors, chiefly Chris Reeve and Bruce Daniels, for remaining civil through
several months of verbal badgering. 1 believe that I learned more than "just another programming
language” in learning Muddle, and 1 am grateful for this opportunity to pass on some of that
knowledge. What I cannot pass on is the knowledge gained by using Muddle as a system; that I can
only ask you to share.

For editing the content of this document and correcting some misconceptions, I would like to thank
Chris Reeve, Bruce Daniels and especially Gerald Sussman, one of whose good ideas I finally did use.

Greg Pfister
December 15, 1972

Since Greg left the fold, T have taken up the banner and updated his document. The main sources
for small revisions have been the on-line file of changes to MDL, for which credit goes to Neal
Ryan as well as Reeve and Daniels, and the set of on-line abstracts for interpreter Subroutines,
contributed by unnamed members of the Programming Technology Division. Some new sections
were writlen almost entirely by others: Dave Lebling wrote chapter 14 and appendix 3, Jim Michener
section 14.3, Reeve chapler 19 and appendix I, Daniels and Reeve appendix 2, Brian Berkowitz
section 22.7, Tak To section 17.2.2, and Ryan section 17.1.3. Sue Pitkin did the tedious task
of marking phrases in the manuscript for indexing. Pitts Jarvis and Jack Haverty advised on the
use of PUB and the XGP. Many PTD people commented helpfully on a draft version.

My task has been to impose some uniformity and structure on these diverse sources (so that the
result sounds less like a dozen hackers typing at a dozen terminals for a dozen days) and to enjoy
some of the richness of MDL from the inside. I especially thank Chris Reeve ("the oracle”) for the
patience to answer questions and resolve doubts, as he no doubt has done innumerable times before.

5. W. Galley
May 23, 1979

This work was supported by the Advanced Research Projects Agency of the Department of Defense
and was monijtored by the Office of Naval Research under contract N00014-75-C-0661.

This document was prepared using the PUB system (originally from the Stanford Artificial

Imelligence Laboratory) and printed on the Xerox Graphics Printer of the M.LT. Artificial
Intelligence Laboratory.

4 The MDL Programming Language

Foreword

Trying to explain MDL to an uninitiate is somewhat like trying to untie a Gordian knot. Whatever
topic one chooses to discuss first, full discussion of it appears to imply discussion of everything
else. What follows is a discursive presentation of MDL in an order apparently requiring the fewest
forward references. 1t is not perfect in that regard: however, if you are patient and willing to

accept a few, stated things as “magic” until they can be explained better, you will probably not have
too many problems understanding what is going on.

There are no “practice problems” you are assumed to be learning MDL for some purpose, and your
work in achieving that purpose will be more useful and motivated than artificial problems. In

several cases, the examples contain illustrations of important points which are not covered in the
text. Ignore examples at your peril.

This document does not assume knowledge of any specific programming language on the your part.
However, "computational literacy"” is assumed: you should have written at least one program before.
Also, very little familiarity is assumed with the interactive time-sharing operating systems under
which MDL runs -- ITS, Tenex, and Tops-20 — namely just file and user naming conventions.

Motation:

Sections marked [1] are recommended for an uninitiate's first reading, in lieu of a separate

introduction or primer for MDL. [On first reading, text within brackets like these should be
ignored.]

Most specifically indicated examples lierein are composed of pairs of lines. The First line of a pair,
the input, always ends in $ (which is how the ASCII character ESC is represented, and which always
represents it), The sccond line is the result of MDL's groveling over the first. If you were to type
all the first lines at MDL. it would respond with all the second lines. (More exactly, the "first line”

is one or more objects in MDL followed by $, and the "second line” is everything up to the next
"first line".)

Anything which is written in the MDL language or which is typed on a computer terminal appears
herein in a gothic font, as in ROOT. A metasyntactic variable -- something to be replaced in actual
use by something else - appears as radixfix, in an italic font; often the variable will have both a
meaning and a data type (as herc). but sometimes one of those will be omitted, for obvious reasons.

An ellipsis (...) indicates that something uninteresting has been omitted. The character © means

that the following character is to be "controllified™ it is usually typed by holding down a terminal’s
CTRL key and striking the other key.

l
1
1
|

The MDL Programming Language

Page

16
20
27
30
35
43
52
7l
78
89
98
116
120
124
138
146
152
159
163
169
177
192
201
204

Name

1. Basic Interaction

Read, Evaluate, and Print
Built-in Functions
. Values of Atoms

. Simple Functions
. Dara Types

5
G
7. Structured Ob jects
8

. Truth

. Functions

. Looping

. Input/Output

. Locatives

. Assaciation (Propertics)

- Mata-type Declarations

. Lexical Blocking

. Errors, Frames, elc.

. Maern-nperations

. Machine Words and Bits
. Compiled Programs

. Caroutines

dnterrupts

. Storage Management

. MDL as a System Process
. Efficiency and Tastefulness

List of Chapters

Page

16
16
16
I8
18

20
20
20
21
22
22
22
22
23
24
24
24
25
26

27
27
27
28
28
29

30
30
30
30
31
31
32
32
32
32
33
33

The MDL Programming Language
List of Sections

Section

Chapter 1. Basic Interaction
1.l Loading MDL (1]
1.2 Typing [I]
1.3 Loading a File [1]
1.4 Errors - Simple Considerations [1]

Chapter 2. Read, Fvaluate, and Print
2.1 General [1]
2.2 Philosophy (TYPEs) [1]
2.3 Example (TYPE FIX) [1]
2.4 Example (TYPE T'LOAT) [1]
2.5 Example (TYPE ATOM, PNAME) (1]
26 F1¥es, FLOATs, and ATOMs versus READ: Specifics
2.6.1 READ and F IXcd-point Numbers
2.6.2 READ and PRINT versus FLOATing-point Numbers
2.6.3 HEAD and PRANES
2.6.3.1 Non-PHAHES
2.6.0.2 Examples
2.6.3.% \ (Backelash) in ATOMs
2.6.3.1 Examples of Awful ATOMs

Chapter 5. Built-in Functions
3.1 Representation [l]
2.2 Evaluation [1]
3.3 Built-in Functions (TYPE SUBR, TYPE FSUBR) [1]
3.4 Fxamples (+ and FIX; Arithmetic) [1]
3.5 Arithmetic: Details

Chapter -I. Valucs of Atoms
4.1 General [1]
4.2 Global Values
4.2.1 SETG [1)
4.2.2 GVaL [1]
4.2.3 Nnite on SUBRs and FSUBRs
41.2.1 GUNASSIGN
4.3 Local Values
431 SCT (1)
4.3.2 LVAL [1]
4.3.3 UNASSIGN
4.4 VALUE

List of Sections

e ——

The MDL Progranmming Language

35 Chapter 5. Simple Functions
35 5.1 General [I]

35 5.2 Representation [l]

36 5.3 Application of FUNCTIONs: Binding [1]

39 5.4 Defining FUNCTIONs (FUNCTION and DEFINE) [1]
40 5.5 Examples (Comments) [1]

43 Chapter 6. Data Types

43 6.1 General [1]

43 6.2 Printed Representation [1]

44 6.3 SUBRs Related to TYPEs

44 6.3.1 TYPE [1]

44 6.3.2 PRIMTYPE [1]

45 6.3.3 TYPEPRIM [I]

45 6.3.4 CHTYPE [I]

46 6.4 Morc SUBRs Related to TYPEs

46 6.4.1 ALLTYPES

46 6.4.2 VALID-TYPE?

46 6.4.3 NEWTYPE

48 6.4.4 PRINTTYPE, EVALTYPE and APPLYTYPE
52 Chapter 7. Structured Ob jects

52 7.1 Manipulation

52 7.1.1 LENGTH [1]

52 7.1.2 NTH 1]

52 7.1.3 REST 1]

53 7.1.4 PUT [1]

53 7.1.5 GET

53 7.1.6 APPLYing a FIX [I]

54 7.1.7 5UBSTRUC

54 7.2 Representation of Basic Structures
54 7.2.1 LIST [1]

54 7.2.2 VECTOR [1)

54 7.2.3 UVECTOR [1]

55 7.2.4 STRING [1]

55 7.2.5 BYTES

55 7.2.6 TEMPLATE

55 7.3 Evaluation of Basic Structures [I]
55 7.4 Examples [I]

56 7.5 Generation of Rasic Structures

56 7.5.1 Direct Representation [l]

56 7.5.2 QUOTE [1]

57 7.5.3 LIST, VECTOR, UVECTOR, and STRING (the SUBRs) [1]
57 7.5.4 ILIST, IVECTOR, IUVECTOR, and ISTRING [1]
58 7.5.5 FORM and IFORM

List of Sections

59
59
59
59
60
60
60
60
60
61
63
63
63
64
64
65
65
65
65
65
66
66
66
67
67
68
69
69
69
70

7l
71
71
71
72
73
74
75
75
76
76
17

78

7.6 Unique Properties of Primitive TYPEs
7.6.1 LIST (the PRIMTYPE) [1]
7.6.1.1 PUTREST [1]
7.6.1.2 CONS
7.6.2 "Array” PRIMTYPEs [1]
7.6.2.1 BACK [1]
7.6.2.2 TOP [1]
7.6.3 "Vector™ PRIMTYPEs
7.6.3.1 GROW
7.6.3.2 SORT
7.6.4 VECTOR (the PRIMTYPE) [I]
7.6.5 UVECTOR (the PRIMTYPE) [1]
7.6.5.1 UTYPE [I]
7.6.5.2 CHUTYPE [1]
7.6.6 STRING (the PRIMTYPE) and CHARACTER [1]
7.6.6.1 ASCII [1]
7.6.6.2 PARSE [I]
7.6.6.3 LPARSE [I]
7.6.6.4 UNPARSE [1]
7.6.7 BYTES
7.6.8 TEMPLATE
7.7 SEGHMENTs [1]
7.7.1 Representation (1]
7.7.2 Evaluation [1]
7.7.3 Examples [1]
7.7.4 Note on Efficiency [1]
7.7.5 SEGMENTs in FORMs [I]
7.8 Self-referencing Structures
7.8.1 Self-subset
7.8.2 Self-element

Chapter 8 Truth

8.1 Truth Values [1]

8.2 Predicates [I]
8.2.1 Arithmetic (1]
8.2.2 Equality and Membership [l]
8.2.5 Bonlean Operators [I]
8.2.4 Object Properties [I]

8.3 COND [1]
8.3.1 Examples [I]

8.4 Shorteuts with Conditionals
8.4.1 AND and OR as Short CONDs
8.4.2 Embedded Unconditionals

Chapter 9. Functions

List of Sections

The MDL Programming Language

The MDL Programming Language

78
79
77
80
81
B2
52
B3
B3
B4
84
86
838
38

89
89
81
90
a0
]|
92
92
92
24
24
95
95
95
96
96
97

9.1 "OPTIONAL" 1]
9.2 TUPLEs

9.2.1 "TUPLE"™ and TUPLE (the TYPE) [1]

9.2.2 TUPLE (the SUBR) and ITUPLE
9.3 "Aux" 1]

0.4 QUOTEd arguments
9.5 "ARGS"

0.6 "CALL"

0.7 EVAL and "BIND"

9.7.1 Local Values versus ENVIRONMENTS
9.8 ACTIVATION, "NAMC", "ACT", AGAIN, and RETURN [1]
9.9 Argument List Summary
2,10 APPLY [1]

9.11 CLOSURE

Chapter 10. Looping

10.1 PROG and REPEAT [I]
10.1.1 Basic EVALuation [I)
10.1.2 AGATH and RETURN in PROG and REPEAT [I]
1013 Examples [1]
10.2 MAPF and MAPR: Basics [I]
10.%.1 MAPF [1]

10.2.3 Examples [1]

10.3 More on HAPF and MAPR
10.3.1 HAPRCT
10.5.2 MAPSTOP
10.53.3 HAPLEAVE
10.3.-1 Only two arguments
10.5.5 STACKFORM

10,4 GO and TAG

10.5 Looping versus Recursion

Chapter 11 Input/Output

L1 Conversion 1)O

LLLT Tnput
1LLLT READ
ILLL2 READCHR
1S HEXICHR

L2 Output
1LL2.1 PRINT
11122 PRINI
IL1.2.3 PRINC
I1.1.2.4 TERPRI
11.1.2.5 CRLF

List of Sections

10 The MDL Programming Language

100 i1.1.2.6 FLATSIZE

{1]] 11.2 CHARNEL (the TYPE)

101 11.2.1 OPEN

102 11.2.2 OPEN-NR

107 11.2.3 CHANNEL (the SUBR)

103 11.2.4 FILE-EXISTS?

103 11.2.5 CLOSE

103 11.2.6 CHANLIST

103 11.2.7 INCHAN and OUTCIHAN

104 11.2.8 Contents of CHANHELs

104 1281 Ouput CHANHELs

10% 1L.2.82 Input CHANNELS

105 11.3 Fnd-nf-File "Routine” h
106 114 Imaged 1/0 !
106 i.4.1 Input i
106 11.4.1.1 READB :

106 11.4.1.2 READSTRING :
106 11.4.2 Omput

106 11.4.2.1 PRINTB

106 11.4.2.2 PRINTSTRING *
107 11.41.2.3 THAGE

107 1.5 Dumped 1/O

107 11.5.1 Output: GC-DUNMP 1
107 11.5.2 Input: 6C-READ

108 11.6 SAVE Files

108 11.G.} SAVE

109 11.6.2 RESTORE

109 11.7 Other O Functions

109 11.7.1 LOAD

i1e 11.7.2 FLOAD

1o 11.7.5 SHAHE

110 11.7.4 ACCESS

110 11.7.5 FILE-LENGTH

111 11.7.6 FILECOPY

(1] 11.7.7 RESET]
It 11.7.8 BN QUT

i1 11.7.9 REHAME

112 11.8 Terminal CHARNELs

113 11.5.1 ECHOPAIR

113 11.B.2 TIYECHO

113 .83 1Y¥I

i13 1.9 Internal CHANRELs

114 11.10 The "NET® Device: the ARPA Network

115 11.10.1 HETSTATE

115 11.10.2 NETACC

List of Sections

——

The MDL Programming Language

115

116
116
116
1n7
17
1z
17
118
118
118
119

i20
120
120
120
120
121
121
121
121
123

124
125
128
130
131
131
131
132
132
133
134
134
134
134
135
135
136

138
138

I1.10.3 NETS

Chapter 12. Locatives

12.1 Obtaining Locatives
12.1.1 LLOC
12.1.2 GLOC
12.1.3 AT
12.1.4 GETPL and GETL

12.2 LOCATIVE?

12.3 Using Locatives
12.5.1 IN
12.3.2 SETLOC

12.4 Note on Locatives

Chapter 13. Association (Properties)

13.1 Associative Storage

13.1.1 PUTPROP

13.1.2 PUT

13.1.3 Removing Associations
13.2 Associative Retrieval

13.2.1 GETPROP

13.2.2 GET
13.3 Examples of Association
13.4 Examining Associations

Chapter 4. Data-type Declarations
I4.1 Patterns
14.2 Examples
14.3 The DECL Syntax
14.4 Good DECLs
14.5 Clobal DECLs
14.5.1 GDECL and MANIFEST

14.5.2 MANIFEST? and UNMANIFEST

14.5.3 GBOUND?

14.6 NEWTYPE (again)

14.7 Controlling DECL Checking
14.7.1 DECL-CHECK

14.7.2 SPECIAL-CHECK and SPECIAL-MODE
14.7.3 GET-DECL and PUT-DECL

14.7.4 DECL?
14.8 OFFSET
14.9 The RSUBR DECL

Chapter 15. Lexical Blocking
15.1 Basic Considerations

List of Sections

11

12

139 15.2 OBLISTs

139 15.2.1 OBLIST Names

140 15.2.2 MOBLIST

140 15.2.3 OBLIST?

140 15.3 READ and OBLISTs

141 15.4 PRINT and OBLISTs
141 15.5 Initial State

142 15.6 BLOCK and ENDBLOCK
142 15.7 SUBRs Associated with Lexical Blocking
142 15.7.1 READ (again)

143 15.7.2 PARSE and LPARSE (again)
143 15.7.3 LOOKUP

143 15.7.4 ATOM

143 15.7.5 REHOVE

143 15.7.6 TNSERT

144 15.7.7 PNAME

144 15.7.8 SPNAME

144 15.8 Example: Another Solution to the INC Problem
146 Chapter 16. Errors, Frames, ete.
146 16.1 LISTEN

147 16.2 ERROR

147 16.3 FRAME (the TYPE)

148 16.3.1 ARGS

148 16.3.2 FUNCT

148 16.3.3 FRAME (the SUBR)
148 16.3.4 Examples

148 16.4 ERRET

150 16.5 RETRY

150 16.6 UNWIND

150 16.7 Control-G (*6)

151 16.8 Control-5 (*5)

151 16.9 OVERFLOW

152 Chapter 17. Macro-operations

152 17.1 READ Macros

152 I7.L1 % and %%

153 17.1.2 LINK

153 17.1.3 Program-defined Macro-characters
153 17.1.3.1 READ (finally)

155 17.1.5.2 Examples

156 [7.1.3.3 PARSE and LPARSE (finally)
156 17.2 EVAL Macros

156 17.2:1 DEFMAC and EXPAND

157 17.2.2 Example

List of Sections

The MDL Programming Language

The MDL Programming Language

159 Chapter 18. Machine Words and Bits
159 18.1 WORDs

160 18.2 BITS

160 18.3 GETBITS

161 18.4 PUTBITS

161 18.5 Bitwise Boolean Operations

162 I8.6 Bitwise Shifting Operations

163 Chapter 19. Compiled Programs

163 19.1 R5URR (the TYPE)

163 19.2 The Reference Vector

164 19.3 RSUBR Linking

164 19.4 Pure and Impure Code

165 19.5 TYPE-C and TYPE-W

165 19.6 RSUBR (the SUBR)

166 19.7 RSUDR-ENTRY

166 19.8 RSUBRs in Files

167 19.9 Fixups

169 Chapter 20. Coroutines

169 20.1 PROCESS (ihe TYPE)

170 20.2 STATE of a PROCESS

170 20.3 PROCESS (the SUBR)

170 20.4 RCSUME

171 20.5 Switching PROCESSes

171 20.5.1 Starting Up a New PROCESS
171 20.5.2 Top-level Return

172 20.5.3 Symmetric RESUMEing
173 20.6 Example

173 20.7 Other Coroutining Features
173 20.7.1 BREAK-SEQ

174 20.7.2 HAIN

174 20.7.3 ME

174 20.7.4 RESUMER

174 20.7.5 SUICIDE

175 20.7.6 1STEP

175 20.7.7 FREE-RUN

175 20.8 Sneakiness with PROCESSes
176 20.9 Final Notes

177 Chapter 21. Interrupts

177 211 Definitions of Terms
178 21.2 EVENT
179 21.3 HANDLER (the SUBR}

179 21.4 OFF

List of Sections

14 The MDL Programming Language

180 21.5 THEADER and HANDLER (the TYPEs)

180 21.5.1 THEADER

181 21.5.2 HANDLER

181 21.6 Other SUBRs

182 21.7 Priorities and Interrupt Levels
182 21.7.1 Interrupt Processing

183 21.7.2 INT-LEVEL

183 21.7.3 DISHMISS

184 21.8 Specific Interrupts

184 21.8.1 "CHAR®™ reccived

185 21.8.2 "CHAR"™ wanted

185 21.8.3 "CHAR" for new line

186 21.8.4 "6C”

186 21.8.5 "DIVERT-AGC"®

187 21.8.6 "CLOCK"

187 21.8.7 "BLOCKED"

187 21.8.8 "UNBLOCKED*"

187 21.8.9 "READ™ and "WRITE"

188 21.8.10 *SYSDOWN®

188 21.8.11 "ERROR"

189 21.8.12 ~1PC"

189 21.8.13 "INFERIOR"®

189 21.8.14 "RUNT™ and "REALT™

189 21.8.15 "Dangerous” Interrupts
190 21.9 User-Defined Interrupts (INTERRUPT)
191 21.10 Waiting for Interrupts

191 21.10.1 HANG

191 21.10.2 SLEEP

192 Chapter 22. Storage Managemnent

192 22.1 Movable Garbage-collected Storage
193 22.1.1 Stacks and Other Internal Vectors
194 22.2 lmmovable Storage

194 22.2.1 Garbage-collected: FREEZE
194 22.2.2 Non-garbage-collected: STORAGE (the PRIMTYPE)
194 22.3 Other Storage

195 22.4 Garbage Collection: Details
195 22.5 GC

196 22.6 BLOAT

198 22.7 BLOAT-STAT

199 22.8 GC-HON

199 22.9 Related Subroutines

199 22.9.1 SUBSTITUTE

199 22.9.2 PURIFY

List of Sections

The MDL Programming Language

201
201
201
202
202
202
203
203
203
203
204
204
205
207
208
208
208
209
209

211

258
260
265
266
267

271

Chapter 25. MDL as a System Process
23.1 TIHE
23.2 Names
3.3 Exits
3.4 Inter-process Communication
2501 SEND and SEND-WALT
2342 The "IPC" Interrupt
23.4.7 IPC-OFF
25.-1.-1 1PC-ON
23.4.5 DEMSIG

2
2

Chapter 24, Efficiency and Tastefulness
241 Efficiency
2111 Example
24.2 Creating a LIST in Forward Order
24.3 Read-only Free Variables
24.44 Ginhal and Local Values
245 Making Offsets for Arrays
24.6 Tables
24.7 Nesting
Appendix 1. A Look Inside
Appendix 2. Predefined Subroutines
Appendix 3. Predefined Types
Appendix 4. Error Messages
Appendix 5. Initial Settings
References

Topic Index

Name Index

List of Sections

15

oy

i6 The MDL Programming Language

Chapter 1. Basic Interaction

The purposc of this chapter is to provide you with that minimal amount of information needed to
experiment with MDL while reading this document. It is strongly recommended that you do
experiment, especially upon reaching chapter 5 (Simple Functions).

L.1. Loading MDL [1]

First, catch your rabbit. Somchow get the interpreter running - the program in the file SYS:TS MDL

in the 1TS version or SYS:MDL.SAV in the Tenex version or SYS:MDL.EXE in the Tops-20 version.

The interpreier will first type out some news relating to MDL, if any, then type
I.LISTENING-AT-LEVEL 1 PROCESS 1

and then wait for you to type something.

The program which you are now running is an interpreter for the language MDL. All it knows how
to do is interprel MDL expressions. There is no special "command language™ you communicate
with the progranm -- make it do things for you -- by actually typing legal MDL expressions, which it

then interprets. Fverything you can do at a terminal can be done in a program, and vice versa, in
exactly the same way.

The program will e referred to as just "“MDL" (or "the interpreter”) from here on. There is no
ambiguity, since the program is just an incarnation of the concept "MDL"

1.2. Typing [1]

Typing a character at MDL normally just causes that character to be echoed (printed on your

terminal) and reniembered in a buffer. The only characters for which this is normally not true act
as follows:

Typing & {ESC) causes MDL to echio dollar-sign and causes the contents of the buffer (the characters

1-12 Basic Interaction

The MDL Programming Language 17

which you've typed) to be interpreted as an expression(s) in MDL. When this interpretation is done,
the result will be printed and MDL will wait for more typing. ESC will be represented by the glyph
5 in this document.

Typing the rubout character (DEL in the ITS and Tops-20 versions, control-A in the Tenex version)
causes the last character in the buffer -- the one most recently typed - to be thrown away (deleted).
If you now immediately type another rubout, once again the last character is deleted -- namely, the
second most recently typed. Ete. The character deleted is echoed, so you can see what you're doing.
On some “display” terminals, rubout will "echo” by causing the deleted character to disappear. If no
characters are in the buffer, rubout echoes as carriage-return line-feed.

Typing “@ (control-atsign) deletes everything you have typed since the last $, and prints a carriage-
return line-feed.

Typing ~D (control-D) causes the current input buffer to be typed back out at you. This allows you
to see what you really have, without the confusing re-echoed characters produced by rubout.

Typing “L (control-L) produces the same effect as typing °D, except that, if your terminal is a
"display” terminal (for cxample, IMLAC, ARDS, Datapoint), it first clears the screen.

Typing "G (control-G) causes MDL to stop whatever it is doing and act as if an error had occurred
(section L.4). ~G is generally most useful for temporary interruptions to check the progress of a

computation. "G is "reversible” - that is, it does not destroy any of the "state” of the computation it
interrupts. To "undo” a *G, type the characters

<ERRET T>%
(This is discussed more fully far below, in section 16.4.)

Typing S (control-S) causes MDL to throw away what it is currently doing and return to a normal
“listening” state. (In the Tenex and Tops-20 versions, "0 also should have the same effect) S is
generally most useful for aborting infinite loops and similar terrible things. “5 destroys whatever
Is going on, and so it is not reversible.

Most expressions in MDL include "brackets" (generically meant) that must be correctly paired and
nested. If you end your typing with the pair of characters !§ (exclamation-point ESC), all currently
unpaired brackers (but not double-quotes, which bracket strings of characters) will automatically be
paired and interpretation will start. Without the !, MDL will Just sit there waiting for you to pair
them. If you have improperly nested parentheses, brackets, etc., within the expression you typed, an
error will occur, and MDL will tell you what is wrong.

Once the brackets are properly paired, MDL will immediately echo carriage-return and line-feed, and
the next thing it prints will be the result of the evaluation. Thus, if a plain § is not so echoed, you

1.2 Basic Interaction

18 The MDL Programming Language

have some expression unclosed. In that case, if you have not typed any characters beyond the §,
you can usually rub out the $ and other characters back to the beginning of the unclosed expression.

Otherwise, what you have typed is beyond the help of rubout and “@; if you want to abort it, use
5

MDL accepts and distinguishes between upper and lower case. All "built-in functions” must be
referenced in upper case,

1.3. Loading a File [I]

If you have a program in MDL that you have written as an ASCII file on some device, you can
"load” it by typing

{FLOAD file>3%

where file is the name of the file, in standard operating-system syntax, enclosed in "s (double-
quotes). Omitted parts of the file naine are taken by default from the file name "DSK: INPUT >*

(in the ITS version) or "DSK: INPUT.MUD" (in the Tenex and Tops-20 versions) in the current disk
directory.

Once you type 3, MDL will process the text in the file (including FLOADs) exactly as if you had
typed it on a terminal and followed it with §, except that "values” produced by the computations
are not printed. When MDL is finished processing the file, it will print "DONE".

When MDL starts running, it will FLOAD the file *"MUDDLE INIT" (ITS version) or "MUDDLE.INIT"
(Tenex and Tops-20 versions). if it exists.

l.4. Errors -- Simple Considerations [1]

When MDL decides for some reason that something is wrong, the standard sequence of evaluation is
interrupted and an error function is called. This produces the following terminal output:

*ERROR™

often-hyphenated-reason
functien-in-which-error-occurred
LISTENING-AT-LEVEL integer PROCESS infeger

You can now interact with MDL as usual, typing expressions and having them evaluated. There

exist facilities (built-in functions) allowing you to find out what went wrong, restart, or abandon
whatever was going on. In particular, you can recover from an error - that is, undo everything but

1.2-14 Basic Interaction

The MDL Programming Language 19

side effects and return to the initial typing phase -- by typing the following first line, to which
MDL will respond with the second line:

CERRET>S
LISTENING-AT-LEVEL 1 PROCESS 1

If you type the following first line while still in the error state (before <ERRET>), MDL will print, as

shown, the arguments (or “parameters” or "inputs” or “independent variables”) which gave
indigestion to the unhappy function:

{ARGS <FRAME <FRAME>»>%
L arguments to unhappy function]

This will be explained by and by.

1.4 Basic Interaction

20 The MDL Programming Language

Chapter 2. Read, Evaluate, and Print

2.1. General [1]

Once you type 5 and all brackets are correctly paired and nested, the current contents of the input
buffer go through processing by three functions successively: first READ, which passes its output to
EVAL ("evaluate”). which passes its output to PRINT, whose output is typed on the terminal.
[Actually, the scquence is more like READ, CRLF, EVAL, PRINI, CRLF (explained in chapter 11}
MDL gives you a carriage-return line-feed when the READ is complete, that is, when all brackets are
paired.]
Functionally,

READ: printable representations --> MDL ob jects

EVAL: MDL objects --> MDL ob jects

PRINT: MDL objects --> printable representations

That is, READ takes ASCII text, such as is typed in at a terminal, and creates the MDL ob jects
represented by rhat text. PRINT takes MDL ob jects, creates ASCII text representations of them, and

types them out. EVAL, which is the really important one, performs transformations on MDL
ob jects.

2.2. Philosophy (TYPCs) [1]

In a general sense. when you are interacting with MDL, you are dealing with a world inhabited only
by a particular set of objects: MDL ob jects.

MDL objects are best considered as abstract entities with abstract properties. The properties of a
particular MDL object depend upon the class of MDL objects to which it belongs. This class is the

2-22 Read, Evaluate, and Print

Mo e

it

[

The MDL Programming Language 21

TYPE of the MDL object. Every MDL object has a TYPE, and every TYPE has its own peculiarities.
There are many different TYPEs in MDL: they will gradually be introduced below, but in the
meantime here is a representative sample: SUBR (the TYPE of READ, EVAL and PRINT), FSUBR, LIST,
VECTOR, FORM, FUNCTION, etc. Since every object has a TYPE, one often abbreviates “an obj ject of
TYPE type" by saying "a type".

The laws of the MDL world are defined by EVAL. In a very real sense, EVAL is the only MDL ob ject
which "acts”, which "does something”. In "acting”, EVAL is always “following the directions” of some
MDL object. Every MDL object should be looked upon as supplying a set of directions to EVAL;
what these directions are depends heavily on the TYPE of the MDL ob ject.

Since EVAL is so ever-present, an abbreviation is in order: "evaluates to something”™ or "EVALs to
something” should be taken as an abbreviation for "when given to EVAL, causes EVAL to return
something”.

As abstract entitics, MDL objects are, of course, not "visible”. There is, however, a standard way of
representing abstract MDL objects in the real world. The standard way of representing any given
TYPE of MDL object will be given below when the TYPE is introduced. These standard
representations are what READ understands, and what PRINT produces.

2.3. Example (TYPE FIX)[1]

1%
1

The following has occurred:

First, READ recognized the character 1 as the representation for an object of TYPE FIX, in particular
the one which corresponds to the integer one. (FIX means integer, because the decimal point is
understood always to be in a fixed position: at the right-hand end) READ built the MDL ob ject
corresponding to the decimal representation typed, and returned it.

Then EVAL woted that its input was of TYPE FIX. An object of TYPE FIX evaluates to itself, so
EVAL returned its input undisturbed.

Then PRINT saw that its input was of TYPE FIX, and printed on the terminal the decimal character
representation of the corresponding integer.

22-23 Read, Evaluate, and Print

22 The MDL Programming Language

2.4. Example (TYPE FLOAT) [I]

1.0%
1.0

What went on was entircly analogous to the preceding example, except that the MDL ob ject was of
TYPE FLOAT. (FLOAT means a real number (of limited precision), because the decimal point can float
around to any convenient position: an internal exponent part tells where it “really” belongs.)

2.5. Example (TYPE ATOM, PHAME) [I]

GCORGLS
GEORGE

This time a lot more happencd.

READ noted that what was typed had no special meaning, and therefore assumed that it was the
represcntation of an identifier, that is, an object of TYPE ATOM. ("Atom”™ means more or less
indivisible.) READ thercfore attempted to look up the representation in a table it keeps for such
purposes [a LIST of OBLISTs, available as the local value of the ATOM OBLIST). If READ finds an
ATOM in its table corresponding to the representation, that ATOM is returned as READ's value. If READ
Fails in looking up, it creates a new ATOM, puts it in the table with the representation read [INSERT
into <1 .OBLIST> usually] and returns the new ATOM. Nothing which could in any way be
referenced as a legal "value” is attached to the new ATOM. The initially-typed representation of an
ATOM becomes its PNAME, meaning its name for PRINT. One often abbreviates "ob ject of TYPE ATOM
with PNAME name” by saying "ATOM name".

EVAL, given an ATOM, returned Jjust that ATOM.
PRINT, given an ATOM, typed out its PNAME.

At the end of this chapter, the question "what is a legal PNAME" will be considered. Further on, the
methods used to attach values to ATOMs will be described.

2.6. FIXes, FLOATs, and ATOMs versus READ: Specifics

2.6.1. READ and FIXed-point Numbers

READ considers any grouping of characters which are solely digits to be a FIX, and the radix of the

24-281 Read, Evaluate, and Print

E I n 402 T 6n

The MDL Programming Language 23

representation is decimal by default. A . (hyphen) immediately preceding such a grouping
represents a negative FIX. The largest FIX representable on the PDP-10 is two to the 35th power
minus one, or 34 359 738 367 (decimalk the smallest is one less than the negative of that number. If
you atfempt o type in a FIX outside that range, READ converts it to a FLOAT; if a program you
write attempts to produce a FIX outside that range, an overflow error will occur (unless it is

- disabled),

The radix used by READ and PRINT is changeable by the user: however, there are two formats for

representations of FIXes which cause READ to use a specified radix independent of the current one.
These are as follows:

(1) If a group of digits is immediately followed by a period (.), READ interprets that group as
the decimal representation of a FIX. For example, 10. is always interpreted by READ as the
decimal representation of ten.

(2) If a group of digits is immediately enclosed on both sides by asterisks (*), READ interprets

that group as the octal representation of a FIX. For example, *10% is always interpreted by
READ as the octal representation of eight.

2.6.2. READ and PRINT versus FLOATing-point Numbers

PRINT can produce, and READ can understand, two different formats for objects of TYPE FLOAT.
The Ffirst is "decimal-point” notation, the second is "scientific” notation. Decimal radix is always
used for representations of FLOATs.

"Decimal-point” notation for a FLOAT consists of an arbitrarily long string of digits containing one

- {period) which is followed by at least one digit. READ will make a FLOAT out of any such ob ject,
with a limit of precision of one part in 2 to the 27th power.

“Scientific" notation consists of:

{1} a number,

(2} immediately followed by E or e (upper or lower case letter E),
(3} immediately followed by an exponent,

where a "number” is an arbitrarily long string of digits, with or without a decimal point (see
following notel and an “exponent” is up to two digits worth of FIX. This notation represents the
“number” to the “exponent” power of ten. Note: if the "number” as above would by itself be a FIX,
and if the "exponent” is positive, and if the result is within the allowed range of FIXes, then the

result will be a FIX. For example, READ understands 10E1 as 100 (a FIX), but 10E-1 as 1.0000000 (a
FLOAT).

The largest-magnitude FLOAT which can be handled without overflow is 1.7014118E+38 (decimal
radix). The smallest-magnitude FLOAT which can be handled without underflow is .14693679E-38,

2.6.1 - 2.6.2 Read, Evaluate, and Print

24 The MDL Programming Language

2.6.3. READ and NMNAMEs

The question "what is a legal PNAME?" is actually not a reasonable one to ask: any non-empty string
of arbitrary characters can be the PNAME of an ATOM. However, some PNAMEs are easier to type to
READ than others. But even the question "what are easily typed PNAMEs*" is not too reasonable,
because: READ decides that a group of characters is a PNAME by default; if it can't possibly be
anything else, it's a PNAME. So. the rules governing the specification of PNAMEs are messy, and best
expressed in terms of what is not a PNAME. For simplicity, you can just consider any uninterrupted
group of upper- and lower-case letters and (customarily) hyphens to be a PNAME; that will always
work. If you are neither a perfectionist nor a masochist, skip to the next chapter.

2.6.3.1. Non-PNAMLs

A group of characters is not a PNAME if:
(1) It represents a FLOAT or a FIX, as described above -- that is, it is composed wholly of digits,
or digits and a single . {(period), or digits and a . and the letter E or e (with optional minus
signs in the right places).

(2) It begins with a . (period).

(3) 1t contains -- if typed interactively -- any of the characters which have special interactive
effects: *@, ~D, ~L, "G, 5, ~0, $ (ESC), rubout.

(4) Tt contains a format character - space, carriage-return, line-feed, form-feed, horizontal tab,
vertical tab.

(5) Tt contains a , (comma) or a # (number sign) or a ' (single quote) or a ; (semicolon) or a %
{(percent sign).

(6) It contains any varicty of bracket -- (or Jor [or Jor <or >or { or Yor ™.
In addition, the character \ (backslash) has a special interpretation, as mentioned below. Also, the
pair of characters !- (exclamation-point hyphen) has an extremely special interpretation, which you
will reach at chapter 15.
The characters mentioned in cases 4 through 6 are "separators™ -- that is, they signal to READ that
whatever it was that the preceding characters represented, it's done now. They can also indicate the
start of a new ob ject's representation {all the opening “brackets” do Jjust that).

2.6.3.2. Examples

The following examples are not in the "standard format” of “line typed in§ result printed”, because
they are not. in some cases, complete objects; hence, READ would continue waiting for the brackets to

2,63 - 2632 Read, Evaluate, and Print

g€

ng
1]
ile,
be
-1
ed
ys

ts,
us

¥Ye

he
u

at
he

to

nt

The MDL Programming Language 95

be clased. In other cases, they will produce errors during EVALuation if other -- currently irrelevant
-- conditinns are nnt met. Instead, the right-hand column will be used to state Jjust what READ
thought the input in the left-hand column really was.

ABCS an ATOM of PNAME ABC

abck an ATOM of PNAME abe

ARBITRARILY-LONG-PNAMES an ATOM of PNAME ARBITRARILY-LONG-PNAME

1.2345% a FLOAT, PRINTed as 1.2345000

1.2.345% an ATOM of PNAME 1.2.345

A.or .BS an ATOM of PNAME A.or.B

.A.or.B% not an ATOM, but (as explained later) a FORM containing

an ATOM of PNAME A.or.B
MORE THAN ONES% three ATOMs, with PNAMEs MORE, and THAN, and ONE

ab(cds an ATOM of PNAME ab, followed by the start of something
else (The something else will contain an ATOM of PNAME
beginning cd.)

12345034% an ATOM of PNAME 12345A34 (If the A had been an E, the
ob ject would have been a FLOAT.)

2.6.3.3. \ (Backslash} in ATOMs

If you have a strange, uncontrollable compulsion to have what were referred to as "separators” above
as part of the MNAMEs of your ATOMs, you can do so by preceding them with the character \
(backslash). \ will also magically turn an otherwise normal FIX or FLOAT into an ATOM if it appears
amongst the digits. In fact, backslash in front of any character changes it from something special
to "just annther characier” (including the character \). It is an escape character,

When PRINT confronts an ATOM which had to be backslashed in order to be an ATOM, it will
dutifully type out the required \s. They will not, however, necessarily be where you typed them;
they will instead be at those positions which will cause READ the least grief. For example, PRINT will

tYpe out a PNAME which consists wholly of digits by first typing a \ and then typing the digits - no
atter where you originally typed the \ (or \s).

2.6.3.2 - 26.3.3 Read, Evaluate, and Print

26 The MDL Programming Language

2.6.3.4. Examples of Awful ATOMs

The following examples illustrate the amount of insanity that can be perpetrated by using \. The

format of the examples is again non-standard, this time not because anything is unfinished or in
error, but because commenting is needed: PRINT doesn't do it full justice.

a\ one\ and\ a\ two} one ATOM, whose PNAME has four spaces in it

1234567898 an ATOM of PNAME 123456789, which PRINTs as
\123456789

123\ % an ATOM of PNAME 123space, which PRINTs as \123\ ,

with a space on the end

AR Y- an ATOM whose PNAME is a single backslash

26354 Read, Evaluate, and Print

EE

as

it

The MDL Programming Language 27

Chapter 3. Built-in Functions

3.1. Representation [I]

Up to this point, all the objects we have been concerned with have had no internal structure
discernible in MDL. While the characteristics of objects with internal structure differ greatly, the
way READ and PRINT handle them is uniform, to wit:

READ, when applied to the representation of a structured ob ject, builds and returns an ob ject of
the indicated TYPE with elements formed by applying READ to each of their representations in

turmn.

PRINT, when applied to a structured object, produces a representation of the object, with its
elements represented as PRINT applied to each of them in turn.

A MDL object which is used to represent the application of a function to its arguments is an ob ject
of TYPE FORM. Its printed representation is

< func arg-1 arg-2 .., arg-N >
where func is an object which designates the function to be applied, and arg-l through arg-N are
objects which designate the arguments or "actual parameters” or “inputs®. A FORM is just a
structured ob jeet which is stored and can be manipulated like a LIST (its "primitive type” is LIST —

chapter 6). The application of the function to the arguments is done by EVAL. The usual meaning
of "function” (uncapitalized) in this document will be anything applicable to arguments.

3.2. Evaluation [I]
EVAL applied to a FORM acts as if following these directions:

First, examine the func (First element) of the FORM. If it is an ATOM, look at its "value" (global or
local, in that order -- see next chapter). If it is not an ATOM, EVAL it and look at the result of the

3-32 Built-in Functions

28 The MDL Programming Language

evaluation. If what you are looking at is not something which can be applied to arguments,
complain (via the ERROR function). Otherwise, inspect what you are looking at and follow its

directions in evaluating or not evaluating the arguments (chapters 9 and 19) and then “apply the
Function” -- that is. EVAL the body of the ob ject gotten from func.

3.3. Built-in Functions (TYPE SUBR, TYPE FSUBR) [1]

The built-in functions of MDL come in two varieties: those which have all their arguments EVALed
before operating en them (TYPE SUBR, for "subroutine”. pronounced “subber”) and those which have
none of their arguments EVALed (TYPE FSUBR, historically from Lisp (Moon, 1974), pronounced
"effsubber”). Collectively they will be called F/SUBRs, although that term is not meaningful to the
interpreter. See appendix 2 for a listing of all F/SUBRs and short descriptions. The term

“Subroutine” will be used herein to mean both F/SUBRs and compiled user programs (RSUBRs and
RSUBR-ENTRYs -- chapter 19).

Unless otherwise stated. every MDL built-in Subroutine mentioned is of TYPE SUBR. Also, when it

is stated that an argument of a SUBR must be of a particular TYPE, note that this means that EVAL
of what is there must be of the particular TYPE.

Another convenient abbreviation which will be used is “the SUBR pname” in place of "the SUBR which

is initially the 'value' of the ATOM of PNAME pname”. "The FSUBR pname” will be used with a similar
meaning.

3.4. Examples (+ and FIX; Arithmetic) [I]

<+ 2 4 6%
12

The SUBR + adds numbers. Most of the usual arithmetic functions are MDL SUBRs: +, =, * /.
MIN, MAX, MOD, SIN, COS, ATAN, SQRT, LOG, EXP, ABS. (See appendix 2 for short descriptions
of these.) All except MOD, which wants FIXes, are indifferent as to whether their arguments are
FLOAT or FIX or a mixture. In the last case, they exhibit “contagious FLOATing™: one argument of
TYPE FLOAT forces the result to be of TYPE FLOAT.

<FIX 1.0>%
1

The SUBR FIX explicitly returns a FIXed-point number corresponding to a FLOATing-point number.
FLOAT does the opposite.

€+ 5 <% 2 3%

32.34 Built-in Functions

it
AL

ch
ar

ns
re
of

ET.

i

The MDL Programming Language 29

11

CSQRT <+ <= 3 3> <* 4 43558
5.0

<- 53 2>%

0

<= 5%

ot

<MIN 1 2.02%
1.0

/11 7 2.00%
0.5

Note this last result: the division of two FIXes gives a FIX with truncation, not rounding, of the
remainder: the intermediate result remains a FIX until a FLOAT argument is encountered.

3.5. Arithmetic: Details

*+ =0 ./, MIN, and MAX all take any number of arguments. doing the operation with the first
argument and the second, then with that result and the third argument, etc. If called with no
arguments, each returns the identity for its operation (0, 0, 1, 1, the greatest FLOAT, and the
least FLOAT, respectively): if called with one argument, each acts as if the identity and the argument
had been supplicd. They all will cause an overflow or underflow error if any result, intermediate or

final. is too large or too small for the machine's capacity. (That error can be disabled, if necessary
-- section 16.9),

One arithmetic function that always requires some discussion is the pseudo-random-number
generator. MDL’s is named RANDOM, and it always returns a FIX, uniformly distributed over the
whole range of FIXes. If RANDOM is never called with arguments, it always returns the exact same
sequence of numbers, for convenience in debugging. "Debugged” programs should give RANDOM two
arguments on the first call, which become the seeds for a new sequence. Popular choices of new

seeds are the numbers given by TIME (which see), possibly with bits modified (chapter 18). Example
("pick a number from one to ten”):

<+ 1 <MOD <RANDOM> 103>%
4

54-35 Built-in Functions

< u)

30 The MDL Programming Language

Chapter 4. Values of Atoms

4.1. General [1]

There are two kinds of “value” which can be attachied to an ATOM. An ATOM can have either, both, or
neither. They interact in no way (except that alternately referring to one and then the other is
inefficient). These two values are referred to as the local value and the global value of an ATOM.
The terms "local” and “global” are relative to PROCESSes (chapter 20), not functions or programs.
The SUBRs which reference the local and global values of an ATOM, and some of the characteristics
of local versus global values, follow.

4.2. Global Values

4.2.1. SETG [1]
A global value can be assigned to an ATOM by the SUBR SETE ("set global”), as in

{SETG alom any>
where afors must EVAL to an ATOM, and any can EVAL to anything. EVAL of the second argument
becomes the global value of EVAL of the first argument. The value returned by the SETG is its
second argument, namely the new global value of alom.

Examples:

¢SETG FOO <SETG BAR 500>>3
500

The above made the global values of both the ATOM FOO and the ATOM BAR equal to the FIXed-point
number 500.

<SETG BAR F00>3%

4-421 Values of Atoms

nt
its

ms

The MDL Programming Language 31

FOO

That made the global value of the ATOM BAR equal to the ATOM F0O.

4.2.2. GVAL [1]

The SUBR GVAL ("global value”) is used to reference the global value of an ATON.

<GVAL afom>

returns as a value the global valuc of afom. If atom does not evaluate to an ATOM, or if the ATOM to
which it evaluates has no global value, an error occurs.

GVAL applicd to an ATOM anywhere, in any PROCESS, in any function, will return the same value.
Any SETG anywhere changes the global value for everybody. Global values are context-independent.

READ understands the character , (comma) as an abbreviation for an application of GVAL to

whatever follows it. PRINT always translates an application of GVAL into the comma format. The
following are absolutely equivalent:

»alom <GVAL atom>

Assuming the examples in section 4.2.1 were carried out in the order given, the following will
evaluate as indicated:

. FO03%

500

<GVAL FOO>%
500

,BARS

FOO

++BARS

500

4.2.3. Note on SUBRs and FSUBRs

The initial GVALs of the ATOMs used to refer to MDL "built-in” Subroutines are the SUBRs and FSUBRs
which actually get applied when those ATOMs are referenced. If you don't like the way those
supplied routines work, you are perfectly free to SETG the ATOMs to your own versions.

421-423 Values of Atoms

32 The MDL Programming Language

4,24 GUNASSIGN
{GUNASSIGN atom?>

("global unassign”) causes atom to have no assigned global value, whether or not it had one
previously. The storage used for the global value can become free for other uses.

4.3. Local Values

4.3.1. SET [1]

The SUBR SET is used to assign a local value to an ATOM. Applications of SET are of the form
{SET alom any>

SET returns EVAL of any just like SETG.

Examples:

¢SET BAR <SET FOO 100>>%
100

Both BAR and FOO have been given local values equal to the FIXed-point number 100.

¢(SET FOO BAR>$S
BAR

FOO has been given the local value BAR.

Note that neither of the above did anything to any global values FOO and BAR might have had.

4.3.2. LVAL [1]

The SUBR used to extract the local value of an ATOM is named LVAL. As with GVAL, READ
understands an abbreviation for an application of LVAL: the character . (period), and PRINT
produces it. The following two representations are equivalent, and when EVAL operates on the
corresponding MDL object, it returns the current Jocal value of atom:

{LVAL afom> .atom

424 - 432 Values of Atoms

g€

e

The MDL Programming Language %

The local value of an ATOM is unique within a PROCESS. SETting an ATOM in one PROCESS has no
effect on its LVAL in another PROCESS, because each PROCESS has its own “control stack” (chapters

20 and 22).

Assume all of the previous examples in this chapter have been done. Then the following evaluate as
indicated:

.BARS

100

{LVAL BAR>%
100

.FOO%

BAR

. -FOOS

FOO

4.3.3. UNASSIGN
CUNASSIGN afom?

causes alom to have no assigned local value, whether or not it had one previously.

4.4. VALUE
VALUE is a SUBR which takes an ATOM as an argument, and then:

(1) if the ATOM has an LVAL, returns the LVAL;
(2) if the ATOM has no LVAL but has a GVAL, returns the GVAL;
(3) if the ATOM has neither a GVAL nor an LVAL, calls the ERROR function.

This order of seeking a value is the opposite of that used when an ATOM is the first element of a
FORM. The latter will be called the G/LVAL, even though that name is not used in MDL.

Example:

<UNASSIGN A>$
A

CSETG A 1>%

1

{VALUE A>3

1

{SET A 2%

432-44 Values of Atoms

34

2

{VALUE A>S%
2

A

1

44

The MDL Programming Language

Values of Atoms

a0

ns

The MDL Programming Language 35

Chapter 5. Bimple Functions

5.1. General [1]

The MDL equivalent of a "program” (uncompiled) is an object of TYPE FUNCTION. Actually, full-

blown “programs” are usually composed of sets of FUNCTIONs, with most FUNCTIONs in the set acting
as "subprograms”.

A FUNCTION may be considered to be a SUBR or FSUBR which you yourself define. It is "run” by
using a FORM 1o apply it to arguments (for example, <function arg-1 arg-2 ... »), and it always
“returns” a single object. which is used as the value of the FORM that applied it. The single ob ject
may be ignored by whatever "ran” the FUNCTION - equivalent to “returning no value” - or it may be
a structured ob ject containing many ob jects -- equivalent to "returning many values”. MDL is an
“applicative” language. in contrast to "imperative” languages like Fortran. In MDL it is impossible

to return values through arguments in the normal case; they can be returned only as the value of the
FORM itself, or as side effects to structured ob jects or global values.

In this chapter a simple subset of the FUNCTIONs you can write is presented, namely FUNCTIONs
which “act like" SUBRs with a fixed number of arguments. While this class corresponds to about 907
of the FUNCTIONs ever wrilten, you won't be able to do very much with them until you read further
and learn more about MDL's control and manipulatory machinery. However, all that machinery is
Just a bunch of SUBRs and FSUBRs, and you already know how to "use” them; you just need to be told
what they do. Once you have FUNCTIONs under your belt, you can immediately make use of
everything presented from this point on in this document. In fact, we recommend that you do so.

5.2. Representation [I]

A FUNCTION is just another data nbject in MDL, of TYPE FUNCTION. It can be manipulated like any
other data object. PRINT represents a FUNCTION like this:

#FUNCTION (elements)

5-52 Simple Functions

36 The MDL Programming Language

that is, a number sign, the ATOM FUNCTION, a left parenthesis, each of the elements of the
FUNCTION, and a right parenthesis. Since PRINT represents FUNCTIONs like this, you can type them
in to READ this way. (But therc are a few TYPEs for which that implication is false.)

The elements of a FUNCTION can be "any number of anythings”; however, when you use a FUNCTION
(apply it with a FORM), EVAL will complain if the FUNCTION does not look like

FFUNCTION (act:atom argumentsidist decl bod v}

where act and dec/ are optional (section 9.8 and chapter 14} body is at least one MDL object - any
old MDL ob ject: and, in this simple case, arguments is

{any number of ATOMs)

that is. something RFAD and PRINTed as: left parenthesis, any number - including zero — of ATOMs,
right parenthesis. (This is actually a normal MDL ob ject of TYPE LIST, containing only ATOMs.)

Thus, these FUNCTTONs will cause errors -- but only when used:

#FUNCTION () == no argument LIST or body
#FUNCTION ((1) 2 7.3) == non-ATOM in argument LIST
#FUNCTION ((A B C D)) == no body

#FUNCTION (<+ 1 2> A C) == no argument LIST

These FUNCTIONs will never cause errors because of format:

AFUNCTION (() 1 2 3 4 5)

FFUNCTION ((A) A)

#FUNCTION (OXOXOOO00()

#FUNCTION ((A B C D EE F 6 H HIYA) <+ .A .HIYAY)
#FUNCTION ((Q) <SETG C <* .Q ,C>> <+ <MOD ,C 3> .Q))

and the last two actually do something which might be useful. (The first three are rather
pathological, but legal.)

5.3. Application of FUNCTIONs: Binding [I]

FUNCTIONs, like SUBRs and FSUBRs. are applied using FORMs. So,

CEFUNCTION ((X) <= .X .%>) 538
25

applied the indicated FUNCTION to 5 and returned 25.

52-53 Simple Functions

T

S —

The MDL Programming Language 37

What EVAL does when applying a FUNCTION is the following:

(1) Create a "world” in which the ATOMs of the argument LIST have been SET to the values
applicd to the FUNCTION, and all other ATOMs have their original values. This is called
"binding".

-- In the above. this is a "world” in which X is SET to 5.

(2) In that new "world”, evaluate all the objects in the body of the FUNCTION, one after the
other. from first to last.

-- In the above, this means evaluate <* X .X>in a "world" where X is SET 10 5.

(3) Throw away the "world" created, and restore the LVALs of all ATOMs bound in this
application of the FUNCTION to their originals (if any). This is called “unbinding”.

- In the above, this simply gives X back the local value, if any, that it had before binding.

(4) Return as a value the last value obtained when the FUNCTION's body was evaluated in step
(2).

== In the above, this means return 25 as the value,

The "world” mentioned above is actually an object of TYPE ENVIRONMENT. The fact that such
‘worlds” are separate from the FUNCTIONs which cause their generation means that all MDL
FUNCTION: can be used recursively.

The only thing that is at all troublesome in this sequence is the effect of creating these new
“worlds”, in particular, the fact that the previous world is completely restored. This means that if,
inside a FUNCTION, you SET one of its argument ATOMs to something, that new LVAL will not be
remeimbered when EVAL leaves the FUNCTION. However, if you SET an ATOM which is not in the
argument LIST (or SETG any ATOM) the new local (or global) value will be remembered. Examples:

<SET X 0>%

0

CFFUNCTION ((X) <SET X <% .X .X>>) 558
25

.X§

1]

53 Simple Functions

38 The MDL Programming Language

On the other hand,

<SET Y 0%

0

CEFUNCTION ((X) <SET Y <= X .X>>) 538
25

Y&

23

By using PRINT as a SUBR, we can "see” that an argument’s LVAL really is changed while EVALuating
the body of a FUNCTION:

<SET X 58
5
CAFUNCTION ((X) <PRINT .X> <+ .X 10>) 3%
3 13
XE
5
The first number after the application FORM was typed out by the PRINT; the second is the value of

the application.

Remembering that LVALs of ATOMs not in argument LISTs are not changed, we can reference them
within FUNCTIONs, as in

CSET I 100>%

100

<FFUNCTION ((Y) </ .7 .¥>) 5%
20

ATOMs used like Z or Y in the ahove examples are referred to as “free variables”. The use of free
variables. while often quite convenient, is rather dangerous unless you know exactly how a
FUNCTION will always be used: if a FUNCTION containing free variables is used within a FUNCTION
within a FUNCTION within . . ., one of those FUNCTIONs might just happen to use your free variable
in its argument LIST, binding it to some unknown value and possibly causing your use of it to be
erroneous. Please note that “dangerous”, as used above, really means that it may be effectively

impossible (I) for other people to use your FUNCTIONs, and (2} for you to use your FUNCTIONs a
month (two weeks?) later.

53 Simple Functions

B o 0 Z L o

B |

-

ps e

The MDL Programming Laﬁguage 39

5.4. Defining FUNCTIONs (FUNCTION and DEFINE) [I]

Obviously. typing #FUNCTION (...) all the time is neither reasonable nor adequate for many
purposes. Normally. you just want a FUNCTION to be the GVAL of some ATOM -- the way SUBRs and
FSUBRs are -- s0 ynu can use it repeatedly (and recursively). Note that you generally do not want a
FUNCTION to be the LVAL of an ATOM: this has the same problems as free variables. (Of course, there
are always cases where you are being clever and want the ATOM to be re-bound)

One way to "name” a FUNCTION is

(SETG SQUARE #FUNCTION ((X) <% .X .X>)>$
FFUNCTION ((X) <% .X .X>)

So that

<SQUARE 5>%
23

<SQUARL 100>%
10000

Another way, which is somewhat cleaner in its typing:

<SETG SQUARE <FUNCTION (X) <% .X .XD>)$
FFUNCTION ((X) <* .X .X>)

FUNCTION is an FSUBR which simply makes a FUNCTION out of its arguments and returns the created
FUNCTION.

This. however. is generally the best way:

<DEFINE SQUARE (X) <% .X .X>>$
SQUARE

. SQUARES

#FFUNCTION ((X) <* .X .X>)

The last two lines immediately above are just to prove that DEFINE did the “right thing".

DEFINE is an FSUBR which SETGs EVAL of its first argument to the FUNCTION it makes from the rest
of its arguments, and then returns EVAL of its first argument. DEFINE obviously requires the least
Lyping of the above methods, and is "best” from that standpoint. However, the real reason for using
DEFINE is the following: If EVAL of DEFINE's first argument already has a GVAL, DEFINE produces an
error. This helps 1o keep you from accidently redefining things - like MDL SUBRs and FSUBRs. The

SETG constructions should be used only when you really do want to redefine something. DEFINE will
be used in the rest of this document.

5.4 Simple Functions

?

40 The MDL Programming Language Ti
J

[Actually. if it is absolutcly necessary to use DEFINE to "redefine” things, there is a "switch™ which M

can be used: if the LVAL of the ATOM REDEFINE is T (or anything not of TYPE FALSE), DEFINE will an

produce no errors. The normal state can be restored by evaluating <SET REDEFINE <>>. See
chapter 8.]

e —

5.5. Examples (Comments) [1]

Using SQUARE as defined above:

¢{DEFINE HYPOT (SIDE-1 SIDE-2)
."This is a comment. This FUNCTION finds the , T
length of the hypotenuse of a right triangle !
of sides SIDE-1 and SIDE-2."
¢{SORT <+ <SQUARE .SIDE-1> {SQUARE SIDE-23>>2%
HYPOT
CHYPOT 3 45%
5.0

Note that carriage-returns, line-feeds, tabs, ete, are just separators, like spaces. A comment is any
single MDL object which follows a ; (semicolon). A comment can appear between any two MDL
objects. A comment is totally ignored by EVAL but remembered and associated by READ with the
place in the FUNCTION (or any other structured object) where it appeared. (This will become clearer
after chapter 13) The "s (double-quotes) serve to make everything between them a single MDL
ob ject, whose TYPE is STRING (chapter 7). (SQRT is the SUBR which returns the square root of its
argument. 1t always returns a FLOAT.)

]

A whimsical FUNCTION:

CDEFINE OHE (TIHETA) ;"This FUNCTION always returns 1."
¢+ {SOUARE <SIN .THETA>>
¢SQUARE <COS .THETAX>>3%
ONE
¢ONE 523
0.9G909994
CONE 0.23>%
0.99999999

ONE always returns {(approximately) one, since the sum of the squares of sin(x) and cos(x) is unity
for any X. (SIN and COS always return FLOATs, and each takes its argument in radians. ATAN

(arctangent) returns its value in radians. Any other trigonometric function can be compounded
from these three.)

54-55 Simple Functions

ge

ch
ill

1y
'L
he
er
IL
ts

ty
\N
xd

The MDL Programming Language

41

MDL doesn’t have a general "to the power™ SUBR, so let's define one using LOG and EXP (log base e,

and e to a power, respectively; again, they return FLOATs),

(DEFINE ** (NUM PWR) <EXP <* .PWR <LOG .NUM>>>>§

R

(%% 2 2>%
4.0000001
CRR B 32
125.00000
{*= 25 0.5>%
5.0000001

Two FUNCTIONs which use a single global variable (Since the GVAL is used, it cannot be rebound.):

{DEFINE START () <SETG GV 0>»>%
START

<DEFINE STEP () <SETG GV <+ ,GV 1>»%§
STEP

CS5TART>%

0

(STEP>%

1

CSTEP>S

i

(STEP>S

3

START and STEP take no arguments, so their argument LISTs are empty.

An inre:r.ﬂing. but pathological, FUNCTION:

CDEFINE INC (ATM) <SET .ATM <+ ..ATM 1>)>$

INC

{SET A 0%
0

CINC A>S

1

{INC ADS

2

A%

2

INC takes an ATOM as an argument, and SETs that ATOM to its current LVAL plus 1. Note that inside
INC, the ATOM ATM is SET to the ATOM which is its argument; thus ..ATM returns the LVAL of the

argument. However, there is a problem:

55

Simple Functions

42 The MDL Programming Language

{SET ATH 0>%
0
CINC ATH>S

[RROR
ARG-WRONG-TYPE

+

LISTENING-AT-LEVEL 2 PROCESS 1
<ARGS <FRAME <FRAME>>>$

[ATH 1]

The error occurred because .ATM was ATH, the argument to INC, and thus ..ATM was ATM also. We
really want the outermost . in ..ATM to be done in the "world" (ENVIRONMENT) which existed just
before INC was entered - and this definition of INC does both applications of LVAL in its own
“world”. Techniques for doing INC "correctly” will be covered below. Read on.

55 Simple Functions

Tk

th
m

Of
di
w
ol
m
th

It

pi
fr

B
in

|

= -

age
|
We .
just
-
f
'
I
i
ons

The MDL Programming Language 4

Chapter 6. Data Types

6.1. Genceral [1]

A MDL ob ject consists of two parts: its TYPE and its "data part” (appendix 1). The interpretation of
the "data part” of an object depends of course on its TYPE. The structural organization of an ob ject,
that is, the way it is organized in storage, is referred to as its "primitive type”. While there are
many different TYPEs of ob jects in MDL, there are fewer primitive types.

All structured objects in MDL are ordered sequences of elements. As such, there are SUBRs which
operate an all of them uniformly. as ordered sequences. On the other hand, the reason for having
different primitive types of structurcd objects is that there are useful qualities of structured ob jects
which arc mutually incompatible. There are, therefore, SUBRs which do not work on all structured
objects: these SUBRs exist to take full advantage of those mutually incompatible qualities. The

most-commonly-used primitive types of structured objects are discussed in chapter 7, along with
those special SUBRs operating on them.

It is very easy to make a new MDL ob ject that differs from an old one only in TYPE, as long as the
primitive type is unchanged. It is relatively difficult to make a new structured ob ject that differs
from an old one in primitive type, even if it has the same elements.

Before talking any more about structured ob jects, some information needs to be given about TYPEs
in general.

6.2. Printed Representation [I]

There are many TYPEs for which MDL has no specific representation. There aren't enough different
kinds of brackets. The representation used for TYPEs without any special representation is

#type representation-as-if-it-were-its-primitive-t ype

READ will understand that format for any TYPE, and PRINT will use it by default. This

6-62 Data Types

44 The MDL Programming Language

representational format will be referred to below as "# notation™. It was used above to represent
FUNCTIONs.

6.3. SUBRs Related to TYPEs

6.3.1. TYPE [I]
CTYPE anyd

returns an ATOM whose PNAME corresponds to the TYPE of any. There is no TYPE "TYPE". To type a
TYPE (aren’t homonyms wonderful?), just type the appropriate ATOM, like FIX or FLOAT or ATOM etc.
However, in this document we will use the convention that a metasyntactic variable can have lype

for a "data type”: for example, foo:type means that the TYPE of foo is ATOM, but the ATOM must be
something that the SUBR TYPE can return.

Examples:
<{TYPE 1:%
FIX
CTYPE 1.0>3
FLOAT
<TYPE +>%
ATOM
(TYPE ,+>%
SUBR .
<TYPE GEORGE>$%
ATOM

6.3.2. PRIMTYPE [1]

CPRIMTYPE any>

evaluates to the primitive type of any. The PRIMTYPE of any is an ATOM which also represents a
TYPE. The way an object can be manipulated depends solely upon its PRIMTYPE; the way it is

evaluated depends upon its TYPE.
Examples:
<PRIMTYPE 1>%

WORD
CPRIMTYPE 1.0>%

6.2 - 6.32 Data Types

ge

nt

ra
tc.

be

is

es

—

The MDL Programming Language 45
WORD
<PRIMTYPE ,+>%
WORD
{PRIMTYPE GEORGE»$%
ATOH

6.3.3. TYPEPRIH [I]
<TYPEPRIM type>

returns the PRIMTYPE of an ob ject whose TYPE is {ype. type is, as usual, an ATOM used to designate a
TYPE.

Examples:

CTYPEPRIM FIX>S
WORD

<TYPEPRIM FLOAT>S
WORD

CTYPEPRIM SUBR>S
WORD

<TYPEPRIM ATOM>S
ATOM

<TYPEPRIM FORM>S
LIST

6.3.4. CHTYPE [1]
CCHTYPE azny type>

("change type”) returns a new object that has TYPE type and the same "data part” as any (appendix
I).

<CHTYPE (+ 2 Z2) FORM»S
<+ 2 2>

An error is generated if the PRINTYPE of any is not the same as the TYPEPRIM of Iype. An error will
also be generated if the attempted CHTYPE is dangerous andfor senseless, for example, CHTYPEing a
FIXtoa SUBR. Unfortunately, there are few useful examples we can do at this point.

[CHTYPEing a FIX to a FLOAT or vice versa produces, in general, nonsense, since the bit formats for

FIXes and FLOATs are different. The SUBRs FIX and FLOAT convert between those formats. Useful

6.3.2 - 6.3.4 Data Types

46 The MDL Programming Language

obscurity: because of their internal representations on the PDP-10, <CHTYPE <MAX> FIX> gives the
least possible FIX, and analogously for HIN.]

Passing note: "# notation” is just an instruction to READ saying "READ the representation of the
PRIMTYPE normally and (literally) CHTYPE it to the specified TYPE". [Or, if the PRIMTYPE is
TEMPLATE, “apply the GVAL of the TYPE name (which should be a TEMPLATE constructor) to the given
elements of the PRIMTYPE TEMPLATE as arguments.”]

6.4. More SUBRs Related 1o TYPEs

6.4.1. ALLTYPES
{ALLTYPES?>

returns a VECTOR (chapter 7) containing just those ATOMs which can currently be returned by TYPE
or PRIMTYPE. This is the very "TYPE vector” (section 22.1) that the interpreter uses: look, but don’t
touch. No examples: try it, or see appendix 3.

6.4.2. VALID-TYPE?
{VALID-TYPE? afom>

returns #FALSE () if afom is not the name of a TYPE, and the same object that {TYPE-C atom?
(section 19.5) returns if it is.

6.4.3. NEWTYPL

MDL is a type-extensible language, in the sense that the programmer can invent new TYPEs and use
them in every way that the predefined TYPEs can be used. A program-defined TYPE is called a
NEWTYPE. New PRIMTYPEs cannot be invented except by changing the interpreter; thus the TYPEPRIH
of a NEWTYPE must he chosen from those already available. But the name of a NEWTYPE (an ATOM of
course) can be chosen freely - so long as it does not conflict with an existing TYPE name. More
importantly, the program ihat defines a NEWTYPE can be included in a set of programs for
manipulating abjects of the NEWTYPE in ways that are more meaningful than the predefined SUBRs
of MDI.

Typically an object of a NEWTYPE is a structure that is a model of some entity in the real world -- or

whatever world the program is concerned with — and the elements of the structure are models of
parts or aspects of the real-world entity. A NEWTYPE definition is a convenient way of formalizing

6.3.4-643 Data Types

Rl o o S ci—

-y

Ti

th
If
wi
to
ca

pr

e B I e T |

uage

+ the

the
E is
iven

TYPE
fon’t

tom>»

I use
ed a
PRIM
iM of
vore

for
UBERs

= OF
Is of
zing

ypes

The MDL Programming Language 47

this correspondence, of writing it down for all to see and use rather than keeping it in your head.
If the defining sct of programs provides functions for manipulating the NEWTYPE objects in all
ways that are meaningful for the intended uses of the NEWTYPE, then any other program that wants
to use the NEWIYPE can call the manipulation functions for all its needs, and it need never know or
care about the internal details of the NEWTYPE objects. This technique is a standard way of
providing modularity and abstraction.

For example, suppose you wanted to deal with airline schedules. If you were to construct a set of
programs that define and manipulate a NEWTYPE called FLIGHT, then you could make that set into a
standard package of programs and call on it to handle all information pertaining to scheduled
airline flights. Since all FLIGNTs would have the same quantity of information (more or less) and
you would want quick access 1o individual elements, you would not want the TYPEPRIM to be LIST.
Since the elements would be of various TYPEs, you would not want the TYPEPRIM to be UVECTOR --
nor ifs variatinns STRING or BYTES. The natural choice would be a TYPEPRIM of VECTOR (although
you could gain space and lose time with TEMPLATE instead).

Now, the individual elements of a FLIGHT would, no doubt, have TYPEs and meanings that don't
change. The clements of a FLIGHT might be airline code, flight number, originating-airport code,
list of interimediate stops, destination-airport code, type of aircraft, days of operation, etc. Each and
every FLIGHT would have the airline code for its first element (say), the flight number for its second,
and so on. It is natural to invent names (ATOMs) for these elements and always refer to the elements
by mame. For example, you could <SETG AIRLINE 1> or <SETG AIRLINE <OFFSET 1 FLIGHT>> --
and in either case <MANIFEST AIRLINE> so the compiler can generate more efficient code. Then, if
the local value of F were a FLIGHT, <AIRLINE .F> would return the airline code, and <AIRLINE .F

AAZ> would set the airline code 1o AA. Once that is done, you can forget about which element comes
first: all you need o know are the names of the offsets.

The next step is 1o notice that, outside the package of FLIGHT functions, no one needs to know
whether AIRLINE is Just an offset or in fact a function of some kind. For example, the scheduled
duration of a flight might not be explicitly stored in a FLIGHT, just the scheduled times of
departure and arrival. But. if the package had the proper DURATION function for calculating the
duration, then the call <DURATION .F> could return the duration, no matter how it is found. In this
way the internal details of the package are conveniently hidden from view and abstracted away.

The form of NEWTYPE definition allows for the TYPEs of all components of a NEWTYPE to be declared
(chapter 1), for use both by a programmer while debugging programs that use the NEWTYPE and by
the compiler for generating faster code. Tt is very convenient to have the type declaration in the
NEWTYPE definition irself, rather than replicating it everywhere the NENTYPE is used. (If you think
Tllis declaration might be obirusive while debugging the programs in the NEWTYPE package, when
mconsistent improvements are being made to various programs, you can either disassociate any
declaration from the NCWTYPE or turn off MDL type-checking completely. Actually this declaration
is typically more useful to a programmer during development than it is to the compiler.)

CNEWTYPE atom lype>

6.4.3 Data Types

 —————

48 The MDL Programming Language

: I
returns afom, after causing it fo become the representation of a brand-new TYPE whose PRIMTYPE is g
<TYPEPRIM type>. What NEWTYPE actually does is make atom a legal argument to CHTYPE and ¢

TYPEPRIM. (Note that names of new TYPEs can be blocked lexically to prevent collision with other 1
names. just like any other ATOMs -- chapter 15) Objects of a NEWTYPE-created TYPE can be generated i
by creating an object of the appropriate PRIMTYPE and using CHTYPE. They will be PRINTed i
(imitially). and can be directly typed in, by the use of "# notation” as described above. EVAL of any

object whose TYPE was created by NEWTYPE is initially the object itself, and, initially, you cannot i
APPLY something of a generated TYPE to arguments. But see below. !

Examples:

<NEWTYPE GARGLLC FIX>%
GARGLE 1
<TYPEPRIM GARGLE>S 1
WORD

¢{SET A <CHTYPE 1 GARGLE>>3

#GARGLE =000000000001= i
{3ET B #GARGLE 100>% !
#GARGLE *000000000144%

{TYPE .B>3

GARGLE

{PRIMTYPE .B>%

WORD

6.4.4. PRINTTYPE, EVALTYPE and APPLYTYPE

CPRINTTYPE type how?>

CEVALTYPE !{vpe how)

{APPLYTYPE Ivpe how?
all return fype. after specifying how MDL is to deal with it.
These three SUBRs can be used to make newly-generated TYPEs behave in arbitrary ways, or to
change the characteristics of standard MDL TYPEs. PRINTTYPE tells MDL how to print fype,
EVALTYPE how te evaluate it. and APPLYTYPE how to apply it in a FORM.
how can be eithier a TYPE or something that can be applied to arguments.

If how is a TYPE, MDL will treat fype just like the TYPE given as how. how must have the same
TYPEPRIM as type.

If how is applicable, it will be used in the following way:

6.4.3 -64.4 Data Types

age

Eis
and
her
ited
Ted

any
not

" to
¥PE,

ime

'pes

The MDL Programming Language "

For PRINTTYPE, how should take one argument: the object being output. how should output
something without formatting (PRINI-style) its result is ignored. (Note: how cannot use an output
SUBR on fiow's awn i pe: endless recursion will result. OUTCHAN is bound during the application to
the CHANNEL in use. or 1o a pseudo-internal channel for FLATSIZE -- chapter 11.) If how is the SUBR
PRINT, fvpe will receive no special treatment in printing, that is, it will be printed as it was in an
initial MDL or immediately after its defining NEWTYPE.

For EVALTYPE, row should take one argument: the object being evaluated. The value returned by
how will be used as EVAL of the object. If how is the SUBR EVAL, type will receive no special
treatment in evaluation.

For APPLYTYPE, how should take al least one argument. The first argument will be the ob ject being
applied: the rest will be the objeets it was given as arguments. The result returned by how will be
used as the result of the application. If how is the SUBR APPLY, lype will receive no special
treatment in application to arguments.

If any of these SUBRs is given only one argument, that is if how is omitted, it returns the currently
active how (a TYPL or an applicable object). or else #FALSE () if type is receiving no special
treatment in that operatiog,

Unfortunately. these examples are fully understandable only after you have read through chapter 11.

<DEFINE ROMAN-PRINT (NUMB)
CCOND (<OR <L=? .NUMB 0> <G? .NUMB 399455

{PRINC <CHTYPE .NUMB TIME>>)

(T

CRCPRINT </ .NUMB 1000) "ILIAMD

CRCPRINT </ .NUMB 100> HIDINCG IAD I\HD>

CRCPRINT </ .NUMB 10> YILINK I\L INCD

<RCPRINT -NUMB TUINT AW I\XT2) 08
ROMAN-PRINT

<DEFINE RCPRINT (MODN V)
<{SET MODN <MOD .MODN 10>>
CCOND (<==7 0 .MODN»)

(<==7 1 .MODN> <PRINC <1 Vb))
({==7 2 .MODN> <PRINC <1 .V>> <PRINC <1 Vo)
(¢==7 3 .MODN> <PRINC <1 .V>> <PRINC <1 V2> <PRINC <1 .V>>)
(<==7 4 .MODN> <PRINC <1 .V>> <PRINC L2 V)
({==7 5 .MODN> <PRINC <2 .V>})
(<==7 6 .MODN> <PRINC <2 .V>> <PRINC <1 .V3)
7

(¢==7 MODN> <PRINC <2 .U>> <PRINC <1 .V>> CPRINC <1 .V>>)
(<¢==7 8 .MODN>
CPRINC <2 .v>»
{PRINC <1 .v»>

6.4.4 Data Types

The MDL Programming Language

CPRINC <1 .V3>
CPRINC <1 .V>3)

(<==7 9 .MODN> <PRINC <1 .V>> <PRINC <3 .V>>)»$
RCPRINT

<PRINTTYPE TIME FIX> ;"fairly harmless but necessary here®$
TIME

<PRINTTYPE FIX ,ROMAN-PRINT> ;:"hee hee!"$

FIX

<+ 2 238 ’
v

19845

HCHMLYXXIV

<PRINTTYPE FIX ,PRINT)S

FIX

<NEWIYPE GRITCH LIST> :"a new TYPE of PRIMTYPE LIST"S
GRITCH

CEVALTYPE GRITCHYS i
#TALSE ()

CEVALTYPE GRITCH LIST> ;"evaluated like a LIST"S

GRITCH

CEVALTYPE GRITCH)S

LIST

FGRITCH (A <+ 1 2 3> I<SET A "ABC®>) ;"Type in one.”$

#GRITCH (A 6 I1'\A I\B '\C)

<{NEWTYPE HARRY VECTOR> ;"a new TYPE of PRIMTYPE VECTOR®"S
HARRY

CEVALTYPE HARRY #FUNCTION ((X) €1 .X>)»

i "When a HARRY is EVAlLed, return its first element."$
IARRY

#HARRY [1 2 3 4738
1

{NEWTYPE WINNER LIST> ;"a TYPE with funny application®$
WINNER

<APPLYTYPE WINNER>S

#FALSE ()

{APPLYTYPE WINNER <FUNCTION (W ®TUPLE® T) (!.¥ !.T)»$
WINNER

CAPPLYTYPE WINHER>%

#TUNCTION ((W "TUPLE™ T} (!.W 1.T))

CFWINNER (A B C) <+ 1 2> q>§

(ABC3aq)

6.4.4 Data Types

The MDL Programming Language 51

CERPE -

The following sequence makes MDL look just like Lisp. (This example is understandable only if
you know Lisp (Moon, 1974) it is included only because it is so beautiful.)

CEVALTYPE LIST FORM>S
LIST
{EVALTYPE ATOM ,LVAL>S
ATOM

So now:

(+ 1 2)§

3

(SET 'A 5)3
5

AS

5

To complete the job. of course, we would have to do some SETE's: car is 1, cdr is ,REST, and
. lambda is ,FUNCTION. If you really do this example, you should “unde® it before continuing:

<EVALTYPE 'ATOM ,EVAL>S
ATOM
<EVALTYPE LIST ,EVAL>S
LIST

6.4.4 Data Types

52 The MDL Programming Language

Chapter 7. Structured Objects

This chapter discusses structured ob jects in general and the five basic structured PRIMTYPEs. [We
defer detailed discussion of the structured PRIMTYPEs TUPLE (section 9.2) and STORABE (section
22.2.2).]

7.1. Manipulation

The following SUBRs operate uniformly on all structured objects and generate an error if not
applied to a structured object. Hereafter, structured represents a structured ob ject.

7.1.1. LENGTH [1]
{LENGTH slruclured?

evaluates to the number of elements in struclured.

7.1.2. NTH [I]
CNTH structured fix>

evaluates to the fixth element of siruclured. An error occurs if fix is less than 1 or greater than
{LENGTH strucfured>. fix is optional, 1 by default.

7.1.3. REST [1]
CREST slructured fix>
evaluates to sfrucfured without its first fix elements. fix is optional, 1 by default.

Obscure but important side effect: REST actually returns structured "CHTYPEd™ (but not through

7-7.18 Structured Ob jects

e

fe
m

ot

o p—

— e

rb-.-.-

The MDL Programming Language 58

application nf CHTYPE) to its PRIMTYPE. For example, REST of a FORM is a LIST. REST with an
explicit second argument of 0 has no effect except for this TYPE change.

7.1.4. PUT [1]

{PUT structured fix anything-legal?

first makes anything-lepal the fivth element of structured, then evaluates to struclured. an wlthing-legal
is anything which can legally be an element of structured; often, this is synonymous with "any MDL
object”, but see below. An error occurs if fix is less than 1 or greater than {LENGTH structured>.

(PUT is actually more general than this -- chapter 13.)
7.1.5. GET

{GET structured fixd

evaluates the same as <NTH sfructured fix>. It is more general than NTH, however (chapter 13), and
is included here only for symmetry with PUT.

7.1.6. APPLYing a FIX [I]

EVAL understands the application of an object of TYPE FIX as a "shorthand” call to NTH or PUT,
depending on whether it is given one or two arguments, respectively [unless the APPLYTYPE of FIX is
changed]. That is, LVAL considers the following two to be identical:

Chix struciured?
SNTH structured fixd

and these:

{fix structured object
<PUT structured fix object>

[However, the compiler (Lebling, 1979) cannot generate efficient code from the longer forms unless

it is sure that fiv is a FIX (section 9.10). The two constructs are not identical even to EVAL, if the
order of evaluation is significant: for example, these two:

CNTH .X <LENGTH <SET X .Y»» <<LENGTH <SET X .Y»> .X>

are not identical.]

7.13-716 Structured Ob jects

54 The MDL Programming Language

7.1.7. SUBSTRUC

SUBSTRUC ("substructure”) facilitates the construction of structures that are composed of sub-parts of
existing structures. A special case of this would be a “substring” function.

{SUBSTRUC from:structured resl:fix amount:fix tostrucltured?

copies the first anoun! elements of <REST from rest> into another object and returns the latter. All
arguments are optional except from, which must be of PRIMTYPE LIST, VECTOR, TUPLE (treated like
a VECTOR), STRING, BYTES, or UVECTOR. rest is 0 by default, and amoun! is all the elements by
default. to. if given, receives the copied elements, starting at its beginning: it must be an object
whose TYPE iy the PRIMTYPE of from (a VECTOR if from is a TUPLE). If fo is not given, a new ob ject is
returncd. of TYPE <PRIMTYPE from>» {a VECTOR if from is a TUPLE), which never shares with from.
The copying is done in one fell swoop, not an element at a time, Note: due to an implementation
restriction, if from is of PRIMTYPE LIST, it must not share any elements with fo.

7.2. Representation of Basic Structures

7.2.1. LIST [1]
{ element-1 element-2 ... element-N)

represents a LIST of N elements.

7.2.2. VECTOR [1]
[element-1 element-2 ... element-N]

represents a VECTOR of N elements. [A TUPLE is just like a VECTOR, but it lives on the control stack.]

7.2.3. UVECTOR [1]
[element-1 element-2 ... element-N 1]

represents a UVECTOR (uniform vector) of N elements. The second ! (exclamation-point) is optional
for input. [A STORAGE is an archaic kind of UVECTOR that is not garbage-collected.]

07 -723 Structured Ob jects

L

s of

All
like
Jeet
it is

rom.
tion

ck.]

»nal

T S —

The MDL Programming Language K%

7.2.4. STRING [I]

"rharaclers™

represents a STRING of ASCII text. A STRING containing the character *® {duuhle-quote} is

represented by placing a \ (backslash) before the double-quote inside the STRING. A \ in a STRING
is represented by (wo consecutive backslashes.

7.2.5. BYTES
#n {element-| element-2 ... element-N}

represents a string of N uniformly-sized bytes of size n bits.

7.2.6. TEMPLATE
{ element-1 element-2 ... element-N }

represenis a TEMPLATE of N elements when output, not input -- when input, a # and a TYPE must
precede it.

7.3. Evaluation of Basic Structures [I]

This section and the next two describe how EVAL treats the basic structured TYPEs [in the absence of
any modifying EVALTYPE calls (section 6.4.4)).

EVAL of a STRING [or BYTES or TEMPLATE] is just the original ob ject.

EVAL acts exactly the same with LISTs, VECTORs, and UVECTORs: it generates a new object with
elements equal to EVAL of the elements it is given. This is one of the simplest means of
constructing a structure. Iowever, see section 7.7,

Z4. Examples [1]

(1 2 <+ 3 438

{127)

<SET FOO [5 <- 3> <TYPE "ABC">]>%
[5 -3 STRING]

<2 .FOO0>$

724-74 Structured Ob jects

56 The MDL Programming Language

=3

{TYPE <3 .FOO>>%

ATOH

<SET BAR ![("meow") (.FOO)I>%
[{"meow"™) ([5 -3 STRING])!]
{LENGTH .BAR>S

2

CREST <1 <2 .BARY>>S

[-3 STRING]

[<SUBSTRUC <1 <2 .BAR»> 0 2>]%

[[5 -3]]

<PUT .FOO 1 SNEAKY> ;"Watch out for .BAR I"$§
[SHEAKY -3 STRING]

.BARS

'[{"meow") ([SNCAKY -3 STRING])!]
{SET FOO <REST <1 <1 .BAR>> 2»>§%
L L) uw.

.BARS

I[("meow") ([SNEAKY -3 STRING])!]

7.5. Generation of Rasic Structures

Since LISTs. VECTORs, UVECTORs, and STRINGs [and BYTESes] are all generated in a fairly uniform
manner, mcthods of generating them will be covered together here. [TEMPLATEs cannot be generated
by the interpreter itself: see Lebling (1979).]

7.5.1. Direct Representation [I]

Since EVAL of a LIST, VECTOR, or UVECTOR is a new LIST, VECTOR, or UVECTOR with elements which
are EVAL of the original clements. simply evaluating a representation of the object you want will
generate it. (Care must be taken when representing a UVECTOR that all elements have the same
TYPE.) This method of generation was exclusively used in the examples of section 7.4. Note that
new STRINGs [and BYTESes] will not be generated in this manner, since the contents of a STRING are
not interpreted or capicd by EVAL. The same is true of any other TYPE whose TYPEPRIM happens to
be LIST, VECTOR, or UVECTOR [again, assuming it neither has been EVALTYPEd nor has a built-in
EVALTYPE, as do FORM and SEGMENT]

7.5.2. QUOTE [1]

QUOTE is an FSUBR of one argument which returns its argument unevaluated. READ and PRINT

7.4 -7.52 Structured Ob jects

orm
ited

ich
will
ime
hat
are
5 to
t-in

INT

Ecls

The MDL Programming Language 57

understand the character ' (single-quote) as an abbreviation for a call to QUOTE, the way period and
comma work for LVAL and GVAL. Examples:

<+ 1 223
3

{+ 1 238
¢+ 1 2>

Any LIST, VECTOR, or UVECTOR in a program that is constant and need not have its elements
evaluated should be represented directly and inside a call to QUOTE. This technique prevents the
structure from being copied each time that portion of the program is executed. Examples hereafter

will adhere to this dictum. (Note: one should never modify a QUOTEd object. The compiler will one
day put it in read-only (pure) storage.)

7.5.3. LIST, VECTOR, UVECTOR, and STRING (the SUBRs) [I]

Each of the SUBRs L1ST, VECTOR, UVECTOR, and STRING takes any number of arguments and
returns an object of the appropriate TYPE whose elements are EVAL of its arguments. There are

limitations on what the arguments to UVECTOR and STRING may EVAL to, due to the nature of the
ob jects generated. Sce sections 7.6.5 and 7.6.6.

LIST, VECTOR, and UVECTOR are generally used only in special cases, since Direct Representation
usually produces exactly the same effect (in the absence of errors), and the intention is more
apparent. [Note: if (L isa LIST, <LIST !.L> makes a copy of .L whereas (!.L) doesn't; see section
7.7.] STRING, on the other hand, produces effects very different from literal STRINGs.

Examples:

<SLIST 1 <+ 2 3> ABC>S
(1 5 ABC)

(1 <+ 2 3> ABC)S

(I 5 ABC)

CSTRING "A" <2 "QWERT™> <REST "ABC") "hello">§
"AWBChello™

"A <+ 2 3> (5)"S
"A (+ 2 3 (5)"

7.54. ILIST, IVECTOR, IUVECTOR, and ISTRING (1]

Each of the suBRs TLIST, IVECTOR, IUVECTOR, and ISTRING ("implicit™ or “iterated” whatever)
creates and returns an object of the obvious TYPE. The format of an application of any of them is

< Ithing number-of-elements:fix expression:any »

752-754 Structured Ob jects

58 The MDL Programming Language

where /thing is one of ILIST, IVECTOR, IUVECTOR, or ISTRING. An object of LENGTH number-of-
elements is generated, whose elements are EVAL of expression.

expression is optional. When it is not specified, ILIST, IVECTOR, and IUVECTOR return ob jects
filled with objects of TYPE LOSE (PRIMTYPE WORD) as place holders, a TYPE which can be passed
around and have its TYPE checked., but otherwise is an illegal argument. If expression is not
specified in ISTRING, you get a STRING made up of ~@ characters.

When espression is supplied as an argument, it is re-EVALuated each time a new element is
generated. (Actually, EVAL of expression is re-EVALuated, since all of these are SUBRs.) See the last
example for how this argument may be used.

[By the way, in a construct like {IUVECTOR 9 '.X>, even if the LVAL of X evaluates to itself, so that

the ' could be omitted without changing the result, the compiler is much happier with the ' in
place.]

IUVECTOR and 1STRING again have limitations on what expression may EVAL to; again, see sections
7.6.5 and 7.6.6.

Examples:

CILIST 5 6>%
(6666 6)
CIVECTOR 233
[#LOSE =000000000000* #LOSE =000000000000%]

<SET A 00%
0
CIUVECTOR 9 '{5ET A

<+ LA 1%
If[1234567809!]

7.5.5. FORM and IFORM

Sometimes the need arises 1o create a FORM without EVALing it or making it the body of a FUNCTION.

In such cases the SULRs FORM and IFORM ("implicit form”) can be used (or QUOTE can be used). They
are entirely analogous to LIST and ILIST. Example:

CDEFINE INC-FORM (A)

<FORM SET .A <FORM + 1 <FORM LVAL .A>>>>%
INC-FORM

{INC-FORM FOO>%

<SET FOO <+ 1 .FOO>>

.54 -755 Structured Dhjecu

P SR

e ——

—

P -

P

uage

r-of-

|1Ect5
assed
i not

nt is
* last

i that

tions

“ION.
They

) jects

Ll
L]
i1

T —

The MDL Programming Language 59

7.6. Uninue Properties of Primitive TYPEs
e

7.6.1. LIST (the PRIMTYPE) [1)

An object of PRIMTYPE LIST may be considered as a "pointer chain” (appendix 1). Any MDL object
may be an clement of a PRIMTYPE LIST. It is easy to add and remove elements of a PRIMTYPE

LIST, but the higher N is, the longer it takes to refer to the Nth element. The SUBRs which work
only on ob jects of PRIMTYPE LIST are these:

7.6.1.1. PUTREST [I]
<PUTREST head:primtype-list tail:primtype-listy

changes he:d so that (REST head> is tail (actually <CHTYPE tail LIST)), then evaluates to head. Note

that this actually changes headt it also changes anything having head as an element or a value. For
example:

{SET BOW [<SET ARF (B W)>1]>$
[(B W)]

<PUTREST .ARF '(3 4)>%

(B 34)

.BOWS

[(B34)]

PUTREST is probably most often used to splice lists together. For example, given that .L is of
PRIMTYPE LIST, to leave the first m elements of it intact and take out the next n elements of it,
KPUTREST <REST .L <- m 1>> CREST .L <+ m n>>>. Specifically,

CSET NUMS (1 2 345678 9)>8
(1234567809)

CPUTREST <REST .NUMS 3> <REST .NUMS 7>>%
(4 89)

-HUMSE

(1234809)

7.6.1.2. CONS
CCONS new list>»

{"m;.:.,"..c;"} adds new to the front of fisf, without copying list, and returns the resulting LIST.
References 1o fist are not affected.

[Ei'aluaiing CCONS .E .LISTY is equivalent to evaluating (.E !.LIST) (section 7.7) but is less
Preferable 1o the compiler {Lebling, 1979).]

76-76.12 Structured Ob jects

e

|

60 The MDL Programming Language

7.6.2. "Array” PRIMTYPEs [1]

VECTORs, UVCCTORs, and STRINGs [and BYTESes and TEMPLATEs] may be considered as “arrays®
(appendix 1). It is easy to refer to the Nth element irrespective of how large N is, and it is

relatively difficult to add and delete elements. The following SUBRs can be used only with an object |

of PRIMTYPE VECTOR, UVECTOR, or STRING [or BYTES or TEMPLATE] (In this section array represents
an ob ject of such a PRIMTYPE.)

7.6.2.1. BACK [I]

CBACK array fixd

This is the npposite of REST. It evaluates to array, with fix elements put back ente its front end,
and changed to its PRIMTYPE. fiv is optional. 1 by default. If fix is greater than the number of
elements which have been RESTed off, an error occurs. Example:

¢3ET Z0P <{REST 'I[1 2 3 4] 3>>%

1[ar]
<BACK .IOP 2>$
[z 3 4!]

<3ET 5 <{REST "Right is might." 15335

<BACK .5 6>%
"might."

7.6.2.2. TOP (1]

<TOP array>

"BACKs up all the way" -- that is, evaluates to array, with all the elements which have been RESTed
of f put back onte it, and changed to its PRIMTYPE. Example:

{TOP .ZOP>3
1123 4]

7.6.3. "Vector™ PRIMTYPEs
7.6.3.1. GROW
{GROW vu end:fix begfix?

adds/removes elements to/from either or both ends of vu, and returns the entire (TOPped) resultant

b

|
|
|

object. vu can be of PRIMTYPE VECTOR or UVECTOR. end specifies a lower bound for the number of

762 -763%1 Structured Ob jects

T TY -

Buage ' The MDL Programming Language 61

elements 1o be added to the end of vui beg specifies the same for the be inning. A negative fix
specifies removal of clements. Deginning.

rrays"))))

it is The number of elements added to each respective end is end or beg increased to an integral multiple
b ject of X, where X is 32 for PRIMTYPE VECTOR and 64 for PRIMTYPE UVECTOR (1 produces 32 or 64; -1
esents produces 0L The clements added will be LOSEs if vu is of PRIMTYPE VECTOR, and "empty” whatever-

they-ares if vu is of PRIMTYPE UVECTOR. An "empty” object of PRIMTYPE WORD contains zero. An

"empty” object of any other PRIMTYPE has zero in its "value word” (appendix 1) and is not safe to
play with: it should be replaced via PUT.

Note that, if elements are added to the beginning of vy, previously-existing references to vu will
have to use TOP or BACK to get at the added elements.

t end,

ser of Caution: GROW is a very expensive operation; it requires a garbage collection (section 22.4) every

time it is used. It should be reserved for very special circumstances, such as where the pattern of
shared elenients is terribly important.
Example:

<SET A "I[11>%

1]
| <GROW .A 0 12§
'f0000000000D0D00000000O0O0
0000000000000000000000
UOBDDUDBODUDOUHBDDUDDHJ
-AS
! ']
1 7.6.3.2. SORT
ESTed
This SUBR will sort PRIMTYPEs VECTOR, UVECTOR and TUPLE (section 9.2). It works most
efficiently if the sort heys are of PRIMTYPE WORD, ATOM or STRING. However, the keys may be of
any TYPE, and SORT will still work. SORT acts on fixed-length records which consist of one or more
| contiguons elements in the structure being sorted. One element in the record is declared to be the
{ sort key. Also, any number of additional structures can be rearranged based on how the main
' structure is sorted.
'1. CSORT pred sl 11 off s2 12 s3 13 ... sN IN)
where:
I pred is either (see chapter 8 for information about predicates):
ultant
ber of () TYPE FALSE, in which case the TYPEs of all the sort keys must be the same; they must be of
PRIMTYPC WORD, STRING or ATOM: and a radix-exchange sort is used; or
bjects 763.1-763.2 Structured Ob jects

r

62 The MDL Programming Language !

(2) something applicable to two sort keys which returns TYPE FALSE if the first is not bigger
than the second, in which case a shell sort is used. For example ,G6? sorts numbers in ascending
order, ,L? in descending order. Note: if your pred is buggy, the SORT may never terminate.

sl ... sN are the (PRIMTYPE) VECTORs, UVECTORs or TUPLEs being sorted, and s! contains the sort
keys:
1I. .. IN are the corresponding lengths of sort records (optional, one by default); and

off is the of fset from start of record to sort key (optional, zero by default).

SORT returns the sorted s/ as a value,

Note: the SUBR SORT calls the RSUBR (chapter 19) SORTX; if the RSUBR must be loaded, you may see
some output from the loader on your terminal.

Examples:

<SORT <> <SET A C(IUVECTOR 500 '<RANDOM>>>>$
H-..1]

sorts a UVECTOR of random integers.

<SET V [1 MONEY 2 SHOW 3 READY 4 GO]>$
[-u . -]

<S0RT <> .V 2 1>%

[4 GO 1 MONEY 3 READY 2 SHOW]

<SORT ,L7 .V 2>%

[4 GO 3 READY 2 SHOW 1 MONEY]
Vs

[4 GO 3 READY 2 SHOW 1 MONEY]

CSORT <> !'[21436587]10 .18
'[12345678!]

Vi

[GO 4 READY 3 SHOW 2 MONEY 1]

The First sort was based on the ATOMs' PNAMES, considering records to be two elements. The second

one sorted bascd on the FIXes. The third interchanged pairs of elements of each of its structured
arguments.

7632 Structured Ob jects

e

= wm

n
(a
(c
un

TI

el

wi
Uy

is

Ti

7.6

("u

llig't

gger

:[ing

sort

md

The MDL Programming Language 63

7.6.4. VECTOR (the PRIMTYPE) [1]

Any MDL object may be an element of a PRIMTYPE VECTOR. A PRIMTYPE VECTOR takes two words
of storage more than an equivalent PRIMTYPE LIST, but takes it all in a contiguous chunk, whereas

a PRIMTYPE LIST may be physically spread out in storage (appendix 1). There are no SUBRs or
FSUBRs which operate only on PRIMTYPE VECTOR.

7.6.5. UVECTOR (the PRIMTYPE) [1]
The difference between PRIMTYPEs UVECTOR and VECTOR is that every element of a PRIMTYPE
UVECTOR must be of the same TYPE, A PRIMTYPE UVECTOR takes approximately half the storage of
a PRIMTYPE VECTOR or PRIMTYPE LIST and, like a PRIMTYPE VECTOR, takes it in a contiguous chunk
(appendix I).

[Note: duc to an implementation restriction (appendix 1), PRIMTYPE STRINGs, BYTESes, LOCDs
{chapter 12), and ohjects on the control stack (chapter 22) may not be elements of PRIMTYPE

UVECTORs.]

The “same TYPE" restriction causes an equivalent restriction to apply to EVAL of the arguments to
either of the SUBRs UVECTOR or IUVECTOR. Note that attempting to say

I[1 .A!]

will cause READ to produce an error, since you're attempting to put a FORM and a FIX into the same
UVECTOR. On the other hand,

CUVECTOR 1 A}
is legal. and will EVAL to the appropriate UVECTOR without error if .A EVALs to a TYPE FIX.
The f ollowing SUBRs work on PRIMTYPE UVECTORs alone.
7.6.5.1. UTYPE [1)
SUTYPE primlype-uvector?
(“uniform type’) evaluates to the TYPE of every element in its argument. Example:

<UTYPE 'I[A B C]>$
ATOM

764 -765.1 Structured Ob jects

64 The MDL Programming Language

7.6.5.2. CHUTYPE [1]
CCHUTYPE wwiprimlype-uvector typed

("change uniform type") changes the UTYPE of uv to type, simultaneously changing the TYPE of all
elements of uv. and returns the new, changed, uv. This works only when the PRIMTYPE of the
elements af uv can remain the same through the whole procedure. (Exception: a uv of UTYPE LOSE
can be CHUTYPEd to any fype (legal in a UVECTOR of course); the resulting elements are "empty”, as
for GROW.)

CHUTYPE actually changes uvi hence all references to that object will reflect the change. This is
quite dif ferent Trom CHTYPE.

Examples:

<SET LOST <IUVECTOR 2>>§

I[#LOSE *000000000000% #LOSE *000000000000%!]
CUTYPE .LOST>S

LOSE

<CHUTYPE .LOST FORM>S

1< ¢31]

.LOST

1<y O]

<CHUTYPE .LOST LIST)$

ey ()]

7.6.6. STRING (1he PRIMTYPE) and CHARACTER [I]

The best mental image of a PRIMTYPE STRING is a PRIMTYPE UVECTOR of CHARACTERs - where

CHARACTER is the MDL TYPE for a single ASCII character. The representation of a CHARACTER, by

the way, is
"\any-ASClI-characler

That is. the characters !\ (exclamation-point backslash) preceding a single ASCII character
represent the corresponding object of TYPE CHARACTER (PRIMTYPE WORD). (The characters !°®
(exclamation-paint double-quote) preceding a character are also acceptable for inputting a
CHARACTER, for historical reasons.)

The SUBR ISTRING will produce an error if you give it an argument that produces a non-

CHARACTER. STRING can take either CHARACTERs or STRINGs.

There are no SUBRs which uniquely manipulate PRIMTYPE STRINGs, but some are particularly useful

in connection with them:

76.52-7.66 Structured Ob jects

B

I
al

It
ar

[4
fc

P/
ok
re
[S

[

LF
L]
re

7€

UN
l'l.'l
H
ac
s

76

36
3Tl

lﬂg:

f all

the
LOSE
", as

is is

here
» by

cter

g a
non-

eful

jects

The MDL Programming Language 65

7.6.6.1. ASCII [1]

<ASCII rix-or-character>

If its argument is of TYPE FIX, ASCII evaluates to the CHARACTER with the 7-bit ASCII code of its
argument. Example: CASCIT 65> evaluates to !\A.

If its argument is of TYPE CHARACTER, ASCII evaluates to the FIXed-point number which is its
argument’s 7-bit ASCII code. Example: <ASCII '\Z> evaluates to 90.

[Actually, a FIX can be CHTYPEd to a CHARACTER (or vice versa) directly, but ASCII checks in the
former case that the T'IX is within the permissible range.]

7.6.6.2. PARSE [I]
<PARSE string radivefivd

PARSE applies (o its argument READ's algorithm for converting ASCII representations to MDL
objects and returns the first object created. The remainder of sfring, after the first ob ject
represented, is ignored. radiv (optional, ten by default) is used for converting any FIXes that occur.
[See also sections 15.7.2 and 17.1.3 for additional arguments.)

7.6.6.3. LPARSE [I]

LPARSE ("list parse”) is exactly like PARSE (above), except that it parses the entire string and returns a
LIST of all objects created. If given an empty STRING or one containing only separators, LPARSE
returns an cmpty LIST, whereas PARSE gets an error.

7.6.6.4. UNPARSE (1
CUNPARSE any radiecfixd

UNPARSE applies ta its argument PRINT's algorithm for converting MDL objects to ASCII
representations and returns a STRING which contains the CHARACTERs PRINT would have typed out.
[However, this STRING will hot contain any of the gratuitous carriage-returns PRINT adds to
accommadate a CHANNEL's Finite line-width (section 11.2.8).] radix (optional, ten by default) is
used for converting any FIXes that occur.

7.6.7. BYTES

A (PRINTYPE) BYTES is a string of uniformly-sized bytes, The bytes can be any size between 1 and
36 bits inclusive. A BYTES is similar in some ways to a UVECTOR of FIXes and in some ways to a
STRING of non-seven-bit bytes. The elements of a BYTES are always of TYPE FIX.

76.6.1-76.7 Structured Ob jects

66 The MDL Programming Language

The SUBRs BYTES and IBYTES are similar to STRING and ISTRING, respectively, except that each of
the former takes a first argument giving the size of the bytes in the generated BYTES. BYTES takes
one required argument which is a FIX specifying a byte size and any number of PRIMTYPE WORDs,
It returns an object of TYPE BYTES with that byte size containing the objects as elements. These

objects will be ANDBed with the appropriate mask of I-bits to fit in the byte size. IBYTES takes two

required [IXes and one optional argument. [t uses the first FIX to specify the byte size and the
second to specify the number of elements. The third argument is repeatedly evaluated to generate
FIXes that become elements of the BYTES (if it is omitted, bytes filled with zeros are generated). The
analog to UTYPE is BYTE-SIZE. Examples:

<BYTES 3 <+ 2 2> § -1}

#3 {41 7}
{SET A 0>}
0

CIBYTES 3 O '<SET A <+ .A 1D$
3 (123456701}
CIBYTES 3 458

#3 {00 0 0}
¢{BYTE-SIZE <BYTES 1333
1

7.6.8B. TEMPLATE

A TEMPLATE is similar to a PL/I "structure” of one level: the elements are packed together and
reduced in size fo save storage space, while an auxiliary internal data structure describes the
packing format and the elements’ real TYPEs (appendix 1). The interpreter itself is not able to create
objects of PRIMIYPE TEMPLATE (Lebling, 1979k however, it can apply the standard built-in
Subroutines 1o them, with the same effects as with other "arrays”.

7.7. SEGMENTs [1]

Ob jects of TYPE SEGMENT (whnse TYPEPRIM is LIST) look very much like FORMs. SEGMENTs, however, |

undergo a non-standard evaluation designed to ease the construction of structured objects from
elements of other structured ob jects.

7.7.1. Representation [1]
The rcpresentation of an object of TYPE SEGMENT is the following:

| ¢ func arg-1 arg-2 ... arg-N 12

7.6.7-7.7.1 Structured Ob jects

— e

1erate 1[
The

and
5 the
‘reate
ilt-in

'EVEr,
from

Jects

The MDL Programming Language 67

where the second ! (exclamation-point) is optional, and func and arg-1 through arg-N are any legal
constituents nf a FORM (that is, anything). The pointed brackets can be implicit, as in the period
and comima notation for LVAL and GVAL.

All of the following are SEGMENTs:

1<3 .FOO> '.FOO !,FO0O

7.7.2. Evaluation [1]
A SEGMENT is evaluated in exactly the same manner as a FORM, with the following three exceptions:

(1} Tt had better be done inside an EVAL of a structure; otherwise an error occurs. (See special
case of FORMs in section 7.7.5.)
(2) It had better EVAL to a structured ob ject; otherwise an error occurs.

(3} What acrually gets inserted into the structure being built are the elements of the structure
returnied hy the FORM-like evaluation.

7.7.3. Examples [1]

<SET ZOP '![2 3 47>%
1[2 3 41]

CSET ARF (B 3 4)>%

(B 3 4)

(.ARF 1.Z0P)$

((B 34)234)

I[1.20P I<REST .ARF>!]$
{2 343 41]

{SET 5 "STRUNG.">$

"STRUNG."

(!.5)%

(TS INT I\R f\U I\N 1\G !\.)

<SET NIL ()>$
()

[!.NIL]S

(]

| 171-773 Structured Ob jects

68 The MDL Programming Language

7.7.4. Note on Efficiency [I]

Most of the cases in which it is possible to use SEGMENTs require EVAL to generate an entire new
object. Naturally, this uses up both storage and time. However, there is one case which it is
possible to handle without copying, and EVAL uses it. When the structure being built is a PRIMTYPE 1
LIST, and the segment value of a PRIMTYPE LIST is the last (rightmost) element being concatenated,
that last PRIMTYPE LIST is not copied. This case is similar to CONS and is the principle reason why
PRIMTYPE LISTs have their structures more easily varied than PRIMTYPE VECTOR or UVECTOR.

Examples: H

-ARF &
(B 3 4)

This does nat copy ARF:

(1 2 '.ARF)%
(128 34)
These do:
{1 '".ARF 2) ;"not last element®$
(1 B342)
[1 2 }.ARF] :"not PRIMTYPE LIST"§
[12B8B34]
(1 2 !'.ARF !'<REST '(1)>) :"stil] not Tast element®$ 'r
(12834)

Note the following, which occurs because copying does not take place:

<3ET DOG (A !'.ARF)>%

(A DB 3 4)

<PUT .ARF 1 "BOWOW">%
("BOWOW" 3 4)

.DO0G3

(A "BOWOW" 3 4)

<PUT .DOG 3 "WOOF">%
(A "BOWOW" “WOOF" 4)
.ARF3

("BOWOW"™ "WOOF" 4)

Since ARF was uot copied, it was literally part of DOG. Hence, when an element of ARF was changed,

DOG was changed. Similarly, when an element of DOG which ARF shared was changed, ARF was
changed 1oo.

174 Structured Ob jects

red,

was

acts

s " .

R

T S —

The MDL Programming Language 69

7.7.5. SEGMENTs in FORMs [1]

When a SEGMCNT appears as an element of a FORM, the effect is approximately the same as if the
elements of EVAL of the SEGHINT were in the FORM. Example:

¢SET A '"![1 2 3 418

([123 4]
¢t 1A 558
15

Note: the clements of the structure segment-evaluated in a FORM are not re-evaluated if the thing
being applicd is a SUBR. Thus if .A were (1 2 <+ 3 4> 5), the above example would produce an
error: you can't add up FORMs.

You could perform the same summation of 5 and the elements of A by using

{EVAL <CHTYPE (+ !'.A 5) FORM»>

(Note that CVAL must be explicitly called as a SUBR; if it were not so called, you would just get the
FORM <+ 1 2 3 4 5> - not its "value™) Iowever, the latter is more expensive both in time and in
storage: when you use the SEGHMENT directly in the FORM, a new FORM is, in fact, not generated as it is
in the latter case. (The elements are put on "the control stack” with the other arguments.)

7.8. Self-referencing Structures

It is possible for a structured object to “contain” itself, cither as a subset or as an element, as an
element of a structured element, etc. Such an object cannot be PRINTed, because recursion begins
and never ferminates. Warning: if you try the examples in this section with a live MDL, be sure
you know how to use ~S (section 1.2) to save PRINT from endless agony. (Certain constructs with
ATOMs can give PRINT similar trouble: see chapters 12 and 15.)

7.8.1. Self-subset
CPUTREST head:primlype-list tail:primtype-listy

If head is a subsct of tarl, that is, if CREST fail fix> is the same object as <REST head 0> for some fix,
then both head and tail will be “circular” (and thus self-referencing) after the PUTREST. Example:

<SET WALTZ (1 2 3)>$

(12 3)

<PUTREST <REST .WALTZ 2> .WALTZ)>S
(BY231231231.23 ..

1.1.5 - 7.8.1 Structured Ob jects

70

The MDL Programming Language

7.8.2. Self-element

CPUT si:sfrucfured fix s2:structuredy

If 51 is the same object as s2 then it will "contain” itself (and thus be self-referencing) after the
PUT. Examples:

CSET § <LIST 1 2 3% :®"or VECTOR"S
(12 3)

<PUT .5 3 .50%

(1zd1 221 e.,

¢SET b I[I[]11>S

Igighn!
<PUT LU 1 .U>S !
eigigigigi e

Test your reaction time or your terminal's bracket-maker. Amaze your friends.

7.8.2 Structured Ob jects

r

The MDL Programming Language 71

| Chapter B. Truth

8.1. Truth Values [1]
l MDL represents "false” with an object of a particular TYPE: TYPE FALSE (unsurprisingly). TYPE
FALSE is structurcd: its PRIMTYPE is LIST. Thus, You can give reasons or excuses by making them
elements of a FALSE. (Again, EVALing a FALSE neither copies it nor EVALs its elements, so it is not
necessary te QUOTE a FALSE appearing in a program.) Objects of TYPE FALSE are represented in “#
notation:
*FALSE lisi-of-its-elements

The empty FORH evaluates 1o the empty FALSE:

] <%
#FALSE ()

Anything which is not FALSE, is, reasonably enough, true. In this document the “"data type” false-
or-any in mctasyntactic variables means that the only significant attribute of the object in that
context is whether its TYPE is FALSE or not.

8.2. Predicates [1]
There are numerous MDL F/SUBRs which can return a FALSE or a true. See appendix 2 to find

them all. Most return cither #FALSE () or the ATOM with PNAME T. (The latter is for historical
reasons, namely Lisp (Moon, 1974).) Some predicates which are meaningful now are described next

B.2.1. Arithmertie [I]
! <07? fix-or-float>
evaluates to T only if its argument is identically equal te 0 or 0.0,

8-821 Truth

72 The MDL Programming Language T

17 fiv-or-float»
evaluates te T only if its argument is identically equal to 1 or 1.0.

<G? ndiv-or=-floal mAix-or-floaly

H
evaluates ta T only if n is algebraically greater than m. L=7 is the Boolean complement of 67; that
is, it is T only if » is not algebraically greater than m.
ri
CLY rmdfiv-or-floal mifix-or=-float? 1
T
evaluates 1o T only if nis algebraically less than m. 6=7 is the Boolean complement of L7. ! f
I
8.2.2. Equality and Membership [1]
1
<==7 elrany eZany> i:
evaluates to T only if el is the same object as ¢2 (appendix 1). Two objects that look the same I
when PRINTed may not be ==7. Two FIXes of the same “value” are "the same object™ so are two ‘ E
FLOATs of exactly the same “valuc®. Empty objects of PRIMTYPE LIST (and no other structured
PRIMTYPE) are ==7? if their TYPEs are the same. Example:
<==7 {5ET X "RANDOM STRING"> <TOP <REST .X 6>>>%
]’ {
€==7 _X "RANDOM STRING">3 ‘
#FALSE ()
N==7 is the Boolean complement of ==
{
£=7 el:any eZ:any? | I
evaluates 1o T il o] and e2 have the same TYPE and are structurally equal - that is, they “look the
same”, their printed representations are the same. =7 is much slower than ==?. =7 should be used
only when its characteristics are necessary: they are not in any comparisons of unstructured ob jects.
==7 and =7 always return the same value for FIXes, FLOATs, ATOMs, etc. (Mnemonically, ==7 tests for
"more equality” than =7; in fact, it tests for actual physical identity.)
Example, illustrating non-copying of a SEGMENT in Direct Representation of a LIST: |
|
<SET A "(1 2 3)3% '
(12 3)
<==7 .A {1.A)>%
T
<==7 N {S5ET B «<LIST ! _A>>>%
8.2.1 - 8.2.2 Truth
i
]
i
i - - i
i
i]
i — - i
i - i
—
. — '
| = '
i — - i
i
i &
—
: e ——
| — '
i = 1 i
i
l = .
i
i - A
i
: — .
e ——————— — - e

The MDL Programming Language 7%

#FALSE ()
<=7 .A .B>S
T

N=7 is the Roolean enmplement of =7,
CHEMBER objecl:any struclured?

runs down sirucfured from Tirst te last element, comparing each element of structured with object.
If it Finds an clement of sfructured which is =? to object, it returns <REST structured i> (which is of
TYPE <PRINTYPL siruclured?), where the (isl)th element of structured is =7 to object. That is, the
first element of what it returns is the first clement of structured that is =7 to object.

If no element of struclured is =7 to object, MEMBER returns #FALSE ().

The scarch is more efficient if structured is of PRINTYPE VECTOR (or UVECTOR, if possible) than if it
is of PRIMTYPE LIST. As usual. if structured is constant, it should be QUOTEd.

If object and siructured are of PRIMTYPE STRING [or BYTES], MEMBER does a substring search.
Example:

<MEMBER "PART"™ "S5UM OF PARTS">S
"PARTS"™

SMEMQ objrct:any structfured?» ("member nuick”) is exactly the same as MEMBER, except that the
cCOmMparison (est is ==7

CSTRCOMP =1 523

("string comparison”) can be given either two STRINGs or two ATOMs as arguments. In the latter case
the PNAMLs arc used. Lt actually isn't a predicate, since it can return three possible values: 0 if s! is
=7 to s2 1 if s sorts alphabetically after s2 and -1 if s/ sorts alphabetically before s2.

-A!phnhmicnlly-- means, in this case, according te the numeric order of ASCII, with the standard
alphabetizing rules.

[A predicate suitabile for an ascending SORT (which see) is <G? <STRCOMP .ARG1 .ARGZ2> 03>.]

8.2.3. Boolean Opcrators, [1]
“HOT esalse-or-anyd
€valuates to T only if e evaluates to a FALSE, and to #FALSE () otherwise.

<AND e e2 ... eN>

8.2.2 -823 Truth

-
—— e —— e ———— e e —————
 E — — AR REE E A

e ————— e ———————————————
et ppGEPF”F” N, ——oe e
A ————————————
R o e e,

74 The MDL Programming Language

AND is an FSUBR. It evaluates its arguments from first to last as they appear in the FORH. As soon
as one of them evaluates to a FALSE, il returns that FALSE, ignoring any remaining arguments. If
none of them evaluate 1o FALSE, it returns EVAL of its last argument. <AND> returns T. AND? is the
SUBR erquivalent to AND, that is, all its arguments are evaluated before any of them is tested.

COR &l o2 ... eN>

OR is an FSUBR. Ir evaluates its arguments from First to last as they appear in the FORM. As soon
as one of them evaluates to a non-FALSE, OR returns that non-FALSE value, ignoring any remaining

arguments. If this never occurs, it returns the last FALSE it saw. <OR> returns #FALSE (). ORT is
the SUBR equivalent to OR,

B8.2.4. Ob ject Properties [1]
STYPE? any lype-l ... lype-N>

evaluates 1o fype-i only if <==7 type-i <TYPE any>> is true. It is faster and gives more information
than ORing tests for cach TYPE. If the test fails for all tvpe-is, TYPET returns #FALSE ().

CAPPLICABLE? &>

evaluates to T only if ¢ is of a TYPE that can legally be applied to arguments in a FORM, that is, be
{EVAL of) the first element of a FORM being evaluated (appendix 3).

<MONAD? &>

evaluates to #FALSE () only if NTH and REST {(with non-zero second argument) can be performed on

its argument without error. An unstructured or empty structured ob ject will cause MONAD? to return
i

CSTRUCTURED? &3>

evaluates 1o T only if e is a structured object. It is not the inverse of MONAD?, since each returns T
if its argument is an cmpty structure.

SEMPTY? struclured>

evaluates to T only if its argument, which must be a structured ob ject, has no elements.

CLENGTH? structured fix>

evaluates to CLCNGTH struclureds only if that is less than or equal to fix; otherwise, it evaluates to

#FALSE (). Muoemonically, you can think of the first two letters of LENGTH? as signifying the "less
than or equal te” sense of the test.

823-824 Truth

—_————eee—————————— =

The MDL Programming Language 75

This SUBR was invented to use on lists, because MDL can determine their lengths only by stepping
along the list, counting the elements. If a program needs to know only how the length compares

with a given number, LENGTH? will tell without necessarily stepping all the way to the end of the
list. in contrast to LENGTH.

[If struclured is a circular PRIMTYPE LIST, LENGTH? will return a value, whereas LENGTH will execute

forever. To sce if you can do <REST sfruclured <+ 1 fix>> without error, do the test <NOT <LENGTH?
structured fix>>.]

8.3. COND [I]

The MDL Subroutine which is most used for varying evaluation depending on a truth value is the
FSUBR COND ("conditional™. A eall to COND has this format:

CCOND clause-ldist ... clause-Ndist>

where / is at least one.

COND always returns the result of the last evaluation it performs. The following rules determine the
order of evaluations performed.

(I) Evaluate the first element of each clause (from first to last) until either a non-FALSE ob ject
resulis or the clauses are exhausted.

(2) If a non-FALSE object is found in (1), immediately evaluate the remaining elements (if any)
of that clause and ignore any remaining clauses.

In other words, COND goes walking down its clauses, EVALing the first element of each clause, looking
for a non-FALSE result. As soon as it finds a non-FALSE, it forgets about all the other clauses and
evaluates. in order, the other elements of the current clause and returns the last thing it evaluates.
If it can’t find a non-FALSE, it returns the last FALSE it saw.

8.3.1. Examples [I]

<SET F *(1)>%

(1)

<COND (<EMPTY? .F> EMP) (<17 <LENGTH .F»> ONE)>$S
ONE

<SET F ()>s

)

<COND (<EMPTY? .F> EMP) (<17 <LENGTH .F>> ONE)>S
EMP

824 -83.1 Truth

—

76 The MDL Programming Language

<SET F "(1 2 3)>3

(1 2 3)

CCOND (<EMPTY? .F> EMP) (<17 <LENGTH .F>> ONE)>3

#FFALSE ()

<COMD (<LEMGTHT? .F 2> 3SMALL) (BIG)>S

BIG

<DEFIMNE FACT (N) ;"the standard recursive factorial®

<COMD (<07 .N> 1)
(ELSE <™ .N <FACT <- .N 1>>>)>>§
FACT
<FACT 5>3%
120

8.4. Shortculs with Conditionals

8.4.1. AND and OR as Short CONDs
Since AND and OR are FSUBRs, they can be used as miniature CONDs. A construct of the form

<AND pre-condilions aclionis)?
or

<{OR pre-exclusions actionis)>
will allow actionf(s) to be evaluated only if all the pre-condilions are true or only if all the pre-
exclusions are false, respectively. By nesting and using both AND and OR, fairly powerful constructs
can be made. OF course, if action(s) are more than one thing. you must be careful that none but the
last returns false or true, respectively. Watch out especially for TERPRI (chapter 11). Examples:

CAND <ASSIGNED? FLAG> .FLAG <FCH .ARG>>

applies FCN only if someone else has SET FLAG to true. (ASSIGNED? is true if its argument ATOM has
an LVAL.) No crror can occur in the testing of FLAG because of the order of evaluation.

<AND <SET C <OPEN "READ®" ™A FILE®">»>> <LOAD .C> <CLOSE .C>>

effectively FLOADs the file (chapter 11) without the possibility of getting an error if the file cannot
be opened.

83.1-84.1 Truth

The MDL Programming Language T

8.4.2. Embedded Unconditionals

One of the disadvantages of COND

is that there is no straightforward way to do things
uncenditionally in between rests.

One way around this problem is to insert a dummy clause that
never succecds, because its only LIST element is an AND that returns a FALSE for the test. Example:

<COMD (<07 .N>» <F0 N>}
(<1? .N> <F1 .N»)
(<AND <SET N <= 2 <FIX <F LN 233>
:"Round .N down to even number.®
<x2)
(CLENGTHT .VEC .N> [T}
(T <REST .VEC <+ 1 H22)>

A wvariation is 1o make the last AND argumen
and fourth clavuses in the above example can
other AND argument evaluates (o a FALSE
good reason for it. (A
10.1) instead af AND.

t into the test for the COND clause, (That is, the third
be combined.) Of course, you must be careful that no
i most Subroutines do not return a FALSE without a Very
intable exception is TERPRI (which see)) Even safer is to use PROG (section

Another variation is to increase the nesting with a new COND after the unconditional part. At least

this method docs not mmake the ende Aappear to a human reader as though it does something other
than whar it really does. The above example could be done this way:

<COND (<07 N> <FO0 .N>»)
(<17 N> <F1 .N>»)
(T
CS5ET N <= 2 <FIX </ .N)
<COND (<LENGTH? .VEC .N> I
(T <REST .VEC <+ 1 .N>>)>)>

B.4.2 Truth

78 The MDL Programming Language

Chapter 8. Functions

This chapter eould he named "fun and games with argument LISTs". Its purpose is to explain the
mare complicated things which can be done with FUNCTIONs, and this involves, basically, explaining
all the varinus tokens which can appear in the argument LIST of a FUNCTION. Topics are covered
in what is approximately an order of increasing complexity. This order has little to do with the
order in which tolens can actnally appear in an argument LIST, so what an argument LIST "looks
like™ overall gets rather lost in the shuffle. Teo alleviate this problem, section 9.9 is a summary of
everything that can go into an argument LIST, in the correct order. If you find yourself getting
lost, please refer 1o that summary.

9.1. "OPTIOHAL" [1]

MDL provides very convenient means for allowing optional arguments. The STRING "OPTIONAL®
(or "OPT" -« they're totally equivalent) in the argument LIST allows the specification of optional
arguments with wvalors to be assigned by default. The syntax of the "OPTIONAL" part of the

argument LIST is as follows:

"OPTIONAL" &i-] 2ar-2 ... a-N
First, there is the STRING "OPTIONAL". Then there is any number of either ATOMs or two-element
LISTs. intermixed. one per optional argument. The first element of each two-element LIST must be
an ATOM; this is the dummy variable. The second element is an arbitrary MDL expression. If there
are required argnments, they must come before the "OPTIONAL®.

When EVAL is binding the variables of a FUNCTION and sees "OPTIONAL®, the following happens:

If an explicit argument was given in the position of an optional one, the explicit argument is
bound tn the corresponding dummy ATOM,

If there is no explicit argument and the ATOM stands alone, that is, it is not the first element of
a two.elemient LIST, that ATOM becomes "bound”, but ne local value is assigned to it [see below].
A local value can be assigned to it by using 5ET.

9 .9] Functions

—
T ==Y ¥
e w55,
e ————— e e SR S
e e e V- Lo
—
e e e e e e e e e e e
e e e
S ——
S
e
—
e
e
—
e
= ___------".--..."-"--""S’" >~ =
e
e e e e
e e =l e £
e
S - e R
e
e e Sy T
e O R R R — I B T
e [

The MDL Programming Language 79

If there is no explicit argument and the ATOM is the first element of a two-element LIST, the
MDL expression in the LIST with the ATOM is evaluated and bound to the ATOM.

[Until an ATOM is assigned. any attempt to reference its LVAL will produce an error. The predicate
SUERs BOUND? and ASSIGHED? can be used to check for such situations. BOUND? returns T if its
argument is currently bound via an argument LIST or has ever been SET while not bound via an
argument LIST. The latrer kind of binding is called "top-level binding”, because it is done outside
all active argument-LIST binding., ASSIGNED? will return #FALSE () if its argument is either
unassigned or unbound. By the way. there are two predicates for global values similar to BOUND?Y
and ASSIGNED?, namely GBOUND? and GASSIGNED?. Each returns T only if its argument, which (as
in BOUND? and ASS51IGNED?) must be an ATOM, has a global value "slot” (chapter 22) or a global value,
respectively.]

Example:

CDEFINE INC1 (A "OPTIONAL"™ (N 1)) <SET .A <+ ..A .N>>>%
INC1

<3ET B 0>%

0

<INC1 B>%

1

<INC1 B 5>%

G

Here we defined another (not quite working) increment FUNCTION. It now takes an optional
argument specifying how wuch to increment the ATOM it is given. If not given, the increment is 1.
Mow, 1 is a pretty simple MDL expression: there is no reason why the optional argument cannot be
complicated -- for example. a call 1o a FUNCTION which reads a file on an I/O device.

9.2. TUPLEs

9.2.1. "TUPLE"™ and TUPLE (the TYPE) [I]

There are also times when you want to be able to have an arbitrary number of arguments. You can
always do this hy defining the FUNCTION as having a structure as its argument, with the arbitrary
number of arguments as elements of the structure. This can, however, lead to inelegant-looking
FORMs and extra garbage to be collected. The STRING “TUPLE" appearing in the argument LIST

allows you te avoid that. It must follow explicit and optional dummy arguments (if there are any
of either) and must be followed by an ATOM.

The effect of "TUPLE" appearing in an argument LIST is the following: any arguments left in the

2.1-521 Functions

(AT

80 The MDL Programming Language

FORM,. afrer satislying explicit and optional argumen
an object of TYPEC and PRIMTYPE TUPLE.
in the argument LIST. If there
empty TUPLE is bound to the ATOM

is. are EVALed and made sequential elements of
The TUPLE is then bound to the ATOM following "TUPLE*
were no arguments left by the time the "TUPLE® was reached, an

An object of TYPE TUPLE is exactly the same as a VECTOR except that a TUPLE is not held in
garbage-collecied storage. It is instead held with ATOM bindings in a control stack. This does not
affect manipulation of the TUPLE within the function generating it or any function called within
that one: it can bie treated just like a VECTOR. Note, iowever, that a TUPLE ceases to exist when the
Function which generated it returns. Returning a TUPLE as a value is a good way to generate an
error. (A copy of a TUPLE can easily be generated by segment-evaluating the TUPLE into something;
that copy can be returned.) The predicate LEGAL? returns #FALSE () if it is given a TUPLE

generated by an APPLICABLE ob ject which has already returned, and T if it is given a TUPLE which is
still "good™.

Example:

<DEFINE NTHARG (N ®"TUPLE" T)

:"Get all but first argument into T."
<COHD (<==7 1 .N> 1)
:"IT N is 1, return Ist arg, i.e., .N,
i.e., 1. Note that <17 .N> would be
true even if .N were 1.0.%
(<L? <LENGTH .T> <SET N = N 13>
FFALSE ("DUMMY™))
i"Check to see if there is an Mth arg,
and make N a good index into T while
You're at it.

If there isn't an Nth arg, complain.®
(ELSE <NTH .T .N>)3>

NTHARG, above. takes any number of arguments. Its first argument must be of TYPE FIX. It
returns EVAL of its Nth argument, if it has an Nth argument. If it doesn't, it returns #FALSE
("DUMMY"). (The FLSE is not absolutely necessary in the last clause. If the Nth argument is a
FALSE, the COND will return that FALSE.) Exercise for the reader: NTHARG will generate an error if
its first argument is not FIX. Where and why? (How about {NTHARG 1.5 2 3>3?) Fix iL

9.2.2. TUPLE (the SUBR) and ITUPLE

These SUNRs are the same as VECTOR and

IVECTOR, except that they build TUPLEs (that is, vectors
the control stack)

They can be used only at top level in an "OPTIONAL® list or "AUX" list

belowl The clear advantage of TUPLE and ITUPLE (“implicit tuple™)
efficicncy.

on

(see
is in storage-management
They produce no garbage, since they are flushed automatically upon function return.

5.2.1 - 9.2.2 Funections

r Pv

ﬂ

PV‘IW | YWM

“1

w

| YWW Pwm

The MDL Programming Language 81

Examples:

<DEFINE F (A B "AUX" (C <ITUPLE 10 3>)) ...>

creates a [0-clement TUPLE and SETs € to it

<DEFINE H ("OPTIONAL"™ (A <ITUPLE 10 '<I>>)
"AUX" (B <TUPLE !'.A 1 2 32>))
-3

These are valid uses of TUPLE and ITUPLE. However, the following is not a walid use of TUPLE,
because it is not called at top level of the "AUX":

<DEFINE NO (A B "AUX" (C <REST <TUPLE !.A>>)) ...>

However, the desired effect could be achieved by

<DEFINE OK (A B "AUX"™ (D <TUPLE !.A>) (C <REST .D>)) ...>

9.3. "AUX" [i]

"AUX" (or "EXTRA™ -- they're totally equivalent) are STRINGs which, placed in an argument LIST,
serve to dynamically allocate temporary variables for the use of a Function.

"AUX" must appear in the argwient LIST after any information about explicit arguments. It is
followed by ATOMs or two-element LISTs as if it were "OPTIONAL™. ATOMs in the two-element LISTs
are bound to EVAL of the sccond clement in the LIST. Atoms not in such LISTs are initially
unassigned: they are explicitly given "no™ LVAL.

All binding specificd in an argument LIST is done sequentially from first to last, so initialization

expressions for "AUX" (or "OPTIONAL") can refer to objects which have just been bound. For
example, this works:

<DEFINE AUXEX ("TUPLE" T
"AUX" (A <LENGTH .T>) (B <= 2 .A>))

I[.A .B]>s
AUXEX
CAUXEX 1 2 "FOO">%
If3 6]

922 -93 Functions

e e e mmEEEeee———————————————Y—F———7——F———————//Ht /—/—j——/—/—/—/—/—/—/—/—/7/7/7/7——

. The MDL Programming Language

9.4. QUOTEd argumcnts

If an ATOM in an argument LIST which is to be bound to a required or optional argument is
surroundoed I:|1.r a call to QUOTE, that ATOM is bound 1o the unevaluated argument. Eh’alnplﬂﬁ

CNDEFINE Q2 (A 'B) (.A .B)>%
Q2

CQZ <+ 1 2> <+ 1 2333

(3 <+ 1 23)

It is not often appropriate for a function to take its arguments unevaluated, because such a practice
makes il less wmodular and harder 1o maintain: it and the programs that call it tend to need to know
more about cach other, and a change in its argument structure would tend to require more changes
in the programs that call it. And, since few Functions, in practice, do take unevaluated arguments,
users tend to assume that no functions do (except FSUBRs of course), and confusion inevitably
results.

9.5. "ARGS"

The indicator "ARGS" can appear in an argument LIST with precisely the same syntax as "TUPLE".
However, "ARGS® causes the ATOM following it 1o be bound to a LIST of the remaining unevaluated
al'guli't['lll'.-.

"ARGS" does nol cause any copying to take place. It simply gives you
CREST application:sform fix>

with an appropriate fix. The TYPE change to LIST is a result of the REST. Since the LIST shares
all its elements with the original FORM, PUTs into the LIST will change the calling program,
however dangeorous that may be.

Examples:

<{DEFINE QIT (H "ARGS™ L) <.N .L>>%
QIT

CQIT 2 <+ 3 4> <LENGTH ,QALL>» FOO>%
<LEHRGTH ,QALL>

<PDEFIHNE FUNCT1 (“ARGS"™ ARGL-AND-BODY)
SCHTYPE .ARGL-AND-BODY FUNCTION>>S

FUHCT]

<FUNCT1 (A B) <+ .A .B>>%

#FUNCTION ((A B) <+ .A .B})

94-95 Functions

|

il

(il

il

il

The MDL Programming Language &3

The last example is a perfectly valid equivalent of the FSUBR FUNCTION.

9.6. "CALL"

The indicator "CALL" is an ultimate "ARG5". If it appears in an argument LIST, it must be
followed by an ATOM and must be the only thing used to gather arguments. "CALL" causes the ATOM
which follows it to become bound 1o the actual FORM that is being evaluated -- that is, you get the

"Function call” itself. Sinece "CALL® binds to the FORM itself, and not a copy, PUTs into that FORM will
change the calling code.

"CALL" exists as a Catch-22 for argument manipulation. If you can't do it with *CALL", it can't be
done.

9.7. EVAL and "BIND"
Obraining unevaluated arguments, for example. via QUOTE and "ARGS", very often implies that you
wish fo evaluate them at some point. You can do this by explicitly calling EVAL, which is a SUBR.

Example:

<5ET F "<+ 1 Z>>%

<+ 1 2>
<EVAL .F2>5%
3

EVAL ecan take a second argument, of TYPE ENVIRONMENT (or others, see section 20.8). An
ENVIRONMENT consists basically of a state of ATOM bindings: it is the "world” mentioned in chapter 5.
MNow. since binding changes the ENVIRONMENT, if you wish to use EVAL within a FUNCTION, you
probably want te get hold of the environment which existed before that FUNCTION's binding took
place. The indicator "BIND", which must, if i is used, be the First thing in an argument LIST,
provides this information. It binds the ATOM immediately following it to the ENVIRONMENT existing
"at eall time” - that is, Just before any binding is done for its FUNCTION. Example:

<S5ET A D>3

i]

<DEFINE WRONG ('B "AUX"™ (A 1)) <EVAL .B>>$

WRONG

<WRONG .A>S

1

CDEFINE RIGHT ("BIND™ E 'B "AUX" (A 1)) <EVAL .B .E>>%
RIGUT

9.5 - 9.7 Functions

e e ——————————————————————————————————

B4 The MDL Programming Language

{RIGHT .A>S
0

9.7.1. Local Values versus FNVIRONMENTs

SET. LVAL, VALUE. BOUND?, ASSIGNED?, and UNASSIGN all take a final optional argument which
Bhas not previensly been mentioned: an ENVIRONMENT (or other TYPEs, see section 20.8). If this
argument is given. the SET or LVAL is done in the ENVIRONMENT specified. LVAL cannot be
abbreviated by . {(period) if it is given an explicit second argument.

This feature is just what is needed to cure the INC bug wentioned in chapter 5. A “correct” INC can
be defined as follows:

<DCFIME INC ("BIHND"™ OUTER ATH)
<5ET .ATHM <+ 1 <LVAL .ATH .OUTER>> .OUTER>>

9.8. ACTIVATION, "NAMC", "ACT", AGAIN, and RETURN [I]

EVALuation of a FUNCTION, after the argument LIST has been taken care of, normally consists of
EVALuating cach of the objects in the body in the order given, and returning the value of the last
thing EVAled. If you want te vary this sequenece, ¥ou need to know, at least, where the FUNCTION
begins. Actually, EVAL normally hasn't the foggiest idea of where its current FUNCTION began.
"Where'd 1 start” information is bundled up with a TYPE called ACTIVATION. In "normal” FUNCTION

EVALuation, ACTIVATIONs are not gencrated: one can be generated. and bound to an ATOM, in either
of the two fh”ﬂhing Ways:

(1) Put an ATOM immediately before the argument LIST. The ACTIVATION of the Function will
be bound to that ATOM.

(2} As the last thing in the argument LIST, insert either of the STRINGs "NAME® or "ACT"™ and
follow it with an ATOM. The ATOM will be bound to the ACTIVATION of the Function.

In this document "Function” (capitalized) will designate anything that can generate an ACTIVATION;
besides TYPE FUNCTION, this class includes the FSUBRs PROG, BIND, and REPEAT, yet to he
discussed,

Each ACTIVATION refers explicitly to a particular evaluation of a Function. For example, if a
recursive FUNCTION generates an ACTIVATION, a new ACTIVATION referring explicitly to each
recursion sicp is gencrated on eYery recursion.

Like TUPLEs, ACTIVATIONs are held in a control stack. Unlike TUPLEs, there is no way to get a copy

9.7 -9.8 Functions

R —— —

The MDL Programming Language B5

of an ACTIVATION which can usefully be returned as a value. (This is a consequence of the fact that
ACTIVATIONs refer to evaluations; when the evaluation is finished, the ACTIVATION no longer exists.)

ACTIVATIONs can be tested, like TUPLEs, by LEGAL? for legality. They are used by the SUBRs AGAIN
and RETURN.

AGAIN can take one argument: an ACTIVATION. It means “start doing this again®, where “this” is
specificd by the ACTIVATION. Specifically. AGAIN causes EVAL to return to where it started working
on the body of the Function in the evaluation specified by the ACTIVATION. The evaluation is not
redone completely: in particular, no re-binding {(of arguments. "AUX" variables, etc.) is done.

RETURN can take two arguments: an arbitrary expression and an ACTIVATION, in that order. It
causes the Function evaluation whose ACTIVATION it is given to terminate and return EVAL of
RETURN's first argument. That is, RETURN means “quit doing this and return that”, where "this” is the
ACTIVATION -- its second argument -- and “that” is the expression — its first argument. Example:

<DEF INE MY+ ("TUPLE™ T "AUX™ (M D) "NAME" NH)
<COND (<EMPTY? .T> <RETURM .M _.NHM>)>
<SET M <+ .M <1 .T»>»>
<SET T <REST .T>>»
CAGAIN .NM>>S

MY+

<MY+ 1 3 <LENGTH "FOO">>%

7

<HMY+>5%

0

Note: suppose an ACTIVATION of onc Function (call it F1) is passed to another Function (call it F2) —
for example. via an application of F2 within F1 with Fl's ACTIVATION as an argument. If F2
RETURNs 1o F1l's ACTIVATION, F2 and F1 terminate immediately. and F1l returns the RETURN's first
argument. This technique is suitable for error exits. AGAIN can clearly pull a similar trick. In the
following example. F1 computes the sum of F2 applied to each of its arguments; FZ2 computes the

product of the elements of its siructured argument, but it aborts if it finds an element that is not a
number.

<DEFINE F1 ACT ("TUPLE™ T “AUX" (T1 .T))
<COND (<NOT <EMPTY? _TI>>»
CPUT .T1 1 <F2 <1 .T1> .ACT>>
<SET T1 <REST .TL>>
CAGAIN .ACT>)
(ELSE <+ !.T3)33>S
F1

9.8 Functions

86 The MDL Programming Language

<DEFINE FZ (5 A "AUX" (531 .5))
CREPEAT HMY-ACT ((PRD 1))
<COND (<HOT <EMPTY? .51>>
CCOND (<NOT <TYPE? <1 .51> FIX FLOAT>>
<RETURN #FALSE ("NON-NUMBER™) .A>)
(ELSE <SET PRD <= _PRD <1 .51>>>)>
<SET 51 <REST .51>>)
{(ELSE <RETURN .PRD>)>>>3
F2

<F1 *(1 2) "(3 4)>%
14

<F1 *(T 2) "(3 4)>3
#FALSE ("NON-NUMBER")

9.9 Arcument List Summary

The following is a listing of all the various tokens which can appear in the argument LIST of a
FUNCTION, in the order in which they can occur. Short descriptions of their effects are included.
All of them are optional - that is. any of them (in any position) can be left out or included — but
the order in which they appear must be that of this list. "QUOTEd ATOM", “matching object”, and "2-
list™ are defined below.

(1) *"BIND"
must be followed by an ATOM. It binds that ATOM to the ENVIRONHENT which existed
when the FUNCTION was applied.

{2) ATOMs and QUOTEd ATOMs {(any number)
are required arguments. QUOTEd ATOMs are bound to the matching ob ject. ATOMs are

bound to EVAL of the matching object in the ENVIRONHENT existing when the FUNCTION
was applied.

(2) "OPTIONAL™ or "OPT" (they're equivalent)
is followed by any number of ATOMs, QUOTEd ATOMs, or 2-lists. These are optional
arguments. If a maiching object exists, an ATOH — either standing alone or the first
element of a 2-list — is bound to EVAL of the object, performed in the ENVIRONMENT

existing when the FUNCTION was applied. A QUOTEd ATOM — alone or in a 2-list — is
bound to the matching object itself. If no such object exists, ATOMs and QUOTEd ATOMs
arc left unbound, and the first element of each 2-list is bound to EVAL of the

corresponding second element. (This EVAL is done in the nmew ENVIRONMENT of the
Function as it is being constructed.)

98 -99 Functions

ili

ey

ey

iy

ill

i

The MDL Programming Language 87

(4) "ARG5"™ (and not "TUPLE")
musi be followed by an ATOM. The ATOM is bound to a LIST of all the remaining
arguments, unevaluated. (If there are no more arguments, the LIST is empty.) This
LIST is actually a REST of the FORM applying the FUNCTION. If "ARGS" appears in the
argument LIST, "TUPLE" should not appear.

{4) "TUPLE" {and nor "ARGS")
munsl he followed by an ATOM. The ATOM is bound toe a TUPLE ("VECTOR on the control
stack”™ of all the remaining arguments. evaluated in the environment existing when the

FUNCTION was applied. (If no arguments remain, the TUPLE is empty.) If "TUPLE"
appears in the argument LIST, "ARGS" should not appear.

(5) "AUX" or "EXTRA" {they're cquivalent)
ix followed by any number of ATOMs or 2-lists. These are auxiliary variables, bound
away fram the previous environment for the use of this Function. ATOMs are bound in
the ENVIRONMENT of the Funetion, but they are unassigned: the first element of each 2-
list is both bound and assigned to EVAL of the corresponding second element. (This
EVAL is donc in the new ENVIRONMENT of the Function as it is being constructed.)

(6) "NAME"™ or "ACT* (they're equivalent)

must be followed by an ATOM. The ATOM is bound to the ACTIVATION of the current
cvaloation of the Function.

ALSO -- in place of sections (2) (3) and (4), you can have

{(2-3-4) "CaLL"

which must be followed by an ATOM. The ATOM is bound to the FORM which caused
application of this FUNCTION.

The special terms used above mean this:

"QUOTEd ATOM” -- a two-clement FORM whose first element is the ATOM QUOTE, and whose second
element is any ATOM. (Can be typed -- and will be PRINTed -- as "afom.)

"Matching objeet” - that clement of a FORM whose position in the FORM matches the position of a
required or aptional argument in an argument LIST.

"2-list” - a two-element LIST whose first element is an ATOM (or QUOTEd ATOM: see below) and whose
second clement can be anything but a SEGHENT. EVAL of the second element is assigned 1o a new
binding of the lirst clement (the ATOM) as the "value by default” in "OPTIONAL* or the “initial value”
in "AUX". In the case of "OPTIONAL", the first clement of a 2-list can be a QUOTEd ATOM: in this
case, an argument which is supplied is not EVALed, but if it is not supplied the second element of
the LIST is EVALed and assigned 1o the ATOM.

2.9 Functions

as The MDL Programming Language

9.10. APPLY [1]

Occasionally there is a valid reason for the first element of a FORM not to be an ATOM. For example,
the object 1o be applied to arguments may be chosen at run time, or it may depend on the
arguments in somc way. While EVAL is perfectly happy in this case to EVALuate the first element
and go on from there, the compiler (Lebling, 1979) can generate more efficient code if it knows
whether the result of the evaluation will (1) ﬂ.fwa}l:.. be of TYPE FIX, (2) alwg}lﬁ be an app”cnble nomn-
FIX objoct that evaluates all its arguments, or {3) neither. The easiest way to tell the compiler if (1)
or (2} is true is 1o use the ATON NTH (scction 7.1.2) or PUT (section 7.1.4) in case (1) or APPLY in case (2)
as the first clement of the FORM. (Note: case (1) can compile into in-line code, but case (2) compiles
into a fully mediated call into the interpreter.)

CAPPLY object arg-1 ... arg-N>

evaluartes objoct! and all the arg-is and then applies the former te all the latter. An error occurs if
object evaluates (o something not applicable, or to an FSUBR, or to a FUNCTION {or user Subroutine --
chapter 19) with "ARGS™ or "CALL"™ or QUOTEd arguments.

Example:

<APPLY <NTH .ANALYZERS
<LENGTH <{MEMQ <TYPE .ARG> .ARGTYPES>>>
-ARG>

calls a function to analyze .ARG. Which function is called depends on the TYPE of the argument;
this represents the idea of a dispatch table.

9.11. CLOSURE

CCLOSURE funclion al ... ah»

where funclion is a FUNCTTON, and s/ through aV are any number of ATOMs, returns an object of
TYPE CLOSURE. This can be applied like any other function, but, whenever it is applied, the ATOMs
given in the call 1o CLOSURE are first bound to the VALUEs they had when the CLOSURE was
generated, then the funclion is applied as normal. This is a "Puur man's funarg”.

A CLOSURE is useful when a FUNCTION must have state information remembered between calls to it,
especially in these twa cases: when the LVALs of external state ATOMs might be compromised by other
programs, or when more than one distinet sequence of calls are active concurrently. Example of the
latter: each object of a struciured NEWTYPE might have an associated CLOSURE that coughs up one
element at a time, remembering between calls how far it got. Often only one ATOM will be included

in the CLOSURE, with a value in the CLOSURE that is a structure containing all the relevant
information.

910 - 9.11 Functions

The MDL Programming Language 89

Chapter 10. Looping

10.1. PROG and REPEAT [I]

PROG and REPEAT are almost identical FSUBRs which make it possible to vary the order of EVALuation
arbitrarily -- that is. to have "jumps”. The syntax of PROG ("program”) is

<PROG acl:aflom auxiis! body>

where
a#ct is an optional ATOM, which is bound to the ACTIVATION of the PROG.

Auy is a LIST which looks exactly like that part of a FUNCTION's argument LIST which follows

anm "AUX", and serves exactly the same purpose. It is not opticnal. If you need no temporary
variables or “"ACT", make it ().

body is a non-zero number of arbitrary MDL expressions.

The syntax of REPEAT is identical. except that, of course, REPEAT is the first element of the FORM,
not PROG.

10.1.1. Basic EVALuation [1]

Upon entering a PROG, an ACTIVATION is always generated. If there is an ATOM in the right place,
the ACTIVATION is also bound to that ATOM. The variables in the suw (if any) are then bound as
indicated in the suv. All of the expressions in body are then EVALuated in their order of occurrence.

If nothing untoward happens, you leave the PROG upon evaluating the last expression in body,
returning the value of that last expression.

PROG thus provides a way to package together a group of things you wish to do, in a somewhat more

limited way than can be done with a FUNCTION. But PROGs are generally used for their other
properties.

10 - 10.1.1 Looping

(il

(Il

(il

(118

20 The MDL Programming Language

REPEAT acts in all ways exactly like a PROG whose last expression is CAGAIN>. The only way to leave
a REPEAT is to explicitly use RETURN (or GO with a TAG — section 10.4).

10.1.2. AGATN and RETURN in PROG and REPEAT [I]

Within a PROG or REPEAT, you always have a defined ACTIVATION, whether you bind i1 to an ATOM
or not. [In Tact the interpreter binds it to the ATOM LPROG\ !-INTERRUPTS ("last PROG™). The FSUBR
BIND is identical 1n PROG except that BIND does not bind that ATOM, so that AGAIN and RETURN with
no ACTIVATION argument will not refer to it. This feature could be useful within MACROs.]

If AGAIN is used with no arguments, it uses the ACTIVATION of the closest surrounding PROG or
REPEAT within the current function {an error occurs if there is none) and re-staris the PROG or
REPEAT without rebinding the asux variables, just the way it works in a FUNCTION. With an
argument. it can of course re-start any Function (PROG or REPEAT or FUNCTION) within which it is
emhbedded at run time.

As with AGAIN, if RETURN is given no ACTIVATION argument, it uses the ACTIVATION of the closest
surrounding PROG or REPEAT within the current function and causes that PROG or REPEAT to

terminate and return RETURN's first argument. If RETURN is given po arguments, it causes the
closest surrounding PROG or REPEAT to return the ATOH T. Also like AGAIN, it can, with an
ACTIVATION argument, terminate any Function within which it is embedded at run time.

10.1.3. Examples [1]

Examples of the use of PROG arc difficult to find, since it is almost never necessary, and it slows
down the interpreter (chapter 24). PROG can be useful as a point of return from the middle of a
computation. or inside a COND (which see). but we won't exemplify these uses. Instead, what follows
is an example of a typically poor use of PROG which has been observed among Lisp (Moon. 1974)
programmers using MDL. Then, the same thing is done using REPEAT. In both cases, the example

FUNCTION just adds up all its arguments and returns the sumn. (The SUBR GO is discussed in section
10.4.)

;"Lisp style®
CDEFINE MY+ ("TUPLE"™ TUP)
<PROG (5UM)
<5ET S5UM 0>
LP <COND (<EMPTY? .TUP> <RETURN .5UM>)>

CSET SUM <+ .5UM <1 .TUP>>>
<SET TUP <REST .TUP>>
GO LP>>>

10.1.1 - 10.1.3 Looping

LLCLELLELTRECL Tttt

The MDL FProgramming Language a1

:™"MDL style”™
CDEFINE MY+ ("TUPLE"™ TUP)
CREPEAT ((SUM 0))
<COND (<EMPTY? .TUP> <RETURN .SUM>)>
<SET SUM <+ .SUM <1 .TUP>>
<SET TUP <REST .TUP>>>>

Of course. neither of the above is optimal MDL code for this problemn, since MY+ can be written
using SEGHENT evaluation as

<DEFINE MY+ ("TUPLE"™ TUP) <+ ! _ TUP>>

There are, of course, lots of problems which can't be handled so simply, and lots of uses for REPEAT.

10.2. MAPF and MAPR: Basics [1]

MAPF ("map first™) and HAPR ("map rest”) are two SUBRs which take care of a ma jority of cases which
require loops over data. The basic idea is the following:

Suppose you have a LIST (or other structure) of data, and you want to apply a particular function
te each element. That is exactly what MAPF does: you give it the funetion and the structure, and it
applies the functinn to each element of the structure, starting with the First.

On the. other hand, suppose you want to change each element of a structure according to a
particular algorithm. This can be done only with great pain using MAPF, since you don't have easy
access 1o the sirucinre inside the function: you have only the structure’s elements. MAPR solves the
problem by applying a function to RESTs of a structure: first to <REST sfruclure 0>, then to
SREST structure 12, cte. Thus, the function can change the structure by changing its argument,
for example, by a <PUT argument 1 somelhing?. It can even PUT a new element farther down the
structure. which will be seen by the function on subsequent applications.

Now suppose, in addition 1o applying a function to a structure, you want to record the results -- the
values returned by the function -- in another structure. Both MAPF and MAPR can do this: they both
take an additional function as an argument. and, when the looping is over, apply the additional
Function ro all the results, and then return the result of that application. Thus, if the additional
Function is ,LIST, you get a LIST of the previous results: if it is ,VECTOR, ¥You get a VECTOR of
results: etc.

Finally. it might he the casc that you really want to loop a function over wmore than one structure
simultaneously. For instance, consider creating a LIST whose elements are the element-by-element

sum of the contents of two other LISTs. Both MAPF and MAPR allow this: you can, in fact, give each
of them any number of structures full of arguments for your looping function.

10.1.3 - 10.2 Looping

—
ey — e S R R e R R S=SS——_—
=
= i aaae——————— e ————— L
e
e
e —,eeeeeeee—e—e;e;e,e_e_See R =
S R R R R S R =
T e e ——
e e ——
e
B —
0V
e
e
e
e
e S
—_—
e —————————— - ———————
T . R R R — — ————— e ——
e —
e
N

92 The MDL Programming Language

This was all mentioncd because MAPF and MAPR appear to be complex when seen baldly, due to the
fact that the argument deseriptions must take into account the general case. Simpler, degenerate
cases are usually the ones used.
10.2.1. MAPF [I]
<MAPF finalf loopf sl 52 ... sN>
where (after argument evaluation)
firnalf is somcthing applicable that evaluates all its arguments, or a FALSE;
foopf is something applicable to & arguments that evaluates all its arguments; and
sl throngh sV arc structurcd ob jects (any TYPE)
does the following:
(1) First, it applics focpf 1o N arguments: the first element of each of the structures. Then it
RESTs cach of the structures, and does the application again, looping until any of the structures
runs out of elements. Each of the values returned by /oopf is recorded in a TUPLE.
(2} Then, it applics finalf 1o all the recorded values simultaneously, and returns the result of that
application. If finalf is a FALSE, the recorded values are “thrown away” (actually never recorded
in the Tirst place) and the MAPF returns only the last value returned by loopf. If any of the s/
struciures is ciply. so that foepf is never invoked, finalf is applied to no arguments; if finalf is a
FALSE, MAPF returns #FALSE ().
10.2.2. MAPR [1]
<MAPR finalf loopf sl =28 ... sN»
acts just like MAPF, but, instead of applying loopf 10 NTHs of the structures - that is, <NTH s/ 1>,
<MTH s/ 2>, ete. -- it applics it to RESTs of the structures — that is, €REST s/ 0>, <REST s/ 1>, etec.
10.2.3. Examples [1]
Make the clement-wise sum of two LISTs:
<MAPF ,LIST .+ *'(1 2 3 4) '(10 11 12 13)>§

(11 13 15 17)

10.2 - 10.2.3 Looping

'L

'L

i

'L

The MDL Programming Language 93

Change a UVECTOR to contain double its values:

<SET UV 'I[5 6 7 8 91>
I[56 7 8 91]

CHMAPR <>
#FUNCTION ({L) <PUT .L 1 <= <1 .L> 2>>»)
UV RS

{181]

LS

'T10 12 14 16 181]
Create a STRING from CHARACTERs:

<MAPF ,STRING 1 '["MODELING" "DEVELOPMENT" "LIBRARY"]>S
"MDL"™

Sum the squares of the elements of a UVECTOR :

<MAPF .+ #FUNCTIOH ((N) <= _N .N>) "I[3 4]>%
2o

A parallel assignment FUNCTION (Note that the arguments to HAPF are of different lengths.):

<DEFINF PSET (™TUPLE"™ TUP)

<HAPF <>

+3ET
-TUP
CREST .TUP </ <LENGTH .TUP> 23>>33>%

PSET

<PSET A B C 1 2 3>%

3

A%

1

.B%

£

.C3

3

MNote: it is ecasy to lorget that finalf must evaluate its arguments, which precludes the use of an
FSUBR. It is primarily for this reason that the SUBRs AND? and OR? were invented. As an example,
the predicate =7 could have been defined this way:

10.2.3 Looping

|

e The MDL Programming Language

<DEFINE =% (A B)
<COND (<MONAD? .A> <==7 .A .B>)
(<AND <NOT <HMOMAD? .B>>
<==7? {TYPE .A> <TYPE .B>>
€==7 <LENGTH .A> <LENGTH .B>>>
<HMAPF ,AND? =7 A .B>)}>>

[By the way. the following shows how to construct a value that has the samne TYPE as an argument.

<DEFINE MAP-NOT (5)
<COND (<MEMQ <PRIMTYPE .5> "J[LIST VECTOR UVECTOR STRING]>
<CHTYPE <MAPF ,<PRIMTYPE .5> ,NOT .5>
<TYPE .53>)>>

It works hecause the ATOMs that name the common STRUCTURED PRIMTYPEs (LIST, VECTOR,
UVECTOR and STRINE) have as GVALs the corresponding SUBRs to build ob jects of those TYPEs.]

10.3. More on MAPF and H

R

10.3.1. MAPRET

MAPRET is a SUBR that enables the foopf being used in a HAPR or MAPF (and lexically within it, that is,
not separated from it by a function call) to return from zero to any number of values as opposed to
just one. For example, suppose a HAPF of the following form is used:

<HMAPF ,LIST <FUNCTION (E) ...» ...>
Now suppose that the programmer wants te add no elements to the final LIST on some calls to the
FUNCTION and add many on other calls to the FUNCTION. To accomplish this, the FUNCTION simply
calls MAPRET with the elements it wants added to the LIST. More generaHy, MAPRET causes its

arguments 1o he added to the final TUPLE of arguments to which the finalf will be applied.

Warning: MAPRET is guaranieed to work only if it is called from an explicit FUNCTION which is the
second argument 1o a MAPF or HAPR. In other words, the second argument to MAPF or MAPR must be
#FFUNCTION (...) or <FUNCTION ...>if MAPRET is to be used.

Example: the following returns a LIST of all the ATOMs in an OBLIST {chapter 15}
<DEFINE ATOMS (0OB)
<MAPF ,LIST

<FUNCTION (BKT) <MAPRET !.BKT>>
.OB3>

10.2.3 - 10.3.1 Looping

MMM

The MDL Programming Language 95

10.3.2. MAPSTOP

MAPSTOP is the same as MAPRET, except that, after adding its arguments, if any, to the final TUPLE,
it Forces the application of finslf to occur, whether or not the structured ob jects have run out of
elements. Examplc: the following copies the first ten (or all) elements of its argument into a LIST:

<DEFINE FIRST-TEN (STRUC "AUX" (I 10))
<HMAPF ,LIST
<FUNCTION (E)
<COND (<07 <SET I <= .I 1>>> <MAPSTOP E>)}>
E>
STRUC>>

10.3.3. MAPLEAVE

MAPLEAVE is analagous to RETURN, cxcopt that it works in (lexically within) MAPF or MAPR instead of
PROG or REPEAT. It flushes the accumulated TUPLE of results and returns its argument (optional, T
by defauit) as the value of the MAPF or MAPR. (It finds the MAPF/R that should return in the current
binding of the ATOM LMAP\ !'-INTCRRUPTS ("last map”)L) Example: the following finds and returns
the first non-zero clement of its argument, or #FALSE () if there is none:

<DEFINE FIRST-NO (STRUC)
<HAPRF <>
<FUNCTION (X)
CCOND (<N==7 .X 0> <{MAPLEAVE .X>)>>
LSTRUCS >

10.3.4. Only 1wo arguments

If MAPF ar MAPR is given only two arguments, the iteration function /oopf is applied to no arguments
each time. and the losping continucs indefinitely until a MAPLEAVE or MAPSTOP is invoked.
Example: the following returns a LIST of the integers from one less than its argument to zero.

<DEFINE LNUM (N)
{HAPF ,LIST
<FUNCTION ()
<COND (<07 <SET N <~ .N 1>>> <MAPSTOP 0>)
{ELSE .N)>>>>

Onmne principle use of this form of MAPF/R involves processing input characters, in cases where you

don’t know how many characlers are going to arrive. The example below demonstrates this, using
SUBRs which arc more fully explained in chapter II. Another example can be found in chapter 13.

10.3.2 - 10.5.4 Looping

96 The MDL Programming Language

Example: the following FUNCTION reads characters from the current input channel until an 3§ (ESC)
is read. and then returns what was read as one STRING. (The SUBR READCHR reads one character from

the input channel and returns it. NEXTCHR returns the next CHARACTER which READCHR will return —
chapter I1.)

<DEFINE RDSTR ()
<MAPF ,STRING

CFUNCTION () <COND (<NOT <{==7 {NEXTCHR> <ASCII 27>>>
CREADCHR>)
(7
<CHAPSTOP2)>>>25
RDSTR

CPROG () <READCHR> ;"Flush the ESC ending this input.®

<RD5TR>>%
ABCL1Z3<+ 3 453"ABC123<+ 3 45"

10.3.5. STACKFORM

The FSUBR STACKFORM is archaie, due to improvements in the implementation of MAPF/R, and it
should not be used in new programs.

<HTACKFORM funclion arg pred>
is exactly equivalent to

<MAPF furnclion
CFUNCTION () <COND (pred arg) (T <MAPSTOP>)>>>

In fact MAPF/R is more powerful, because MAPRET, MAPSTOP, and MAPLEAVE provide flexibility not
available withh STACKFORM.

10.4. GO and TAGR

GO is provided in MDL for people who can't recover from a youthful experience with Basic, Fortran.
PL/I. ete. The SUBRs previensly described in this chapter are much more tasteful for making good,
clean, "structured” programs. GO just bollixes things.

GO is a SUBR which allows you te break the normal order of evaluation and re-start just before any
top-level expression in a PROG or REPEAT. It can take two TYPEs of arguments: ATOM or TAG.

10.3.4 - 10.4 Looping

=
N —
—
=" =S
e —
——
S S
R —
Y —————————————— e S
e L L
.
e
———
—
e —— 0 L1
e, . ,,,mmm
e
e
—
—eeeeeeeee e . e e
e R R — et T
————
S
—

The MDL Programming Language 97

Civen an ATOM, GO searches the Dody of the immediately surrounding PROG or REPEAT within the
current Function, starting after aux, for an oceurrence of that ATOM at the top level of body. (This

search is effectively a MEMO.) If it doesn't find the ATOM. an error occurs. If it does, evaluation is
resumed at the expression following the ATOM.

The SUBR TAG gencrates and returns objeets of TYPE TAG. This SUBR takes one argument: an ATOM
which would be a legal argument for a GO. An objeet of TYPE TAG contains sufficient information
to allow you to GO 10 any top-level position in a PROG or REPEAT from within any function called
inside the PROG or REPEAT. GO with a TAG is vaguely like AGAIN with an ACTIVATION: it allows you
to "go back” to the middle of auny PROG or REPEAT which called you. Also like ACTIVATIONs, TAGs

inte a PROG or RCPCAT can no longer be used after the PROG or REPEAT has returned. LEGAL?T can be
used to see if a TAG is srill valid.

10.5. Looping versus Recursion

Since any program in MDL can be ecalled recursively. champions of "pure Lisp” (Moon, 1974) or
somesuch may be tempted to imploment any repetitive algorithm using recursion. The advantage

the looping techniques described in this chapter over recursion is that the overhead of calls is
eliminated. However, a long program (say, bigger than half a printed pPage) may be more difficult
to write iteratively than recursively and hence more difficult to maintain. A program whose
repetition is controlled by a structured ob ject (for example, “walking a tree” to visit each monad in

the object) often should use looping for covering one "level” of the structure and recursion to change
levels™.

10.4 - 105 Looping

28 The MDL Programming Language

Chapter 11. Input/Output

The MDL interpreter can transmit information between an object in MDL and an external device
in three ways. Historically, the first way was to convert an object into a string of characters, or
vice versa. The transformation is nearly one-to-one (although some MDL objects, for example
TUPLEs. cannot be input in this way) and is similar in style to Fortran's formatted 1JO. It is what
READ and PRINT do, and it is the normal method For terminal 1/0.

The second way is used for the contents of MDL ob jects rather than the objects themselves. Here

an image of numbers or characters within an objeet is transmitted, similar in style to Fortran's
unformatied 1/0.

The third way is to dump an object in a clever format so that it can be reproduced exactly when
input the next time. Exact reproduction means that any sharing between siructures or self-
reference is prescrved: only the garbage collector itself can do I/O in this way.

11.1. Conversion /O

All conversion-1JO SUBRs in MDL take an optional argument which directs their attention to a
specific 1/O channel. This section will describe SUBRs without their optional arguments. In this
situation. they all refer to a particular channel by default, initially the terminal running the MDL.
When given an optional argument, that argument follows any arguments indicated here. Some of
these SUBRs also have additional optional arguments, relevant to conversion, discussion of which will
be deferred until later.

HLLL Input

All of the following input Subroutines, when directed at a terminal, hang until § (ESC) is typed and
allow noermal use of rubout, ~D, ~L and "B,

1 - 1111 Input/Output

The MDL Programming Language 99

11.1.1.1. READ

<READ>

This returns the entire MDL object whose character representation is next in the input stream.
Successive <RLADZ?s return successive ob jects. This is precisely the SUBR READ mentioned in chapter
2. See alwo sections 11.3, 15.7.1, and 17.1.3 for optional arguments.

11.1.1.2. READCHR

<READCHR >

("read character”) returns the next CHARACTER in the input stream. Successive <READCHR>s return
successive CHARNANCTERs.

11.1.1.3. HNEXTCHR
CHNEXTCHR>

("mext character”) returns the CHARACTER which READCHR will return the next time READCHR is called.
Multiple <NEXTCHR>s, with no input operations between them. all return the same thing.

1L.L.2. Output

If an abject 10 be nutput requires (or can tolerate) separators within it (for example, between the
clements in a structured object or after the TYPE name in "# notation”), these conversion-output
SUBRs will use a carriage-return/line-feed separator to prevent overflowing a line. Overflow is
detected in advance from elenients of the CHANNEL in use (section 11.2.8).

LLL2.I. PRINT
CPRINT any>

This outputs. in order.
(1) a carriage-return line-feed,

(2} the character representation of EVAL of its argument (PRINT is a SUBR), and
(3) a space

and then returns EVAL of its argument. This is precisely the SUBR PRINT mentioned in chapter 2.

11.1.2.2. PRIN1
CPRIN1 any>

outputs just the representation of, and returns, EVAL of any.

1LLLL - 11.1.2.2 Input/Qutput

100 The MDL Programming Language

11.1.2.3. PRINC
CPRINC any>
{Cprint characters”™ acts exactly like PRIN1, except that
(1) if its argument is a STRING or a CHARACTER, it suppresses the surrounding "s or initial !
respoctively: or,
(2) if irs argument is an ATOM, it suppresses any \s or OBLIST trailers (chapter 15) which would

otherwise be necessary.

If PRINC s argumcint is a structure containing STRINGs. CHARACTERs, or ATOMs, the service mentioned
will be done For all of them. Ditto for the ATOM used to name the TYPE in “# notation”.

11.1.2.4. TERPRI

{TERPRI>
("terminate printing”) outputs a carriage-return line-feed and then returns #FFALSE ()!
11.1.2.5. CRLF

<CRLF >
{"carringr.rmurn line-fFeed™) outputs a carriage-return line-feed and then returns T.
11.1.2.6. FLATSIZIE

CFLATSIZIF any max:dfix radix:fixd
docs not actually cause any output to occur and does not take a CHANNEL argument. Instead, it
compares mav with the number of characters PRINI would take to print any. If max is less than the
number of characters needed (including the case where any is self-referencing), FLATSIZIE returns
#FALSE (); otherwise, it returns the number of characters needed to PRIN1 any. radix {(optional. ten

by default) is used for converting any FIXes that occur.

This SUBR is especially useful in conjunction with (section 11.2.8) those elements of a CHANNEL
which specify the number of charactlers per output line and the current position en an output line.

L1253 - 1L1.2.6 Input/Output

|

Ll

Ll

LA

LN

The MDL Programming Language 101

11.2. CHANNEL {the TYPE)

/O channels are dynamically assigned in MDL, and are represented by an object of TYPE CHANNEL,
which is of PRIMTIYPE VECTOR. The format of a CHANNEL will be explained later, in section
11.2.8. First, how to generale and use them.

11.2.1. OPEN
COPEN mode file-spec
or
COPEN mode namel name2 device dir

OPEN is a SUDRR which creates and returns a CHANNEL. All its arguments must be of TYPE STRING,
and all arc nptional. The preceding statement is false when the device is "INT® or “"NET"; see
sections 119 and [LI0. Tf the attempied opening of an operating-system I1/O channel fails, OPEN
returns #*FALSE (ressomsfring fle-specssiring status:dfix), where the reason and the status are
supplied by the operating system. and the fife-spec is the standard name of the file (after any name
transformations by the operating system) that MDL was trying to open.

The choice of mode is usually determined by which SUBRs will be used on the CHANNEL, and whether
or not the device is a terminal. The following table tells which SUBRs can be used with which modes,

where OK indicates an allowed use:

"READ" "PRINT" "READB" "PRINTB" mode / SUBRs

"PRINTO"
Ok Ok READ READCHR MNEXTCHR READSTRING FILECOPY FILE-LENGTH
LOAD
Qk. QK= PRINT PRINI PRINC IMAGE CRLF TERPRI FILECOPY
PRINTSTRING BUFOUT NETS RENAME
Ok READE GC-READ
QK PRINTB GC-DUMP
Ok Ok oK ACCESS
OK OK Ok Ok RESET
oK Ok ECHOPAIR
O TTYECHO TYI

= PRINTing (or PRINling) an RSUBR (chapter 19) on a "PRINTB" or "PRINTO" CHANNEL has special
effects.

"PRINTB" differs Trom "PRINTO® in that the latter mode is used to update a “DSK” file without

copying it. "READB"™ and "PRINTB" are not used with terminals. "READ" is the mode used by
defaulr.

11.2 - 11.2.1 Input/Output

102 The MDL Programming Language

The next onc 1o four arguments to OPEN specify the file involved. If only one STRING is used, it

can confain the entire specification, according to standard operating-system syntax. Otherwise. the |
string(s) are interpreted as follows:

namel is the first file name, that part 1o the left of the space (in the ITS version) or period (in the
Tenex and Tops-20 versions). The name used by default is <VALUE NM1>, if any, otherwise
"INPUT".

name2 is the seeond Tile name. that part to the right of the space (ITS) or period (Tenex and Tops-

20). The name used by defanlt is <VALUE NMZ3, if any. otherwise ®>* (ITS) or "MUD" and highest
version number (Tenex) or generation number {Tnps-im.

device is the deviee name. The name wsed by default is <VALUE DEV>, if any. otherwise "D3K".
1 (Devices about which MDL has no special knowledge are assumed to behave like "D5K".)

dir is the diskdirectory name. The name used by default is <VALUE SNM>, if any, otherwise the
"working-directory” name as defined by the operating system.

Examples:

COPEN "PRINT" "TPL:"> opcns a conversion-output CHANNEL to the TPL device.

COPEN "PRINT® "DUMHY"™ "NAHMES® *"TPL"> does the same.

COPEM "PRINT™ "TPL"> opecns a CHANNEL to the file DSK:TPL > (ITS version) or DSK:TPL.MUD
(Tenex and Tops-20 versions).

<OPEN "READ" "FOO" ">" "DS5K" "GUEST"> opens a conversion-input CHANNEL to the given file.

<OPEN "READ"™ "GUEST:FOO"> does the same in the ITS version.

11.2.2. OPEH-NR

OPEN-NR is the same as OPEN, except that the date and time of last reference of the opened file are
not changcd.

11.2.3. CHANNEL (the SUBR)

CHANNEL is called exactly like OPEN, but it always returns an unopened CHANNEL, which can later be
opened by RESET (below) just as if it had once been open.

L2 - 1123 Input/Qutput

R R R R R R R R R R RO RRRRRRRRRRERRRRRRRDRIIIDSS

The MDL I"rrlgra.mlllillg !.;nlglmge 103

11.2.4. FILE-EXISTS?

FILE-EXISTS? tests For the existence of a file without crenting a CHANNEL, which occupies about a
lhundred machine words of storage. It takes file-name arguments just like OPEN (but no mode
argument) and returns cither T or #FALSE (reasom:string status:ix), where the reason and the status
are supplied by the operating system. The date and time of last reference of the file are not
changed.

11.2.5. CLOSE
SCLOSE channel>
closes channe! and returns its argument, with its "state” changed to "closed™. If channel is for output,
all buffered output is written out first. No harm is done if channe/ is already CLOSEd.
11.2.6. CHANLIST
CCHANLIST>
returns a LIST whose elements are all the currently open CHANNELs. The first two elements are

usually , INCHAN and ,OQOUTCHAN (see below). A CHANNEL not referenced by anything except
SCHANLIST?> will be CLOSEd during garbage collection.

11.2.7. INCHAN and OUTCHAN

The channel used by default for input SUBRs is the local value of the ATOM INCHAN. The channel
used by default for output SUBRs is the local value of the ATOM OUTCHAN.

You can dircet 1/O to a CHANNEL by SETting INCHAN or OUTCHAN (remembering their old values
somewhere) or by giving the SUBR you wish to use an argument of TYPE CHANNEL. (These actually
have the same effect, because READ binds INCHAN to an explicit argument, and PRINT binds OUTCHAN

similarly. Thus the CHANNEL bLeing used is available for READ macros (section 17.1) and PRINTTYPEs
(section 6.4.4).)

By the way,. a good trick for playing with INCHAN and QUTCHAN within a function is to use the ATOMs
INCHAN and OQUTCHAN as "AUX" variables, re-binding their local values to the CHANNEL you want.
When you leave, of course, the old LVALs are restored (which is the whoele point). The ATOMs must be
declared SPECIAL {chapter I4) for this trick 1o compile correctly.

INCHAN and OUTCHAN also have global values, initially the CHANNELs directed at the terminal running
MDL. Initially, INCHAN's and OUTCHAN's local and global values are the same.

11.2.4 - 1L.2.7 Input/OQutput

—

R —

104 The MDL Programming Language

11.2.8. Contents of CHANNELs

The conicnits of an object of TYPE CHANNEL are referred to by the I/O SUBRs each time such a SUBR
is wsed. If you change the contents of a CHANNEL (for example, with PUT), the next use of that
CHANNEL will be changed appropriately. Some elements of CHANNELs, however, should be played with
seldom, if ever. and only at your peril. These are marked below with an {asterisk). Caveat user.

There follows a table of the contents of a CHANNEL, the TYPE of each element, and an interpretation.
The format used is the following:
elemenl-number: {vpe interpratation

I1.2.8.1. Output CHAMNNF Ls

The contents of a CHANNEL used for output are as follows:

-1: LIST transcript channci(s) {see below)

« 0z varies device-dependent information

* 1: FIX channel number (ITS) or JFN (Tenex and Tops-20), 0 for internal or closed
= 2: STRING made

s 3: STRING First Tile name arguinent

e 4: STRING second [ile name argument

* 5: STRING device name argument

e 6: STRING directory name argument

e 7: STRING real First File name

+ 8B: STRING real second File name

* 9: STRING real device name

=10: STRING real directory name

«ll: FIX various status hirs

«12: FIX PDP-10 instruction used to do one 1/O operation
13: FIX number of characters per line of oulput
I4: FIX current character position on a line

I15: FIX number of lines per page

16: FIX current line number on a page

17: FIX access pointer for Tile-oriented devices
18: FIX radix for FIX conversion

19: FIX sink for an internal CHANNEL

M.B.: The clements of a CHANNEL below number 1 are usually invisible but are obtainable via <NTH
CTOP chamnen!> fix>, For some Appropriate fix,

The transcripi-channels slot has this meaning: if this slot contains a LIST of CHANNELs, then
anything input or eutput on the original CHANNEL is output on these CHANNELs. Caution: do not use
a CHANNEL as its own transcript channel: you probably won't live to tell about it

11.2.8 - 11.2.8.1 Input/Output

The MDL Programming Language 105

I1.2.8.2. Input CHANNELs

The contents of the elements up to number 12 of a CHANNEL used for input are the same as that for
output. The reinaining elements are as follows ((same) indicates that the use is the same as that for

outputl:
13: varies ahject evaluated when end of file is reached
eld: FINX nne “look-ahead” character. used by READ
w5 FIX PDP-10 instruction executed waiting for input
16: LIST qucuc of buffers for input from a terminal
I7: FIX aceess pointer For File-oriented devices (same)
I8: FIX radix For FIX conversion (same)
19: STRING buffer for input or source for internal CHANNEL

11.3. End-of-File "Routine”

As mentioned above, an explicit CHANKEL is the first optional argument of all SUBRs used for
conversion 1/O. The second optional argument for conversion-input SUBRs is an “end-of-file
routine” -- that is, something for the input SUBR to EVAL and return, if it reaches the end of the file
it is reading. A typical end-of-file argument is a QUOTEd FORM which applies a function of yours.

The value of (his argument used by default is a call to ERROR. Note: the CHANNEL has been CLOSEd
by the time this argument is evaluated.

Example: the following FUNCTION counts the occurrences of a character in a file, according to its
arguments. The file names, device, and directory are optional, with the usual names used by default.

<DCEMINE COUNT-CHAR
{CHAR "TUPLE™ FILE "AUX" (CNT 0) (CHN <OPEN “"READ™ ' .FILE>})
CCOND { .CHN ; "IT CHN is FALSE, bad OPEN: return the FALSE

50 result can be tested by another FUNCTION.®
<REPEAT ()

<AND <==7%7 .CHAR <READCHR .CHN ‘'<RETURN>>>
CSET CHT <+ 1 .CHNT>»>>
i"Until EOF, keep reading and testing a character at a time.™®
-CNT ;"Then return the count.")>>

11.2.8.2 - 11.5 Input/Output

———————————ee——D—DD0D0D0D0D0

106 The MDL Programming Language

11.4. Tlmaged 1O

11.4.1. Inpum
11.4.1.1. READB

CREADR buffermuvector-or-storage channe! eof:any’
The charne! must he apen in "READBE" mode. READB will read as many 36-bit binary words as
necessary o Fill the buffer (whose UTYPE must be of PRIMTYPE WORD), unless it hits the end of file.
READE returns the number of words actually read, as a FIXed-point number. This will normally be
the lengih of the buffer, unbess the end of file was read, in which case it will be less, and only the
hl‘:‘_l:'llinl'llg: of buffer will have been filled (SUBSTRUC may help). An attempt to READB again. after
buffer is not filled., will evaluate the end-of-file routine eof, which is aptional, a call to ERROR by
defaulr.
11.4.1.2. READSTRING

<READSTRING buffer:string channel stepidix-or-sliring eof»
is the STRING aunalog te READB, where buffer and eof are as in READB, and channel is any input
CHANNEL (.INCHAN by default) stop tells when te stop inputting: if a FIX, read this many

CHARACTERs (Fill up Luffer by default)y if a STRING, stop reading if any CHARACTER in this STRING is
read (don't include this CHARACTER in final STRING).

11.4.2. Qutput
I11.4.2.1. PRINTB
SPRINTR beofferwveecior -or-slorage channel

This call writes the cntire contents of the buffer into the specified channel open in "PRINTE® or
"PRINTO"™ mode. It returns buffer.

11.4.2.2. PRINTSTRING
<PRINTSTRING buffer:string channel count:dfix?

is analogous to READSTRING. It oulputs buffer on channel, either the whaole thing or the first count
characters. and returns the number of characters oulput.

11.4 - 11.42.2 Input/OQutput

Ll

The MDL Programming Language 107

11.4.2.3. IMAGE

CIMAGLE fix channel?>

is a rather special-purpose SUBR. When any conversion-output routine outputs an ASCII control
character {with special exceplions like carriage-returns, line-feeds, ete.), it actually outputs two
characters: = (circumflex), followed by the upper-case character which has been contraol-shifted.
IMAGE, nn the other hand, always outputs the real thing: that ASCII character whose ASCII 7-bit
code is fiv. It is guaranieed not to give any gratuitous line-feeds or such. channel is optional.

-OUTCHAN by default. and its slots for current character position (number 14) and current line
number (IG) are not updated. IMAGE returns fix,

11.5. Dumped 1O

11.5.1. Ourpun: GC-DUMP

<GC-DUMP any printb:channel-or-false>
dumps any on prinfl in a clever format so that GC-READ (below) can reproduce any exactly, including
sharing. »ap cannot live on the control stack, nor can it be of PRIMTYPE PROCESS or LOCD or ASOC
(which seel. any is returned as a value.
If printlx is a CHAHNEL, it must be open in "PRINTB® or "PRINTO" mode. If printb is a FALSE,
GC-DUMP instead returns a UVECTOR (of UTYPE PRIMTYFE WORD) that contains what it would have

output on a CHANHEL. This UVECTOR can be PRINTBed anywhere you desire, but, if it is changed in

any way. GC-READ will mot be able to input it. Probably the only reason to get it is to check its
length bhelore outpul.

Except for the miniature garbage collection required, GC-DUMP is about twice as fast as PRINT, but
the amount of external storage used is two or three times as much.

11.5.2. Inpul: GC-READ
CGC-READ readbxhannel eof:any>

reiurns onc ob ject From the channel. which must be open in “READB" mode. The file must have been
produccd by GC-DUMP. eof is optional. GC-READ is about ten times faster than READ.

11.4.2.5 - 11.5.2 Input/Qutput

108 The MDL Programming Language

11.6. SAVE Files

The entire state of MDI. ean be saved away in a file for later restoration: this is done with the SUBRs
SAVE and RESTORE. This is a very different form of 1/O from any mentioned up to now; the file
used contains an actual image of your MDL address space and is not, in general, “legible” 10 other
MDL routines. RESTORFing a SAVE file is much faster than re-READing the objects it contains.

Since a SAVE File daes not contain all extant MDL ob jects, enly the impure and PURIFYed (section
22.9.2) anes. a change to the interpreter has the result of making all previous SAVE files unusable.
Ta prevent errors from arising from this, the interpreter has a release number, which is incremented
whenever changes are installed. The current release number is printed out on initially starting up
the program and is available as the GVAL of the ATOM MUDDLE. This release number is written out
as the very first part of cach SAVE file. IF RESTORE attempts to re-load a SAVE file whose release
number is wot the same as the interpreter being used, an error is produced. If desired. the release
number of a SAVE file can be obiained by deing a READ of that file. Only that initial READ will
work: the resi of the file is not ASCII,

11.6.1. SAVE
<SAVLC file-specsiring gcPfalse-or-any
or
CSAVE namel name? device dir gc?false-or-any>
saves the entire state of your MDL away in the file specified by its arguments, and then returns
"SAVED®. AIll STRING arguments are optional, with "MUDDLE", "SAVE"™, "DSK", and <VALUE SNHM>

used by default. ge? is optional and, if supplied and of TYPE FALSE, causes no garbage collection to
occur before SAVEIng. (FSAVE is an alias for SAVE that may be seen in old programs.)

If, after restoring. RESTORE finds that <VALUE SNM> is the null STRING (**), it will ask the operating
systoem [or the name of the "working dircctory” and call SNAME with the result. This mechanism is
handy for "pubilic” SAVE files, which should not point the user at a particular disk directory.

In the ITS veorsion. the file is actually written with the name _MUDS_ > and renamed to the
argument{s) only when complete. to prevent losing a previous SAVE file if a crash occurs. In the

Tenex and Tops-20 versions, version/generation numbers provide the same safety.

Example:

1.6 - 11.6.1 Input/Output

The MDL Programming Language 109

<DEFINE SAVE-IT ("OPTIONAL"

(FILE "(“PUBLIC"® "SAVE™ "DSK" "GUEST"))
"AUX" (SNM ""))
<SETUP>
<COND (<=7 "SAVED"™ <SAVE ! .FILE>> :"See below.™
CCLEANUP>
"Saved.")
(T
CCRLF>

<PRINC "Amazing program at your service.">
<CRLF»>

CSTART-RUNNING>)>>

11.6.2. RESTORE
CRESTORE file-specy
or
CRESTORE namel! nameZ device dir?

replaces the entire current state of your MDL with that SAVEd in the file specified. All arguments
are optional, with the same values used by default as by SAVE.

RESTORE completely replaces the contents of the MDL, including the state of execution existing

when the SAVE was done and the state of all open I/O CHANNELs. If a file which was open when the

SAVE was done docs not exist when the RESTORE is done, a message to that effect will appear on the
terminal.

A RESTORE ncver returns (unless it gets an error): it causes a SAVE done some time ago to return
again (rhis time with the value "RESTORED"), even if the SAVE was done in the midst of running a
program. In the latter case, the program will continue its execution upon RESTOREation.

11.7. Other 1/0 Functions

LL.7.1. LOAD
< LOAD rnpul:channel look-up?

eventually returns "DONE". First. however, it READs and EVALs every MDL object in the file pointed

1L.6.1 - 11.7.1 Input/Output

I

f

I

f

M

il

I

110 The MDL Programming Language

te by /nput. and then CLOSEs impuf. Any occurrences of rubout, 8, D, “~L, etc., in the File are
given no special meaning: they are simply ATOM constituents.

fock-up is optional. used to specify a LIST of OBLISTs for the READ. .OBLIST is used by default
{(chapter 15).

11.7.2. FLOAD

<FLOAD file-spec look-up?

LFLOAD namel nameZ device dir look-up?
("file load”) acts just like LOAD, except that it takes arguments (with values used by default) like

OPEN, OPLNs the CHANHEL itself for reading. and CLOSEs the CHANNEL when done. foock-up is optional,
as im LOAD. If the OPEN Fails. an error occurs, giving the reason for failure.

11.7.3. SNAME
CSNAME sfeing? (Tsystem name”, a hangover from ITS) is identical in effect with <SETG SNM string>,
that is, it causes siring 1o become the &ir argument used by default by all SUBRs which want file

specifications (in the absence of a local value for SNM). SNAME returns its argument.

<SNAME > is identical in effect with <GVAL SNM>, that is, it returns the current dir used by default.

11.7.4. ACCESS

<CACCESS channel fiv
returns chaneel, after making the next character or binary word (depending on the mode of channel,
which should not be "PRINT") which will be input from or output to channel the (fix+1)st one from

the beginning of the file. channe/ must be open to a randomly accessible device ("DSK*, "USR",
etc.). A fiv of 0 positions channel at the beginning of the file.

11.7.5. FILE-LENGTH
<FILE-LENGTH snput:channel>

returns a FIX, the length of the file open on input. This information is supplied by the operating

1L.7.1 - 11.7.5 Input/Qutput

LELELELELELELELELELLLL G

The MDL Programming Language 111

system. and il may not be available. for example, with the "NET" device (section 11.10L. If inpul’s
mode is "RCADT, the length is in characters (rounded up to a multiple of fivek if "READB®, in
binary words. If ACCESS is applicd te input and this length or more, then the next input operation
will detect the end of file.

11.7.6. FILECOPY
<FILECOPY rnpul:channel oulpul:channel>

copics characters From inpuf 1o oufpul until the end of file en input {thus closing input) and returns
the number of characters copied. Both arguments are optional, with .INCHAN and .OQUTCHAN used by
defaull, respectively. The operation is essentially a READSTRING - PRINTSTRING loop. WNeither
CHANNEL necd be freshly OPENed, and oufpu! need not be immediately CLOSEd. Restriction: internally
a <FILE-LENGTH input’> is done, which must succeed: thus FILECOPY might lose if input is a "NET®
CHANNEL .

11.7.7. RESET
LRESET channel>

returns cfransel afier “resetting” it. Resetting a CHANNEL is like OPENing it afresh, with only the file-
name slots preserved. For an input CHANNEL, this means emptying all input buffers and, if it is a
CHANNEL to a file, doing an ACCESS o 0 on it. For an output CHANNEL, this means returning to the
beginning of the file -- which implies, if the mode is not "PRINTO", destroying any output done to
it so Far. If the opening fails (for example, if the mode slot of channel says input, and if the file
specified in its real-name slois does not exist), RESET (like OPEN) returns #FALSE (reason:string file-
spec=iring stalus:fix).

11.7.8. BUFOUT
CRBUFOUT ouwlputxhanns!>
causes all internal MDL buffers for oculput to be written out and returns its argument. This is

helpful if the operating system or MDL is flaky and you want to attempt to minimize your losses.
The output may be padded with up to four extra spaces, if oufpul’s mode is "PRINT®.

11.7.9. RENAME
RENAME is for renaming and deleting files. It takes three kinds of arguments:

{a} two file names. in cither single- or multi-STRING format, separated by the ATOM TO,
{b) one file name in cither format, or

11.7.5 - 11.7.9 Input/Ouiput

12 The dMoOL Programming Language

{c) u CHANNEL and a File name in either format (enly in the ITS version).

Omitted Dile-name parts use e same values by default as does OPEN. If the operation is successful,
RENAME verurns |, otherwise sFALSE (reason:string status:fix) .

In case (a) the file specificd by the first argument is renamed to the second argument. For example:
<RENAME "FCLO 3% TO "BAR"> i"Rename FOO 3 to BAR >.°
In case (b} ihe single Tile name specifies a file to be deleted. For example:

CRENAME "FOO FOO DSK:HARRY;"> ;"Delete file FOO FOO Trom
HARRY's direclory.”®

In case (c) the CHANNEL must be open in either "PRINT® or "PRINTE™ mode, and a rename while open

For writing is attempied. The real-name slots in the CHANNEL are updated to reflect any successful
change, !

11.8. Terminal CHANHELs

M DL behaves libe the I'TS version of the rext editor Teco with respect to typing in carriage-return,
in that i autnmatically adds a line-feed. In order to type in a lone carriage-return, a carriage-return I
followed by a rubout anust bie typed. Alse PRINT, PRIN1 and PRINC do not automatically add a line-
feed when a carriage-return is output. This enables overstriking on a terminal that lacks

backspacing capability. Tt also means that what goes on a terminal and what goes in a file are
mare likely ta loak the same.

In the I'TS vorsion, MIDIL's primary terminal output channel {usually ,OUTCHAN) is nurmally not in
"display” mnde. except when PRINCing a STRING. Thus errors will rarely occur when a user is
typitg in texs containing display-mode control codes.,

In the ITS version. MDL can start up without a terminal, give control of the terminal away to an
inferior oporating-system process or get it back while running. Doing a RESET on either of the
terminal chiannels causes MDL 1o find out if it now has the terminal; if it does, the terminal is
reopencd and the current screen size and device parameters are updated. If it doesn't have the
terminal. an internal Tlag is sef. cavsiug outpur to the rerminal to be ignored and attempted input
from the lernanal 1o make the Opera.ing-sysiem process go to sleep.

In the . 2SS veo o thee arce some poyaliarities associated with pseudo-terminals (*STY™ and *STha"
devices). Il the CHANNIL given to RIFADCHR is open in "READ® mode to a pseudo-terminal, and if no
input is aviidable, BREADCHR coturns -4, TYPE FIX. If the CHAMNEL given to READSTRIMG is open in

"READ®" minde to a psewdo-terininal, veiding wiso stops if and when no more characters are available,
that is. when READCHR woulu return =1.

7.9 - 11.8 Input/Output

LEEE

LEEE

The MDL Programming Language 113

i1.8.1. ECHOPATIR
<ECHOPAMALR lernwnal-incchannel ferminal-out:xchannel™>

returns its Tirst argenent. aftor making the two CHANNELs "know about each other™ so that rubour,
=8, S0 awd TLoon forminal-rm will cause the appropriate output on ferminal-oul.

11.8,2. TT¥CCHIO
LTTYECHD fernwnal-inpul:channeo! pready
turns the cchroing of typed characters on channe! of f or on, according to whether or not pred is of

TYPE FALSLE, and returns efrannel, It is uselful in conjunction with TYI (below) for a program that
wants 1o do character input and echoing in its own fashion.

1I.LB8.3. T¥1

CTYI rernvnalvinpulchannel s
returns ane CHARACTER from channe! {optional, .INCHAN by default) when it is typed. rather than
after $ (ESC) is 1yvped. as is the case with READCHR. The following example echos input characters
as their ASCIH values, until a carriage-return is typed:

REPEAT ((FOO <TTYECHO .INCHAN <3>3))

CAND <==7 13 <PRINC <ASCII <TYI .INCHAN>>>>
CRETURN <TTYECHOQ .INCHAN T>>>>

11.9. Internal CUHANNE Ls

If the dovice specified in an OPEN i “"INT", a CHANNEL is created which does not refer to any /O
device outside MIYL., In this case. the mode must be "READ" or "PRINT®, and there is another
argument, which must e a Tunction.

For a “"READ™ CHANKLL, the funciion musi take no arguments. Whenever a CHARACTER is desired
from this CHANNEL, the function will be applied 1o no arguments and must return a CHARACTER.
This will occur once prer eall to READCUR using this CHANNEL, and several times per call to READ. In
The ITS version. the Function can signal thar its "end-of-file” has been reached by returning <CHTYPE
®777777000003% CHARACTIER> (-1 in left half, control-C in right). which is the standard ITS end-of-
file signal. In the Tenex and Tops-20 versions, the function should return either that or <CHTYPE
®I77777000032* CUARACTIR? (-1 and control-Z}, the latter being their standard end-of-file signal.

11.5.1 - 11.9 Input/Output

4 The MDL Programming Language

For a "PRI1MI" CHANHEL, the Tunction must take one argument, which will be a CHARACTER. It can
dispose of ity argument in any way it pleases. The value returned by the function is ignored.

Example: <OPCH “PRINT® ®=INT:* _FCN> opens an internal ocutput CHANNEL with ,FCN as its
character-gohhbler.

11.10. The "Hi 1™ Device: the ARFA Network

The "NET"® devicer is different in many ways from conventional devices. In the ITS version, it is
the only device hiesides "INT® that does not take all strings as its arguments to OPEN, and it must

take an additional optional argument to specify the byre size of the socket. The format of a call to
open a neiweork sockher is

COPEN mode:mtring local-socketdix foreign-socketfix "HET® foreign-hostfix byte-size:dfix>
where:

made is the mnde of the desired CHANNEL. This must be either "READ™, "PRINT®, "READB"™ or
"PRINTEB".

focal-sacke! is the local socket number. I it is -1, the operating system will generate a unique
local socket number. 17 it is not, in the Tenex and Tops-20 versions, the socket number is
“fork-relative”.

forcign sacket is the forcign socket number. IF it is -1, this is an OPEN for "listening”.
forciza-has! is the forcign host number. IT it is an OPEN for listening, this argument is ignored.

Ly ter—vre is the aptional byte size. For "READ®™ or "PRINT" this must be either 7 (used by
defauht) or £, For "READB” or "PRINTB", it can be any integer from 1 to 36 {used h}r default).

In the Towex and Pops-20 versions, OPEN can instead be given a STRING argument of the form
"HNET:...". in this caswe the local sochket number can be "directory-relative™.

Like any other OPEN, cither a CHARNEL or a FALSE is returned. Once open, a network CHANMNEL can
be uscd like any other CHANHEL, except that FILE-LEHGTH, ACCESS, RENAME, etc., cannot be done.
The "argument” Tirst-name, seeond-name, and directory-name slots in the CHANNEL are used for local
socket. forcign soviel, and foreign host (as specified in the ecall to OPEN)., respectively. The
corresponding "real” slots are uwsed somewhat differently. If a channel is OPENed with local socket
=1, the "real” first-name slot will contain the unique socket number generated by the operating
system. If a listening sochot is OPENed, the foreign socket and host numbers of the answering host
are stored in the "real” second-naine and direciory-name slots of the CHANNEL when the Request For l
Connection is reecived. |

11.9 - 11.10 Input/Output

t

¥
i
e
S S SS S SSSSS ESSS SSS
————
=i "
e —— T
s e
e,
S e eSS e -
—_————————— s —————,— Y e ;e e ———
e —— ¥
e
e e T 1S
A A A A A A A A A A A AN ==NNENLN===—LL.
L YFYP U -(-‘-UGLeOL.S LS.,
e~ = | ~~%
— e = e eSS
B
—_— T e e O R =L
-_——e_- sy
—_—— e e s>
e . R R — ===+
e
R R I E——
e

s

The MDD Programming l:ngungr 115

An interrupt (chapter 21} can be associated with a "NET"-device CHANNEL, so that a program will
know that the CHARNLCL has or necds dara. according to its mode.

There alwn exist several special-purpose SUBRs for the "NET® device. These are described next.

11.10.1. NETSTAILID

CHETSTATE mnelwark:channs!>»
returns a UVECTOR of three FIXes. The [irst is the state of the connection, the second is a code

specifying why a conuection was c¢losed. and the last is the number of bits available on the

connection for anput. The meaning of the state and close codes are installation-dependent and so
are nol included here,

11.10.2, KETACC

CHE TACE nefwor keelranne! >

accepls a connceclion 1o a socket that is apen for listening and returns its argument. It will return a
FALSE il the connection is in the wrong state.

1L.10.3. NETS
CHETS networlchanmec!>

returns its argument, after forcing any system-buffered network output to be sent. ITS normally
does this evory hall second any way. Tenex and Tops-20 do not do it unless and until NETS is called.

NETS is sumilar 1o BUFOUT for normal CHANMELs, except that even operating-system buffers are
empticd now

1110 - 11.10.3 Input/Output

M——
e —
e —
—_——————— e e e ——_———
== - —————————————————————————
e ===
e e e e e e e --—-—--—ee——
e ———
e B e e
CS e e e S —————— s
== e e — ..
e e ——— e ——————
e e —
e e
e ——————————————————————————————— e S
e e ——
e ————— -
e
e R R =R
e R ——
——
—_————————————
e —————————————————
e e
RIS S S R S S e ———
e —

The MDL Programming Language

Chapter 12. Locatives

There is in MRBDI a Facility for obtaining and working directly with objects which roughly

correspand 1o “painters” in assembly language or "lvals” in BCPL or PAL. In MDL, these are
generically Inown as Incatives (from “location”) and are of several TYPEs, as mentioned below.

Locatives exist 1o provide efficient means for altering structures: direct replacement as cpposed 1o
re-copying.

Locatives always vefer to elements in structures. It is not possible to obtain a locative to something
(for example. an A10H) which is nor part of any structure. It is possible to obtain a locative to any

element in any structiured object in MDL -- even to associations (chapter 13} and to the values of
ATOMs. structun s which are nor mally “hidden”,

In the following. 1he ob jeet occupying the structured position to which ¥ou have obtained a locative
will be referred 1o as the ob ject pointed 1o by the locative.

12.1. Obtaining Locatives

I2.1.1. LLOC

LSLLOC afom eme>

returns a Iocative (TYPE LOCD, “locative to iDentifier”) to the LVAL of atom in env. If atom is not
bound in en . an error necurs, env is optional, with the current ENVIRONMENT used by default. The
locative returaed Liy | LOC i« independent of future re-bindings of atom. That is, IN (see below) of

that loeative will return the same thing even if sfem is re-bound 1o something else: SETLOC (see
below) wili affect ouly that particular binding of atom.

Since bindings are Lept an a stack (tra Ia), any atlempt to use a Jocative to an LVAL which has

become vubound will Ferch up an crror. {It breaks just Jike a TUPLE) LEGAL? can, once again,

be used to sev if a LOCD is valid, Caution: CSET A <LLOC A>> creates a self-reference and can make
PRINT very unhappy.

12 - 12.1.1 Locatives

The MDL Programming Language 117

12.1.2. GLOC
CGLOC atom pred
returns a locative (1¥YPE LOCD) to the GVAL of atom. If afom has no GVAL slot, an error occurs, unless

pred (optionall is given and not FALSE, in which case a slot is created (chapter 22). Caution: {SETG
A <GLOC AZ>> creales a self-reference and can make PRINT very unhappy.

12.1.3. AT

EM1 =trppctiired Niiwv-pr-offspl
returns a locative 1o the Vb clement in sfruclured. N is optional, 1 by default. The exact TYPE of
the locative returneed depends an the PRIMTYPE of strucfured: LOCL for LIST, LOCV for VECTOR, LOCU
for UVECTIOK, LOCS for STRING, LOCB for BYTES, LOCT for TEMPLATE, and LOCA for TUPLE. If N is
greater thain <LEHGTIH sfructured? or less than 1, or an OFFSET with a Pattern that doesn't match [
stroctured, an crror occurs. The locative is unaffected by applications of REST, BACK, TOP, GROW,
etc. to slteoctor. ..
12.1.4. GETIM. amed GETL

<GETPL item:any indicator:any defaull:any
returns a locative (TYPL LOCAS) 1o the association of idem under indicator. (See chapter 13 for
informatinn abowr associations.) If no such association exists, GETPL returns EVAL of defaull. defaull
is optinnal, *FALSE () by defaul
GETPL corresponds to GCTPROP amongst the association machinery. There also exists GETL, which

correspoids 1o GET, :':'Illrniug cither a LOCAS or a locative to the indicatorth clement of a structured
ttem. GETL is like AT if «/em is a structure and indicalor is a FIX or OFFSET, and like GETPL if not. I

12.2. LOCATIVE?

This SUBR is a prodicate that rells whether or not its argument is a locative. It is cheaper than
<HMEMQ <PRIMIYPE arg¥> "1{LOCD LOCI ...J>.

12.1.2 - 12.2 Locatives

|

it

it

it

I

|

118 The MDL Programming Language

12.3. Using Locatives

The following two SUBRs provide the means for working with locatives. They are independent of

the specific TYPE of the locative. The notation locafive indicates anything which could be returned
by LLOC, GLOC, AT, GETPL or GETL.

12.3.1. IN
<IN localive

returns the ohjrct tn which locative points. The only way you can get an error using IN is when
focalive poinds o an LVAL which has become unbound from-an ATOH. This is the same as the

problem in referencing TUPLEs as mentioned in section 9.2, and it can be avoided by first testing
<LEGAL? locd>.

Example:

<S5CET A 1>%

1

<IN <LLOC A>3
1

12.3.2. SETLOC
<SETLOC localive any?

returns anj. after having made any the contents of that position in a structure pointed to by
lecative. The structure itself is not otherwise disturbed. An error occurs if focalive is to a non-

LEGAL? LVAL or il you try to put an object of the wrong TYPE into a PRIMTYPE UVECTOR, STRING,
BYTES, or TEMPLATE.

Examplc:

<SET A (1 2 3)>%

(1 2 3)

<S5CTLOC <AT .A 2> HI>S
H1

A%

(1 HI 3)

12.3 - 12.3.2 Locatives

rl

rl

rlrrrr

I

The MDL Proagramming I.anguagl_‘ 119

12.4. Noic nn Locatives

You may have noticed that locatives are. strictly speaking. unnecessary: you can do everything
locatives allnw by appropriate use of, for example, SET, LVAL, PUT, NTH, ete. What locatives
provide is generality,

Basically. how you obtained a locative is irrelevant to SETLOC and IN: thus the same program can
play with GVALs. LVALs, abjects in explicit structures, etc., without being bothered by what function

it should usc 1o do so. This is particularly true with respect to locatives to LVALs: the fact that they

are independent of changes in binding can save a lot of fooling around with EVAL and
ENVIRONMENTSs.

12.4 Locatives

—_—

e —

120 The MDL Programming Language

Chapter 13. Association (Properties)

There is an "associative™ data storage and retricval system embedded in MDL which allows the |
construction of dara structures with arbitrary selectors. It is used via the SUBRs described in this
chapter.

13.1. Associative Siorage

13.1.1. PUTPROP
<CPUTPROP item:any indicator:any value:anyy

("put property”) returns item, having associated value with item under the indicator indicator.

13.1.2. PUT
SPUT dem:any indicalor:any value:any>

f is identical 1o PUIPROP, except that, if item is structured and indicater is of TYPE FIX or OFFSET, it
does {SETLOC <AT ifem indicalor? value>. In other words, an element with an integral selector is

stored in the structure itsclf, instead of in association space. PUT (like AT) will get an error if
indicafor is ont of range: PUTPROP will not.

13.L.3. Hemoving Associations

If PUTPROP is used without its value argument, it removes any association existing between its item

argument and its indicalor argument. If an association did exist, using PUTPROP in this way returns
the value which was associated. If no association existed, it returns #FALSE ().

PUT, with arguments which refer to association, can be used in the same way.

13 -13.1.3 Association (Properties)

L ————————————————

The MDI. Programming Language 121

If cither ifem or indicafor coase to oxist (that is, no one was pointing to them, so they were garbage-
collecteid), and no locatives to the association exist, then the association between themm ceases to exist
{is garbage-callected).

13.2. Associative Retrieval

13.2.1. GETPROP
SGCTPROP item:any indicalor:any exp:anyy

("get property”) returns the value associated with iem under indicator, if any. If there is no such
associatinn. GETPROP returns EVAL of exp (Lthat is, exp gels EVALed both at call time and later).

exp is aptional. IF not given, GETPROP returns #FALSE () if it cannot return a value.

MNote: dfem and indicalor in GETPROP miust be the same MDL ob jects used to establish the association:
that is. they must be ==7 to the objeets used by PUTPROP or PUT.

1%.2.2. GET
<GET flemany indicator:any exp:any

is the inverse of PUT, using NTH or GETPROP depending on the test outlined in section 13.1.2. exp is
optional and used as in GETPROP.

13.3. Examples of Association

<SET L "(1 2 3 4)>5
{123 4)

<PUT .L FOO "L is a list.">S%
(1 2 3 4)

<GET .L FOO>3%

="l 45 a list."
<PUIPROP .L 3 *1[47]>%
(12 3 a4)

<GETPROP .L 3>5%
t[4a]

<GET .L 3>%

3

13.1.3 - 13.3 Association (Properties)

LRGN

aanil

LELL

122 The MDL Programming Language

<SET N 0>3%

1]

<PUT .N .L "list on a zero">»%
1]

<GET .N *{1 2 3 4)>%

FFALSE ()

The last example failed because READ generated a new LIST — not the one which is L’s LVAL.
However,

{GET 0 .L>»%
"list on a zero®™

waorks becanse <==7 N 0> is true.

To associate something with the Nth position in a siructure, as opposed to its Nth element, associate
it with <RCST structure N-1>, as in the following:

<PUT <REST .L 2> PERCENT 0.3>$
(3 4)

<GET <2 .L> PERCENT>S

STALSE () '
<GET <REST .L 2> PERCENT>S -
0.30000000

Remember commoents?

€SET M "!'[A B C ;"third element™ D E]>»S
IfTABCDE!]

<GFT1 <REST .NH 2> COMMENT>»S

"third clement®

The * in the <507 N ... > is 1o keep EVAL from generating a new UVECTOR ("Direct
Representation™)., which would not have the comment on it (and which would be a necdless
duplicate). A Ttop-level” cmmment -- one attached to the entire object returned by READ -- is PUT on
the CHANNLCL in use. since there is mo position in any structure for it. If no top-level comment
Follows the abject. RTAD removes the value (<PUT channe/ COMMENTY); so anybody that wants to see a
tap-level conument must look for it after each READ.

If you need 1o have a structure with sclectors in more than one dimension (for example, a sparse
matrix that does nnt deserve to be linearized), associations can be cascaded to achieve the desired
result. In effect an extra level of association maps two indicators into one. For example, to
associate value with dem under indicator-1 and indicator-2 simultaneously:

CPUTPROP indicalor=1 indicator-2 T»

13.3 Association {Properties)

—— —
e ——
e —
— —_—
——c —
S
e ——
e —
——
—r e
i —

(I
|
{1

|

The MDL Programmming Language 123

<PUTPROP ifem <GLTPL indicalor=1 indicalor-2% valuey

13.4. FExamining Assnciations

Associations (created by PUT and PUTPROP) are chained together in a doubly-linked list. internal to
MDI. The arder of associations in the chain is their order of creation, newest first. There are
several SHREs Por examvining the chain of asseciations. ASSOCIATIONS returns the first association
in the chain, or =FALSE () if there are none. NEXT takes an association as an argument and returns
the next association in the chain, or #FALSE () if there are no more. ITEH, INDICATOR and AVALUE

all take an aswociation as an argument and return the item, indicator and wvalue, respectively.
Associatinus print as:

FASOC (ilem indicalor value)
(sic: only one 5). Example: the following gathers all the existing associations into a LIST.
<PROG ((A <ASSOCIATIONS>))
<COND (<NOT .A> *())
(1 (.A YCHAPF ,LIST

CFUNCTION () <COND (<SET A <HEXT .A>> .A)
(T <MAPSTOP>)2>>>)})>>

13.3 - 13.4 Association (Properties)

l

124 The MDL FProgramming Language 1

Chapter 14. Data-type Declarations

In MDI. it is possible to declare the permissible range of “types” and/or structures that an ATOM's
values or a Function’s arguments or value may have. This is dene using a special TYPE, the DECL
("declaration™. A DECL is of PRIMTYPE LIST but has a complicated internal structure. DECLs are

used by the interpreter to find TYPE errors in function calling and by the compiler to generate more
efficient code.

There are 1wo kinds of DECLs. The first kind of DECL is the most common. It is called the ATOM
DECL and is used most commonly to specily the type/structure of the LVALs of the ATOMs in the
argument LIST of a FUNCTION or aux LIST of a PROG or REPEAT. This DECL has the forms:

FDECL (atomsdicl Patlern ...)

where the pairing of a LIST of ATOMs and a "Pattern” can be repeated indefinitely. This declares the
ATOMs in a f=f to be of the type/structure specified in the following Fattern. The special ATOM
VALUE, il it appears, declares the result of a FUNCTION call or PROG or REPEAT evaluation to satisfy
the Pattern specified. An ATOM DECL is useful in only one place: immediately following the
argument LIST of a FUNCTION, PROG or REPEAT. It normally includes ATOMs in the argument LIST
and ATOMs whose LVALs are otherwise used in the Function body.

The second Lind of DECL s rarely seen h}' the casual MDL user, except in appendix 2. It is called
the RSUBR DECL. 11 is used to specify the type/siructure of the arguments and result of an RSUBR or
RSUBR-ENTRY (chapter 19). It is of the following form:

=DECL ("VALUE"™ Paftern Pallern ...)
where the STRING "VALUE" precedes the specification of the type/structure of the value of the call to
the RSURR, and the remaining Patterns specifly the arguments to the RSUBR in order. The full

specification of 1he RSUBR DECL will bhe given in section [4.9. The RSUBR DECL is useful in unl}r
one place: as an clement of an RSUBR or RSUBR-ENTRY.

14 Data-type Declarations

i i

sl o —
R —
—
e e S s e ——
e
e —
e

—
R === &
—————
e
e
—
—
e ———————
e
e —
e —
—
R R R R = =
EEE S
e
e

il

The MDL Programming Language 125

14.1. Parterns

The simplest possible Pattern is to say that a value is exactly some other object. by giving that
ob ject, QUOTCA. For example, to declare that a variable is a particular ATOM:

#DECL ((X) 'T)
declares that X is always the ATOM T. When variables are DECLed as "being” some other object in
this way. the test used is =?, and not ==?. The distinction is usually not important, since ATOMs,

which are most connmonly used in this construction, are ==7 to each other if =7 anyway.

It is more common to wani (o specify that a value must be of a given TYPE. This is done with the
simplest nou-specific Pattern, a TYPE name. For example,

#DECL ((X) FIX (Y) FLOAT)

declares .X to be of TYPE FIX, and .Y of TYPE FLOAT. In addition to the names of all of the built-
in and created TYPEs, such as FIX, FLOAT and LIST, a few “compound” type names are allowed:

ANY allows any TYPE.

STRUCTURED allows any structured TYPE, such as LIST, VECTOR, FALSE, CHANNEL, etc
(appendix 3).

LOCATIVE allows any locative TYPE, such as are returned h}r LLOC, GLOC, AT, and so on
(chapter 12).

APPLICABLE allows any applicable TYPE, such as FUNCTION, SUBR, FIX (1. ete. {appendix 3).
Any other ATOM can be used to stand for a more complex construct., if an association is
established on thar ATOM and the ATOM DECL. A common example is to <PUT HUMBER DECL

"SOR FIX FLOAT>> (see helow). so that NUMBER can be used as a "compound type name”.

The single TYPE name can be generalized slightly. allowing anything of a given PRIMTYPE, using
the following construction:

FOECL ((X) <PRIMTYPE WORD> (Y) <PRIMTYPE LIST>)

This construction consists af a two-element FORM, where the first element is the ATOM PRIMTYPE,
and the second the name of a primitive type,

The next step is 1o specify the clements of a structure. This is done in the simplest way as follows:

< struclured:idyvpe Paltern Paltern ...%

14.1 Data-type Declarations

—_——— Y _____¥YY¥¥¥mmmm_

126 The MDL Programming Language
where there is a one-to-one correspondence between the Pallerns and the elements of the structure.
For example:

#DECL ((X) <VECTOR FIX FLOAT>)

declares .X tn be a VCCTOR having at least two clements, the first of which is a FIX and the second a
FLOAT. It is often convenient to allow additional elements, so that only the elements being used in
the local neighborhiood of the DECL need to be declared. To disallow additional elements, 2 SEGHENT
is used instead of & FORM (the "excl-ed” brackets make it look more emphatic). For example:

#DECL ((X) '"<VECTOR FIX FLOAT>)

declares ¥ to be a VECTOR having cxactly two elements, the first of which is a FIX and the second a
FLOAT. Note that the Pafterns given for elements can be any legal Pattern:

rDECL ((X) <VECTOR <VECTOR FIX FLOAT>> (Y) <<PRIMTYPE LIST> LIST>)
declares .X to he a VECTOR containing another VECTOR of at least two elements, and .Y to be of
PRIMTYPE LIST, containing a LIST. In the case of a BYTES, the individual elements cannot be
declared (they must be FIXes anyway), only the size and number of the bytes:

#DECL ((B) <BYTES 7 3>»)

declares .0 to be a BYTES with BYTE-SIZE 7 and at least three elements.

It is possible 10 say that some number of elements of a structure satisfy a given Pattern (or
sequence of Patterns), This is called an "NTH construction™.

[number:dix Paltern Pattern ...]

states that the sequence of Pafferns which is REST of the VECTOR is repeated the number of times
given. For example:

EDECL ((X) <VECTOR [3 FIX] FLOAT> (Y) <LIST [3 FIX FLOAT1>)

-¥ is declared to contain three FIXes and a FLOAT, perhaps followed by other elements. .Y is
declared to sepeat the sequence FIX-FLOAT three times. Note that there may be more repetitions of
the sequence in .Y (bur not in . X}k the DECL specifies only the first six elements.

For indclinite repetition. the same construction is used, but, instead of the number of repetitions of
the sequence of Patterns, the ATOM REST is given. This allows any number of repetitions, from zero
on up. For example:

#DCCL ((X) <VECTOR [REST FIX]> (Y) <LIST [3 FIX] [REST FIX]>

4.1 Data-type Declarations

- ——————_——_——_—_—_——_—_—_—_—_———————_—_——_——_————_—_—_—_————_—_———————__—_—_———_—_—_——————————————————————

| The MDL Progranmuming Language 127

A “REST ennstruciion” can contain any mumber of Patterns, just like an NTH construction:
#DECL ((X) <VCCTOR [REST FIX FLOAT LIST]>)

declares that X is a VECTOR wherein the sequence FIX-FLOAT-LIST repeats indefinitely. It does not
declare ihat <LEHGTH .X? is an even multiple of three: the VECTOR can end at any point.

A wariartion en REST is OFT {or OPTIONAL) which is similar to REST except that the construction is
scanned once at most instead of indefinitely, and further undeclared elements can follow. For
example:

“PICL ({X) <VFCTOR [OPT FIX]I®)

declares that ¥ is a VECTOR which is empty or whose [irst element is a FIX. Only a REST
constructing can follow an "OPT construction”.

Mate that the BLST eonstruction must always be the last element of the structure declaration, since it
gives a PPaticin for the rest of the siructure. Thus, the REST construction is different from all others
in thar it has an unlimited range. No matter how many times the Patiern it gives is RESTed off of
the stricture. the remainder of the steucture still has that Pattern.

This exhausts the possibie single Patterns that can be given in a declaration. However, there is also
a compound Pattern defined. 1t allows !-Ill:.‘l‘:ifiﬂ-'lliﬂ“ of several P'D!i-".*llbtf-' Patterns for one value:

<OR FPallcrey Pallern ... 2

Any non-compound Pattern can be included as one of the clements of the compound Pattern.
Finally. compounid PPatterns can be used as Patterns for elements of structures, and so on.

¢fOECL ((X) <OR FIX FLOAT>
{(Y) <OR FIX <UVECTOR [RCST <OR FIX FLOAT>]>>)

The OR constructinon can be extended to any level of ridiculousness, but the higher the level of
complexity and compoundedness the less likely the compiler will fFind the DECL useful.

At the hil::_flf“-t level, any Fattern at top level in an ATOM DECL can be enclosed in the construction
£ specially catom FPaltern 2

which explicitly declares the specialty of the ATOH(s) in the preceding LIST. specialty can be either
SPECIAL or UNSPECIAL. Specially is important only when the program is to be compiled. The word
comes (rom the contenl stack, whieh is ealled “special” in Lisp (Moon, 1974) because the garbage
collectar Tinds objocts on it and wmodifics their internal pointers when storage is compacted. (An
internal stack is used within the interpreter and is not accessible to programs - section 22.1.) In

14.1 Data-type Declarations
—
R ———————————

e e R R RN e e e =

i28 The MDL Programming Language

an interpreted program all local values are initially SPECIAL, because all bindings are put on the
control stack (hut see SPCCIAL-MODE below). When the program is compiled, only values declared
SPECIAL (which may or may not he the declaration used by default) remain in bindings on the
control «tack. All athers are taken care of simply by storing ob jects on the control stack: the ATOMs
involved are not needed and are not created on loading. So, a program that SETs an ATOM's local
value for annther program 1o pick np must declare that ATOM 1o be SPECIAL. If it docsn't, the ATOM's
binding will go away during compiling, and the program that needs to refer to the ATOM will cither
get a no-value ereor or refer 1o an erroneous binding, Usually only ATOMs which have the opposite
specialty frmm that of the current SPECIAL-MODE are explicitly declared. The usual SPECIAL-MODE is
UNSPECTAL, so typically only SPCCIAL deelarations use this construction:

#DECL ({(ACT) <SPECIAL ACTIVATION>)

explicitly declares ACT to be SPECIAL.

Most well-written. modular programs get all their information from their arguments and from
GVALs. amd thus ithey rarcly use SPECIAL ATOMs. cxcept perhaps for ACTIVATIONs and the ATOMs
whose | VALs MM uises Ly defanlt: INCHAN, OUTCHAN, OBLIST, DEV, S5NM, NM1, NMZ2. OUTCHAN is
a special case: the compiler thinks thar all conversion-output SUBRs are called with an explicit
CHANNLL arguinent, whether or not the program being compiled thinks so. For example, <CRLF> is
compiled as though it were <CRLF .OUTCHANY>. So You may use (or see) the binding (OUTCHAN
SOUTCHANY in an argmwent | IST, however odd that may appear, because that -- coupled with the

usual UNSPECIAL declaration by default -« makes only one reference to the current binding of
OUTCHAN and stuffs the result in a slot on the stack for use within the Function.

14.2. Examples
*DECL ({Q) <OR VECTOR CHANNHEL>)
declares .Q 1o be cither a VECTOR or a CHANNEL.
#DECL ({P Q R 5) <PRIMTYPE LIST})
declarcs .P, .0, .R, and .5 all 1o be of PRINTYPE LIST.
"DECL ((F) <FORM [3 ANY]>)
deelares T te be a FORM whose length is at least three, containing objects of any old TYPE.
¥DECL ((LL) <<PRIHNTYPE LIST> [4 <LIST [REST FIX]>]>)

declares (LL to hie of PRIMTYPE LIST, and to have at least four elements, each of which are LISTs of
unspecified leugth {passibly empry) containing FIXes.

14.1 - 14.2 Data-type Declarations

The A1 }'.n__;|n|||.||.|i|.u_; | anguage 179

AT G (VYY) SV ICTIOR FIX ATOM CUHARACTCR>)

declares (VY 10 e a VTCTOR with at least three elements. Those elements are, in order, of TYPE FIX,
ATOM, and CIHARALTI R,

sPFCL (LLHY €LIST ATOM [REST FLOATI>)

doclares LI 1o bie 2 1TIST whose Uirst element is an ATOM and the rest of whose elements are FLOATs.
11 alse «ays that (11 is ar least ane elemet long.

SOFCL ((TOD) <LIST [REST T FIX1>)

declares (100 10 hie a LIST whose sdd-positioned elements are the ATOM T and whose even-positioned
elements are F T Xes,

CHMAMR < >
CLUNCTION (%)
+DECL ((X) <VECTOR [1 FIX]®)
SPUT L% 1 02>
00D

declares JX 1o e a VECTOR containing al least one TIX. The more restrictive [REST FIX] would take
excestive cheabing tiwe by 1the interpreter, because the REST of the VECTOR would be checked on
each itreatinn of the HAPR. In this case hath DECEs are equally powerful, because checking the first
elemient of all e BESTIs oof 23 siruciure e !"I.l1ll.l||",' checks all r|.|r' clements. Alsn, since the FUNCTION
refers only o the Lirst clement of ¥, this is as much declaration as the compiler can effectively use.
(I this VM C10R always vontains only FIXes, it should be a UVECTOR instead, for space efficiency.
Then a [RIS1T 1P AXT Dl wonld make the interpreter chieck only the UTYPE. If the FIXes cover a
swmall non-negative range, then a BYTES might be even better, with a DECL of <BYTES n 0>.)

SIMTTHE TACT (N)
I CE ((NY <HNSPECTAL FIX>)
SCOHD (<07 H> 1) (ELSE <= _H <FACT <= .N 13»>>)>>

declares N 1o be of TYPT T1X and UNSPCCIAL. This specialty declaration ensures that, independent
of SPECTAL -HODE sluring compiling. .M gets compiled into a fast control-stack refercnce.

<PROG ({1 (D))
PG ({L VALUD) <UNSPECTAL <LIST [REST FIX1>»>
(H) <UNSPECIAL FIX>)
<COND (<07 .H>» <RETURNH .L>)>
<SCT L (<+ N <1 .L>» '.L)>
CS5CT H <= N 133>

i4.2 Data-type Declarations

i

The MDL Programming Language

The above declares L and N 1o be UNSPECIAL, says that .Nis a FIX, and says that .L, along with
the valuc returned. is a LIST of any length composed entirely of FIXes.

[4.3. The DECI Syntax

This section gives quasi-BINF productions for the MDL DECL symtax. In the following table MDL
type-speciflicrs are distinguished in this way.

decl %= fFOLCL (decliprs)

decliprs ::

{allist) pattern | deciprs declprs

atlist rim Atom | alom atlist [
pattern ::= pat | <UHNSPECIAL pat> | <SPECIAL pat>»

pat 1w unit | <OR wnit ... unit>

unit S E- fvpe | <PRIMTYPE type> | atom | fany

| ANY | STRUCTURCD | LOCATIVE | APPLICABLE

| <struc elts> | <<OR Struc ... struc) clts>

| '<struc elts> | !1<<OR Struc ... struc)® olts>
| <bstruc fix> | <bstruc fix fix>

| !<bstruc fix Ffix>

Struc Hit

L]}

sfructured-type | <PRIMTYPE sfructured-typed

bstruc £:

BYTLS | <PRIMTYPL BYTES)>

elts HEE paL | pat elts
| [fix pat ... pat]
I [fix pat ... pat] elts
| [opt pat ... pat] | [REST pat ... pat]
| [opt pat ... pat] [REST pat ... pat]

opt tam OPT | OPTTONAL

14.2 - 14.3 Data-type Declarations

The M. Frf‘lgTalllllliug l.n:lguagn 131

14.4. Googd DECLs

There are some rules of thumb concerning “good” DECLs. A "goufj" DECL is one that is minimally
offensive 1o the DLCL-checking mechanisin and the compiler, but that gives the maximum amount
of information, It is simple to state what giver offense to the compiler and DECL-checking
mechanism: complexity. For example. a large compound DECL like:

#DECL ((X) <OR FIX LIST UVECTOR FALSE>)

is a DECL that the compiler will find totally useless. It might as well be ANY. The more involved
the OR, the less information the compiler will find useful in it. For example, if the function takes
<OR LIST VLCTOR WWLCTOR>, maybe you should really say STRUCTURED. Also, a very general DECL
indicates a very general program, which is not likely to be efficient when compiled (of course there
is a trade-off herel. Narrowing the DECL to one PRIMTYPE gives a great gain in compiled efficiency,
to one TYPE still more.

Anaother situation to e avoided is the ordinary !:u-gr,- DCECL, even il it is perfectly slraighlfurw:lrd,
If you have created a structure which has a very specific DECL and is used all over Your code, it
might e belter as a NEWTYPE (sec below). The advantage of a NEWTYPE over a large explicit DECL is
twefold., Fird, the entire structure must be cheeked only when it is ercated, that is. CHTYPEd from
its PRIMTIYPE. As a full DECL, it is checked completely on entering each function and on each
reassigninent of ATOMs DECLed to be it. Second, the amount of storage saved in the DECLs of

FUNCTIONs and so on is large, not to mention the effort of iyping in and keeping up to date several
instances of the Full DCCL .

14.5. Global HECLs

14.5.1. GDECL and MANIFEST

There are two ways to declare GVALs for the DECL-checking mechanisin. These are through the
FSUBR GDECL ("global declaration”) and the SUBR MANIFEST.

CSGDFCL atoms:ldist Pattern ...5%

GDECL allows the type/structure of global values to be declared in much the same way as local
values. Example:

CGDECL (X) FIX (Y) <LIST FIX>>
declares ,X to be a FIX, and ,Y to be a LIST containing at least one FIX.

<HMANIFEST afom afom ...>»

i 14.4 - 14.5.1 Data-type Declarations

132 The MDL Programming Language

MANIFEST takes as arguments ATOMs whose GVALs are declared to be constants. It js used most
commonly to indicate that certain ATOMs are the names of of fsets in structures. For example:

<5E1G X 1>
<MANIFEST X>

allows the compiler to canfidently open-compile applications of X (getting the first element of a
structurel. knowing thar , ¥ will not change. Any sort of object can be a HANIFEST value: if it does
not get embedded in the compiled code, it is included in the RSUBR's “reference vector”, for fast
access. flowever. as a general rule, structured ob jects should not be made HANIFEST: the SETG will
survive in the compiled version (for the use of new uncompiled programs), but uses of GVAL will

instead refer 1o a distinet copy of the object in each RSUBR that does a GVAL. A structured ob ject
should insicad be GDECLed.

An attempt 1o SETG a MANITFST ATOM will cause an error, unless either:
(1) the ATOM was previously globally unassigned:

(2} the old value is ==7 to the new value: or
(3) .REDLCr INE is not FALSE.

14.5.2. MANIFEST? and UNMANIFEST
<HMAHIFEST? atom>
returns T il sfom is MANIFEST, #FALSE () otherwise.

CURMANIFEST atom alom ...7»

removes the MANIFEST of the global value of cach of its arguments so that the value can be changed.

14.5.3. GBOUND 7

<GROUND? atom>

("globally Lound?™) returns T if afom has a global value slot (that is, if it has ever been SETGed,
MANIFEST, GDECLcd, or GLOCed (chaprer 12) with a true sccond arguinent). FFALSE {) otherwise.

14.5.1 - 14.5.3 Data-type Declarations

The MDL Programming Language 133

14.6. NEWTYPE (again)

NEWTYPE gives the programmer another way to DECL objects. The third (and optional) argument of
NEWTYPE is a QUOTEd PPattern. IT given, it will be saved as the value of an association (chapter 13)
using the name of the HOCWTYPE as the item and the ATOM DECL as the indicator, and it will be used 1o
check any rli:lljl?l.'!i that is about to be CHTYPEd to the NEWTYPE. For example:

SHEWTYPMD COMPLCX-NUMBER VECTOR '<<PRIMTYPE VECTOR> FLOAT FLOAT>>

creates a new TYPF, with its Tirst two elements declared to be FLOATs. If later someone types:

YCOMPLEX-HUMBER [1.0 2]

an error will result (the second element is not a FLOAT. The Pattern can be replaced by doing

another NEWTYPL for the same TYPE, or by putting a new value in the association. Further
examplos:

<HEWTYPE FOO LIST *<<PRIMTYPE LIST> FIX FLOAT [REST ATOM]>>
causes 00« 1o contain a F'IX and a FLOAT and any number of ATOMs.
SHEWTYPE BAR LIST>
<SET A ABAR (#BAR () 1 1.2 GRITCH)>
<HEMTYPE BAR LIST '<<PRIMTYPE LIST> BAR [REST FIX FLOAT ATOM]>>
This is an example of a recursively DECLed TYPE. Note that <1 .A> does not satisfy the DECL,

because i1 is emipty, but it was CHTYPEd before the DECL was associated with BAR. MNow,. even
CSCHTYPE <1 .A> <TYPE <1 .A>>> will cause an error.

In each ol these examples, the <<PRTMTYPE ...> ...> construction was used, in order to permit
CHTYPEing an objeetl into iivelf. See what happens otherwise:

SHEWTYPE OOPMS LIST *<LIST ATOM FLOAT>>S
o0irs

<SET A {CHTYPE (E 2.71828) QOP5>>%
#00Prs (E Z2.71828)

MNow <CHTYPE .A DOPS> will CAUSE Al Error. Uul’nrlunaiely. you must

CCHTYPC <CHTYPE .A LIST> QOPS>S
FOOPS (E 2.71828)

14.6 Data-type Declarations

134 The MDL Programming Language

14.7. Controlling DECL Checking
There are several 5URRs and FSUBRs in MDL that are used to control and interact with the DECL-
checking mechanism.
14.7.1. DECL-CHICK
This entire complex cheeking mechanism can gel in the way during debugging. As a result, the
most cmnmnnly w<ed DECL-oriented SUBR is DECL-CHECK. It is used to enable and disable the entire
DECL-checking mechanism,

<DECL-CIECK false-or-any>
If its single argument is non-FALSE, DECL checking is turned on: if it is FALSE, DECL checking is
turned of f. The previous state is returned as a value. If no argument is given, DECL-CHECK relurns
the current state. In an initial MDL DECL checking is on.
When NECI checking is on, the DECL of an ATOM is checked each time it is SET, the arguments and
results of calls to FUNCTIONs, RSUBRs, and RSUBR-ENTRYs are checked, and the values returned by
PROG and REPEAT arc checked., The same is done for SETGs and, in particular, attempts to change
MANIFEST glnhal wvalues. Attempts to CHTYPE an object to a NEWTYPE (if the NEWTYPE has the
optional DECL) are also checked. When DECL checking is of f, none of these checks is performed.
14.7.2. SPFCIAL-CIHECK and SPECIAL-MODE

CSPECIAL-CHECK falze-or-any>

contrels whether or not SPECTAL checking is performed at run time by the interpreter. It is initially
of f. Failure 1o declare an ATOM to be SPECTAL when it should be will produce buggy compiled code.

<SPLCCIAL-NODE =pecially:alom

sets the declaration nsed by defauli (for ATOMs not declared either way) and returns the previous such

declaration. or the current such declaration if no argument is given. The initial declaration used by
default i3 UNSPCCTAL.

i4.7.3. GET-DLCL and PUT-DECL

GET-DECL and PUI-DLCL are used to examine and change the current DECL (of either the global or
the local value) of an ATOM.

CGET-NCCL locd>

14.7 - 14.7.3 Data-type Declarations

(RO

The MDL Programming Language 135

returns The DECL MPattern (il any. ntherwise FFALSE

()) associated with the global or local value slot
of an ATOH. For example:

| <PROG (X)
FDECL ((X) <OR FIX FLOAT>)

CGET-DECL <LLOC X3>>
=

would retiurn <OR FIX FLOAT? as the result of the application of GET-DECL. Note that because of
the use of LLOC (or GLOC, for global values) the ATON being examined must be bound: otherwise you

will get an error! This ean be gotten around by testing first with BOUND? (or GEOUND?, or by giving
GLOC a second argument which is not FALSE).

If the slot Lbeing examined is the global slot and the value is HANIFEST. then the ATOM MANIFEST is
returncd. I the value being examined is not DCCLed, #FALSE () is returned.

CPUT=-DECL focd Pallern®

makes Fattern be the DECL Cor the value and returns focd. If <DECL-CHECK> is true, the current value
must satisfy 1the new Pattern. PUT-DECL js normally used in r.lr.-hugging‘ to change the DECL of an

object in correspond 1o changes in the program. Note that it is not legal to PUT-DECL a “Pattern™ of
MANIFESTY or #FALSE ().

14.7.4. DECL?
CDECL? any Palternd

specifically clhiecks any against Paltern. For example:
<DECL? '[1 2 3] *<VECTOR [REST FIMN]>>%

T
<DECL? '"[1 2.0 3.0] "<VECTOR [REST FIX]>>»$

IFALSE ()
14.8. OFFSLT

An OFFSET is esseutially a FIX with a Pattern attached. considered as an APPLICABLE rather than a
number. An OFTFSET allows a program to specify the type of structure that its FIX applies to.

OFFSETs. like DECIs - il used properly - can make debugging considerably easier; they will
Eventually alvwe help the compiler generate more efficient code,

14.7.3 - 14.8 Data-type Declarations

|
#

i
L
R
—_— -
- ___
—___ b b b bebeee /778660 mFm ou K VHbT 8- oo 81 18— —eeeeoe— 708 — ==
e R R ————
S e e —
e e e ——
- ___
T N N N N N N N NN NN N N NN NN N EEEERERERERERERE e ————————————————————————————————
S S e — S
e e e e
__
= e e e e,
————__________________— - ___ ——————— — ___________— __________________— ________ _— _______________________________———_ &
L e——————————____________—__ . ____ . __ .
T ———————ssssss—— 3
e R R R R S e,
e R e ————
=S _________- e ———— L
s ——————————————————————————————__-- ... "~~~
e e ——— R ——
e e s B R R s
eSS S e e ——

—

_ﬁ

136 The MDL Programming Language

The SUER OFFSET takes twn arguments. a FIX and a Pattern, and returns an object of TYPE and
PRIMTYPE OFFSCT. Aw OFFSET, like a FIX, may be given as an argument to NTH or PUT and may be

applied 1o arguments. The only difference is that the STRUCTURED argument must match the
Pattern contained in the OFFSET, or an error will result. Thus:

CSLTG No0 <OFFSET 1 "<CHANHEL FIX>>>5
WCOTTSET 1 "CCHANNCL FIX>>

<FOO ,IHCHAN>S

1

<00 <ROOT>>%

*FRROR=

ARG-WRONG-TYPE

HTH

LISTCHRING-AT-LCVLCL 2 PROCESS 1

Mote: when the eompiler gets around 1o understanding OFFSETs, it will not do the right thing with

them unless they are MANIFEST. Since there's no geod reason not te MANIFEST them. this isn't a
problem.

The SUBR INDEX, given an OFFSET, returns its FIX:

CINDCX ,FOO>%
1

GET-DECL of an OFFSET returns the associated Pattern: PUT-DECL of an OFFSET and a Pattern returns
a new OFFSET with the same THDEX as the argument, but with a new Pattern:

<GET-DECL ,FOO>%

CCHANNEL FIX>

<PUT-DICL ,FO0 OBLIST>S
WLOFFSET 1 OBLIST>

. FOO%

WCOMFPSCT 1 *<CHANNEL FIX>>

An OFFSET is not a struciured ob ject, as this example should make clear.

14.9. The RSUDR DECI

The RSUBR DICL is similar to the ATOM DECL, cxcept that the declarations are of argument positions

and value rather than of specific ATOMs. Patterns can be preceded by STRINGs which further
describe the arguwment {or value).

14.8 - 14.9 Data-type Declarations

R ——

The MDD Progrannming I;|||g|inge 137
The simplest RSUDBK DECL is for an RSUBR or RSUBR-ENTRY {chapter 19) which has all of its
arguments evaluated and returns a DECLed value. For example:

#DECL ("VALUE™ FIX FIX FLOAT)

declares that there are two arguments. a FIX and a FLOAT, and a result which is 3 FI¥X. While the
STRING "VALUE" is mol constrained to appear at the front of the DECL, it does appear there by

custom. It necd not appear at all, if the result is not to be declared, but (again by custom) in this
case it is nsunally declarcd ANY.

If any arguments are oplional, the STRING "OPTIONAL® {or "OPTY) is placed before the Pattern for
the First aptional argument:

FOECL (“"VALUE" FIX FIX "OPTIONAL®™ FLOAT)
If any of the arguments i< not to be evaluated, it is preceded by the STRING *QUOTE™:
#DECL ("VALUE"™ FIX "QUOTE™ FORM)

declares nne arcument, which is not EVALed.

If the arguments are to be evaluated and gathered into a TUPLE, the Pattern for it is preceded by
the STRING "TUPLE™:

DECL ("VALUE®™ FIX "TUPLE®™ <TUPLE [REST FIXI1>)

If the arguments are to be unevaluated and gathered into a LIST, or if the calling FORM is the only
“argument”, the Pattern is precederd by the appropriate STRING:

FDECL ("VALUE™ FIX ™ARGS" LIST)
#DCCL ("WALUC™ FIX "CALL"™ <PRIMTYPE LIST>)
In every ecase the special indicator STRING is followed by a Pattern which describes the argument,

even though it may sometimes produce fairly ludicrous results, since the Pattern for "TUPLE® always
must be a TUPLE; for "ARGS", a LIST: and for "CALL", a FORH or SEGMENT.

14.9 Data-type Declarations

138 The MDL Programming Language |

Chapter 15. Lexieal Blocking I

Lexical, or static, hinching is annther means of preventing identifier collisions in MDL. (The first
was dynamic bloecking - hinding and ENVIRONMENTs.) By using a subset of the MDL lexical

blocking Facilitics. 1he “block structure™ of such languages as Algol. PL/1, SAIL, etc., can be
simulated, should you wish 1o do so.

I15.1. Rﬂ_ﬂi(‘ Coonsiderations

Since what Follows appears 1o be rather complex, a short discussion of the basic problem lexical
blocking solves and MDL's basie solution will be given First.

ATOMs are identifiers. It is 1hus essential that whenever you type an ATOM, READ should respond
with the unique idemifier you wish to designate. The problem is that it is unreasonable to expect
the PHANEs of all ATOMs 1o be unique. When You use an ATOM A in a program, do you mean the A

Yoeu typed two minutes ago, the A you used in another one of Your programs, or the A used by some
library program?

Dyunamic blocking (pushing down of LVALs) solves many such problems. However, there are some
which it docs not solve - such as state variables (whether impure or pure). Major problems with a
system having oanly dynamic blocking usually arise only when attempts are made 1o share large
numbers of significant programs ameong many people.

The solution used in MDL is hasically as Mollows: READ must maintain at least one table of ATOMs to
guaraniee any uniqueness.. So. MDL allows many such tables and makes it easy for the user to
specify which one is wanted., Such a table is an object of TYPE OBLIST (“object list™). All the

complication which follows arises out of a desire 1o provide a powerful. easily used method of
working with OBLISTs. with reasonable values used by defauli.

15 - I5.1 Lexical Blocking

i
T

—
e
N —
—
—
—
e —
e
e —
—
—
—
e —
e —
—
—
—
—
e —
N —
—
—
—
e
e —

I The MDI. Programming Language 129

15.2. OBRLISTs

An OBLISY is of PRINTYPE UVECTOR with UTYPE LIST: the LISTs hold ATOMs. (The ATOMs are ordered
by a hash coding on their PNAMEs: each LIST is a hashing bucket.) What follows is information
about ORLISTs as such,

15.2.1. ODLIST Names

Every wormally constituted OBLIST has a name. The name of an OBLIST is an ATOM associated with
the OBLIST under the indicator OBLIST. Thus.

SGCTPROM ohbdizt OBLISTY

<GLCT oiizt OBLIST>
returns the name of abliz).

Similarly. every wname of an OBLIST is associated with its OBLIST, again under the indicator
OBLIST, so that

| CGETPROM obvist-name:alom DBLIST>
or
CGLT oblizt- name:alom OBLIST?
returns the OBLIST whose name is oblisi-name.

Since there is nothing special about the association of OBLISTs and their names, the name of an
OBLIST can bie changed by use of PUTPROP, both on the OBLIST and its name. It is not wise to

change the OBLIST assnciation williout changing the name association, since you are likely to
caonfuse RCAD and PRINT terribly.

You can alse use PUT or PUTPROP to remove the association between an OBLIST and its mame
completely. If you want the OBLIST 1o go away (be garbage collected). and you want to keep its
name aronnd. this must be done: otherwise the association will Foree it to stay. even if there are no
other refevences to it (IT you have no references to cither the name or the OBLIST (am ATOM --
including a 1¥PE name .- jroints to its ODLIST), bath of them -- and their association -- will Eo away
Without Yeour having te reaove the association, of course.) It is not recommended that you remove
the name of an OBLTST without having it go away, since then ATOMs in that OBLIST will PRINT the
sate as if they were in no OBLIST -- which is deleating the purpose of this whole exercise.

15.2 - 15.2.] Lexical Blocking

.'h-__

— . ———

140 The MDL Programming Language

15.2.2. MOBL 151

CHOBLTST afom fix>

{("make olilist™) creates and retarns a new OBLIST, containing no ATOMs. whose name is afom. unless
there alrcady exists an OBLIST of that name. in which case it returns the existing OBLIST. fix is the
size of the OBLIST created -- the number of hashing buckets. fix is optional (ignored if the OBLIST

already exists), 13 hy default. If specified, fix should be a prime number, since that allows the
hashing 1o work better.

15.2.3. OBL1IST7?
SOBLIST? afom>

returns #FALSE () il alom is not in any OBLIST. If atom is in an OBLIST, it returns that OBLIST.

15.3. READ and OBL1STs

READ can he explicitly 1ald to laok up an ATOH in a particular OBLIST by giving the ATOM a trailer.
A trailer consists ol the charactors |- (exclamation-point dash) [‘oII-:-wing the ATOM, immedi:lely
followed by the name of the OBLIST. For example,

Al -0B
specifies the unique AT0H of PNAME A which is in the OBLIST whoss name is the ATOM OB.

Mote that the name of the OBLIST must follow the |- with ho separators (like space, tab, carriage-

return, efe.). There is 3 name wsed by default (section 15.5) which Iypes out and is typed in as
' =separalor.

Trailers can bie used recursively:
BI-Al-0B

specifics the unigque ATOM of PHAME B which is in the OBLIST whose name is the unique ATOM of

PNAME A which is in the DBLIST whose name is 03. (Whew!) The repetition is terminated via the
look-up aud insertion deseribed below.

If an ATOM with a given PNAMC is not found in the OBLIST specified by a trailer, a new ATOM with
that PNAME is created and inserted into that OBLIST.

If an OBLTIST whose name is given in a trailer docs not exist, READ creates one, of length 13 buckets.

15.2.2 - 15.3 Lexical Blocking

‘1111 IIIII*

The MDN. Programming Language 141

If frailer notation is oot used {the “normal® case). and for an ATOH that terminates a trailer., READ
fooks np the PHANE of the ATOM in a LIST of OBLISTs, the LVAL of the ATOM OBLIST by default. This
1 jook-up s=tarts> with <1 .0BLIST>» and continues until LOBLIST is exhausted. IF the ATOM is not

found. READ wsually inserts it into <1 .0BLIST>. (It is possible 1o force READ to use a different
clement nf the LIST of OBLISTs for new inscrtions. If the ATOM DEFAULT is in that LIST, the
OBLIST Mllowing thar ATOM will be used.)

15.4. PRINT and OB1 151y
When PRINT is given an ATOM to outpul, it outputs as little of the trailer as is necessary to specify
the ATON uniquely to RECAD. That is, if the ATOM is the Tirst ATOM of that PNAME which READ would

Find in its normal look-up in the current .OBLIST, no trailer is output. Otherwise, ! - is output and
the nawe of the OBLIST is recursively PRINled.

Warning: there are obscure cases, which do not eccur in normal practice, for which the PRINT trailer
recursion Jocs not terminare. For instance, if an ATOM must have a trailer printed, and the name of

the OBLIST is an ATOM in that very same OBLIST, death. Any similar circular case will also give
PRINT a hernia.

15.5. Imitial Statc

In an initial MDIL, .OBL1ST contains two OBLISTs. <1 .OBLISTY initially contains no ATOMs, and <2

i -OBLIST> contains all the ATOMs whose GVALs are SUBRs or FSUBRs, as well as OBLIST, DEFAULT, T,
ete. It is Jdifficult 1o lose track of the latter: the specific trailer !-separafor will always cause
reference to that ORI TST. In addition. the SUBR ROOT, which takes no arguments, always returns
that OBLIST.

The name of <ROOT> j» ROOT ; this ATOM is in <ROOT> and would cause infinite PRINT recursion were

it not for the use of -sepsrator. The name of the initial <1 .0BLIST> is INITIAL {really
INITIAL!=).

The ATOM OBLIST alsn has a GVAL. ,OBLIST is initially the same as .OBLIST; however, ,0BLIST is

ot affected by the SUBRs used 1o manipulate the OBLIST structure. It is instead uscd only when
Crrors occiuir.

In the case of an creor, the current -OBLIST is checked to sce if it is "reasonable™ -- that is. contains
nathing of the wrong 1YPF. (It is reasonable. but not standard. for .OBLIST to be a single OBLIST
instead of & LIST of them.) IF it is reasonable, that value stays current. Otherwise, OBLIST is SET to
+OBLIST. Nnaic that changes made to the OBLISTs on ,0BLIST -- for example, new ATOMs added --
remain. If cven ,ORLIST is unreasonable, ODLIST is 5CT and SETGed to its initial value. <ERRET>
(section 16.4) always assinnes that .QBLIST is unreasonable,

153 - 15.5 Lexical Blocking
|
|

L—__

142 The MDL Programming Language

Three other OBL1STs exist in a virgin MDL: their names and purposes are as follows:
ERRORS! - contains ATONs whosc PNAMEs are used as error messages. It is returned by <ERRORS>.

INTERRUPTS!~ is wused by the interrupt system (section 21.5.1), It is returned by
CINTERRUPTS>.

HUDDLE ! = is wsed infrequently by the interpreter when loading compiled programs to fix up
references 1o Incations within the interpreter.

The pre-lnading of compiled programs may crcale other OBLISTs in an initialized MDL (Lebling.
1979).

15.6. BLOCK amd_EHDIL OCK

These SUBRs arc analogous to begin and end in Algol, eic, in the way they manipulate static
blocking (aml in no other wayl

CELOCK lcoh-upisi-of-oblists>

returns its argunment after “pushing”™ the current LVAL of the ATOM OBLIST and making its argument
the current LVAL. You usually want <ROOT> te be an element of /ook-up, normally its last.

<ENDBLOCK >
“pops” the LVAL of the ATOM OBLIST and returns the resultant LIST of OBLISTs.

MNote that this "pushing” and “popping” of .OBLIST is entirely independent of functional
application, hinding. cte.

15.7. SUBRs Assnciated with Lexical Blocking

15.7.1. RCAD {again)
CREAD charnne! cof-rouline look-up?

This is a Tuller call 10 RCAD. fook-up is an OBLIST or a LIST of theom, used as stated in section 15.3
to look up ATOMs and insert them in OBL1STs. If it is not specified, .OBLIST is used. See also
sections 1LLLL 113, and 17.1.3 for other arguments.

I55 - 15.7.1 Lexical Blocking

The MDL Programming Language 143

15.7.2. PARSE and LPARSE (again]

SPARSE steing radividic look-up?

i as was provinusly mentioned, applics READs algorithm to siring and returns the first MDL ob ject
resulting. This includes looking up prospective ATOMs on look-up, if given, or .0BLIST. LPARSE can
be called in the same way. See also sections 7.6.6.2 and 17.1.3 for other arguments.

i I5.7.3. LOOKUP
SLOOKUP siring oblist>

returns the ATONM of PNAME sfring in the OBLIST oblist, if there is such an ATOM: otherwise, it returns

#FALSE (). If strin: would PARSE into an ATOM anyway. LOOKUP is Faster. although it looks in only
one OBLIST insicad of a LIST of them.

15.7.44. ATOM
<ATOM slrirg:

creates and returns a spanking new ATOM of PNAME string which is guaranteed not to be on any
OBLIST.

An ATOM which is nol an any OBLIST is PRINTed with a trailer of | -#FALSE {)-

15.7.5. REMOVE
CREMOVE stfring oblisi>

remeoves the ATOH of PNAME string [romn obilist and returns that ATOM. If there is no such ATOM,
REMOVE returns #FALSE (). Alsn,

CREHOVE atomd
removes afow Crom dts OBLISY, if #t is on one. It returns alom if it was on an OBLIST; otherwise it

refurns fFALSE ().

15.7.G6. INSERT

SINSERT sfring-or-atom oblists

15.7.2 - 15.7.6 Lexical Blocking

—
e
eEE——————_________,,Saaa——— ——————————————————J . .. ___
— - —

-~~~ - =
e ___.——— . ————————— @ .
e ————— - _______ e ———
e ________________ L ————— e ——————

S
e, __________________________. "
e E—— R e
- -
e R ———
. — = = = = === —
- - - - - —
e e Sy
= . e,
e e e e—————————
—————e———-—-—— . ——°”+++»--—>">-— "=

e S S ——— A ——
e e e
S e e R 000000000000 i W —— ot

-

144 The MDL Programming Language

creates an ATOM of PHAHF <fring, inserts it into oblis! and returns it. IF there is already an ATOM with
the same PHAME asx alonr in oblisf, an error occurs. The standard way to avoid the error and always
gel your asfom is

<OR <LOOKUP sirin: obdist> {INSERT =fring oblisi>>
As with REMOVE, THSERT can also take an ATOM as its first argument; this ATOM must not be on any

OBLIST -- it must have been REMOVEd. or just created by ATOM — else an error occurs. The OBLIST

argument is pever oprional. If you would like the new ATOM to live in the OBLIST that READ would
have chosern, you can {PARSE sfring> instead. |

15.7.7. PHAME

CIMHAME afom>

=

returns a STRING (newly created) which is atom's PHAME (Tprinted name”). If trailers are not neceded,
PNAME is much faster than UHPARSE on atom. {In fact UNPARSE has to go all the way through the (1
PRINT algorithm twice. the first time 10 sce how long a STRING is needed.)

s
1
15.7.8. SPHAME | u
SPNAHE (Tshared printed name”) is identical to PHNANE, except that the STRING it returns shares :)
storage with sfom {(appendix 1), which is more efficient if the STRING will not be modified. PUTting
inta such a STRING will cause an crror. F
th
é
15.8. Example: Another Solution 1o the THC Problem .
Al
What follows is an example of the way OBLISTs are “normally” used to provide “externally ol
available™ ATOMs and “local” ATOMs which are not so readily available externally. Lebling (1979) |
describes a sysicmatic way to accomplish the same thing and more. } N
sza
<HMOBLL1ST 1INCO 1>
;:"Crecate an OBLIST Lo hold your external symbols.
Its name is IHCO!-INITIAL!- ."®
tl
INC! - 1HCO re

:Put your external symbols into that OBLIST.
If you have many, Jjust write them successively."

15.7.6 - 15.8 Lexical Blocking |

=

r

The MDL Programming Language 145

<BLOCK (<MOBLIST INCI'-INCO 1> <GET INCO OBLIST> <ROOT>)>
:"Creale a local OBLIST, naming it INCI!-INCO, and set up .OBLIST fTor
reading in your program. The OBLIST INCO is included in the BLOCK =o
Lthat as your external symhols are used, they will be found in the
right place. MNole that the ATOH INCO is not in any OBLIST of the

BLOCK; therefore, trailer notation of !-INCO will not work within the
currant BLOCK-ENDBLOCK pair.®

<DEFINE INC +"INC is found in the INCO OBLIST.®
(A) i"A is not found and is therefore put into INCI by READ."
fECL {(VALUE A) <OR FIX FLOAT>)

<SET .A <+ _.A 133> :"A11 other ATOMs are found in the ROOT.™
CENDOLOCK >

This example is rather trivial, bot it contains all the issues, of which there are three.

The first idea is that you should ercate two OBLISTs. one 1o hold ATOMs which are to be known to

other users (THCO), and the ather to hold internal ATOMs which are not normally of inlerest to others
(INCI). The case above has one ATOM in each category.

Second, INCO is explicitly used without trailers so that surrounding BLOCKs and ENDBLOCKs will have
an effect on it. Thuws INCO will bie in the OBLIST desired by the user: INC will be in INCO, and the

user can refer 1o it by saying INC!-INCO; INCI will also be in INCO, and can be referred to in the

same way: finally. A is really AL=INCI!-INCO. The point of all this is 1o structure the nesting of
OBLISTs.

Finally. if for some reason (like saving storage space) you wish to throw INCI away. you can follow
the ENDOBLOCK witls

CHRIMOVE "THCI™ <GET INCO OBLIST>»>

and thus remove all references to it. The ability to do such pruning is one reason for structuring
OBLIST references

Mote that, even afier removing INCI, you can “get A back™ -- that is, be able to type it in - by
saying something of the form

CIHSERT €1 <1 ,THC!-TNCO3> <1 .OBLIST>>

thereby grabbing A out of the structure of INC and re-inserting it into an OBLIST. However, this
resurrects the name collision causcd by <INC!-INCO A>.

15.8 Lexical Blocking

T

146 The MDL Programming Language

Chapter 16. Errors, Frames, etc.

16.1. LISTEH

This SUBR takes any number of arguments. It first checks the LVALs of INCHAN, OUTCHAN, and
OBLIST for reasonability and terminal usability. In each case, if the value is unreasonable, the ATOM
is rebound to the correspanding GVAL, if reasonable, or to an invented reasonable value. LISTEN
then does <TTYECHO .INCHAN T> and <ECHOPAIR .INCHAN .OUTCHAN>. Next. it PRINTs its
argumernts, then PRINTs

LISTENING-AT-LEVEL / PROCESS p

where / is an integer (FIX) which is incremented each time LISTEN is called recursively, and p is an
integer identifying the PROCESS (chapter 20) in which the LISTEN was EVALed. LISTEN then does
<APPLY <VALUE RLP>>, if there is one, and if it is APPLICABLE. IFf not. it applies the SUBR REP

(without making a new FRAME -- sce below). This SUBR drops into an infinite READ-EVAL-PRINT loop,
which can be left via ERRET (section 16.4).

The standard LISTEN loop has two features for getting a handle on objects that you have typed in
and MDL has typed out. If the ATOM L-IN5S has a local value that is a LIST, LISTEN will keep
recent inputs (what READ returns) in it, most recent first. Similarly, if the ATOM L-OUTS has a local
value that is a LIST, LISTEN will keep recent outputs (what EVAL returns) in it, most recent First.
The keeping is done before the PRINTing, so that =S does not defeat its purpose. The user can
decide how much to keep around by setting the length of each LIST. Even if L-OUTS is not used.

the atomn LAST-0UT is always SET to the last object returned by EVAL in the standard LISTEN loop.
Example:

<5ET L-IN5S (NEWEST NEWER MEW)>3

(HEWEST NEWER MNEW)

.L=-INS%

{.L-IN5S NEWEST NEWER)

<3ET FOO 69>%

69

CS5ET FIXIT <2 .L-INS>> ;"grab the last 1nput®*3
<SET FOO 69>

16 - 16.1 Errors, Frames, etc.

D

e S e e e S =%
—_———y=—————ua
—_——————————_— =
—= e —— ——— — — —— — — ——— — — ———— ~ — —~—— —— -
=" =i
e e —————— .
= e ——
e e~ .~
—————————— —— ——————————————————————ee e
= — = — = = = = == ——...— ——— —_
e ———— e ———
¥ =t
e =t
e R —— >~
e —— e
—_———————————————————— _ — —_————————— s s——
I e e
e
—_———e—e——--——r—————m
S e S e e ———
——————m——rn
-
e e e S e S——— =
e e e e e —— e~ e
e

The MDL Programming Language 147

L-IN5%

(-L-THS <507 FIXIT <2 .L-INS>> <SET FOO 69>)
<PUT _FIXIT 3 105>%

*5ET FOO 105>

<CVAL .FIXIT>»3

105

L=-TIH5%

(.L-IN5S <EVAL .FIXIT> <PUT .FIXIT 3 105>)
.roos

105

16.2. £RROR

This SUBR is the same as LISTEN, excepl that (1) it generates an interrupt (chapter 21), if enabled,
and (2} it PRINTs *TREOR* hielore PRINTing its arguments.

When any SURR nr FSUBR detects an anomalous condition (for example, its arguments are of the
wrong TYPLL it calls CRROR with at least twe arguments. including:

(1} an ATOM whnswe PNAME describes the problem, normally from the OBLIST ERRORS! - {appendix
k)

{2) the ATONM that names the SUBR or FSUBR, and
(3} any ather information of infcrest,
and then returns whatever the eall 10 ERROR returns. Exception: a few (for example DEFINE) will

take further action thatl depends on the value returned. This non-standard action is specified in the
error message (Tirst ERROR arguiment)

16.3. FRAME (1he TYIE)

A FRAME is 1he olject placed on a PROCESS's control stack (chapier 20) whenever a SUBR, FSUBR,
RSUBR, or RSUBR-LNIRY {chapier 19) is applied. (These objects are herein collectively called
"Subroutine<") I contains information describing what was applied. plus a TUPLE whose elements
are the arguments o the Subroutine applied. If any of the Subroutine's arguments are to be
evaluated, they will have heen by the time the FRAME is Eenerated.

A FRAME i~ an anomalous TYPE in the fnl]mvi"g ways:

) It cannot bie typed in. It can be generated only by applying a Subroutine.

(2) It doos nen 1ype out in any standard format. but rather as #FRAME followed by the PNAME of
the Subiroutine applicd,

16.1 - 16.3 Errors, Frames, elc.

148 The MDL Programming Language

16.3.1. ARGS
CARCS Fframe>

(Targumenis”) returns 1he argument TUPLE of frame.

18.3.2. FUNCT
CFUNCT frame

{"function”) returns the ATOM whose G/LVAL is being applied in frame.

16.3.3. FRAME (thic SUDR)
CFRAME framed

returne the FRANC stacked before frame or, if there is none, it will generate an error. The oldest
(lowest) FRANME that can he returncd without error has a FUNCT of TOPLEVEL . If called with no
arguments. FRAME returns the topmost FRAME used in an application of ERROR or LISTEN, which was
bound by the interpreler to the ATOM LERRY !-INTERRUPTS ("last error’),

16.3.4. Examples

Say you have gotten an error. You can now type at ERROR's LISTEN loop and get things EVALed.
For example,

<TUNCT <IFrRAMC>>%

FREROR

CFUHCT <FRAME <FRAME> >25

Ihe-name-of-fhe-Subragli ne-which-called-ERROR -al om
“ARGS <FRAME <FRAME>>>%

the-ar cuments-to-the-Subroutine - whi ch-called-ERROR:tuple

16.4. ERRLT
SERRET amv- frame>

This SUBR ("error return®™) (1) causes the control stack ro be stripped down to the level of frame, and
(2) then returns sn1. The nel result is that the application which generated frame is forced to return

16.3.1 - 16.4 Errors, Frames, etc.

K

The MDI. 'rogramming Language 149
[arny. Additional side effects that would have happened in the absence of an error may not have
happeoncd.

{ The second arguient to ERRET is optional. by default the FRAME of the last invocation of ERROR or
! LISTEHN.

IF ERREY is called with no arguments, it drops you all the way down to the bottom of the control

stack -- before the level-l LISTEN loop - and then calls LISTEN. As always, LISTEN first ensures that
i MDL is recoprive.

Examples:
€™ 3 <+ a 1>>»§

= RROR=~
ARG-WIONG- TYPE

a

L TSTENING-AT-LLCVEL 2 PROCESS 1
<ARGS <FRAME <FRAME33>>S

[a 1]
<CRRCT 5>% i"This causes the + to return 5.7
15 :"TMinally returned by the ==

Note that when you are in a call o ERROR, the miost recent set of bindings is still in effect. This
means that you can examine values of dumny variables while still in the error state. For example,

SDEFIHRE F (A "AUX" (B "a string™))
FDECL ((VALUE) LIST (A) STRUCTURED (B) STRING)
(.B <REST .A 2>) ;"Return this LIST." >5

F

<F '"(1)>%

*"LRROR™

OUT -0OF -BOUNDS

REST

LISTENING-AT-LEVEL 2 PROCESS 1

AL

(1)

.B%

"a string"®

<ERRET '(5)> ; "Make the REST return (5)."%
("a string" (5))

16.4 Errors, Frames, etc.

—_—e—eesesssssss s s s s s s —————————

150 The MDL Programming Language

16.5. RE1RY
<RETRY frame>

causes the contral stack 10 he stripped down just beyond frame, and then causes the Subroutine call
that generated frome 1o be done again. frame is optional, by default the FRANE of the last invocation
of ERROR or LISTEN. RETRY differs from AGAIN in that (I) it is not intended to be used in programss
(2) it can retry any old frame {any Subroutine call). whereas AGAIN requires an ACTIVATION (PROG or
REPEAT or "ACT") and (3) if it retrics the EVAL of a FORM that makes an ACTIVATION, it will cause

rebinding in the argument LIST, thus duplicating side effects.

16.6. UNWIND

UNWIND is an [SUER that 1akes two Arguments, usually FORMs. It EVALs the first one, and, if the EVAL
returns nermally, the value of the FVAL call js the value of UNWIND. If. however, during the EVAL a
non-local retwrn altempts 1o return below the UNWIND FRAME in the contrel stack, the second
argument is CVALed, irs value is ignored. and the non-local return is completed. The second
argument i« evaluated in the environment that was present when the call to UNWIND was made. This
Facility is wuselful for cleaning up dara bases that are in inconsistent states and for closing
femporary CHANNELs 1hat may be left around. FLOAD sets up an UNWIND 1o close its CHANNEL if the
user attempts 1o CRRECT witlout finishing the FLOAD. Example:

<DEFINE CLEAN ACT ("AUX" (C €OPEN "READ"™ "A FILE®>))
FDECL ({C}) <OR CHANNEL FALSE> ...)

<COND (.C
CUNWIND <PROG () ... <CLOSE LC2>

CCLOSE .C>>)3>

16.7. Control-G (~G)

Typing contral-G (*G, <ASCII 72} at MDL causes it to act just as if an error had occurred in
whatever was currently being done. You can then examine the values of variables as above,
continue by applying ERRET to one argumment (which is ignored), RETRY a FRAME Jower on the control
stack. or flush everything by applying ERRET te no arguments.

16.5 - 16.7 Errors, Frames, ete.

The MDL Programming Language 151

16.8. Conirol-5 (~5)

Typing contrnl.5 (*5, <{ASCII 19>} ar MDL causes it to stop what is happening and return to the

FRAME .LERR\ !-INTERRUPTS, returning the ATOM T. (In the Tenex and Tops-20 versions, ~0 also
has the same cffcer.)

16.9. OVERI LOW

COVERFI.OW false-or-any>

There is one crror that can be disabled: numeric overflow and underflow caused by the arithmetic
SUBRs (+, -, =, /). Thc SUBR OVERFLOW takes one argument: if it is of TYPE FALSE,
underfoverflow errors are disabled: otherwise they are enabled. The initial state is enabled.

OVERFLOW veturns T or #FALSE (), reflecting the previous state. Calling it with no argument
returns the current state.

16.8 - IG.9 Errors, Frames, etc.

152 The MDL Programming Language

Chapter 17. Macro-o perations

17.1. READ Macros

I1T.1.1. % and %%

The tokens ¥ and %% are interpreted by READ in such a way as to give a "macro” capability to MDL
similar 1o I'L/I's.

Wihenever READ encounters a single ¥ — anywhere, at any depth of recursion — it immediately,
without loaking at the rest of the input, evaluates the ob ject following the %X. The result of that
evaluation is wsed by READ in place of the objcct following the %X. That is, % means “don't really
READ this, use FVAI of it instead.™ % is often used in files in front of calls to ASCII, BITS (which
see), ete., although when the FUNCTION is compiled the compiler will do the evaluation if the
arguments are consfant, Also seen is %.INCHAN, read as the CHANNEL in use during LOAD or FLOAD;
for example, <PUT %.THCHAN 18 8> causcs succeeding FIXes 10 be read as octal.

Whenever READ encounters %%, it likewise immediately evaluates the object following the %X.

However, it complercly ignores the result of that evaluation. Side effects of that evaluation remain,
of course.

Example:

<DEFINE SETUP () <SET A 03>%

SETUpP

“DEFINE NXT () <SET A <+ .A 13>>3

HXT

[“R<SETUP> XCNXT> %<NXT> (RA<SETUP>) ACNXT>]S
C1 2 () 1]

17 - 17.1.1 Macro-operations

e
—
e —
—
—
—
—
—
N —
—
—
—
—
e —
—
—
—
—
—
e —
—
—
—
—
—

The MDL Programming Language i53

17.1.2. LINK
SLINK exp:an) slring oblist>

creates an object of TYPE LINK, PRIMTYPE ATOM. A LINK looks vaguely like an ATOM; it has a
PHAML (the sfrong argument). resides in an OBLIST (the ablist argument) and has a "value” (ihe ks
argument). A LINK has the strange property that, whenever it is encountered by READ (that is, its
PHAME i+ read, just lile an ATOM, possibly with OBLIST trailers), READ substitutes the LINK's “value”
for the LINK immcdiately, The effect of READing a LINK's PNAME is exactly the same as the effect of
reading its "value”,

The obbls! argument is optional, <1 _OBLIST> by default. LINK returns its First argument. The
LINK is croated via TNSERT, so an error resulis if there is already an ATOM or LINK in oblist with the
same PHANMID .

The primary wse of LINKEs is in interactive work with MDL: expressions which are commonly used,
but annoyingly long te type, can be "linked” 1o PHAMEs which are shorter. The standard example is
the following:

CLINK "<ERRET> "“E®™ <{ROOT>>

which links the ATOM of PNAME “E in the ROOT OBLIST to the expression <ERRET>.

17.1.3. Prograw-delined Macro-charactiers

Dlilin-:_- REANIDg froan an input CHARNEL or PARSEing a STRING, any character can be made to have
a special meaning. A character can cause an arbitrary routine to be invoked, which can then return
any number of elemcuts tn be putl into the object being built by READ, PARSE, or LPARSE.
Translation of characters is also possible. This facility was designed for those persons who want to
use MDD READ 10 o large parts of their inpur but have to modify irs actions for some areas: for
example, one might want to treat left and right parentheses as tokens, rather than as delimiters
indicating a LIST.

17.1.3.1. READ {finally)

Assaciated with RCAD is an ATOM, READ-TABLE!-, whaose local value, if any., must be a VECTOR of
elements, one For cach character up 1o and including all characters to be treated specially. Each
element indicates. if not 0, the action to be taken upon READ's encounter with that character. A
similar VECTOR, the local value of PARSE-TABLE!=-, if any. is used to find the action to take for
characters conconntered when PARSE or LPARSE is applied to a STRING.

These 1ables can have up to 256G elements, one for each ASCII character and one for each possible

exclamation-point/ASClI-character pair. In MDL. the exclamation-point is used as a method of

7.1.2 - 17.1.5.1 Macro-operations

|

e ——————————————————————— e
—_— e e e e e e e e e e e e e e
_—
-
-
e e e e ——
S
—_——
-
e
e T ———
e ———
———ee—————____—«—«—«—————— — — — — — — — ————————————
e
R R R
—
e e o ————————————————————————
-
-_— -, e s — — ———————————eeeeeeeeeeeeeeeeeeeeee
— .. = . -
- - - -
e e ——————————————————
— e —————————"—"—"""""-"-—-—-——————-——
—_————s s, e, ne n i in in in i i i n e o i n e e

—_———ee————— e

154 The MDL Programming Language

expanding the ASCIH character sef, and an exclamation-point/character pair is treated as one logical
character when nnt readling a STRING.

The element corresponding te a character is <NTH lable <+ 1 <ASCII char>>>. The element
corresponding 1o an exclamation-point/ASCII-character pair is <NTH fable <+ 129 <ASCII char>>>.
The table can be shorter than 256 elements, in which ease it is treated as if it were 256 long with 0
elements Leyomd its actual length.

An element of the 1aliles niust satisly one of the f(;!]u“ri“g DECL Patterns:
'O imedicates that no special action is to be taken when this character is encountered.

CHARACTEE indicates that the encountered character is to be translated into the given CHARACTER
whenever it appears, exeept when as an object of TYPE CHARACTER, or in a STRING, or
j.ll1l!l1.'||l':|.ll._'l_'.' following a .

FIX indicates thar 1the character is to be given the same treatment as the character with the
ASCH value of the F1X. This allows you to cause other characters to be treated in the same
way as A-L for example. The same exceptions apply as for a CHARACTER.

SLIST FIX> indicates the same thing, except that the character does not by itsclf cause a break,

Therelfore, if it oveurs when reading an ATOM or number, it will be treated as part of that ATOM
or nuimnber.

APPLICARLL (1o one argument) indicates that the eharacter is 10 be a break character. Whenever
it is encountered, the reading of the current obiject is finished. and the corresponding element
of the table i« APPLYed 1o the ASCII CHARACTER. (If READ is called during the application. the
end-of-file slor of the CHANNCL temporarily contains a speeial kind of ACTIVATION (TYPE
REAIAY =0 that endnl-Tile can he signalled properly to the original READ. Isn't that
wounderTul?l The value returned is taken 1o be what was read. unless an ob ject of TYPE SPLICE
is returned, 11 sn. the clements of this object. which is of PRIMTYPE LIST, are spliced in at the
point where MDD s reading. An cmply SPLICE allows one to return nothing. If a structured
object is nod heing built, and a SPLICE is returned. elements after the Cirst will be ignored. A
SPLICE during reading is similar 1o a SEGMENT during evaluating, except that, in some sense, a
SPLICE says "expand me”, whereas the structure containing a SEGHMENT says "I will expand you™.

SLIST ARPLICARLES indicates the same thing. except that the character does not by itself cause

a break, Thorefore, if it oceurs when reading an ATOM or number, it will be treated as part of
that ATOM or numnber.

READ takes an additional oprional argument, which is what to use instead of the local value of the

ATOM RCAD-TABLE as the VECTOR of read-macro characters. If this argument is supplied, READ-TABLE

is rebound o it within the call 1o READ. READ takes from zero to four arguments. The fullest call to
READ is thus:

17.1.3.1 Macro-operations

S

—
N —
—
—
—
—
—
e —
—
—
—
—
e —
—
—
—
—
—
e —
—
—
—
—
—

The MDL Programaming Language

CSREAD channe! cof-routine leok-up read-tablesvector

The other arguments are explained in sections 1LLLL 113, and I5.7.1.

ERROR and L151EN rebind READ-TABLE to the GVAL of READ-TABLE, if any, else UNASSIGN it.

17.1.3.2. Examples

Examples of each of the different kinds of entries in thacro tables:

<SET READ-TARLE <IVECTOR 256 0>>%

<PUT .READ=-TADLE <+
s "CHARACTER :

CPUT LREAD-TARLE <+

AXBCSE
AMNKEBC

<PUT .READ-TABLE <+

L-..]
ALRS
AN, B

character,

1 <ASCII f\a>» '\A>
translate a to A."%

1 <ASCIIL !\%>> <ASCII

% Jjust a normal ASCII character."$

1 <ASCII !\,>»> (<ASCII
FIX>: make comma no longer a break
but still special if at a break."s

i"That was an ATOM with PHAME A,B "

'.B%
.0

+"That was the FORM <GVAL B> _®

<PUT .RCAD-TABLE <+ 1 <ASCII Ihe3>
FTUNCTION ((X) <LIST COLOM SREAD>>)>

s "APPLICABLE :

[awia]
B:A%

1

(colon A)
£ :FOOL

(COLON (COLON (COLONW FOO)))

17.1.3.1 - 17.1.3.2

NASD

IN,2>)>

make a new thing like (<€ and [

155

Macro-operations

The MDL Programming Language
156

“PUT .RCAD-TABLE <+ 1 <ASCIT (AN
*{#FUNCTION ((X) <LIST COLON <RCAD>>))>
s "<LIST APPLICABLE>: like above, but not a break

now."%
L]
B:AS
B:A
" Thal was an ATOM. ™
:::F00%

(COLON (COLON (COLON FOO)))

17.1.3.3. PARSC and LPARSE (Finally)
SPARSE sfrine radive look up parse-fablevector f’crok-m’reaa‘:char.ifrer}

is the Tfullest call in PARSE. PARSE can tahe from zero to five arguments. If PARSE is given no
Arguments, it returns the Cirst objeet parsed from fhe local value of the STRING PARSE-STRING and
additionally SFls PARSE-STRING 10 the STRING having those CHARACTERs which were parsed RESTed
of f. If PARSE is riven a STRING ta parse. the ATOM PARSE-STRING is rebound te the STRING within
that call. I7 the Falt T fable argument is given to PARSE, PARSE-TABLE is rebound to it within that
call to PARST . Finally., PARSE can lake a lock-ahead CHARACTER, which is treated as §f it were

logically concatenated 10 the front of the string being parsed. Other arguments are described in
sections 7.6.6.2 and 15.7.2,

LPARSE is exaq tly like PARSE, except that it trics to parse the whole STRING, returning a LIST of

the ob jects created,

17.2, EVAL Macros

An EVAL macro provides 1he convenicnce of a FUNCTION without the overhead of calling, SPECIALs,
ere. in the compilod version, A special-purpose function that js called often by FUNCTIONs that will

be compiled is a good candidate for an EVAL nacro.

17.2.1. DEFMAC amdd | XPAND

valgs

DEFMAC ("deline macra™) js symiactically exactly the same as DEF INE. However, instead of creating a
FUNCTION, DIIMAC vreates a HACRO. A MACRO is of PRIMTYPE LIST and in fact has a FUNCTION {or

ather APPLICABIE [YPE) as j1s single element,

A MACRO can itscll he applicd 1o arguments. A MACRO is applied in a funny way, however: it is

17.1.3.2 - 17.2.1 Macro-operations

The MIM l"r1‘r§:l:\||1nn.|niu§1r I anguage 157

[EvVALed twice. The first CVAL causes the MACROs clement to be applied to the MACRO's arguments.

i Whatever that application returns {usually another FORM) is also EVALed. The result of the second
EVALuation is the vrewult of applying the MACRO. EXPAND is used to perform the first EVAL without
the sccond

Te aveid complications, the Cirst EVAL (by EXPAND, to create the oh ject to be EVALed the second time
around) is done in a rep-level environment. The result of this policy is that two syntactically
identical invocations of a MACRO always return the same expansion to be EVALed in the second step.
The First TVAL gracrates two extra FRAMEs: one for a call to EXPAND, and one for a call to EVAL the
MACRO application in a tep-level environment,

Example:

<DFFHAAC TNC (ATH “OPTIONAL™ (N 1))
FDECL ((VALUE) FORM (ATH) ATOM (N) <OR FIX FLOAT>»)
<FORM SCT .ATM <FORM + <FORM LVAL .ATH> .N>>>%

THC

. INCE

SMACRO (#FUNCTION ((ATH "QGPTIOMAL®™ (N 1)) ...))

<SCT X 13%

1

CINC X>%

2

- X3

7

SEXPANLD "<1INC X>>%

CHET X <+ ¥ 1»>

Perhaps the imention is clearer if PARSE and % are used:
CDCFMAC INC (ATHM "OPTIOMAL® (N 1))
FECL {...)

CPARSE "<SET X.ATHM <+ %.ATH %.H>>"3>

MACROs really exhiibit their advantages when they are compiled. The compiler will simply cause the

first CVAluation to occur (via CXPAND) and compile the result. The single element of a compiled
MACRO is an RSUBI o REUGBR-ENTRY.

17.2.2, Example
Suppose you want to change the following simple FUNCTION to a MACRO

<OEFINE DOUBLE (X) #DECL ((X) FIX) <+ .X% .X>>

17.2.1 - 17.2.2 Macro-operitions

i58 The MDL Programming Language

You may be tempied to write: |
CDEFMAC DOURLE (X) #DECL ((X) FIX) <FORM + .X .¥>>

This MACRO wearks, but ouly when the Argument does not use temporary bindings. Consider
COEFINE TRIMLE {Y) <+ .Y <DOUBLE .Y¥>>>

If this FUNCT10H i~ applied. the top-level binding of Y is used, not the binding just ereated by the

application. Cowpilation of this FUNCTION would probably fail. because the compiler probably
would bave no tap-level binding Cor Y. Well, how about

<NEFHAC DOUBLE ('X) <FORM + .%X X3 i"The DECL has to go.™

MNow this is mare like the original FUNCTION, bLecause no longer is the argument evaluated and the
result evaluated again., And TRIPLE works. But now consider

CDEFTHE THC-AND-DOUBLE (Y) <DOUBLE CSET Y <+ 1 Y2333

You might hope tha

CINC-AND=-DOUBLE 1> ->» <DOUBLE CSET Y <+ 1 133>
->» <DOUBLE 2>
=2 €+ 2 2%
=>4

But. when NDOUBLE is applicd to that FORM, the argument is QUOTEd, so:
SINC-AND-DOUBLE 1> -> <DOUBLE CSET Y <+ 1 Y333
=» CFORH + <SET ¥ <+ 1 .¥>»% <SET Y €1 .¥>>>

=2 €+ 2 3>
-» 5

So. since the evaluation of DOUBLE's argument has a side effect, you should ensure that the
evaluarionn is done exactly once, say by FORM:

CDEFHAC DOUBLE ('ANY)
CFORM PROG ((X .ANY)) #DECL ({X) FIX) "<+ X .¥3>>

As a banus, the DECL can once more be used.

This example is intended to show that writing good MACROs is a little trickier than writing good
FUNCTIONs. Rut the ef for may be worthwhile if the compiled program must be speedy.

17.2.2 Macro-operations

I

Tr

The MDIL. Programming Language 159

Chapter 18. Machine Words and Bits

The MI Facility for .J-.-.-n.iing with uninterpreted machine words and bits involves two data TYPEs:
WORD and BITS. A WORD is simply an uninterpreted machine word, while a BITS is a “"pointer” to a

set of hirs within a WORD. Operating on WORDs is usually done only when compiled programs are
used (chaprer 19)

18.1. WORDS

A WORD in MDL is a PDP-10 machine word of 36 bits. A WORD always PRINTs in "# format™ and its
contents are always printed in octal (hence preceded and followed by *). Examples:

#*WORD 0O :"all 0s"%
#WORD *000000000000=

“WOHRND =2000®= ;"one bit 1"%
FWORD =000000002000=

FWORD =L2L757 575752 i"every other bit 17%
*WORD =42 5252525252

WORD is its own PRIMTYPC: it is also the FRINTYPE of FIX, FLOAT, CHARACTER, and any other TYPE
which can it i1s data inte ene machine waord.

A WORD cannat be an argument 1o +, -, or indeed any SUBRs except Ffor CHTYPE, GETBITS, PUTBITS
and several bit-manipulating Tunctions, all to Le described below. Thus any arithmetic bit
manipulation must he done by CHTYPCing a WORD to FIX, doing the arithmetic, and then CHTYPEing
back 1o WORD. IInwever, bit manipulation can be done without CHTYPEing the thing to be played
with to a WORD, so longr as it is of PRIMTYPE WORD; the result of the manipulation will be of the
=ame TYPC as the original ob ject or ean be CHTYPEd to it.

18 - 18.1 Machine Words and Bits

e

R A A AAAAAAAAAAAAAAAAAAAAAAAAAAAARARAAANNN N NN M —DPi———
e
e
e
e ——
e eee———————————————————————————_—_—_—_—_—_—_—_—_ ————————
e e e e S B S
R —
= ______________ e L ——— e ————
- ___
e
R A A R AR AN NN
AR A A A A A A A A A A A A AR RLE=E=EESNILLEAAIL,LL
S e ————————————_________
e e —————————————— e ———
e e eEm— . e e e —
e
R A R ARAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAANANMNNNRENEEm
- e
—aaee————— = —————————————————— L. ————————V VDV L, " —_—_——
————————————— e ——— e —a—m——n—n—n—n—n————
= ___ ... ‘& - - .- -
R e —————
e S ——— e ——

oo ————————————————————

160 The MDL Programming Language

18.2. BITS

|t

An object of TYPE DITS is of PRIMTYPE WORD, and PRINTs just like a WORD. The internal form of a
BITS is precisely thar af a PDP-10 "byte pointer™. which is, in fact, just what a BITS is.

For purposes of explaining what a 8115 is, assume that the bits in 2 WORD are numbered from right
to left. with the rightmos bit numbered 0 aud the lefumost numbered 35, as in

dh 34 33 ... 21 0
{(This is not the “standard” ordering: the "standard” one goes from left to right.) |
A BITS is mosr conveniently created via the SURBR BITS :
|
1

CBITS wealh:#ix righl-edcefix>

refurns a DLIS which "points 1" a set of hits widlh wide, with rightmost bit righf-edge. Both
argumoenis muast be of TYPE FIX, and the second is optional, 0 by default.

Examples: the indicated application of BITS returns an object of TYPE BITS which points to the
indicated et of hits in a WORD:

<BITS 7> A% .. 7 6 ... D

<BITS 4 18>

e
o

22 21 20 19 18 17 ... 0

<BII1S 30> A3 ... O

18.3. GE18B115
SGLETRITS fromiprimlype-word balsy

where frac is an objeet of PRINTYPE WORD, returns a new object whose TYPE is WORD. This ob ject is
constrocted in the following way: the set of bits in from pointed to by bits is copied into the new
object, right-ad justed, that is. lincd up against the right end (bit number 0) of the new ob ject. All
those hits of the new objeet which are not copicd are set to zero. In other words, GETBITS takes bits

from an arbitrary plice in from and puts them at the right end of a new object. The from argument
to GETRITS is ne af fectled.

Examples:

18.2 - 18.3 Machine Words and Bits

The MDL Programming Language 161

CGETBITS <“WORD ®777777777777% <BITS 3>>%
#WORD =000000000007=

CGUTRTTS *012345G70123= <BITS G 182>%
#WORND =00000000004 5=

18.4. PUTRI11S
SPUTRITS toprimtype-weord bDifs framprim! vpe-ward >

where fo and from are of PRTMTYPE WORD, returns a copy of fo. madified as follows: the set of bits

in fo which are pointed to by bifs are replaced by the appropriate number of rightmost bits copied
from from (optional. 0 by default). 1o other words: PUTBITS takes bits from the right end of from

and siufls thew inte an arbitrary position in a copy of fo. None of the arguments to PUTBITS is
affected,

Examples:

SPUIBLIS “WORD =777777777777% <BITS & 3>>5

rWORD =777777777007%

<IPUTBRITS “WORD *GGG777000111" <BITS 5 15% #WORD =]123%3%
FWORD =GGG776300111=

CPUTBITS #WORD ®2765432107654= <BITS 18>3%

FHWORD *765432000000=

18.5. Bitwise Boolcan Op crations

Eacli of the Siliis AHDH, ORR, XOREH,
HWORD which is the bitwie Boolean
exclusive “or”l respectively, of
Arguminecnt is given,
only one argumens
Arguments are
third, e1c.

and LOQVB takes arguments of PRIMTYPE WORD and returns a
“and”, inclusive "or”, exclusive “or”, or “equivalence” (inverse of
its arguments. Each takes any nuinber of arguments. If no
A WORD with all birs of f (ORB and XORB) or on (ANDB and EQVB) is returned. If
is mivew, it is returned unchanged but CHTYPEd to a WORD. IFf more than two

given. the nperator is applied to the first two, then applied to that result and the
lie sure not to confuse AND and OR with ANDBE and ORB.

183 - 185 Machine Words and Bits

e The MDL Programming Language

| 18.6. Dirwise Shifting Operations

| <LSH fro earietl ypre-word amountfiy >
|

Feturns a new WORD containing the birs in from, shifted the number of bi
| 256, 5ays the hardware). Tero bits are hrnugh: in at the end E:n:-iug Vac

other end are losi. If amount is positive, shifting is to the lefr:
the right. Examples:

15 specified by amount {mod
ated: bits shifted out at the
if amount is negative, shifting is to

CISH 8 G635
| #WORD *=000000001000%=

<LEH 8 -G>%

“WORD *000000000000™

SROT Fromzpring Ypo-word amountifisy
FETUrns a new WORD « ontaining
256, says the hardware),
back in ar the oilier.
the righit. Exampics:

the hits in from, rotated the number of bits specificd by amount (imod
Retation is a cyclie bitwise shift where bits shifted out at one end are put
If amount is positive, rotation is to the lefi; if amount js negative, rotation is to

<HOT 8 n>%

*WORD *000000001000=
<ROT 8 -G63>%

*WORD =100000000000%

18.6 Machine Words and Bits

l
l

I

(A

!

1

"

i

|

The MDL Programming Language 163

Chapter 18. Compiled Programs

19.1. RSUBR (the TYPE)

RSUBRs (“relocatable subroutines”) are machine-language programs written to run in the MDL
environment. They are usually produced by the MDL assembler {often from output produced by the
compiler) although this is not necessary. All RSUBRs have two components: the “reference vector™
and the “cnde vector™, In some cases the code vector is in pure storage. There is also a set of
“fixups™ associated with every RSUBR, although it may not be available in the running MDL.

19.2. The Reference Vector

An RSUBR is basically a VECTOR that has been CHTYPEd to TYPE RSUBR via the SUBR RSUBR (see

below). This ex-VECTOR is the refercnee vector. The first three elements of the reference vector have
predefined mranings:

The First clenent is of TYPE CODE or PCODE and is the impure or pure code vector respectively.

The second clement is an ATOM and specifics the name of the RSUBR.

The third element is of TYPE DECL and declares the type/structure of the RSUBR's arguments and
result.

The rest of the clewments of the reference veetor are objects in garbage-collected storage that the
RSUBR needs 1o reference and any impure slots that the RSUBR needs to use.

When the RSUBR is running, one of the PDP-10 accumulators (with symbolic name R) is always
pointing to the reference vector, to permit rapid access to the various elements.

19 - 19.2 Compiled Programs

164 The MDL Programming Language

19.3. RSUBR Lil:li.l'rl_gL

RSUBRs can call any APPLICABLE object. all in a uniform manner. In general, a call to an F/SUBR is
linked up a1 assembly/compile time so that the calling instruction (UUQ) points directly at the code
in the interpreter for the F/SUBR. Ilowcver, the locations of most other APPLICABLEs are not
known ar assembly feompile time, Therelore, the calling ULIO s set Up to point art a slot in the
reference vector (by indexing off accumulator R. This slot initially contains the ATOM whose
C/LVAL is the called ob ject. The calling mechanism (UUO handler) causes control 1o be transferred
ta the called object and. depending on the state of the RSUBR-link flag., the ATOM will be replaced by
its G/LVAL. (If ihe call is of the “quick” variety. the called RSUBR or RSUBR-ENTRY will be CHTYPEd
1o a QUICK-RSUBR of QUICK-ENTRY, respectively. before replacement.) Regardless of the RSUBR-link
Flag's state. calls 1o FUNCTIONs are never permanently linked. A eall to a non-Subroutine generates
AN exira TRAME, whose FUNCT js the dummy ATOM CALLER.

RSUBRs are linked tngether for fasier execution, but linking may not be desirable if the RSUBRs are
being debugged, ang various revisions are being re-loaded. A linked call will forever after Eo tlo the
same code, regardless of the current C/LVAL of the called ATOM. Thus, while testing RSUBRs, you
may want to disable linking, by calling the RSUBR-LINK SUBR with a FALSE argument. Calling it
with a non-FALSE arguiuent enables linking thereafter. It returns the previous state of the Jink flag,
cither T or #FALSE (). Calling it with no argument returns the current state,

19.4. Pure and linpure Code

The first elemnent of Al RSUBR is the code vector, of TYPE CODE or PCODE. TYPE CODE is of
PRIMTYPE UVEC TOR, and the UTYPE should be of PRIMTYPE WORD. The code vector is simply a block
of words thar are the instructions whicl comprise the RSUBR. Since the code vector is stored Jjust
like a standard UVECTOR, it will be moved around by the garbage collector. Therefore, all RSUBR
code is required 1o Le Incation-insensitive, The compiler guarantees the !l:lcaliun-iuscnsitivily of jts
output. The asseinbler helps to make the code location-insensitive by defining all labels as offsets
relative to the beginning of the code veelor and causing instructions that refer to labels to index
Aurematically off the PRP-10 accumulator symbolically named M. M, like R. is set up by the UUO
handler, bur iy Points 1o the code vector instead of the reference veector. The code vector of an
RSUBR can be frozen {using the FREEZE SUBR) to prevent it from moving during debugging by DDT
in the superior MPCrATINE-system process.

If the first element of an RSUBR is of TYPE PCODE ("pure code”), the code vector of the RSUBR js pure
and sharable. TYPE PCODE i« of PRIMTYPE WORD. The left half of the word specifies an offset into
an internal table of pPure RSURRs, and the right half specifies an of fset into the block of code where
this RSUBR starts. The PCODE prints out as:

*<PCODE name:string offselfixy

193 - 19.4 Compiled Programs

-

EEEEE

i B

The MDL Programming Language 165

where same names the entry in the user’s pure-RSUBR table, and offsef is the offset. (Obviously,
PCODE i+ also the name of a SUBR, which generaies a pure code vector.) Pure RSUBRs may also move
around, bt only Ly being included in MDL's page map at different places. Once again M can be
wsed exactly as hiefore 1o de Incation-independent address rcfcrcncing. Individual pure code vectors
can he “unmapped” {fmarked as heing nor in primary starage but in their original pure-code disk
files) if the space in starage allocated for pure code is exhausted. An unmapped RSUBR is mapped in
1 again whenever necided. All pure RSUBRs are nnmapped before a SAVE file is written, so that the
code is not duplicated on disk, A purified RSUBR must use RGLOC ("relative GLOC™) instead of GLOC.
RGLOC produces ob jects of TYPE LOCR insiead of LOCD.

19.5. TYPE-C and TYPE-M

In order to handle wser NOCWTYPEs reasonably, the internal TYPE codes for them have to be able to be
different Froon one ML run te anather. Therefore, references to the TYPE codes must be in the
reference vector rather than the code vector. To help Landle this problem, two TYPEs exist, TYPE-C
("type code”) and TYPE-W {("iype word”), both of PRINMTYPE WORD. They print as:

H#EIYPE-C Iype priodype:alom>
BLTYPE=-W lype primlype:atom?>

The SURR TYPC-C prodaces an internal TYPE code for the fype, and TYPE-W produces a proiotype
"TYPE word” (appendix 1) for an object of that TYPE. The primlype argument is optional, included
only as a check against the call 10 NEWTYPE. TYPE-W can also take a third argument, of PRIMTYPE
WORD, wheose right half is included in the generated "TYPE word”. If [vpe is not a valid TYPE, a
NEWTYPL is antomatically donc.

To be complere, a similar SUBR and TYPE should be mientioned here.

SPRIMIYPT =C fypo>
produces an intcrpal "ulnrnge allocation code” {:tppendi.\' 1) for the fyvpe. The wvalue is of TYPE
PRIMTYPE-C, PRIMTYPFE WORD. In almost all cases the SUBR TYPEPRIM gives just as much

information. except in the case of TCHPLATEs: all TYPEs of TEHPLATEs have the same TYPEPRIM, but
they all have dif ferent PRIMTYPE=-Cs,

19.6. RSUBR (the SUBR)
CRSURR [rode name decl ref ref ...]>»

CHTYPEs its argument to an RSUBR, afier checking it for legality. RSUBR is rarely called other than

19.4 - 19.6 Compiled Programs

R R A A AR A A A A AR A R R A A A A A A A A A R A R A A R R A B M e LM A A cA A A AR R A R A R RRRRRRBRRBRPEPPMBRLARAEEEACEEEEPEEDEwCwwLIISDSDESBEEBERRm

D g

166 The MDL Programming Language

in the MDL Assembler (Lebling. 1979). It can be used if

changes must be made to an RSUBR that are
prohibited by MDL's builr-in safety mechanis

ns. For example, if the GVAL of name is an RSUBR :

SSET FIXIT <CHTYPE ,name VECTOR>3S
[-..1

«-.(changes to _FIXIT)...

<S5ETG name <RSUBR LFIXIT>>%
#RSUBR [...]

i19.7. RSUBR-ENTRY

RSUBRs can have multiple entry points. An RSUBR

-ENTRY can be applied to arguments exactly like
an RSUBR.

<RSUBR-ENTRY [rsubr ~or-alom name:atom decl] offset:Ffix>

returmns the VECTOR argument CHTYPEd to an RSUBR-ENTRY

into the rsubr at the specified offset. If
the RSUBR-ENTRY is to have a DECL (RSUBR style), it should ¢

ome as shown.

LENTRY-LOC rsubr-gnfryd

("entry location”) returns the offsel into the RSUBR of this entry.

19.8. RSUBRs in Files

There are three Linds of files that can contain RSUBRs

. identified by second names BINARY, NBIN
and FBIN. There is nothing magic about these n

ames, but they are used by convention.

A BINARY file is a completely ASCII
represciiation. Even a code veetor appea
BIMARY Files are generally slow to load, bee

file containing complete impure RSUBRs in character
rs as #CODE followed by a UVECTOR of PRIMNTYPE WORDs.
ause of all the parsing that must be done.

An NBIN file contains a miuxture of ASCII charac
portion is signalled 1o READ by the character control-C, so naive readers of an NBIM file on ITS may

incorrectly assume that it ends before any binary code appears. An NBIN file cannot be edited with

4 text editor. An RSUBR is written in NBIN format by being PRINTed on a "PRINTB®™ CHANNEL. The
RSUBRs in NBIN files are not purified either.

ters and binary code. The start of a binary

19.6 - 19.8 Compiled Programs

The MDL Programming Language 167

An FBIN File is actually part of a triad of files. The FBIN File(s) itself is the impure part of a
collection of purified RSUBRs. It is simply ASCII and can be edited at will. (Exception: in the ITS
and Tops-20 versions, the first ob ject in the file should not be removed or changed in any way. lest
a “grim reaper” program for FEBIN files think that the other files in the triad are obsolete and delete
them.) The pure code itself resides (in the ITS and Tops-20 versions) in a special large file that
contains all « ||1|1'Hli>'-||‘-l."l.| jprure code, or {in the Tenex version) in a file in a &PECiii disk dirg—¢[nr}r
with first name the same as the name argument to PCODE for the RSUBR. The pure-code file is page-
mapped dircetly inte MDL storage in read-only mode. It can be unmapped when the pure storage
must be reclaimed. and it can be mapped at a different storage address when pure storage must be
compacied. There is also a "fixup” file (see below) or portion of a file associated with the FBIN to
| round out the triad.

An initial MDL can have pure RSUBRs in it that were "loaded” during the initialization procedure.
The files are not page-mapped in until they are actually needed. The "loading™ has other side
effects. such as the creation of OBLISTs (chapter 15). Exactly what is pre-loaded is outside the scope
of this documcnt.

19.9. Fixups

The purpose of "Fixups” is 10 correct references in the RSUBR to parts of the interpreter that change
from one release of MDL to the niext. The reason the fixups contain a release number is so that

they can be completely ignored when an RSUBR is loaded into the same release of MDL as that from
which it was last written ont.

There are three forms of fixups, corresponding to the three kinds of RSUBR files. ASCII RSUBRs,
found in BINARY files, have ASCII fixups. The fixups are contained in a LIST that has the
following format:

(MO -release:fix
name:atom valuedix (use:dix usedix ...)
name:atom valuedix (usediv usedfix ...)

<)

The fixups in NBIN files and the fixup files associated with FBIN files are in a fast internal format
that looks like a UVECTOR of PRIMTYPE WORDs.

Fixups arc usually discarded after they are used during the loading procedure. However, if, while
reading a BINARY or NBIN file the ATOM KEEP-FIXUPS!- has a non-FALSE LVAL, the fixups will be
kept, via an association beiween the RSUBR and the ATOM RSUBR. It should be noted that, besides
correcting the code, the fixups themselves are corrected when KEEP-FIXUPS is bound and true. Also,

the asscmbler and compiler make the same association when they first create an RSUBR, so that it
€an be written out with its fixups.

19.8 - 19.9 Compiled Programs

e——————

168 The MDL Programming Language

things are a little different. If a pure-code file exists for
it is used immediately, and the fixups are completely ignored. If a pure-code
the fixup file is used to create a new copy of the file from an old
is created to go with the new pure-code file. This all

In the case of pure RSUBRs (FBIN Files),

this release of MDL,
File for this release docsn't exist,
one. and also a new revision of the Tixup file

Eoes on automatically behind the user's back.

19.9 Compiled Programs

The MDL Programming Language 169

Chapter 20. Coroutines

This chapter purporis 1o explain the coroutine primitives of MDL. It does make some attempt to
explain coroutines as such, but only as required to specify the primitives. If you are unfamiliar
with the basic cancepts. confusion will probably reign.

A coroutine in MDL is implemented by an object of TYPE PROCESS. In this manual, this use of the
word "process” is distinguished by capitalization from its normal use of denoting an operating-
system process (which various systems call a process., juh, fork, task, ete.).

MDL's buili-in coroutine primitives do not include a "time-sharing system”. Only one PROCESS is
ever running at a time, and contral is passed back and forth between PROCESSes on a coroutine-like
basis. The primitives are sufficient, however, to allow the writing of a "time-sharing system” in
MDL. with the additional use of the MDL interrupt primitives. This has, in fact, been done.

20.1. PROCESS (the 1YPE)

A PROCESS is an object which contains the "current state” of a computation. This includes the
LVALs of ATOMs ("hindings”), "deprh” of functional application, and "position” within the application
of each applicd function. Some of the things which are not part of any specific PROCESS are the
GVALs of ATOMs. assaciations (ASOCs), and the contents of OBLISTs. GVALs (with OBLISTs) are a chief
means of communication and sharing between PROCESSes (all PROCESSes can refer to the SUBR which

is the GVAL of +, for instance)l. Note that an LVAL in one PROCESS cannot easily be directly
referenced from another PROCESS.

A PROCESS PRINTs as #PROCESS p. where p is a FIX which uniquely identifies the PROCESS; p is the
"PROCESS number” typed out by LISTEN. A PROCESS cannot be read in by READ.

The term “run a PROCESS” will be used below to mean “perforin some computation, using the
PROCESS to record the intermediate states of that computation”.

MN.B.: A PROCESS is a rather large object: creating one will often cause a garbage collection.

20 - 20.1 Coroutines

B

" |
170 The MDL Programming Language

20.2, STATE of a PROCESS
“ATATE process>

returns an ATOM {in the ROOT

OBLIST) which indicates the "state” of
which STATE can return, and 1t

the PROCESS process. The ATOMs
heir meanings, are as follows:

RUNARLE (sic) -- erocess has never ever been run.

RUNNING -- process is currently running, that is, it did the application of STATE.

RESUMABLE -- proresz has been rum, is not currently running. and can run agaimn.

DEAD -- process has been run, but it ean not run againi it has “terminated”.

In addition. an interrupt (chapter 21) can be enabled to detect the time at which a PROCESS becomes
“blocked” {waiting for terminal input) or ®

unblocked” (terminal input arrived). (The STATE BLOCKED
has not been implemented.)

20.3. PROCESS (the SUEBR)

<PROCESS starter:applicable»

creates and

Feturns a new PROCESS but does nol run
RUNABLE (sic)

ity the STATE of the returned PROCESS is

slarter is something applicable to one argument,
starting and “terminating” a PROCESS.
Value, that PROCESS becomes DEAD.

which must be evaluated. sfarfer is used both in
In particular, if the starter of a PROCESS ever returns a

20.4. RESUMF

The SUBR RESUME is used

1o cause a computation
PROCESS. An application o

le start or to continue running in another
f RESUME looks like this:

CRESUME refval:any process™

where refval is the “returned value” (sce below) of the PROCESS that does the RESUME, and process is
the PROCESS to be started or continued.

20.2 - 20.4 Coroutines

il

The MDL Programming Language 171

I The process argument to RESUME is optional, by default the last PROCESS, if any. to RESUME the

PROCESS in which this RESUME is applicd. If and when the current PROCESS is later RESUMEd by
another PROCESS, that RESUME's refval is returned as the value of this RESUME.

20.5. Swirching PROCESSes

20.5.1. Starting Ulp a New PROCESS

Let us say that we are running in some PROCESS, and that this original PROCESS is the GVAL of PD.
Somewhere, we have evaluated

<SETG Pl <PROCESS ,STARTER>>
where ,STARTER is some appropriate function. Now, in ,P0, we evaluate

<RESUME .A ,P1>

and the l"nlln'l.v'in:; happens:

(I} In ,PO the arguments of rthe RESUME are evaluated: that is. we get that LVAL of A which is
current in , PO and the GVAL of P1.

(2) The STATE of ,P0 is changed to RESUMABLE and ,PD is "frozen" right where it is. in the
middle of the RESUME .

(3} The STATE of ,P1 is changed to RUNNING, and ,STARTER is applied to ,P0’s LVAL of A in
£PL. Pl now continues on its way, evaluating the body of ,STARTER.

The .A in the RESUME could have been anything. of course.

The important point is that, whatever it
is, it is evaluated in ,PO.

What happens next depends, of course, on what +STARTER does.

20.5.2. Top-level Return

Let us initially assume that ,STARTER does nothing relating to PROCESSes, but instead simply
Feturns a value -- say sfarval, What happens when ,STARTER returns is this:

(1) The STATE of ,P1 is changed to DEAD. ,P1 can never again be RESUMEd.

20.4 - 20.5.2 Coroutines

e SRS s ———————

172 The MDL Programming Language

(2) The Jast PROCESS to RESUME ,Pl is found, namely ,P0, and its STATE is changed to
RUNNING.

(3) starval is returned in «PO as the value of the original RESUME, and , PO continues where it
left off.

All in all, this simple case looks just like an elaborate version of applying ,STARTER to .A in ,PO.

20.5.3. Symmetric RES UMEing

Now suppose that while still in +P1 the following is evaluated, either in +STARTER or in something
called by ,STARTER:

<“RESUME .BAR ,PD>

This is what happens:

(1) The arguments of the RESUME are evaluated in ,P1.

(2) The STATE af Pl is changed to RESUMABLE, and ,P1 is "frozen”™ right in the middle of the
RESUME .

(3) The STATE of

+ PO is changed to RUNNING, and «Pl's LVAL of BAR is returned as the value of
+P0’s original RES

UME. ,PO then continues right where it left ofF,

This is the Interesting case, because ,P0 can now do another RESUME of ,P1; this will “turn of f"
PO, pass a value o «P1 and "turn on" ,pP1. Pl can now again RESUME ,PO0, which can RESUME

» Pl back again. ete. ad navscam, with everything done in a perfectly symmetric manner. This can
obviously also be done with three or more PROCESSes in the same manner.

Note how this differs from norimal funcrional application:
without destroying the state that function is in.
“return” (RESUME), remembering your state, and later

you cannot “return” from a function
The whole point of PROCESSes is that you can
continue where you left off.

20.56. Example

20.5.2 - 2.6 Coroutines

:
- -.-.=--— —— __ ... __—_———_——__———> .= = B -—-——————————————————————————— _ —-=°.- —
R TR e ——
e R R —
e ——————

The MDL Programming Language 173

.*Tnitially, we are in LISTEN in some PROCESS."
cDEFINE SUM3 (A)

#DECL ((A) <OR FIX FLOATZ>)

<REPEAT ({5 .A})
| #DECL ((5) <OR FIX FLOATX)
<{SET 5 <+ .5 <RESUME "GOT 1%2>>>
<SET 5§ <+ .5 <RESUME "GOT 2">>>
<S5ET 5 <RESUME .5>>>>%

SUM3

:"SUM3, used as the startup function of another PROCESS,
gets RESUMEd with numbers. It returns the sum of the last
three numbers it was given every third RESUME."

¢SETG SUMUP <PROCESS ,5UM3>>3
{ #PROCESS 2

:"Now we start SUMUP and give SUM3 its three numbers.®
<RESUME 5 ,S5UMUP>%

“GOT 1*
| <RESUME 1 ,SUMUP>S
| "GOT 2"

<RESUME 2 ,SUMUP>S
| 8

Just as a note, by taking advantage of MDL's order of evaluation, SUM3 could have been written as:

| <DEFINE 35UM3 (A)
<REPEAT ((5 .A)})
#DECL ((A S) <OR FIX FLOAT>)
<SET 5 <RESUME <+ .5 <RESUME "GOT 1"> <RESUME "GOT 2">>3>3>>

20.7. Other Coroutining Features

20.7.1. BREAK-5EQ
<BREAK-=-5E0Q any process?
("break evaluation sequence”) returns process, which must be RESUMABLE, after having modified it
50 that when it is next RESUME, it will first evaluate any and then do an absolutely normal RESUME;
| the value returned by any is thrown away, and the value given by the RESUME is used normally.
If a PROCESS is BREAK-SEQed more than once between RESUMEs, all of the anys BREAK-SEQed onto it

will be remembered and evaluated when the RESUME is finally done. The anys will be evaluated in

20.6 - 20.7.1 Coroutines

174 The MDL Programming Language

“last-in first-out” order. The FRAME generated by EVALing more than one any will have as its FUNCT
the dummy ATOM BREAKER.

20.7.2. MAIN

When you initially start up MDL, the PROCESS in which you are running is slightly “special” in
these two ways:

{1} Any attemp! to cause it to become DEAD will be met with an error.
(2) <MAIN> always returns that PROCESS.

The PROCESS number of <MAIN> is always 1. The initial GVAL of THIS-PROCESS is what MAIN always
returns, #PROCESS 1.

20.7.3. ME
<ME >

returns the PROCESS in which it is evaluated. The LVAL of THIS-PROCESS in a RUNABLE (new)
PROCESS is what ME always relurns.
20.7.4. RESUMER

<RESUMER process>
returns the PROCESS which last RESUMEd process. If no PROCESS has ever RESUMEd process, it returns
#FALSE (). process is optional, <ME> by default., Note that {MAIN> does not ever have any resumer.
Example:

ZPROG ((R <RESUMERZ>)) ;"not effective in {MAIN>*

#DECL ((R) <OR PROCESS FALSE>)
<AND .R

<==7 <3TATE .R> RESUMABLE>
<RESUME T .R>>>

20.7.5. SUICIDE

{SUICIDE refval process>»

20.7.1 - 20.7.5 Coroutines

IIII*!I'II*IIIII!IIII*I'I-——-H-_—- S

MDL Programming Language 175
The g g

acts just like RESUHE, but clobbers the PROCESS (which cannot be <MAIN>) in which it is evaluated to
the STATE DEAD.

20.7.6. 1S5TEP

C1STEP process»
returns pracess, after putting it into "single-step mode”,

A PROCESS in single-step mode, whenever RESUMEd, runs only until an application of EVAL in it
begins or finishes. At that point in time, the PROCESS that did the 1STEP is RESUMEd, with a refval
which is a TUPLE. If an application of EVAL just began, the TUPLE contains the ATOM EVLIN and

the arguments to EVAL. If an application of EVAL just finished, the TUPLE contains the ATOM
EVLOUT and the result of the evaluation,

process will remain in single-step mode until FREE-RUN (below) is applied to it. Until then. it will
stop before and after each EVAL in it. Exception: if it is RESUMEd from an EVLIN break with a refval
of TYPE DISMISS (PRIMTYPE ATOM), it will leave single-step mode only until the current call to

EVAL is about to return. Thus lower-level EVALs are skipped over without leaving the mode. The
usefulness of this mode in debugging is obvious.

20.7.7. FREE-RUN
<FREE-RUN process>»

takes its argument out of single-step mode. Only the PROCESS that put process into single-step
mode can take it oul of the mode: if another PROCESS tries, FREE-RUN returns a FALSE.

20.8. Snecakiness with PROCESSes

FRAMEs, ENVIRONMENTs. TAGs, and ACTIVATIONs are specific to the PROCESS which created them, and
each "knows its own father”. Any SUBR which takes these objects as arguments can take one which
was gencrated by any PROCESS, no matter where the SUBR is really applied. This provides a rather
sneaky means of crossing between PROCESSes. The various cases are as follows:

GO, RETURN, AGAIN, and ERRET, given arguments which lie in another PROCESS, each effectively
“restarts” the PROCESS of its argument and acts as if it were evaluated over there. If the PROCESS in
which it was executed is later RESUMEM, it returns a value just like RESUME!

SET, UNASSIGN, BOUND?, ASSIGNED?, LVAL, VALUE, and LLOC, given optional ENVIRONHENT

20.7.5 - 20.8 Coroutines

I76

The MDL Programming Language

arguments which Jie in another PROCESS, w

ill gleefully change, or return,
in the other PROCESS.

The optional argument can equally well be
ACTIVATION in another PROCESS

; in those cases, each uses the ENVIRONMENT
Place speeified,

FRAME , ARGS, and FUNCT will he glad to return the FRAMEs,
Subroutine names of another PROCESS .,

If one is given 2 PROCESS (including <ME>) as an argument
instead of a FRAME, it returns all of the appropriate part of the topmost FRAME on that PROCESS's
control stack.

If EVAL is applied in PROCESS pj with an ENVIRONMENT argument from a PROCESS P2, it will do the
evaluation in P1 but with P2's ENVIRONMENT (1),

That is. the other PROCESS's LVALs, etc. will be used,
aurse of the evaluation will be created in P1; and (2) Pl will
Note the following: if the EvaL in P1 eventually causes a RESUME of P2, P2

i 1o below the poing where the ENVIRONMENT used in Pl is defined: a RESUME
Id cause an error due to an invalid ENVIRONMENT. (Once again, LEGAL? can
be used to Forestall this.)

but (1) any new FRAMCs needed in the c
be RUNNING -- nog Pz,

20.9. Final Notes
=== Final Notes

(1) A RESUMABLE PROCESS can

be used jn place of an ENVIRONMENT in any application. The
“eurrent” ENVIRONMENT of the PROCESS is cffectively used,

(2) FRAMES and ENVIRONMENTs can be CHTYPEd arbitraril‘y to one ano
CHTYPEd to either of them. and the result "works®,

with different SUBRs --
hence rhe inven

ther, or an ACTIVATION can be
Historically, these different TYPEs were First used

FRAME with ERRET, ENVIRONMENT with LVAL, ACTIVATION with RETURN —
tion of different TYPEs with similar properties.

{3) Bugs in multi-PROCESS
unknown to the hum

programs usually exhibit a degree of subtlety and nastiness otherwise
feel thart You are rapi

an mind. If when attempting to work with multiple PROCESSes ¥You begin to
diy going insane, ¥You are in good company.

20.8 - 209 Coroutines

the local values of ATOMs
a PROCESs, FRAME, or
which is current in the

argument TUPLEs, and applied

The MDL Programming Language 177

Chapter 21. Interrupts

The MDL interrupt-handling facilities provide the ability to say the following: whenever “this
event” occurs, stop whatever is being done at the time and perform “this action™ when “this action™
is finished, continue with whatever was originally being done. "This event”™ can be things like the
typing of a character at a terminal. a time interval ending. a PROCESS becoming blocked, or a
program-defined and -gencrated “event”. “This action” is the application of a specified APPLICABLE
object 1o arguments provided by the MDL interrupt system. The sets of events and actions can be
changed in extremely flexible ways, which accounts for both the variety of SUBRs and arguments,
and the rich interweaving of the topics in this chapter. Interrupt handling is a kind of parallel
processing: a program can be divided into 2 "main-level” part and one or more interrupt handlers
that execute only when conditions are ripe.

21.1. Definitions of Terins

An intcrrupt is not an object in MDL, but rather a class of events, for example, “ticks™ of a clock,
garbage collections, the typing of a character at a terminal, ete.

An interrupt is said oceur when one of the events in its class takes place.

An external interrupt is one whose occurrences are signaled to MDL by the operating system, for
example, "ticks” of a elnck. Awn internal interrupt is one whose occurrences are detected by MDL
itself, for example. garbage collections. MDL can arrange for the operating system not to signal

occurrcnces of an external interrupt to it; then. as far as MDL is concerned, that interrupt does not
occur,

Each interrupt has a name which is either a STRING {for example, "GC*, "CHAR", "WRITE") or an
ATOM with thar PHAME in a special OBLIST, named INTERRUPTS!- . (This OBLIST is returned by
CINTERRUPTS>.) Certain names must always be further specified by a CHANNEL or a LOCATIVE to
tell which interrupt h}r that name is meant.

When an interrupt occurs, the interpreter looks for an association on the interrupt’'s name. If there
is an association, its AVALUE should be an IHEADER, which heads a list of actions to be performed.
In each IHEADER is the name of the interrupt with which the IHEADER is or was associated.

21 - 211 Interrupts

178 The MDL Programming Language

In each THEADER is an elewment telling whether it is disabled. If an IHEADER is disabled. then none of
its actions is performed. The opposite of disabled is enabled. It is sometimes useful to disable an
IHEADER temporarily, but removing its association with the interrupt’s name is better than long-
term disabling. There are SUBRs for creating an IHEADER, associating it with an interrupt, and later
removing the assaciation.

In each IHEADER is a priority., a FIX greater than 0 which specifies the interrupt's "importance”.
The processing of a higher-priority {larger-numbered) interrupt will supersede the processing of a
lower-priority (smallec-nnmbered) interrupt until the high-priority interrupt has been handled.

In each THEADER is a {possibly empty) list of HANDLERs. (This list is not a MDL LIST.) Each
HANDLER corresponds to an action to perform. There are SUBRs for creating a HANDLER, adding it to
an IHEADER's list, and later removing it

In each HANDLER is a Tunction that we will eall a handler (in lower case), despite possible confusion,
because that js really the best name for i, An action consists of applying a handler to arguments
supplicd by the interrupt systom. The number and meaning of the arguments depend on the name
of the interrupt. In each HANDLER is an element telling in which PROCESS the action should be
performed. *

21.2. EVENT

CEVCNT name prierify whichy

creates and returns an enabled THEADER with no HANDLERs. The name may be an ATOM in the
INTERRUPTS OBLIST or a STRING; if i1 is a STRING, EVENT does a LOOKUP or INSERT in

CINTERRUPTS>. If there already is an IHEADER associaled with name, EVENT just returns it, ignoring
the giv’l:'ll eriority

which must be given only for certain names:

It miust be a CHANNEL if and only if name is "CHAR" {or CHAR!-INTERRUPTS). In this case it is
the input CHANNEL from the {pseudo-Jterminal or Network socket whose received characters will
cause the interrupt 1o occur. or the output CHANNEL to the pseudo-terminal or Network socket
whose desired characters will cause the interrupt to occur. (See below. Pseudo-terminals are not
available in the Tenex and Tops-20 versions.)

The argument must be a LOCATIVE if and only if name is "READ" {or READ!-INTERRUPTS) or
"WRITE" (or WRITE!-INTERRUPTS). In this case it specifies an objeet to be “monitored” for
usage by (interprered) MDL programs {section 21.8.9).

If the intercupt is external, MDL arranges for the operating system to signal its occurrences.

281 - 21.2 Interrupts

The MDL Programming Language e

21.3. HANDLER (the SUBR)
e =

{HANDLER iheader applicable processy

creates a HANDLER, adds it to the front of iheader's HANDLER list (first action to be performed). and
returns it as a value. applicable may be any APPLICABLE object that takes the proper number of
argumenis. {(None of the arguments can be QUOTEd: they must all be evaluated at call time.) process
is the PROCESS in which the handler will be applied, by default whatever PROCESS was running when
the interrupt occurred.

The value returned by the handler is ignored, unless it is of TYPE DISMISS (PRIMTYPE ATOM), im
| which casc none of the remaining actions in the list will be performed.

The processing of an interrupt’s actions can terminate prematurely if a handler calls the SUBR
DISHISS (sce below)

21.4. OFF

<OFF rheader?>
removes the association between iheader and the name of its interrupt, and then disables iheader and
returns it. (An crror occurs if there is no association.) If the interrupt is external, MDL arranges for

the operating system nol to signal its occurrences.

COFF name which?
finds the IHEADER associated with name and proceeds as above, returning the IHEADER. which must
be given only for certain names, as for EVENT. Caution: if you <OFF "CHAR®™ , INCHAN>, MDL will
become deaf.

COFF harndler>

returis frandler after removing i1 from its list of actions. There is no effect on any other HANDLERs
in the list.

Now that you know how 1o remove IHEADERs and HANDLERs from their normal places, you need to
know how to put them back:

CEVENT ihcador?>

If iheader was previously disabled or disassociated from its name, EVENT will associate and enable it

<HANDLER iheader handler?

21.3 - 21.4 Interrupts

-

180 The MDL Programming Language

If handler was previously removed from its list, HANDLER will add it to the front of jheader's list of
actions. Note that process cannot be specified.

21.5. THEADER and HANDLER (ithe TYPEs)

Both these TYPEs are of PRIMTYPE VECTOR, but they do not PRINT that way, since they are self-
referencing. Insicad they PRINT as

#tvpe most -triteresting -element

The contents of IHEADERs and HANDLERs can be changed by PUT, and the new wvalues will then
determine the behavior of MDL.

Before describing the elements of these TYPEs in detail, here are a picture and a Pattern, both
purporting to show hiow they look:

FIHEADER [name:atom or which
disabled?

e R T > FHANDLER [#*=-ccommmaa- > #HANDLER [#HANDLER []

priority] <----=ce-aca--. n o "
applicable | applicable
process] {-----=- + process]

<IHEADER <OR ATOM CHANNEL LOCATIVE>
<OR '#LOSE 0 °"#LOSE -1>

<HANDLER HANDLER <OR HANDLER IHEADER> APPLICABLE PROCESS>»
FIX>

21.5.1. IHEADER
The elewments of an THEADER are as follows:

(1) name of interrupt (ATOM, or CHANNEL if the name is "CHAR®™, or LOCATIVE if the name is
"READ"™ or "WRITE"™)

(2) non-zero if and anly il disabled

(3) First HANDLER, if any, else a zero-length HANDLER

{(4) priority

If you lose track of an IHNEADER, You can get it via the association:

For "CHAR"™ interrupts, <GET channe/ INTERRUPT> relurns the IHEADER or #FALSE () if there is

21.4 - 21.5.1 Interrupts

The MDL Programming Language 181

no association: <EVENT "CHAR® 0 channel/> returns the IHEADER, creating it if there is no
association.

For "READ" interrupits. <GET focalive READ!-INTERRUPTS» returns the IHEADER or #FALSE () if
there is no association: <EVENT "READ® O jocalive> returns the IHEADER, creating it if there is
no asseciation,

e —————

| For "WRITE" interrupis, <GET locative WRITE!-INTERRUPTS> returns the IHEADER or #FALSE ()
if there is no association: <EVENT "WRITE™ 0 focative? returns the IHEADER, creating it if there
is Nno associatinn.

Otherwise, the IHEADER is PUT on the name ATOM with the indicator INTERRUPT. Thus, for
example, <GET CLOCK!-INTERRUPTS INTERRUPTZ> returns the IHEADER for the clock interrupt or
#FALSE () if there is no association: <EVENT "CLOCK™ 0> returns the IHEADER, creating it if
there is no association.

21.5.2. HANDLER

A HANDLER specifics a particular action for a particular interrupt. The elements of a HANDLER are as
follows:

(1} next HANDLER if any, else a zero-lengith HANDLER

(2) previous HANDLLR or the THEADER (Thus the HANDLERs of a given interrupt form a “doubly-
linked list™ chaining between each other and back to the THEADER.)

(3) handler ta be applied (anything APPLICABLE that evaluates its arguments -- the application
is done nnt by APPLY but by RUNINT, which can take a PROCESS argument: see next line)

{4) PROCCSS in which the handler will be applied, or #PROCESS 0, meaning whatever PROCESS
was running when the interrupt occurred (In the former case, RUNINT is applied to the handler
and its argmwments in the currently running PROCESS, which causes an APPLY in the PROCESS
stored in the HANDLER, which PROCESS must be RESUMABLE. The running PROCESS becomes

RESUMABLE, and the stored PROCESS becomes RUNNING, but no other PROCESS variables (for
example RESUMCR) are changed.)

2L6. Dther fil:lg!i_F!.':
CON name applicable prioril y:fix process which?

is equivalent to

21.5.1 - 21.6 Interrupts

S

152 The MDL Programming Language

CHANDLER <EVENT name priority which>»
spoficable processy

| ON is a combination of EVENT and HANDLER: it creates {or finds) the IHEADER, associates and enables
it, adds a HANDLER to the front of the list {first to be performed), and returns the HANDLER.

SDISABLE rheader>

is effectively <PUT iheader 2 #LOSE =13. Actually the TYPE LOSE is unimportant, but the -1
signifies that iheader is disabled.

SENABIE iheader>

is effectively <PUT jheader 2 #LOSE 03, Actually the TYPE LOSE is umimportant. but the 0
signifies thar iheader is enabled.

21.7. Priorities and lnterrupt Levels

At any given time there is a defined interrupt level. This is a FIX which determines which
interrupts can really “interrupt” -« that is, cause the current processing to be suspended while their
wants are satisficd. Normal, non-interrupt programs operate at an interrupt level of 0 (zero). An
interrupt is processed at an interrupt level equal to the interrupt’s priority.

2L.7.1 Interrupt Processing
Interrupts "actually”™ occur only at well-defined peints in time: during a call to a Subroutine, or at
critical places within Subroutines (For example, during each iteration of MAPF on a LIST, which

may be circular). or while a PROCESS is "BLOCKED" (see below). No interrupts can occur during
garbage collection.

What actually happens when an enabled interrupt occurs is that the priority of the interrupt is
compared with the current interrupt level, and the following is done:

If the priority is greater than the current interrupt level, the current processing is “frozen in its
tracks™ and processing of the action(s) specified For that interrupt begins.

If the priority is less than or enqual to the current interrupt level, the interrupt occurrence is queued
== that is. the fact that it occurred js saved away for processing when the interrupt level becomes low
enough.

When the processing of an interrupt’s actions is completed, MDL usually (1) “aects as if" the

21.6 - 21.7.1 Interrupts

=

e
— e, , , e _ __e_e_—_—_—
—
— e
e e ————————————————————————— e————————————————— e ey
e ————— e Sy
= ammmmm———— . e
= ———————_" ———————————]__"]]V V.. —— ——— — — — ___—
—
e e e e —
e ———— — ——— e eer————
e ——— = =——
e
—
—
e e ——
- -
—
e N e
—
— e e e e e
— e,k e e e t(\1\ }1 e \\-¢e e ————
e ———— e
e e =
e ———— — —

The MDL Programming Language 183

previously-existing interrupt level is restored. and processing comtinues on what was left off

(perhaps for no time durationk and (2) "acts as if” any queued interrupt occurrences actually

1 occurred right then, in their original order of occurrence.

] 7.2, INT-LEVEL

The SUBR INT-LEVEL is used to examine and change the current interrupt level directly.
<INT-LEVEL>

,5,i|||p|:.' returns the current illterrupt level.

CINT-LEVEL fix>

changes the interrupt level 1o its argunent and returns the previously-existing interrupt level.

If INT-LLVEL lowers the interrupt level, it does not "really” return until all queued occurrences of
interrupts of prierity higher than the targer priority have been processed,

Setting the INT-LEVCL extremely high (for example, ¢INT-LEVEL <CHTYPE <MIN> FIX>>) effectively
disables all interrupts {(but necurrences of enabled interrupts will still be queued).

If LISTEN or ERROR is called when the INT-LEVEL is not zero, then the typeout will be

LISTENTNG=AT=-LEVEL / PROCESS p INT-LEVEL

21.7.3. DISMISS

DISMISS permits a handler to return an arbitrary value for an arbitrary ACTIVATION at an arbitrary
interrupt level. The call is as follows:

1 CDISMISS walue:any aclivation int-feveldixd

where only the value is required. If activation is omitted, return is to the place interrupted from, and
value is ignored. If inf-level is omitted. the INT-LEVEL prior to the current interrupt is restored.

21.7.1 - 21.7.3 Interrupts

—_—————————————

184 The MDL Programming Language

21.8. Specific Interrupts

Descriptions of the characteristics of particular "built-in” MDL interrupts follow. Each is named by
its STRING name. Expect this list 1o be incomplete yesterday.

"CHAR" is currently the mnost cotiplex buili-in interrupt, because it serves duty in several ways.
These different ways will be described in several different sections. All ways are concerned with
characters or machine words that arrive or depart at unpredictable times, because MDL is
communicating with a person or another processor. Each "CHAR® THEADER has a CHANNEL for the
element that names the interrupt. and the mode of the CHANNEL tells what kinds of =CHAR"
interrupts nccur to be handled through that IHEADER.

(1) If the CHANNEL is for input, "CHAR™ occurs every time an “interesting” character (see below)
is received from the CHANMEL's real terminal. or any character is received from the
CHANHEL's psendo-terininal, or a character or word is received from the CHANNEL's Network
sochel. or indeed (in 1the ITS version) the operating system generates an interrupt for any
reasonn.,

(2) IF the CHANNEL is for outpur to a pseudo-terminal or Network socket., "CHAR" occurs every
time a character or word is wanted,
(3) If the CHANNEL is for output to a terminal. "CHAR"® occurs every time a line-feed character is

aurput or (in the ITS version) the operating system generates a screen-full interrupt for
the terminal,

21.8.1. "CHAR" received

A bandler for an input "CHAR" interrupt on a real terminal must take two arguments: the
CHARACTER which was typed. and the CHANNEL on which it was 1y ped.

In the ITS version, the Tinteresting” characters are those “enabled for interrupts” on a real terminal,
namely "2 through 6, “K through ~_, and DEL (that is, ASCII codes 0-7, 13-37, and 177 octal).

In the Tenex and Tops-20 versions, the opcrating system can be told which characters typed on a
terminal should cause this interrupt to occur, by calling the SUBR ACTIVATE-CHARS with a STRING
argument containing 1those characters (o more than six. all with ASCIT codes less than 3% octal). IF

called with ne argument, ACTIVATE-CHARS returns a STRING containing the characters that currently
interrupt. Initially, only “6, “5, and ~0 interrupt.

An initial MDL already has "CHAR" enabled on + INCHAN with priority B f!igllt}. the SUBR QUITTER
for a handler, 1o run in #PROCESS 0 (the running PROCESSk this is how “6 and S are processed. In
addition, every time a new CHANNEL is OPENed in "READ® mode to a terminal. a similar IHEADER and
HANDLER are associated with that new CHANNEL automatically. These automatically-generated
IHEADERs and HANDLERs use the standard machinery. and they can be DISABLEd or OFFed at will.

However, the IICADER for , INCHAN shiould not be OFFed: MDL knows that § is typed only by an
interrupt!

21.8 - 21.8.1 Interrupts

=

e

uuun*un-unhru-unm---muur

| The MDL Programming Language 185

Example: the following causes the given message to be printed out whenever a °Y is typed on
[. INCHAN:

<5ET H <HANDLER <GET < INCHAN INTERRUPT?
#FUNCTION ((CHAR CHAN)
#DECL ((VALUE) ANY (CHAR) CHARACTER (CHAN) CHANNEL)
<AND <==7 _CHAR IN"YD
CPRINC * [Some of my best friends are “Ys.] ">3)>>%
FHANDLER #FUNCTION (({CHAR CHAN) ...)

<+ 2 °Y [Some of my best friends are “Ys.] 2>%
4

<OFF .H>%
FHANDLER #FUNCTION (...)

Mote that occurrences of "CHAR™ do not wait for the $ 1o be typed, and the interrupting character is
omitted from the input stream.

A "CHAR" interrupt can also be associated with an input CHANNEL open to a Network socket ("NET™
device). A handler gets applicd to a NETSTATE array (which sce) and the CHANNEL ,

In the ITS version, a "CHAR® interrupt can also be associated with an input CHANNEL open to a
pseudo-terminal ("STY" device and friends). An interrupt occurs when a character is available for
input. These interrupts are sel up in exactly the same way as real-terminal interrupts, except that a

handler gers applied to only oune argument, the CHANNEL. Pseudo-terminals are not available in the
Tenex and Tops-20 versions.

For any other flavor of ITS channel interrupt, a handler gets applied to only one argument, the
CHANNEL .

21.8.2. "CHAR" wanted

A "CHAR" interrupt can be associated with an output CHANNEL open to a Network socket ("NET™
device). A handler gets applicd to a HNETSTATE array (which see) and the CHANNEL .

In the ITS version. a "CHAR" interrupt can also be associated with an output CHANNEL open to a
pseudo-terminal ("STY" device and friends), An interrupt occurs when the program at the other end

needs a characrer fand the operating-system buffer is empty). A handler gets applied to one
argument, the CHANNEL . Pseudo-terminals are not available in the Tenex and Tops-20 versions.

21.8.3. "CHAR" lor new line

A handler for an oulput "CHAR" interrupt on a real terminal must take one oi two arguments (using

21.8.1 - 21.8.3 Interrupts

—————— s ——————————- - .-,
I
A A —— ———— —
e —

186 The MDL Programming Language

"OPTIONAL" or "TUPLE"): if two arguments are supplied by the interrupt system, they are the line
number (FIX} and the CIHANNEL, respectively, and the interrupt is for a line-feed; if only one
argument is supplicd (only in the ITS version), it is the CHANNEL, and the interrupt is for a full
terminal screen. Note: the supplied line number comes from the CHANNEL, and it may not be
accurate if the program alters it in subtle ways, for example, via IMAGE calls or special control
characters. (The program can compensate by PUTting the proper line number into the CHANNEL .)

21.8.4. "GC"

"GC" occurs just afFter every garbage collection. Enabling this interrupt is the only way a program
can know that a garbage collection has occurred. A handler for "GC" takes three arguments. The
first is a FLOAT indicating the number of scconds the garbage collection took. The second argument
is a FIX indicating the cause of the garbage collection, as follows {chapter 22):

. Program ealled GC.

. Movable storage was exhausted.

. Control stack overllowed.

. Top-level LVALs averllowed,

. GVAL vector overflowed,

TYPE vectar nverf lowed

- Immovable garbhage-collected storage was exhausted.
- Internal stack overflowed.

. Bolh eontral and internal stacks overflowed (rarel
9. Pure storage was exhausted.

10. Second. exhaustive garbage collection occurred.

DAoL BN =0

-

The third argument is an ATOM indicating what initiated the garbage collection: GC-READ, BLOAT,
GROW, LIST. VECTOR, SET, SETG, FREEZE, GC., NEWTYPE, PURIFY, PURE-PAGE-LOADER (pure
storage was exhausted). or INTERRUPT-HANDLER (stack overflow, unfortunately).

2i.8.5. "DIVERT-AGCY

"DIVERT-AGL" ("Automatic Garbage Collection”) occurs just before a deferrable garbage collection
that is necded hecause of exhausted movable garbage-collected storage. Enabling this interrupt is
the only way a program can know that a garbage collection is about to oecur. A handler takes two
arguments: a FIX telling the number of machine words needed and an ATOM telling what initiated
the garbage collection (sec above). If it wishes, a handler can try to prevent a garbage collection by
calling BLOAT with the FIX argument. If the pending request for garbage-collected storage cannot
then be satisficd, a garbage collection occurs anyway. AGC-FLAG is SET to T while the handler is
running. so that new storage requests do not iry to cause a garbage collection.

21.83 -21.85 Interrupts

il

__-h—

——
e —
—
—
—
——
e —
———
—
—
—
—
e —
—
—
—
—
e —
e ——
—
—
—
e ——
e —

The MDI Programming Language 187

21.8.6. "CLOCK"

scpoCck”, when enabled. occurs every half second (the ITS "slow-clock”™ tick). It is mot available in

| the Tenex and Tops-20 versions. It wants handlers which take no arguments. Example:
¥ CON "CLOCK"™ <FUNCTION () <PRINC "TICK ">> 1>
i 21.8.7. "BLOCKED"

*BLOCKED" occurs whenever any PROCESS (nol only the PROCESS which may be in a HANDLER) starts
waiting for tcrminal input: rhat is, an oceurrence indicates that somewhere, somebody did a READ,
' READCHR, NEXICHR, 1Y¥I1, etc. to a terminal. A handler for a "BLOCKED" interrupt should take one
| argument, namely the PROCESS which started waiting (which will also be the PROCESS in which the
handler runs, if no specific one is in the HANDLER).

Example: the fnl!nwing will cause MDL to acquire a = prmnpling character.

<OH "BLOCKED" #FUNCTION ((IGNORE) <PRINC !\=>) 5>

21.8.8. "UNBLOCKED"

"UNBLOCKLD" occurs whenever a % (ESC) is typed on a terminal if a program was hanging and
waiting for input, or when a TYI call {(which see) is satisfied. A handler takes one argument: the
CHANNEL wvia which the % or character is input.

| 21.89 "READ*" and “"WRITE"

| "READ" and "WRITE" are associated with read or write references to MDL ob jects. These interrupts
are often called "monitors”, and enabling the interrupt is often called "monitoring” the associated

| Ubjt‘cl. A “read reference” 1o an ATOM's local value includes ;ij:r'i"g BOUND? or ASSIGNED? to the
ATOM; similarly for a global value and GASSIGNED?. If the INT-LEVEL is too high when "READ® or
"WRITE" occurs. an crror occurs. because occurrences of these interrupts cannot be queued.

Monitors are set up with EVENT or ON, using a locative to the object being wmonitored as the extra
which argument, just as a CHANNEL is given for "CHAR". A handler for "READ" takes two arguments:
the locative and the FRAME of the function application that makes the reference. A handler for
"WRITE" takes three arguments: the locative, the new value, and the FRAME . For example:

<SET A (1 2 3)>%
(1 2 3)

<SET B <AT .A 2>>%
FLOCL 2

21.86-21.B9 Interrupts

R R R R R R R R R R R R R BB R R R RO R R R R R R R R RRRRRRRRBERBRBDBLDLSSEEDRBEEDEEBEEBEmmmmmm

188 The MDL Programming Language

<ON "WRITE" <FUNCTION (OBJ VAL FRH)
FDECL ((VALUE VAL) ANY (0BJ) LOCATIVE (FRH) FRAME)
<CRLF >
<PRINC "Program changed ">
<PRIN]1 .0BJ>
<PRINC " to ">
<PRIN]1 .VAL>
{PRINC " wvia ">
<PRIN1 .FRH>
CCRLF >>
190 .B>%
FHANDI FR #FUNCTIOM | T |
<1 .A 10>%
(10 2 3)
{2 .A 20:%
Frogram changed #LOCL 2 to 20 wvia #FRAME PUT
(10 20 3)
{OFF "WRITE®" .B»%
FIHNLADER #LOCL 20

21.8.10. "SYSDOWH"™

"SYSDOWN" occurs when a system-going-down or system-revived signal is received from ITS. It is
not available in the Tenex and Tops-20 versions. If no IHEADER is associated and enabled, a
warning is printed on the fterminal. A handler takes one argument: a FIX giving the number of
thirtieths of a sccond until the shutdown {-1 for a reprievel.

21.8.11. "ERROR™

In an effort to simplify error handling by programs, MDL has a facility allowing errors to be
handled like interrupts. SETGing ERROR to a user function is a distasteful method, not safe if any
bugs arc around, An "CRROR" interrupt wants a handler thar takes any number of arguments, via
"TUPLE"™. When an error occurs, handlers are applied to the FRAME of the ERROR call and the TUPLE
of ERROR arguments. If a given handler “takes care of the error”, it can ERRET with a value from the

ERROR FRAME, aflter having done <INT-LEVEL 0. If no handler takes care of the error, it falls into
the normal ERROR .

If an error occurs at an INT-LEVEL greater than or equal to that of the "ERROR® interrupt, real
ERROR will be called, because "ERROR" interrupts cannot be queued.

21.8.9 - 21.8.11 Interrupts

et e e ———

|

The MDL Programming Language 189

21.8.12. "IPC"

“TPC"™ occurs when a IMCssAge is received on the ITS IPC device fchlptcr 23). It is not available in
the Tencx and Tops-20 versions.

21.8.13. "INFERIOR"

"INFERIOR™ occurs when an inferior 1TS process interrupts the MDL process. It is not available in

the Tenex and Tops-20 versions. A handler takes one argument: a FIX between 0 and 7 inclusive,
telling which inferior process is interrupting.

21.8.14. "RUNT®™ and "REALT™
These are not available in the Tenex and Tops-20 versions.

"RUNT", if enabled. occurs once, A seconds of MDL running time (CPU time) after calling
SRUNTIMER Nefiv-ar-float>, which returns its argument. A handler takes no arguments. If RUNTIMER
is called with no argument, it returns a FIX, the number of run-time seconds left until the interrupt
occurs, ar #FALSE () if the interrupt is not going to occur.

"REALT", if enabled. nccurs every & seconds of real-world time after calling <REALTIMER N:fixr-or-
float>. which returns its argument. A handler fakes no arguments. <REALTIMER 0> tells the
operating sysiecm nol to gencrate real-time interrupts. If REALTIMER is called with no arguiment, it
returiis a FIX, the number of real-time seconds given in the most recent call to REALTIMER with an
argument, or #FALSE () if REALTIMER has not been called.

21.8.15. "Dangerous” Interrupis

"MPV™ ("memory-protection violation™ occurs if MDL tries to refer to a storage address not in its
address space. "PURE"™ occurs if MDL tries to alter read-only storage. "ILOPR® occurs if MDL
executes an illegal instruction ("operator™). "PARITY" occurs if the CPU detects a parity error in
MDL's address space. All of these require a handler that takes one argument: the address (TYPE
WORD) following the instruction that was being executed at the time.

"IOC" occurs if MDL tries to deal illegally with an 1/O channel. A handler must take two

arguments: a three-clemient FALSE like one that OPEN might return, and the CHANNEL that got the
error.

Ideally, these interrupts should never oceur. In Fael, in the Tenex and Tops-20 versions, these

interrupts always go to the superior operating-system process instead of to MDL. In the ITS
version, if and when a "dangerous” interrupt does occur:

21.8.12 - 21.8.15 Interrupts

190 The MDL Programming Language

If no THEADER is assnciated with the interrupt, then the interrupt goes to the superior
operating-system process,

If an INEADER is associated but disabled, the error DANGEROUS-INTERRUPT-NOT-HANDLED occurs
(FILE-SYSTCM-ERROR Tor "IOC").

If an THEADER is associated and enabled, but the INT-LEVEL is too high, the error ATTEMPT-TO-
DEFER-UNDEFERABLE-INTERRUPT OCCUrs.

If the interrupt name given to EVENT or ON is not one of the standard predefined interrupts of MDL,
they will gleefully create an ATOM in <INTERRUPTS> and an associated IHEADER anyway, making the
assumption that you are setting up a "program-defined” interrupt.

Program-defined interrupts are made to occur by applying the SUBR INTERRUPT, as in

CINTERRUPT name argl ... argi'>

where name is a STRING, ATOM or THEADER, and argl through argh are the arguments wanted by the
handlers for 1lie interrupt.

If the interrupr specified by INTERRUPT is enabled, INTERRUPT returns T; otherwise it returns
#FALSE (). Al the usual priority and queneing rules hold, so that even if INTERRUPT returns T, it
is possible that nothing “really happened” (yet).

INTERRUPT can also be used to cause “artificial® occurrences of standard predefined MDL interrupts.

Making a programe-defined interrupt occur is similar to -:::!.]I':n_g a handler direcl‘l_'r. but there are
dif ferences. The value returned by a handler is ignored. so side effects must be used in order to
communivate information back to the caller, other than whether any handler ran or will run. One
good use for a program-defined interrupt is to use the priority and queueing machinery of INT-
LEVEL ta contrel the execution of functions that must not run concurrently. For example, if a
"CHAR™ handler just deposits characters in a buffer, then a function to process the buffered
characters should probably run ar a higher priority level -- to prevent unpredictable changes to the
buffer during the processing -- and it is natural to invoke the processing with INTERRUPT.

In more exotic applications, INTERRUPT can signal a condition to be handled by an unknown
number of independent and “nameless” functions. The functions are “nameless” because the caller
doesn’t koow their names. only the name of the interrupt. This programming style is modular and
event-riven, and it is one way of implementing “heuristic” algorithms. In addition, each HANDLER
has a PROCESS in which to run its handler. and so the different handlers for a given condition can

do their thing in different environments fquite easily, with less explicit control than when using
RESUME .

21.8.15 - 219 Interrupts

o b — i

e R

The MDL Programming Language 191

21.10. Waiting for Interrupts

21.10.1. HANG

<HANG pred>

suspends execution, interruptibly. without consuming any CPU time, potentially forever. HANG is
handy for a program that cannor do anything until an interrupt occurs. If the optional pred is
given, it is evaluated every time an interrupt occurs and is dismissed back into the HANG; if the
result of evaluation is not FALSE, HANG unhangs and returns it as a value. If pred is not given,
there had better be a named ACTIVATION somewhere to which a handler can return.

21.10.2. SLEEP
LSLEEP frme:fix-or-floal pred>

suspends execution, interruptibly, without consuming any CPU time, for time seconds, where lme is

non-negative. and then returns T. pred is the same as for HANG.

21.10 - 20.10.2 Interrupts

192 The MDL Programming Language

Chapter 22. Storage Management

The reason this chapter comes so late in This document is that, except for special cases, MDL
programs have their storage needs handled automatically. There is usually no need even to consider
storage mmanageoment, excopt as it affects cfficicney (chapter 24). This chapter gives some

explanation of why this is %0, and covers those special means by which a program can assume
control of storage management.

The MDI. address space is divided into five parts, which are usually called

(1) movable garbage-collected space,

(2) immovable space (both garbage-collected and not),
{3) user pure/page space,

{1} pure-R31BR mapping space, and

{(5) internal storage.

Internal stnrage necupies hoth the highest and lowest addresses in the address space, and its size
never changes as MDL executes. The other Spaces can vary in size according to the needs of the
executing program. Generally the interpreter allocates a contiguous set of addresses for each space,
and each space gradually fills Up as new objeets are ereated and as disk Files are mapped in. The
action taken when a space hecomes full varies, as discussed below.

22.1. Movahle CGarbage-c ollected Siorage

Most storage used explicitly by MDL programs is obtained from a pool of free storage managed by
a “garbage collccror” Storage is obtained from this poel by the S5UBRs which construct ob jects.

When such a SUBR Tinds thar the ponl of available storage is exhausted, it automatically calls the
garbage eollector

The garbare collector has twa algorithms available to it: the "copying” algorithm, which is used by
default. and the "mark-sweep” algorithm. Actually. one often speaks of two separate garbage
collectors. the "copying” one and the “mark-sweep” one, because each is an independent module that
is mapped in 1o the interpreter’s internal storage from disk only during garbage collection. For
simplicity, this document speaks of “the” garbage collector, which has two algorithmns.

22 - 22.1 Storage Management

The MDL Programming Language 193

The garbage collector examines the storage poel and marks all the ob jects there, separating them
into two classes: these which cannot possibly be referenced by a program, and those which can.
The "copying” algorithin then copies the latter into one compact section of the pool, and the
remainder of the pool is made available for newly constructed objects. The "mark-sweep” algorithm,
instead. puis all ohjects in the former class (garbage) into "free lists”, where the ob ject-construction
SUBRs can find them and re-use their storage.

If the request for more storage still eannot be satisfied from reclaimed storage, the garbage collector
will attempt 1o obiain more total storage from the operating system under which MDL runs. (Also,
if there is a gross superfluity of siorage space, the garbage collector will politely return some
storage fo the operating system.) Ounly when the total system resources are exhausted will you
finally lose

Thus, if you just "Torget about” an object, that is, lose all possible means of referencing it. its
storage arca is antematically reclaimed. "Objeet” in this context includes that stack-structured
storage space used in PROCESSes for functional application.

22.1.1. Stacks and Other Internal Vectors

Control siacks are used in MDL to control the changes in environment caused by calling and
binding. Each active PROCESS has its own control stack. On this stack are stored LVALs for ATOMs;
PRIMTYPE TUPLEs, which are otherwise like VECTORs: PRIMTYPE FRAMEs, which are generated by
calling Subroutines: and ACTIVATIONs, which are gencrated by calling FUNCTIONs with named
ACTIVATION«. PROG, and REPEAT. TAG and LLOC can make TAGs and LOCDs {resptctivﬂy} that refer to
a spreific place on a specific control stack. (LEGAL? returns T if and only if the portion of the
control stack in which its argument is found or to which its argument refers is still active, or if its
argument doesn’t care abont the control stack. The garbage collector may change a non-LEGAL?
object to TYPE TILLEGAL hefore reclaiming it) As the word “stack” implies, things can be put on it
and removed fromm it at only one cnd, called the top. It has a maximum size (or depth}. and
attempting 1o put too many things on it will cause averflow. A stack is stored like a VECTOR, and
it must be GROWn if and when it overflows.

A control stack is actually two stacks in one. One section is used for “top-level” LVALs -- those SET
while the ATOM is not bound by any active Function's argument LIST or Subroutine’s SPECIAL
binding -- and the other section is used for everything else. Either section can overflow, of course.
The top-level-LVAL section is brlow the other one, so that a top-level LVAL will be found only if the
ATOM is not currently bound clsewhere, namecly in the other section.

MDL also has an internal stack, used for calling and temporary storage within the interpreter and
compiled programs. It too is stored lihe a VECTOR and can overflow. There are other internal
vectors that can averflow: the “global vector” holds pairs ("slots”™) of ATOMs and corresponding GVALs
("globally bound” or GBOUND? means that the ATOM in question is in this vector, whether or not it

currently has a global value), and the "TYPE vector” holds TYPE names (predefined and NEWTYPEs) and
how they are 1o be treated.

22.1 - 22.1.1 Storage Management

194 The MDL Programming Language

22.2. Immovable Siorage

22.2.1. Garbage-collecied: FREEZE

In very special circumstances, such as debugging RSUBRs, you may need to prevent an ob ject from
being moved by the garbage collector. FREEZE takes one argument, of PRIMTYPE VECTOR, UVECTOR,
STRING, BYTES or TUPLE. It copies ils argument intoe non-moving garbage-collected space. FREEZE

returns the copy CHUTYPEJ ta its PRINTYPE, except in the case of a TUPLE, which is changed to a
VECTOR.

22.2.2. Non-garbage-collected: STORAGE (the PRIMTYPE)

An object of PRIMTYPE STORAGE is really a frozen UVECTOR whose UTYPE is of PRIMTYPE WORD, but
it is always pointed 1o by something internal to MDL and thus is never garbage-collectible. The use
of FREEZE is always preferable, except when for historical reasons a STORAGE is necessary.

22.3. Other Storage

User pure/page space serves two purposes. First, when a user program PURIFYs (see below) MDL
ob jects, they arc copied into this space. Second, so-called hand-crafted RSUBRs (assembled but not

compiled) can call on the interpreter to map pages of disk files into this space for arbitrary
purposes.

Pure-R5UBR mapping space is used by the interpreter to dynam
Programs into amd out of the MDL address space,
the “transfer vector”, another internal vector,

ically map pages of pure compiled
Pure code can refer to impure storage through

This space is the most vulnerable to being compressed
in size by the long-term growih of other spaces.

Internal storage has both purc and impure parts. The interpreter program itself is pure and

sharable. while impure stnrage is used for internal pointers. counters, and flags, for example,
pointers 1o the boundaries of other spaces. In the pure part of this space are most of the ATOMs in
an inirial MDL, along with their OBLIST buckets (LISTs) and GVAL slots (a pure extension of the

global vector), where possible. A SET or SETG of a pure ATOM automatically impurifies the ATOM and
as much of its OBLIST bucket as needs 1o be impure.

22.2 - 223 Storage Management

-

T

The MDL Frogramming Language 195

29 4. Garhage Collection: Details

When either of the garbape-collected spaces (movable or immovable) becomes full, MDL goes
through the following procedure:

(1) A "DIVERT-AGL" interrupt occurs if the garbage collection can be deferred temporarily by
shifting boundarics between sIOrage spaces :.!iglnly. The interrupt handler may postpone a garbage
collection by moving boundaries itself with a eall to BLOAT (below).

(2) The garbage collector begins execution. The "copying” algorithm creates an inferior operating-
systemn prrocess (named AGC in the I'TS version) whose address space is used to hold the new copies of
non-garhage ohjects. MDD gains aceess 1o the inferior's address space through two pages ("frontier”
and "window”) in its internal space that are shared with the inferior. If the garbage collection

occurrcid becanse mnovable garbage-collected space was exhausted, then the “mark-sweep”™ algorithm
might be used instead (sce below), and no inferior process is ereated.

(3) The garbage collector marks all ahjeets that ean. possibly be referenced hereafter. It begins with
the <MAIN> PROCESS and the currently running PROCESS <ME>, considered as vectors containing the
contral stacks. objecl pointers in live registers, ete. Every object in these "PROCESS vectors” is
marked “accessible™, and every element of these oh jects (bindings, ete), and 30 on recursively. The
“eopying” algorithm wmoves objects inte the inferior process’s address space as it marks them.

(4) If the garbage collection is “exbaustive” -- which is possible only in the “copying” algorithm -
then both the chain of associations and top-level local/global bindings are examined thoroughly,

which takes more time but is more likely to uncover garbage therein. In a normal garbage
collection these constriucts are not treated specially.

(5) Finally, the "mark-sweep” algorithim sweeps through the storage space, adding unmarked ob jects
te the internal free lists for later re-use. The “copying” algorithin maps the inferior process's
address space into MDL's own, replacing old garbagey storage with the new compact storage, and
the inferior process is destroyed.

SGC rmurnifix exhPfalse-or-any ms-fregq:ifixy

causes the garbage collector te run and returns the total number of words of storage reclaimed. All

of its arguments are optional if they are not supplied, a call to GC simply causes a “copying”
garbage eollection

If min is explicitly supplied as an argument, a garbage-collection parameter is changed permanently
before the garbage collector runs. min is the smallest number of words of "free” (unclaimed,

22,4 - 225 Storage Management

IllllllllllIlllllllllllllllllllllllllllll-.-I................................|!ll.ll.

196 The MDL Programming Language

available for use) movable garbage-collected storage the garbage collector will be satisfied with
having after it is dene cach time. Initially it is 8192 words. If the total amount of reclaimed
starage is less than min, the garbage collector will ask the operating system for enough storage (in
1024-word blocks) to make it up. N.B.: the system may be incivil enough not to grant the request: in
that case. the garbage collector will be content with what it has, unless that is not enough to satisfy
a pending request For storage. Then it will inform you that it is losing. A large min will result in
fewer tatal gar hage collections, but they will rake longer since the total quantity of storage to be
dealt with will generally be larger. Smaller mins result in shorter, more frequent garbage collections.

exh? tells whether or not this garbage collection should be “exhaustive”. It is optional, a FALSE by
default. The difference between normal and exhaustive "copying” garbage collections is whether
certain Linds of storage that require complicated treatment (for example, associations) are reclaimed.
An exhaustive garbage collection occurs every eighth time that the "copying” algorithm is used, or
when GC is called with this argument true, or when a normal garbage collection cannot satisfy the
SIOTAage request

mz-freq gives the number of times the "mark-sweep” algorithm should be used hereafter for every
time the normal “copying” algorithm is used. Civing 0 for ms-freq means never 1o use the "mark-
sweep” algorithm, and giving <CHTYPE <MIN> FIX> means (effectively) always to use it. The "mark-
sweep” algorithin uses considerably less processor time than the "copying” algorithm, but it never
shrinks the frec-storape pool, and in fact the pool can become fragmented. The “mark-sweep”
algorithm could be useful in a program system (such as the compiler) where the size of the pool
rarely changes, but objects are created and thrown away continuously.

22.6. BLOAT

BLOAT is wscd to cause a femporary cxpauwsion of the available storage space with or without
changing the garbage-collcction parameters. BLOAT is particularly useful for avoiding unnecessary
garbage collections wihen loading a large file. It will cause (at most) one garbage collection. at the
end of which the available storage will be at least the amount specified in the call to BLOAT.
(Unless., of course. the nperating system is cranky and will not provide the storage. Then you will
gel an error. <ERRFT 13 from this error will cause the BLOAT to return 1, which usually just causes

You to lose at a later time -- unless the operating system feels nicer when the storage is absolutely
necessary.)

A call to BLOAT lonks like this:

SELOAT fre =tk et gib tvp slto psik
min plel pelb plyve imp pur dpsik dsik>

where all arguments on the first line above are FIX, optional (0 by default), and indicate the
following:

22.5 - 226 Storage Management

e ———————————————————

The MDL Programming Language 157

fre: number of words of Free movable storage desired (for LISTs, VECTORs, ATOMs, ete.)

sfth: mumber of words of free control-stack space desired (For functional applications and
binding of ATOMs)

fel: number of new top-level LVALs for which to leave space (SETs of ATOMs which are not
currently bound)

gf: mumber of new GVALs for which to leave space {in the global vector)
fyer number of new TYPE definitions for which to Jeave space {in the TYPE vector)
stor mumber of words of immovable garbage-collected storage desired

psii: number of words of free internal-stack space desired (for READing large STRINGs, and

calling routines within the interpreter and compiled programs)

Arguments on the second line above are also FIX and optional, but they set garbage-collection
paramceicers perinancntly, as follows:

mire: as for GC

plcl: number of slots for LVALs added when the space for top-level LVALs is expanded (initially
64)

pgitx number of slots for GVALs added when the global vector is grown (initially 64)
g2l o niwmber of slots for TYPCs added when the TYPE veetor is grown (initially 32)

topr nmmber of words of immovable garbage-collected storage added when it is expanded
{initially 1024)

pur: number of words reserved for pure compiled programs, if possible (initially 0)

desth: mnst desirable size for the internal stack. to prevent repeated shrinking and GROWing
(initially 512)

dsti: most desirable size for the control stack (initially 4096)

BLOAT returns the actual number of words of free movable garbage-collected storage available when
it is done.

22.6 Storage Management

— e —————————————————————————————————— =

198 The MDL Programining Language

22.7. BLOAT-STAT

BLOAT-STAT can be used with BLOAT

te “tune” the garbage collector to particular program
fE‘qillrt'lll.Prl:\

CBLOAT-STAT length-Zuvecliar>

fills the “rfor with inforination about the state of storage of MDL., The argument should be a
UVECTOR of Jength 27 and UTYPE FIX. IFf BLOAT-STAT does not get an argument, it will provide its
own UVECTOR. "T'he information returned is as follows: the first 8 elemients indicate the number of

garbage cnllcctinns that are attributable 1o certain causes, aund the other 19 give information about

certain arcas of starace. In detail:

mumwher of garbage enllections caused by exhaustion of movable garbage-collected storage

2 ditto by overflow af contral stack(s)

3. ditto by overflow of rop-levei-LVAL section of control stack(s)
4. ditto by overfiow af rlobal vector

3. dirte by averliow ol TYPE vector

Lr %

ditto by exbaustion of immovable garbage-collected storage
7. ditte by overflow of internal stack
B. ditto by overflow of both stacks at the same time (rare)

9. number of words of movahle storage

number of words of movable storage used since last BLOAT-STAT
L. maximum number of words of ::-,a-;-.ﬂ;].;r slorage ever existing

FZ. nuwmber of words af movabile storage used sinee MDL began running
I maximun size of contrnl stack

l4. number of words on control stack in use

2. maxtmum size of control stack(s) ever reached

16. number of slots Tor top-level LVALs

I7. number of top-level LVALs existing

18. number of slois For GYALS in global vector

19. number nf GVALs existing

20. number of slnis for TYPCs in TYPE vector

21. number of TYPEs existing

22. number of wards of immovable garbage-coilected storage

23. number of words of hmmavable storage unused

24, size of larcest unused contiguous immovable-storage block

25. number of words on internal stack

26. number of words on internal stack in use

27. maximum size of internal stack ever reached

22.7 Storage Management

The MDL Programming Language 199

22.8. GC-MON

<GC-MON pred>
("garbage-colleetor monitor”) determines whether or not the interpreter will hereafter print
information on the terminal when a garbage collection starts and finishes, according to whether or
not its argument is teue. It returns the previous siate. Calling it with no argument returns the
current stale. The initial state is false,
When typing is enabled. the “copying” garbage collector prints, when it starts:

GIN reason subr-thal-caused:atom
and. when it Finishes:

GOUT seconds-nesded

The "mark-sweep” garbage collector prints MSGIN and MSGOUT instead of GIN and GOUT.

22.9. Related Sulyrout ines

Two SUBRs. described next, use only part of the garbage-collector algorithm, in order to find all
peinters to an object. GC-DUMP and GC-READ, as their names imply. also use part in order to
translate between MDL objects and binary representations thereof.

22.9.1. SUBSTITUTE
CSUBSTITUTE new:any olfd:any

returns old. after cansing a miniature garbage collection to occur, during which all references to ofd
are chauged so as in refer to new. Neither argument can be of PRIMTYPE STRING or BYTES or LOCD
or live on the contral stack, unless both are of the same PRIMTYPE. One TYPE name cannot he
substituted for another. One of the few legitimate uses for it is to substitute the "right™ ATOM for
the "wrong” one. after OBLISTs have been in the wrong state. This is more or less the way ATOMs are
impurified. It is also useful for unlinking RSUBRs. SUBSTITUTE returns old as a Favor: unless you
hang onte eld at thar point, it will be garbage.

22.9.2. PURIFY

SPURIFY any=1 ... any-N>

22.8 - 22.9.2 Storage Management

e ——— e —————-————
e, —,———e———s——————_ — _ _ _ _—_—_—————
A ————————————
e e ————————— e e

200 The MDL Programming Language

returns its last argument. after causing a miniature garbage collection that results in all the

arguments beecoming pure and sharable, and ignored afterward by the garbage collector. No

argument can live on the control stack or be of PRIMTYPE PROCESS or LOCD or ASOC.
between operaling-system

RESTOREd.

Sharing
processes actually occurs after a SAVE, if and when the SAVE file is

22.9.2 Storage Management

The MDL I"rngr:l.umling Language 201

Chapter 23. MDL as a System Process

This chapter treats MDL considered as executing in an operaling-system process, and interactions
between MDL and other operating-system processes. See also section 21.8.13.

23.1. TIME

TIME takes any number of arcuments, which are evaluated but ignored, and returns a FLOAT giving

the number of seconds of CPU time the MDL process has used so far. TIME is often used in

machine-level debugging to examine the values of its arguments, by having MDL's superior process
(say. DDT) plant a breakpoint in the code for TIME.

23.2, Names

CUNAME >

FEIUrns a STRING which is the "user name™ of MDL’s process. This is the "uname” process-control
Yariable in the ITS version and the logged-in directory in the Tenex and Tops-20 versions.

<XUNAME >

Felurns a STRING which is the “intended user name” of MDL's process. This is the "xuname” process-
control variable in the ITS version and ideitical to {UNAME> in the Tenex and Tops-20 versions.

CAJANAME »

Felurns a STRING which is the "job name” of MDL's process. This is the "jname” process-control
variable in the ITS version and the SETNM name in the Tenex and Tops-20 versions. The characters

belong to the "sixbit™ or “printing” subset of ASCII, namely those between <ASCII =40%=> and
CASCII =]37m=> inclusive,

CXJINAME »

23 - 23.2 MDL as a System Process

202 The MDL Programming Language

returns a STRTHG which is the "intended job name” of MDL’s process. This is the "x jname” process-
cantrol variable in the ITS version and identical to <JNAME> in the Tenex and Tops-20 versions.

23.3. Exits
<LOGOUT >

attempts to log out the process in which it is executed. It will succeed only if the MDL is the top-

level process. thar is. i1 is running disowned or as a daemon. If it succeeds. it of COUrse never
returns. IT it does not, it returns #FALSE ().

<QUIT>

causes MDIL fo stop running, in an orderly manner. In the ITS version. it is equivalent to a
[-LOGOUT 1, instruction. In the Tenex and Tops-20 versions, it is equivalent to a control-C signal,
and control passes 1o the superior process.

| SVALRET string-or-fix>

("value return”) seldom returns. It passes control back up the process tree to the superior of MDL,
passing its arguiment as a message to that superior. If it does return, the value is #FALSE (). If the
argument is a STRING, it is passed to the superior as commands to be executed, via -VALUE in the
ITS version and BSCAN in the Tops-20 version. If the argument is a FIX, it is passed to the superior

as the "effeetive address™ of a .BREAK 16, instruction in the ITS version and ignored in other
versions.

23.4. Inter-process Communication

| All of the SUBRs in this section are available only in the ITS version.
The IPC (“inter-process communication”) device is treated as an IO device by ITS but not
explicitly so by MDI: that is, it is never OPENed. [t allows MDL te communicate with other ITS
processes by means of sending and receiving messages. A process identifies itself as sender or

recipient of a message with an ordered pair of “sixbit™ STRINGs, which are often but not always
SCUNAME> and <JINAME>. A wessage has a "body” and a "type”.

23.4.1. SEND and SEND-WAIT

CSEND othiernl othernz bady type mynamel myname2>

23.2 - 23.4.1 MDL as a System Process

| The MDL Programming Language 203

<SEND-WAILIT alhernl! othernZ body type mynamel myname2>
both send an IPC message 1o any process that is listening for it as othern! othernz. body must be
either a STRING, or a UVECTOR of n'l.'r_i_r‘t-r'i. of PRIMTYPE WORD. tyoe is an optional FIX, 0 b}r default,
which is part of the information the other guy receives. The last two arguments are from whom the
message is o be sent. These are oplional. and <UNAME> and <JNAME> respectively are used by

default. STND returns a FALSE if no one is listening, while SEND-WAIT hangs until someone wants it.
Both return T if sooncone accepts the message.

23,47 The “"IPC™ lulr”'upl
When your MIDXL process reccives an [PC message, "IPC" occurs (chapter 21). A handler is called
with ecither four or six arguments gleaned from the received message. body, {ype, olhernl, and

athern are always supplicd. myname! and myname? are supplied only if they are not this process's
CUNAME > and < JHAME> .

There is a built-in HANDLER for the "Ipc® interrupt. with a handler named IPC-HANDLER and 0 in the
PROCESS slot, The handler prints out on the terminal the body, whom it is from, the fvpe if not 0,

and whew it is (o if not CUNAME> <JINAME>. IF the type is 1 and the body is a STRING, then, after
the message information is printed out. the STRING is PARSEd and EVALuated.

23.4.3. IPC-OFF

<IPC-OFF > stops all listening on the IPC device.

23.4.4. IPC-ON
<IPC-0N mynamel myname2s

causes listening on the 1PC device as myname | mynameZ2. If no arguments are provided, listening is
on <UNAME> <JNAMLC>. When a message arrives, "IPC" oceurs.

MDL is initially listening as {UNAME> <JINAME> with the built-in HANDLER set up on the "IPC"®
interrupt with a priority of 1.

23.4.5. DEMSIG
<DEMSIG daeman:string>

signals to ITS (directly. not via the IPC device) thal the daemon named by its argument should run
now. It returns T if the dacmon exists, #FALSE () otherwise.

23.4.) - 23.4.5 MDL as a System Process

e ——— el ———————
e TR —,—,—,—,e—,————————m—m—m—m———————
T e e e e e R —
=i e e e e e ————————————

204 The MDL Programming Language

Chapter 24. Efficiency and Tastefulness

Actually. you make MDL programs efficient by thinking hard about what they really make the
interpreter do, and making them do less. Some guidelines, in order of decreasing expense:

(1) Free storage is expensive.
(2) Calling funetions is expensive,
{(3) PROG and REPEAT are cxpensive, except when compiled.,

Explanation:

(1) Unneccessary use of free stor age (creating needless LISTs, VECTORs, UVECTORs, etc.) will cause the
garbage colleetar to run more often. This is cxpensive! A fairly large MDL (for example, 60 000 36-
bit words) can 1ake 1en seconds of PDP-10 CPU time for a garbage collection. Be especially wary of
constructions like (0). Every time that is evaluated, it creates a new one-elemnent LIST; it is too

easy to write such things when they aren't really necessary. Unless you are deing PUTs or PUTRESTs
on it. use '{0) instead.

{2} Sad. Lt 1rue. Also groerally ignored. If you call a function only once, or if it is short (less than
one linck you are much better of f in specd if you substitute its body in by hand. On the other
hand. you may be much worse off in modularity. There are techniques for combining several
FUNCTIONs into one RSUBR (with RSUBR-ENTRYs), either during or after compilation, and for
changing FUNCTIONs inie MACROs,

(3) PROG is alimost never necessary, given (a) "AUX" in FUNCTIONs: (b) the fact that FUNCTIONs can
contain any mwmber of FORMs: (c) the faer that COND clauses can contain any number of FORMs: and
(d) the faet that new variables can be generaled and initialized by REPEAT. However. PROG may be

| useful when an crror occurs, 1o establish bindings needed for cleaning things up or interacting with
a human.

The use of PROG may be sensible when the normal flow of control can be cut short by unusual
conditions, so that the program wants 1o RETURN before reaching the end of the PROG. OFf course,

24 - 24.1 Efficiency and Tastefulness

"

i

it

il

{1l

r'

The MDL Programming Language 205

nested CONDs can accomplish the same end, but deep nesting may tend to make the program
unreadable. For example:

<PROG (TCHMP)
<OR <SFT TFMP <OK-FOR-STEP-1733
LRETURN .TEMP>>
{STEP-1>
COR <3ET TEMP <OK-FOR=-STEP=-27>>
CRETUHRN .TEMP>>
CSTEP=-223>

could instead be written

<COND (<OK-FOR-STEP-17>
<STEP-1>
<COND (<OK-FOR-STEP-27>
CSTEP-23)3)>

By the way, RCPEAT is faster than GO in a PROG. The <GO x> FORM has to be separately interpreted,

right? In fact. if you arganize things properly you very seldom need a GO; using GO is generally
considered “had siyle”, but in some cases it's needed. Very few.

In many cases, a REPEAT can be replaced with a MAPF or MAPR, or an ILIST, IVECTOR, etc. of the
forim

CSILIST .N '"<S5ET X <+ .¥X 1>
which generates an N-element LIST of successive numbers starting at X+1.
Whether a program is interpreted or compiled, the first two considerations mentioned above hold:
garbage collection and function ealling remain expensive. Garbage collection is, clearly, exactly the
same. Function calling is relatively more expensive. However, the compiler careth not whether you

use REPEAT., GO, PROG, ILIST, MAPF, or whatnot: it all gets commpiled into practically the same

thing. llowever, the REPEAT or PROG will be slower if it has an ACTIVATION that is SPECIAL or used
other than by RCTURN or AGAIN.

24.1.1. Example

There follows an example of a FUNCTION that does many things wrong. It is accompanied by
commentary. and two better versions of the same thing. (This function actually occurred in
Practice. Needless to say, names are withheld 1o protect the guilty.)

Blunt comment: this is terrible. Its purpose is to output the characters needed by a graphics

24.1 - 24.1.1 Efficiency and Tastefulness

_.

206 The MDL Programming Language

terminal 1o draw

lines connecting a set of points,
values and ¥ v

alues. The output channel js the th
are returned in a | 15T by the function TRANS .

The points are specified by two input lists: X
ird argument. The actual characters for each line

<DEFINE PLOTVDSK (X ¥ CHN "Aux® L LIST)

CCOND (<NOT <==7 <SET L <LENGTH .X>>CLENETH .Y> >>
<ERROR "LEMNGTHS NOT EQUAE."})}

<SET LIST (29)%

<REPEAT ((N 1))

<SET LIST {!.LIST 'CTRANS <.N .X> <.N LY22)2
CCOND (<G? <SET N <+ .N 1>> .L><RETURN NEY> >
CREPEAT ((N 1) (L1 CLENGTH .LIST>))
CPRINC <ASCII <.N .LIST>> .CHN>
<COND (<G? <SET N <+ .N 1>> .L1>
CRETURN "DONE®"3>)> 2>

Comments:

(1) LIST is only temporarily necessary. It is Just created and then thrown away.

(2) Worse. the construet (! .LIST "STRANS ...>) copies the previous elements of LIST every time it
is execurcd!

(3) Indexing down the elements of LIST as in <.N .LIST> takes a long time, if the LIST is leng. <3
=+ Or €4 . ..> js not worth worrying about, but <10 ...> is, and <100 ...> takes quite a while.
Even il the indexing were not phased out, the compiler would be happier with <NTH LIST .N>.

(4) The variable CHN is lnneccssary if OUTCHAN is bound to the argument CHANMEL .

{5) It is tasieful 1o call ERROR

in the same way that F/SUBRs do.
the ERRORS OBLIST (if one is a

This includes using an ATOM from
ppropriate) to tell what is wrong, at

id it includes identifying yourself.
So, do it this way:

24.1.1 Efficiency and Tastefulness

If
carlier ones when
argument of LIST:
Final call 1o LIST.

stack yourself,

The MDI. Programming Language

207

<DEFINE PLOTVDSK (X ¥ OUTCHAN)
#*DECL ((OUTCHAN) <SPECTAL CHANNEL »)
CCOND (<NOT <==7 SLENGTH .X» <LENGTH b b

<ERROR UECTDR-LENGTHS-DIFFER!-ERRGRS PLOTVDSK>) >
CPRINC <ASCII 293>

<REPEAT ()

CCOND (<EMPTY? .X> <RETURN "DONE®>)>
CREPEAT ((OL <TRANS <1 .X> <1 .¥>>))
<PRINC <ASCII <1 .OL>>>
<COND (<EMPTY? <SET OL <REST .OL>>>
CRETURND) >
CSET X <REST .X>5
<KET Y <REST X220

Of course. if you hinow how long is the LIST that TRANS returns,
REPEAT loap and have cxplicit PRINCs for cach element.
HAPF, as in the next version, which does exactly the same
to do the RESTing and the end conditional:

¥ou can avoid using the inner
This can be done even better by using
thing as the previous one, but uses MAPF

SDEFINE PLOTUYDSK (X ¥ OUTCHAN)
FOECL ((OUTCHAN) CSPECIAL CHANNEL >}
SCOND (<NOT <==% <LENGTH .X> CLENGTH .¥>>>

<ERROR UECTOR—LENETHS—DIFFEF‘.!—ERRDRS PLOTVDSK>)>
SPRINC <A5CII 293>

<MAPF <3
#FUNCTION ((XE YE)

<HAPF <> #FUNCTION ((T) <PRINC <ASCII .T>>) <TRANS .XE -YE>>)
L X
'S

"ODONE"™ >

4.2, Cre

1.2 ating a LIST in Forward Order

You must create the clements of a LIST in sequence from first to Jast,

adding a later one to the end. One way is to use MAPF or MAPR with a first

the elements are put on the control stack rather than in free storage, until the
If you know how many clements there will he, You can put them on the control
1 a TUPLE built for that purpose. Another way is used when REPEAT is necessary:

you can avoid copying

24.1.1 - 24.2 Efficiency and Tastefulness

The MDL Programming Language

<REPEAT ((FIRST (1)) (LAST .FIRST) ...)
#DECL ((VALUE FIRST LAST) LIST ...)

€3ET LAST <REST CPUTREST .LAST (-NEW)3>>

CRETURN <REST -FIRST>>
.

Here, .LAST always points 1o the current

last element of the LIST.
evaluation., the <SgT LAST

Because of the order of
-« -2 could also be written <PUTREST

«LAST <SET LAST (.NEW)>»>.

24.3. Read-only Free Variables
If a Funcrion ies the value of a free variable (<GVAL unmanifest:alom> or <LVAL special:atomy)
without changing ir. 1)e cnmpiled version nay be more efficient if the value is assigned to a
dummy UNSPCC]

CIAL ATOM in the Function's "Aux® Jist. This is true because an UNSPECIAL ATOM gets
compiled inte a slar an the control stack, which

is accessible very quickly. The trade-off js
pProbably worthwhile if A special is referenced more than once, or if an unmanifest is referenced more
than twice, Example:

“DEFINE MAP-LOOKUP (THINGS "Aux» (DB .DATA-BASE)}

*NECL {{VALUE) VECTOR (THINGS DB) <UNSPECIAL <PRIMTYPE LIST>>)
<MAPF ,VECTOR <FUNCTION (T) <MEMQ .T -DB>> .THINGS>>

24.4. Clnll:_u!__:m_t._r l._rrrni_‘.’ajl_m_ﬁ_

In the interpreter the sequence X X X .X is slower than ,¥ ,% .¥ - X

between the GVAL and LVAL mechanisms (appendix 1). Thus it i

LVAL of the same ATOM Frequently, unless references to the LVA
control stack references),

because of interference
$ not good to use both the GVAL and
L will be compiled away {(made into

24.5. Making Offscts for Arrays
It is often the case that You want to g to each element of an array and refer to
an elemenn idependently of other elements, Firstly, it is a good idea to use names (ATOMs) rather
| than integers (FIxes or even OFFSETs) for offsets into the array, to make future changes easier.
Secondly. i1 js g gond idea to use the GUALs of the name ATOMs 1o remember the actual FIXes, so that
the ATOMs can be MANIFEST for the compiler's benefit. Thirdly, to establish the GVALs, both the

attach some meanin

24.2 - 245 Efficiency and Tastefulness

—_—

e ——————,ik

The MDL Programming Language 209

interpreter and the compiler will be happier with <SETE name offzet> rather than <DEFIMNE name
("TUPLE"™ T) <offsel 1.T>>.

24.6. Tables

There are several ways in MDL to store a table, that is, a collection of (names and) values that will

be searched. Unsurprisingly, choosing the best way is often dictated by the size of the table and/or
the nature of the {anames and) values.

For a small table, the names and values can be put in (separate) structures -- the choice of LIST or
arcay being determined by vaolatility and Iimjl.—::l.:jli!}r = which are searched using MEMQ or MEMBER .
This method is very space-efficient. If the table gets larger, and if the elements are completely
orderable. a (uniforim) vector can be used, kept sorted. and searched with a binary search.

Foer a large table. where reasonably efficient searches are required, a hashing scheme is probably
best. Two methods are available in MDL: associations and OBLISTs.

In the first method, PUTPROP and GETPROP are used, which are very fast. The number of hashing
buckets is fixed. Duplicates are eliminated by ==7 testing. If it is necessary to use =7 testing. or to

find all the entries in the rable, you can duplicate the table in a2 LIST or array. to be used only for
those purposes,

In the sceand methad, INSERT and LOOKUP an a specially-built OBLIST are used. (If the names are
not STRINGs, they can be converted to STRINGs using UNPARSE, which takes a little time.) The
number of hashing buckers ean be chosen for best efficiency. Duplicates are eliminated by =7
testing. MAPF/R can be used to find all the entries in the table.

24.7. Nesting
The beauty of deeply-nested control structures in a single FUNCTION is definitely in the eye of the
beholder. (PPRINT, a pre-loaded RSUBR, finds them trying. However, the compiler often produces

better code from them.) If you don't like excessive nesting. then you will agree that

<HET X ...»
<COND (<07 .X>» ...} ...>

looks better than
<COND (<07 <SET X ...>% FEEEl BT

and that

24.5 - 24.7 Efficiency and Tastefulness

—eeeo— oo ...

—————

210 The MDL Programming Language

<REPEAT
<COND
(... <RETURN 1

looks better than

<REPEAT
<COND

(... <RETURN ...3)
(ELSE ...)>

You can sce the nature of the choices. Nesmlg is still and all better than GO.

e ————————————————————————

The MDL Frogramming Language 211
Appendix 1. A Look Inside

This appendix tells about the mapping between MDL ob jects and PDP-10 storage -- in other words,
the way things look "on the inside”. None of this information is essential to knowing how to
program in MDL, but it does give some reasons for capabilities and restrictions that otherwise you
have to mcmorize, 'he notation and I-:'rmjn.olﬂg}.' gel a little awkward in this discussion. because we
are in a twilight zonc between the worlds of MDL ob jects and of bit patterns. In general the words
and phrases appearing in diagrams refer to bit patterns not MDL objects. A lower-case word (like
“tuple”) refers to the storage oceupicd by an ob ject of the corresponding PRIMTYPE (like TUPLE).

First some terminology needs discussion, The sine qua non of any MDL object is a pair of 36-bit
computer words. In general, lists consist of pairs chained tegether by pointers (addresses), and
vectors consist of contiguous blocks of pairs. ==7 essentially tests two pairs to see whether they
contain the same hit patterns,

The first (Iower-addresced) word of a pair is called the TYPE word, because it contains a numeric
TYPE cotle that represcnts the objeet’s TYPE. The second (higher-addressed) word of a pair is called
the value word, becanuse it enntains (part of or the beginning of) the "data part” of the object. The
TYPE word (and sowmctimes the value word) is considered to be made of a left half and a right half.
We will picture a pair like this:

where a vertical bar in the middie of a word means the word's halves are used independently. You

can sec that the TYPE codde is confined to the Ieft half of the TYPE word. {Half-)words are sometimes

subdivided into ficlds appropriate for the context: fields are also pictured as separated by vertical

bars. The right half of the TYPE word is used for different purposes depending on the TYPE of the
| ob ject and actual Incation of the value.

Actually the 18-bit TYPC Cield is further decoded. The high-order {leftmost) bit is the mark bit, used
exclusively by the garbage callector when it runs. The next two bits are monitor bits, used to cause
"READ" and "WRITE" imterrupis on read and write references to the pair. The next bit is used to
differentiare between list clements and veeter dope words. The next bit is unused but could be used
in the future for an “execcute” mnnitor. The remaining 13 bits specify the actual TYPE code. What
CHTYPE does is to copy the pair and put a new TYPE code in the new pair.

Each data TYPE (predefined and HEWTYPEs) must belong to one of about 25 "storage allocation

classes” (roughly corresponding to MDL PRIMTYPEs). These classes are characterized primarily by
the manner in which the garbage collector treats thein. Some of these classes will now be described.

Appendix 1

——— e—_—_—_e—_—_ e s e e e —— =

212 The MDL Programming Language

“"One Waord”

This class includes all data that are not printers to some kind of structure. All external (program-
available) TYPEs in this class are of PRIMTYPE WORD. Example:

"Two Ward"”

The members of 1lris class are all [8-bat

pointers to list elements. All external TYPEs in this class are
of PRIMTYPE LIST. Example:

where pointer is a pointer 1o the Firs list element,

If there are no elements, pointer is zero; thus
empty objects of PRIMTYPE LIST are ==7 jf 1

eir TYPEs are the samne,

"Two N Ward”

Members of this class are all

“eounting pointers” to blocks of two-word pairs. The right half of a
cou

nting peainter is an address, and the left half is the negative of the number of 36-bit words in the
block. (This format is tailored to the PDP-10 ADBJN instruction.) The number of pairs in the block

(LENGTH) is half that number, since cach pair is two words. All external TYPEs in this class are of
PRIMTYPE VECTOR. Example: :

| VECTOR |] I
| == 2 e e e deama)
I -2%length | pointer I

where length is the LENGTH of the VECTOR and pointer is the location of the start (the element
selected by an NTH argument of 1) of the VECTOR .

Appendix |

I‘II‘

i

rr‘

I‘IP

The MDIL. Programming Language 15

“»N Word”

This class is the same as the previous one, excepl that the block contains objects all of the same
TYPE without individual TYPC words. The TYPE code for all the elements is in vector dope words,
which are a1 addresses just larger than the block itself. Thus, any ob ject that carries information in
its TYPE word cannol go in the block: PRIMTYPEs STRING, BYTES, TUPLE (and the corresponding
locatives LOCS, LOCB, LOCA) FRAME, and LOCD. All external TYPEs in this class are of PRIMTYPE
UVECTOR. Example:

where Tength is the LENGTH of the UVECTOR and pointer points to the beginning of the UVECTOR.

"Byte String” and "Characler String”

These two classes are almest identical. Dyte strings are byte pointers to strings of arbitrary-size
bytes. PRIMTYPE BYTES is the only member of this class. Character strings are byte pointers to
strings of ASCIL characters. PRIMTYPE STRING is the only member of this class. Both of these
classes consist of a leagth and a PDP-10 byte pointer. In the case of character strings. the byte-size
field in 1he byrte pointer is always seven bits per byte (hence five bytes per word). Example:

where loenagth is the LENGTH of the STRING (in bytes) and byte-pointer points to a byte just before
the beginning of the siring (an ILDB instruction is needed 1o get the first bytel. A newly-created
STRING always has *010700% in the left half of byte-pointer. Unless the string was created by

SPNAME, byte-painter points te a uvector, where the elements (characters) of the STRING are stored,
packed together five 1o a word.

"Frame”

This class gives the user program a handle on its control and variable-reference structures. All

external TYPEs in this class are of PRIMTYPE FRAME. Three numbers are needed to designate a frame:
a unique I8-bit identifying number, a pointer to the frame's storage on a control stack, and a
pPrinter ta the PROCESS associated with the frame. Example:

Appendix |

_:h-__

The MDL Programming Language

| FRAME | PROCESS-pointer|

ottt
| uninue-id | frame-pointer |

where PROCCSS-pointer points to the dope words of a PROCESS vector, and unigue-id is used for

validating (resting LEGAL?) the frame-pointer, which points to a frame for some Subroutine call
on the control stack.

"Tuple”

A tuple pointer is a counting poinler to a vector on the control stack. It may be a pointer to the
arguments 1o a Subroutine or a pointer generated by the "TUPLE® declaration in a FUNCTION. Like

ob jects in the previous class, these ob jects contain a unique identifying number used for validation.
PRIMTYPE TUPLE is the only member of this class. Example: r

Other Storage Classes

The rest of the storage classes include strietly internal TYPEs and pointers to special kinds of lists
and vectors like locatives, ATOMs and ASOCs. A pair for any LOCATIVE except a LOCD looks like a
pair for the corvesponding structure, excep! of course that the TYPE is different. A LOCD pair looks
like a tuple pair and needs a word and a half for its value: the unique-id refers to a bl"i'l.l:“l'lg’ on the

contrel stack or to the "global stack”™ if zero. Thus LOCDs are in a sense "stack objects”™ and are more !
restricied than oither locatives.

- T —

l
An OFFSET is stared with the ITNDEX in the right half of the value word and the Pattern in the left

I half. Since the Pattern can be either an ATOM or a FORM, the left half actually points to a pair, [
which points to the actual Pattern. The Pattern ANY is recognized as a special case: the left-half
pointer is zere, and uo pair is used. Thus, if you're making the production version of your program

and want tn save smme starage, Yyou can do something like <5ETG FOO <PUT-DECL ,FOO ANY>> For
all OFFSETs,

Appendix |

1 S — v ——

MM

MM

MM

l1111

The MDL Programming Language 215

asic Data Structures

Lists

List clements are pairs linked together by the right halves of their first words. The list is
terminated by a zero in the right half of the last pair. For example the LIST (1 2 3) would look
like this:

The use of pointers 1o tie together elements explains why new elements can be added easily to a list,
how sharing and circularity work, ete. The links go in only one direction through the list, which is
why a list cannot be BACKed or TOPped: there’s no way to find the RESTed elements.

Since some MDL values require a word and a half for the value in the pair, they do not fit directly
into list elements. This problem is solved by having "deferred pointers”. Instead of putting the
datum directly intn the list element, a pointer 1o another pair is used as the value with the special
internal TYPE DEFLR, and the real datum is put in the deferred pair. For example the LIST (1
"hellao®™ 3) would lnok like this:

ISTRING] 5[<-
| = ===
[byte-pntr|

Appendix |

216 The MDL Programming Language

Vectors

A vector is a black of contiguous words. More than one pair can point to the block, possibly at
different places in the block: this is how sharing occurs among vectors. Pointers that are dif ferent
arise from REST or GROW/BACK operations. The block is Followed by two "dope words”, at addresses
Just larger than the largest address in the block. Dope words have the following format:

/ !
| I
I |
| typo I grow I
I = = = = = = = = = = = = = - - |
| length | ge |

The various ficlds have the following meanings:

type -- The Fourth Lit from the left (the "vector bit", 40000 octal) is always ene, to distinguish these
vector dope words from a TYPE/value pair.

If the high-order bit is zero, then the vector is a UVECTOR, and the remaining bits specify the
uniform TYPE of the clements. CHUTYPE Jjust puts a new TYPE code in this field. Each element

is limited to a one-word value: clearly PRIMTYPE STRINGs and BYTESes and stack ob jects can't
g0 in uniform vectors,

If the high-order bit is one and the TYPE Lits are zero, then this is a regular VECTOR .

If the high-order bit is one and the TYPE bits are not all zero, then this is either an ATOM, a
PROCESS, an ASOC, or a TEMPLATE. The special internal format of these ob jects will be
described a litrle later in this appendix.

Tength — The high-nrder bit is the mark bit, used by the garbage collector. The rest of this field
specifies the number of words in the block, including the dope words. This differs from the

lengrh given in pairs pointing to this vector., since such pairs may be the result of REST
operations.

grow -- This is actually two nine-bit fields, specifying either growth or shrinkage at both the high
and low ecnds of the vector. The fields are usually set oenly when a stack must be grown or

shrunk.
gc -- This is used by the garbage collector to specify where this vector is moving during
compaction,

Examples (mumbers in octal): the VECTOR [1 "bye™ 3] looks like:

Appendix 1

|

The MDIL. PI'T'IE,{IHIIIIIII'II[“' I.auguage

| 10 I |
The UVECTOR '[-1 7 -41] lonks like:
| UVECTOR | © |
B N T T o S
| -3 | =====m=caa_ 21 -1 |
I 7 |

Atoms

Internally. atoms are special vector-like objects. An atom
of the bleck. filled in whenever the global or local value of
there). an OBLIST pointer, and a print name (PNAME), in the

Appendix |

217

contains a value cell {the first two words
the ATOM is referenced and is not already
fnilu'H-'i]Ig Forimat:

218 The MDL Programming Language
| type | bindid I
| pointer-to-value |
| pointer-to-OBLIST |
| print-name |
I I
! /
| (ASCIT with NUL padding on end)]
| ATOM | valid-type |
| = = = = = = = = - == - -
I lenath | ac |

If the type ficld corresponds to TYPE UNBOUND, then the ATOM is locally and globally unbound.
{(This is different from a pair. where the same TYPE UNBOUND is used to mean unassigned.) If it
correspands 1n TYPE LOCI {an internal TYPE) then the value cell points either to the global stack, if
bindid is zero, or 10 a local econtrol stack, if bindid is non-zero. The bindid field is used to verify
whether the local value pointed to by the value cell is valid in the current environment. The
pointer-Lto-0BLTST is either a counting pointer to an oblist (uvector), a positive offset into the
“transfer vector” (for pure ATOMs), or zero. meaning that this ATOM is not on an OBLIST. The valid-
type ficld tolls whether or net the ATOM represents a TYPE and if so the code for that TYPE; grow
values are never needed (or atoms.

Associations

Associalions are also special vector-like ol jects. The first six words of the block contain TYPE/value
pairs for the ITEM, INDICATOR and AVALUE of the ASOC. The next word contains forward and
backward pointers in the chain for that bucket of the association hash table. The last word
contains forward and backward pointers in the chain of all the associations.

Appendix |

IO

The MDL Programming Language 219
| ITEM l
I i,
I palr |
| INDTCATOR |
=== === - - e e e m
| pair |
| AVALUE |
| == == s s e e e e e e
| pair |
| buckot-chain pointers |
| association-chain pointers |
| ASOC | o l
I e
| 12 octal | gc |

PROCESSes

A PROCESS vector looks exactly like a vector of TYPE/value pairs. It is different only in that the

garbage collecior ircats it differently from a normal vector, and it contains extremely volatile
information when the PROCESS is RUNNING.

Templates

In a remplate. the number in the type field (left half of First dope word) identifies to which "storage
allocation class” this TEMPLATE belongs. and it is used 1o find PDP-10 instructions in internal tables
(frozen wuvectors) Tor performing LENGTH, NTH, and PUT operations on any object of this TYPE.
The programs ro build these tables are not part of the interpreter, but the interpreter does know how
o use them properly. The compiler can put these instructions directly in compiled programs if a
TEMPLATE is never RESTed: otherwise it must let the interpreter discover the appropriate instruction.
The value word of a templare pair contains, not a counting pointer, but the number of elements
that have been RESTed of I in the left half and a pointer to the first dope word in the right half.

Appendix 1

—

220 The MDL Programming Language

The Control Stack

Accumularors with symbolic names AR, TB, and TP are all pointers into the RUNNING PROCESS's
control stack. AB ("argument base”) is a pointer to the arguments to the Subroutine now being run.
It is set wp by the Subrontine-call mediator, and its old value is always restored after a mediated
Subroutine call returns. TB (“temporaries base”) points to the frame for the running Subroutine and
also serves as a stack base pointer. The TB pointer is really all that is necessary to return from a
Subroutine -- given a value to return, for example by ERRET -- since the frame specifies the entire
state of the calling routine. TP ("temporaries pointer”) is the actual stack pointer and always points
to the current top of the control stack,

Wiile we're on the subject of accumulators, we might as well be complete. Each accumulator
contains the value word of a pair. the corresponding TYPE words residing in the RUNNING PROCESS
vector. When a PROCESS is not RUNNING (or when the garbage collector is running), the accumulator
cantents are stored in the vector, so that the objects they point to look like elements of the PROCESS
and thus are not garbage-collectible,

Accumulators A, B, €, O, E and O are used almost entircly as scratch accumulators, and they are
not saved or restored across Subroutine calls. OF course the interrupt machinery always saves these
and all ether accumulators. A and B are used to return a pair as the value of a Subroutine call.
Other than that special feature, they are just like the other scrateh aceumulators.

Mand R are used in running RSUBRs. M is always set up to point to the start of the RSUBR's code.
which is actually just a uniform vector of instriuctions. All jumps and other references to the code
use M as an index register. This makes the code location-insensitive, which is necessary because the
code uvector will move around, R is set up to point to the vector of objects necded by the RSUBR.
This accumulator is necessary because ob jects in garbage-collected space can move around. but the
peinters to them in the reference vector are always at the same place relative to its beginning.

FRH is the internal frame pointer, used in compiled code to keep track of pending Subroutine calls
when the contral stack is hea vily used. P is the internal-stack peointer, used primarily for internal
calls in the interpreter.

One of the nicest features of the MDL cnvironment is the uniformity of the calling and returning
sequence. All Subroutines - both built-in F/SUBRs and compiled RSUBR{-ENTRY)s — are called in
exactly the same way and return the same way. Arguments are always passed on the control stack
and resulrs always cnd up in the same accumulators. For cfficiency reasons, a lot of internal calls
within the interprerer circumvent the calling sequence. Iowever, all calls made by the interpreter
when running user programs go through the standard ealling sequence.

A Subroutine call is initiated by one of three UUOs (PDP-10 instructions executed by software
rather than hardware)l. MCALL ("MDL call”) is used when the number of arguments is known at
assemble or compile time. and this number is less than 16. QCALL ("quick call”) may be used if, in
addition. an RSUBR(-ENTRY) is being called that can be called ‘quickly”™ by virtue of its having

Appendix 1

-

e R R R N R N A — e ———
R N R R R R =S=—=—== T =
e ——
-_eeeeeeeeeeeee-------------------------ee-e_—_—__
R ——
—
e e e
e s R =
L
e L e e ey
e —
e —
—_——m—m—m—m—m— = -
e
e
I e _____________—_____________E_=L === =
e —
e —
T e —— e O O 0 0 0O O OO ODODOD— W W=
T = |~ === ——
R N R —
e ——
e —
e

The MDL Programming Language 221

special information in its reference vector. ACALL ("accumulator call™) is used otherwise. The
general method of calling a Subroutine is to PUSH (a PDP-10 instruction) pairs representing the

| arguments onto the control stack via TP and then either (1) MCALL or QCALL or (2) put the number of
arguments into an accumulator and ACALL. Upon return the object returned by the Subroutine will
be in accumulators A and B, and the arguments will have been POPped of f the control stack.

The call micdiator stores the contents of P and TP and the address of the calii:ng instruction in the
current frame (pointed to by TBL. 1t also stores MDL's "binding pointer” to the topmost binding in
the contrel stack. (The bindings are linked together through the control stack so that searching
through them is more efficient than Iﬁnki|;g at every object on the stack.) This frame now specifies
the entire state af the caller when the eall eccurred. The mediator then builds a new frame on the
coniral stack and stares a pointer back 1o the caller’s frame (the current contents of TE). a pointer to
the Subroutine being called, and the new contents of AB, which is a counting peointer to the
arguments and is computed from the information in the MCALL or QCALL instruction or the ACALL
accumiilator. TB is then set up to point to the new frame, and its left half is incremented by one,
making a new unique-id. The mediator then transfers control to the Subroutine.

A control stack Frame has seven words as shown:

| ENIRY | called-addr |
| unique-id | prev frame |
P argument pointer |
I saved binding pointer |
T saved P |
P saved B |
| saved calling address |

The First three words are set up during the call to the Subroutine. The rest are filled in when this
routine calls another Subroutine. The left half of T8 is incremented every time a Subroutine call
occurs and is used as the unigue-id for the frame, stored in frame and tuple pairs as mentioned
before. Obwviously this id is not si ictly unique, since each 256K calls it wraps around to zero. The
right half of 18 is always lefr pointing one word past the saved-calling-address word in the frame.
TP is also lefi pointing at that word, since that is the top of the control stack at Subroutine entry.
The arguments to the called Subroutine are below the frame on the control stack (at lower storage
addresses), and the temporarics far the called Subroutine are above the frame (at higher storage
addresses). These arcuments and temporaries are Just pairs stored on the control stack while needed;
they are all that remain of UNSPECIAL values in compiled programs.

Appendix |

e —

229 The MDL Programming Laugﬁage

The following figure shows what the control stack might look like after several Subroutine calls.

_________________ <.....
I I |
| temps For 51 | |
I | |
—————————————————— |
I I |
| args for 52 | |
| | |
_________________ I
| frame Tor 52 | ===
_________________ {-.-._..___

The above figurc shows the frames all linked together through the contrel stack (the “execution
path”). so that it is casy to return to the caller of a given Subroutine (ERRET or RETRY).

Subroutine exit is accomplished simply by the ecall mediator, which loads the right half of TBE from
the previous frame pointer. restores the "binding pointer”. P, and TP, and transfers control back to
the instruction following the saved calling address.

P =

Appendix |
-

e ————————— e

The MDIL Programming Language 293

Variable Bindings
All local ATOM values are kept on the control stack of the PROCESS 1o which |l|c}' are local. As
described before, the atom contains a word that points to the value on the control stack. The

peinter is actually te a six-word “binding block™ on the control stack. Binding blocks have the
following format:

| BIND or UBIND | prev |
| pointer to ATOM |
| value |
| = = = = mimic 4 = & &8 &« win)
| pair |
| dec] I unique-id |
| previous-binding I

where:

BIND mecans this is a binding for a SPECIAL ATOM (the only kind used by compiled programs),

and UBIND wmeans this is a binding for an UNSPECIAL ATOM -- for SPECIAL checking by the
interpreter:

prev points o the closest previous binding block for any ATOM (the “access path™ -- UNWIND
ob jects are also linked in this chaink

decl points ro a DECL associated with this binding, for SET(LOC) to check:
unique=id is used Tor validation of this block: and
previous-binding points to the closest previous binding for this ATOM {used in u||h'|||ding}_

Bindings are generated by an internal subroutine ealled SPECBIND (name comes from SPECIAL). The
caller to SPECBIND PUSHes consecutive six-word blocks onto the control stack via TP before calling
SPECBIND. The first word of cach block contains the TYPE code for ATOM in its left half and all
ones in irs right half. SPECBIND uses this bit pattern to identify the binding blocks. SPECBIND's
caller also fills in the next three words and leaves the last two words cmpty. SPECBIND Fills in the
rest and leaves the “binding pointer” pointing at the topmost binding on the control stack.
SPECBIND also stores a pointer to the current binding in the value cell of the atom.

Appendix |

Y u_uu———u—&s——

224 The MDL Programming Language

Unbinding is accnmplished during Subroutine return. When the previous frame is being restored,
the call wmediator checks ta see if the saved “binding pointer” and the current one are different: if
they arc. SPCCSTORE is called. SPECSTORE runs through the binding blocks, restoring old value
pointers in atoams until the “hinding pointer” is equal to the one saved in the frame.

Obwviously variable binding is more complicated than this, because ATOMs can have both local and
global values and even differcnt Iocal values in different PROCESSes. The solution to all of these
additional problcms lies in the hindid Field of the atom. Each PROCESS vector also contains a
current bindid. Whenever an ATOM's local value is desired. the RUNNING PROCESS's bindid is
checked against that of the arom: if they are the same. the atom peints to the current value: if not,
the current PROCESS's control stack st be searched to find a binding block for this ATOM. This
binding scheme might be called “shallow Linding™. The searching is facilitared by having all
binding blocks linked torether. Referring to global variables js accomplished in a similar way,
using a VECTOR that is referred to as the "global stack™ The global stack has only an ATOM and a
value =lni for cach variable, since global values never get rebound,

EVAL with respeet 1o a dif ferent cnvironment causes some additional problems. Whenever this kind
of EVAL is done. a brand new bindid is generated, forcing all current local value cells of atoms to
appear invalit. Local values must now be oblained by searching the control stack, which is
inefficient compared tn Just pulling them out of the atoms. (The greatest incfficiency oceurs when
an ATOM's LVAL is never used Twice in a row in the same environment.) A special block is built on
the control stack and linked into the binding-block chain. This block is called a “skip block” or

“environmment splice”™. and it diverts the “access path™ to the new environment, causing searches to
become relative to this new enviranment.

Appendix |

e

e e—eseseseses—s—sM,— — _ _ _
T —
—_——————_——
-
e ————————————————————— ———
e e —
e e e e
B —
e
e e — e s
—_————— — — — — ——m —
= —
_—r———
S E——
e ——————————————————————————————
= i ________________ ., ao—————————————————\—nV"_— L
e ——— e e
e — i o i i oo o~ e e
e
—_—————————_—,———e e s —
e ——————— T K
e ———————— e —
—_——————————
B

The MDL Programming Language 225
Appendix 2. Predefined Subroutines

The following is a very brief description of all the primitives (F/SUBRs) currently available in
MDL. These descriptions are in no way to be considered a definition of the effects or values
produced by the primitives. They just try to be as complete and as accurate as is possible in a
single-statement description. However, because of the complexity of most primitives, many
important assimmptions and restrictions have been omitted. Even though all primitives return a

value. some descriptions mention ouly the side effects produced by a primitive, because these
primitives are most often used for this ef fect rather than the value.

A descriptlion is given in this format:

name (argumenta)
dacl
English description

This format is intended to look like a FUNCTION definition, omitting the call to DEFINE and all
internal variables and eode. The name is Just the ATOM that is used to refer to the primitive. The
names of the arguments are intended to be mnemonic or suggestive of their meanings. The dec/ is a
FUNCTION-siyle DECL {chapier 14) for the primitive. In some cases the DECL may look unusual,
because it is intended 1o convey information to a person about the uses of arguments, not to convey
information 10 the MDL interpreter or compiler. For example, <OR FALSE ANY> is functionally
equivalent to ANY, but it indicates that only the “truth” of the argument is significant. Indeed. the
[OPT ...1 construction is ofren used illegally, with other elements following it: be warned that
MDL would not accept it. An argument is included in the same LIST with VALUE (the value of the
primitive) only if the argument is actually returned by the primitive as a value. In other words,
#DECL ((VALUE ARG) ...) implies <==7 .VALUE .ARG>.

* ("TUPLE" FACTORS)
#DECL ((VAIUF) <OR FIX FLOAT>

(FACTORS) <TUPLE [REST <OR FIX FLOAT>]>)
multiplics all arguments together (arithmetic)

* ("TUPLE"™ TERMS)
#DECL ((VALUE) <OR FIX FLOAT>

(TERMS) <TUPLE [REST <OR FIX FLOAT>]>)
adds all arguments together (arithmetic)

Appendix 2

|

—_— e

226 The MDL Programming Language

= ("OPTIONAL"™ MINUCHD "Tum E" SUBTRAHENDS)
FDECL ((VALUE) <OR FIX FLOAT»
(MINUCHND) <OR FIX FLOAT>
(SURTRANCNDS) <TUPLE [REST <OR FIX FLOAT>]>)
subtracts nther arguments from first argumnent {arithmetic)

£/ ("OPTIONAL"™ DIVIDCHD "TUPLE"™ DIVISORS)
#DECL ((VALUE) <OR FIX FLOAT>
(DIVIDEND) <OR FIX FLOATD
(DIVISORS) <TUPLE [REST <OR FIX FLOAT>]>)
divides first argumcnt by other arguments (arithmetic)

07 (NUMBLR)
#DECL ((VALUL) <OR 'T '#FALSE ()>
(HUMBLR) <OR FIX FLOAT>)
tells whether a number is zera {predicate)

17 (NUMBLR)
#DECL {((VALULC) <OR *T *#FALSE ()>»
(NIMBRFR) <OR FTX FLOATY>)
tells whether a number is one (predicate)

1STEP (PROCECSS)
#DECL ((VALUE PROCESS) PROCESS)
causes a PROCESS 1o enler single-step mode

==7 (OBJILCT-1 OBJICCT-2)
#DECL ((VALUF) <OR 'T '#FALSE ()>
(OBJECT-1 OBJECT-2) ANY)
tells whether two ob jeets are “exactly” equal (predicate)

=? (OBJECT-1 OBJECT-2)
#DECL ((VALUE) <OR T '#FALSE ()>
(OBJECT-1 OBJECT-2) ANY)
tells whether twn objecis are “structurally” equal (predicate)

ABS (NUMBER)
*DECL ({(VAILULC) <OR rix FLOAT>
(NUNBFR) <OR FIX FIOAT>)
returns absolute value of 3 nummber {arillunetic}

ACCESS (CIIANNIL ACCESS-POINTER)
FDECL ((VALUS CHANNFL) CHANNEL
(ACCESS-POINTER) FIX)
5€1s access pointer for next 1O transfer via a CHANNEL

Appendix 2

The MDL PProgramming Language o

l. ACTIVATE-CHARS ("OPTIONAL™ STRING)
#DECL ((VALULC STRING) STRING)
sets or retnins intecoupt characters for terminal typing (Tenex and Tops-20 versions only)

AGAIN ("OPTIOHAL" (ACTIVATIOHN .LPROGY\ !-INTERRUPTS)})
#DECL ((VALUE) ANY
(ACTIVATTIONR) ACTIVATION)
resumes excculion at the given ACTIVATION

ALLTYPES ()
#DECL ((VALUL) <VECTOR [REST ATOM]>)
returns the VECTOR of all type names

AND ("ARGS" ARGS)
#DECL ((VALUE) <OR FALSE ANY>
(ARGS) LIST)
computes logical "and” of truth-values, evaluated by the Subroutine

AMD? ("TUPLE™ TUPLE)
#DECL (({WVALUE) <OR FALSE ANY>
(TUPLC) TUPLE)
computes logical "and” of truth-values, evaluated at call time

ANDB ("TUPLE™ WORDS)
#DECL ((VAIUL) WORD
(WOIDS) <TUPILE [REST <PRIMTYPE WORD>7J>)
computes bitwise "and” of machine words

APPLICABLE? (OBJCCT)

#DECL ((VALUE) <OR 'T '"#FALSE {)>
(OBJECT) ANY)

tells whether argument is applicable (predicate)

APPLY (APPLICABLE "TUPLE"™ ARGUMENTS)
FDECL ((VALUE) ANY

(APPLICABLE) APPLICABLE (ARGUMENTS) TUPLE)
applies first argument to the other arguments

APPLYTYPE (TYPE "OPTIONAL"™ HOW)

*DECL {((VALUL) <OR ATOM APPLICABLE '#FALSE {)>
{TYPE) ATOM (1IOW) <OR ATOM APPLICABLE>)

specifies or returns how a data type is applied

Appendix 2

R LA A AR AR LA Afi A A A A L-LA AL A A A A R B A A LA A AL MM A R R BRRRREBBERRBEBEEEEDG

2218 The MDL Programming Language

ARGS (CALL)
#DECL ((VALUE) TUPLE
(CALL) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns arguments of a given un-returned Subroutine call

ASCII (CODF-DOR-CHARACTER)

#DECL ((VALUE) <OR CHARACTER FIX>»
(CODE-OR-CHARACTCR) <OR FIX CHARACTER>)

returns CHARACTER with given ASCII ende or vice versa

ASSIGHNED? (ATOM "OPTIONAL®™ ENV)
#DECL ((VALUE) <OR 'T '#FALSE ()>

(ATOM) ATOM (ENV) <0OR TRAME ENVIRONMENT ACTIVATION PROCESS>)
tells whether an ATON has a Incal value (predicate)

ASSOCIATIONS ()
FDECL ((VALUE) <OR ASOC '#FALSE ()>»)
returns the first ob ject in the association chain

AT (STRUCTURLCD "OPTIOHNAL"™ (N 1))
#DECL ((VALUF) LOCATIVE
| (STRUCTURED) STRUCTURED (N) <OR FIX OFFSET>)
returns a lncative 1o the Nth celement of a siructure

ATAN (NUMBER)
¥DECL ((VALUE) FLOAT
{(HUMBER) <0OR FIX FLOAT>)
returns arc ftangent of a number (arithmeric)

ATOM (PHAME)
FDECL ((VALULY ATOM
(PHAME) STRING)
creates an ATOM with a given name

AVALUE (ASSOCIATION)
#FDECL ((VALUE)Y ANY
(ASSOCIATION) ASOC)
returns the "value” field of an association

Appendix 2

= .

S R R N I—=—=—————————— — oo e
— e e R R R R R R =
———eee——————eeeeeee R ——
-_—------—eeeeesssss-s-s----e—eeee—e—e—e—_—_——ESEEE—e
=S E————— o . - . - - - - - .- BBoB B O QU a———— _
Sl eSS e
e

e —
e e —
e R e e
e e
—_——— — —— /Y8 8 b Y /Y=
—_— s e L & W
= S e
= —————————— —————————————
s S e S
e e R e
R R R —————————————— S
R R R e S ———
R =i
e —
e s e e e s e R ————
R R R R == = e

The MDL Programming Language 229

gACE (STRUCTURE "OPTIONAL" N)
#FDECL {((VALUE) <OR VECTOR TUPLE UVECTOR STORAGE STRING BYTES TEMPLATE>
(N} FIX
(STRUCTURE) <OR <PRIMTYPE VECTOR> {PRIMTYPE TUPLE>
<PRIMTYPE UVECTOR>»> <PRIMTYPE STORAGE>
CPRIMTYPE STRING> <PRIMTYPE BYTES>»
<PRIMTYPE TEMPLATE>>)
replaces sonie elements removed from a non-list structure by RESTing and changes to primitive data
Ly pe

BIND ("ARGS" ARGS)
#DECL ({WVALLE) ARY
(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY2)
execules scquential expressions without providing a bound ACTIVATION

BITS (WIDTH *“OPTIONAL®™ (RIGHT-EDGE 0})
#DECL ({(VALULC) BITS
(WIDTH RIGHT-EDGE) FIX)
creates a hit mask for PUTHITS and GETBITS

BLOAT ("OPTIOUAL"™
(FRCE 0) (STACK 0) (LOCALS 0) (GLOBALS 0) (TYPES 0) (STORAGE 0) (P-STACK 0)
MIN GROW-10OCAL GROW-GLOBAL GROW-TYPE GROW-STORAGE PURE P-STACK-SIZE STACK-SIZE)
#DECL ((WVALUE) FIX
(FREE STACK LOCALS GLOBALS TYPES STORAGE P-STACK MIN GROW-LOCAL GROW-GLOBAL
GROW-TYIME GROW-STORAGLC PURE P-STACK-SIIE STACK-SIZE) FIX)
allocates extra storage temporarily

BLOAT-STAT ("OPTIONAL™ STATS)
FDECL ((VALUF) <UVECTOR [27 FIX]>
(STATS) <UVECTOR [27 ANY]>)
gi\'es g;-_rhagc.l-nllrftm and storage statistics

BLOCK (LOOK-1IM)
#DECL((VALUE LOOK-UP) <OR OBLIST <L1ST [REST <OR OBLIST 'DEFAULT>]>>)
SETs OBLIST for Inoking up ATOMs during READing and PARSEIng

BOUND? (ATOM "OPTIOHAL™ ENV)
#DECL ((VALUE) <OR *T '#FALSE ()>
(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS2>)
tells whether an ATOM is locally bound (predicate)

Appendix 2

I ———————————_————————————_———————_—_———_————————E R EEEEEEEEE——E—EE——

y

230 The MDL Programming Languape

BREAK-SEQ (OBJICT PROCESS)
#DECL ((VALUF PROCESS) PROCESS
(OBJECT) ANY)
modifies excontinn sequence of another PROCESS

BUFOUT ("OPTIONAL" (CHANNEL .OUTCHAN})
#DECL ((VALUE CHANHEL) CHANNEL)
writes out all internal MDL buffers for an output CHANNEL

BYTE-S51ZE (BY1LS)
#DECL ((VALUE) FIX
(BYTES) BYTES)
returns size of lr_1.1ri ina h}*lr‘-xrring

BYTES (SIZE "TUPLE"™ ELEMENTS)
#DECL ((VALUE) BYTES
(STZE) FIX (ELEMENTS) <TUPLE [REST FIX]>»)
creates a byte-string from explicit arguimenls

CHANLIST ()
#DECL ((VALUF) <LTST [RF3ST CHANNEL]1>)
returns a LIST of currently open 1/O CHANNELs

CHANNEL ("OPTTONAL®"™ (MODE "READ™) ®"TUPLE®™ FILE-NAME)
#DECL ((VALUE) CHAHNEL
{MODE) STRING (FILE-NAME) TUPLE)
creates an unopencd /O CHANNEL

CHTYPE (OBJECT TYPE)
#DECL ((VALUE) ANY
(OBJECT) ANY (TYPE) ATOM)
makes a new pair with a given data type from an old one

CHUTYPE (UVECTOR TYPE)
FODECL ((VAILULC UVECTOR) <PRIMTYPE UVECTOR>
(TYPE) ATON)
changes the data type of the elements of a uniform vector

CLOSE (CHANNLCL)
#DECL ((VALUF CHANNEL) CHANNEL)
closes an 1/O CHANNEL

Appendix 2

s

The MDL Programming Language 231

CLOSURE (FUNCTION "TUPLE®™ VARIABLES)
#DECL ((VALUE) CLOSURE
(FUNCTION) FUNCTION {(VARIABLES) <TUPLE [REST ATOM]1>)
"hinds” the free variables of a FUNCTION to current values

COND ("ARGS" CLAUSES)
#DECL ((VALLL) ANY

(CLAUSES) <LIST <LIST <OR FALSE ANY>> [REST <LIST <OR FALSE ANY>>]1>)
evaluates conditions and selected expression

CONS (NEW-EILCHMLCHNT LIST)
#DECL ((VWALUE) L157T
{HNEW-ELEMENT) ANY {LIST) LIST)
adds an cloment 1o the Front of a LIST

CO5 (NUMBER)
#DECL ((VALUE) FLOAT
(HUMBLCR) <OR FIX FLOAT>)
returns cosine of a number (arithmetic)

CRLF ("OPTIONAL"™ (CHANNEL .OUTCHAN))
#DECL ((VALUE) "7
(CHANMEL) CHANNEL)
prints a carriage-return and line-feed via an output CHANNEL

DECL-CHECK ("OPTIONAL®™ SWITCI)
#FDECL ((VAILUF) <OR *T "#FALSE ()>
(SWITCH) <OR FALSE ANY>)
enables or disables type-declaration checking

DECL? (ORJECT PATIERN)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(OBJECT) ANY (PATTERN) <OR ATOM FORM>)
tells whethier an object matehes a type declaration {predicare)

DEFINE (*MAME "ARGS" ARGS)
#DECL ((VALUE) ATOM
(HANME) ANY (ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
sets the global value of an ATOM 1o a FUNCTION

DEFMAC { "NAME "ARLGS"™ ARGS)
#DECL {(VAIUL) ATOH
(MAME) ANY (ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
sets the global value of an ATOM to a MACRD

Appendix 2

i

I ———————————————————————————————————————SENEESSEEENENNNEBB—————————————————————_—_———

232 The MDL Programming Language

DEMSIG (HAML)

#DECL ((vnAnlLUL) <OR 'T '"W#FALSE ()>
(NHAME) STRING)

signals an ITS dacmon

DISABLE (INTFRRUPT)
#DECL ((VALUF INTERRUPT) IHEADER)
disables an intorrogped

DISHISS (VAL "OPTIOHNAL"™ ACTIVATION INT-LEVEL)
fDECL ((VALUL WAL} ANY

(ACTIVATION) ACTIVATION (IMT-LEVEL) FIX)
dismisses an inrterrupt occurrence

ECHOPALIR (1IN OUT)
#DECL (({VALUL IN) CHANHEL
(OUT) CHANMEL)
coordinates 1)O CHANNELs for echoing characters on rubout

EMPTY? (OBJCCT)
FDECL ((VYALUF) <OR 'T *#FALSE ()>
(OBJECT) STRUCTURED)
tells whether a structure has zero clements (predicate)

ENABLE { TNTERKUPT)
#¥DECL ((VALUE INTERRUPT) IHEADER)
enables an interrupt

ENDBLOCK ()
#DECL ((VALUE) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
restores the .OBLIST that existed before corresponding call to BLOCK

ENTRY-LOC (ENTRY)
#DECL ((VALUE) FIX
(ENTRY) RSUBR-ENTRY)
returns the of Cset in the code vector of an RSUBR-ENTRY

EQVB ("TUPLE"™ WORDS)
#FDECL (({VALULC) WORD
(WORDS) <TUPLE [REST <PRIMTYPE WORD>]>)
computes bitwise “equivalence” of machine words

Appendix 2

e N—
e

= _____" >*“"— —————————————————___ - =L
- _____________— - _____________________ . _____________________ __ ________ . _______ __________ — ______— _____—__ - __— ..
- - - «>9@9—«|@— " — — =
=~ ————————,, =
= S e Y &
e I e e Y L
———_—_——— e e
== T e
e —
e e
e e i
2 ——————————————————————————————————— e =
R AN N —————
D ——————————————— R ————— R ————— e R P
e
e R R R R R == e e
R e e — T
e ——————————EEEEEEEE————— e
_.. . -~ — ______.—
e R ———— R o S —— T
e —— T
R i
e

The MDL Programming Language 233

ERRET ("OPTIOHAL"™ WAL (FRAME .LERRY !-INTERRUPTS))
#DECL (({VALUE) ANY
(VALY ANY (FRAME) FRAME)
continuwes evaluation from the last ERROR or LISTEN or from a given FRAME

ERROR ("TUPLE™ INFO)
#DECL ((VALUL) ANY
{INFG) TUPLE)
stops and informms user of an error

ERRORS ()
#DECL ((VAILUE) ORI TI5T)
returns the OBLIST where error messages are located

EVAL (ANY "OPTTIOHAL"™ ENV)
#DECL ((VYALUE) ANY

(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
evaluates an cxpression in a given environment

EVALTYPE (TYPE "OPTIOHAL"®™ HOW)
#DECL ((VALUE) <OR ATOM APPLICABLE "#FALSE ()>
(TYPCL) ATOM (HOW) <OR ATOM APPLICABLE>)
specilfies or returns how a data type is evaluated

EVENT (NAME "OPTIONAL™ PRIORITY WHICH)
PDECL ((VALUE) THEADER
(NAME) <OR STRING ATOM IHEADER> (PRIORITY) FIX (WHICH) <OR CHANNEL LOCATIVE>)
sets up an interrupt

EXP (NUMBLCR)
#DECL ((VALUE) FILOAT
(NUMBER) <OR FIX FLOAT>)
returns “¢” 1o the power of a number (arithimetic)

EXPAND (ANY)
#DECL ((VALUE) ANY
(ANY) ANY)
evaluates its argument (only once if a MACRO is involved) in the top-level environment

FILE-EXISTS? ("TUPLE"™ FILE-NAME)

#DECL ((VALUE) <OR 'T <FALSE STRING FIX>>
(FILE-NAMLC) TUPLLC)

tests for existence of a file (predicate)

Appendix 2

s M A A R LA tfyi R vt A AR RAMl A LAl A A A AA ALl R AL RRRRRRRBRBRRERBRERPRPRRPRARRAAAEREEESEESSEEESEEDDGDDGDGGGGBSSDED——SRS

234 The MDL Programming Language

FILE-LENGTH (INCH})
#DECL ((VALUE) FTIX
(INCH) CHANHEL)
returns the system-provided length of a file open en an input CHANNEL

FILECOPY ("OPTIONAL®™ (INCH ,INCHAN) (OUCH .OQUTCHAN))
#FDECL ((VALUE) FIX
(IMCH OQUCH) CHANNEL)
copics characters froom one CHANNEL to another until end-of-file on the input CHANNEL

FIX (HUMBER)
#DECL ((VALUE) FIX
(HUMBER) <OR TLOAT FIX>)
returns integer part of a number (arithmetic)

FLATSIZE (ANY MAX "OPTIONAL"™ (RADIX 10))
#DECL ({(WALULC) <0OR FIX '#FALSE ()>
CANYY ANY (HAX RADIX) FIX)
returns number of characiers needed to PRIN] an object, if not greater than given maximum

FLOAD ("TUPLE"™ FILL=-NAME-AND=-LOOK-UP)
#DECL ((VALUE) *"DONE™
(FILE-HAME-AND-LOOK-UP) TUPLE)
reads and cvaluates all nbjects in a file

FLOAT (HUMBLR)
#DECL ((VALUE) FLOAT
(HUMBER) <OR FIX FLOAT>)
returns (loating-point value of a number (arithmetic)

FORM ("TUPLE®™ ELEMENTS)
#DECL ((VALUL) FORM
(ELFMFNTS) TUPLE)
creates a FORM from explicit arguments

FRAME ("OPTIONAL"™ (FRAME .LERRY !-INTERRUPTS))
#DECL ({WALUE)Y F RAME
(FRAME) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns a previous Subrontine call

FREE-RUN (PROCESS)
#FDECL ((VALUE) <OR PROCESS ‘'#FALSE ()>
(PROCESS) PROCESS)
causes a PROCLCSS 1o leave single-step mode

Appendix 2

__-L-__

e e N e e T
e R R R = ——— ===+
e R ———
-—_—-eeeeeeeeeeeaeae—e—e—e—e—e§se§$€—€—s—§—§——§—§——§———§ §NeFe™™,s————E_™aSn$e™$m—mn™mm——e—,m—m—™—,—_—,—,————___—,—,—,S§§—§—,—§,N§Ns§s—:,...._ e TeTEEEEEee——,
=——___________________. _ _____ -———————— " - = a2 . ____—— ____“———
e e B S e Ll
R R R R R ===
B e e e e e e e e e e
———————
= ____________________ " —————————— - —— = —___—_ .,
e R S
e e
_—
e e N S—
R e — L =
= _ == e e —————_s
R R R —=——
s
e EETERERERETETEREREETETEEE———————————— ey
R R R R R ———
= == e =
e —— ~—
S e e~ e B e e i
e e S —

The MDL Programming Language 935

FREEJE (STRUCTURE)
#DECL ((VALUE) <OR VECTOR UVECTOR STRIHG BYTES>
(STRUCTURE) <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE> <PRIMTYPE UVECTOR>
CPRIMTYPE STRING> <PRIMTYFE BYTES>>)
makes copy nf argument in unn-muviug gnrbnge-cnllec_ted space

FUNCT (TRAMNL)
#DECL ((VALUL) ATOM
(FRAME) <OR FRAMF ENVIRONHMENT ACTIVATION PROCESS>)
returns Subroutine name of a given previous Subroutine call

FUNCTION ("ARGS"™ ARGS)
#DECL ((VALUE) FUNCTION

(ARGS)Y <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
creales a FTUNCTION

G=7 (NUMBER-1 NUMDBER-2)
#DECL ((VALUE) <OR 'T "#FALSE ()>
(HUMBER=-1 HUMBCR-2) <0OR FIX FLOAT>)
tells whether Cirst argument is greater than or equal to second (predicate)

G? (NUMBER-1 HUMBER-2)
#DECL ((VAlLUr) <OR 'T °*#¥FALSE ()>
(NUMBLE=-1 HUMBER-2) <OR FIX FLOAT>)
tells whether first argumment is greater than second (predicate)

GASSIGNID? (ATOM)
#DECL ((VALUE) <Ol 'T "#FALSE ()>»
(ATCM)Y ATOM)
tells whether an ATOM has a global value (predicate)

GBOUND? (ATOH)
FDECL ((VALUE) <OR 'T '"#FALSE ()>
(ATOM) ATOM)
tells whether an ATOM cver had a global value (predicate)

GC ("OPTIOHAL"™ MIN (EXHAUSTIVE? <>) M5-FREQ)
FDECL ((VALULC) FIX
(MIN M5=TRIQ) FIX (EXHAUSTIVE?) <OR FALSE ANY>)
causes a garbare eollection and changes garbage-collection parameters

GC-DUMP (ANY PRINTDR)

#DECL ((VWAIUF) <0OR ANY <UVECTOR <PMRIMTYPE WORD>>>
(ANY) ANY (PRINTB) <OR CHANMEL FALSE>)

l'.iun:p's an ob jrct so that it can be reproduced exnctl}'

Appendix 2

(it

996 The MDL Programming Language

GC-HMON (*OPTIONAL®™ SWITCH)
#DECL ((VALUL) <OR 'T "#FALSE ()>
(5w TCH) <OR FALSE ANY >)
turns garbage-collectinn monitoring off or on

GC-READ (READB "OPTIONAL™ {EOF-ROUTINE '<ERROR ea2))
#DECL {(VALUE) ANY
(READB) CHANMEL (EOF-ROUTINE) ANY)
inputs an objeer thar was previously GC-DUMPed

GDECL ("ARGS™ ARGS)
#DECL ((VALUE) ANY

(ARGS) <LIST [REST <LIST [REST ATOM]> <OR ATOM FORM>]>)
declares the type/structure of the global value of ATOMs

GET (ITEN IMDICATOR "OPTIONAL® (IF-NONE <»))
#FODECL ((VALUL) ANY

I (1TFM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY> (IF-NONE) ANY)
does NTH or GETPROP

GET-DECL {ATOM-OR OFFSET)

#DECL {((VAIUF) <OR ATOM FORM "#FALSE ()>
(ATOM-OR-OFFSET) <OR LOCD OFFSET>)

gets the 1ype declaration for an ATOM's value or an OFFSET

GETBITS (FROM FIELD)
#DECL ((VALUE) WORD

(FROM) <OR <PRIMTYPE WORD> CPRIMTYPE STORAGE>> (FIELD) BITS)
returns a bit Cicld of a machine word or STORAGE addross

GETL (ITEM INDICATOR "OPTIONAL"™ (IF-NOME <))
FDECL (({VALUC) <OR LOCATIVE LOCAS ANT>

l (ITCH) <OR STRUCTURED ANY > (INDICATOR) <OR FIX OFFSET ANY>» (IF-NONE) ANY)
does AT or GETPI

GETPL (ITCM INDICATOR "OPTIONAL®™ (IF-NOME <>))
#DECL ((VALUF) <OR LOCAS ANY>

(ITEM 1NDICATOR 1F-NONE) ANY)
refiurns a locative (o an associalion

GETPROP (1TEM INNICATOR "OPTIONAL® { IF-NONE <2))
#DECL ((VALUE) ANY
(ITEM INDICATOR IF=-NONE) ANY)
returns the value associated with an item under an indicator

Appendix 2

}

The MDL Programuming Language 57

gLOC (ATOM "OPTIONAL® (MAKE-SLOT <>))
#FDECL ((VALUE) LOCD
(ATOM) ATOM (MAKE-SLOT) <OR FALSE ANY>)
returns a locative to the global-value cell of an ATOM

GO (LABEL)
#DECL ((VALUE) ANY
{LABEL) <OR ATOM TAG>)
goes to a label and continues evaluation from there

GROW (U/VECTOR END BEG)
FDECL (({WVALUL) <OR <PRIMTYPE VECTOR> <PRIMTYPE UVECTOR>>
(U/VECTOR) <OR <PRIMTYPE VECTOR> <PRIHTYPE UVECTOR>> (END BEG) FIX)
increases the size of a vector or uniform vector

GUNASSIGH (ATOM)
FDECL ((VALUE ATOM) ATOM)
causes an ATOM to have no global value

GVAL (ATOM)
FDECL ({VALUE) ANY
(ATOM) ATOH)
returns the global value of an ATOM

HANDLER (IHEADER HANDLER "OPTIONAL®™ (PROCESS #PROCESS 0))
FDECL ((VALUE) HAHDLER
(THEADER) IHEADER (HANDLER) <OR HANDLER APPLICABLE> (PROCESS) PROCESS)
creates an interrupt HANDLER

HANG ("OPTIONAL"™ (UNHANG <>))
#DECL ((VALUE) ANY
(UNHAHG) ANY)
does nothing. interruptibly, potentially forever

IBYTES (SIZE LENGTH "OPTIONAL®™ (ELEMENT 0))
#DECL ((VALUE) BYTES

(SIZE LENGTH) FIX (ELEMENT) ANY)
creates a byte-string from implicit arguments

IFORM (LENMGTH "OPTIONAL™ (ELEMENT #LOSE 0))
#DECL ((VALUE)} FORH

(LENGTH) FIX (ELEMENT) ANY)
creates a FORM from implicit arguments

Appendix 2

R ——————————————_—_————_———————————————_——_————_——_——_—_———EEE———

238 The MDL Programming Language

ILIST (LENGTH "OPTIONAL® (ELEHMENT #LOSE 0))
#DECL ((VALUE) LIST
(LENGTH) FIX (ELEHMEMT) ANY)
creates a LIST from implicil arguments

IMAGE (CODE "OPTIONAL®™ (CHANNEL .OQUTCHAN))
#DECL (({VALUE CODE) FIX
{ CHANNEL) CHANNEL)
sends an image-mode character via an output CHANNEL

IN (POINTER)
#DECL ((VALUE) ANY
(POINTCR) LOCATIVE)
returns fThe object pointed to by a locative

INDEX (OFFSET)
#DECL ((VALUE) FIX
(OFFSET) OFFSET)
fetches the integral part of an OFFSET

INDICATOR (ASSOCIATION)
#DECL {(VALUE) ANY
(ASSOCIATION) ASOC)
returns the "indicator™ field of an association

INSERT (PNAME OBLIST)
#DECL ((VALUE) ATOM

(PNAME) <OR ATOM STRING> (OBLIST) OBLIST)
adds an ATOM to an OBLIST

INT-LEVEL ("OPTIOHNAL™ MEW-INT-LEVEL)
#DECL ({VALUE) FIX
(NEW-INT-LEVEL) FIX)
returns and/or sets current interrupt level

INTERRUPT (NAME *TUPLE™ HANDLER-ARGS)
#DECL ((VALUE) <OR 'T '#FALSE ()>
{(HAME) <OR STRING ATOM IHEADER> (HANDLER-ARES) TUPLE)
cCauses an iuterrupl 1o oCcur

INTERRUPTS ()
#DECL ((VALUE) OBLIST)
returns the OBLIST on which inlerrupt names are kept

Appendix 2

__-L-_
S e == = < 3
——— s e e R R R R R R R R ——— =
— -
= _____________________————————————— _____ _____ ________ —— _________________ _
e ——
e T e | 2
e
S
e ________________ e ___________________ e —__
e ————a
e
e
R e R —
s __— — ____________————5_ —— — — ____—_______"—"==a -
e ———== e —
= aaeee———________ ————————————— = __——
S
—— e e o e
e e
= e ——_————— = L ——————————————————————— L = _——_—
e L ———————————————————————————————————————
s e e ————a———a - & S
e N e e S e B
e e

B

The MDL Programming Language 239

IPC=-HANDIFR (RBRODY TYPE OTHER-NAME-1 OTHER-NAME-2
“OPTIONAL" (HY-NAME-1 <UNAME>) (MY-NAME-2 <JNAME>))
#DECL ({VALUE) 'T
{(RODY) <OR STRING UVECTOR> (TYPE) FIX
(OTHER-HAME=-1 DTHER=NAME=-2 MY-NAME-1 MY-NAME-2) STRING)
is the buili-in handler for "IPC" (ITS version only)

IPC-0OTF ()
#DECL. ({VALUL)Y *7)
staps all listening on the IPC device (ITS version only)

IPC-ON ("OPTTOHAL"™ (MY-NAME=1 <UNAME>)} (MY-NAME-2 <JNAME>))
#DECL ((VALULLEY *7

(MY-MNAME-1 MY-HAME-2) STRING)
listens on the 11°C deviee (UI'S version only)

ISTORAGE (LENGTH "OP1IONAL" (ELEMENT #LOSE 0))
#DECL ((VALLUE) STORAGE
(LENGTH) FIX (CLEMENT) ANY)
creates a non-garbage-callected STORAGE from implicit arguments (archaic)

ISTRING (LENGTII "OPTIONAL"™ (ELEMENT !\"@))
FDECL ((VALULC)} STRING
(LENGTH) FIX (ELEMENT) ANY)
creates a character-string from implicit arguments

ITEM (ASSOCIATION)
#DECL ((VALUE) ANY
{(ASSOCIATION) ASOC)
returns the "item” ficld of an association

ITUPLE (LLEHGTH "OPTTONAL™ (ELEMENT #LOSE 0))
#DECL ((VALUE) TUPLE
(LENGTH) FIX (ELEMENT) ANY)
creates a TUPLE Troan impiirit arguments

IUVECTOR (LENGTH "OPTIONAL"™ (ELEMENT #LOSE 0))
#DECL ((VALULC) UVCCTOR
(LEHGTH) TIX (CLEMENT) ANY)
creates a UVECTOR froom implicit arguments

IVECTOR (LCHGTII "OPTIOHAL™ (ELEMENT #LOSE 0))
#DECL ((VALUL)Y VECTOR
(LENGTH) FIX (ELEMENT) ANY)
creates a VECTOR from implicil arguments

Appendix 2

240 The MDL Programming Language

JHAME ()
#YDECL ((VALULC) STRING)
returns the “joh name” of MDL's process

L=7 (NUMRER-1 NUMBER-2)
#DECL ({VALUE) <OR 'T "FFALSE ()>
{HUMBER-1 NUMBER=-2) <OR FIX FLOAT>)
tells whether first argument is less than or equal to second (predicate)

L7 (NUMBIR~-1 NIMARCR-2)
#DECL ((VALUE)Y <OR *'T "#FALSE ()>
{MUMBER=-1 NUMBER-Z) <OR FIX FLOAT>)
tells whether Cirst argunment is less than second fpredicale}

LEGAL? (STACK-0ORJECT)
#DECL ((VALUE) <OR 'T '#FALSE ()>
(STACK-0RJECT) ANY)
tells whoetlher argument {wihiich I'|'||'_¢_':E|l live on the control stack) is still J-E'gﬂl Epredicztt}

LEMGTH {OBRJECT)
#DECL {({WALUL) rIX
(ORJECT) STRUCTURED)
returns the nunmber of elements in a structure

LENGTH? (OBJCCT MAX)
#DECL {((VALUL) <OR FIX *#FALSE ()>
(OBJECT) STRUCTURED (HMAX) FIX)
tells whetlhier lengih of structure is less than or equal to an integer (predicate)

LINK (EXPPR PNANME "OPTTONAL"™ (OBLIST <1 .0OBLIST>))
#DECL ((VALUE EXPR) ANY

(PHAME) STRING (OBLIST) OBLIST)
creates a symbnlic LINK to any expression for READIing

LIST ("TUPLE"™ ELEMEN1S)
#DECL ({VALUE) LIST
(CLEMEMTS) TUPLE)
creates a LIST from explicit arguments

LISTEN ("TUPLE"™ INFO)}
#DECL ({VALULC) ANY
(INFO) TUPLE)
stops and informs user that MDL is listening

Appendix 2

"

The MDL Programming Language 241

LLOC (ATOM "OPTIONAL™ ENV)
#DECL ((VALUE) LOCD

(ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
returns a locative to the local-value cell of an ATOM

LOAD (CHANNEL *OP1IONAL®™ (LOOK-UP .OBLIST))
#DECL ((VALUE) *"DOMNE"
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>]>>)
reads and evaluates all ob jects via an input CHANNEL

LOCATIVE? (OBJECT)
#DECL ((VALUE) <OR ‘T '#FALSE ()>
(OBJECT) ANY)
tells whether an object is a locative (predicate)

LOG (NUMBLCR)
#DECL ((VALUE) FLOAT
{NUMBER) <OR FIX FLOAT>)
returns natural logarithm of a number (arithmetic)

LOGOUT ()
#DECL (({VALUE) *#FALSE ())
logs out of the operating system (useful for background processes)

LOOKUP (PNAME OBLIST)

#DECL ((VALUE) <OR ATOM "#FALSE ()>
(PNAME) STRING (OBLIST) OBLIST)

returns an ATOM found on a given OBLIST

LPARSE ("OPTIONAL™
(STRING .PARSE-STRING) (RADIX 10) (LOOK-UP .OBLIST) PARSE-TABLE LOOK-AHEAD)
#DECL ((VALUE) LIST
(S5TRING) STRING (RADIX) FIX (PARSE-TABLE) VECTOR (LOOK-AHEAD) CHARACTER
{LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST 'DEFAULT>1>>)
returns a LIST of the ob jects parsed from a STRING (sections 7.6.6.3, 15.7.2, 17.1.3)

LSH (WORD AMOUNT)
#DECL ((VALUE) WORD

(WORD) <PRIMTYPE WORD> (AMOUNT) FIX)
shifts hits in a machine word

LVAL {(ATOM "OPTIONAL® ENV)
FDECL ((VALUE) ANY

(ENV) <OR FRAME ENVIRONMMENT ACTIVATION PROCESS>)
returns the local value of an ATOM

Appendix 2

MR A A A B A R R A A A A sSA - LMf A A O~ A P A LA A R A A AL A R tfMffiiii Ml A A R AABBERRRRREO R,

242 The MDL Programming Language

MAIN ()
FDECL ((VALUE) PROCESS)
returns FPROCESS 1 (the main PROCESS)

MANIFEST ("TUPLE"™ ATOMS)
PDECL ((VALUE) T

(ATOHMS) <TUPLE [REST ATOM1>)
declares the glohal values of ATOMs to be constant

MANIFESTT (ATOM)
FDECL ((VALUC) <OR 'T '#FALSE ()>
(ATOM) ATOM)
tells whether the global value of an ATOM is constant (predicate)

MAPF (FITNAL-FCN LOOP-FCN "TUPLE"® STRUCTURES)

FDECL ((VALUE) ANY
(FINAL-FCN) <OR APPLICABLE FALSE> (LOOP-FCN) APPLICABLE
(STRUCTURES) <TUPLE [REST STRUCTURED]>)

maps function onte clements of structures

HMAPLEAVE ("OPTIONAL® (VAL T))
FDECL (
(VALY ANY)
leaves the most recent MAPF/R with a value

MAPR (FINAL-FCN LOOP-FCN "TUPLE®™ STRUCTURES)
FDECL ((VALUE) ANY

{FINAL-FCN) <OR APPLICABLE FALSE> (LOOP-FCM) APPLICABLE
(STRUCTURES) <TUPLE [REST STRUCTURED]>)
maps Munction onto RESTs of structures

MAPRET ("TUPLE"™ ELEMENTS)
fDECL (
(ELCMENTS) TUPLE)
returns a variable number of ob jects to the current MAPF/R

MAPSTOP ("TUPLE® ELEMENTS)
#DECL (

(ELEMENTS) TUPLE)
MAPRETs. then stops looping of MAPF/R and causes application

MAX ("TUPLE®™ NUMBERS)
#DECL ((VALUE) <OR FIX FLOAT>
(NUMBERS) <TUPLE [REST <OR FIX FLOAT>]>)
returns the greatest of its arguments (arithmetic)

Appendix 2

il

—_———

The MDI. Programming Language 248

ME ()
#DECI ({VAIUF) PROCESS)
returns the current PROCESS

HMHEMBER (OBJCCT STRUCTURE)
#DECL ((VALUE) <OR STRUCTURED '#FALSE ()>
(OBJECT) ANY (STRUCTURE) STRUCTURED)
tells whether an object is “structurally” equal te some element of a structure {predicate)

MEMO (OBJECT STRUCTURE)
#DECL ((VALUE) <OR STRUCTURED ‘#FALSE ()>
(OBJECT)Y ANY (STRUCTURE) STRUCTURED)
tells whether an ob ject is “exactly” equal to some element of a structure (predicate)

MIN ("TUPLE™ WUMBERS)
#DECL ((VALUL) <0OR FIX FLOAT>
(HUMPRILRS) <TUPLEC [REST <OR FIX FLOAT>]>»)
returns the least of its arguments {(arithmetic)

MOBLIST (NAME “OPTIONAL™ (LENGTH 13))
#DECL ((VALLUF) ORLIST

(HAME) ATOM (LENGTH) FIX)
creates or gets an OBLIST

MOD (NUMBRER HODUL LS)
#DECL ((VALUE) FIX
(HUMBER MODULUS) FIX)
returns nummber-theoaretic remainder ffixed-puiul residue) (arithmetic)

MONAD? (OBJECT)
FOECL ((VALUE) <OR 'T '#FALSE ()>
(OBJECT) ANY)
tells whether an ob jeet is either unstructured or an emply structure (predicate)

N==7 (OBJECT-1 OBJCCT-2)
PDECL. ((VALUC) <OR 'T '#FALSE {)>
(ORJECT=1 OBJECT=-2) ANY)
tells whethier 1wo ob jects are NOT “exactly” equal (predicate)

N=7F (OBJFCT-1 ORBJLCT-2)
#DECL ((VALUE) <OR 'T *#FALSE ()>
(OBJECT-1 OBJECT-2) ANY)
tells whether two ob jects are NOT “structurally” equal {predicate)

Appendix 2

[

244 The MDL Programming Language

METACC (CHANNEL)
#DECL ((VALUE) <OR CHANNEL '#FALSE ()%
(CHANNLL) CHANNEL)
Accepts a network connection

NETS (CHANNIEL)
#DECL ((VAIUF CUHANNEL) CHANNEL)
forces operating-system netwark-CHANNEL buffer to be sent

NETSTATE (CHANHECL)
#DECL ((VALIIL)Y <UVTCTOR FIX FIX FIX>
(CHANNEL) CHANNEL)
returns siate information for a network CHANNEL

NEWTYPE (HIW-TYPE OILD-TYPE "OPTIONAL" PATTERN)
#ODECL {((VALUF HEW-TYPE) ATOM
(OLD-TYPE) ATOM (PATTERN) <OR ATOM FORM3>)
defines a wew data 1y pr

NEXT (ASS0CIATION)
#DECL ((VALUE) <OR ASOC ‘*#FALSE ()7
(ASSOCTATION) ASOC)
refurns the next object in the association chain

MEXTCHR ("OPTIOHAL® (CHANNEL .INCHAM)} (EOF-ROUTINE 'CERROR ...>»))
FDECL ((VALUF) <OR CHARACTER FIX>
(CHANHFL) CHANNEL (FOF-ROUTINE) ANY)
returns the character that will next be read via an input CHANNEL

HOT {(OBJICT)

#DECL ((VAILUF) <OR "1 "#FALSE ()>
(OBJECT) <OR FALSE ANY >)

computes Ingical "net” of a truth-value

HTH (STRUCTURL ["OPTIONAL®™ N)
FDECL ((VALUE) ANY
(H) <OR F1IX OFFSET>)
ferches the Nih elemient of a structure

OBLIST? (ATOM)
#DECL ((VAIUL) <OR OBLIST '#FALSE ()>

(ATOM) ATOM)
returns an ATOM's OBLIST or False if none (predicate)

Appendix 2

e e
R N S e e T R —
—_— e ——
L e
S e - ————— = __ =
—_—— v
Y R R e =
e P
—_— - ——————————————————————————————————————— e ————
L
e e ey
e
e e —
e e ———
—————«———————— e —
e —
e e
S ==
R EEEE—————S————————————————————————————— e ——
_——--—- e i i . i - .- i i i 8 i o . . o o e - ———a-———
-_—r———
e ———— e ——
e e e e
e L e
e

The MD1, Programming Language 245

oFF (INTERRUPT "OPTIONAL" WHICH)
#DECL ((VALLUE) <OR HANDLER IHCADER '#FALSE ()>
(INTERRUPT) <OR HANDLER IHEADER STRING ATOM> (WHICH) <OR CHANNEL LOCATIVE?>)
removes an interrupt HANDLER or destroys an interrupt

OFFSET (H PATTIRN)
#DECL ((VALUE) OFF3ET
(M) FIX (PATTERN) <OR ATOM FORM3>)
creates an infeger with attached type declaration

ON (NAME APPLICABLE PRIORITY “OPTIONAL® (PROCESS 0) WHICH)
#DECL ((WALUE)Y HAHDLER
(HAME) <OR STRING ATOM> (APPLICABLE) APPLICABLE (PRIORITY) FIX
{PROCESS) <0OR FIX PROCESS> (WHICH) <OR CHANNMEL LOCATIVE>)
turns on an interrupt and creates an interrupt HANDLER

OPEN ("OM TONAL"™ (MODE "READ") "TUPLE"™ FILE-NAME)
#DECL ((VALUL) <OR CHAMNEL <FALSE STRING STRING FIX>>
(MODE) STRING (FILE-HAME) TUPLE)
creates and opens an 1JO CHANNEL

OPEN-NR ("OP110HAL™ (MODE "“READ"™) "TUPLE"™ FILE-NAME)

#DECL ((VALULC) <OR CHANMEL <FALSE STRING STRING FIX>>
{(MODE) STRING (FILE-NAME) TUPLE)

creates and apens an I/0) CHANNEL without changing File’s reference date

OR ("ARGS"™ ARGS)
SDECL ((VALUL) <OR TALSE ANY>
(ARGS) LIST)
computes logical inclusive “ar” of truth-values, evaluated by the Subroutine

OR? ("TUPIL® TUPLE)
#DECL ((VWALUE) <OR FALSE ANY>
(TUPLE) TUPLE)
computes Ingical inclusive "or” of truth-values, evaluated at call time

ORB ("TUPLE"™ WORDS)
#DECL {((VALUE) WORD
(WORDS) <TUPLE [REST <PRIMTYPE WORD>]>)
computes hitwise inclusive “or” of machine words

OVERFLOW ("OPTIOHAL™ SWITCH)
#DECL ((VALUL) <OR 'T '#FALSE ()>
(SWITCH) <0OR ANY FALSE>)
enables or disables overflow error (arithmetic)

Appendix 2

= S

R I ——————— —— —— — D Z—— —— — — — — — — — — — — ——

246 The MDL Programming Language

PARSE ("OPTIOHAL"
(STRING .PARSE-STRING) (RADIX 10) (LOOK-UP .OBLIST) PARSE-TABLE LOOK-AHEAD)
#DECL ((VAIUL) ANY
(STRING) STRING {(RADIX) FIX (PARSE-TABLE) VECTOR (LOOK-AHEAD) CHARACTER
(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST ‘DEFAULT>]>>)
parses a STRING into an ob ject (sections 7.6.6.2, 15.7.2. 17.1.3)

PCODE (NAME OFFSET)
#DECL ((VWALUE) PCODE
(MANMF) STRING (OFFSET) FIX)
cCreates |r|"ri|:|1<'| in pure RSUBR code

PNAME (ATON)
#DECL ((VALUL) STRING
(ATOM) ATOM)
refurns the print-name of an ATOM as a distinet copy

PRIMTYPME {ORJICT)
#DECL ((VvALLIL) ATOM
(OBJECT) ANY)
returns the primitive data 1ype of an objeet

PRIMTYPE-C (TYPE)
#DECL {((VALUE) PRIMTYPE-C
(TYPC) ATOM)
gets a “storage allneation code” for a data type

PRINL (OBJECT "OPTIOHAL"™ {(CHANMEL .OUTCHAN))
#DECL ((VALUE OBJECT) ANY
(CIIANNEL) CIANNEL)
prints an nh ject via an outpuat CHANNEL

PRINC (OOBJCECT "OPTIONAL"™ (CHANNEL .QUTCHAN))
#DECL ((VAILUF ORJICCT) ANY
{CHANNEL) CHANNEL)
prints an ob ject via an oulpat CHANREL without STRING or CHARACTER brackets or ATOM trailers

PRINT (OBIECT "OPTI0OHAL"™ (CHANNEL .OUTCHAN))
#DECL ((VALUE OBJECT) ARY
(CHANNEL) CHAHHNEL)
prints an objrct via an output CHANNEL between new-line and space

Appendix 2

The MDL Programming Language 247

PRINTE (BUFFCR CHANNEL)

#DECL ((VALUE BUFFER) <<OR UVECTOR STORAGE>» [REST <PRIMTYPE WORD> 1>
(CHANHEL) CHANNEL)
writes binary information via an outpur CHANNEL

PRINTSTRING (BUFFER "OPTIONAL™ (CHANNEL .OUTCHAM) (COUNT <LENGTH .BUFFER>»))
#DECL ((VALUE COUNT) FIX
(BUFFER) STRING (CHANNEL) CHANNEL)
writes contents of a STRING via an output CHANNEL

PRINTTYPE (TYPE "OPTIONAL®™ HOW)
#DECL ((VALULC) <OR ATOM APPLICABLE '#FALSE ()>
(TYPE) ATOM (HOW) <OR ATOM APPLICABLE>)
specifies or returns how a data type is printed

PROCESS (STARTUR)
#DECL ((VAIUE)} PROCESS
(STARTUP) APPLICABLE)
creales a new PROCESS with given startup function

PROG ("ARGS"™ NARGS)
#DECL ((VALUE) ANY

(ARGS5) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
executes sequential expressions

PURIFY ("TUPLE"™ TUPLE)
#DECL ((VALUE) ANY
{ TUPLE) TUPLE)
purifies objects for sharing by different operating-system processes

PUT (ITEM INDICATOR "OPTIONAL™ VAL)
#DECL ((VALUE) ANY

(ITEM) <OR STRUCTURED ANY> (INDICATOR) <OR FIX OFFSET ANY> (VAL) ANY)]
stores intoe siructure or does PUTPROP

PUT-DECL (IDENTIFIER PATTERN)
#DECL ((VALUE IDENTIFIER) <OR LOCD OFFSET> |
(PATTERN) <OR ATOM FORM>)
changes the type declaration for an ATOM's value or an OFFSET I
PUTBITS (TO FIELD "OPTIONAL"™ (FROM 0))
#DECL ((VALUE) <PRIMTYPE WORD>»

(TO FROM) <PRIMTYPE WORD> (FIELD) BITS)
sets a bit field in a machine word

Appendix 2

- -

e —
S e eee—————
T ———————
-
===
e e e
R e e e e
e e e e e —
A ———
R R EEEEEEEEEEEEEEEEES———
e e ———————————————————— e
e
I
—
e ——————————————— ——— ——
— ——— e
e ————————
= eee———— L e
R R e ———
e — e e - e
- BB
R ===
e — e
e R EERERER}R}R}R}RERERERERERERERE s s — — — — ————————————————— =

e e R ————————————

248

PUTPROP (ITEM INDICATOR "OPTIOMAL® VAL)
#DECL ((VALUE) ANY
(ITEM TNDICATOR WAL) ANY)
{dis)associates a value with an item under an indicator

PUTREST (HEAD TAIL)
#DECL ((VALUE HEAD) <PRIMTYPE LIST>
(TAIL) <PRIHTYPE LIST>)
replaces the rest of a list

QUIT ()
FDECL ((VALUE) "#FALSE (})
exits from MDL graccfully

QUITTER (WAS-TYPED CHAMNEL)
#DECL ((VALUE WAS-TYPED) CHARACTER
{CHANNEL) CHANNEL)
is the interrupt handier for 6 and ~5 quit features

QUOTE ("ARGS™ ARGS)
fDECL ((VALUE) ANY
(ARGS) LIST)

returns the first argument unevaluated

RANDOM ("OPTIONAL™ SEED-1 SEED-2)
#DECL ((VALUE) FIX
(SEED-1 SEED-2) FIX)
generates a uniform pseudo-random integer {(arithmetic)

READ ("OPTIONAL"™

The MDL Programming Language

(CHANNEL .INCHAM) (EOF-ROUTINE '<ERROR ...>») (LOOK-UP .OBLIST) READ-TABLE)

#DECL ((VALUE) ANY

(CHANNCL) CHANNEL (EOF-ROUTINE) ANY (READ-TABLE) VECTOR

(LOOK-UP) <OR OBLIST <LIST [REST <OR OBLIST

'DEFAULT>]>>)

reads one object via an input CHANNEL (sections I1.L.LL, 11.3, 15.7.1, 17.1.3)

READB (BUrFER CHANNEL "OPTIONAL®™ (EOF-ROUTINE '<ERROR

#DECL ((VALUE) FIX

--2))

(BUFFER) <<OR UVECTOR STORAGE> [REST <PRIMTYPE WORD>1>

(CHAHNNEL) CHANNEL (EOF-ROUTINMNE) ANY)
reads binary information via an input CHANNEL

Appendix 2

(I

The MDL Programming Language 249

READCHR ("OPTIONAL®™ (CHANNEL .INCHAN) (EOF-ROUTINE '<ERROR ...3»))
#DECL ((VALUE) <OR CHARACTER FIX>

(CHANNEL) CHANNEL (EOF-ROUTINE) ANY)
reads one character via an input CHANNEL

READSTRING (BUFFER "OPTIONAL® (CHANNEL .INCHAN) (STOP <LENGTH .BUFFER>)
(EOF-ROUTINE °"<ERROR ...>»))
FDECL ((VALUE) FIX

(BUFFER) STRING (CHANNEL) CHANNEL (STOP) <OR FIX STRING> (EOF-ROUTINE) ANY)
reads into a STRING via an input CHANNEL

REALTIMER ("OPTIONAL™ INTCRVAL)
#DECL ((VALUE) <OR FIX FLOAT "#FALSE ()>
{INTERVAL) <OR FIX FLOAT>)
sets or fetches interval for real-time interrupts (ITS version only)

REMOVE (PNAME "OPTIONAL®™ OBLIST)
#DECL ({VALUE) <OR ATOM "#FALSE ()>
{PNAME) <OR ATOM STRING> (OBLIST) OBLIST)
removes an ATOM Mrom an OBLIST

RENAME ("TUPLE®" FILE-NHAME/S)

FDECL ((VALUE) <OR *T <FALSE STRING FIX>>
(FILE-NAME/S) <TUPLE <OR STRING CHANNEL>>)

renmames or deletes a disk file

REP ()
#DECL ((VALUE) ANY)
is the built-in function for READ-EVAL-PRINT loop

REPEAT ("ARGS"™ ARGS)
#DECL ((VALUE) ANY

(ARGS) <LIST [OPT ATOM] LIST [OPT DECL] ANY>)
executes sequential expressions repeatedly

RESET (CHANNEL)
#DECL ({VALUE) <OR CHANNEL <FALSE STRING STRING FIX>>
{ CHANNCL) CHANNEL)
reopens an IO CHANNEL at its beginning

REST (STRUCTURED "OPTIONAL"™ (N 1))
#DECL ({VALUC) STRUCTURED
(N) FIX)
removes the first N elements from a structure and changes to primitive data type

Appendix 2

e

T ———_——_—_—,—,,—=~

250 The MDL Programming Language

RESTORE ("OPTIONAL®™ MNAME-1 NAME-2 NAME-3 HAME-4)
FDECL ((VALUE) "RESTORED*"
(NAME-1 NAME-2 NAME-3 NAME-4) STRING)
restores MDL's state from a File

RESUME (VAL "OPTIOMNAL"™ (PROCESS <RESUHER>))
FDECL (({VALUE) ANY

(VAL) ANY (PROCESS) PROCESS)
transfers execcution to another PROCESS

RESUMER ("OPTIONAL® (PROCESS <ME>))
FDECL ((VALUE) <OR PROCESS "#FALSE ()>
(PROCESS) PROCESS)
returns the PROCESS that last resumed the given PROCESS

RETRY ("OPTIONAL™ FRAME)
FOECL (
(FRAME) FRAME)
reiries a previous Subroutine call, usually from the error level

RETURN ("OPTIOHAL™ (VAL T) (ACTIVATION LPROGY, !-INTERRUPTS))
#DECL ((VALUE) ANY
(VAL) ANY (ACTIVATION) ACTIVATION)
leaves a PROG/REPEAT with a value

RGLOC (ATOM "OPTIONAL®™ (MAKE-SLOT <3>))
#DECL ((VALUE) LOCR
(ATOM) ATOM (MAEKE-SLOT) <OR FALSE ANY>)
returns a locative to the global-value cell of an ATOM for pure-program use

ROOT ()
#DECL ((VALUE) OBLIST)
returns the OBLIST containing names of primitives

ROT (WORD AMOUNT)
#DECL ((VALUE) WORD
(WORD) <PRIHTYPE WORD> (AMOUNT) FIX)
rotates bits in a machine word

RSUBR (CANDIDATE)
#DECL ({(VALUE) RSUBR

(CANDIDATE) <VECTOR <OR CODE PCODE> ATOM DECL [REST ANY1>)
creates an RSUBR

Appendix 2

[

The MDL Programming Language 251

RSUBR-ENTRY (CANDIDATE OFFSET)
#DECL ((VALUE) RSUBR-ENTRY

{CANDIDATE) <VECCTOR <OR ATOM RSUBR> ATOM DECL> (OFFSET) FIX)
adds an eniry point to an RSURR

RSUBR-LINKE ("OPTIONAL™ SWITCH)
#DECL ((VALULE) <OR 'T “#FALSE ()>
(SWITCH) <0OR FALSE ANY?>»)
enables or disables the automatic RSUBR linking feature

RUNINT ("TUPIL" TUPILE)
#DECL ((VALUE) ANY
(TUPLE) TUPLE)
applies interrupt handler (For internal use only)

RUNTIMER ("OPTIONAL®™ INHTERVAL)
#DECL ((VALUE) <OR FIX FLOAT '#FALSE ()>
(INTCRWVAL) <OR FIX FLOAT>)
sets or fetches interval for run-time interrupt (ITS version only)

SAVE ("TUPLE"™ FILE-NAME-AND-GC?)
#FDECL {(({(vALUL)Y ""SAVED"
(FILE-HAMF-AND=-GC?) <TUPLE [OPT STRING] [OPT STRING]
[OPT STRING] [OPT STRING] [OPT <OR FALSE ANY>1>)
writes the entire state of MDL to a file

SEND (OTHER-HAME-]1 OTHER-NAME-2 BODY
"OPTIOQHAL™ (TYPE 0) (MY-HNAME-1 <UNAME>) (MY-NAME-2 <JNAME>))
#DECL ((VALLE) <OR 'T '#FALSE ()>
(OTHER=-NAME -1 OTHER-NAME-2 MY-NAME-1 MY-NAME-2) STRING (TYPE) FIX
(BODY) <0OR STRING S5TORAGE <UVECTOR [REST <PRIMTYPE WORD>]>>)
sends an [PC message (ITS version only)

SEND=-WAIT (OTHI R-NAMI =1 OTHER-NAMC-2 BODY
"OPTI0ONAL™ (TYPE O) (MY=-NAME=-1 <UNAME>) (MY-NAME-2 <JNAME>))
#FDECL ((VALUE) 'T
(OTHCR-HAME=1 OTHER-NAME=-2 MY-NAME-1 HMY-NAME-2) STRING (TYPE) FIX
(BODY) <OR STRIHNG STORAGE <UVECTOR [REST <PRIMTYPE WORD>]>>)
sends an IPC message and wails for it to be received (ITS version only)

SET (ATOM LVAL "OPTIONAL"™ ENV)
#DECL ((VALUF LVALY ANY
(ATOM) ATOM (ENV) <OR FRAME ENVIRONMENT ACTIVATION PROCESS>)
changes the local value of an ATOM

Appendix 2

O R R B A —AC A A At A A A€ A A Al A A A A A A A A A R A A S s M L2 A A A A AR ARRRRRRBBEEEEEPEPLPPBBEEESSSBEBZEEES.

252 The MDL Programming Language

SETG (ATOM GVAL)
#DECL ((VAILIIE GVAL) ANY
(ATOM) ATOM)
changes the global value of an ATON

SETLOC (PMPOTHIER OBJECT)
#DECL ((VALUE OBJECT) ANY
(POTHTER) LOCATIVE)
changes the contents pointed to by a locative

SIN (HUMBER)
#DECL ((VAILUE) FLOAT
(HUMBIR) <0OR FIX FLOAT>)
returns sine of a number (arithmetic)

SLEEP (<0OR TIX FLOAT> "OPTIONAL"™ (UNHANG <3>)})
#DECL ((VAILUE) ARY
(UNHANG) ANY)
does nothing, interruptibly, the given number of seconds

SHAME ("OPTIOHAL"™ DIRECTORY)
#DECL ((VALUE DIRECTORY) STRING)
sets or relurns the dircetory name used by default for new 1JO CHANNELs

SORT (PRED KEY=-STRUC "OPTIONAL®" (RECORD-LENGTH 1) (KEY-OFFSET 0)
“TUPLE"™ OTHER=-5TRUCS=-AHD-RECORD-LENGTHS)
#DECL ((VALUC KEY-STHUC) <OR <PRIMTYPE VECTOR> {PRIMTYPE TUPLE> <PRIMTYPE UVECTORD>>
(PFRED) <OR FALSE APPLICADLE> (RECORD-LENGTH KEY-OFF3ET) FIX
(OTHER=5TROUCS-AND-RECORN-LENGTHS)
<TUPLE [REST <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE> <PRIMTYPE UVECTOR>> FIX]>)
sorts clemcnts of a structure and rearranges other structures

SPECINAL-CHECK ("OPTIONAL"™ SWITCH)
FDECL ((VALUE) <OR 'T '"#FALSE ()>
(SWITCI) <OR ANY TALSE>)
turns interpreter apecial-checking on or of f

SPECIAL-NODE ("OPTIONAL" SWITCH)

#DECL {((VALULC) <OR 'SPCCIAL 'UNSPECIAL>
{S5W1TCH) <0OR °"SPECIAL "UNSPECIALZ>)

sels specially declaration used by default

Appendix 2

.

e e —— R —
e
- >—> -—ma-———-—aw—
—— e o T o T o o
= e e
_—eeeee e — . e ——
e e —
e
——— — —— ——— e+ ——e————————
=S — e e e e e e T e ———
e e —————————eeeee————————————————— e e S Sl St
e R ™ e S—
I
e e e — — ————
< e ——————————————————————— e e s — == N p—
S ——— T T
e e e T —————
ey
e
e e L T
— s ee——
- - - - - e—.—————
e
e = s e
- -

The MDL Programming Language 253

SPNAME (ATOM)
#DECL [((VALUE) STRING
(ATOM) ATOM)
returns the print-name of an ATOM by sharing it

SQRT (HUMDLCR)
#FDECL ((VALIL) FLOAT
. (HUMBLR) <OR FIX FLOAT>)
returns square rool of a number (arithmetic)

SOQUOTA (SYMBOL)
#DECL ((VALUE) <OR F1X "#FALSE ()>
(SYMBOL) <PRIMTYPE WORD>)
gets the address of an internal interpreter symbol (for internal use only)

STACKFORM ("AHRGS" ARGS)
#DECL (({VALUE) ANY
(ARGS) LIST)
applies a function to stacked arguments (archaic)

STATE (PROCESS)
#DECL ((WVALULC) ATOM
{ PROCESS) PROCESS)
returns a PROCESS's current state

STRCOMP (5TRING-1 STRING-2)
#DECL ((VALUE) <OR '1 'O *-1>

(STRING-1 STRING-2) <{OR ATOM STRING>)
compares two character-strings or two print-names

STRING ("TUPLE"™ ELEMENTS)
#FDECL ((VALUE) STRING

(ELEMCHTS) <TUPLE [REST <OR STRING CHARACTER>]>)
creates a character-string from explicit arguments

STRUCTURED? (OBJECT)
#DECL ((VALUL) <OR 'T '#FALSE ()>
{(OBJFCT) ANY)
tells whether an ob ject is structured (predicate)

SUBSTITUTC (NFfW OLD)
#DECL ((VALUE OLD) ANY
{NEW) ANY)
substitutes one object for another in the entire address space

Appendix 2

e e e e e

254 The MDL Programming Language

SUBSTRUC (rROM "OPTIONAL"™ (REST 0) (AMOUNT <- <LENGTH .QBJECT> .REST>) TO)
#DECL ((VAILUE 10) <OR LIST VECTOR UVECTOR STRING BYTES>
(FROM) <OR <PRIMTYPE LIST> <{PRIMTYPE VECTOR> <PRIMTYPE TUPLE>
CPRIMTYPE UVECTOR> <PRIMTYPE STRING> <PRIMTYPE BYTES>»>
(REST AMOUNT) F1IX)
copies (part nf) a structure info another

SUICIDE (VAL *"OPTIONAL®" (PROCESS <RESUMER>))
#DECL ((VALUC)Y ANY
(VYAL) ANY (PROCESS) PROCESS)
causes the current PROCESS to die and resumes another

TAG (LABLL)
#DECL ((VALUEY TAG
{LABEL) ATOM)
creates a TAG for use I;_1,' GO

TERPRT {"OPTIOHAL" (CHANNEL .OUTCHAN))
#DECL ((VALUE) '#FALSE ()
{CHANNCL) CHANNEL)
prints a carriago-return and line-feed via an output CHANNEL

TIME ("TUPLE"™ IGHORED)
#DECL ((VALULC) TLOAT
(IGNORED) TUPLE)
returns the elapsed execution time in seconds

TOP {STRUCTURE)
#DECL ((VALUE) <OR VECTOR TUPLE UVECTOR STORAGE STRING BYTES TEMPLATE>
(STRUCTURE) <OR <PRIMTYPE VECTOR> <PRIMTYPE TUPLE>
<PRIMTYPE UVECTOR>» <PRIMTYPE STORAGE>»
CPRIMTYPE STRING> <PRIMTYPE BYTES» <PRIMTYPE TEMPLATE>>)

replaces all elements removed from a non-list structure by RESTing and changes to primitive data
1y pe

TTYECHO (CHANNEL SWITCH)
#DECL ((VALUE CHANNEL) CHANNEL
(SWITCH) <0OR FALSE ANY>)
turns cchoing (of characters typed on a terminal) on or of f

TUPLE ("TUPLE"™ ELEMENTS)
#DECL ((VALUE)Y TUPLE
(CLIHENTS) TUPLE)
creates a TUPLE fromn explicit arguments

Appendix 2

e —
e —
T e — e — ———s =
R ————————————————————————————————— —————=

The MDL Mrogramming Language 255

TYI ("OPTIOHNAL"™ CHANNEL)
#DECL ((VALULC) CHARACTER
(CHANNEL) CHANNEL)
inputs a CHARACTER from a terminal immediately

TYPE (OBJLCT)
#DECL ((VALUE) ATON
(OBJECT) AHNY)
returns the data type of an ob ject

TYPE-C (TYPF “OPTIONAL"™ PRIMTYPE)
#DECL ((VALUE) TYPE-C
(TYPE PRIMTYPE) ATOM)
makes a data-1ype ende for pure-program use

TYPE-W (TYPE "OPTIONAL™ PRIMTYPE RIGHT-HALF)
#DECL ({VALUT) TYPE-W
(TYPT PRIMTYPL) ATOM (RIGHT-HALF) <PRIMTYPE WORD>)
makes a data-type machine word for pure-program use

TYPE? (OBJECT "TUPLE"™ TYPES)
FDECL ((VALUE) <Ol ATOM '#FALSE ()>
(OBJECT) ANY (TYPES) «<TUPLE ATOM [REST ATOM]>)
tells whether an ol ject’s data type is one of the given types (predicate)

TYPEPRIM (TYFL)
#DECL ((VALUE) ATOH
(TYPE) ATOHM)
returns a data type's primitive type

UNAME ()
#DECL ((VALUE) STRTHG)
returns the “user name” of MIDIL's process

UNASSIGH (ATON "OPTIONAL"™ ENV)
#DECL ({VALUE ATOH) ATOM
(FNV) <OR FRAMEC CNVIRONMONT ACTIVATION PROCESSY)
causes an ATOM 1o have nn local value

UNMANIFEST ("TUPLE"™ ATOMS)
#DECL ((vAaLULC) 'T
(ATOMS) <TUPLE [REST ATOM]>)
declares the global values of ATOMs nnl to be constants

Appendix 2

-l

e —
e e S e —
e R e R e —
__
-_———————_—_—_ —__ m — — —_—_—_—_—_—_—_—_—_—_———___
—————_ - shsh5b5bh5nm ™ T
e R R
e e e S————

E— e —————————————————— e ———
e e
e —
__
== —————— e ———___________________________— — __— ——————————————
=—— - — = = === __
—_—— = — —_— —m— s —msmsmm—m——— e ——————————————————— ——
R e R R R R R ===
e ——
e e ———————————————————
————————— ————————————————— L VL S

e ————— i —— i —————
e ——EEEE
e ——

.

256 The MDL Programming Language

UNPARSE (OBJECT “OPTIONAL®™ RADIX)
#DECL (({VALUE) S1RING
(OBJECT) ANY (RADIX) FIX)
creates a STRING representation of an ob ject

UNWIND ("NORMAL *CLEAN=-UP)
#DECL ((VALUE) ANY
(HORMAL CLEAN-UP) ANY)
specifies cleaning-up during non-local return

UTYPE (UVECTOR}
#DECL ((VALUL) ATOM
(UVECTOR) <PRTHMIYPE UVECTOR>)
returns the data 1ype of all clements of a uniferm vector

UVECTOR ("TUPIE™ CLEMENIS)
#DECL ({(VALUE) UVECTOR
(ELEMENTS) TUPLE)
creales a UVECTOR from -:'\p]in::lT AFgUMENLS

VALID-TYPEY? (TYPE)
#DECL ((VALUE) <OR TYPE-C '#FALSE ()>
(TYPE) ATOM)
tells whether an ATOM is the name of a type (predicate)

VALRET (NCSSAGE)
#DECL ((VAILUL) °*¥#FALSE ()
(MESSAGE) <0OR STRING FIX>»>)
passes a message (o the superior operating-system process

VALUE (ATOM "OPTIOHAL"™ EHNV)
#DECL ({VALUE) ANY
(ATOM) ATOM (ENV) <OR FRAME ENVIRONHMENT ACTIVATION PROCESS>)
returns the local or else the glnbal value of an ATOM

VECTOR ("TUPLE" ELEMENTS)
#DECL ((VALUE) VECTOR
(CLCMENTS) TUPLE)

creates a VICTOR from explicit arguments

XJINAME ()
#DECL ((VALUE)Y STRING)
returns the “intended job name” of MDL's process

Appendix 2

S
= ———
e e —————, =
—_———— -
— —— e — = = — e
—___ ___ __ ____________ ___ _________________ _ — — —
e e e e
e e
= —————————————————— . =
_——
—___ —— ————— —— — — — — — —— ——— — — — — — _ —
EEEEE—————,—,—,——— e
e
s, —————————————V—V———————————— = .
—_— s e —————————————=——
——————— e e ———— e —
e ————— e
EEEeEEe——m—————— e e e S —————— _____
—_—— o o r rerere e — — — — — — — — — —————————————————————————— —jm—m — m=e-e—eeeeeee i
B SRR e ————,,__.
e ———— e
T . ., ., .,
- — — —— —— — — - — - - _—_____ — — ___________ _— _____________________— —
S ___________________________________ _ . . - -
_———______ m————— ———————________________ e —————————————_—_____________ . ——

R R R R R R R Rt ——————SSESSSSSSSS,

The MDL Programming Language 257

XOREB ("TUPLE" WORDS)
#DECL ((VALUE) WORD
(WORNS) <TUPLE [REST <PRIMTYPE WORD>]>)
compiutes bitwise exclusive “or” of machine words
MUNAME ()

#DECL ((VALUE) STRING)
returns the “intended user name” of MDL's process

Appendix 2
-
e —a
e
- ————
e aaaae—— ————————____________aa———— "= e _
e
e — — — — — — — — ——— —— ——— ——— ————————
e e e S S i e e S e R

— e ———————————————————————Z_—

258 The MDL Programming Language

Appendix 8. Predefined Types
On these twno pages is a table showing cach of MDL's predefined TYPEs, its primitive type if

different, aml various flags: 5 for STRUCTURED, E for EVALTYPE not QUOTE, and A for APPLICABLE.

% mecans that an object of that TYPE eannot be CHTYPEd to and hence cannot be READ in (if
attempted, a CAN'T-CUTYPE-TNTO ereor is usual).

B means that an object of that TYPE cannot be READ in (if attempted, a STORAGE-TYPES-DIFFER
error is usuall, that instcad it is builv by the !'Illl:'r_[.'rn’:'ll'_‘l' or CHTYPEd to t.'l}" a program. and that its
PRINTed representation makes it fook as though its TYPEPRIH were different.

% means that an objeet of that TYPE is PRINTed using % notation and can be READ in only that way.

TYPE TYPEFPRIM 5 E A coOmIments

ACTIVATION F RAME ¥

ASOC B sic: only one S

ATOM

BITS WOHRD

BYTES 5

CHANNEL VECTOR S X

CHARACTER WOoRD

CLOSURE LIST 5 A

CODE UVECTOR 5

DECL LIST 5

DISMISS ATOM can be returned by interrupt handler
ENVIRONMENT T HRAME B

FALSE L151 5

FIX WORD i

FLOAT WORD

FORM LIS SE

FRAME B

FSUBR WORD A X

FUNCTION LIST 5 A

HANDLER VECTOR 5 x

IHEADER VECTOR 5 ¥ “interrupt header”

ILLEGAL WORD ¥ Garbage collector may put this on non-LEGAL? ob ject.
INTERNAL INTCRNAL-TYPE X should not be seen by programs
LINK ATOM X for terminal shorthand

LIST 5 E

LOCA B locative to TUPLE

Appendix 3

f

The MDI. Programming Language

LOCAS

LOCEB

LOCD

LOCL

LOCR

LOCS

LOCT

LOCU

LOCVY

LOSE

MACRO
OBLIST
OFFSET
PCODE
PRIMTYPE-C
PROCESS
QUICK-ENTRY

QUICK-RSUBR
READA

RSUBR
RSUBR=-ENTRY
SEGMENT
SPLICE
STORAGE
STRING
SUEBR

TAG
TEMPLATE
TIME

TUPLE
TYPE-C
TYPE-W
UNBOUND
UVECTOR
VECTOR
WORD

WORD
LIST
UVECTOR
OFFSET
WORND
WORD

VECCTOR

VECTOR
FRAME
VECTOR
VECTOR
LIST
LIST

WORD

VECTOR

WORD

WORD

WORD
WORD

Mt nin w

LA

(LY

L
m m

mooDodooRoO

/B

w/B

@ X

A R

259

lecative to ASOC

locative to BYTES

locative 10 G/LVAL

locative to LIST

locative to GVAL in pure program
locative to STRING

locative to TEMPLATE

locative to UVECTOR

locative to VECTOR

a place holder

“pure code”
“primtype code”

an RSUBR-ENTRY that has been QCALLed and RSUBR-
LINKed

an RSUBR that has been QCALLed and RSUBR-LINKed

in eof slol during recursive READ via READ-TABLE

if code vector is pure/impure, respectively

for returning many things via READ-TABLE
If possible, use FREEZE SUBR instead.

for non-local GOs

The interpreter itself can’t build one. See Lebling (1979).
used internally to identify FRAMEs

veclor on the control stack

“type code”

“type word”

value of unassigned but bound ATOM, as seen by locatives
"uniform vector”

Appendix 3

260

The MDL Programming Language

Appendix 4. Error Messages

This is a list of all error-naming ATOMs initially in the ERRORS OBLIST, in the left-hand column,
and appropriate examples or elucidations, where necessary, in the right-hand column.

ACCESS-FAlILURE

ALREADY-DEFINED-ERRET-NON-FALSE-TO-REDEF INE

APPLY=-0OR-STACKITORM-0OF -FSUBR

ARG-WRONG-TYPE
ARGUMLCHT-0UT=-0F =RANGE

ATOM-ALREADY=-THERE

ATOM-NOT-TYPL-HNAMLC-0OR-SPECIAL-SYMBOL
ATOM=0N=-DIFFERENI-ORBLIST
ATTEMPT=-TO=-BREAK -OWN-SEQUENCE
ATTEMPT-TO-CHANGE-MANIFEST-VARIABLE
ATTEMPT-TO-CLOSE=-TTY=-CHANMNEL
ATTEMPT=TO-DEFFR-UNDEFERABLE-INTERRUPT

ATTEMPT-TO-GROW-VLCTOR-TOO=-MUCH
ATTEMPI =1T0=-MIING-ATOMS-PNAME
ATTEMPTI-TO-MUNG=-PURE-STRUCTURE
ATTEMPT-TO-SUICIDE-TO-5ELF
BAD-ARGUMLCNT-LIST
BAD-ASCII-CHARACTER

BAD-BYTES-DECL
BAD=CHANNE L
BAD-CLAUSE

BAD-DCCLARATION-LIST
BAD-DEFAUNLT-0RL IST-SPECIFICATION
BAD-ENTRY-BLOCK

BAD-ENVIRONMENT
BAD-F1XUPs
BAD-FUHARG
BAD-GC-READ-FILE

Appendix 4

R R N R R S R R e =—er— e it
e T
= e ———————————————— e ———
R | N — =
e -
e)
= _____________. .. _-.-———————————— = = =
R R R S R R R R ———
— e ________ _— _—— __
- ———— — _______ _— ___________ _— _ _______ _ — ——————————————— = ———__— ==
=" = e
e
e
-_—-—_—_—_————
— = === _ = e
o —_______— — e _ . _—_ _—_ _
e T S s
—_———
e
= —————— — — — — — — — — — — — ———~ ~~~ ~~~~~~~~}~}—}~———— — _——
- — — — — — — — — — — — —— — — —— — — — —— — — — —— — —— ——— ———— -~ —____~—~— -~
—_—
= ——————————— S
R R = = — === ==}
e

ACCESS, RESTORE (Tenex and Tops-20
versions only)

First argument to APPLY, STACKFORM,
MAPF/R doesn’t EVAL all its arguments.

CASCII 999>% Second argument to NTH
or REST too big or small.

CINSERT "T" <ROOT>»>% <LINK Y- =
LROOT>>%

DECL problem

INSERT, LINK, REMOVE

<BREAK-5EQ T <ME>>%

<CLOSE ,INCHAN>%

"Undeferable” interrupt (e.g. "ERROR™)
while INT-LEVEL is too high to handle it
GROW argument greater than <® 16 1024>
<PUT <SPNAME T> 1 I\T>S

altempt 1o write into pure page

<SUICIDE <ME>>%

<GDECL ("HI"™) STRING>S

A character with wrong byte size or
ASCII code more than 177 octal has been
read (how?).

Argument te COND is non-LIST or empty
LIST.

DECL in bad form

bad use of DEFAULT in LIST of OBLISTs
RSUBR-ENTRY does mnot point to good
RSUBR.

CLOSURE in bad form

e .

The MDL Programming Language

BAD-INFPUT-BUFFER
BAD-LINK
BAD-MACRO-TABLE

BAD-OBLIST-OR-LIST-THEREOF

BAD-PARSE-STRING
BAD-PNAME

BAD-PRIMTYPEC
BAD-TEMPLATE-DATA
BAD-TYPE-CODE
BAD-TYPE-NAME
BAD-TYPE-SPECIFICATION
BAD-USE-OF -BYTE-STRING
BAD-USE-OF -MACRO
BAD-USE-OF -SQUIGGLY-BRACKETS
BAD-VECTOR
BYTE-SIZE-BAD
CANT-CHTYPE-INTO
CANT-FIND-TEMPLATE

CANT-OPEN-OUTPUT-FILE
CANT-RETRY-ENTRY-GONE

CANT-SUBSTITUTE-WITH-STRING-OR-TUPLE-AND-DTHER
CAN\ 'T-PARSE

CHANNEL-CLOSED

CONTROL-G?
COUNT-GREATER-THAN-STRING-5IZE
DANGEROUS-INTERRUPT-NOT-HANDLED
DATA-CANT-GO-IN-UNIFORM-VECTOR
DATA-CANN"T-GO-IN-STORAGE
DECL-ELEMENT-NOT-FORM-OR-ATOM
DECL-VIOLATION
DEVICE-OR-SMNAME-DIFFERS
ELEMENT-TYPE-HOT-ATOM-FORM-OR-VECTOR
EMPTY-FORM~-IN-DECL
EMPTY-OR/PRIMTYPE-FORHM
EMPTY-STRTING

END-OF=-FILE

ERRET-TYPE-NAME-DESIRED
ERROR-IN-COMPILED-CODE
FILE-NOT-FOUND

FILE-SYSTEM-ERROR

Appendix 4

({for a CHANMEL)

<GUNASSIGN <CHTYPE link ATOM>>
-READ-TABLE or .PARSE-TABLE is not a
vector.

Alleged look-up list is not of TYPE OBLIST
or LIST. :

non-STRING argument to PARSE

attempt to ocutput ATOM with missing or
zero-length PNAME

ATOM purports te be a TYPE but isn't.
DECL problem
#35

{15

Bad argument to RSUBR-ENTRY

"NET"™ CHANMEL

<CHTYPE 1 SUBR>S

attempt to GC-READ a structure containing
a TEMPLATE whose TYPE does not exist
SAVE

attempt to RETRY a call to am RSUBR-
ENTRY whose RSUBR cannot be found
<SUBSTITUTE "T" T>%

<PARSE "">% <PARSE ®")"=>%

<READ <CLOSE channel/>>3%

G

CPRINTSTRING ** _QUTCHAN 1>%

(See section 21.8.15.) (ITS version only)
I[L*"STRING"]% ![<FRAME>]S

FREEZE ISTORAGE

REMAME
DECL problem

<OR> or <PRIMTYPE> in DECL
<READSTRING "">3

RESTORE

262

FIRST-ARG-WRONG-TYPE
FIRST-ELEMENT-OF-VECTOR-NOT-CODE
FIRST-VECTOR-ELEMENT-NOT-REST-0R-A-FIX
FRAME-NO-LONGER-EXISTS
HANDLER-ALREADY-IN-USE
HAS-EMPTY-BODY

ILLEGAL

ILLEGAL-ARGUHMENT-BLOCK

ILLEGAL-FRAME
ILLEGAL-LOCATIVE
ILLEGAL-SEGHENT

ILLEGAL-TENEX-FILE-NAME
INT-DEVICE-WRONG-TYPE-EVALUATION-RESULT

INTERNAL-BACK-OR-TOP-0OF-A-LIST
INTERNAL-INTERRUPT
INTERRUPT-UNAVATILAGLE-ON-TENEX
ITS-CHANNFLS-EXUAUSTED

MEANINGLESS-PARAMETER-DECLARATION
MESSAGE-TOO-BIG
MUDDLE-VERSIONS-DIFFER
NEGATIVE-ARGUMENT
NIL-LIST-OF-0BLISTS
NO-FIXUP-FILE

NO-IT5-CHANMNELS-FREE
NO-MORE-PAGES
NO-PROCESS5-TO-RESUME
NO-ROOM-AVAILABLE

NO-SAV-FILE

NO-5STORAGE
NON-6-BIT-CHARACTER-IN-FILE-NAME
NON-APPLICABLE-REP
NON-APPLICABLE-TYPE
HON-ATOMIC-ARGUMENT
NON-ATOMIC-0OBLIST-HAME
NON-DSK-DEVICE
NON-EVALUATEABLE-TYPE
HON-EXISTENT-TAG

The MDL Programming Language

RSUBR in bad form.
FDECL ((X) <LIST [FOOI>)
(unused)

CFFUNCTION ((X)) 1>%

attempt to PRINT a TUPLE that no longer
exists

Third and later arguments to MAPF/R
not STRUCTURED.

(Tenex and Tops-20 versions only)
function for "INT" input CHANNEL
returned non-CHARACTER .

in compiled code

(unused)

(Tenex and Tops-20 versions only)
Interpreter couldn’t open an ITS 1/O
channel.

bad object in argument LIST of Function
IPC (ITS version only)

RESTORE (version = release)

<SET OBLIST *()> 7%

MDL couldnt find fixup file (section
19.9).

IPC-ON (ITS version only)

for pure-code mapping

<0OR <RESUMER> <{RESUME>>S%

MDL couldn’t allocate a page to map im
pure code.

MDL couldn’t find pure-code file (section
19.9),

No free storage available for GROW.

<VALUE REP> not APPLICABLE

TI=-3%

(unused)
{unused)
(unused)

MON-STRUCTURED-ARG-TO-INTERNAL-PUT-REST-NTH-TOP-OR-BACK in compiled code

Appendix 4

e .
S ——— = S
e e — ! e, ———————— =
R ——
- ——
s =
e e S =
S eSS e e ———
e e —
e
e e
e ————————————————————— e
—— ———————————————————
S ——— e —
—
S ——————————————— —— < s
e ——————————————————————————————————————— e ——
e — e e ——— e w—
—————————————— R _——
S, LS - —
—_— e e
- e
S ——————————————————————————r————————————————————————————————————— e
e e = EEEEEEEEEEEE———— e
e —— — —— — — — R e ——

e

The MDL Programming Language 263

NON-TYPE-FOR-PRIMTYPE-ARG <PRINTYPE nmot-type? in DECL
NOT=-A=-TTY-TYPC-CHANNEL

NOT-HANDLFD

First argument to OFF not ONed.
NHOT=-IN-ARG=-LIST

TUPLE or ITUPLE called outside argument

LIST.

NOT-IN-MAP-FUNCTION MAPRET, MAPLEAVE, MAPSTOP not within
MAPF/R

HOT-IN-PROG <RETURN>S <AGAIN>3
HTH-BY-A-NHEGATIVE-NUMBER in compiled code
HTH-REST-PUT-0UT-0Or -RANGE in compiled code
HULL=-STR1HG zero-length STRING
HUMBER-OUT-0F ~-RANGE 2E3BS
ON-AN-ORLIST-ALREADY CINSERT T <ROOT>>3
OUT-0OF -BOUNDS €1 '(}*% BLOAT argument too large
OVERFLOW </ 1 0>% <= 1E30 1E30>%

PDL-OVERF LOW-BUFFER-EXHAUSTED Stack overflow while trying to expand

stack: use RETRY.

PROCESS-HOT=RI SUMARLI use of another PROCESS's FRAME , etc.
PROCESS-NHOT-RUNABLE-OR-RESUMABLE

PURE-LOAD-FAILURE

READLCR-SYHNHIAX-TRROR-CRRET-ANYTHING-TO-GO-0ON

RSUBR-FNTRY=UNLINKILD RSUBR-ENTRY whose RSUBR cannot be
found

Pure-code file disappeared.

RSUBR-1IN-DBAD-TORMAT

RSUBR-LACKS-F IXUPrS KEEP-FIXUPS should have been true when

RSUBR was input.
SECOND-ARG-WRONG-TYPE

STORAGE-TYPES-DIFFER {CHTYPE 1 LIST>% <CHUTYPE *1[1]
LIST>S
STRUCTURE-CONTAINS-UNDUMPABLE-TYPE {GC-DUMP <HME> <>>%
SUBSTITUTE-TYPE-FOR-TYPE {SUBSTITUTE SUBR FSUBR»%
TEMPLATE=-TYPE-NAME-NOT-0OF-TYPE-TEMPLATE attempt to GC-READ a structure containing

a TEMPLATE whose TYPE is defined but is

not a TEMPLATE
TEMPLATE-TYPE-VIOLATION

THIRD-ARG-WRONG-TYPE

TOO=-FEW-ARGUMI HTS-3UPPLIED

TOO-MANY-ARGS-TO=-PRIMTYPE-DECL CPRIMTYPE any ...2»

TOO-MANY - ARGS-TO-SPECIAL-UNSPECIAL-DECL <SPECIAL any ...2»
TOO=-MANY-ARGIMENTS-SUPPLIED

TOP-LEVEL-FRANME {ERRET> <FRAME <FRAHME <FRAME>>>%
TYPE-ALREADY-EXISTS HNEWTYPE ;

TYPE-MISHATCH
TYPE-UNDLF TNED
TYPES-DIFFER-IN-5TORAGE-0BJECT ISTORAGE

attempt to make a value violate its DECL

Appendix 4

-

_— e —————— = ————=
e e ————— .., _.__..--———————— e ——
e
e
e ——
M. e
R R e e S

—_— eSSBS S S SSsSsSsSssSSSsSsssssssss——— S —_—_—_s— ———————————————

264

TYPES-DINF FR-TN-UNIFORM-VECTOR
UNASSIGNED-VARIABLE
UNATTACHLD-PATI-HAME -SEPARATOR
UNBOUND-VARTIARLE

UNMATCHED
UVECTOR-PUT-TYPE-VIOGLATION

VECTOR-LIUSS-THAN-Z-CLEMLNTS
WRONG=-DIRECT ION-CHANNEL

WRONG-NUMBER-OF ~-ARGUMENTS

Appendix 4

The MDL Programming Language

ILT €238
-5

ENDBLOCK with no matching BLOCK

PUT, SETLOC, SUBSTRUC in compiled
code

#FDECL ((X) <LIST [REST]>)

<OPEN "MYFILE">S% (Mode missing or
misspelt.)

i,

e e e e
—_— e
e e e NS
s 1 e T — e P — S
—_— -
S eSS e e
S ——— = ———— - ———— — —__——______,-" o — —
e = _
ol e . I —
e e e s
e S e
e e e e
e EEEE——————— e
e S —
e ———————— s s s — s —s—ss—s—s Ts—ssssssss———T—————,,—ms———TTTT—T—T—T—T—————
e

The MDL PProgramming Language 265
Appendix 5. Initial Settings

The various switches and useful variables in MDL are initially set up with the following values:

CACTIVATE-CHARS <STRING <ASCII 7> <{ASCII 19> <ASCII 153>>>
:"Tenex and Tops-20 versions only”

<DECL-CHECK T>

CUNASSIGHN <GUNASSIGH DEV>>

CHRC-MON <>>

<SET THCHAN <SETG INCHAN <OPEN "READ"™ "TTY:"2>>>

SUNASSIGN KEEP-FIXUPS>

SUNASSIGN <CGUHASSIGH NMI1>>

CUNASSTGH <{GUNASSIGN NM22:>

€SET OBLIST <SETG OBLIST (<MOBLIST INITIAL 151> <ROOT>)>>

<SET OUTCHAN <SETG OQUTCHAMN <OPEN "PRINT™ "TTY:"22>>

SOVERFLOW T2

SUNASSIGN REDCFINE>

CRSUGR-LINK T>

<SETG <UNASSIGH SNM> "working-direcltory®™>

CSPECIAL-CHECK <3>

{SPECTAL-MODE UNSPECIAL>

<SET TH1IS-PROCESS <5ETG THIS-PROCESS <MAINZ>>>

<ON "CHAR™ ,QUITTER 8 0 ,INCHANZ>

<ON "IPC" ,IPC-HANDLER 12 ;"ITS version only™

Appendix 5

The MDL Programming Language

References

Hewitt, Carl. Planner: A _Language for Manipulatin

g Models and Proving Theorems in a Robot,
Proc. International Joint C

onfcrence on Artificial Intelligence, May 1969,

I_l'h“ll‘_:_ P. David,

The MDL Programming Environment, Laboratory fer Computer Science,
M.LT.. 1979,

Moon, David A,
197 4.

MACILISP Reference Manual, Laboratory for Computer Science, M.L.T.. April

References

-
——— == = ==
R =
—______— ___— __—___— .~ ____"
R R R R R R R I ™ E——
e e R ——— i —— e R ——— i ——— e e ——

e ___———

The MDL Programming Language 267

Topioc Index

Parenthesized words refer to other items in this index.

argum ents

arithmetic

array
assignment
binding
bits

block
boolean
bugs

call
change

character

circular
coOmina
commenis

comparison

conditional

=OPTIONAL® *TUPLE® "ARGS" (parameter)

+« - = f ABS EXP LOG SIN COS ATAM MIN MAX RANDOM OT 1T ==7 LT GT L=7
=7 Ne=

VECTOR UVECTOR TUPLE STRING BYTES TEMPLATE

SET SETG DEFINE DEFMAC ENVIRONMENT (value parameter binding)

BOUND? GBOUND? ASSIGNED? GASSIGNED? LEGAL? (assignment value parameter)
WORD BITS PUTBITS GETBITS BYTES ANDB ORB XORB EQVE LSH ROT

BIND PROG REPEAT BLOCK ENDBLOCK OBLIST MOBLIST OBLIST? !-

FALSE COND AND AND? OR OR? NOT (comparison)

{errors)

FORM APPLY APPLICABLET EVAL SEGHENT

PUT-DECL PUTPROP SET SETE (side effect)

CHARACTER STRING ASCII PRINC READCHR NEXTCHR FLATSIZE LISTEN PARSE
LPARSE UNPARSE

PUTREST PUT LENGTHT FLATSIZE
GVAL SETG
; FUNCTION ASSOCIATION

==7 MN==7 =7 N=7 G7 L=7 L? G=7 07 17 MAX MIN STRCOMP FLATSIIE LENGTHT
(boolean)

COND AND OR (boolean)

Topic Index

il

e e

concatenation
coroutine

data type

decimal
do
dump
errors
escape
execule
exit

file system

goto
graphics
identifier
if
indexing
input
integer

interrupts
iteration

leave

The MDL Programming Language

SEGHENT STRING CONS
PROCESS STATE RESUME SUICIDE RESUMER HE MAIN BREAK-5EQ L3TEP FREE-RUN

TYPE TYPE? PRIMTYPE TYPEPRIM CHTYPE UTYPE CHUTYPE NEWTYFE PRINTTYPE
APPLYTYPE EVALTYPE ALLTYPES VALID-TYPE?

(loops execute call)

SAVE (output)

FRAME ARGS FUNCT ERROR ERRORS ERRET RETRY UNWIND
\ "6 ~5 "0

EVAL APPLY QUOTE FSUBR “ARGS™ (call)

RETURN ACTIVATION (gota)

FILECOPY FILE-LENGTH RENAME OPEN OPEM-NR CHANNEL FILE-EXISTS? NM1 NM2
DEV 5HM SHAME

GO TAG UNWIND PROG REPEAT AGAIN RETURN ACTIVATION "ACT" (loops)
STORAGE IMAGE

ATOM PNAME SPNAME LINK LOOKUP INSERT REMOVE OBLIST SPECIAL (parameter
value)

(conditional)
NTH OFFSET GET PUT BACK TOP “Gﬂps]

READ READCHR MNEXTCHR READB READSTRING READ-TABLE GC-READ ECHOPAIR
OPEN ACCESS LOAD FLOAD RESTORE RESET

FIX (arithmetic)

EVENT HANDLER ON OFF ENABLE DISABLE INT-LEVEL DISHISS INTERRUPT
(loops)

{qguit)

Topic Index

The MDL Programming Language 269

loading
location

loops

Imacro

monitor

multi-processing

octal

output

parameter
parentheses
parse
period
pointer
predicate
primitives
procedure
quit

real
recursion
search
sharing

side offect

FLOAD SAVE RESTORE LOAD
{pointcr)

REPEAT PROG RETURN GO ACTIVATION AGAIN MAPF MAPR ILIST IVECTOR
IUVECTOR ISTRING IBYTES IFORM

% %% LINK READ-TABLE PARSE-TABLE DEFMAC EXPAND MACRO
"READ"™ "WRITE"

(coroutine)

PRINT PRIN]1 PRINC PRINTB PRINTSTRING IMAGE GC-DUMP ECHOPAIR FLATSIZE
SAVE TERPRI CRLF OPEN ACCESS RESET BUFOQUT METS

FUNCTION ATOM LVAL SET SPECIAL UNSPECIAL (identifier vaiue)
LIST

PARSE LPARSE PARSE-TABLE UNPARSE

LVAL SET READ

LOCATIVE AT IN SETLOC LIST

{boolean)

5UBR FSUBR ROOT GVAL SETG

FUNCTION DEFINE DEFMAC GVAL CLOSURE

G 5 "0 QUIT VALRET LOGOUT RETURMN (loops)
FLOAT (arithmetic)

(always assumed and built in)

MEMQ MEMBER =7 ==7 (comparison)

SEGMENT GROW SUBSTRUC

PUT PUTREST SETLOC SUBSTRUC fﬂlallg!}

Topic Index

R R R R R R R R = ————— W T =
I ——ESEESEEEHH—€—§—§—§—§—§—§—§—§—§———§E—S—S

270

sixbit
storage

structure

subroutine
ttlﬂporary
terminal
Text
trailer

rue

tty

unbinding

value

The MDL Programming Language

JNAME XJNAME SEND SEND-WAIT IPC-ON
GC BLOAT BLOAT-STAT FREEZE TUPLE "gC® {structure)

LIST VECTOR UVECTOR STRING BYTES TEMPLATE STRUCTURED? EMPTY7?7 MONADT?T
LENETH LENGTH? (concatenation)

(procedure primitive)
"AUX® BIND PROG REPEAT
(1ty)

{character)

1- OBLIST

(boolean)

LISTEN “L “6 "~ “D rubout ECHOPAIR TTYECHO TYI "BLOCKED™ "UNBLOCKED®
ACTIVATE-CHARS (character)

(binding)

LVAL GVAL VALUE IN SET SETG ENVIRONHENT ASSIGNEDT GASSIGNED? BOUND?T
GBOUND? “BIND®™ ACTIVATION "ACT® (parameter) RETURN {quit loops)

Topic Index

The MDL Programming Language

Name Index

An underscored

1 -#FALSE ()
I

1<

1>

'L

by

']

"

"y

HACT"
"ARGS"
llnuxll
"BIND"
"BLOCKED"
“"CALL"™
"CHAR"
"CLOCK"
"DIVERT-AGC"
IIDEK "
"ERROR"
"EXTRA"™
s

" ILOPR"

" INFERIOR"
" INPUT"

" INT "
"10C"
"IPC*"
"MPV™
"MUD"
"MUDDLE"
"NAME "

page number refers

= e

1)
o
e
-
=
=

==
[

103 105

e = =i =

e 98 le= 1
b 1]
=

] T

-.;|

-y ‘-:Tl':ﬂ::l.‘
|

b 4

186 195
102 108

1 87
IS6
189
189
102
113
189
189 203
189
102
108
84 87

SMET™
"OpTe
"OPTIONAL"™
"PARITY"

o a “PRINT™
primary descriptiont an unadorned page
number refers 1o a sccondary description,

"PRINTB"
“PRINTO"
"PURE™
"QUOTE"
"READ"
"READB"
"REALT"™
IIRUNT.
"SAVE"
"STY"
"SYSDOWN®
"TUPLE"
"UNBLOCKED®
"VALUE"
"WRITE"™

MName Index

L3

=] | =1
o (00

86 137
81 86 137

.,_.
o
T

-
Ele

=

-
o
|-

l

o
]
=]

=
=]

105 184 187 211

-
=
—

l

o
1=]

[]
1=

|

-
=]
o

_
b=
=

-
23

87 105 137

(+ -]
=

=
R
e |

3l

211

(]

4 44 46 100

4 16 98 113 184 185 187

271

The MDL Programming Language

28 151 BLOAT 186 196

BLOAT-STAT 198

0? i BLOCK 142 145
BLOCKED 170

17 72 BOUND? 79 175 187

ISTEP 175 BREAK-5EQ 173
BREAKER 174

: 24 10 BUFOUT 101 111 115
BYTE-SIZE 66

< 2] BYTES 55 65 GG 213

==? T2 211 CALLER 164

=7 72 03 CHANLIST 103
CHANNEL 65 101 102 103 104 122

> g CHARACTER 654 100 154
CHTYPE 45 211

ABS 28 CHUTYPE 64 216

ACCESS 101 110 CLOSE 103

ACTIVATE-CHARS (84 CLOSURE 88

ACTIVATION Hid 150 183 193 205 CODE 164

AGAIN 85 90 150 175 COMMENT 122

AGC-FLAG 186 COND 75

ALLTYPES 16 CONS 59

AND 73 76 185 cos 40

AND? 74 93 CRLF 100 101

ANDB 66 161

ANY 125 DEAD 170 170

APPLICABLE 125 DECL 124 223

APPLICABLE? 74 DECL-CHECK 134

APPLY 18 88 DECL? 135

APPLYTYPE 1% DEFAULT 41

ARGS 1-18 176 DEFINE 39 147

ASCII 6o DEFMAC 156

ASOC 123 1G9 218 DEMSIG 203

ASSIGHED? 76 79 175 187 DEV 102 265

ASSOCIATIONS 123 DISABLE 182

AT 17 DISHMISS 175 179 183

ATAN 40

ATOM 22 100 143 194 217 ECHOPAIR 101 113 146

AVALUE 123 EHPTY? 74
ENABLE 182

BACK Gn 215 ENDBLOCK 142 145

BINARY 166 ENTRY=-LOC 166

BIND 84 20 ENVIRONMENT 37 83 84

BITS 160 EQVE 161

Mame Index

R R R R R Al A A A A A At R A A A sA A A A A A AR A A A A c—A A R RRARRRRRRRRELARREEERPPEEREEESREEEE—EBPSbGpbGEbEBC=>EEG.

The MDL Programming Language 278

ERRET 19 148 175 222 GETL 117

ERROR 18 1417 183 206 GETPL 17

ERRORS 1-12 147 206 GETPROP 121

EVAL 20 48 83 175 GLOC 117 165

EVALTYPE 18 GO 96 175 205

EVENT 78 179 181 GROW 60 186

EVLIN 175 GUNASSIGH 52

EVLOUT 175 GVAL 31 39 41 117 169 193 194 208

EXP Al

EXPAND 157 HANDLER 178 179 179 180 i85
HANG 191

FALSE 71

FBIN IR7 IBYTES 66

FILE-LENGTH 101 110 IFORM 58

FILE-EXISTS? 103 IHEADER 177 180

FILECOPY 1ol 1 ILIST 57 205

FIX 21 22 23 28 53 135 ILLEGAL 193

FLATSIZE 1] IMAGE 101 107 186

FLOAD 18 76 110 150 IN 116 118 119

FLOAT 22 23 INCHAN 103 146

FORM 27 33 58 71 INDEX 136

FRAME 147 148 176 193 213 INDICATOR 123

FREE-RUN 175 INIT 18

FREEZE 164 186 194 INITIAL 141 265

FSAVE 108 INSERT 143 145

FSUBR 23 31 39 30 56 74 74 75 89 90 INT-LEVEL 183

9G 131 147 150 INTERHAL 258

FUNCT 148 176G INTERNAL-TYPE 258

function 27 INTERRUPT I81 190

FUNCTION 55 30 78 B3 B4 INTERRUPT-HANDLER 186

Function B4 INTERRUPTS 142 177
IPC-HANDLER 203

G/fLVAL 1-i8 IPC-OFF 203

G=7 72 IPC-ON 203

GY 72 ISTORAGE 239

GASSIGNED? 70187 ISTRING 57 64

GBOUND? 79132 193 ITEM 123

GC 186 195 ITS 17 18 102 108 1I2 113 114 115

GC-DUMP 101 107 199 166 167 184 184 187 188 189

GC-MON 199 189 189 195 202 202

GC-READ 101 107 186 199 ITUPLE 80

GDECL 151 IUVECTOR 57

GET 53 121 IVECTOR 57

GET-DECL 31 136

GETBITS 1G0

Mame Index

e e ———— - _ — ———— —————-—5-—
T ——e—,—,—Y—Y—Y——_———_—_—_—, e, —mm—m——_—_—__——_ e —_———————
I
e R e e = ————————

274 The MDL Programming Language

JNAME 201 MAPF 91 92
MAPLEAVE 95
KEEP-FIXUPS 167 265 MAPR a1 92
MAPRET 94
L-INS 1IG MAPSTOP 95
L-0OUTS 146 MAX 28
L=7? 72 ME 174 195
L? 72 MEMBER 73
LAST-0UT 116 MEMQ 73
LEGAL? B0 85 97 116 118 176 193 214 MIN 28
LENGTH 52 75 MOBLIST 140 144
LENGTH? 74 HMOD 28
LERRY 118 151 MONAD? 74
LINK 153 HUDDLE 18 108 142
LIST 54 57 57 50 63 V2 186 204 212
215 N==7 72
LISTEN 111G 119 1G9 183 N=7 73
LLOC 116G 175 193 NBIN 166
LHAPY, n5 NETACC 115
LOAD a1 109 HETS 101 115
LoCA 117 NETSTATE 115
LOCAS 117 NEWTYPE 46 133 165 186 193
LOCATIVE 125 214 NEXT 123
LOCATIVE? 117 NEXTCHR 96 99 101 187
LOCB 117 NHM1 102 265
LOCD 1i6 117 193 214 NMZ 102 265
LOCL 17 NOT 73
LOCR 165 NTH 52 B8
Locs L7
LOCT 117 OBLIST 100 139 141 146 169 194
Locu LIz OBLIST? 140
Locv 7 OFF 179
LOG A1 OFFSET 135 214
LOGOUT 202 ON 181
LooKUup 1413 OPEN 101 105 111 113 114 184
LOSE 58 Gl 64 OPEM-NR 102
LPARSE G5 143 153 156 OPT 127
LPROGY no OPTIONAL 127
LSH 162 OR 74 76
LVAL a2 37 116 119 169 175 193 208 OR? 74 93
ORB 161
MACRO 90 156 OUTCHAN 49 103 128 146
MAIN 171 174 195 OVERFLOW 151
MANIFEST 13
MANIFEST? 132 PARSE 65 143 143 153 156 157

MName Index

.

The MDL Programming Language

PARSE-STRING 156 RESUMABLE 170
PARSE-TABLE 153 RESUME 170 173 173 190
PCODE 164 RESUMER 174
PNAME 22 144 217 RETRY 150 222
PRIMTYPE 44 RETURN 85 90 175
PRIMTYPE-C 165 RGLOC 165
PRINI a9 101 112 ROOT 141 145
PRINC 100 101 112 ROT 162
PRINT 20 23 48 99 101 112 141 RSUBR 147 163 165 194
PRINTB 101 106 RSUBR-ENTRY 147 166
PRINTSTRING 101 106 RSUBR-LINK 164 265
PRINTTYPE 48 rubout 17 98 118
PROCESS 146 169 170 190 193 219 RUNABLE 170
PROG 84 89 204 RUNINT 181
PURE=-PAGE-LOADER 186 RUNNING 170
PURIFY 108 186 194 199 RUNTIMER 189
PUT 53 56 68 88 120
PUT-DECL 134 136 SAVE 108 108 165 200
PUTBITS 161 SEGMENT 66 72 154
PUTPROP 120 SEND 202
PUTREST 59 69 SEND-WAIT 202
SET 32 37 175 186 194
QUICK-ENTRY 164 259 SETG 30 57 186 194
QUICK-RSUBR 164 259 SETLOC 116 118 119
QUIT 202 SIN 40
QUITTER 184 SLEEP 19
QUOTE 5G B2 B3 SNAME 110
SNH 102 108 110 265

RANDOM 29 SORT 61 73
READ 20 22 99 101 122 140 142 153 SORTX 62

187 SPECIAL 127 156 193 223

READ-TABLE 153 SPECIAL-CHECK 134
READA 154 SPECIAL-HMODE 128 134
READB 101 106 SPLICE 154
READCHR 96 99 101 105 112 113 187 SPNAME 144
READSTRING 101 106 112 SQRT 40
REALTIMER 189 SQUOTA 253
REDEF INE 10 265 STACKFORM 96
REMOVE 143 145 STATE 170
RENAME 101 111 STORAGE 194

REP 146 STRCOMP 73
REPEAT 84 89 205 STRING 55 57 64 65 100 154 213
RESET 101 102 111 112 STRUCTURED 125
REST 52 56 75 126 219 STRUCTURED? 74
RESTORE 108 109 SUBR 28 31 147

|

275

MName Index

—_——0m07—

276

subroutine
SUBSTITUTE
SUBSTRUC
SUICIDE

T
TAG
TEMPLATE
Tenex

TERPRI
THIS-PROCESS
TIME

TO

TOP

TOPLEVEL
Tops-20

TTYECHOD
TUPLE
TYI

TYPE
TYPE-C
TYPE-W
TYPE?
TYPEPRIM

UNAME
UNASSIGN
UNBOUND
UNMANIFEST
UNPARSE
UNSPECTAIL
UNWIND
UTYPE
UVECTOR

VALID-TYPE?
VALRET
VALUE
VECTOR

28 147
| kL]

a1 56
174

7l

HIEN Lk

25 66 219

I 18 102 108 113 114 114 115
51 167 178 184 187 188 189
180 |8 |89 227

76 100 101

1744 174

201

111

G0 215

118

I7 18 102 108 113 114 114 1i5
1531 167 IY8 184 187 188 189
189 189 189 227

Iy 113 -6

"0 B0 193 214

101 115 187 187

20 44 74 94 193 211 218

IG5

165

63 144

127 221 223
150 223

G
51 57 57 63 G5 204 213 217
16

200

54 57 57 63 186 204 212 216

The MDL Programming Language

X¥JINAME 201
XORB 161

XUNAME 201

[24 54

\ 25 55 100 154
] 24 54

A 4 107

~@ I7 58 98 113
~D 17 98 |13

G 17 150 184

~L 17 98 113

~0 17 151

~5 17 146 151 184
{ 24 55

} 24 55

MName Index

—_— e e e

