The MDL Programming Environment

P. David Lebling

May, 1980

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

The MDI. Programming Environment

Table of Contents

1. Overview of the MDL Prugramming'Envimnment

2. The Package System

2.1.
2.2,

2.3

The Theory of Lexical Blocking in MDL
Package System Overview
2.2.1. Sample PACKAGE
PACKAGE

2.3.1. ENTRY

232. USE

2.3.3. USE-DATUM

2.3.4. DROP und 1.-UNUSE
2.3.5. ENDPACKAGE

2.3.6. PACKAGE: Restrictions
2.3.7. ENTRY Name Conflicts

3. Program Writing and Debugging Aids

3.l

3.2

3.3,

Pretty-Printing
LL1. PPRINT Control Switches
3.1.2. Lower-level Pretty Printing
3.1.3. Ampersand Printing
3.14. Examining the Stack
‘The MDI. Editor
3.2.1. 'I'he Edit "LISTEN Loop’
3.2.1.1. ‘I'he Reader
3.2.1.2. 'The Ampersand Printer
3.2.2. Edit Commands
3.2.2.1. General
3.2.2.2. General Commands
32.2.3. Movement Commands
3.2.2.4. Printing Commands
3.2.2.5. Editing Commands
3.2.2.6. Macro Facility
3.22.7. Cursors
3.2.2.8. Breakpoints
3.2.2.9. Edit Monitors
3.2.2.10. User-defined lidit Commands
32.3. Examples
3.2.3.1. Simple Editing
3.2.32. X and G Commands
3.2.3.3. Unconditional Breakpoints
3.2.34. Conditional Breakpoints
3.24, lidit Command Summary
Debugging and the Interpreter

Table of Contents

34. Loading and Dumping
3.5. The One-step Debugger
3.5.1. MDI. Debugger Command Summary
3.5.2. MDL. Debugger Special Features
3.6. Execution Tracing
3.6.1. Using TRACE
3.6.2. Understanding TRACE
3.7. Monitors
3.7.1. Monitor Internals
3.7.2. Creating MONITORSs
3.7.3. Monitor Fvents
374, Killing Monitors
3.7.5. Other Monitor Routines
3.7.6. What You Can't Do with Monitors
8. FINDATOM
19. "PINFO"
3.10. Debugging in a Run-time Environment
J.10.1. DFL
3.10.2. RDFL
3.10.3. UN-DFL
3.104. UNLINK
J.11. CRITIC
3111, Global problems with the Group
3.11.2. Parameuer list problems
J.11.3. Unused ATOMs
3.11.4. Function calling errors
3.1L5. SPECIAL/UNSPECIAL problems
3.1L6. DECLing problems
3.1L7. Miscellaneous
3.12. Program Environments

- The Library System

4.1. Program libraries
4.1.1. Library Searching
4.1.2. Dynamic Loading
4.1.3. USE-DEFER
4.14. USE-TOTAL
4.1.5. Translations
4.1.6. “The Library Data File
4.1.7. Run-time Switches
4.1.8. Library Utility Functions
4.1.9. Internal |ibrary Functions
4.1.10. Library Maintenance
4.2. The Purc-mapping Library
4.2.1. The Demon

Table of Contents

‘he MDL Programming Environment

on
[

iii ‘I'he MDL Programming Environment

4.2.2. Uscr Programs 74
4.2.2.1. Listing Functions 74

4.2.2.2. Find Functions 75

4,2.2.3. Other Functions 75

42.3, Using DBMAIN 76
4.2.4. Garbage Collection 76
4.2.5. Internal Structure 77

5. The Compiler 79
5.1. Interfacing to the Compiler 79
5.1.1. Compiler Functions 79
5.1.2. Compiler Switches R0

5.2. COMBAT 83
5.2.1. Userinterface 83
5.2.1.1. Symbuolic input 34

5.2.1.2. File names 84

5.2.1.3. Text g5

5.2.2. Combat Questions 85
5.2.3. Requesting Compilations 87
5.24. 'How 1o Run’ Options 90
5.2.5. User lailoring 90
5.2.5.1. Tailor files 91

5.2.5.2. Creatc type 91

5.2.5.3. Printtype 92

5.2.54. Delete type 92

5.2.5.5. Alter type 92

5.2.5.6. Load wilor, Replace tailor 92

5.2.5.7. Xecrox tailor 92

5.3. The Compiler (Intcrnals) 92
5.3.1. How it Works 93
5.3.1.1. COMPILE and COMPILE-GROUP 93

5.3.2. Modcling Pass 94
5.3.3. Analysis Pass 95
5.3.4. ‘I'he Type Analysis Model 96
5.3.5. Life-and-Death Analysis 97
5.3.6. ‘Ime Variable Allocation Pass 97
5.3.7. 'The Code Generation Pass 98

6. Making It Run Faster 103
6.1. GLUE 103
6.1.1. How to Glue 103
6.1.2. GI.UE as a Program 104

f.2. Glue Bits 105
6.3. PDUMP 105
6.4. SUDRFY 106

Table of Contents

e

iv ' ‘The ML Programming Environment

6.5. Purification 107
6.5.1. Purifying RSUBRs 108

6.5.2. Purifying an Environment 109

6.5.3. Purification Summary ' 110

6.6. TEMPLATEs 110
6.6.1. Usc of TEMPLATEs 111

6.6.2. Asscinbly of TEMPIATEs 113

7. The Assembler 115
1.1, The Assembler 115
1.L.1. General Organization 115

7.1.2. The Assembler as a Program 116

T.L3. Format of Assembler's Source 116

LL4. Instruction Assembly 116

1.1.5. Initial Symbols 117

7.1.6. Macro Writing 117

7.1.7. Pscudo Operations 118

T.L8. The I'ype RSUBR 120

7.1.9. Writing Gluable RSUBRs 121

7.2, Debugging Binary Code 121
7.3. Unassembling Binary Code 122

8. Informational Aids 125
8.1. File Comparison and Checking with MUDCOM 125
8.2. The MDI. Listing Program MAT 126
8.2.1. MAT Switches 127

8.2.2. Subttles 128

8.2.3. MAT Definition 128

8.2.4. MAT Record Files 131

8.3. The MDL-1PC Device Interface MUDINQ 131
Index 135

Table of Contents

The MDI. Programming Environment - 1

INTRODUCTION

The Mu. language is described in “The Ml.}r_ Programming |.anguage® [3]. but in addition w the language
itsclf, there is a rich and varied collection of software written in the language which facilitates the writing of
programs and systems of programs in MDL. The information describing this programming environment has
been contained in various documents, some out of print or out of date, and in supplemental disk files
describing changes and additions. Some of the packages of functions used to deal with M code have never

been formally documented. This manual brings together some of that scattered documentation.

The document’s purpose is to flesh out the description of the language contained in “Ihe MbL
Programming l.anguage.” giving a fuller description of the program writing and debugging aids available to
MDI. users, to describe the methods for producing code usable by others, to describe the Ml compiler and

the many other technigues for producing and speeding up MDI. object code.

‘The imagined reader of this document is someone who has read “The MDL. Programming I.anguage,” and
now proposes to write programs in ML, possibly even very large programs. ML packages that he would
find uscful in the process of doing so arc documented here: editors, debuggers. ete. Packages that he might

wish to use within his program are not included: data-management systems, command interpreters, ctc.

This document is of necessity highly self-referent, as many of the components of the MDI programming
environment refer to cach other and adhere to the same conventions. Additionally, this document assumes

that the reader is familiar with the language itself (at least to some degree) and with the 1S, TENEX, or
1'0PPS-20 operating systems.

INTRODUCTION

Fhe M1 Programming Environmen

ACKNOWLEDGMENTS

The ML Programming Environment

ACKNOWLEDGMENTS

The programs described in this document are the products of many man-years of effort by many peaple.

Must have been “touched’ by several programmers, added to and improved over the years.

Some of the people responsible for the programs mentioned 'LII this document are: Chris Reeve (M1, the
compiler. GLUE): Brian Berkowitz (Mpi., the compiler, TEMPLATE, SUBRFY). Bruce Danicls (M, the
compiler. PACKAGE. PPRINT. DEBUGR, ASSEM): 1im Anderson (PACKAGE, the Library. FINDATOM, DFL,
Covpat, Mulisg): Ha::_!l Ryan (EDIT. PDUMP, the 1PC interface); Mare Blank (MAT. MUDCOM, MONITR,
CoMBAT, EDIT. CURSOR): David |.chling tCRI.TIC. EDIT): Michael Broos (the Library): Roger Banks
(TRACE): Greg Phister (PPRINT): Joel Berez (EDIT).

(Must of the documentation subsumed in this manual is from published and unpublished memos of the
Programming Technology Division of the ML, Laboratwry for Computer Science. As a general rule,
updates and revisions to this and other "I documents concerning M. are availuble online in the directory

"MUDMAN" at MI'T-1DMS).

ACKNOWI.EDGMENTS

the M. Programming Environment

NOTATION

The MDIL. Programming Environment 3

NOTATION

Anything which is written in the MDIL language or which is typed on a computer console appears herein in
a typewriter font, as in PPRINT. A metasyntactic variable -- something to be replaced in actual use by
something clse -- appears as channel. in an italic font. Where a meta-syntactic variable is being used to denote

i reguired argument to some function, it appears as before, but underlined, as channel.

In the argument templates of M1 functions, the individual arguments are often given in the form
argument:iype, where argronent s a “descriptive’ name for the argument, and fype is its MDIL type (or range of
types). In such cises. the "type” boolean indicates an arguiment that is only examined for truth or falsity, and

not for any of its other qualities. Such arguments in My, arc ofien declared *¢OR ATOM FALSE>".

Finally, Mle names are given as though for the I'TS vperating system:
device: sname; fuml fam2
‘The analogous specification for TENEX or T0PS-20 would be
device: <sname> fuml . fim2
Note that in the TENEX/1'0PS-20 version of Mbi, the fum2 (which may include the generation number,

protection and acce-mt fields) is by default "MUD™ as opposed to "> " for the I'TS version,

NOTATION

L0

fhe MBI, Programming Fnvironment

The M. Programming Environment -~ 7

1. Overview of the MDL Programming
Environment
"I'he parts of the MDI. programming cnvironment described in this document are primarily those dealing
with the writing. debugging, sharing, and maintenance of code and programs written in MDI. Muost of the
packages described herein are written in MDI themselves: some are assembly language programs useful to

MDI programmers,
‘I'he document is divided into chapters dealing with the major issucs facing the novice (or even the
cxperienced) MDI. programmer.

- “I'he Package System’ introduces the standard mechanism for lexical blocking and thercfore,
sharing of M. code. Understanding its usc is fundamental to writing MDI programs.

~ *Program Writing and Debugging Aids’ is the largest chapter. It covers mechanisms for loading,
dumping, editing. and debugging M. code. whether interpreted or compiled. in a development
or a production environmenL

— “I'he Library System® discusses the usage of libraries of MDIL programs.

— “The Compiler” includes the specifics of interaction with the M compiler, as well as an overview
of the theory behind its operation.

— *Making It Run Faster' covers the various methods for speeding up “production’ MDL. code by
remuoving mediated calls and compacting data structures.

“The Assembler’ documents the ML assembler and some methods of debugging binary code.

— ‘Informational Aids' discusses a few programs, most written in assembly language rather than
ML, which are useful tw the MDI. programmer.

10

e M. Programming Environment

The ML Programming Environment 9

2. The Package System
T'he portion of the M1 environment which-provides a uniform facility for lexical blocking is known as the
Package System. In one sense it is the most basic part of the environment, since it enables many programmers

1o use cach other's code without identifier conflicts.

In addition, the Package System is interfaced to a library fadYhty (see section 4) by which MDL. code may
be stored and later loaded as needed.

The Package System is su basic to use of the ML environment that (with a few cxceptions) every

subsystem or family of M1, functions described in this document is a “package’.

2.1. The Theory of Lexical Blocking in MDL
I.exical blocking is implemented in M1 by mcans of OBLISTs and L1STs of OBLISTs. Changes of
lexical context are performed using the SUBRs BLOCK and ENDBLOCK. ‘The Package System provides a

high-level interface to these low-level constructs.

The primary goal of a lexical blocking scheme is the prevention of identifier conflicts. Specifically, when
your program references the variable X, it should be your X wnd not that of some other program. At the same
time, it should not be necessary for a programmer to scarch every program previously written to verify that an

identifier he wishes to use is not already ‘taken’.

It should be clear that the simplest solution, a single OBLIST, will not satisfy cither of these goals. With
unly one OBLIST there would necessarily be identifier conflicts. necessitating exhaustive scarching for unique

identifiers.

Obviously, programmers could put their program’s identificrs on an OBLIST unique to that program.
Unfortunately, such a solution addresses only half the problem. What happens when some other programmer
wishes to use some of this code? He could insert the unique OBLIST for that program into the OBLIST path
for his program; but the moment that is donc he gets all the identifiers for that program, including local

viriables, internal data structures, and 50 on.

Conscquently. we move (o a situation where cach program uses two OBLISTs: one for the identifiers that
are local w the program, and one for the identifiers that are to be used by other programs. In the Package

System, these arc known as the ‘internal’ 0BLIST and the ‘entry’ OBLIST.
Most of the identifiers in a program are local to it, and want t be placed on the internal 0BLIST.

20

10 ' The ML, Programming Environment

Merefore, in terms of an argument to the BLOCK SUBR, when a program is being loaded into M, the
OBLIST path wanis to be:

{ internal-oblist
entry-oblist
<ROOT>)

With this OBLIST path, most ATOMs (identifiers) will be on the internal OBLIST (as READ puts unknown
identifiers on <1 ,0BLIST>), but the ATOMs fur the entrics and the ATOMs fur the usual SUBRs will be

available,

The only issue yet to be addressed is that of using an entry of a different program in your program, This is
accomplished by adding the entry 0BL ISTs of any such programs (o the path after ROOT:

{ fnternal-oblist
entry-oblist
<ROOT>
uther-pragran-enty-oblist
yet-another-program-entry-oblist

As only the entry OBLIST, and not the internal OBLIST, of the program being used is added to the path,

the chance of identifier conflict is lessened.

All that remains is to introduce the functions by which these various operations are performed.

2.2. Package System Overview
The functions which make up the Package System are: ;

— PACKAGE. This indicates the start of a package of functions.
— ENDPACKAGE. 'T'his indicutes the end of the package of functions.

— ENTRY. This indicates an ATOM which is to be made available outside the definition of this
package of functions. All other ATOMs will not be dircctly available vutside the package.

— USE. This indicates a reference by name to another package of functions.
— USE-DATUM. This indicates a reference by name to a data set

— DROP and L-UNUSE. These undo the effects of USE and USE-DATUM,

These functions are themselves part of a package named "PXG". which is preloaded into MDL.

The Theory of lexical Blocking in MDL 21

I'he ML Programming Environment 11

2.2.1. Sample PACKAGE
A sample MDI. PACKAGE is given with comments in order to demonstrate the usage of these functions.
{PACKAGE "HOUR-STRING"» '

;"PACKAGE begins the package called HOUR-STRING."
<ENTRY TIME-STRING>

:"The atom TIME-STRING is an entry to this package;
it may be referenced by other packages by
USEing HOUR-STRING."

<USE "DATIME">

;"Indicate that the package DATIME is
used within the current package.”

<DEFINE TIME-STRING ()
{STRING <UNPARSE <HOURS>> " o'clock">>

;"Define this little function which returns a string
telling the last hour in a strange format."

CDEFINE HOURS () <1 <RTIME>>>

:"Define an internal function which is available
only within the HOUR-STRING package, since its
name is not in any ENTRY statement.

Note that this function refers to RTIME,

which is an ENTRY in the DATIME package."

<ENDPACKAGE?>

:"The end of this little demonstration package."

2.3. PACKAGE
This function delimits the beginning of a package of functions. It takes one required argument, a STRING,
which is the name of the package. 'This STRING uniguely identifics the package within a library of packages

{sce section 4).

In a PACKAGE those ATOMs which are specified as entrics live in a separate OBLIST of their own, called
the entry OBLIST. The ATOM naming this OBLIST is on the PACKAGE OBLIST and has the same name as
the PACKAGE itself. Thus. an entry. ‘X" of a PACKAGE 'Y' would have as its ‘Tull-trailer’ name:
X!-Y!-PACKAGE!- .

PACKAGE blocks (sets up) the current OBLIST path so that the ATOMs which arc internal to the PACKAGE

22 Package System Overview

12 Ihe ML, Programiming Environment

fll intw an OBLIST which is not otherwise used. The ATOM namning this OBLIST is on the entry OBLIST of
the PACKAGE. and is by default given a name created by putting the character *1" at the beginning of the
PACKAGE's name, An internal ATOM ‘I° in the PACKAGE 'Y previously mentioned would have as it
“full-trailer’ name: 2! -1Y!-Y1-PACKAGE! - .

PACKAGE also keeps track of the Fact that the particulur PACKARE named has been defined in this MpL
prucess, by putting its name on the PACKAGE OBLIST.

{PACKAGE name:string

iname:string
size:fix
isize:fix>
PACKAGE wikes three optional arguments in addition to the required one (the optional arguments are
ignared if name is already a PACKAGE):

mume is the name of the internal OBLIST of the PACKAGE: by default it is the name of the PACKAGE with
the letter " I” prefixed.

size is the number of buckets in the entry ublist: by default 19,

isize is the number of buckets in the internal oblist: by default 23,

In addition to PACKAGE, there exists the obsolete function RPACKAGE, documented here only because
some programs still use it. The difference between them is that the cntry OBLIST for an RPACKAGE is the
ROOT OBLIST. The implication of INSCITing an entry into the ROOT is that this requires that the name of the
entry be unique over all PACKAGES, beciuse the entry is, in ¢ffect. being promoted to the status of a SUBR. [t
is (in rare cases) useful to do this, but the corroct wity is with the function RENTRY (sce section 23.1).

2.3.1. ENTRY
The ENTRY function applicd to one or more ATOMs declares that these ATOMs are o be put inio the
OBLIST reserved for entries in this particular PACKAGE. Only ATOMs declared in this way will be accessible

(in the normal course of events) o functions oulside this PACKAGE.

It is possible to place some entries of a PACKAGE on the ROOT OBLIST using the function RENTRY. Itis
recommended that instead of using RPACKAGE in thuse rare cases where entrics must go on the ROOT,
RENTRY bc used instcad.

All ENTRY statements should appear immediately after the PACKAGE or RPACKAGE statement. Note:
never put a USE statement before the ENTRY statements; if you do, you may get the ERROR message

PACKAGE 23

The MDIL. Programming Environment 13

ALREADY-USED-ELSEWHERE, meaning that the name of an entry is conflicting with an ENTRY in one of the
PACKAGES you USEd. ENTRY will also give an ERROR if it is used outside the body uf a PACKAGE.

2.3.2. USE

Ihis function takes as arguments onc or more STRINGs which are the names (as given to PACKAGE) of
other PACKAGEs. EXTERNAL is a synonym of USE. USE causes the entry OBLISTs of the PACKAGES named
to be spliced into the current OBLIST path. ‘Thus, references to entries of those PACKAGEs may be made
after the USE, until the next ENDPACKAGE (or the next DROP or L-UNUSE if USE is being invoked outside a
PACKAGE to load a file).

USE is consequently the mechanism for sharing code. 1f the PACKAGE being used is already loaded, its
entries are made availuble: if noL the PACKAGE is loaded first (see section 4.1 for details on how this is

accomplished).

2.3.3. USE-DATUM

USE-DATUM requires onc STRING argument, the name of a data set. If the data set is not loaded,
USE-DATUM loads it and creates an ATOM of the same name, on the USE-DATUM OBLIST, whose GVAL is the

dat set. USE-DATUM always EVALS to the data set named. regardiess of whether it had to be loaded or not.

2.3.4. DROP and L-UNUSE
These functions take the same arguments as USE and USE-DATUM and undo their effects.

DROP simply splices the named PACKAGEs out of the current OBLIST path. A USE of a DROPped
PACKAGE will not reload the PACKAGE but simply splice it back into the OBLIST path.

L-UNUSE splices the PACKAGE out and removes its name from the PACKAGE OBLIST, which will cause
the entire PACKAGE to be reloaded if it is USEd again. L-UNUSE of a data scl will remove its ATOM from the
USE-DATUM OBLIST.

2.3.5. ENDPACKAGE

The ENDPACKAGE function of no arguments terminates the definition of the current PACKAGE and
undoes the lexical blocking done by the PACKAGE function. The ENDPACKAGE statement should be the last

one in the file.

23 PACKAGE

14 The MIN. Programming Environment

2.3.6. PACKAGE Restrictions
There are some restrictions on what the user may do inside a PACKAGE. “These are enforced by the Library

Systein when the user attempts to submit a PACKAGE o a library.

A PACKAGE should not FLOAD or LOAD any file to obtain parts of itself. All such environment setup
should be done with USE and USE-DATUM.

A PACKAGE may not reference any ATOM whose 0BLIST path goes through the INITIAL 0BLIST. All
of a PACKAGE's non-entry ATOMs should fall naturally into the PACKAGE's internal OBLIST.

As mentioned before, the RENTRYs of a PACKAGE have the same OBLIST status as SUBRs, i.c.. they must
be unigue among both all SUBRs and all PACKAGE cntries.

2.3.7. ENTRY Name Conflicts

ILis possible to have two or more PACKAGEs (not RPACKAGEs) which have entrics (not RENTRYs) with the
same PNAME. If the user needs both PACKAGES at the same time. he may USE them both and refer to the
ambiguous entries by their *full wrailer’ names. All of the non-ambiguous entrics in both PACKAGES may still
be referenced by PNAMF only.

PACKAGE 23

e ML Programming Environment 15

3. Program Writing and Debugging Aids

This chapter concentrates on editing and debugging aids for MDi programming. ‘The basis for editing and
debugging in MDL is twofold: First MDL is an interpreter, which permits interactive testing and debugging
of software, Secondly, MDI. programs (even compiled M1 programs) are structures and therefore may be

manipulated by other MbI. programs.

Packages useful in editing and debugging range from EDIT and PPRINT, which are preloaded, and which
furm the core of most editing or debugging systems, o more sophisticated aids such as DEBUGR and TRACE,

which are more powerful, and uscful for more complicated debugging.

It should be noted that, in addition o the editors discussed below, RMoDi: [5] and Evacs [2], TiECO based

text editors, understand much of the syntax and many of the conventions of MDI. programs.

3.1. Pretty-Printing

The purpose of pretty printing is to clarify the structure of MbI. objects by printing them in a more
human-readable format than that provided by the SUBRs PRINT, PRIN1, ctc. Objects arce pretty-printed
through the judicious insertion of spaces, tabs, and new-lines between okens. Pretty-printed objects are
readable by the ML Reader. Pretty printing is an aid to understanding and debugging M1 FUNCT IONs or
other objects. You will probably find pretty printing to be extremely helpful, especially if you are working
without a listing or with an old listing. In fact, pretty-printing is one way to make a new pretty listing after
cditing. PPRINT is pre-loaded in most initial Miis. “The name of the package containing PPRINT is "PP".

{PPRINT gny channel

pretty-prints any on channel. The sccond argument is optional, by default .QUTCHAN . If any is an ATOM,
PPRINT will enclose it in an application of DEFINE, DEFMAC, SETG, or SET, as sceims appropriate.
COMMENTs found inside any are right-justified. PPRINT cannot output an RSUBR without F IXUPs (that is,
one that was READ in while KEEP-FIXUPS (see scction 3.4) had no LVAL or had o FALSE LVAL); it will
give the ERROR message CAN-NOT-BE-DUMPED. PPRINT rcturns ,NULL, which is an ATOM whose PNAME
is a single rubout, invisible on normal consoles.

<PPRINF jn:string-or-atom-orlist outfile:string
widthzfix rval?:booleany

pretty-prints all the contents of in into outfile.

If inis an ATOM or a LIST of ATOMs, its VALUE(s) arc the objects to be PPRINTed. In this case, ouifile is

by default a file whose first name is produced by taking the PNAME of in (or in's first clement, if inisa LIST).

30

16 ' I'he MIN. Programming Environment

IF in is a STRING, if specifies a file containing objects to PPRINT. In this case, vuifile is by default
"TPL:™,

widtlh is the maximum width of output lines (although output lines are prevented from being extremely

long); itisoptional, by default <13, OUTCHAN?.

eval? 1ells PPRINF whether or not to EVAL everything in the file; it is optional, by default a FALSE (don't
EVAL). eval?is meaningless if inis nota STRING.

PPRINF returns cither "DONE™ or u FALSE if it couldn’t open infife or ouifile. PPRINF inscrts page
boundaries in cutfile, between ohjects. every 60 lines or fewer: you may want to move these afterward to more
logical places. PPRINF binds KEEP-FIXUPS and REDEFINE o T, and QUICKPRINT (sce helow) to a
FALSE.

3.1.1. PPRINT Control Switches

PPRINT's output is affected by the local values of several ATOMs. Fach value is examined only for truth.
.QUICKPRINT
If this ATOM's LVAL is a FALSE, you arc in slow mode: otherwise (including the case of no LVAL), you are in
fust mode. The behavioral difference is this: in fast mode, there may be COMMENTs in the pretty-printed
object(s) which PPRINT misses. Also. fast mode is indeed faster than slow mode. Fast mode is the default,
that is, QUICKPRINT is initially true. The modes are really distinguished by the depth of recursion to which
PPRINT resorts. In slow mode, it recurses all the way down to every monad in the thing pretty-printed; in

fast mode, it goes down only far cnough to find something that will fit on a line.
. LOOKAHEAD

PPRINT uses full recursive lookahead to avoid packing things against the right margin and, as a result, not
being able to fit things within the right margin. The lookahead results in very good formatting of
decply-nested MAPFed and FUNCT TONs: all but the most bizarre cases should be very legible. However, it
can result in noticeable ‘pauses’ in the printing operation and, in some cases, a net speed slightly less than with
limited lovkahead. Since this can be a disadvantage when using PPRINT interactively on a heavily-loaded
system, the lookahead can be disabled: if the LVAL of LOOKAHEAD is a FALSE, no lookahcad will be

performed; otherwise it happens. LOOKAHEAD is initially true, that is. lookahead happens by default.
.VERTICAL

IF LOOKAHEAD is a FALSE, the formatting can cause oo many objects to be squeczed against the right
margin. So that particular cases can be made legible, the format when lookahead is not in use can be
manually set: if the LVAL of VERT ICAL is non-FALSE, PPRINT will indent very little whenever indenting is

Pretty-Printing 31

The M. Programming Environment : 17

called for. (VERTICAL being true means a ‘'more vertical” format.) VERTICAL is initially FALSE . The value
ol VERTICAL is ignored when LOOKAHEAD is true; the lookahead effectively chooses different values for
VERT ICAL for different parts of the object pretty-printed.

3.1.2. Lower-level Pretty Printing
It is sometimes desirable to use some of the functions that PPRINT uses, but in a different wa}r.. For

cxample, a specialized pretty-printer for Program Abstracts would want to insert indented ficld names into
the output and pretty-print field values with the same indentation. The names of lower-level pretty-print
functions are included in the ROOT OBLIST for such purposes.

SEPRINT guy lefi-margin:fixy
pretty-prints any on .OUTCHAN to the right of left-margin. The second argument is optional, by default
<VALUE LEFT-MARGINY (scc below).

CEPRINY any left-margin:fix>

CPRINI isto EPRINT as PRIN1 isto PRINT .
LEFT-MARGIN

This is the ATOM that EPRINT binds to its second argument. You can SET it outside calls to EPRINT in order
to make a permanent lefi margin. Its initial LVAL is 0,

CINDENT-TO colummn:fix channel®
outputs tabs and/or spaces to advance the output column (<14 channel>) to colummn, if it is not already past.

<COLPP gny
channel

lefi-margin:fix
right-margin:fix>

preiy-prints any on channel (by default .QUTCHAN) between the margins leffrmargin (by default
<14 channel>, the current column) and right-margin (by default <13 channel>, the rightmost column). All
arguments but the first are optional. COLPP returns , NULL. For cxample,
<COLPP any .OUTCHAN 10 70> would lcavc a I0-character margin at left and right on an 80-column
OUTCHAN. Also,

<PROG () <PRINT AAAAAAAAARAAARAAA> <COLPP ,FOO>>

wiild result in output like

AAARAAAAAAARRAA #FUNCTION ((X GGGGGGGGGGGGGGGGGGEEEE)
<+ X 1))

EPRINT, EPRIN1, and COLPP arc affecied by the truth of ,QUICKPRINT, .LOOKAHEAD, and
.VERTICAL.

il Pretty-Printing

18 I'he MDI: Programming Fnvironment

3.1.3. Ampersand Printing
“Ampersand printing’ consists of printing any object un a single line by using the character & (ampersand)

to mean “There's more stuff here.” (This technique is burrowed from the Interlisp editor.)

‘There arc two ways in which & is used by this printer as an abbreviation:

I. An & appearing between some variety of brackets indicates*that there is a big vbject of the
indicated TYPE there.

2. The characters . . & or &. . on the left or right of a structure mean that there are more objects to
the left or right which have not been printed.

Examples:
#FUNCTION ((A B C D) <&>)
This is « FUNCTION with four arguments in its argument LIST, and the FUNCTION body contains onc FORM

which was too big to print in the remainder of the line.
(PROG () <KRK <+ _A 5>> <{PRINC .Q> <SET BAR <ORG>> ¢(&> &..>

‘This is a lurge FORM, namely, a PROG. In addition o the elements printed, there are more elements to the

right, and there is one FORM which was too big to fit.

Ampersand printing is effected by two pure RSUBRs: &, analogous to PRINT, and &1, analogous to
PRIN1. A rcluted RSUBR, &LIS, can be applied to no arguments tw put you into an endless READ-EVAL-%
lwop, instead of the normal READ-EVAL-PRINT loop.

3.1.4. Examining the Stack

{FRM fix>
returns the fixth FRAME down from the top application of ERROR or LISTEN.

{FRAMES how-manyfix stari:fix>
pretty-prints how-many FRAMEs (by printing the FRAME number (suitable as an argument to FRM), FUNCT,
and ARGS of the FRAME), starting with <FRM siarr> . Both arguments are optional; starr defaults to 0, and
how-many defaults o a large integer. A FRAME whose FUNCT is an ATOM whuse VALUE is an FSUBR is not
printed. if the same information is found in the next lower FRAME .

{FR& how-many:fix siari:fix>
is like FRAMES but uses ampersand printing instead of pretty printing. It is handy for summarizing FUNCTs
and ARGS that arc large or unprimtable (like RSUBRs with no fixups).

Pretty-Printing 3l

e ML Programming Environment - 19

CFRATM how-many:fix start:fix>
is like FRAMES but gives an abbreviated view of the stack. It prints FUNCTs only, and only for FRAMES
connected with named FUNCT IONs, RSUBRs.rund RSUBR-ENTRYs. It is handy when a FRAME contains a
nun-LEGAL? object.

<FRLVAL galgm
how-many:fix
start:fix>

prints out the stacked bindings of atem, going through how-many FRAMES, starting with <FRM start>. ‘The
two numeric arguments are optional; how-many defaults o a large integer, and star defaults to 0. The
format of the printing is two columns: the first column is the number of the FRAME in which wiom has a

binding; the second column is the value bound. or i inessage procliming the lack of a value.

<FR&VAL alom
how-many:fix
start:fix>

is precisely the same as FRLVAL, except that the values are ampersand printed instead of PRINTed.

Finally, the "FRMSP" PACKAGE contains analogues of many of the preceding functions, but cach takes as
its first argument a PROCESS, by default <ME>. Thesc are all numed by adding a ‘P’ to the end of the usual

name. Forexample,
<FR&P <MAIN>>

docs a <FR&> in the PROCESS MAIN.

There is one additional function of interest in " FRMSP ",
<FRTYPE how-many:fix start:;fix>

is like FRAMES, but gives only the TYPEs of the arguments to cach. This is uscful in those situations when the
stack shows illegal FRAMESs or other unprintable objects.

3.2. The MDL Editor
EDIT allows a MDI. user to make incremental changes in Mt structured objects, without leaving MDL
and with the ability to save the results in a file, and to set or clear conditional breakpoints of various sorts in

ubjects that will be evaluated, such is FUNCT I0Ns.

EDIT is an cditor/dchugger written in, written for, and running under MDIL. It compriscs the package
"EDIT" and scveral smaller packages which will be mentioned later in this section. EDIT is preloaded in

most initial MDLs.
To start cditing, apply EDIT to no arguments or (o the name of the object you wish to edit: <EDIT?>

3l Pretty-Printing

20 ‘The MDL. Programming Environment

causcs entry into EDIT and opens the last object edited; CEDIT objecr> causes entry into EDIT and opens
object for editing. Permissible objecss include:

= ATOMs. The GVAL (preferably) or the LVAL of the ATOM is opened. IF it has no value, EDIT
returns a FALSE,

— APRIMTYPE LIST. The PRIMTYPE LIST isopened.

= A FIX. Thestack frame with that number is opened (i.c., CARGS <FRM fix>>).

Part of EDIT’s efficicncy comes from furbidding it to delve into objects that are not of PRIMTYPE LIST,
that is. not LTSTs, FORMs. FUNCTIONs, cte. Attempts to cdit objects of uther PRIMTYPES will result in error
messages. These objects can, however, be treated as units when inserting, searching, etc.; or they can be

changed into LISTs, edited. and then changed back to their original types.

3.2.1. The Edit 'LISTEN Loop’

3.2.1.1. The Reader

When in EDIT, you are typing at a special, non-standard, input function: The EDIT Reader.

‘The Reader allows you to type EDIT commands and have them exccuted, and also to evaluate MDL

eapressions normally. Its characteristics are as follows:

= As in the normal MbL Reader, nothing is done until you type ESC. DEL, tL, tD, 16, and *$ also
wurk normally.

— All EDIT commands are terminated when an ESC is encountered in the input stream. [n
addition, most commands will terminate whenever the maximum number of arguments required
hits been input or whenever an argument of the wrung type is encountered. In the former case the
next object is taken as a new command: in the latter case the object of the Wrong type is taken as a
new command. EDIT commands may be typed in cither upper or lower case.

— If you type something that EDIT does not recognize as a command, normal MDI. evaluation and

printing are performed on that something. This evaluation will have no effect on your position in
the object you are editing.

— While editing a function which is part of « PACKAGE (determined from an examination of the
OBLIST containing the ATOM whose value is the function), EDIT causes the OBLIST path to be
setup to what it was in the environment of that PACKAGE. "This has the advantage of reducing the
number of trailers printed, and causes newly entered ATOMs to full on the correct OBLIST (the
internal OBLIST of the PACKAGE). It has the slight disadvantage that it disables the dynamic
loader (which depends on unbound variables falling on the INITIAL OBLIST). If the GVAL of
E-PKG is a FALSE, this feature is disabled, and the normal OBLIST path is in cffect during

The MDL Editor 32

1he ML, Programming Environment 21

cditing.

Fxamples:
R 5%

Causes execution of EDIT command R, with argument 5.
<R 5>%

Causes application of the function R o 5.

3.2.1.2. The Ampersand Printer
Your current position is displayed by ‘ampersand printing’ (see section 3.1.3). This consists of printing any

object on a single line by using the character & (ampersand) to mean “I'here’s more stff here.’

‘I'he ampersand printer used in EDIT is much like the standard one, with the addition that your current

position (see below) is displayed by the glyph B.

When you initially enter EDIT. you arc in a mode called ‘non-verbuose,” in which ampersand printing is not
antomatically done following exccution of EDIT commands. The V command is used to toggle you in and out

ol verbuse mode (sce below).

Fxamples:
#FUNCTION (B (A B C D) <&>>
Indicates that your position is just to the left of a FUNCTION's argument list, and the FUNCTION body

contains one FORM which was too big to print.
{..% <KRK <+ .A 5>> B <SET BAR <0RG>> <&> &..>

Indicates that you arc in the middle of a large FORM (c.g., a REPEAT or a PROG), positioned just to the left of
the <SET BAR <ORG>>. In addition to the ubjects printed, there are more objects to both the left and the
right, and there is one FORM which was too large to fit on the line.

3.2.2. Edit Commands

3.2.2.1. General

A sequence of EDIT commands is exccuted as soon as you lype ESC. If one command fails, subsequent
commands up w the ESC are ignored, and EDIT types out an appropriate error message. A failing EDIT

command generally has no effect whatsoever: but sce individual descriptions.

Note that all arguments to EDIT functions must be legal MbI. objects. In particular, you can’t scarch for

3.2 The ML Editor

22 ; The MIN. Programming Environment

<SET .since the <>'s aren’t balanced. Nor can you insert it. (But you can, for instance, search for and insent
{SET THING 1>.)

Ifa command expects an argument and doesn't get one, an error message will be printed.

Many EDIT commands take FIXes as arguments. Those that do interpret the ATOM * as an argument to

mean ‘as many as pussible’,

Whenever you are in EDIT, you have a well-defined ‘position’. A position is a ‘place’ iuside a Mnl.
structure; this “place’ is cither berween two elements of the structure, or besween an clement and cither end of
the structure, or inside an empty structure. All editing, movement. and printing commands operite relative to
your current position, The tenm “cursor® is used in the following descriptions to refer to an embodiment of a

position,

The format used in cach of the following command descriptions is:

Command as Typed Fnglish Name

Description

3.2.2.2. General Commands
7 duh?

Causes a short summary of all EDIT commands to be typed out. The same suminary appears later in this

chapter,
77 huh?

Similar to the above, but the summary is even shorter, and should fit entircly on the screen of an Tmlac

terminal.

0 Quit
Leave EDIT and return to Ml (Causes EDIT to return the ATOM T.)

QR fix Quit and Retry

Quit from EDIT and then retry the frame specified. or by default, the one originally given to an open

command or, if none was given, the frame bencath the last ERROR or LISTEN frame.

+F Control-F

This is not really an EDIT command; rather, it is 4 character, obtained from the input stream at interrupt

‘The MDL Editor 32

I'he ML, Programiming Environment 23

level. which is used to return you to the EDIT Reader from some higher level of application, ¢.g.. an ERROR’s

L1STEN. Itis the EDIT cquivalent of ERRET with no arguments.

+F (or 1S) typed during execution of an EDIT command is similar to normal MDL 5 but returns to the

(01T Reader instcad of the MpI. LISTEN loop.
0 whiect . Open
FFquivalent to Q followed by <EDIT wbject>. Positions the cursor just to the left of the first clement uf the

entire wbject specified.

01 Open This

I the object to the right of the cursor is an ATOM, or a TORM whose first clement is an ATOM, and the
ATOM's value is openable. then it is opened. This command is uscful when tracing a calling sequence through

several functions.

3.2.2.3. Movement Commands

ut Up to the Top
Places the cursa: at the position it had following an 0.

R fix Right

Muves the cursor fix objects to the right, by default one. If fix is oo large, Le., there arc not that many

pusitions to the right of the current position, EDIT prints an error comment and the cursor stays where it is.

8 Back

Muves the cursor as far to the right as possible.

L fix Left

Muoves the cursor fix positions to the left, by default one. [T fix is oo large, ED IT prints an crror mMessage.

F Front

Muves the cursor as far to the left as possible.

DL Down Left

Pusitions the cursor just to the right of the rightmost element within the object the left of the cursor, if

that object is of PRIMTYPE LIST. Visually, the cursor moves left over vne ‘close bracket'.

32 The ML Editor

24 The ML Progranuning Environment

DR Down Right

Positions the cursor just to the left of the leftmost element within the object to the right of the cursor, if
that object is of PRIMTYPE LIST. Visually, the cursor moves right over one "open bracket”. If the cursor is

to the left of an element that is not of PRIMTYPE LIST,EDIT prints an error message.

D Down

Fquivalent to DR.

UR fix Up Right

Positions the cursor just w the right of the object the cursor is currently within, Dues so Jix times, by

default once.

UL fix Up Left

Positions the cursor just to the left of the object the cursor is currently within, Docs so fix times. by default

once,

U fix Up
Identical w UL.

5 objeet Search

Pocs a depth-first, left-first tree-walk, (i.c., left-to-right) starting with the ohject to the right of the cursor,
until the cursor is just to the right of an object structurally cqual (i.c., =?) to its argument. An occurrence of
the object will not be found if it is inside anything not of PRIMTYPE LIST. On failure, the cursor does not
move. [fthe argument is omitted. the last object searched for is used.

SR object Search Right
Same as S,
SL object Search Left

Same as S, but the tree-walk is depth-first, right-first (i.c.. right-to-le) and you end up to the left of the

object for which you were searching.

3.2.2.4. Printing Commands

The Empty Command

The MDL Editor 32

Fhe MDI. Programming Environment 25

Causes the normal “ampersand print’ to be done. This is principally useful when you are in silent” mode;

sec the V cosnmand.
By the way, an ‘empty’ command is typed by typing ESC without having typed any visible characters
before it

p Print

PPRINTs (not “ampersand prints’) the object to the right of the cursor.
PU Print Up
PPRINTs the object the cursor is in. This is similar 1o doing a U and then a P, ilthough the cursor is not
moved,

P Print Top

FPRINTs the whole object you have open.
v Verbosity
Toggles the verbosity mode between ‘verbose” (most commands cause ampersand printing) and “silent’

(printing of any sort is done only when some explicit print command is used. or when an errur occurs). The
current state of verbosity is the GVAL of E-VERBOSE.

In silent mode, absolutely nothing is printed after cach command, not even new-lines or promplts.
However, normal M DI evaluation still causes normal MDL printing.
3.2.2.5. Editing Commands

I gy ... Insert

Inserts all its arguments immediately to the right of the cursor. None of its argumenis arc evaluated; you

can insert unevaluated FORMs without using QUOTE. The cursor ends up to the right of the last object
mscried.

G agny ... Get

Same as 1, but its arguments are evaluated. This is useful in conjunction with the X command (sec below).

I: wypecatom fix Insert Type

Grabs fix objects o the right of the cursor, inserts them into a newly created object of TYPE 1ype, deletes
them from the original structure, and inserts the newly created object in their place. In other words, it ‘inserts®

32 The MDL. Editor

% The MDI. Programming Environment

the appropriaie open and close brackets for fype at the cursor and fix objects to the right.

By default fix is one, fype is LIST. An crror message is printed if fix is larger than the number of objects
to the right of the cursor,

There is no way to directly insert or delete single parcntheses, brackets, etc., using EDIT. Instead, use K:

(see below) to remove pairs of brackets, and I : to insert them.

I* indicator:atom new-siruclure Imbed

Imbed looks for all occurrences of indicator in new-siructure and replaces these occurrences with objects

tuken and deleted from the right of the cursor, 1t then inserts the result

IFonly new-structure is given. the indicator is the ATOM *. [F there aren't enough objects tw the right of the
cursor to replace each indicator, remaining indicators are lefl untouched and a warning incssage is printed. [f

no indicators are found, the new structure is inserted, but a warning message is printed.

I* is generally used to insert one or more structures into another complex structure in one operation,

instead of several. For example:

CSET X B <12 .¥Y»>
[* <COND (<NOT <LENGTH? .Y 11>> *)>$
<SET X <COND (<NOT <LENGTH? .Y 11>> <12 .Y>)> K >

places a protective conditional around an NTH to prevent an out-uf-bounds error.

16 gny,., Insert into Group

Inserts into a group. 16 is similar to I, but assumes that I;I'!!-.‘ object you are in is a group (as produced by
GROUP-LOAD). Arguments to [G which are not ATOMs arc inserted as in 1. Objects which arc ATOMs and
which have a value insert a FORM which DEF INEs, SETGs, or SETs the ATOM as appropriate. ‘Thus, to add a

new function F to a group G, one could type
0 GSIG F3QS3

K fix Kill
Deletes fix ubjects to the right of the cursor. Defaults to one. Negative fix causes deletion to the left of the

cursor.

C any Change

Changes the one object to the right of the cursor to its single argument. Docs not move the cursor. Does

not evaluate its argument. C is more cfficient than K plus 1.

The MDL. Editor 32

I'he MDL. Programming Environment 27

C: 1peatom Change Type

Changes the type of object to the right of-the cursor o fype. Attempts to do something reasonable for
cvery Lype change. If you tell it to change a STRING to u LIST, you geta LIST of CHARACTERs. If you
attempt to change a structure whose elements are other than CHARACTERs and STRINGs to a STRING, you

will get a ML error,

K: Kill Type
Deletes the brackets around the object to the right of the cursor. Le. kills the object and inserts its

clements into the structure of which it was a part.

SU pew old Substitute

The Substitute command tikes two arguments. All occurrences of old from the current location w the end
ol the apen ohject (actually a search-right is done) are replaced by new. Once the scarch for old fails, the
command terminates, and the number of substitutions performed is printed. The cursor is left afier the last

nhject replaced.

X glom Transfer

SETs the arom to the object to the right of the cursor. X can be used with K and G to move things around

within the object being edited.

SW Swap

Swips the two objects to right of the cursor, leaving the cursor pointing at the same object. The effect is to
move the cursor and the object it points at one object to the right. Repeated SWs move cursor and object

lurther and further to the right.

3.2.2.6. Macro Facility

M macrg Macro

‘T'akes cither a STRING or something which EVALs to a STRING and performs all of the commands in the

STRING. For complete assurance that your commands will be done properly, put an ESC between

commands.

I fix macrg Iterate

This command (also called DO) takes a fix and macro as if an argument to M. This command will loop

through the macro fix times or until an crror is gencrated. When the iteration ends, the user is told how many

32 The MDL. Editor

23 ' he MDL. Programming Environment

complete passes have been made of the macro,

In both of the above commands, if an EDIT error is generated, the macro will be terminated, and the
macro itselF will be printed, with an arrow pointing to the offending command. The cursor will remain at the

place where the last legal command left it.

The SU command is, internally:
DO * "S offSLSC news"

3.2.2.7. Cursors.

Cursors are locations in objects being EDITed. In addition to the main cursor, which is where editing
teeurs, other locations (also called cursors) may be remembered. The main cursor may be moved to another
cursor in a single operation, potentially saving many motion commands. In large FUNCT TONs cursors may

also reduce confusion by distinguishing amuong several similar arcas of code,

uc Use Cursors

The PACKAGE for dealing with cursors is not normally loaded in an initial MDI, so the UC command loads
it and makes the cursor commands available. The PACKAGE lvaded is "CURSOR".

CU atom ' Cursor

CU takes an ATOM argument and SETs the ATOM to an object of type CURSOR, which tries to be clever in
the event you change the object. Also. if you use the X command to name a substructure and then move copy

it with G or I, the cursors in the substructure will fullow to the new location.

There are some restrictions. Cursors in empty LISTs are okay but they will not follow the object to new
locations. Also this “following” feature is effective only at the first G or I after the X. To move the substructure
again you have to X again,

I* is somewhat incompatible with CURSORs. Cursors in Imbedded structures will sometimes disappear.
GO cursor Go

GO takes a cursor (normally the LVAL of an ATOM previously given as an argument to CU) and GOes to that
position. [f the cursor is illegal (not in the current top-level structurc), an error message will be printed and

you will remain in your previous position.

KC atom Kill Cursor

The MDL Editor 32

‘Ihe MDI. Programming Environment 29

Kill the cursor assigned 1o atom,

PC . Print Cursors

Prints all cursors in the structure to the right of the main cursor.

PA Print A11 Cursors

Prints all cursors in the currently open structure.

3.2.2.8. Breakpoints
BY. predicate any ... Breakpoint

Inserts a breakpoint “around’ the ohject to the right of the cursor, ‘Takes any number of arguments.

Subseguently, whenever that object would have been evaluated. you instead hit a breakpaoint function which:

1. Evaluates predicate. 1 the value is FALSE, evaluation continues as if there were no breakpoint, IF
the value is non-FALSE, or if BK was given no arguments:

2. Types **BREAK®*,

3. For cach argument afier the first that you gave BK, types
arg = FVAL ofarg
4. Enters LISTEN.
You continue by applying ERRET to one argument, just as from an ERROR; the argument’s value is ignored.

Breakpoints are implemented by inserting a BREAKR (2 PRIMTYPE LIST with APPLYTYPE FORM)
which consists of the funclion BREAKR and arguments, including the object breakpointed. A breakpoint
prints as a glyph similar to the cursor:

Bobject
If the ATOM SHORT-PRINT is assigned and FALSE, the actual BREAKR L1S5T is printed.

‘I'he breakpoint function returns EVAL of the thing it is put ‘around,” and there are cases where this does

nut work. There are always equivalent places that do work.

1. Breakpoint on the first clement of a FORM does not work. Put it on the whole FORM.

2. Breakpoint on a LIST which is an argument to a COND does not work. Put it on the first FORM in
the LIST.

BA predicate any ... Break After

32 The ML Editor

0 The MDIL Programming Environment

Similar to BK, but puts the breakpoint after the object at the cursor. Its action is like that of BX except that

the break occurs after the object it is on is EVALed.

‘T'his sort of breakpoint prints like the *before’ sort, but with the glyph after the object broken:
vbfecry
The predicate for a BA breakpoint may check the value returned by FVAL for the object the hreakpoint is on.
This value is assigned by BREAKR to the ATOM VALUE,

KT i1l This

Removes the breakpoint (if any) from the object to the right of the cursor.

KB Kill Breakpoints

Removes all breakpoints in the currently open object.

3.2.2.9. Edit Monitors
Ihere are several commands in EDIT which provide a simple interface to the "MONITOR" PACKAGE.

These allow plicing of monitors un references to or modifications of LVALs in interpreted MDI. code.

For a more complete discussion of the use of manitors, sce section 3.7,

UM Use Monitors

The PACKAGES for dealing with monitors are ot normally loaded in an initial MDL, so the UM command
loads them and makes the three commands for creating monitors available. ‘The PACKAGESs loaded are
"MONITR"™, which is the general monitor PACKAGE, and "EMONIT", which is the interface between EDIT
and "MONITR",

RW atom predicate any .. . Read-write Monitor

The most general type of monitor that can be set is a read-write monitor. It will catch any reference to or
Atiempt to modify the LVAL of the arom specified. The restrictions on placement of breakpoints also apply to
monitors, with the addition that a monitor on an LVAL must be placed after that LVAL has become
ASSIGNED?.

The second, third (and so on) arguments t RW are the samme as those for BK. The predicate may be
dependent on cither the new or old value of the variable: "These are available as the LVALs of NEWVAL and
OLDVAL, respectively,

The MDL. Editor 32

“I'he MIJL. Programming Environment - 31

When a monitor is triggered, it prints the type of monitor, the variable being monitored, and any other

information requested by the user, and then calls LISTEN.

A monitor prints as yet another glyph:
N[aiomn] object

where atom is the ATOM being monitored, and object is the object on which the call 1o MONITOR is placed.

Edit monitors are objects of type BREAKR, and thus they are killed by the same commands that kill normal

breakpoints: KB, KT, and so on.

RM aroin predicate 1auy St Read Monitor

RM is analogous 1o RW, but is only triggered by reading the variable,

WM aiom predicate any .. . ‘Write Monitor

WM is analogous o RW, but is only triggered by writing the variable,

3.2.2.10. User-defined Edit Commands

It is possible to add user-defined commands to EDIT. ‘The valuc of EDIT-TABLE should be a VECTOR of
STRINGs (commands) and APPLICABLE objects. EDIT will scarch EDIT-TABLE before its own command
table. If a match is found, the APPLICABLE will be applicd to three arguments: the command string, the
LOCATIVE containing the item currently being edited (the immediately surrounding object) and the position

in that item.

Note that user-defined commands should not be added except by constructing a new value of
LDIT-TABLE from the commands to be added and the old value. Otherwise, any cxisting user-defined

commands may be lost when new ones are added.

The Monitor commands described in section 3.2.2.9 are effectively “installed’ user-defined commands.

I'hey add elements to EDIT-TABLE when loaded by the UM command.

3.2.3. Examples

3.2.3.1. Simple Editing
Suppose vou have the FUNCTION

3.2 'The MDL Editor

n the MDIL. Programming Environment

AFUNCTION (('A) CEVAL .AD)

18 the global value of the ATOM SIMP. and you wish to change it to
#FUNCTION ((“BIND" 8 'A) (CEVAL .A .B> .A))

using EDIT. “The following example does just that: it includes duing the cditing and applying uf SIMP to an
wrgument. Console input and output are shown below exactly as they would be in non-silent mode. (Console
input consists of thuse charucters to the left of every $). Note that there is nothing in SIMP which is big

enough to warrant use of an &.

CEDIT SIMP>S

Vs

#FUNCTION (8 ('A) <EVAL .A>)

D$

(14

I "BIND" BS

("BIND" B B 'A)

5 .AS

CEVAL .A 8§ >

1 .BS

CEVAL .A .B >

URS

#FUNCTION (("BIND" B 'A) CEVAL .A .B> 1)

I AS

AFUNCTION (("BIND" B 'A) <EVAL .A .B> .A 1§)
L 28

#FUNCTION (("BIND" B 'A) ¥ CEVAL .A .B> .A)
I: LIST 2§

#TUNCTION (("BIND" B 'A) B (KEVAL .A .8> .A))
(SIMP ¢+ 1 2>>8

(3 <+ 1 2))

#FUNCTION (("BIND" B 'A) B (CEVAL .A .3> .A))
QST

3.2.3.2. X and G Commands

In this examiple we have the FUNCT ION

(DEFINE F (X)
6 .X 10
<H 23 <= X 13058

By applying the X and G commands to the appropriatc FORMs. we are able to swap the FORMs within the
FUNCTION.

‘The MDL. Editor 12

R o ¢ - = e mpTnoes = s ekTEas

I'he

3.2

ML Programming Environmem

<DEFINE F (X)
<G .X 102
<H 23 <- X 13338
f
<EDIT F>§
3
#FUNCTION (B (X) <G .X 10> <H 23 <- .X 1»)
RE3
#FUNCTION ((X) B <G .X 10> <H 23 <- X 1%3)
X MOVER$
#FUNCTION ((X) B <6 .X 10> <H 23 <- .X 1>>)
K§3
H#FUNCTION ((X) B <H 22 <= X 133)
R§$ '
HFUNCTION ((X) <H 23 <- X 1>> K)
G .MOVERSS
H#FUNCTION ((X) <H 23 <- X 1>> <G .X 10> E
Q81
.MOVERS
<G .X 10>

.3.3. Unconditional Breakpointe

Lat
"k

Tonsert unconditional breakpoints into the FUNCT I0N in the next example, do the following:

!

Fed

e

I

- Define FIB and test the FUNCTION a few times.
.Enter EDIT and position the cursor appropriately,

. Insert the breakpoint.

leave EDIT and run the FUNCTION again for the value 3. The breakpoint is exercised 5 times

during this run.

The ML Editos

4 e MDIL. Programming Environment

‘DEFINE FIB (X)

{COND (<L=? .X 1> LX)
(ELSE <+ <FIB <- .X 23> ¢FIB ¢- K118

FIB

{FIB 5>%

5

{FIB 6>%

8

<FIB 10>%

55

{EDIT FIB>%

RSS

#FUNCTION ((X) B <&>)

BK T .X$QsT -

{FIB 3>%

**BREAK=*

A = 3

LISTENING-AT-LEVEL 2 PROCESS 1

<ERRET T>$

**BREAK ==

Xo= g

LISTENING-AT-LEVEL 2 PROCESS 1

ZERRET T>%

**BREAK®"

X =2

LISTENING-AT-LEVEL ? PROCESS 1

CERRET T>s%

**BREAK®=*

X =0

LISTENING-AT-LEVEL 2 PROCESS 1

CERRET T>%

**BREAK®=

X = 1

LISTENING-AT-LEVEL 2 PROCESS 1

“ERRET T>§
2

3.2.3.4. Conditional Breakpoints

We continue frum the previous example and demonstrate conditional breakpoints with the following;

1. Enter EDIT and kill the breakpoint from the previous cxample,
2. Pusition the cursor and insert a conditional breakpoint with a predicare of <07 . X>.
3. Leave EDIT and run the FUNCTION again for the value 10.

4. Enter EDIT and remove the breakpoint.

The MDL Editor J2

i I'he MDL. Programming Environment

<EDIT>$

s

#FUNCTION ((X) B §<&>)

KB$S

#FUNCTION ((X) B <&>)

BK <07 .X> <TIME>$QST

<FIB 10>%

**BREAK®®

<TIME> = 14.794538
LISTENING-AT-LEVEL 2 PROCESS 1
XS

0

CERRET T>$

**BREAK®*

<TIME> = 15,252382
LISTENING-AT-LEVEL 2 PROCESS 1
XS

0

CERRET T>$

BREAK

<TIME> = 15.716037
LISTENING-AT-LEVEL 2 PROCESS 1

and so on. Eventually we reach the last breakpuoint, and re-enter EDIT

CEDIT>S

s

HFUNCTION ((X) B B<&>)
KBSQST

CERRET T>§

55 .

32

15

The MDL. Editor

e MIN. Programming Fnvironment

3.2.4. Edit Command Summary

NAME ARGS
? none
T? none

0 any
or none

0 none
QR fix

v none
Movement commands
L fix

R fix

u fix

D none
B none

F nane
UR fix

DL fix

ut none

I anp...
I: lypefi
I* afom,object
IG any...
Su aew,old
A alom
G any...
SW none

c any

C: lype

K fix

K: none
Scarch Commands
5/5R any

SL any
Macro Commands
The MDL Editor

MEANING

type out short summary

type vut this summary

Open object or the value of an atom
Open object at the cursor

Quit and return to MbL

Quit and Retry frame

toggle Verbosity

move |.eft fix objects

move Right fix objects

move Up fix levels

mone Pown one level

muove to Back of ubject

move to Front of object

move Up fix objects and to the Right

move Down fix objects and to the Left _

Up Top -- go to the place you were after you did 0

Insert arguments to the right of cursor

make next i objects into a fype

imbed command: replace all occurrences of atom (default *)
in vhject with vhjects to right of cursor

Insert into group

sUbstitute new for old

sel the atwm to the object to right of cursor

Get EVAL of arguments, insert to right of cursor
3Wap the two objects to the right of cursor
Change the next object to arg

Change the type of the next object to lype

Kill (delete) the next fix objects

Kill (remove) the *brackets’ around the next object

Search (Right) until match (=?) is found for any
Scarch |cft as above

32

ment

I'he MDIL. Programming Environment 37
M string exccute the string as if typed to EDIT

IT/DO fix string ITerate the exccute string fix times

Printing commands

P none PPRINT the next object

PU none PPRINT the next Upper level

PT none PPRINT the whole object open

Cursor commands

uc Hnone Use Cursors

cu M set atom 1o CUrrent cursor position

GO CLrsor GO 1 the specified cursor position

PC nong Print Cursar positions in the current object

PA none Print All cursor positions in the wp-level object
KC alom Kill the Cursor assigned to the atom

Debugeing commands

BK pred.any... set BreaK point at next object; if pred evaluates to FALSE,
don’t break; rest of arguments are printed out at break

BA pred,any... set Breakpoint After next object

KB none Kill all Breakpoints in open object

KT none Kill 'This breakpoint in the object to the right of cursor

Monitor commands

UM none Usc Monitors

W atom, pred.any... sct Read-Write monitor on atom

RM atom,pred.any... set Read Monitor on atom

WM atom,pred.any... sct Write Monitor on alom

+F and 15 return you to EDIT from a higher level.

Thc ATOM * may be used as a fix argument whose valuc is the largest legal value for that command.

3.3. Debugging and the Interpreter

Before continuing the discussion of the various packages that are used in the debugging of MDI. code, we
will expand on the discussion of ERROR, FRAME, (and so on) in Chapter 16 of [3]. To summarize that chapter,
whenever an ATOM is bound or a FUNCTION or RSUBR is MCALLed in ML, information is added to the
contol stack. This information, normally ‘invisible’, may be cxamined using the functions described in &

previous scction (FRAMES, FR&, FRLVAL, etc.). ‘An invocation of ERROR puts MDL. into a LISTEN-like loop.

32 The MDL Editor

18 The MDI. Programming Environment

Successive ERRORs stack up and are reflected in the LISTENING-AT-LEVEL message printed whenever
ERROR or LISTEN is called.

In addition to being cxamined, the stack may be modified as part of the debugging procedure. For
example, the SUBRs SET and LVAL take an optional sccond argument which may be (among several pussible
TYPEs)a FRAME. EVALing

{SET X 10 <FRM m>>
would change the LVAL of X in the nearest binding lower in the stack than the FRAME n FRAMEs lower than
the most recent call o ERROR or LISTEN. Similarly

{LVAL X <FRM n>>
examines the LVAL in a particular FRAME,

The most common use of the ML interpreter in debugging is to invoke the SUBR ERRET. With no
arguments, it drops all the way to the bottom of the stack and then calls LISTEN: ltsays’| give up’ {ulthough
side effects are not undone). Muore commonly, ERRET is given a single argument, which causes the last
invocation of ERROR ur LISTEN to return that argument. For cxample, suppose o program contains , FOO

but Fﬂ{:.l has no GVAL. M. would respond

ERROR

UNASSIGNED-VARIABLE

FOO

GVAL

LISTENING-AT-LEVEL 2 PROCESS 1

You could give up, saying <ERRETY, but it is uften more reasonable to say ‘Oh, yes, FOO was supposed to be

1000, and then
{ERRET 1000>

Still better is
¢ERRET <SETG FOO 1000>>

which will prevent future ERRORs from the same cause.

Finally, ERRET may be given a second argument of a FRAME, which means to return the first argument as
the value of the invocation of that FRAME. In the previous example, the programmer might look at the stack
{with FR& ur FRAMES) and see

Debugging and the Interpreter i3

I e M. Programming Environment 3e

1 GVAL [FOO]

Z EVAL [.FOO]

3 EVAL [<+ .X .Y ,FO0>]

4 EVAL [<LOSER .A .B>]

5 EVAL [</ ,GOOD-GVAL <LOSER .A .B>>]
6 EVAL [<WINNER 1.0 2.0>]

7 LISTEN [1

After sume thought, he may just say "Well, LOSER apparently needs some debugging, but for now I'm

micrested in WINNER', in which case he can *fuke’ a reasonable return from LOSER by typing
<ERRET 342.0 <FRM 45>

which returns 342 . 0 exactly as though LOSER had returned it.

More complex errors are sometimes more difficult to fix, requiring the use of EDIT (at least). In the above
cxample, the programmer might decide o debug LOSER afier all. There are two ways to go about this: First,
il the problem is localized. the FRAME itsclf may be edited (which is to sav, the contents of the FRAME may be
cdited). Changes will show up in the FUNCTION from which the FRAME s contents were derived. The newly

corrected FRAME may then be RETRYed. For example,

<EDIT 3>%
- various editing conumands
QRS

Second. the function itsclf may be cdited. In the process, it may be so changed that the FORM which
caused the ERROR no longer even cxists. Ofien, the casicst solution is to retry the invocation of the EDITed

TUNCTION from scratch: in this case
¢RETRY <FRM 4>>%§

s always, the major restriction to remember is that side-effects are not undone by RETRY.

3.4. Loading and Dumping

GROUP-LOAD and GROUP-DUMP are used to load and dump files of MDI. programs in such a way that the
contents of the file are made available in a MDL structure called a growp. Many other PACKAGESs in the MDL
civironment operate on or change groups: Among them are "EDIT", "GLUE™, "PDUMP", and the MDL

vompiler,

GROUP-LOAD and GROUP-DUMP are aimost as widely used as FLOAD as a way of dealing with groups of
ML functions. Conscguently, they are already loaded in most initial MIds, as part of the package

"GRLOAD"

3.3 Debugging and the Interpreter

i ' lhe MIJL. Programming Enviromment

‘GROUP-LOAD file-name:siring
group- name alom’

Te-name:siring is the file to load.

srotp-namezatont is the name to give the group, Itis optional and by default the ATOM furmed by PARSE of
the first name of the file to load. The group will be stored as the LVAL of group-name.

3ROUP-DUMP is the oppaosite of GROUP-LOAD. Tt outputs the group from the Mpi. to the file given as its
first wrgument. Functions unchanged since the last GROUP-1L.0AD arc copicd from the original input file.

Funetions that have been edited are output using the routine given as the third argument to GROUP -DUMP.

{GROUP-DUMP filc-name:string

pronp- e atom
prini-rutifine
kill-break poinis?»

Hle-name:string is the only required argument. [tis the file w which w output the group.

growp-namezatont is optional, and defaulis as it does fur GROUP-LOAD. but of course gives an ERROR if the
aroup doesn’t already cxist.

ortitt-routine is optional, and defaults to , PPRINT unless the group contained NBIN formut RSUBRs, in which
zasc , PRINC isused.

Yill-breakpoints? is optional, by default T, in which case GROUP-DUMP kills all EDIT breakpoints and
monitors in objects being dumped. Giving a fourth argument of a FALSE to GROUP-DUMP prevents this.

On the surface, it appears that little happens in the process of loading a file and making it into a group.
However, a great deal of information about the group has been stored away in associations for later use.
Some of this information is of usc to the ML programmer:

l. On an association between group-name and the ATOM CHANNEL is stored a LIST giving the name

of the file that was GROUP-LOADed to form the group. Removing this association before

GROUP-DUMPing has the effect of making the entire group be outputl from core rather than
copied from the original source.

(=]

- On an association between group-name and the ATOM MAGIC-RSUBR the ATOM T is stored if the
sroup contained any RSUBRs in fast (NBIN) format. [t is this association which is used to
determine the default pront-routine in GROUP -DUMP,

J.The OBLIST path in effect at any time during the load is available. The original path is stored on
an assuciation between group-nente and the ATOM BLOCK. Within the group, the path changes are
stored in an association between the group RESTed to the point of change and the ATOM BLOCK.

4. If the second clement of 4 FUNCTION definition is not an ATOM, the actual FUNCTION name
gutten by EVAL of that clement is stored as an association between the original element and the

Lpading and Dumping J4

l

nent

tof

ile.

1€

e MDL. Programming Environment 4]

ATOM VALLE.

5, The location of a function within the input file is stored as a LIST of the starting and ending
offsets (in characters) of the function. under an association between a locative w the GVAL of the
FUNCTION name and the indicator DEFINE. 'This association is removed by EDIT (and other
editors) o indicate that the FUNCTION has been changed.

There are additionally several switches that affect the operation ol GROUP-LOAD:
KEEP-FIXUPS

[l the LVAL of KEEP-FIXUPS is truc (ind GROUP-LOAD binds it that wav during loading), the fixups of
lt5UBRs GROUP-LOADcd will be kepl.

.EXPFLOAD
Il the LVAL of EXPFLOAD is truc. FLOADs will be expanded. That is. the objects in the ile FLOADed will be

added to e group in place of the FLOAD, The initial sctting of EXPFLOAD isa FALSE.
.EXPSPLICE

If the LVAL ol EXPSPLICE is truc. any objects returmed within SPLICEs will be inserted directly into the
promip as described above. “The initial sciing of EXPSPLICE isa FALSE.

3.5. The One-step Debugger

I'ie M1 One-step debugger allows the user to step through the evaluation of any MDL expression one
aperalion” at a time. Between steps, variables may be cxamined or changed., functions edited, and so on.
Ins 1s possible because the debugger runs in a different M1 PROCESS than the expression being stepped.,
and a MDI. PROCESS muy 1STEP another[3]. To load the Debugger. <USE "DEBUGR"™>.

I'he M. Debugger can be in any of three states. In the initial state, OFF, no une-stepping occurs and the
Iebugger does not listen for any special interrupt characters. The Debugger is, therefore. completely inactive.
I typing <DEBUG> to MnI, vou leave the OFF state and cnter the READY state. In the READY state no
wne-siepping occurs, however the Debugger does listen for interrupt characters. By typing the interrupt

lencter 1B, you enter the ON state and vne-stepping begins. In addition. if you were stopped at an EDIT
breakpoint when the *B was typed, the breakpoint will automatically be exited and evaluation continued in

ihe onec-stepping state.

While in the ON state, the Debugger will proceed through the execution of any MDL. ubjects one step at &
In essence, the Debugger stops just before and just after every call to EVAL. At cach step the ebugger
i1 dicate its current condition as foliows. 11 EVAL is recursively entered at level, s, with input, ebiect. the

feprliy will be:

14 Loading and Dumping

42 I'he ML Programming Environment

n=» object
(where ebject is ampersand printed). IFEVAL is returning froin level, n, with result, object. the display will be:
né= object

{where object is ampersand printed).

T'he Debugger will stop at each such step and wait for directions. | There are four interrupt characters that
may be typed w proceed further in the program: tH, 10, tR and tA. They cach take an optional prefix
argument that serves as a repeat count

tN
causes the Debugger to perform the next siep of the current evaluation.

0
causes the eurrent ubject to be completely evaluated without any one-stepping and then stops with the result
of that evaluation. 10 is useful for stiepping vver COND predicates that you know will not succeed, or more

generally, uninteresting parts of a program.
tA

is similar to +0. but specific to the evaluation of the argument list of a FUNCTION, PROG, or RE PEAT. Typing
*A during such evaluation allows the rest of the argument list to be evaluated without one-stepping and then
stops befure evaluating the body of 4 FUNCTTON, PROG, or REPEAT or retuming of a result.

R
is most cffectively used in a REPEAT or PROG loup. T'yping tR causes evaluation to proceed untl control
returns to the point in the body of the REPEAT /PROG at which *R was typed. It thus allows you to go once
around a loop.

It should be noticed that, when stopped at one of these steps, you can cxamine and modify program
variables, do a FRAMES ur FR&, EDIT FUNCTIONs and sct breakpoints, and in general perform any valid
MDL operations. Also, when you stop, the LVAL of the ATOM LAST-OUT will be set to the object the
Debugger last typed out. This is useful if the & performed by the Debugger did not show a particular detail
that you are interested in,

Use the interrupt character t€ Lo leave the ON state and return to the READY state. Use the interrupt
character tQ to leave cither the ON state or the READY state and return to the OFF state. When lcaving the ON

state as described, the exccution currently heing one-siepped will be finished in the usual manner.

The function REPAIR attempts to fix any errors in the [Debugger that you might happen to invoke. These

errors are casily distinguished since they never occur in MDL's MAIN PROCESS. Therefore, you will see:

The One-step Debugger 35

The MDI. Programming Environment ~ 43

LISTENING-AT-LEVEL m PROCESS n
{where s is not 1). REPAIR wrns off the Debugger and returns you to running in the MATN PROCESS (no
longer one-stepping). Because REPAIR turns off the Debugger, you must do <DEBUG> again if you wish to
try any further onc-stepping.

3.5.1. MDL Debugger Command Summary

<{USE "DEBUGR"?> loads the Debugger.

<DEBUG> makes the Debugger ready.

+B begins onc-siepping.

tN performs the next step of the computation.

0 s;tcps completely over the next computation. then siops and continues one-stepping.
1A evaluates the arguntents of the current object then stops and continues one-stepping through the body.
+R continues evaluation until you return (o this point.

+E emds one-stepping.

+Q quits one-stepping and makes the Debugger unready (turned off).

{HELP?> prints a command summary.

¢REPAIR?> attempts to repair any Debugger errors vou might invoke.

3.5.2. MDL Debugger Special Features

The following flags have special importance to the Debugger:
., INDENT-INC

i5 the amount by which o indent for each level (by default 2 spaces).
. INDENT-MOD

The indentation-level is the real level wken modulo this number. The default is 10. Indentation ‘restarts’

when level gets here. If you don't like this feature, make the number large.
,INDENT-DIF

is the minimum amount of free space to reserve on cuch line that indentation must not tuch (by default 20).

Therefore at level L the indentation is exactly:

3.5 The One-step Debugger

“ The MDI. Programming Environment p
{
'
MIN <* ,IMDENT-TINC <MOD .L ,INDENT-MODX> i
{- <13 ,OUTCHAN> ,INDENT-DIF>>
.OUT-FAST '
if true the Debugger will not stop when leaving a level with a result. The defaultis T.
,OUT-UNIQUE
if buth this and previous flag are true successive ‘outs’ of the same item will not be displayed (defaults w T).
+SELF-FAST

if true the Debugger will not stop when entering a level with an vbject which EVALS to itself (c.g. ATOMs,
FIXes, STRINGs). The defaultis T. The display will be;

n: object

,FORM-FAST
iftruc.lhc I3cbugger will not stup when entering a level with any of the short” FORMs (e.g. <>, .F0O, ,BAR,
"ANY TIHING). The defanlt is T. The display will be:

n: LFOO = lval
Any of these flags can be SETGed by you to tailor the Debugger to your own tastes,

3.6. Execution Tracing

I'he *TRACE™ PACKAGE provides a facility for observing the arguments and returned values of sclected
FUNCTIONs and RSUBRs. It is possible to print the arguments on entry to the function, print the value
returned, and t break on entry tw and exit from the function. All actions may be performed conditionally.

T load TRACE, type
{USE "TRACE">

3.6.1. Using TRACE

TRACE is invoked by
{TRACE wha! oplions>

what is cither an ATOM or a LIST of ATOMs, naming the things to be traced. These may include SUBRs,
FUNCTIONs, and RSUBRs: however, anything which is traced must EVAL all of its arguments. options

specifics the behavior of TRACE with respect to the specified function. There are five switches, as follows:
IN-BREAK

means break (cause a MDI. ERROR) before calling the function. Normally off.

The One-step Pebugger 15

I'he MDI. Programuming Environment 45

IN-PRINT

means & function arguments on entry. Normally on.
OUT-PRINT '

means & function value on exit. Normally on.
OUT-BREAK

hreak after executing the function call. Normally off.
VERBOSE

means & the arguments to the function one per line. This is useful if the arguments are long. Normally off.

To cause a given option w be unconditionally on, include its name (an ATOM) in the uptions TUPLE. To
cause an option to be unconditionally off, include a two-clement LTST. composed of the option name and a
FALSE. IT the second clement of the LIST is neither FALSE nor an ATOM, it will be EVALed cach time
TRACE cxamines the setting of the given option for the function. ‘This allows conditional breakpoints, for

cxample.

Thus:
<TRACE FOO (OUT-PRINT {3y

will cause FOO's arguments w be printed on entry, but the value will not be printed.
<TRACE FOO (OUT-PRINT '<G? <TIME> 4.0>)>

will cause printing of the value after four seconds of cpu time have been used. Printing of the arguments will

occur cach time FOO is called.

UNTRACE turns off tracing of the specified functions:
<UNTRACE whairartom-or-lfisi>

What defaults w a LIST of all functions which have been traced.

3.6.2. Understanding TRACE
TRACE works by CHTYPEing the specified functions o new types which have an APPLYTYPE associated
with them. This means that one cannot trace calls w RSUBRs or RSUBR-ENTRYs which are already linked.
In addition, it means that UNTRACE must be used tw get the old value back. T'o determine the status of a
function with respect to tracing, sav
{GET applicable TRACE?
Phis returns FALSE if applicable is not traced: otherwise, it returns an object which describes the settings of

the various options. ‘The object hasa PRINTTYPE which associaics the name of cach oplion with its setting:

36 Exccution 'I'racing

16 ‘The MDL. Programming FEnvironment

{GET ,FO0 TRACE>$S

FOO
IN-BREAK: #FALSE ()
IN-PRINT: T

QUT-PRINT: <G? <TIME> 4.0>
OUT-BREAK: #FALSE ()
VERBOSE: #FALSE ()

Individual settings for a particular function may be changed by PUTting into this structure:
{PUT <GET ,FO0 TRACE>» ,IN-BREAK T>

causes a break whenever FOO is called

3.7. Monitors
A common problem in debugging is the mysterious ‘clobbering” of some value or clement of a data
sructure. MD! has imbedded in it 1 mechanism for triggering interrupts on references, cither for reading or

writing, o values of vanables and clements of structures.

‘The "MONITOR” PACKAGE is designed to be a readily accessible user interface to these "READ™ and
"WRITE" interrupts in the MDI. interpreter.

To obtain "MONITOR",
¢USE "MONITOR">

There are three basic kinds of ‘things' which can be monitored: values of ATOMs, clements of

STRUCTUREDs (the TYPE of the clement is not important), and ASSOCIATIONs.

For ATOMs, the LVAL or the GVAL may be monitored, If the LVAL is to be monitored, tne ATOM must be
ASSIGNED?. lor the GVAL, the ATOM must be GBOUND?, If these conditions cannot be met, a monitor
cannot be generated.

For STRUCTUREDS, the monitor is on the ath clement, where n is specified when the monitor is created.

Remember, the monitor is on a slot of the STRUCTURED, not un the contents of that slot!

For ASSOC IATIONs. the monitor is on the association itself,

3.7.1. Monitor Internals

This section expands on the discussion of monitors in the MDL. document itself[3].

M1, defines two types of monitors: Read and Write. These are implemented in the language by two

Execution Tracing 16

I'he MDIL. Programming Environment 47

inmnupm.READ!-IHTEHRUPTSundHHITE!FIHTERHUFTS.rapmnhﬂy.In;MdMuthc"HﬂHITGR“
PACKAGE can allow read-writc monitors. The "MONITOR"™ PACKAGE is at basec a set of functions to create
and handle these interrupts. A monitor is triggered in the following cases:
Read monitor:

For LVALS -- via LVAL

For GVALs -- via GVAL

For STRUCTUREDs -- via NTH
For ASSOCIATIONs -- via GET and GETPROP

Writc monitor:
For LVALs -- via SET or "AUX" bindings
For GVALS -- via SETG
I‘or STRUCTUREDSs -- via PUT, SUBSTRUC
For ASSOCIATIONS -- via PUT and PUTPROP

Note that PUTRESTs of LISTs which may alter the sth clement of a LIST, do not access the old nth

clement of the LIST and therefore do not cause a write monitor to trigger.

Internally. Mpl. performs monitoring on LOCATIVEs to STRUCTUREDs. In fact. LVAL and GVAL are
really pointers to an internal structure. “This need not concern the user except in the case of LVALS of ATOMs.
In this case. M1 will monitr a LOCATIVE to rhat (exactly that unique) hinding of the ATOM. When that
binding becomes invalid, or more precisely,

<NOT <LEGAL? locarive>>
a function in the "MONITOR" PACKAGE will make the monitor vanish. [lllegal monitors print as
#MONITOR [ILLEGAL] (if you ever get a pointer to one), Remember that if vou want t monitor the LVAL
of an ATOM bound in @ FUNCTION (or PROG. ctc.), you must create a new monitor each time. as a new
binding is created cach time. One way to do this is to edit into the FUNCTION a call to MONITOR (sce below)
after the ATOM becomes ASSIGNED?. Fortunately, EDIT (see section 3.2.2.9) has commands to do exactly
that.

3.7.2. Creating MONITORs
Creation of all monitors is done through a call to MONITOR (which returns an ubject of TYPE MONITOR),
as fullows:

37 Monitors

3 I'he MDL. Programming Environment

(MONITOR (ype:siring
ebjecl
wherg
predicate
todo:iuple >

where:
iypeisone of "READ", "WRITE", or "RW".
object is cither an ATOM or a STRUCTURED, or an ASSOCIATION item.

where is cither LVAL or GVAL (if object is an ATOM) or a FIX. (if object is u STRUCTURED), or an
ASSOCTIATION INDICATOR.

predicate is something which is EVALed w determine whether the monitor 1s to he triggered; this defaults to
I Ihe "MONITOR™ PACKAGE defines three variables which can be referenced in the test:

OLDVAL is the old value of the object monitored.

NEWVAL is the new value of the object monitored.

MONOBJ is the ubject monitored (ATOM or STRUCTURED).

Here value means LVAL, GVAL, or clement. Obviously, NEWVAL is not sct for "READ"™ monitors.
todo is any number of things to be EVALed and PRINTed when the monitor is triggered.

Note that predicate and fodo are identical to the analogous arguments of the ED IT BK command.

3.7.3. Monitor Events
When a monitor is triggered, the following is printed (remember the predicale is cvaluated before this),

and then LISTEN iscalled. Tocontinue, <ERRET T,

Read:

*+*READ of where of objeci**
Value: oldval
todol = resultl]
todo? = result2

Write:

Monitors 17

The M. Programming Environment 49

**WRITE of where of objecr*®
01d value: oldval

New value: newval

todel = result]

fodo? resull2

A slightly different first line format is used for associations.

3.7.4. Killing Monitors
Killing a MONITOR is accomplished by calling KILL-MONITOR as follows:
CKILL-MONITOR muonitory
or
<KILL-MONITOR fipe object whered

In the latter case. fype, object, and where arc as given in the original call o MONITOR.

Tu kill all MONITORs, use
{KILL-ALL-MONITORS>.

3.7.5. Other Monitor Routines
<MONOBJ mionitor>

returns the object monitored.
{MONSPEC monitor>

returns the where of the MONITOR.
{CLEAN-MONITORS?

flushes invalid MONITORs from the MONITOR LIST. 'This is done internally and nced not be called
routinely,
,MONITORS

isa LIST ofall current MONITORs.

3.7.6. What You Can’t Do with Monitors
You can't monitor the LVAL of something BOUND? but not ASSIGNED?. E.g.,

37 Monitors

50 I'he MDIL. Progranuning Environment

{DEFINE WRONG ("AUX" BAR)
¢{MONITOR "READ" BAR LVAL>
ol P

You can't expect compiled code cause monitors to be triggered. Natrally, you can't place monitors in
compiled code; however, a compiled reference to a monitored ATOM will not usually cause the monitor to

trigger either.

3.8. FINDATOM
The "FINDATOM" PACKAGE is intended to reduce the problems caused by multiple OBLISTs and
lengthy ATOM names in ML, [t allows one to find all ATOMs whose PNAME s match some specification, which

need not be exact: in addition, one may place constraints on the values of the ATOMs found.

FINDATOM is invoked as:

{FINDATOM zpecsircsiring
searchlist

constrainis
outobl:list»

speesir is a STRING describing the PNAMES of the ATOMs one wishes w find. Three special characters are
recognized in this STRING:

*- matches anything, including an empty string

=: matches any single character

+Q: quutes the following character

Search strings may be an arbitrary concatenation of normal and special characters, For cxample:
+50M " matches any ATOM containing "SOM™ anywhere in its PNAME.

#=50M": matches any ATOM containing "SOM" in its PNAME, provided that at lcast one character
precedes the "SDM™.

"+Q*": matches any ATOM with PNAME "*",
"&": maichcs any ATOM.

If +Q is the only special character in the string, it need not be quoted: " +Q" searches for ATOMs with
PNAME "tQ".

searchlisi specifics the OBLIST s to scarch. Possible values are:

#FALSE (): scarchall OBLISTsin .0BLIST

Monitors 7

e

The MDIL. Programming Environment 51

HEALSE (oblists-or-forms): scarch all but the OBLISTs specified,
oblist: scarch only this 0BLIST.

list-of-oblists: search only the OBLISTSs in this list,

else; scarch all OBLISTs. This is the default

constraints s a TUPLE describing the value of cach ATOM found. It may consist of any number of valid TYPE
names, along with arbitrary structures and the following special objects:

T: if present. overrides any wther constraints; if no other constraints are specified, this is assumed. Any
ATOM matching specstr will be accepted.

ANY: overrides any constraint other than T. Any ATOM matching specstr which has a value (cither GVAL
or LVAL) will be accepted.,

<22 any ATOM which has no value will be accepted. Note that giving both ANY and <> is equivalent to
giving T.

LINK: any LINK will be accepted.

If other constraints are provided, they work as follows: all valid TYPE names given {ones for whom
VALID-TYPE? returns T) are stored in a structure; when a value is encountered. its TYPE is MEMQed

on this structure. If the ATOM does not succeed here, it is next checked against the ‘arbitrary
structures.’

Anything in consiraints which is neither one of the above “special objects’ nor a valid type is treated as 2
DECL specification. All such objects are put in a FORM starting with OR, which has the effect of
generating a single DECL specification. When a value is found. DECL? is called with the value as its
first argument and the generated FORM as its sccond. 1f DECL? returns T, meaning that the FORM is
valid as a DECL for the VALUE, the ATOM is accepted.

Examples:
ATOM FALSE '<LIST [REST FIX]>

specifics that any ATOM accepted must have cither a GVAL or an LVAL which is of type ATOM or
FALSE, or whichisa LIST of FIXes,

'<OR ATOM FALSE> '<LIST [REST OBLIST]>
specifies that any ATOM accepted must maitch the DECL
<OR <0OR ATOM FALSE> <LIST [REST OBLIST]>>

outobl, if present. is a LIST of OBLISTs which is the LVAL of OBLIST when FINDATOM prints things. 'Thus,

one may force all ATOMs ta be printed with full trailers by providing an empty LIST here. The last
argument given w FINDATOM, provided itisa LIST, is assumied to be ouiobl,

FINDATOM prints the name of cach ATOM it accepts, followed by the STRING "Gassigned" and the
type of GVAL if the ATOM has one; this will be followed by the STRING "Assigned"” and the type of the

3.8 FINDATOM

32 ' The M. Programming Environment

LVAL if the ATOM has one. It prints the number of ATOMs found when it finishes.

3.9. "PINFO"
"PINFO" is an informational PACKAGE. Itis used to cxamine the 0BLISTs of the PACKAGES loaded into
an MDI.. There are two major entrics in PINFO.,

CPCK-INFO package:string
internal?:boolean’

Buth arguments 1 PCK-INFO arc optional. If neither argument is given, the names of the PACKAGEs loaded
into the ML are listed. [fa package is given, the contents of the package’s ENTRY OBLIST are listed, as well
as information about the VALUE of cich ENTRY. IF internal?is provided and non-FALSE the contents of the
internal 0BLIST are also listed, PCK-TINFO prints an error message if package is not loaded.

{PCK-USES package:string>
lists the names of PACKAGEs USEd hy pickage or returns a FALSE if package is not loaded.

3.10. Debuggingin a Run-time Environment

A fairly common occurrence when running “debugged’ code is to find that if was not after all completely
debugged. It is uscful to be able tw load interpreted versions of some FUNCTIONs in a PACKAGE into the
compiled environment for debugging. "DFL*", "RDFL", and "UNLINK" arc PACKAGESs written to simplify
this procedure,

3.10.1. DFL
The "DFL" (‘1)cbugging Fload') PACKAGE is a sct of routines for loading and dumping of small numbers
of FUNCT IONs from a larger file. It is useful in debugging already running systems, or ones which have not

been GROUP-LOADed. To get "DFL"
<USE "DFL">

The main entry of the "DFL" PACKAGE is DFL:
SDFL func-names file-name:string unlink?:booleany
where all arguments are optional and
Sunc-names is the name(s) of the DEFINEd FUNCT LON(s) to be obtained from this file. It may be an ATOM, a

STRING, or a structure ol ATOMs or STRINGs: if ATOMs are given, their SPNAMEs are used. ‘The default is
the argument last given to DFL or RDFL.

Jfile-name is the file 1o obwin the FUNCT ION(s) from. The default is the last file DF Led or RDFLed. An ATOM
may be given, in which casc its SPNAME is used for the first file name.

unlink? If this is true, and if one or more of the values replaced by the DF Led FUNCT I0Ns were RSUBRS or

FINDATOM 18

B e S ——

R e R T N —

¥

4 'l"|r
g

&

The M. Programming Environment 53

RSUBR-ENTRYs, the reference VECTORs of all RSUBRs, including pure ones, will be scarched for
occurrences of the old value; such occurrences will be replaced by the ATOM. This is the inverse of
RSUBR-LINKing. Purc structurcs will be unpurified; this does not change their address in core, but
simply makes the page they live in read/write.

In the normal case, if an RSUBR or RSUBR-ENTRY is being replaced. unlinking will occur automatically in
garbage-collector space only if RSUBR-LINK is T. Also, remember that unlinking is not the same as
substituting: only RSUBRs stored at top level in reference VECTORSs are found: if the old value itself was in a
structure (such as a dispatch table), it will not be replaced.

3.10.2. RDFL
RDFL is similar to DFL but is for reloading RSUBRs rather than FUNCTIONs. RDFL is contained in the
PACKAGE "RDFL".
<ROFL func-names fil-name wunlink? glue®
‘Ihe first three arguments are as for DFL, The only difference between RDFL and DFL (barring the effect of
the fourth argument) is that RDFL searches in the file for *¢SETG " rather than "<DEFINE °

glue? 1f non-FALSE, RDFL will READ and EVAL the next object in the file fullowing cach RSUBR read. This
will in the normal case obtain the “glue bits” for the RSUBR (see section 6.1). The default for glue?is

<AND <ASSIGNED? GLUE!- > .GLUE!- >
This is the FORM used in NBIN files to determine whether glue bits should be kept.

Note that RDFL will work to rcload any SETGed object, not just RSUBRs.

RDFLing an RSUBR-ENTRY docs not work and may well be fatal: you must RDFL the RSUBR in which
the RSUBR-ENTRY is an cntry, as well.

3.10.3. UN-DFL

UN-DFL is for writing out DF Led FUNCT T0Ns after EDITing.
<UN-DFL gtoms filnam force?
atoms is an ATOM or a list of ATOMs, which will be UN-DF Led. “The FUNCT I0Ns defined must all be from the
same file, or UN-DFL will not work. UN-DFL can only UN-DFL things which were previously loaded by
DFL.
Sinam The default is the file the ATOMs originally came from.

Jorce? Normally. UN-DFL will object if there is a version between the file the FUNCT IONs came from and the
file which UN-DFL will create: it thinks it will likely destroy useful information. Providing an ATOM here
causes this scruple to be ignored. 1t is almost always unwise to do so. For cxample;

ilo Debugging in a Run-time Environment

A 'he M. Programming Environment

{DFL (FOO BAR)> <UN-DFL FOO> <{UN-DFL BAR>
will cause UN-DFL to fail. Moral: DFL and UN-DFL your FUNCT IONs together.

3.10.4. UNLINK

The "UNLINK® PACKAGE contains three cntrics: UNLINK. PURE?, and UNPURIFY. UNLINK is
sometimes called by DFL; PURE? and UNPURTFY are good ways to tturatively defeat the safety ‘interlock’ of
Moi.

UNLINK is used to unlink RSUBRs after they have been linked. (Sce the discussion of RSUBR-LINK in

[3D.
CUNLINK aioms pure?>

atoms is a list of the ATOMs t be unlinked. or a FALSE, meaning unlink cvery RSUBR in the MpI, or a
group-name, meaning unlink calls to all FUNCT IONs and RSUBRs in the group.

pure? is optional and defaults to FALSE, but if true, even purc RSUBRs will be scarched. UNLINK
examines all the 0BLISTs in the MpI., looking for RSUBRs; if an RSUBR exists only in a structure, and not at

wp level in any RSUBR's reference VECTOR, it will not be found.
CUNPURIFY pure-ubject:any>

PURE? takes an object and determines if the right half of the value word is greater than the number
contained in the MDL location PURBOT. which is the lowest pure location in MbL. Ergo, ‘Is the object [gave
you pure?' Itis only meaningful for structures.

CUNPURTFY pure-object:any>

UNPURIFY takes a single argument. which must be of PRIMTYPE VECTOR or UVECTOR (i.c., it must have
an AQBJN pointer for its value word). [t causes the pages in which that object lives to become impure, and

returns T,

Because there is no way on I'TS to make a read-only page an impure page directly, the following algorithm
is used by UNPURIFY:

1. Is the vbject pure, according to PURE? If not, leave.
) lsUNPURIFY-PAGE! - TUNL INK GASSIGNED? If not, get a page from the interpreter, and SETG

the aforementioned ATOM to its number. Le., the page is more or less permanently taken for use
of UNPURIFY,

3. For cach page occupied by the ubject: a) If the page is already impure, do nothing: b) otherwise,

Debugging in a Run-time Environment 3.10

The ML, Programming Environment - 55

map the page on top of UNPURIFY-PAGE: c) create a new, impure page where the old page was,
d) copy the contents of UNPURIFY-PAGE back to the old, now impure page.
"Thus, no pointers are changed: as far as MDI is concerned, in fact, nothing has changed. ‘The unpurified

pages are still pure, according to its page map. However, you may freely change the unpurified object.

If your change to the newly unpurified object consists of PUTing a pointer into garbage-collected space
into the object, you may lose completely unless the pointer points to a frozen object. The Mni. garbage
collector does nor examine unpurified objects. UNLINK can only use UNPURIFY because all ATOMs

referenced by pure H‘SUERS are indeed frozen.

For the above reason, use of UNPURIFY is not recommended for the general user.

3.11. CRITIC

"CRITIC" is a PACKAGE designed to aid the user in debugging (and perhaps increasing the efficiency of)
his programs. Tt accumulates and prints in a readable format infurmation about the interactions of the various
FUNCT IONs (and LVALS and GVALS) in a group. Tt also warns the user about various conditions it considers
to be cither non-optimal or erroneous, such as incorrect use of SPECIAL, forgetting to QUOTE some structurc,
and so on. Like most critics, it is sometimes wrong, but it trics to perform a useful service. To load

"CRITIC" say
<USE "CRITIC">

There are two major entries, one of which prints more information than the other.

{CRITIC group-name
vutput-filed

where group-name is the ATOM returned by a GROUP-LOAD, and the optional ouiput-file is a STRING giving
the name of the file to output to (by default with second file name "CRITIC"). This can also be a CHANNEL
if you arc planning to do several CRITICs into one file. CRITIC prints information about interactions
among the FUNCTIONS in a group (as described below).

<CRITIC-NOTES group-name
outpul-file>

is similar but only prints "errors’ and ‘warnings’ -- things that might be problems with the FUNCT IONs in the
group,

‘The output format (for cach FUNCT 10N and for the group as a whole) is as follows:

Junction (vbject number of function in group)

Called-by: alist of all the functions which call function

310 Debugging in a Run-time Environment

36 I'he ML, Programming Environment

Calls: a list of all the functions called by function
SETG: cxternul globals SETGed by function

GVAL: external globals referenced by function

SET: external variables SET by function

LVAL: external variables referenced by function
SPECIAL: variables declared SPECIAL by funclion
USE-DATUM: DATUMs used by function

'The above table is printed by CRITIC but not by CRITIC-NOTES. *External’ as used above means

*External to finetion’,

CRITIC-NOTES and CRITIC both print information about possible defects or errors in cach FUNCT ION.

“I'hese can be any or all of the following (cxplanations follow where nceded).

3.11.1. Global problems with the Group
FLOAD in file.
"This is pretty minor: FLOADs at top level are discouraged if you can avoid them.

BLOCK or ENDBLOCK at top level in PACKAGE.

PACKAGESs should not have to resort to this.

atom-name: MANIFESTed structure,

"The ATOM given is a structure but was MANIFESTed. Since a MANIFEST is copied within the reference
VECTOR of any RSUBR that uses it, it is usually not a good idea..

ENTRYs not bound, assumed locals: atom-list

The ATOMs given were made ENTRYs in the PACKAGE, but were not bound, so CRITIC has assumed they
are locals, for lack of something better to do.
Packages USEd but never referenced: package-names

These PACKAGEs were in USE statements but no ATOM was ever found which fell on their OBLISTs.

‘IMere will sometimes be incorrect entrics in this list if you USE a PACKAGE which sets up a funny ENTRY
OBLIST (RPACKAGEs included) or no OBLISTs atall.

Internal functions unused: afom-list

‘I'hese are FUNCT IONs DEF INEd but apparently never referenced and not entries. There will sometimes

be incorrect entrics in this list if you have FUNCTIONs invoked only by funny dispatching methods, such as

CRITIC i1l

‘The MDI. Programming Environment 57

APPLYing or EVALing an clement of a structure.

Internal globals unused: afonr-list

ATOMs SETGed at top level but never referenced.

Internal manifests unused: atom-lisi

ATOMs SETGed and MANIFESTed at top level but never referenced.

3.11.2. Parameter list problems
ATOM arowr-name used twice in parameter 1ist.

‘The ATOM named was bound twice in the same parameter LIST within the FUNCTION. Mbi. doesn't

worry aboul this, but you might.

Untasteful re-use of ATOM gromr-name in ROOT.

An ATOM was bound which happened 1o be in the ROOT OBLIST and happened to have a GVAL that is &
SUBR or FSUBR. This is repurted because the ATOM will have to be unpurified, which is expensive.

"BIND" illegally located.

A "BIND" was found other than at the beginning of a parameter LIST.

"CALL"/"ARGS" illegally located.

A "CALL"™ or "ARGS" was found after the "AUX" in a parameter LIST,

"OPTIONAL" illegally located.

"OPTIONAL" was found after "AUX™ in a parameler LIST.

"TUPLE"™ i1legally located.

"TUPLE"™ was found after "AUX" in a paramecter LIST.

atom "AUX" illegally QUOTEd.

The ATOM named was given as a quoted argument in the "AUX" part of the parameter LIST.

External locals set but unbound and unDECLed: alom-list

External locals set but unbound: aton-list

Two diffcerent classes of hacking an external local. In both cases it means that the ATOMs did not appear to

311 CRITIC

38 ' ‘The MDIL. Programming Environment

be improperly SPECIALed, since no one bound them higher in the call tree (or at top level). These are most
uiten indications of misspeiling or Furgcttjng Lo put a temporary in the parameter LIST.

External locals used but unbound and unDECLed: arom-list

External locals used but unbound: atom-[ist

A reference o an external local which was not bound anywhere is probably a misspelling of a SPECTAL

bound elsewhere or the result of forgetting to put the ATOMs in the FUNCTION's parameter LIST,
External locals set but unDECLed: atom-list

External locals used but unDECLed: atom-fist

An external used but not DECLed usually means that the compiler will produce poorer code,

3.11.3. Unused ATOMs
Argument unused: alom-list
The arguments listed were never referenced.

Unused: atom-lisi

The ATOMs listed were bound at op level of the FUNCT ION and never referenced.

Unused in PROG: arom-list

Similar to the above, but the ATOMs were bound within a PROG.

Unused in REPEAT: arom-list

Similar to the above, but the ATOMs were bound within a REPEAT.

Unused in FUNCTION: atom-list

Similar w the above, but the ATOMs were bound within a namcless FUNCTION, such as the second
argument o a MAPF/MAPR,

Unused SPECIALs: arom-list

‘The same as above (including* ... in FUNCTION' elc.), except that the ATOM was SPECTAL. This
message results from really looking down the call tree, so it is more accurate about this problem than the
compiler, which only looks at the FUNCT ION in which the ATOM is bound.

CRITIC ! 1.1

‘The ML Programming Environment 59

3.11.4. Function calling errors
Calls undefined function aiom.
The FUNCTION calls an undefined FUNCT 10N (undefined at the time CRITIC ran).
Calls function with too few arguments.
Calls function with too many arguments.

External FUNCTION function

‘The FUNCT ION named is called but doesn't seem to fall on any of the OBLISTs associated with the group.

3.11.5. SPECIAL/UNSPECIAL problems
SPECIALs never used as SPECIALs: aom-lis
The ATOMs were made SPEC TAL but never used outside the FUNCTION in which they were bound.

atorm-name is unused or should be SPECIAL.

A very specific error which means that the ATOM given (always one of TNCHAN. OUTCHAN, ur OBLIST)
was bound but never referenced within the FUNCTION, and was not SPECIAL: Fither vou bound it for
effect and forgot w SPECTAL it, or you didn’t need to bind it.

aiom unbound in paths: path-list

If the FUNCTION is called by onc of the paths given, the arom will be unbound. A path is just a list of calls
CRITIC has found are puossible, such as (FOO BAR BLECH), meaning “FOO is called by BAR which is called
by BLECH".

The ATOM giom used in fen! should be special in fenl,

This note will appear with both FUNCT I0Ns mentioned. It means that atom is referenced in Jend and the
nearest FUNCT ION that binds it and calls down to fen/ is fen2.

3.11.6. DECLing problems
RSUBR has no DECL.

FUNCTION has no DECL.
Parameters not DECLed: aiom-list

The ATOMs given were bound but not DECLed in the parameter list of a FUNCT ION, PROG, or REPEAT.

31l CRITIC

b0 e MDL. Prugramming Environment

No DECL in DECL for: atom-list

The ATOMs in the arem-list given had no associated declarations.

NEWTYPE not DECLed: (type-name

A NEWTYPE of a structured type was made but no DECL argument was included. In a structured

NEWTYPE, including a DECL of the interivr can greatly increase the efficiency of compiled code.

I11egal DECL: arom-fisi decl reason

T'he DECL pair given had illegal syntax fur the reason given. ‘These can include:
"Not a lagal type": Anuobject appeared ina DECL that was notan ATOM, FORM, or SEGMENT.
"Type-name not a type: atem": Something uther than a type-nume or special symbol (such as ANY)
appeared where a type was expected. This is sometimes caused by not having your environment
completely set up when CRITIC is run.
"FORM/SEGMENT too short": A FORM/SEGMENT construction of only one clement was found.
"SPECIAL/UNSPECIAL with three or more elements”
"Bad PRIMTYPE type™: Thetypegivenina PRIMTYPE was .0l a type-name.

"PRIMTYPE with three or more elements”

"Bad type of structured type”: The type-name given as the type of a structured type was not a
type. For cxampic, <FO0 FIX» where FOO is not a type.

"Bad BYTES specification”: A BYTES specification was not of the furm <BYTES fix fix>, or the
byle size was greater than 36.

"BYTES DECL too short™ A BYTES construction of only one clement was encountered.

"BYTES DECL too long": A BYTES construction of more than three clements was encountered.
"VECTOR in OR specification™: An NTH/REST/OPT construction was found at top level of an OR.
"Nth/REST/0PT too short"™: Aonc-clement NTH/REST/0PT,

"Only REST or OPT may follow OPT": Somcthing other than a REST or OPT was found after an
OPT.

"REST must terminate DECL": Sumething was found after a REST in the DECL.

CRITIC 111

The ML IProgramming Environment 61

3.11.7. Miscellaneous
Possibly should be QUOTEd: sfruciure.

I'he structure given will be =7 to itsclf if EVALed. CRITIC lists these under the assumption that you
might have forgotten to QUOTE a structure that should have been. It says “possibly" because you obviously
want to build new structure sometimes. One way 1o do this withoul offending CRITIC is to build new

structure with explicit calls to LIST, VECTOR, ete.

3.12. Program Environments
The ENV PACKAGE makes it casicr t load programs into difTerent environments. 1t allows certain actions
to be taken during loading only if a given “feature’ is present. £ NV has three ENTRYs, and is preloaded.
CFEATURES features:tuple>
If given no arguments, FEATURES returns the current feature LIST. Ifits first argument is not a FALSE, the
arguments are added w the feature LIST. If the first argument is FALSE, the remaining arguments are

removed from the feature L1ST. Thus,
<FEATURES "COMPILER">

says that we are currently in a compiler. All of the “feature” arguments may be cither STRINGs or ATOMs;

internally features are stored s STRINGs to avoid 0BLIST problems.

<FEATURE? features:tuple?

returns T if any of its arguments is on the feature LIST.

CEVAL-WHEN feaiures
:':m.ﬂgpﬁrggﬂgﬂg}

uses the first argument to decide whether to evaluate the remaining arguments,

features specifies which feature(s) to look for. It may be a single feature or a LIST of features. In the latter
case, if the first clement is a FALSE, what is checked for is the absence of the features listed. Note that this
argument is often a LIST created out of arguments to F EATUREY.

consequences-are things 1o be evaluated only if the features are present (or absent, in the FALSE case).

For example,
¢EVAL-WHEN GLUE <SETG FOO 1>7

would perform the SETG only if it's cvaluated in a GLUE (or some other environment defining that feature).
CEVAL-WHEN (<> COMPILER) <SETG BAR 23>

would not perform the SETG in the compiler environment

Unfortunately, the ENV PACKAGE is a relatively recent innovation, and so many programs do nol set up

appropriate environments.

31l CRITIC

62

40

‘T'he ML Programming Havironment

T
|

The M. Programming Environment 63

4. The Library System
A coherent unified library system serves to- facilitate the sharing of algorithms and data by imposing a

discipline appropriate for the particular environment. The MDI Library System provides:

— A uniform access method for referring to functions and data outside of the current logical group;

— l.exical blocking. climinating difficultics arising from overlap of names between different logical
groups;

— Automatic loading of functions for the user who knows only the name of the function which is
wanted;

— A fucility wherehy functions which may be necessary only in unusual situations are loaded only in
the event that they are needed.

The Mt Library System may be divided into distinct parts. 'These are:

— “I'he Package System, the collection of routines used to provide lexical blocking for a logical group
{sce section 2);

— The “explicit’ loading facility, the routines used to explicitly indicate that references are being
made to a particular logical group;

— The “implicit’ (or *dynamic’) loading facility, the machinery for automatically loading functions
when they are needed during console interaction.

4.1. Program Libraries

In the previous discussion of the Package System and USE (sce section 2.3.2). we glossed over the
mechanism by which a PACKAGE is loaded when another PACKAGE (or the user at his terminal) refers to it.
We will now give the details.

There arc two types of loading common in MpI. programming: ‘explicit’ loading, such as USE may
initiate, and ‘implicit’ or ‘dynamic’ loading, initiated by attempting to call or examine a function that is not

currently loaded.

In the case of "explicit’ loading, it is necessary somehow to map the name of a PACKAGE into a file name
which contains the body of that PACKAGE. ‘The mechanism for doing so must be flexible enough to allow
both ‘installed” programs (those that have been debugged and submitied to the library) and developmental
programs Lo be loaded. 1t must also be tailorable for special needs, such as libraries for specific systems and

personal librarics for individual users.

4.0

64 'The ML Programming Invironment

In the case of ‘implicit’ loading, the further mapping from the specific ENTRY of a PACKAGE referenced to
the PACKAGE itsclf must be performed. Tt must deal with the case of two or more PACKAGESs cach containing
an ENTRY with the same PNAME.

For programs that are ‘public” or “installed”, both of these mappings arc performed by a library. A library
is a file which contains pointers between the names of ENTRYs of PACKAGESs and the PACKAGEs containing
them, and from PACKAGE and DATUM names to the files containing them.

The standard library is named L IBMUD and lives on a directory named LIBMUD (on ITS) or MDLLIB (on
‘Tenex/Tops-20). but other libraries, personal or special purpose, may also exist; the mechanisms for creating

and maintaining them are the same in both cases.

4.1.1. Library Searching

When a PACKAGE is USEd, MDI first checks to see if the PACKAGE is already loaded, by looking up the
PACKAGE name on the PACKAGE OBLIST. If the PACKAGE is not yet louded. MDI. must search for the file
cuontaining the body of the PACKAGE.

When MDL scarches, it does so under the direction of a search path stored as the LVAL of the ATOM
L-SEARCH-PATH. This LVAL is a LIST, cach clement of which specifics "a place to look” for the PACKAGE.
These clements may be:

" file-name®
A STRING refers to a library file; "LIBMUD; LIBMUD" for example.
L]

An cmpty VECTOR refers to the ¢SNAME> dircctory. The directory will be searched for files whose names are
the name of the PACKAGE being loaded (truncated to six characters on ITS) and sccond names from the
LVAL of thc ATOM L-SECOND-NAMES, which is a VECTOR of STRINGs which arc possible second names for
the file.
[dir:string-or-false]

A non-empty VECTOR specifics a directory. The first clement of the VECTOR gives the directory as a STRING
or a FALSE, the latter case meaning <SNAME». If that is the only clement, L-SECOND-NAMES specifics the
file names to look for. If there are other clements, they should be STRINGs to use in place of
L-SECOND-NAMES.

A scarch path may consist of any number of such clements. The loader will examine them sequentially,
attempting to find the PACKAGE being loaded.

Program Libraries 4.1

— b, — T

‘The MIDI. Programming Environment 65

‘The initial LVAL of L-SEARCH-PATH (on ITS) is
("LIBMUD" "LIBMUD;LIBMUD" [] ["MBPROG"] ["MPROG™ ">"])
and on 'Tenex/TOPS-20, it is :
("LIBMUD™ "<MDLLIB>LIBMUD" [1 ["MDLLIB"])
This instructs the loader to first search the user’s personal library (if it exists), then the “public” library. Next,
search the user’s directory for a file whose first name is the PACKAGE name, and whose second name is
specified by L-SECOND-NAMES. If that fails, perform the same scarch on the library dircctory, and finally

(on I'TS), look for a source version of the PACKAGE on the source directory.

The initial LVAL of L-SECOND-NAMES (on ITS) i
["FBIN" "GBIN" "NBIN" ">"]

and on Tenex/TOPS-20, it is
["FBIN" "GBIN" "NBIN" "MUD"]

'To give a simple example of how this mechanism may be tailored for individual needs, consider a
programmer debugging a subsystem. 1f he wants his debugging versions of various PACKAGEs to be loaded

hefure the installed versions, he CONSes a new element onto L-SEARCH-PATH so that it contains
([] "LIBMUD" "LIBMUD:LIBMUD" [] ["MBPROG"] ["MPROG" ">"])
(assuming the files with his debugging versions arc on the <SNAME> dircctory).

4.1.2. Dynamic Loading

To casc the use of "top level' routines from the console, a feature is provided whereby the Library System
can loud a PACKAGE of functions automatically when one of the functions which is an ENTRY in that
PACKAGE is invoked by name. This facility is not available for use by other PACKAGES of functions, which
must refer explicitly, via USE, o PACKAGES which they require: while a human can resolve the difficulty of

possible multiple PACKAGES with ENTRYs of the same name, a program cannol.

When an error is gencrated because a FORM is cvaluated, and the first element of that FORM is an ATOM
which has no value, and the particular ATOM is in the INITIAL OBLIST, an error handler established by the
ibrary System determines if there are any PACKAGEs in the current librarics which contain an ENTRY with
the same name as the PNAME of that ATOM. If there is one such PACKAGEL. it is loaded, and the cvaluation
which got the error is continued with the correct value. IT there is more than one such PACKAGE, the possible
choices are displayed, the user is asked which is the desired PACKAGE, and it is loaded. IT there are no
PACKAGEs with ENTRYs of the correct name, the error is not handled, and so it will fall into the standard

error mechanism. This same procedure is also invoked when GVAL is applied to an ATOM on the INITIAL

4.1 Program Libraries

66 Ihe M. Programming Environment

OBLIST and the ATOM has no value.

4.1.3. USE-DEFER

It is sometimes desirable to have available functions that are rarcly invoked. but are nonctheless available.

{One example would be certain error handling routines.)

The USE-DEFER function sets up the 0BLIST path so that, when a reference is made to an ENTRY in the
specified file, the correct ATOM is found, but the PACKAGE is not actually loaded at that time. When a
function at a later time tries to call the function which is the value of one of the entries in this PACKAGE, the
whole PACKAGE will be automatically loaded. USE-DEFER has two constraints which USE does not. First, the
PACKAGE must be in one of the currently active libraries; it may not simply be a file as in the case of USE.
Second, no reference may be made to ATOMs which are entries but do nothave values which are applicable. In
other words. ATOMs which are entrics because they are data (rather than functions) may not be referenced
when USE-DEFER is employed instead of USE.

Because USE-DEFER utilizes the dynamic loader, which utilizes the ERROR interrupts, USE-DEFER will
not work in a demen or any other MDI. program which scts up its own error handlers. Al such MbL
programs should SETG the ATOM L-NO-DEFER tw a non-FALSE, which (as explained previously) will cause
USE-DEFER to behave exactly like USE. Then, PACKAGES containing a USE-DEFER can be used without

modification in demons and the like.

4.1.4. USE-TOTAL

USE-TOTAL is analogous to USE, but instead uf splicing in only the ENTRY OBLIST of the PACKAGE, it
additionally splices in the internal OBLIST. This is useful in some debugging situations, as it reduces the
number of trailers printed and also makes the internal identifiers of the PACKAGE more accessible.

4.1.5. Translations

It is vecasionally useful to have more than one copy of a particular PACKAGE lpaded at once. One
example that comes to mind is the case of debugging a debugging PACKAGE. The l.ibrary System contains a
mechanism for “translating’ a PACKAGE name into another one. More specifically, it is pussible to tell USE: *If
you ever load the PACKAGE named foo, pretend it was named bar instead.” Note that this does not change the

scarching and loading procedure described above, unly the names of the 0BLISTs and so on used to store the
ATOMs in the PACKAGE.

Program Libraries 41

‘The M. Programming Environment - 67

{TRANSLATE oldstring new:siring-orfalse>
causes the PACKAGE old. when it is USEd, to behave as if it were named new. If new is FALSE. it means that

old should be lvaded as though it were not a PACKAGE at all: its ATOMs will appear on the DEFAULT OBLIST
or<1 .OBLIST> (normally INITIAL).
CUNTRANSLATE old:string>

causes any translation of old 1o be removed.,
<TRANSLATIONS>

lists all translations currently in existence,
,L-TRANSLAT IONS

is a LIST containing all the translations.

4.1.6. The Library Data File

In addition t its ability to map between PACKAGES, ENTRYs, und the files which contain them, the library
serves another purpose. [fa user is compiling a function which USEs a given PACKAGE., that PACKAGE isnot
usually going to be run. All that is necessary is to examine the calling sequences of its functions, and make
sure that all “side-cffects’ (such as the definition of new TYPEs) occur. If only these necessary parts of the

PACKAGE are loaded, a great saving of time and space is cffected.

‘The library data file provides a way of achicving this end. When a PACKAGE is added 1o the library, more
information than the list of ENTRYs and the file conwining the PACKAGE is collected. In particular,
MANIFEST GVALs, NEWTYPE definitions, some MACROs, and RSUBR DECLs arc stored. Since this is the
information used by the compiler, one can save a great deal of space and time by using information from the

library where possible.

If ,L-USE-DATFILE is true, USE of a PACKAGE will load from the data file if possible. It is impossible if
the PACKAGE has changed since the data file entry was created. In those cases, the PACKAGE itsclf is loaded
instead. If ,L-ALWAYS-DATFILE is truc, an ERROR will result if the data file entry is outdated; one can
ERRET T to cause the real PACKAGE to be loaded.

USE-DATFILE is just like USE, cxcept that it temporarily SETGs L-USE-DATFILE and
L-ALWAYS-DATFILE w0 T,

The data file contains, for cach PACKAGE, information (or cach interesting ENTRY: MANIFEST GVALs,
NEWTYPE definitions, RSUBR DECLs, and MACROs. It also has, of course, the lists of ENTRYs and RENTRYs

needed by the dynamic loader, It does not contain other structures, nor does it contain functions. When a

41 Program Libraries

68 he MDI. Programming Environment

PACKAGE is loaded from the data file, it is effectively USE-DEFERed; if you end up needing to run part of
the PACKAGE. it will be loaded dynamically.

Some PACKAGESs can not have data file entrics. 1fa PACKAGE defincs MACROs that use data not stored in
the data file (if the MACRO calls a FUNCTION, for cxample), the PACKAGE will not get a data file entry: it

wuuld normally end up being loaded from the file anyway.

It is possible for a data file entry 1o become obsolete (if a new version of a PACKAGE is created without the
library entry being updated). For this reason, the library is examined periodically for such cntries and an

attempt is made to update the appropriate cntries.

4.1.7. Run-time Switches
There are a number of variables which may be set dynamically to tilor the Library System’s perfonnance.
.L-SEARCH-PATH
as described above (see section 4.1.1) is a LIST specifying the libraries and dircctories to look in. and the files
tw look for when trying to luad a PACKAGE. This variable is used by USE, USE-DEFER, USE-DATUM, and the
dynamic loader.
.L-SECOND-NAES
as described above (sec section 4.1.1) is a VECTOR of the second names of files to look for when attempting to
load & PACKAGE from a directory.
JL-NOISY
If the GVAL of L-NOISY is non-FALSE, the namoes of PACKAGEs and DATUMs are printed whenever they are
loaded, dynamically or otherwise. This feature may be turned off by SE TGing L-NOISY w #FALSE ().
L=NQISY has an initial GVAL of T.
,L=-NO-MAGIC
Dynamic lvading may be disabled by SETGing L-NO-MAGIC to a non-FALSE. L-NO-MAGIC has an initial
GVAL of a FALSE.
LL-ALWAYS-INQUIRE
If the GVAL of L-ALWAYS~-INQUIRE is non-FALSE, the dynamic loader will always ask the user before it
lpads anything. The GVAL of L-ALWAYS- INQUIRE is initially a FALSE.
,L-NO-DEFER
If the GVAL of L-NO-DEFER is non-FALSE, USE-DEFER will work cxactly like USE. L-NO-DEFER is
initially SETGed to #FALSE ().

Program Libraries 41

The MDI. Programming Environment 69

4.1.8. Library Utility Functions
A number of functions exist which allow the user to examine libraries, list their contents, and retrieve their

entries. All of the functions below except L-PATH and L-0BL accept an optional STRING argument, a
library specification. If it is defaulted, they operate on the public library, specified by the string "LIBMUD;
LIBMUD" or "<MDLLIB>LIBMUD".

<L-LOAD package:string library:string>
L-LOAD requires a STRING (the name of a PACKAGE or DATUM) and attempts to load it from library (if
given) or the current librarics, as per L-SEARCH-PATH.

<L-FIND function-name:string library:string>
L-FIND requires a STRING (the name of an ENTRY), returning a UVECTOR of two-clement VECTORS of the
form:

[package-in-which-fimction-exisis:string
library-in-which-package-exisis:string]

‘This finds all of the entries which have the same PNAME but are in different PACKAGES.

The remaining functions are in the PACKAGE "L", rather than in the PACKAGE "PKG". For cach of
these, the optional flibrary argument is by default the library; that is, "LIBMUD:LIBMUD" or
"{MDLLIB>LIBMUD".

{L-FILE package:string library:string)
L-FILE requires a STRING (the name of a PACKAGE or DATUM) and returns a STRING which is the file
specification of the file, pointed to by the library, which contains the body of that PACKAGE ur DATUM,
{L-WHERE package:siring library:siring?
L-WHERE is similar to L-FILE but returns a VECTOR of STRINGs which is the actual complete file
specification of the file containing the PACKAGE (i.c., the ‘real’ slots in a CHANNEL open to the file).
{L-LISTE library:siring?
L-LISTE prints the names of all of the entries of all of the PACKAGES in the library.
{L-LISTP library:siring®
L-LISTP prints the names of all of the PACKAGEs and DATUMs in the library.
<L-COUNTE library:string>
L-COUNTE returns a FIX, the number of entries defined by all of the PACKAGEs in the library.
{L-COUNTP library:string>
L-COUNTP returns a FIX, the number of PACKAGESs and DATUMs in the library.

41 Program Libraries

70 ‘The MDI. Programming Environment

<L-LISTPE packaeesiring library:string>
L-LISTPE requircs a STRING (the name of a PACKAGE) and prints the names of all of its entries.
{L-PATH>

L-PATH prints a list of the names of all of the 0BLISTs in the user's current OBLIST path.
{L-0BL aiom>

L-0BL requircs an ATOM and returns an ATOM, the name of the first ATOM's OBLIST. L-0BL isiin fact
{GET <OBLIST? atom> OBLIST>

4.1.9. Internal Library Functions
‘There are several internal functions used for searching libraries (which is, after all, all the Library System

ever does).

(PACKAGE-FIND package:string [ibran:siring?
scarches library for package. If there is no such PACKAGE or DATUM in fibrary. it returns a FALSE.
Otherwise, it returns a STRING, which is the name of the file containing package.

(ENTRY-FIND emtryestring-or-atom [ibranvcsiring?
searches library for PACKAGES containing enfry. It returns a FALSE if there arc none, otherwise a LIST some
multiple of four clements long, where cach set of four elements describes a package containing an ENTRY

with that PNAME. These clements are:

package:string is the PACKAGE being described.

file-name:string is the file-name containing the package.

rpackage?:atom-or-false indicates, if non-FALSE, that the package is in fact an RPACKAGE.
reniry?:atom-or-false indicates, if non-FALSE, that the cntry is an RENTRY.

{DEFER-FIND package:siring library:siring
returns a FALSE if the PACKAGE or DATUM is not found, or a VECTOR of five elements describing the
PACKAGE,

rpackage?:atom-orfalse indicates, as above, whether the package is an RPACKAGE.
name:siring is the name of the package.

file-name:siring is the file containing the package.

entries-list is a LIST of the PNAMEs of the ENTRYs of the package.,

rentries:listisa LIST of the PNAMEs of the RENTRYs of the package.

Program Libraries 11

‘The MDL. Programming Environment 71

This is all the information about the package that the library contains.

4.1.10. Library Maintenance

The PACKAGE called "LUP" contains functions used to modify libraries, and o add, update and delete
PACKAGEs and DATUMs. It should be noted that librarics do not contain the hodies of PACKAGEs and
DATUMs. Rather, they point o files which contain these.

<LUP-ACT [ibrary:siring>

requires onc argument, a library specification STRING, and activates the library so specified. If the library
doesn’t exist, itis created. In order o protect the library from loss due to sysiem or MDL crashes, activating &
library for modification copies the library data files and locks the library so that no one clse may modify it.
Mudifications are made to the copics, which are renamed back over the originals only when the library is
explicitly deactivated. Obviously, PACKAGES added 1o a library aren't available, even to the person adding

them, until the library is deactivated.
{LUP-DCT>

deactivates the currently active library.

{LUP-ADD-PACK package-file:string
update?:boolean

datfile-entry?:boolean®
package-file is a file specification of the file containing the body of the PACKAGE to be added.
LUP-ADD-PACK will find the PACKAGE statement within the file (or complain if it can’t).

update? is optional, and if non-FALSE, it allows the PACKAGE to update an older version of itself,
something which is not otherwise allowed. Note that, since the library points to the file which contains the

body of the PACKAGE. that file should not be deleted later, else the library won't be able to find it

datfile-entry? is by default T, but if it is FALSE, no entry will be created in the datfile for this PACKAGE.
Since datfile entries arc generally useful only in the compiler (and similar environments), it doesn't do much

good to have them for PACKAGESs that are only called from top level (c.g., FINDATOM).

When adding a PACKAGE Lo the public library. the PACKAGE’s object file should be copied to the
appropriate library directory ("LIBRMn" on ITS, or "<MDLLIB>" on 'Tups-20) and the library pointed at
that copy of the file. If no library is activated when LUP-ADD-PACK runs, it will activate "LIBMUD:
LIBMUD" or "<MDLLIB>LIBMUD".

41 Program l.ibraries

n I'he MDI. Programming Environment

(LUP-ADD-DATUM pame:siring
file:string
update?:boolean>
is analogous to LUP-ADD-PACK, adding a DATUM to the active library. LUP-ADD-DATUM requires two
STRING arguments, the name-of the DATUM and the specification of the file which contains the body of the
DATUM. LUP-ADD-DATUM will accept the same optional argument that LUP-ADD-PACK accepts, with the
<ame meaning and default. The same restrictions concerning the file w hich contuins the DATUM also apply.
¢LUP-DEL package:siring>
LUP-DEL requires onc STRING argument, the nanc of 1 PACKAGE or data sct. and deletes that PACKAGE or
DATUM from the currently active library. LUP-DEL does nut touch the file containing the body of the
PACKAGE or DATUM,
CLUP-MOVE package:string file:siring>
causes the file pointer of package to be changed to point file. “This is a faster operation than re-adding the
PACKAGE. and it is intended for situations in which an existing library file has been moved for some reason.
¢LIB-GC [libran;string>
garbage-collects the library in question, if this is required. Garbage-collection is occasionally useful since it
causes all the clements of cach hash bucket to live near cach other in the library file, thus improving

performance during searches. 1t also allocates some free storage i cach page of the file.

4.2. The Pure-mapping Library

‘T'he basic idea behind MDL pure mapping is to separate out the code part of RSUBRs in compiled
programs. The RSUBRs themselves are kept in a file known as an FBIN (sce 6.3). These RSUBRs do not
contain the code but instead point to a file which contains the code. This scheme has several advantages.
First. the code can be dynamically mapped in when needed. This allows Mpi. to use more code than will fit
in the virtual address space of the machine it is running on. Secondly, since the code is pure it can be sharcd
between several MDLs using it. Finally, the FBIN file itsclf is smaller than a corresponding NBIN file and
therefore FLOADs more rapidly.

In the most basic implementation of FBINs, there are three files: the FBIN, the SAV file (which contains
the code), and the FIXUP file, which contains the information necessary to update the SAV FILE for new
releases of MDL. As is obvious, this entails a lot of files, and potentially a lot of file directorics. ‘Ihe MDL

Purc-mapping Library reduces this storage overhead by collecting all of the SAV and F IXUP files together.

The scheme uses two large data bases, cach contained in one file. The data bascs arc called *SAV' and

‘FIAUP'. 'These files store all currendy existent SAVs and FIXUPs for all existing versions of MDL. Each data

Program Libraries 4.1

k

The MDI. Programming Environment ~ 73

basc is structured like a file system. There is a main ‘directory” that points to a number of other ‘dircctories’,
cach of which puints to a number of *files inside the data basc. In this section the word ‘file’ or ‘directory’ in
quotes refers to an object inside a data base. The files containing the data bases are named (on I1S)
"MUDSAV;S5AV FILE" and "MUDSAV:FIXUP FILE" On Tenex/TOPS-20, they are
"<MDL>SAV.FILE" and "<MDL>FIXUP.FILE™.

4.2.1. The Demon
While all M s can read from the Pure-mapping library, there is only one prugram which can write into
it. "T'his is a maintainér demon which runs once a day to keep the Library updated. This demon can add “files’,

delete *files’, and add “subdirectories’ to both data bases.

To facilitate updating of the Library there is a directory on which to put files to be added as well as files to
indicate what is to be deleted. This is the "MUDTMP" directory on IS and the "<MDLLIB>" directory on
Tenex/TOPS-20. Any file on it with the second name of SAVann or F IXnnn (where nnnis a 2 or 3 digit M.
release number) will be added to the appropriate data basc. If the files "DELETE SAVS" or "DELETE
FIXUPS™ exist, then they will be used to delete *files’ from the data bases. These files must be ASCII files of
the form

filename 1 [SPACE] filename 2 [CRLF]

An example of a valid delete file is as follows

NCODGE SAVS3
1INCODGE SAVS3

The demon will ignore any deletion requests for *files’ not in the data base.

‘The demon does its work in several passes. The basic passes arc the delete pass, the planning pass, the
update pass, and the salvage pass. The delete pass deletes “files’ if either a "DELETE SAVS" or "DELETE
FIXUPS™ file exists on its working directory. The planning pass builds a plan file by cxamining the working
directory and calculating where new “files” will be placed in the data bases. The planning pass builds two files
using a special internal format. These files will be used by the update pass to add *files to the duta bases. The
planning pass also cnlarges the data base files as much as necessary Lo accomaodate the new “files’. The update
phase reads the plan files and adds new SAV and FIXUP “files to the data bases. If a ‘dircctory’ overflows, a
new ‘directory’ is added during this pass, and all the ‘directorics’ are recreated (i.c., all the “files” have to be
rehashed, since they were originally placed in a ‘directory’ according to a hashing algorithm based on the
number of “directories’). The salvage pass is used to pick up any free storage that has been lost through system

crashes or lost through holes created during the updating of the data bases.

4.2 The Pure-mapping Library

4 I'he ML, Programming Environment

Throughout the entire processing of the data bases attempts arc made to keep the data bases in a consistent
state. "Directories” are updated only after files’ arc guaranteed to be in the data bases. 'The plan files described

are used to keep the data bases consistent in case the system crashes while the demon is in the update pass.

A major goal in the design of the data bases is to allow recovery in case of demon errors or system disk
crashes. To this end the data bases are backed up on tape every other week. (It would be dumped more often
but the file is currendy over two million words long). This of course leaves the problem that *files’ added to
the data bases between dumps could be lost in a disk crash. To aid in recovery from such a crash, all *files'
added between dumps are copied to the "MUDRST" directory (on I'1'S) or the "<MDL. SV>" dircctory (on
Tenex/TOPS-20). Morcover a file is kept listing all the *files” added during the previous week. This file is
called "ADDED FILES™. All this information is deleted once the data base is dumped to tape.

4.2.2. User Programs
Occasionally it is useful for a user to list the data base *directories’, (o see if certain “files” are in it. and copy

‘files” out of the data base. DBMAIN is a program which allows the user to do these things.

The folluwing are functions available to the user.

4.2.2.1. Listing Functions

(CLISTF daia-base:string>
is used to list all the ‘files” in a data basc. It takes one optional argument which is the name of the data base
(cither "SAV™ or "FIXUP"). If no arguinent is supplied, "SAV" is used by default. (This is always the
default whenever a function takes an optional argument 5pccifying the data basc.) CLISTF prints cach ‘file’,
its length, and where it is located. The format of a line of listing is as follows:

ml fir2 size block |
where finl is the first *file’ name, fir? is the second ‘file’ name, size is the length of the *file” in blocks (1024.
words for SAVs, 256. words for F IXUPs), and block is the block at which the *file’ starts. This is the format
uscd whenever listing *files',

CLISTF daia-base:string directories?
is used to list all the "directories’ of an entire data base. It takes two optional arguments, the dafg-base w be

listed. and a specification of which ‘directories’ o list. “I'he ‘directories’ may be:
a FIX: list the “directory’ specified by the FIX:
aLISTof FIXs: list the ‘dircctorics’ specified in the LIST:

the ATOM ALL: list all the "dircctories’ (this is the default).

‘The Purc-mapping Library 42

T AT

The MDIL. Programming Environment 15

CFLIST daia-base:siring>
lists free arcas of storage in the data base. It lists the free storage in the form:

length block 1
where length is the length of the arca of free storage and block is the block number of the starting block. ‘This
function takes one optional argument which is the name of the data base to be examined. At the end of the

listing it will tell the total amount of free storage.

4.2.2.2. Find Functions
CFIND-FILE file:string data-base:string?
is used to find a specific *file’. 1t takes as its argument a *file” specification and prints the “file” name along with
the information printed by the listing functions if the “file” exists, otherwise it returns an ubject of type
FALSE. The *file” specification must be of the form:
“dir; fnl fn2"
where diris cither SAV or F1XUP and fir/ and fir2 are the first and second 'file’ nanes respectively.
{SPEC-FIND fui:siring data-base:siring
is used to find all *files” with the same hasic name. disregarding the leading digit(s) which arc added to make
*file’ names unique. It takes one required argument which is the fu/ to look for. It takes an uptional second

argument which is the data-base to look in. For example the call
¢SPEC-FIND "MAIL">

might print:

MAIL SAVG63 8 140
IMAIL SAV53 8 360

4.2.2.3. Other Functions
¢DELETE [file:string dJata-base:string
allows the user to delete a *file’ from a data base. It takes the same type of file” specification that FIND-FILE
takes. The *file” you specify will be deleted the next time the demon that maintains the data base runs.
CGET-FILE file:string output:siring dato-base:sirings
allows the user to retrieve a ‘file’ from the data base. It takes two arguments. The first is the *file’ specification

of the file to retrieve out of the data base and the sccond is the puiput file you wish to copy it to.
{STATUS>

gives the information about the state of the data bases. 1t tells the number of “files” and the amount of free

slorage in cach data base. STATUS takes no arguiments.

4.2 The Purc-mapping Library

76 ’ ‘I'he MDI. Programming Environment

4.2.3. Using DEMAIN
There are several ways to use DBMAIN. Itcan be used by typing
:DBMAIN function argl ... argn
to DDT. The jci-line is of the form function argl ... argn, where function is the name of the function to be used.

For example
:DBMAIN FLIST "FIXUP"

will list the free storage block for the "FIXUP™ data basc. DBMAIN will kill itsc!f after finishing and can be
killed carlicr by typing 5.

"The jel-line mentioned above can be modified to allow output to be routed to a file. This can be done by

preceding the normal jel-line with a string specifying the file name of the vutput file.
:DBMAIN "LISTOF SAVS"™ CLISTF

will produce a listing of the files in the SAV data base and will print this information to the file "LISTOF
SAVS",

4.2.4. Garbage Collection

One problem of the MnI. Pure-mapping Library is that many uscless SAV and FIXUP *files’ remain as new
revisions of user programs are created. To alleviate this problem there is a garbage collection system for the
data bases,

The major goal of this scheme is to determine which “files’ in the data bases are no longer useful. To do
this all files in the system are scanned to sce what SAV files are still pointed to (nof including those pointed to
only from within ITS archive files). A SAV ‘file’ can be pointed to from FBIN files and SAVE files. A SAVE
file contains pointers in its PURVEC (Pure VECTOR). All FBIN files should begin with something of the form

'{PCODE file:string>
where file is the name of the SAV *file’ associated with this FBIN. If an FBIN has morc than one SAV ‘file’
associated with it then there can be several PCODE FORMs at the beginning of the file. For purposes of
garbage collection, this FORM (or FORMs) must be retained whenever an FBIN file is edited. IF these PCODE
FORMs disappear, their pointers to the SAV ‘files” will go with them, and the SAV *files” might be garbage
collected.

Garbage collections proceed by looking at every file on the disk, building a list of all *files’ pointed to. The

program then cxamines the data bascs and any files’ which arc not pointed to arc deleted.

It is possible that deletions can fragment the free arca in the data bases. If compaction becomes necessary,

The Purc-mapping Library 42

The MDI. Programming Environment 77

there exists a routine to do in-place compaction of the data bases,

4.2.5. Internal Structure

‘The "SAV" and "FIXUP" data bases have similar formats. The ‘files’ in the data base arc pointed to by
entries in what is cssentially a hash table. Associated with cach data base is a main ‘directory” (the hash table).
This "directory” is located in the first 1024 words of the file. This main directory’ points to other ‘directories’
in the data base (the hashing buckets). Each of these ‘directories’ is 1024 words long. The first “file’ name is

used o determine which ‘dircctory’ the *file’ is on. The structure of the main ‘directory” is as follows.

word 0/ number i of entries in the main ‘directory”
words 1-n/ block number of cach ‘dircctory’

There can be up to 1023 ‘directorics’ and cach of these can contain approximately 500 *files”. This provides a
virtually unlimited *directory”,

Word 0 of cach “directory” gives its length in words. From Word 1 on are ‘directory’ entries. All entrics
have the same two word format. The first word contains the the first *file’ name in SIXBIT. The second word

contains the following ficlds:

length of the *file” iu blocks (a block for a SAV *file’ is 1024 words long while a block for a FIXUP *file” is 256
words long) (bits 1-6)

version revision of MDL this “file’ belongs to (bits 8-17)

block in the data base where this *file” starts (bits 18-35)
‘The “directories” are sorted by strict numerical order (e.g., AAA SAV53 comes before 1AAA SAVE3).

Fach data basc contains a free storage table. This table occupies the second 1024 words of the data base.
The first word of the table is the number of entrics in the free storage table. The remaining entries define
arcas of free storage. Thesc are of the form

length, |, block
where Jength is the number of blocks for this free area, and block is the block number at which it starts,

There are two major differences between the " SAY” data base and the "FIXUP" data base. The first deals
with block sizes. In the "SAV" data base the block siz¢ is 1024 words. In the "FIXUP™ data base the block

size is 256 words. This smaller size allows for more compaction of these small *files',

The second major difference is that while there can be many versions of the same *file” in the "SAV" data
base (c.g. NCODGE SAV53 and NCODGE SAV54), there can only be one version in the "FIXUP" data base.

42 The Purc-mapping Library

78 The MIIL. Programming Environment

I'his will be the F IXUP *file’ most recenty added. The corresponding SAV file” for this FIXUP *file” should

exist 1o allow the SAV file to be updated for future M. revisions.

‘T'he Purc-mapping Library 42

e e

-

In

The M. Programming Environment -~ 79

5. The Compiler
The purpose of the MDIL. compiler is to transform interpreted MDL code into assembly language. The
compiler comes in several incarnations for various purposes.

PCOMP is a program which runs the ‘installed” compiler -- that is. the one which is most debupgged, supported,
and otherwise official. The *P” stands for ‘purified,’ incidentally.

NPCOMP is a pruogram which runs a newer, less well-debugged compiler, if there is one. NPCOMP is often
where development work of one sort or another is being debugged.

The *Bawch Compiler.” ofien called CoMBA'T, though strictly speaking the name refers wa different program
(sce section 53.2) is a program that compiles, at night, those compilations that have heen qucucd for it
The remainder of this chapter describes the specifics of interaction with the compiler, including u scction on

its internals.

S5.1. Interfacing to the Compiler

The operation of the ML compiler is controlled by a few very high-level functions and a sometimes
bewildering array of ATOMs whose values are switches and data. “I'his section will describe cach such ATOM
and its use. The reader should bear in mind that in the normal case he will he using COMBAT to set up his

compilations and thus will not have to deal directly with these ATOMs and calls,

5.1.1. Compiler Functions
SCOMPILE source:firnction-orlist puiput:channel>

is the lowest level call to the compiler. It compiles exactly one FUNCTION (ora LIST of them) and prints the

generated code on the CHANNEL given as the second argument. COMPILE is used primarily for compiler
dcbugging.

<FILE-COMPILE inpuisiring owipul siring>
FILE-COMPILE attempis to provide a convenient interface between the user and the compiler. ‘The user
simply gives FILE-COMPILE the name of an input file, and it can do all the rest. The user may specify other

information about output files. compiler modes, cte.. but if he doesn't, reasonable assumptions are made.

FILE-COMPILE works in the following way. First it reads in the input file and collects into a LIST the
names of all of the defincd FUNCT IONs that it finds. It sorts this LIST based on which FUNCT I0Ns call
which other FUNCTIONs. ‘The FUNCTIONs which call ne other FUNCTIONs are at the beginning of the
LIST. followed by those that only call FUNCTIONs that call no other FUNCTIONs, and so on. Groups of
FUNCT IONs that are mutually recursive are collected in L ISTs subordinate to the main LIST,

50

|

|

|

|
|

|

i

1

H
|

I
|

.'J

|
|

|
|

|

Il

1

80 I'he M. Programming Environment

Each FUNCTION will produce a separute RSUBR. COMPILE is called successively on each member of the

LIST of FUNCT IONs. L1STs of mutually recursive FUNCT 10Ms are also passed to COMPILE.

After each FUNCTION or LIST of FUNCTIONS is compiled, the resuliing RSUBR is wrilten into a
tempuerary file w enable more convenient crash recovery. This file is written in such a way that, no matter

when the system crashes, the contents of the temporary file are guarantced o be in a consistent slate.

When all is compiled. F TLE-COMPILE writes out an oulput file which is identical 1o the input file except
that all FUNCT I0Ns have been replaced with their compiled counterparts. [F any of the FUNCTIONs did not

conmpile due to programmer errors or compiler bugs, those FUNCTIONs arc lefi unchanged in the output file.

1During its operation, FILE ~-COMPILE maintains a "RECORD" file which contains all of the messages,
warnings and error messages produced by the compiler. 1t may optionally pruduce a listing of the object code
produced, in M assembler format. I'his is primarily useful for compiler debugging. (Mote that a spumewhat

less complete listing may be made at a later time. See scction 7.3.)

On I'l'S. FILE-COMPILE usually runs as a demon called COMBAT ZOME. In this case anuther interface
culled FCOMP resides above FILE-COMPILE. ‘I'his interface reads files that are compilation specifications
and passcs them to F ILE-COMPILE.

ZFCOMP % . INCHAN [upur-fife putpui-file>

As must compiler usage is based on COMDAY plan files, FCOMP is the most-scen driver of the compiler. (MNote
that the % in front of . INCHAN causes the CHANNEL the PLAN filc is being read From to be passed as one

argument o FCOMP.)

<STATUS>
is an informational function; it tells how far the compilation of a given group has progressed, which
FUNCTIOMN is being worked on, and how many FUNCTIONs remain to be compiled. It also prints the

accumulated real time and cpu time since the beginning of the compilation. Obviously, you must *G the

compilation to use it, but sec section 2.3.

5.1.2. Compiler Switches

The calls to the various compiler drivers are rather shurt, for the simple reason that the controlling

information is passed to the compiler as the LVALS of a set of ATOMs.

Interfacing to the Compiler 5.1

The M. Programming Environment g1

<SET DEBUG-COMPILE!- boolean>
(by default FALSE) causcs the compiler to generate extra information about what it's doing. ‘This information
is in the form of ‘warnings” produced when Lhc‘:umpﬂcr was forced to generate less than optimal code. For
example, invocations of the arithmetic SUBRs can be open-compiled if the variables used can be determined
v be exclusively FIXes. The debugging compiler will warn vou if it is foreed o resort to less cfficient
arithmetic calls.

<SET PRECOMPILED!- file:siring>
Often, a file of FUNCTIONs has been compiled before, and now only a fow FUNCTIONs have been updated
and need to be compiled-again. Muost of the file is already correctly compiled: it is quite wasteful to recomipile
the entire thing. Ifa PRECOMPILED is given, the file is loaded before compilation: any fimctions which have
correspanding RSUBRs in the precompilation. and which are not on the REDO list, arc not recompiled. It is
appropriate w specily the temporary fle as o precompilation if your previous compilation was interrupited by
a system crash,

<S5ET REDO!- [isr-ofatomns>
REDO isa LIST of FUNCT ION names to he recompiled. regardless of whether or not they are compiled in the
precompilation. In conjunction with PRECOMPILED and PACKAGE-MODE, REDO allows compilation of
preciscly thuse FUNCT I0Ns which have been changed since the last compilation. Mote that CoMBAT will set
up these values more-or-less automatically in most situations.

<SET PACKAGE-MODE! - siring>
This should be the name of a PACKAGE, which is assumed 1o be the PACKAGE being compiled. FUNCTION
names in the REDD LIST will be lovked up in the appropriate PACKAGE OBLISTs if this fag is sct, therchy
saving some typing of trailers.

<SET TEMPNAME - file:siring>
The compiler writes intermediate results to the temporary file, which is normally the file “sname; fivn > on
I'TS, where fiim is the first name of the input file. It is rarely (if ever) necessary to change that default

CSET SOURCE!~- file:sirings
Setting this switch causes the compiler t write out the asscmbler input it generates. ‘This is sometimes uscful
for compiler debugging. On I'TS, such output normally gucs 0 "swamre; iy SOURCE™, where finn is the
first name of the input file.

<SET SPECIAL!- beolean>
The compiler normally assumes that variables which aren’t declured SPECTAL aren't SPECIAL. ‘This means
that they will be available only to the RSUBR in which they are declared: SPECIAL variables are bound on
the control stack, just as all variables are in interpreted code. If this flag is T (by default FALSE), all variables

will be assumed to be SPECIAL unless declured otherwise. This is analogous w SPECIAL-MODE being

51 Interfacing w the Compiler

S

82 ' The MIJI. Programming Environment

SPECIAL, and it is not recommended that any code be written using this convention.

<SET EXPFLOAD!- boolean>
If true. FLOADs in the file being cumpllcﬁ will be expanded at load time: what was FLOADed before will be
treated as part of the file. EXPFLOAD is cxamined by GROUP-LOAD, and not the compiler itself. "The default
is FALSE.

<SET EXPSPLICE!- boolean>
If true. objects of type SPLICE (primtype LIST) which are encountered in the course of EVALing the forms
processed by GROUP-LOAD will be spliced directly inte the group: it is therefore a lot like EXPFLOAD.
EXPSPLICE is examined by GROUP-LOAD, and not the compiler itself. “The default is therefore FALSE. Its
only known use has heen o make functions ot Toad time and have them compiled.

¢SET CAREFUL!=- boolean>
Defaults o T. 1T FALSE, the compiler will omit most of the bounds-checking code it normally generates for
NTHs. PUTs, and su on. ‘This obviously will make the compiled code run faster. but also makes debugging the
compiled code nearly impossible.

£SET REASOMNABLE!- boolean>
Defaults to T. If FALSE, the compiler will gencrate reasonable code only if everything ever called from the
functions being compiled is loaded into the compiler. A call to a functivn not loaded produces an EVAL of a
FORM, thereby cnsuring that such constructs as "CALL® in the called function will work correctly. This is
admittedly pretty unreasonable (if not paranoid), whence the name of the switch.

€SET GLUE!- boolean>
Defaults to T. IFFALSE, the compiler will not gencrate GLUE bits. As you always want GLUE bits, there is no
reason to everchange this.

<SET MACRO-COMPILE!- boclean>
Defaults to FALSE. If non-FALSE, the compiler will compile MACROs into RSUBRs. This docsn’t change
anything produced by macro expansions, but docs cause the expansion to speed up. Since the compiler
expands the inacro and then compiles the expansion, this is rarcly uscful.

<SET MACRO-FLUSH!- boolean>
Defaults to FALSE. IFf non-FALSE, MACROs which appear in the file being compiled will not appear in the
resulting NB IN. This saves space, at the expense of making debugging harder.

<SET MAX-SPACE |- beolean>
Defaults to FALSE. IF non-FALSE, the compiler flushes from core most of each RSUBR once it has been
compiled; only the DECL is needed o help compile other functions. Since the entire RSUBR s written out in
the temporary file, no information is lost. ‘This can, for compilations which are too large, result in

considerable improvements in speed, primarily because more space is available in the MDL and less time is

Interfacing to the Compiler 51

The MIN. Programming Environment B3

spent in the garbage collector.

<SET HAIRY-ANALYSIS!- boolean>
Defaults w T. I this is not set. the compiler ;h'ill not perform the complex type checking it usually does. IF
HAIRY -ANALYSIS is FALSE. the code will be generated faster, as type-analysis is expensive, but will not
cxecule as Fast,

5.2. COMBAT

I'he usual method of dealing with the compiler is through the program COMBAT, whose specialty is the
preparation of "plan files’ to be loaded by the compiler. COMBAT is a program which knows about each of the
previously described compiler switches and the interactions among them. It has an easy-to-use interface, an
ability to store commuonly used “plan files” as eovnpilation types, and in general is designed w make using the

M, compiler a less-cumbersome task,

5.2.1. User interface

ComMBa1’s user interface is patterned after, though not identical to, a CALICO interface [1]. In particular, it
cxpects in response Lo any given prompt a particular type of input from the user, which may be a file name, a
‘symbol’, or text. JOrdinarily, the tvpe of input expected is indicated by the “syntactic prompt’ which follows
the normal prompt: this is one of *(FILESPEC), *(SYM)', and "(TEXTY. ‘The *Tuggle verbosity’ compilation

type turns the printing of the syntactic prompt on and off, and causes a tiilor file to be written out when used.
A number of special characters arc defined for any of these types of input

t@: Clears the input buffer, as in MDL

TD: Redisplays the input buffer, as in MDL.

tL: Clears the screen and redisplays the input buffer, as in MDL.

tG: When given as the first character of an answer, allows one to get the answer from a user-defined Lype.
See the section on tailoring,.

tQ: Has special effects when a compilation plan is being made (scc below). See also the section on file name
input.

tR: Causcs COMBAT to ‘back up’. Typically this means go to the previous guestion asked, but in certain
modes it may have a slightly different effect. When a Mupcom is running, this kills it and backs up to the
last question asked.

t3: Abnormally ends whatever is being done, and returns to the "I'ype of compilation’ guestion. I a

MUDCOM is running, it will be killed. When a long compilation plan (*"How to run’ is ‘Many') is being

5.1 Interfacing to the Compiler

COOCPUROOCC T

84 Ihe M1, Programming Environment

made. the portions already made will be saved. See the *Flush many” compilation type.

?: When given as the first character of an answer. this causes a more detailed description of what is cxpected

to be printed. along with the current default and haw to obtain it

%: ‘This quotes whatever character follows it including DEL, ESC. cte. It does not have the effect of quoting
strange characters in file nomes: see the section on file name input. %\, uscd as a quote character, never
echoes, and cannot be rubbed out

In addition. when the syntactic prompt is { SYM), ©F is uscful (see below).

5.2.1.1. Symbolic input
If you are familiar with CALICO, this scction can probably be skipped. When entering symbolic input.
one need only type the characters required to uniguely specify the desired choice: the interface will complete

the response, and in addition can display the available chuices at any point

SPACE completes the response as far as it can. 1 the response is uniguely specified. it w ill be displayed in
its entirety. followed by *17; ifmore than one choice is still possible, then the portion of those cholees which is
unambiguously specified will be displayed, followed by "&". For instance, if "‘Expand Aoads™ and “Expand
splices” are among the choices, and ‘Ex SPACE’ has been typed. "Expand & will be displayed if the "Ex’

reduces the choices to those two.

In some cascs. if SPACE is the first charncter typed, it will select the default (first) choice and terminate.

When *F is typed, all remaining choices will be displayed.

To terminate responscs in this mode, cither ESC or CRLF may be used. In cither case, the current
response is completed as far as it can be, 17 only one cheoice then remains, the answer is terminated and the

single choice will be used. If more than one choice is possible, it is just as iF SPACE had been typed.

Typing ESC or CRLF before any other characters have been entered ciuses the default answer to be used.

5.2.1.2. File names

File names arc cxpected in the standard dev: snamie s fiuamel firame2 format on I'’'s: on Tenex/TOPS-20,
standard file name recognition is used. T'ypically, typing simply ESC or CRLF answers ‘ne” to the question,
while SPACE ESC says 'usc the default’. In certain special r:uﬁu::-‘.rl‘lnpul file” and *Outpult file’), when some
answer to the guestion is imperative, the default will be used in either case. File names should net be

surrounded by guotes in this mode; they are not ML STRINGs!

COMBAT 52

I'he MID. Programming Environment 25

It is ranher painful o get funny characters (such as SPACE) into file names. When the file-name parser
sces i *Q, it uses the following character in the name being generated regardless. Unfortunately, the +Q must
be quoted o get it past the reader, since it has special effects in the normal case. Thus, the file name given to

Mpas "TAA: FOO »>" hasto be typed to COMBAT as TAA: A\ tQ FOO >.

5.2.1.3. Text

Text is just thal: refarively arhitrary characters, terminated by ESC. Since CRLF is allowed in text it docs
not terminate input. Text type input is used in a number of cases where it isn't quite appropriate, such as the
‘Redo list” and “Package mode’ questions. I it is known that the expected responsc is a LIST or STRING, as

in those cases, the appropriate brackets or quotes should ser be typed.

5.2.2. Combat Questions

This section discusses the questions that can be asked of the user during the preparation of a COMBAT plan
file, which is FLOADed by the CoMpaT demon or by PCOMP to cffect a compilation. 'I'he pereeptive reader
will notice a strong resemblance o section 5.1.2, in which the switches relevant 1o the compiler are listed.
Questions asked by the pre-existing compilation types ("Verbose” and “Short') are so indicated, ANl questions

are available in user-defined compilation types (see section 5.2.5).

‘Bname’: sets the default dircctory for questions that want a file name as an answer: also causes the FORM
SSNAME snarme>, where sname is the answer given, to be included in the plan. ‘This sets the defaulc
directory for files referenced by the compiler; it also causes the temporary file (see below) to go to the
serctrnie directory.

"Lse new compiler? (Verbuse and Short): specifies whether the “new’ compiler or the *old’ compiler should

be used. Often, when there is only one compiler, this question will not be asked. IF answered
affirmatively, it causes the FORM

<OR <GASSIGNED? EXPERIMENTAL!-> <NEWCOMP|->>

to be included in the plan. This FORM will load a new compiler on tp of the old if necessary.

‘Debugging compiler? (Verbose): causes DEBUG-COMPILE | - to be sot to T, which causes the new compiler

I gencrate extra information about what it's doing. This currcntly is asked only if the new-compiler
question is answered affirmatively.

“Input from” (Verbose and Short): the file to be compiled. This appears in two places in the plan: as

<SETG COMBAT!- input-file>
and in the call w» FCOMP described below,

‘Output to’ (Verbose): the file name to be used for the NBIN. The default is the input file name, with NBIN as

the second file name instead of whatever it was for the inpul. This completes the call to FCOMP that ends
cvery plan:

5.2 COMBAT
{
__‘5“'_"—.—\—._
—
S ——
—

86 The ML Programming Environment

SFCOMP %. INCHAN input-file outpui-file>

This call is what actually invokes the compiler.

‘Precompilation from® (Verbose): specifics a file containing a previously compiled version of the input file.
Any FUNCTIONs which have corresponding RSUBRs in the precompilation. and which are not on the
‘Redo” lisL are not recompiled. [t is appropriate to specify the tempaorary file as a precompilation if your
previous compilation was interrupted by a system crash. Scis PRECOMPILED! -.

‘Compare with' (Verboseh: This question is asked only if a precompilation file is specified. If answered
affirmatively (user types cither SPACE ESC or a file name) MULKOM (see section 8.1) will be run with jel
of the input file name, and the file nime provided here (the default is as for precompilation). plus some
extra stuff specificd below. 1 °FOO NBIN is given here. then Muncom will look for the newest revision
of FOO which was ereated before the NBIN, MUCOM determines which FUNCTIONs in the file have
changed and therefore need to be recompiled. It also determines whether the file is a PACKAGE. and
answers the "Puckuge mode’ guestion appropriately. 1t is therefore not usually necessary for the user to
answer the "Redo’ and "Package mode” questions directly.

‘Check macrus? (Verbose): asked only if ‘Compare with” is answered alfirmatively. This adds */M" to the jel
passcd o MUDCOM, which causcs it o check for MACROs and MANIFESTs which have changed: if a
FUNCTION uscs a MACRO or MANIFEST which has changed, the FUNCT ION will be listed as changed.
Muncom does not normally check for this.

‘Extra JCL* (Verbose): asked only if "Compare with® is answered affirmatively. Whatever is supplied here will
be passed to MUDCC-M as jiel, before the files w compare. This can be used tw load macro files: sce section
8.1.

~ftedo” (Verbose): asked omly if a precompilation file was given, Takes a bunch of FUNCTION names, which
will be recompiled. Note that the names supplied here will be appended tw the list returned by MUDRCOM,
i uny. and that duplications in the list are ignored. Sects REDO -,

‘Package mode’ (Verbose): asked ifa precompilation file was given and MuncoMm was not run (Muncom will
set this if run). ‘This should be the name of a PACKAGE, which is assumed to be the PACKAGE being
compiled. FUNCT ION names in the "Redo’ list will he looked up in the appropriate PACKAGE OBLISTs if
this flag is sct, thereby saving some typing of trailers. Seis PAC KAGE-MODE! -.

"Temporary file w': The compiler writes intermediate results to the temperary fle, which is normally

» snaime; fiiamel >" (on ITS)
" & sname fiame . TEMP™ (on Tenex/ TOPS-20)

You may change that by answering this question; there is rarcly a good reason to do so. Sets
TEMPNAME ! -,

‘Source file to': The compiler can be caused to write out the assembler input it gencrates by answering this
question. Assembler output normally goes to

COMBAT 52

s

e M. Progranuning Environment 87

s fivvned SOURCE™ (on IT'S)
“Lsname? ; fianie . SOURCE " (on Tenex/1'0OPS-20)

which is the default for this question: another name may be provided if desired. Scis SOURCE 1 -,

‘Special?’: The compiler normally nssumes that varinbles which aren’t DECLed SPECTAL aren’t SPECTAL. If

this flag is T (defaults ty FALSE), all variables will be assumed to be SPECIAL unless declared utherwise,
Scis SPECIALL-.

‘Fxpand Moads?: (Verbose) IF true, FLOADS in the file being compiled will be cxpanded at load time. Sets
EXPFLOAD! -,

‘Expand splices?': IF true, objects of type SPLICE (PRIMTYPE LIST) will be expanded and inserted into the
group. Scis EXPSPLICE!-.

"‘Carelul?': (Verbose) By defuult T, but if FALSE, the compiler will amit most of the bounds-checking code it
normally generates for NTHs, PUTs, and so on. “Ihis obviously will make the compiled code run faster: it
also makes debugging the compiled code nearly impossible. Scts CAREFUL T —,

‘Reasonable?: By default T, but if FALSE, the compiler will generate reasonable code only if everything you
call from the functions being compiled is loaded into the compiler. Sets REASONABLE! -,

‘Glue?: By default T, but if FALSE, the compiler will not generate GLUE bits. There is se good reason to
ever answer this. Scis GLUE | -,

‘Macro compile?': By default FALSE, but if true. the compiler will compile MACROs Scts
MACRO-COMPILE] -.

‘Macro fAlush?: By default FALSE. but if true, MACROs which appear in the file being compiled will not
appear in the NBIN, Scts MACRO-FLUSH! -.

‘Max space?: By default FALSE, but if rue, the compiler Mushes from core most of each RSUBR once it has
been compiled: only the DECL is needed to help compile other functions. ‘This can, for compilations
which are very large, result in considerable improvements in speed. Scts MAX-SPACE | -.

"First things to do’, “Things to do’ (Verbosc), and “l.ast things to do™: It frequently is necessary to perform
some actions before a compilation can be run: definitions files must be loaded, spocial environment sctup
might have o be performed, and so on. All three of these questions are designed to allow that: whatever
you supply is put out after everything else in the plan but before the call o FCOMP. ‘There are three
questions, instead of one, to allow suine things to be specified in a tilored compilation type, while others
arc provided at compile time, or pussibly from another wilored type. “The three questions do md depend

on cach other; they arce asked in the order given here, and the answers appeur in the plan in the same
order.

5.2.3. Requesting Compilations
The first question asked by COMBAT is “Type of compilation’. In addition to a number of special

possibilities described later, there are two answers to this question (in addition to any provided by the user

5.2 COMBAT

1l

f

1T

ﬂd\ﬂldﬂWiiﬂﬂﬂ

1

(T

1 MI! }-lll.i l

838 ' I'he M. Programming Environment

through the tailoring facility) which request pre-defined tailored compilation types. These are "Verbose™ and
‘Bhort'".

"“Verbose' causcs all the normal questions to be asked: “MNew compiler?, ‘Input file’, "*Precompilation’,
switches, “Things to do’, and s0 on. ‘Short’, on the other hand, defaults the answers to all questions cxcept

‘Neow compiler?”, *Input file’, and "How 1o run’.

When requesting a compilation, one may type tQ at any time. This has the same immediate effect as an
ESC, but in addition causcs all guestions between the one just answered and the “Things to do’ question to be

defaulted. This is particularly uscful in the *Verbose® sequence of questions.

IF "Many™ was given as "How to run’ for a previous compilation request, and the resulting plan has not yet
been written out, subsequent plans will be appended to it Using *Many® will sometimes cffect a major
savings of time if several compilations wish to perform the same environmental setup; if they USE many of
the some PACKAGEs, for example. When using "Many’ in combination with predefined compilation types, it
is useful o remember that whatever is specified under "Things to do” may end up being performed for each
plan. You might modify your compilation types to reflect this, or alternatively, edit the plan file produced by

COMBAT to remove redundant operations.

The only way to get rid of the *Many” plan is o answer *Many flush” w the “Type” question. Typing +5 or
answering “*Abort’ to the "How to run’ question will abort the current portion of the “Many” compilation, but

not the whole thing.

If ‘Many” was mistakenly given as *‘How to run’, and you don't wish to destroy the plan you have
generated, it is possible to (in essence) go back to the *How to run” question by answering *Many print” for the

compilation type. In this case, you are nos back in the plan-making loop; *R acts just like +5.

tR, here, backs up to the last question asked. There are two qualifications. First, if +Q has been typed,
then it backs up to the last question that would have becon asked if +Q had not been typed. Sccond, the four
questions "Precompilation’, "Compare’, *Redo’, and *Package mode’ arc treated as a group: if the *Package
mode’ question has not yet been answered, it is possible (o back up normally: but once that question has been

answered, backing up to it will go to the first member of the group, ‘Precompilation®.

+G allows one to obtain the answer to the current question from any uscr-defined compilation type. It
requests a type name, and wuscs the answer or default supplicd thercin, printing the information so oblained.

The G must be typed as the first character of the answer for this to occur. This allows one to use paris of a

COMBAT 52

I'he M. Programming Environment 29

defined type without cither using the type itself or altering it for the occasion. For “Text type input (such as
“Things to do’), the string is placed in the input buffer but not completed, so it may be edited before an ESC is

typed. Sce also the *Xerox type' command.

MNote that there is a distinction made between "Compare” and *Redo’; the former causes a MUDRCOM o be
run, and the latter asks for the names of FUNCT IONs to be recompiled. It is possible to do both, in which case
the two groups of FUNCT IONs are appended to form the ‘Redo’ list for the compilation. Note also that if a
MupcoM has been run, the “Package mode” question will not be asked, since the answer is supplied by the

Mucos. Either R or +S may be used to kill a running MUDCOM,

One of the responses to the "Tlow o run’® question is “Abort’, which returns directly o the “Type of
compilation” question withoul writing out a plan, starting up a PCOMP, or anything clse. Its effect is exactly
that of a 5. In particular, if you are making a long plan, only the portion just completed, not the entire

compilation, will be aborted.

It is also possible at the "How to run® guestion to supply an answer to any of the compilation guestions
(Input file, ete.). The "Question’ response asks for the name of a guestion, then asks that question. Any
number of questions can be asked in this manner, one at a time. ‘This is particularly useful for flling in the

blanks left by a *Short” type compilation, or by user-defined compilation types.

When a compilation request has been finished, CoMBaT normally loops back to the “T'ype of compilation”
question, but changes the defiult from “Verbose™ w "None” (meaning "Quit’), unless another compilation may

reasonably be expected. Thus, one may leave by typing a single ESC.

It is possible w modify ComMBaT’s behavior such that it cither kills itsclf after finishing the compilation

plan, or loops back with *Verbose' as the default for the “T'ype of compilation” question.

ComMpaT first decides whether a long compilation plan is being made; if so, the default remains ‘Verbose.”
If not, it then examines the current compilation type: if ‘*Annther compilation?” has been 50t to ‘Yes', the
guestion will be asked with default “Verbose™; iF it has been set to "No®, Comiat will kill self: if o *Ask”,

further consideration is required.

IF the user is in "Multiple’ mode (the *Multiple® compilation type), the type of compilation will be asked
with the *Verbose” default. Otherwise, COMBAT examines the state of two tailorable switches, set by the
*Another compilation? compilation type. 1P 'Another compilation?” has been set to *No', CoMBaT will dic; if

to "Yes', the type question will be asked with default *Verbose”; if to *Ask’, the type guestion will be asked

52 COMBAT

o The ML Programming Environment

with defuult *None”. Mormally this is "Ask’.

MNote that *Another compilation? is like "Toggle verbosity” in that it will have no cffect unless user-defined

compilation Lypes exist.

5.2.4. 'How to Run® Options

“There are four uptions available when answering the "How to Run® question which determine where your
plan file will be written and when the compilation it specifies will be run.
‘Pcomp’ placcs the plan file on the <SNAME> dircctory, and names it *"PCOMP >, Additionally, COMBAT

will stirt o PCOMP (or NPCOMP, as appropriate) process iF i is exited after writing « PCOMP file. "Pcomp’ is
the standard method for running a compilation in one’s own process,

"COMBAT writes the plan file W "COMBAT; PLAN >”. The comMuaT demon successively compiles all such
plans at night. informing the persuns who submitted them ol the result.

‘Waste is like ‘COMBAT, except that the plan is written to "COMBAT ;WASTE >". “The ‘waste’ queue is only
run after midnight, which is usually suflicient for those whe are doing “overnight” compilations. ‘Waste’
is the answer uscd by default for "How to Run’.

*File’ places the plan file on the <SNAME> dircciory, and names it "PLAN >". “Ihis means that it will not
be run until you cxplicitly load it into a compiler process.

5.2.5. User Tailoring

It is often the case that a particular file is compiled quite often, or that some scquence of actions must be
performed as the “Things w du’ before many compilations. Cosnpat allows the user o define his own
‘Compilation types’, cach of which specifies exacty those questions which should be asked and the answers
for those which should not. For example, one could have a type named “HEsign’, which says that the input file
is always "SEND:;ESIGN >" and in addition provides for the FLOADIng of two files in "Things w do’.
Further, since most questions are defaulted, one might choose to answer only those guestions which are
interesting, such as ‘Precompilation”. It is also possible to supply a default answer for a question which will be

asked.

In addition, there are some questions which are not asked by the *Verbose” compilation type, but which
nevertheless are available w user-defined types. ‘These are: “Macro compile’, *Macro flush®, "Max space’,

"Fapand splices’, "Special mode’, *Glue®, and others.

One can select any of one’s own defined compilation types as an answer to the “Type of compilation”

question, just like *Verbose® and *Short”. Except that the questions asked may differ, user-defined types are

COMBAT 52

I'he MIDI. Programming Environment - 91

identical to the predefined types.

5.2.5.1. Tailor files
User-defined types are saved (and loaded) from the file "sname: %COMBT TAILOR". It is pussible to load
other tailor files, but the "%COMBT™ file in sname is loaded during startup. "Tailor files are quite similar to

M1, GC-DUMPed files and thus cannot be edited other than with COMBAT.

5.2.5.2. Create type

This special compilation type requests a name for the type being made, then enters a loop with the prompt
‘Question’. One may choose any of the available questions, and cither supply an answer or {by default)
reguest that the question be asked when a compilation of this type is being submitted. MNote that only the
HMow o run” and the following “I'vpe of compilation? guestions will be asked unless others are explicitly

supplied; but one may supply answers to "How to run” when creating a type.

In this mode, TR will return to the "*Question” loop if one is about to supply an answer: otherwise, it returns

tr the “"Type of compilation® loop, aborting the type creation.

tG behaves exactly as it dues in the normal loop. To indicate that one is Mnished, one should answer “Finis'
o the "Question” prompt. It is possible to supply several different versions of the answer to a particular
question: the last one given will be used. One may wish to default a particular question, after specifying that
it was to be asked or after supplying some different default. This may be done by answeri ng ‘Delete gquestion®
to the "Question” prompl. whereupon onc will be asked for a particular question to ignore. This question will

then be completely ignored. Note that alf interesting questions are initially in this state.

There is also a "Set question default” "Question”. This requests a question name, then asks the user to
supply an answer. The question will be asked, with the default supplicd. ‘Thus default settings of switches can
be changed. and onc can supply a file name for the precompilation while still being asked whether
precompilation is desired. Unfortunarely. user-supplicd defaults for "Text-type questions are uscd if ESC is
answered; o get rid of the default. type SPACE ESC. Note that this is exactly the inverse of the convention

for defaulting file names.

When “Finis® has been typed, a new copy of onc’s tailor file is written out. This may, in combination with

‘I.oad tailor” and *Replace ailor”, have undesirable side effects.

52 COMBAT

—— —
e gy—
: e ——
: — _
' — —
— e
—i —
T E—
. E—
' —_— I
' e — —_—
——— —
— R
—— e
e E——
: — —
—— —
— ——
—— — e
: e g
T — —

92 ‘The M1, Programming linvironment

5.2.5.3. Print type

This requests the name of one of the types currently loaded, and prints out for it all questions which cither
will be asked when a compilation is being submitted or which have user-supplied defaults. If a particular
question has been globally “turned of T (such as the "New compiler? guestion, when there is no new compiler),

an asterisk will be printed on the appropriate line to indicate that the information there is currently not used.

5.2.5.4. Delete type
I'his requests the name of one of the currently-loaded types. and deletes it. A new copy of the tailor file is

written out, 5o all trace of the type will vanish when this command is used.

5.2.5.5. Alter type
This requesis o type name, then becomes identical to "Create type’, except that some questions already
have answers. Again, "Finis® must be tvped to leave the loop and cause the modifications to he filed; typing

tR or +5 will leave the loop, but the modifications will be forgotten.

5.2.5.6. Load tailor, Replace tailor

BBoth of these request a file name, defiulting to the last one used for cither a *l.oad tailor’ or "Replace tailor”
command. Initially this is "swame; XCOMBT TAILOR™. ‘l.oad taillor” appends the types defined in the
specilicd file to those already loaded. while "Replace tailor” first throws away those already loaded. 'The types
defined in this way arc not distinguished from those loaded from one’s own COMBAT tailor file; in particular,
using "Toggle verbosity” or any of *Create’, "Alter’, and *[elete type” will cause all the types currently loaded to
be written oul to the CoMBAT tailor file. [F, therefore, one has done a "Replace tailor”, one can casily lose all

of one’s own types in this manner. l.ec.. it is very casy to destroy yourself,

5.2.5.7. Xerox tailor
This requests the name of an existing user-deflined type, and a new type name. The new type becomes an
exact copy of the previously-cxisting type. This is particularly useful when one has several different types

which do almost the same thing.

5.3. The Compiler (Internals)

The compiler's jub is to take a M. FUNCTION or group of FUNCTIONs and produce an operationally
cquivalent machine-language subroutine (RSUBR) using whatever information can be extracted from the
source code and whatever additional information the user wishes to supply. ‘Ihe efficiency of the output code

produced is directly proportional to the amount of information supplicd by the programmer and inversely

COMBAT 52

S

I'me ML, Programming Environment A

proportional to the generality of the source program.

The information supplied by the programmer is usually in the form of aptional data-Lype declarations
(DECLs) and the use of programmer-defined data types (NEWTYPEs) that have built-in declarations. Unlike
miany programming languages, however, declarations are never required. The compiler will compile

programs with no declarations at all, but the resulting output will not run as fast as with well-declared code.

The current compiler can achicve speed-up factors of anywhere from about 4 to 100. The factor of 4
represents the speed-up for a very general program with very poor declarations. On the other hand, the factor
of 100 represents a program with a very narrow range of application that has very good (that is, restrictive)

declarations. Typical progroms can expect to achicve factors of 20-40,

5.3.1. How it Works
The compiler as it currently exists is really two distinet programs. GETORDER is basically an interface
between files of Min. functions and the compiler. It is a relatively small program that reads in the file, sets up

the various compiler switches, calls the compiler one or more times and writes out the final file of RSUBRs.

COMPILE ltself is basically a compiler with three major »snd three minor passes. Pass 1 builds a model of
the program, pass 2 analyzes each node of the tree and docs data type analysis. pass 2.5 (minor) allocates stack
space for variables and temporarics, pass 3 gencrates output code and two minor passes do final stack

allocation and pecp-hole optimization.

5.3.1.1. COMPILE and COMPILE-GROUP

There are two distinct modes of compilation available. They are simple and multiple. Simple compilation
occurs when COMPILE is called with one FUNCTION. It simply compiles that FUNCTION and returns.
Multiple compilation occurs when COMPILE is called with a list of FUNCT IONs, It compiles cach FUNCTION
into a scparate RSUBR. It differs from multiple calls to COMPILE in that it sometimes partially compiles a
FUNCT ION out of order to determine its calling sequence and do argument typc-checking. "This behavior is

necessary when compiling mutwally recursive FUNCT IONs.

In all modes of compilation, COMPILE-FUNCTION is called to actually compile the individual

FUNCT IONs. Itcalls the various compiler passes,

5.3 The Compiler (Internals)

94 : I'he M. Programming Environment

5.3.2. Modeling Pass

‘The first pass of the compiler takes the input FUNCTION and builds an expanded model of it. In the
process of doing this, it produces a symbol table entry for every local variable bound and/or declared in the
FUNCTION, any of its PROGS/REPEATs or MAPF/MAPR FUNCT IONs. It also produces the RSUBR DECL for
the final output. Pass 1 also tries to decide if an internal entry (that is, an entry which can be called cfficiently
{(sec section 6.1)) can be used with this FUNCTION. IFf an internal entry turns out te be possible, Pass 1

generates an appropriate calling sequence for internal calls to use,

The model built by Pass 1 looks like the original FUNCTION with all of the nodes in the FUNCTION's
structure replaced with objects of type NODE (a new type delined for the compiler). A node in the model may
have anywhere from S to 30 clements. The 5 clement node is for simple guoted objects like Mxed-point
numbers, ATOMs ctc. ‘The 30 clement nodes are for major elements of the program such as the node for the
FUNCTION itsclf and nodes for PROGs and REPEATs. “The majority of the nodes are genceral SUBR nodes,

which have 10 clements.

The Pass 1 structure is built in the following way. The wp level program in Pass 1 generates a node for the

entire FUNCT ION. This node gets the following information put into it

1. A code specifying that this isa FUNCT ION node.

2. The data ty pe that this FUNCT ION is declared to return (or ANY)L

3. A LIST that will eventually contain the nodes comprising the body of the FUNCT ION.
4. A UVECTOR of internal names for internal calls to this FUNCTION.

5. A symbaol table For the variables declared and/or bound in this FUNCT ION.

6. A list of entrics in the symbol able specifying how the arguments are to be set up (whether they
arc optional, QUOTEd, TUPLE erc.).

7. The final RSUBR DECLs.

8. A specification of how to pass arguments W this FUNCT ION when it is compiled (whether the
arguments should be in registers or on the stack).

9. The number of required arguments and the total number of possible arguments.

In addition to the above information, slots exist in the node for additional information to be supplied by

later compiler passes.

The Compiler (Internals) 53

The M1, Programming Environment 95

After the main node for the FUNCTION is built, the sub-nodes for the FORMs comprising the body of the
FUNCTION arc built. This is done by first disp.:p:hing to special Pass 1 code for the first clement of the FORM.
If no special code exists for this first clement, a dispatch is made on the TYPE of the first clement of the FORM
(that is, ATOM, FIX, FUNCTION cic.). If no special code exists for cither the first element or its TYPE, a
general FORM node is built. In the case of an ATOM as the first clement of the FORM, the normal lookup rules
are invoked on the ATOM and it is dispatched again based on its value. ATOMs with no values cither cause

compilation warnings or arc assumed to be RSUBRs (depending on compiler switch REASONABLE).

All FSUBRs (COND, AND, OR., FUNCTION, PROG., REPEAT, UNWIND. ctc.) have special *ass 1 code and
produce very specific nodes. Most SUBRs don't dispatch w specific code during this pass. The exceptions arc
things like MAPF, ILIST. GET ctc.. which have somewhat non-standard treatment of their arguments.
(Actually, MAPF and MAPR don’t treal their arguments non-standardly, but they are treated specially in Pass 1

s that the inner FUNCT ION may be open compiled.)
As mentioned previously, all nodes have at least 5 cloements. These are as follows:
1. A node type code.
2. A pointer to the parent node (if one exists).
3. A specification of the data type the node will generate,
4. A hst of sub-nodes referred to as kids.

5. A name for the node, which may have different meanings for different nodes.

In addition, nodes other than nodes for QUOTEd objects have additional clements that are filled in during

later passes of the compiler.

After Pass 1 all additional passes work on the model built during Pass 1. The original FUNCTION is no

longer even considered.

5.3.3. Analysis Pass

During Pass 1, very little information is determined regarding the resulting data types of various nodes.
Indeed, with the exception of nodes produced by quoted objects, structured abjects which will produce code
to build copics of themselves, and FUNCTIONs, PROGs and REPEATs with declared values, no type
information is produced. Fven in the cascs where type information is produced during Pass 1, it is usually not

as dctailed as other passes would like. The Analysis Pass has the job of refining the result type of cach

5.3 The Compiler (Internals)

96 The M1IL. IProgramining Environment

individual node based on various criteria
1. The declared types of the variables used in the program including GDECLs and MAN IFESTs.

3 ‘The known type transformations produced by various SuBRs. (For cxample, it is known that

LENGTH always producesa FIX resull.)

3, Sume analysis of the conlcxt of the nodes within the prograia. (For example in the following
code:
<COND (<AND <TYPE? .X LIST> £HOT <EMPTYT .X>3>2
<1 LX>»)>

regardless of how X is declared. it is obwiously a LIST when the EMPTY? is run. and it obviously is
not empty when the €1 (X3 05 ran.)

‘I'he Analysis Pass performs a standard depth-first lef-to-right tree wilk on the Pass 1 model. The main
dispatch function during this pass is called ANA. It does an initial dispach based on the node type of cach
node. Since most nodes are still considercd “SUBR nodes’, most of the dispatches end up at the SUBR call
analyrzer. The SUBR cull analyrer has two Lypes of further dispaich available. First it looks in a table for
SUBRSs that are capable of being completely open-coded: iF it finds an entry in the table, the analyzer for that
SUBR is invoked. 17 this SUBR is incapable of being open-coded, ANA checks another whle w see if this SUBR
has an internal entry available. 1Tt does. the node is changed fromn a SUBR node o an internal SUBR node. If
buth dispaiches fail. anuther table is checked o sce if the object Lype returned by this SUBR is known, and if it

is the result is put into the SUBR node.

Most of the work done by the Analysis Pass happens when the first dispatch occurs and special SUBR
analyzers are invoked. Generally speaking, these analyzers check to sce if they know enuugh about their
arguments to transform their nodes to an open-code specification. For example, an invocation of the SUBR
REST only transforms to an open-code node if both the PRIMTYPE of the first argument is known at compile
time and there are no SEGMENTS in the call to REST. (fa spocinl SUBR analyzer decides that it can't

open-compile in this case, it cither leaves the node as a SUBR node or transforms it to an internal SUBR node.

5.3.4. The Type Analysis Model
In addition to the model of the FUMCT ION built in Pass 1, the Analysis Pass adds additional information to

the model concerning the current stales of lucal variables. As the analyzer plunges duwn into the tree, it trics
to keep track of the current pECL of cach variable. Specifically, there is a slot in ecach symbul table entry
called CURRENT-TYPE. The analyzer updates that slot based on ils current knowledge. A call to SET causes

the CURRENT-TYPE slot o be changed to the analyzed type of SET's sccond argument. When multiple

The Compiler (Internals) 53

The MII. Programming Environment 97

control paths meet, the CURRENT - TYPE slots of a variable are OR'd together at the joining point.

Conditional control structure nodes for COND. AND and OR also maintain two lists of transient information.
These are called TRUTH and UNTRUTH. They specify what information will be valid if the true or false
branches arc taken respectively. For instance, a COND clause compilation can assume that any TRUTH

information generated in the predicate of the COND will be valid for the rest of the clause,

Sume of the analyzers for the more widely used predicates have special code in them to add information

the current TRUTH and UNTRUTH values. These predicates include TYPE?, EMPTY?, LENGTHT and NOT.

1 .ouping control structurcs pose additional problems for the type analysis model. The approach taken by
the wype analyzer is to build a copy of the current types of all variubles before analysing the lvop structure.
‘I'his copy of the loeal type information constilutes the assumptions currently in effect. After the loop analysis
is compete, the assumptions are checked against the current state of the variables. If any of the assumptions

have been violated, the assumptions are updated and the loop is re-analyzed.

5.3.5. Life-and-Death Analysis

I'ne Analysis Pass also performs a life-and-death analysis on the local variables. ‘This is donc by assi'ming
that the variuble’s value is dead at each LVAL node for that variable. 1f another LVAL node for this variable is
discovered that is reachable from this one before any intervening SET nodces for this variable, the original

node is updated to be alive. This life-and-death information is used during the Code Generation Pass.

5.3.6. The Variable Allocation Pass
The Variable Allocation Pass (VAP) is a relatively simple one. 1ts purpose is to allocate stack space for all
of the variables bound in the FUNCT ION, its PROGs and REPEATs and its MAPF /MAPR FUNCTIONs. There

are various switches that control the manner in which this allocation is performed.

e most important switch specifies whether or not this FUNCTION needs a FRAME or not. The VAP
always starts out assuming it does not need to build a FRAME, ‘This assumption will be changed iF it is
discovered that exterrally accessible named ACT IVAT IONs cxist in the FUNCT ION or any of its inner blocks
(PROGs or REPEATs or FUNCTIONs) or if at any time it is discovered that the address of a variable cannot be
specified as a fixed offset from the top of the stack. Whenever this assumption is changed, the VAP starts

over again with the new assumption in affect.

Another switch that controls the behavior of the VAP specifics whether or not the stack slots for inner

53 The Compiler (Internals)

98 Ihe M. Programming Environment

blocks will be pre-allocated because the stack will be in a “fuzzy’ state when these blocks are running. The
stack is said to be in a *fuzzy® state when the number of slots currently being used cannot be determined at
compile time. "This usually occurs when a TUPLE is being constructed fur a MAPF, For instance, in

CDEFINE F (X Z)
{MAPF VECTOR <FUNCTION {Y'}I {amP ¥ Ix> X2>2

the clements of the VECTOR will be between the top of the stack and the location of variable Z. Even il F has

a4 FRAME. the location of ¥ will not be known relative to the FRAME pointer at compile time. ‘Therefore, the

initialization code for F will pre-allocate the stack space for Y.

1uring the VAP, cach symbol table entry gets its address ficld set based on where that variable will be on
the stack. Also nodes for PROGs, REPEATs and MAPF/MAPR FUNCTIONs that have bound variables get

additional information inserted in themselves, This information includes where the SPECIAL variables start

and where the UNSPEC TAL variables start.

5.3.7. The Code Generation Pass

‘The Code Generation Pass (CGP) is probably the most complicated of all the passes. Fortunately, the
Analysis Pass has already refined the model so that the CGP can dispaich immediately to the special-purpose
code generators. Besidos building a list of assembly-language instructions as output, the CGP keeps track of
the current state of the stack, the contents of the registers. the current state of varinbles {whether they are in

registers or on the stack or both) and the contents of the temporaries.

The general dispatch routine during the CGP is called GEM. It takes two argumcnts: A NODE and a
specification of where o leave the result. The second argument can be any of the lollowing:

L. 'The ATOM FLUSHED, meaning that the code will be exccuted for effect rather than value,

3 The ATOM DONT-CARE, meaning that the caller of GEN is lcaving the decision up to the specific
generator as to where to leave the result

3. An object of type DATUM which specifics a place for the type and value of the result to be left.
Type DATUM is of PRIMTYPE LIS5T and contains two clements, one for the type and the other for the
value. The clements of a DATUM may take on a variety of values in different circumstances. ‘These include:

1. A TYPE name. This can only occur in the type siot and it means that the type of the object is
known at compile time and this is it. It indicates that the code gencralur need not put the

type-code anywhere.

2. ‘I'he ATOM DONT-CARE. ‘This means that the caller doesn't care where the result for this field is

The Compiler (Internals) 5.3

b

I

i

IR N

|

A

hhh,h

I\

|

|

S

I'he MIM. Programming Environment 99

left.
3.7 The ATOM ANY -AC. 'This tells the generator to leave the result in any available AC.
4. An object of type AC. 'This tells the gencrator to force the result into a specific AC.

5. An uhject of type ADDRESS : C or ADDRESS : PAIR. Both of these specify addresses on the stack
or in the interpreter.

6. An object of type OFFPTR. An OFFPTR has three fields: a DATUM, an offsct {(a FIX), and a
PRIMTYPE. An OFFPTR tclls the generator to leave the result in the word pointed to by the inner
DATUM and offsct by the offset,

If an clement of 3 DATUM is ANY-AC or DONT-CARE. the generator is required o update the DATUM o
reflect the actual location of the result. IF the element is a TYPE, the generator may change it o an AC which

means that it happened to end up with the TYPE in that AC.

I'he gencrators always return a DATUM specifving where the result was actually left. unless the caller
wanied the result FLUSHED. “lThere is one special DATUM that can be returned. It is the GVAL ol the ATOM
NO-DATUM and it mecans that the specified node will not return a value (that is, it isa RETURN or an AGAIN or

something).

There are six objects of type AC in the compiler, corresponding to ACs 0, A, B, C, 12 and E. AC 0 is special
since it can’t be used as a pointer, and it always contains very transient information. It is never usced to fll in
an ANY=-AC slot in a DATUM. The other five ACs are in the pool of available ACs. Objects of type AC have
about ten different slots associated with them. “They are used For linding available ACs and generating output
code thot usces them. ‘The slots used in AC allocation are as follows:

l. ACLINK. IF this is FALSE, the AC contains no temporary value for the current computation.
Otherwisc, it is a list of active DATUMs that contain it

B

. ACAGE. This is only used when the ACLINK is non-FALSE. It is updated to a higher number at
cach use of the AC and is used in an LRLU algorithm when an active AC must be flushed.

3. ACRESIDUE. IF this AC is currently cquivalent to some local variables, this slot contains a list of
the symbol-table entries for these variables. ‘The symbol-table entries themselves have a slot
called TNACS that points back to the ACS that contain its type and/or value. They alse contain a
slot called STORED that specifies whether the only copy of the variable is in the ACs or it is also in
momory.

4. ACPROT. This slot is a boolean saying whether this AC is protected or not. 1Fthe AC is protected, it
can't be allocated for any reason, Protection is only invoked for very streiches of code.

5.3 The Compiler (Internals)

1

]

|

i

i

|

L

1
r"

{0

|
|

|

|

HILLLLE

L

|

100 The M1 Programming Environment

5. ACPREF. This slot says that this AT deserves slightly preferential treatment. 1t means, all other
things equal, don't choose this AC.

e AC allucation algorithm consists primarily of trving to find the best possible candidate when an AC is
needed. The routine GETREG is used o find an available AC. First it rejects all ACs that are protected (if they
all are protected, the compiler generates an internal error since this should never happen). 1F there are one or
more ACs with their ACLINKs FALSE, GETREG will choose from among them. It will prefer ACs with no
ACRESIDUE, that are numerically adjacent o another free AC (because sume PLP- 10 instructions destroy the
next ACY and which do not have their ACPREFs on. If the AC chosen has an ACRESTDUE, code is generated

if necessary to store any of the variables that are only in ACs.

If no AC exists with un ACLINK that is FALSE. GETREG fnds the AC with the smallest ACAGE. Code is
generated o store the contents of the AC in a temporary so that it is available. The DATUMs that were in the
ACLINK arc updated 1o indicate that thoy arc now puinting Lo temporaries as opposed w ACs. Thus it is
pussible that a generator could need sub-results in ACs. and after causing une to be gencrated in an AC, find
that while generating the second one the first slipped back into o lempaorary. ‘I'he generator would then have

to gencrate code to reload an AC from the Lemporary.

The OGP invokes various special-case optimizations by passing information up and down the tree as code
is gencrated. The generators for conditional branching FSUBRs like OR, AND and COND employ a predicate
generator whenever possible. This generator is like GEN cxcept that it takes three additional arguments: a
label 1o branch to. a flag saying whether to branch on truth or falseness, and a flag saying whether this
predicate is being NOTed. The general predicate generator then Tooks at the predicate node to see if it can
take the additional arguments for predicate generation. 17t can, the general predicate generator just passes all
the arguments down; otherwise it calls GEN and generates the additional testing and branching code itself.
Currently AND, OR, COND, ==7, N==7, G?. G=7, L?, L=7, 07. 17. TYPE?, NOT, ASS IGNEDT, MEMQ,
LENGTH? and EMPTY? havc special predicate code associated with their generators, Others may be added as
the need develops.

Other optimizations arc invoked by simply recognizing commaon patierns of MDi. code. For instance, the
compiler recognizes <SET X <+ .X 1>>asa PP-10 A0S instruction and it gencrates very cfficient code
for CREST .X <~ <LENGTH .X> 1>>by recognizing the pattern of code.

The compiler always takes advantage of as much knowledge as it has about the types gencrated by
particular nodes to generate good code. ‘This is cspecially the case when it is handling the code fur NTH, REST

and PUT in structurcs. It uscs type information concerning the length of the structure and the amount being

The Compiler (Internals)

The MDD, Programming Environment 101

RESTed fur the NTH, REST or PUT, to figure out whether or not to gencrate bounds checks in the compiled
code. It also uses information about the current type of the slot being read or written to decide whether not to
read or write the type word. Obviously, a lot of this type information was the sume information obtained

during the Analysis Pass of the compilation.

Some code generation routings are capable of changing the order of generation of the sub-nodes. This is
done to ury o get the node requiring the most ACs compiled first so that it won't interfere with any AC
requirements of the current node. “T'his obviously requires that the commuted nodes have no interacting side

effects.

5.3 The Compiler (Internals)

‘The M. Programming Environment

102

6.0

4_,_}_4_.~_ﬂ_jﬁ_ _ﬂ_ﬂ_,__m___q____,

Ml

I'he ML Programming Environment 103

6. Making It Run Faster

Once you have a working program, you will probably want it to run fast. The most obvious way of doing
this is to compile it. MDI. provides other ways to speed up code, chiefly by eliminating mediated subroutine

calls, and by reducing the size of garbage-collected space.

Mediated subroutine calls (or "MCALLS') are the standard method of function calling in MDL. They
provide a great deal of information and control during program development and debugging, but the

overhead of an MCALL is superfluous in debugged production programs. Consequently, several methods exist

for removing this overhead.

A subtle impediment to increased speed in a production program is the amount of time devaoted to garbage
collection. As this is proportional to the size of the garbage collecied space. it is advantageous to make that
space as small as possible. One way to do this is to purify as many of the static data structures in the MDL as

possible.

One by-product of the procedures mentioned above is that much of the resulting code and structure

becomes pure and therefore shareable between many M. processes.

6.1. GLUE

A facility exists to allow separately compiled and assembled RSUBRS to be ‘glued’ together. “This makes
calls between RSUBRs in the group much Faster, as MCALLs are replaced by PUSHJs. The many instructions
of an MCALL are rcplaced by the single PUSHJ, but the mediation provided by MCALL is lost: No FRAME is
produced. GLUEing is accomplished by the concatentation of the code and refercnce VECTORS of the RSUBRs

being GLUE, which gives them a common *frame of reference.

Additonally, GLUE is interfaced with the compiler such that:

1. The RSUBRs can be run unGLUEd for convenicnt tracing and debugging. Afier debugging, they
cian be GLUE together and run much faster.

2. An individual FUNCTION can be recompiled without the overhead of recompiling everything
GLUEd to its RSUBR. Afer the recompilation, the entire set can be reGLUE,

6.1.1. How to Glue
"GLUE" is a PACKAGE and it may be obtained by doing

6.0

: e —
e ———
e ——
: —_—

' —_ I

M

1|
|

|

)l

W

H

|
|

|

|

|

Il

|

Ihe ML, Programming Environment

104

<USE "GLUE">

The call to glue a group of RSUBRs and/or RSUBR-ENTRYS is:

(GROUP-GLUE growup-natiesalon
substitute: boolean
script:channel
package:string-or-list
survivors:list
victims: lisi>

where:

group-nane is an ATOM as returncd by GROUP-LOAD, and it is the only required argument
cubstitute is o Mag: iFit is true, the current RSUBRs and RSUBR-ENTRYs will be fixed so that they may still run

I'his is exponsive butl necessry iFPRINTTYPES or interrupl handlers are among the

in the current M.
{ be GROUP-DUMPed and

RSUBRs in the group. If the fag is FALSE or not supplicd, the group mus
reloaded before use.

seript i supplied and & CHAMNEL is uscd by GROUP-GLUE 1t print out ils progress through s task.

Otherwise, GROUP-GLUE works silently.

o, if provided and non-FALSE. implics PACKAGE mode will be used, This argument should be a
STRING specifying the PACKAGE that is being glued. In PACKEAGE mode only the ENTRYs of that
PACKAGE will be preserved and all RSUBR-ENTRYs associated with internal functions will be removed.
‘This aption can also e uscd by setting the ATOM PKG to the name of the PACKAGE. Package may also be
4 LIST of PACKAGE namcs. in which case the ENTRYs of all the PACKAGES listed will be preserved.

packagt

stervivors if provided indicates that SURV IVOR muode will be used. This argument should be a list of those
RSUBR-ENTRYs to be preserved. All other RSUBR-ENTRYs will be flushed. ‘This option overrides
PACKAGE mode. This option can also be used by setting the ATOM SURV Lo the LIST of RSUBR-ENTRYs

being preserved.

lt: that is, it is a LIST of those functions which should nor

vietims allows ‘survivors™ o be specified by defau
than explicit survivors.

survive after GLUE has run. This is sometimes more convenicnt to specify

removing unnceded RSUBR-ENTRYS. The group is made smaller by the absence
e code for handling MCALLS 1o those

‘There are two advantages
of the RSUBR-ENTRYs. Also the code for the group is reduced, as th

RSUBR-ENTRYs is removed. In general only the ENTRYs need o be kept for 1 PACKAGE. This can be done

by specifying the PACKAGE using PACKAGE made. SURVIVOR mode should be used if the user wishes to

explicitly state which RSUBR ~-ENTRYsarc to be kept.

6.1.2. GLUE as a Program

In addition to the "GLUE * PACKAGE, therc is a program in which
0 GROUP-GLUE, permiuing the user to

GLUE and PDUMP (scc scction 6.3) are

preloaded. It will prompt for cach of the usval argumenits

conveniently GLUE (and PDUMP) several PACKAGES in one session.

GLUE 6.1

I

|

\
ﬁ

|
!

LUHRHE

the MDI. Progriunming Environment

105

6.2. Glue Bits

GLUE is able to perform its transformations on compiled or assembled code with the aid ofad

produced during assembly. ‘This structure is called the *GLUE RBits".
by this FORM:

<AND <ASSIGNED? GLUE>
GLUE

SPUT rswbr GLUE glue-bits:uvectors>

It is an sssociation placed on the RSUBR

Thus il . GLUE is non-FALSE the association will be available o programs wishing to use it

Internally, the GLUE bits consist of two bits for cach word of code in the CODE clement of the RSUBR,

fiMlowed by words specifying calling information. For cach INTERNAL-ENTRY in the code, there is a word

giving the number of arguments it takes and the offsot of the INTERNAL-ENTRY in the CODE UVECTOR.,

The two bits for individual instructions are interpreted with the index field of the instruction as follows:

Bits 0 imiplics the instruction is unintcresting;

Index field (M) and bits 1 implics the instruction is a reference to the code itself (a jump, perhaps);

Index field (R) and bits 1 implics a reference to an impure slot of the RVECTOR (the
gencrate such references);

compiler does not

Index field { R) and bits 2 implies the instruction is an MCAL L:

Index field (R) and bits 3 implics the instruction isa reference o a pure slot of the RVECTOR.

See section 7 for more details on the format of M Assembly code,

6.3. PDUMP
MDL provides a mechanism for sharing compiled programs among scveral MDI. processes, and for

dynamically moving the compiled code in and out of the virtual address space as space is needed in the

interpreter. ‘This mechanism is described in detail in section 4.2, This section describes how to convert a

compiled program into a sharuble version, known asan FBIN (I<ast- I MNary) version of the pProgram.

First load the group-purifier,

Glue Bits

ata structure

106 : e MIDL. Programming Environment

ZUSE "PDUMP™>
Mext, GROUP-LOAD your group {or groups).
¢GROUP-LOAD binan-file:string>

which returns the group-name of the group. “This (and any other groups to be dumped together) is then
passcd o the pure-dumper:

<PDUMP group-namel -atwn group-namel:atom ... 2

‘I'his creates several files, only one of which you need be concerned with:

siamey proup-namel FBIN
If given more than one group-name, PDUMP will create one FBIN file for cach group. but only a single FIXUP
and a single SAV file containing the fixups and code for all of the groups named. The FIXUP and SAV filcs
arc put on the "MUDTMP" dircctory and eventually are inserted in the pure code library, as described in

scotion 4.2,

Alternative methods of PDUMPing are to specify that as an option in to the program GLUE (scc scction

6.1.2%, ur ta usc its preloaded PDUMP dircctly after exiting its READER with T 5.

A warning about combining GLUE and PDUMP: if you attempl to POUMP scveral groups that have been
GLUEd together, you will lose. 'This is because the references to the ‘group-RSUBR" will fall on the wrong

OBLISTs.

POUMP also produces a structure analugous [the GLUE bits (see section 6.2) produced by the compiler,

but containing only information about the RVECTOR of the RSUBR, for the use of PURIFY (scc scction 6.5).

6.4. SUBRFY
SUBRification is a way of getting rid of many of the MCALLs which could not be practically removed using
GLUE. IFa FUNCTION is called by many scparate groups, it is difficult to GLUE it to all the groups or Lo GLUE

all the groups together.

What is really needed is to be able w allow somcthing to be called with PUSHJ from scparatc groups
without Forcing it to be part of those groups. This is indeod the case with PUSHJ cntrics to MDi. SUBRs (in

the interpreter). A user can make his RSUBRs look like SUBRs in this respect.

SUBRFY takes a group, which must be in NBIN formatl It purifics the RSUBRs and RSUBR-ENTRYs in the
group and changes them su that they can be called with PUSHJ. [t also producesa file, known as the “preload’

file. which can be used by the compiler to generate PUSHJs to the functions in the SUB Rificd group.

PDUMP 6.3

i
|
11

|
:|!

|
|
H

:I:IJ

|
4

e

: e

: — TS

—__

e e e e —
=

e —— e e
=

: = — ol

i !|!|

|
|
i

The M. Programming Environment o7

SUBRFY should be lvaded before loading the group to be processed. The reason for this is that it

guarantees that GLUE bits stay around. To lvad SUBRFY
<USE "SUBRFY">

¥ou should then GROUP-LOAD the group. Your group should be GLUEd already, since SUBRFY does not
GLUE the group together.

SUBRFY can then be called in the following manner:

<SUBRFY group:alom
file-name:string
owufpul:channel>

where
rgropg is the name of the group.

Sile-nanme is the name of the file in which SUBRFY should put the informnation for the compiler. This defaults
to the name of the input file with sccond name "PRELOD".

endipeed 15 an optional argument which specifics a CHANNEL on which to print information about SUBRFY's
progress. The default is not to print anyvthing.
The file produced by SUBRFY should be FLOADed for compilations where functions in the SUBRificd group

are called. This can be done by FLOADIng it in the “Things to do” part of a COMBAT plan.

Like purification, SUBRification changes the MDL. The only way to preserve the SUBRified group is to
SAVE the MDL. Before SAVEing the MDL the "SUBRFY " PACKAGE should be removed. 'This can be done
by doing a

{KILL-SUBRFY>

followed by a
<GC 0 T>.

SUBRFYing a group implics that the group is not going to change at all frequently, if cver. A new
SUBRF Yed SAVE file may be created at any time, and elements of the group may be recompiled. However, if
the calling sequences of any of the functions in that group change, you invalidate any functions compiled

using the “preload’ file for that group. In short, think twice before tying yourself down with SUBRFY.

6.5. Purification

A Facility exists o permit the purification of Min, objects. Purified objects can be shared between MbL

processes and also are not examined by the garbage collector. What follows is a description of how this
i facility can be used.
; 6.4 SUBRFY
.
-
— = .
R e S —
—

|

| i
|

F“Hm

11
|

| ||||

108 I'he M. Programming Environment

The purification facility in M. is most useful in the ereation of subsystems. MNon-purified RVECTORs of
RSUBRs and tables used by subsystems are kept in garbage collected space. “This means that these objects,
which will never become garbage, are cxamined at cach garbage collection. slowing down the garbage
collection process. Also. if two people are using the same subsystem, they cannot share the tables and RSUBRs

kept in garbage collected space. By using purification these two problems can be alleviated,

To purify most objects the user can eall the PURIFY SUBR. The object will be purified, and all references
tn that object in the M. core image will be changed to point to the new pure object. This simple method
cannot be used in the case of RSUBRs, Purification of RSUBRs is a several step prucess beginning with

compilation.

6.5.1. Purifying RSUBRs
Once your FBIN or NBIN is ready you can actually do purification. 'I'o do this first
<USE "PURITY">
This PACKAGE contains the routines needed to purify RSUBRs. “Then GROUP-LOAD the files vou wish 1o
have purified. Once this is done type
CGROUP-PURIFY groupalom ouwipui-channel>
This will purify and link all RSUBRs and RSUBR-ENTRYs in the group and will also attempt to purifly any
RSUBRs or RSUBR-ENTRYs called by the group. Giving the optional ehannel will cause GROUP-PURIFY to

print information concerning the progress of the purification,

GROUP-PURIFY will only purify RSUBRs and RSUBR-ENTRYs. In order to purify tables, ctc. use the
PURIFY SUBR dircctly. Since purification is an extremicly exponsive uperation, it is recommended that you

collect wgether the things you wish to purify into a LIST, VECTOR, cte. and purify that structured object.

Onee purification has occurred, several things may be dune W recover wasted garbage collected space.

The user can get rid of the "PURITY " PACKAGE by doing a
CKILL:PURITY>

The user can alse remove much of the overhcad of keeping a group around by UNASSIGNing the
group-name. Remuovals of this type should be follwed by an explicit eall w the garbage collector invoking the

“hairy’ GC feature, as much of the storage to be regained is pointed to by associations. ‘This can be done by
<GC 0 7>

In order to save a file with purificd M1, objects you must SAVE. Restoring a SAVEd file with purificd MDL
objects will cause thuse objects to share with any other MidL RE STOREd from the same SAVE file.

Purification 6.5

1

T

1 r.l'.-

|

S

(T

‘Ihe MDL. Programming Environment 103

6.5.2. Purifying an Environment
Many subsystems maintain a list containing pointers to all the static data structurces built by that
subsystem: dispatch tables, data bases, and s0 on. The list can be given to PURIFY to move all its components

intoe the pure arca. However, there are other structures in garbage collected space that may be purified; e.g.,
the RVECTORs of RSUBRs, RSUBR DECLs, and so0 on.

The "CLEAN" PACKAGE cxamines these structures. looking for those which may be purified. It may also
be used for informational purposces. To get it
<USE "CLEAN">
"CLEAN" has one |ﬁﬂjur ENTRY. CLEANUP, which examines every ATOM of every OBLIST in the M. It
muay perform a variety of functions, but it is most often used to make DECLs share storage and (o accumulate a
LIST of purifiable structures. All of its arguments are optional.

<CLEANUP primt?:boolean
resel?:boolean
decl?:boalean
pdect?:boolean
pure?:boolean
check?:boolean
avoid:list-of oblisis>

prine? is by default FALSE. If non-FALSE, information about cach ATOM examincd will be printed as
CLEANUP runs. This is a for of information.

resef? is by default T. If non-FALSE. the LISTs of ohjects previously collected will be reset before CLEANUP
rins.

decl? is by default T, Ifnon-FALSE, cach DECL clement will be made to exist exactly once in the entire core
image. E g., there will be only one copy of the DECL <LIST [REST FIX]> inthe~ corc image.

gdec!? is by default T. It is similar to decl!?, but refers to GDECLs.
pure? tells whether to make a LIST of all the purifiable objects in the core image. It is by default T.

check? tells whether to make LISTs of all the TYPEs, RSUBRs, RSUBR-ENTRYSs, clc. in the core image. Itis
by default T.

e
| avoid is a LIST of OBLISTs not o look in: it is by default the OBLISTs associated with "CLEAN™ and
W 1 w -
i PURITY".
!
i CLEANUP returns (if pure? is non-FALSE) a structure (also stored as the GVAL of PURELST) which may be
" i given to PURIFY.
| The results of unning CLEANUP may be examined by
{
|
| 6.5 Purification
__*L‘t%
— - —
. — .
' e —— '
—_— =
e =
e —
' — — :
= — l
. — .
p———_ ——— '
_— :
e '
' —_— = '
—— '

110 The MDIL. Programming Environment

<PRINT-CLEANUP>
As the object in running CLEANUP is to shrink the size of one’s MDL and its garbage-collected space, it is
uscful to be able to remove CLEAN after it has done its work.

CFLUSH-CLEANUP>
removes cverything associated with the PACKAGE from the MDL.

6.5.3. Purification Summary
In a simple case, one can purify a "subsystem” of one group maximally by

<USE "PURITY" "CLEAN">
<GROUP-LOAD "foo">
<CLEANUP>
{GROUP-PURIFY Jfoo>
<KILL:PURITY>
<FLUSH-CLEANUP>

<GC 0 T>

<SAVE "foo™>

6.6. TEMPLATEs
e PRIMTYPE TEMPLATE cuts down on the need for storage by allowing the user to specify exactly what

he wants a structured object e contain, similar to “structures’ in PL./1 or C.

To use this feature one must create a new TYPE of PRIMTYPE TEMPLATE. This can be accomplished by

using the RSUBR TEMPLATE. The procedure for doing so is:
<USE "TEMPLATE">

<TEMPLATE pame:aiont ... SDECE ... »
where mame is the name of the new TYPE and specs are specifications for each clement of the TEMPLATE.

This returns the TYPE name of the TEMPLATE and creates a creator of TEMPLATEs of TYPE name, called

name itsellf, which can be applied to arguments to create objects of that TYPE of TEMPLATE.
The specification for the clements can be of several forms. [t can be onc of
a TYPE: typeratom
a2-clement LIST: (rypesatenn length:fix)
a 3-clement LIST: (dyperatom length:fix count: fix)

Below are some examples along with cxplanations:

Purification 6.5

!
|

1

NN 111 R
Al EREERIeIneRyN

lhe M. Programming Environment 1“

LIST
isan 18 bit LIST pointer.
(FIX 18B)
is @ halfword FIX (can be both positive and negative and is checked for overflow).
{FLOAT 18)
i5 an 18 bit FLOAT (which is the left halfword of a *normal” FLOAT and therefore somewhat restricts the
precision).
(FIX n)

(where n is less than 18) §s a positive F LX of length » bits (is not checked for overflow).
BOOLEAN

is not a My TYPE, but a one bit FALSE or non-FALSE depending on whether the hit is 0 or 1.
(UVECTOR 18 n)
is an 18 bit UWECTOR pointer. The UVECTOR is of length #. The smne can be done for VECTORs.
(STRING 36 n)
iz a 36 bit string byte pointer. The STRING is of length
ANY
is not a MDI. TYPE, rather anything can go here. This is relatively inefTicient to use in TEMPLATES as it takes

up 2 words.

In order to provide more fexibility in using TEMPLATESs, two other fields are allowed, an eptional ficld
and a rest ficld. "The oprional ficld allows the user to create TEMPLATE TYPEs which will have the same basic
structure but which can have optional clements determined when the actual TEMPLATE is created. ‘The resi
ficld, like the optional field, allows clements to be optional but specifics a pattern for any elements that are
added on. It is analogous to REST in DECLs. Scparation of ficlds is accomplished by the use of the sirings
"REST" and "OPTIONAL". For example:

<TEMPLATE FOO FIX "OPTIONAL"™ LIST BOOLEAN *"REST"™ FLOAT>»
This creates a TYPE FOO of PRIMTYPE TEMPLATE which always has a FIX as the first clement, can have a
LIST as a second element, can have a onc bit T or #FALSE () as the third clement and can have any number

of FLOATS from the fourth element on.

6.6.1. Use of TEMPLATES
TEMPLATE TYPEs may be thought of as primitive TYPEs, in that they cach have a unigue storage
representation. On the other hand, the TYPEPRIM of any TEMPLATE TYPE is TEMPLATE. A primitive

TEMPLATE (which cannot truly exist in the language) would look like

6.6 TEMPLATEs

—_— p—
—_— — —
— ——
N —
— I
—_— E—
—_— e
—_— —

112

{ element-1 element-2 ... elemenin }

The M121. Programming Environment

lteal TEMPLATE TYPEs are represented as NEWT Y PEs of this primitive TEMP LATE TYPE.

#rype-name { ...elements... }

‘I'his method is similar to the usual method in MDI for representing any new TYPE,

in that 2 RESTed

TEMPLATE will be printed "CHTYPEd to its PR IMTYPE." Note that a TEMPLATE so printed cannot be read by

READ: a‘primitive TEMPLATE' cannot exist. Itisbestto avuid printing RESTed TEMPLATES.

Below are some cxamples of the use of TEMPLATES.

<TEMPLATE BAR-
FIX
"OPTIONAL™ BOOLEAN

“REST" (FIX 18) (FLOAT 18)>3

BAR

<BAR 1>3%
#BAR {1}

<BAR 1 T>%
#BAR {1 T)

<BAR 1 <> 1 1.0>%
#BAR {1 #FALSE () 1 1.0}

<SET A <BAR 1 <> 1 1.9 2>>%
#BAR {1 #FALSE () 1 1.8984375 2}

<PUT .A 1 B>3
#BAR {6 #FALSE () 1 1.8984376 2}

<PUT .A 4 1.999>S
#BAR (6 #FALSE () 1 1.9960937 2}

{TEMPLATE BAR (STRING 36 4) "REST"

#FALSE ("ALREADY A TEMPLATE")

¢<TEMPLATE BAR1 (STRING 36 4) "REST" ANY>S

BARL

TEMPLATESs

6.6

ANY>S

H

M

I

|

il

I

|

I

\

il

|

The M. Programming HEnvironment 113

CS5ET A <BAR1 "HELP™ 2 () <>>>%
#BAR1 {"HELP" 2 () #FALSE ()}

<PUT .A 1 "GOOD">$
#BAR1 {"GOOD" 2 () #FALSE ()}

<PUT .A 1 "GOOD-BYE">S%S

*"ERROR"
TEMPLATE-TYPE-VIOLATION

PUT

LISTENING-AT-LEVEL 2 PROCESS 1

G6.6.2. Assembly of TEMPLATEs
Once u sel of TEMPLATE TYPEs is created, as for the TYPE definitions of a subsystem, it saves time to
store away the ‘compiled” TEMPLATE generatrs and nol recreate them each time the definitions are to be

used.

The "TEMHAK®" PACKAGE modifics files which define TEMPLATE TYPEs to contain the TEMPLATE
descriptions and RSUBRs rather than the calls to TEMPLATE. It is only uscful, of course, when the
TEMPLATEs are difined in a file which will not normally be edited, since the new files are in "NBIN® format
T load this PACKAGE,

<USE "TEMHAK™>»

‘The PACKAGE has two cnitrics,
CTEMPLATE -DUMP groupsaitiesalons

takes the group and modifics it such that <USE "TEMPLATE™> bccomes <USE "“TEMHLP">, and zall

tep-level invocations of TEMPLATE are replaced by calls to BUILD-TEMPLATE (for the TEMPLATE

descriptions), SETGs of the TEMPLATE-gencrating RSUBRs, and the GLUE bits for the RSUBRs.
<FILE-TEMPLATE [upui:Siring ouipul siring>

takes an duput file and performs the same service, GROUP-DUMPIng the result to the optional ourput file (by

default the same file with second name "NBIN"). This is useful for files which contain nothing but TYPE

definitions, a commaon practice in large subsystems.

If the TEMPLATE TYPEs arce defined in a file which will be edited frequently, a different set of routines is
uscd after creating the TEMPLATE TYPEs:

6.6 TEMPLATESs

rlut\l\g,r o

I

m

M

m

114 Ihe M. Programming Fnvironment

{DUMP-TEMPLATES drscriptions:siring

places the TEMPLATE descriptions (nor the RSUBRs) in the specified descriptions file. It docs so fisr all

TEMPLATE TYPEscurrently defined.
{DUMP-RSUBRS rsubrssiring femplafe-fypesaiom ... #

will perform the sume service for the TEMPLATE-gencrating RSUBRs of the TYPEs given as the sccond and

later arguments to DUMP-RSUBRS.

There will now be twao files, one containing the TEMPLATE descriptions and the other the RSUBRs. These

may now be used to create the TEMPLATE TYPEs without USEing "TEMPLATE". To do so:

<{USE "TEMHLP">
'his defines the RSUBRs needed 1 ke the TEMPLATE descriptions and make them usceful to MDL.

<FLOAD dlescriptions string>
the file of descriptions (the file created with DUMP-TEMPLATES): this muss be lvaded belore the RSUBRs
file. Then load the RSUBRs file (the file created by DUMP-RSUBRS):

<FLOAD rsubrs:string>
For muaximum convenience, it may be nccessary to pul a FORM in files that create TEMPLATESs: if the
TEMPLATE files described here exist, FLOAD them; otherwise. <USE "TEMPLATE"> and creale Lhe
TEMPLATEs from scratch. It is of course possible to manually merge the two TEMPLATE definition fles
(preferably by using GROUP-LOAD and GROUP-DUMP), so long as the TEMPLATE descriptions precede the
TEMPLATE RSUBRs.

TEMPLATE RSUBRs arc created with GLUE bits, so it is possible to glue them into groups and to purify

them.
TEMPILATEs 6.6
| = =
—
— —
S——

i
1
r

|
|

il
iy

|
|

'r

iy

11 |||

|
Jl!:_f_f_|

The M. Programming Environment 115

7. The Assembler

It is occasionally necessary to write MDL routines in assembly language. usually to interface with a feature

of the operating system not available in the interpreter. The ML assembler (which is also used by the ML

compiler) provides this ability.

7.1. The Assembler
The M. assembler provides the M1 user with a means of wriling RSUBRs directly in machine language.
The assembler is also used as the object language of the compiler. This section is a description of the

asscmbler, its use, and some of its pseudo-operations.

7.1.1. General Organization
The M. assembler is written in MDI. to produce code that runs in the M. cnvironment. [t takes

arguments in the following form

<FILE-ASSEMBLE jypui-file;string
enifpeel-file:siring
qrifck: boaleans

The arguments arc an fnpier-file containing M1, assembly code (possibly for several RSUBRs), an optional
auipui-file in which w put the binary output (by default the same file as input but with second file name
"NEBIN"). and an optional third argument which tells whether o use NBIN format output, and which under
normal circumstances should always be T. There are four other optional arguments which are the same as the
scoond through fifth arguments of ASSEMBLE.

<ASSEMBLE pbody
locals
MEessages
list
spembols>

(All the arguments arc optional with the exception of bod).)

body may be a CHANNEL, in which case all instructions in the file associated with the CHANNEL arc assembled,
or it may be a structured object, in which case all instructions in the object are assembled.

locals specifies the OBLIST to wuse for local symbol lookup when the body is a CHANNEL. ‘The default is
€1 .0BLIST> when the assembler is called.

messages is 1 CHANNEL to receive error messages, ote. It defaults to . MESSAGE -CHANMNEL.

list is a CHANNEL to reccive an assembly listing. IF [fist is not supplied, no listing is gencrated. IF fist is a
non-FALSE non-CHANNEL, and miessages is a CHANNEL, then the messages CHANNEL will receive the
address of cach label. [IF fisr is a FALSE, then no listing is produced. ‘The default is . LINE-CHANNEL

7.0

w\&_ |

l

|

|

l

||

|

|

I

|

116 The M. Programming Environment

(Initially LINE-CHANMNEL is FALSE.)

symrbols indicates if true thal a DDT symbol table of all the labels for use with "RDB ™ (sce section 7.2) will be
gencrated. The default is .MAKE-SYM-TABLE (Initially MAKE-SYM-TABLE is FALSE.)

7.1.2. The Assembler as a Program
The assembler also exists as program called ASSEM, which encapsulates FILE-ASSEMBLE.

7.1.3. Format of Assembler’s Source

The M. assembler’s equivalent of a line of code is a FORM. It assembles FORMs into instructions in much
the same way that a typical assembler treats lines of source code, ATOMs at the top level (e, not in FORMs) are
treated as labels. “The FORMs arc asscmbled bused on the TYPE of the GVAL of the first ATOM in the FORM,
The GVALS of ATOMs whose PNAMES are the PIXP-10 instpructions are of TYPE OPCODE (PRIMTYPE WORD:
the *value word” has the 36 bit value of the instruction. For example, in

<MOVE A* 1 (B)>

the value of MOVE (in the OP OBLIST) is #OPCODE *200000000000*. This FORM is assembled dircctly

inwy an instruction.

If the GVAL of the lirst ATOM in a FORM is something applicable (SUBR. FUNCTION. RSUBR cic.) the
FORM is EVALcd and the resulting SPLICE of FORMs is assembled. This is how macros and pscudo-ops are

implemented. MNotice that a pscudo-op or macro may produce no code by returning an cmpty SPLICE.

7.1.4. Instruction Assembly

Having determined that a FORM is going to asscmble into an instruction, the asseinbler basically adds up
the values of all the items in the FORM, In the case of items of TYPE OPCODE, a full 36 bit add is performed.
Items of TYPE ADDRESS refer to labels in the program. Since the code is all location inscnsitive and will
move around during garbage collection, references to labels must be indexed by accumulator M, the base
register. Thercfore, label symbols include an M in the lefl half and must also be added in with a full-word add.
ltems of PRIMTYPE WORD other than OPCODEs and ADDRE SScs arc ANDBed with 77777 7" before being
added, and the carry from right half to left half is suppressed. When ATOMs are found in FORMs that are being
assembled into instructions, special lookup rules are in effec. If the ATOM has a global value, that value is
used. IMthe ATOM docs not have a global value but has a local value, it is used. IMthe ATOM has neither a local
ur global value, it is assumed to be a local symbaol for this asscmbly. In this case the symbaol value is used if it

has already been defined, otherwise it is added to a list ol as yet undefined symbaols.

The Assembler 7.1

The MDIL. Programming Environment

Objects other than ATOMs or PRIMTYPE WORDs cause the assembler to take special action.

— LISTsarc used to indicate swapping left and right halves, For cxample
<MOVE (1)>

would put the 1 in the index ficld of the MOVE instruction (similar 1o MIDAS).

— A VECTOR indicates a constant. The VECTOR ma
at the end of the program. For example:

<PUSH TP* [<1 (1)>7]>

pushes a constant contiaining 1 in the right and left halves,

¥ cuntain any number of FORMs to be assembled

= A FORM is simply EVALed and the valuc returned is used.

7.1.5. Initial Symbols

‘The OBLIST structure in effect du ring asscmbly is
(ep mdl DEFAULT lucal root)

I'he OBLIST op is nuned OP and contains the PDIP-10 apcodes, the M. accumulatos definitions {in both

accumulator and address ficlds), and the pseudo-ops. The 0BLIST md/ is named MUDDLE and contains v

of many labels in the interpreter.

alues
This enables programs to do things like <JRST FINIS>, the standard way
to exit from an RSUBR. When an instruction is assembled using a symbol from the MUDDLE OBLIST, a fixup

is also gencrated so thac if the symhol gets a different value in a new M . the code can be fixed up when it is

loaded. Local is the user's local symbol OBLIST and rool is the ROOT OBLIST.
As stated carlicr, every

accumulator has two symbols associated with it one for the address ficld and one

This is because there is no syntx to specify which ficld is intended. The address
symbol is simply the accumulator's name, and the accumulator symbol is the name
appended to it e.g., A versus A®,

for the accumulator Fficld,

with an asterisk (*)

7.1.6. Macro Writing

Whenever an clement or subelement of an instruction is a FORM
APPLICABLE GVAL. the FORM is evaluated and the rc

and the first element of the FORM has an

sult {unless it isa SPLICE) is re-evaluated ns if it wire
In place of the FORM. This feature constitutes the assembler's macro facility.

For compatibility between ‘top-level’ macros, which gencrate whole instructions, and macros which

Benerate parts of an instruction, top-level macros may wish to return several instructions. 1o indicate that

what is returned is several instructions, it is necessary (o return an object of type SPLICE (PRIMTYPE L IST).

I'he clements of the SPLICE are treated as individual instructions. An empty SPLICE may be returned from

7.1 The Assembler

117

|

118] ‘Ihe M. Programming Environment

a macro which is part of an instruction, and the effect is as if a D were returned. "This is the only SPLICE

which may be returned from a macro which is a part of an instruction.

7.1.7. Pseudo Operations
The next part of this document will deseribe pscudo-ops available in the MpL. assembler, There is no

difference between a pscudo-op and macro in the assembler except that the pseudo-operations are supplied
by the system.

STITLE pamersiring?
Iis is about the only required pscudo-op. It must be the first instruction to be assembled. It takes one
argument, the name of the RSUBR being assembled. I additional TITLEs are found in a file being
assembled, they are assumed to both end the previous RSUBR and begin the next. “The assembler prints cach
TITLE un the messuges CHANNEL as it is encountered.

{SUB=-ENTRY gutnycarom decl>
‘I'his pscudo-op is used o define additional RSUBR-ENTRYs for the RSUBR heing assembled. The enrry
argument is the name of the RSUBR-ENTRY and the optional decf argument is a DECL for the entry.

CINTERNAL-ENTRY eninvatonm gres fix>
is used w create an INTERNAL-ENTRY for a GLUEable RSUBR. Its arguments arc the name of the
INTERNAL-ENTRY and the number of arguments that will have been pushed on the stack for it when it is
cilled. See also section 7.1.9 for details on writing GLUEable RSUBRs.

¢DECLARE ("VALUE" degl decl decl)>
is used w supply declarntions for the RSUBR named in the TITLE. It must occur before any code-gencrating
instructions. DECLARE takes a LIST as its one argument. 'The format of the LIST is as described in [3]. The
string "VALUE™ is optional; if supplied it causes the first deef to declare the TYPE of the value of the RSUBR.
Each additional decl is associated with one argument. Special STRINGs may also appear in the LIST with the

following meanings:
*"QUOTE" The next argument is QUOTEd (not EVALed).
"OPTIONAL " The rest of the arguments are optional (the RSUBR must supply any defaults for these).

"CALL" If this appears, it must he directly after the "VALUE " dec/l. It says there is onc argument and it is the
FORM generating the eall (see "CALL ™ for FUNCT IONs in [3]).

"ARGS" ‘I'his must be the last STRING. [t says treat the rest of the arguments in the FORM as a LIST and
pass it as the argument (sce "ARGS"™ for FUNCT IONs in [3]).

“"TUPLE" EVAL the rest of the arguments and pass them.

The Assembler 7.1

3

WO

The MIM. Programming Environment 119

<END>
indicates the end of an RSUBR or group of RSUBRs. Only the text between TITLE and END pscudo-ops will
be processed by the assembler. This makes it possible to intermix assembler source code and rnormal MDL
source code in the same file (although assembly must be done before compilation in such cases).

<TYPE-CODE jyperatom>
allows references to the internal TYPE codes for both system and user defined TYPEs. It takes one argument,
the MDD TYPE name. For example:

<MOVSI A* <TYPE-CODE FIX>>
puts the TYPE code for FIX into the left half of accumulator A.

<TYPE-WORD pnpeoafon any ... »
generates a reference o a word containing the TYPE code for e in the lefl half and possibly other junk in
the right half. “I'he first argument is the TYPE name and the rest of the arguments are optional but if supplied
are added into the right half, IF the TYPE is an initial TYPE and no right half is generated, a reference to the

"§Toype location in the interpreter is generated, For example,

<PUSH TP*™ <TYPE-WORD FIX>>
<PUSH TP= [0]>

would push a FIX D on the stack.
<GETYP @ fvpesglom>
has the same form as a PIDP-10 instruction. It gets the TYPE code for fpe into the right half of its
accumulator from its address. This is done by generating an approprinte LDB (load byte) instruction.
<MQUOTE obfeci:any>
allows the RSUBR to reference garbage collected space. It adds its argument to the RVECTOR (if it isn'C
already there) and evaluates to an address of the form offser(R). pointing to the value word for object,
<PQUOTE phject:any>
is identical to <<MQUOTE eobjecirany> =12 Le. it points o the type-word, not the value-word. ‘This is a more
consistent way to look at things.
<CIQUOTE pblectzany label:atom®
is like PQUOTE except that this will add a new element o the refercnce VECTOR cach time called. The
optional label if given defines the ATOM to be a label referring to that clement. This is the only way to refer to
that element again.
<PSEUDO arp-any>

eviluates its argument for its side effects and assembles no code.

7.1 The Asscmbler

li‘h"HPPil‘iHirllr]l}r,pprh'Lr".,_.____._.,___..____—_..__

120 ‘I'he ML Programming Environment

<SIXBIT siring>
mukes SIXBIT of the legal characters of string.
¢SQUOZE ziring sgbits:word>

makes SQUOZE of the legal characters of string and sticks the lo
al [4] for an explanation of the SQUOZE code.

w-urder four bits of the optional sgbits in the

high-urder four bits of the value. Sec the MIDAS Manu

<BYTE boundarv:fix byie-size:fix location>
Example: <BYTE 1 35 (C) 1> islike <(=014300*) (C) 1>.

<ARG grgnum:fix>
islike <(AB) <* 2 <- .arghum 1333, ARG should not be used in GLUEable code.

¢STACK svml:afom sym2:atom symi:atom ... 2
makes symd a symbol for <{TB) 0>, spm2 a symbol for <(TB) 2>, sym? a symbol for <(TB) 42, cic.
STACK should nut be used in GLUEable code.

<DPUSH gc args>
<DPOP ag ares>
<DMOVE ac grgs®
<DMOVEM gc args>

are the double-word PDP-10 instructions. For example,
<DPUSH ac args>

expands into
#SPLICE (<PUSH ac args> <PUSH ac args 1)
CUNDEF? sumbol:atom>

evaluates to true only if the sypmnmboel has previously in the code been used as a symbol, but has not been

defined.
£IF-MNEEDED swnbolafom [nstruclions - .. >

If CUNDEF? symbol> evaluates to true, then all the instructions are inserted at the current location, otherwise

they are not.
<*INSERT file-spec:siring?

takes a file and reads instructions from it and inseris the instructions read at the current place.

7.1.8. The Type RSUEBR
An RSUBR is a M. object of PRIMTYPE VECTOR. ‘The first clement of an RSUBR is always of TYPE
CODE (ur PCODE). CODE isof PRIMTYPE UVEC TOR, consisting of words or instructions. The second clement

of an RSUBR is an ATOM which is the RSUBR's name. If the RSUBR has declarations they arc the third

clement ‘The rest of the RSUBR contains M DL ohjects which must be referenced by the code

The Assembler 71

"

@

. -~ —
. —
: —
. —
- —_—
. —
. —
. e
- —_—
. —_—
— —

—

e —

—

{

|

|

|

I

[

i

The MDI. Programming Environment - 121

An RSUBR-ENTRY is a VECTOR of two or three items. ‘The first item is cither an RSUBR or an ATOM

whose GVAL is an RSUBR, the second is an ATOM which is the entry’s name and the third is a DECL for the
entry. ‘ITe difference between an RSUBR and an RSUBR-ENTRY is that an RSUBR always starts running at
the beginning of the code when it is called while an RSUBR-ENTRY usually starts running somewhere in the

middle of the code.

7.1.9. Writing Gluable RSUBRs

Certain conventions must be followed when writing hand coded RSUBRs in order to get the most benefit
from GLUEing. If the RSUBR (or RSUBR-ENTRY) has "TUPLE" in jis DECL. it is alrcady in the best shape
passible. In all uther cascs. the code after the TITLE or SUB-ENTRY pscudo-operation should simply push
the arguments onto the TP stack and PUSHJ P* 1o one of the internal entries based on the numiber of items
on the stack. Afier the PUSHY it should do a SJIRST FINIS>. An internal entry is set up by using the
INTERNAL-ENTRY pscudo-op which takes two arguments: an afenr and a fix, The aronr acts as if it were a
label on the next instruction and may be used as a label. The _fix speeifics how many items (type-value pairs)
arc on the stack at this internal catry. In the simple ease where there are no optional arguments, only one
internal entry exists and its number argument is exactly the required number of arguments. I aptional

arguments exist, sume kind of dispatch will have 1o be done.

In the rest of the body of the RSUBR, no references to AB or TB (through the ARG or STACK pscudo-ops or
direcily) can be made, because after GLUEing their contents may be meaningless. All references to the TP
stack must be indexed by TP, The usuul precautions concerning the possible movement of code if an INTGO
or MCALL is done also apply (i.c. the use of <SUBM M= {P)> at the beginning and <JRST MPOPJ> at the

end of the code are essentially mandatory).

7.2. Debugging Binary Code
Binary code produced by the ML assembler or the Mpi. compiler may be decbugged with DDT, like any
other binary code. However, an interfuce between that code and the DDT environment must exist, That

interface is the "RDB™ PACKAGE. Itis abtained by
<USE "RDB">»

The symbol table optionally produced by the asscmbler can be passed w DDT and at the same time the
RSUBR frozen (moved out of normal garbage-collected space) by:

7.1 The Assembler

T

122 ‘Ile M1IL. Programming Environment

¢RFREEZE ngmeof rsybraton>

Note that name-of- rsubr may also refer to an RSUBR-ENTRY.

¢{RBREAK ngme-of rsubrratoms

i similar. but in addition causes DDT to put a breakpoint at the first instruction of the RSUBR.

IF there is no symbol table, RFREEZE and REBREAK merely freese the RSUBR and pass up symbuols for the

RSUBR name and any sub-cntrics.

In all cases the symbols passed up arc made up of the legal SQUOZE characters (letters, digits, 185, INK,
1) of the name. up to six characters. For example the ATOM FOO-*BLECH becomes the symbol FOOBLE.

<ADR ebjeci:gnye
returns the address of object as a F1X, For example, <ADR rsubr> would return the location of the rsubr in

COTe,
CRUNBREAK nane-of- rsubeglom>

clears the breakpoint(s) at the beginning of the RSUBR and of any of its sub-cniries.

Z7.3. Unassembling Binary Code
Converting compile § or assembled hinary code back into something resembling the original assembler
eource code is an pperation that is performed primarily in one situation: tracking down a Mni. compiler bug.
It is. however, almost invaluable in that situation. "The PACKAGE cunwining the unassembler is "UNASSM™.
‘I'he main cntry is
SUNASSEMBLE codesrsubrorgroup

outpui:channel-or-string
glue?:boolean>

eode is the object being unassembled. Ttis cither an RSUBR (not an RSUBR-EMNTRY, note), or an ATOM whose
LVAL is a group (as created by GROUP- LOAD).

oufput is where W put the output; ifitis a STRING. then the output is put in a file with that name. If ouiput is
a CHANNEL. then output is done on that CHANNEL. ‘I file is "code UNASSM™ by default.

glue? (by default T) tells whether there are glue bits for the code loaded, 1F there are none, this argument
should be given as a FALSE.

The output produced by UNASSEMBLE is like the M. compiler's assembler input, with the addition of
comments which give code and stack offsets for stack slots referenced. “This information is useful in tracing
exactly whal is going on in the code, but it is not always accurate, since the compiler’s stack model is

sometimes two complex for the unassembler to understand.

Debugging Binary Code 12

I,

I'he MDIL. Programming Environment 123

ML compiler bug reports are expected to contain MDL souree and UNASSEMBLEd compile
possible,

d code if

7.3 Unassembling Binary Code

I

Ihe M. Programming Environment

124

3.0

I'he MIDL. Programming Environment 125

: 8. Informational Aids
‘This chapter discusses a few programs, most written in assembly language rather than MpDL, which are
nonetheless of use to MDL programmers. Most are informational aids of one sort or another. They include:

MuDCOM, a program for comparing versions of a M. program. It is used by COMBAT (sce scction 5.2) to aid
in the preparation of compiler plan files. 1t has several uscful aliascs.

Mar, the MDL *atsign’ program, produces listings, indexes and cross-reference files for Ml programs. B, a
similar program which is not M -specific, will perform approximately the same tasks.

MUmING is an interface to the I'TS IPC device and is thercfore a means of interncting with any M1, that has
the 1PC device enabled. It has an alias, STATUS, which is particularly useful for determining the Progress
uf compilations.

8.1. File Comparison and Checking with MUDCOM

MuUI}COM is an asscmbly language program (not written in MDL), which nonetheless understands the
syntax of ML programs. It is used for comparing two versions of the same program, and also {under the
name Muncnk) for checking the syntax of MM, source files more rapidly than they can be loaded into a

MpL. MupcoM is not interactive; all instructions must be passed on the jof line.

Mupcom understands the following MDL structures at top level:

FUNCTIONs <DEFINE FOO >
' MACROSs <DEFMAC BAR >
GVALS <SETG MUMBLE>»
| LVALS <SET MUMBLE>»
| MANIFEST
. PACKAGE
i ENTRY
| ENDPACKAGE
MSETG <MSETG FOO 1> is<SETG FOO 1> <MANIFEST FOO>

‘ The jel for MUDCOM in the simplest case is filenamel |, filename2. Mubcom will compare the two files and
| print out information concemning those structures it understands which have been removed, changed, or

'| inseried.
: MupcoM has a number of switches which can be set. ‘They are given as /swirch, where swirch is the name
of the switch. Currently the following switches are uscful:

\ T prints totals at the end of the comparison.

| L prints all FUNCT I0Ns and GVALS in the file.

'S

126 The M. Programming Environment

C checks the file given for syntax (only one file name at a time).

M checks the files for changed MACROs and MANIFESTs In this mode, MUDCOoM will make a second pass
through the first file given in the jol looking for all vecurrences of calls to changed MACROs and
MANIFESTs MuDcom will consider FUNCT 10Ns making such calls as having been “changed” and will tell
which MACRO or MANIFEST caused the ‘change’.

The following other je!f is understood by MuUuDRCOoM:

{(atom . ..)Yappecaring before the file names in the jel will cause MUDCOM o think that those FUNCT IONs
have been changed and will print them as such.

* filename™ appearing anywhere in the jel causes commands to be read from that file until the end-of-file is

reached.
{filename ... } isused o specily files to scarch in calls to MUIRIEND (sce below).
Aliases of MUDCOM:

1. MUBLICIIK . MUDCHK fHlename checks a file for MDIL syntax errors, This is the same as

MUDCOM sC filename

2. MU ST, MUDLST filename lists all FUNCT I0Ns and GVALSs found in the file. This is the same as
MUDCOM /L _filename
3. MUDIND. :MUDFND aiom ... {file file} scarches files for FUNCT IONs/GVALSs called atonss. 1t
can be used for fMinding a FUNCTION in a haystack. This is the same as

MUDCOM (arom atom) {file file}

Since typing this can be tedious, it is casier o use the "filename” convention and have a disk
file containing the files to be searched (surrvunded by {}s). Thus,

MUDFND FOO BAR BLETCH "MARC;ZORK FILES"
will look for the typical FUNCT ION namecs in the files specified in MARC ; ZORK FILES.

8.2. The MDL Listing Program MAT
MaT is a program for producing listings of ML programs on the Xerox Graphics Printer (XGP) or a

lineprinter. {MAT is short for *MDI. Atsign’, after the gencral listing program named &).

Besides a listing of the program itself, MAT includes a symbol table -- a list of defined objects (arguments o
DE F1ME, SETG, ctc.) and optionally a cross-reference listing - a list of every place in the program cach ATOM
is used. MAT can also a produce a record fic, so that the next time MAT is run on the same program, only pages

that have changed will be printed.

File Comparison and Checking with MUDCOM 8.1

The ML Programming Environment 127

MAT is invoked with a jcf line in the following format:
MAT lrec=oulputinpui-files . . ., fswilches . ..
Muore specifically. it takes any number of inpur files (separated on the jof line by commas) and produces a
listing of them in the ouiput file, with options specified by the swirches (cach preceded by a /, and optionally a

| record file free (sec section 8.2.4).

The oufput file name defaults on I'TS to xuname; inpul B or BXGP depending on whether the X switch is

| used. and on Tenex/ TOPS-20 to input. MAT or input. XGP in the connected directory.,

8.2.1. MAT Switches
I'he specific sorts of aptions available in MAT are controlled by a varicty of switches which determine such
things as whether to produce a cross-reference listing, whether tw use the XGP as the output device, and so

on, The following switches arc implemented:
fC

causes a cross-reference listing to be produced. ‘This is a table showing each reference 1o cach ATOM (other
than SUBRs, FSUBRs, and locals) in the inpur files.
FO[file-name]
specifies file-name as the file containing the user’s definitions. Definitions are discussed in detail below.
AF[rext-font, header-font , convnent-font]
specifies the XGP fonts o use in the swrpur file. They are respectively the font to use for the program itself,
the font for subtitles and other headers, and the font for M1y, COMMENTs and wip-level STRINGs. The
default directory is FONTS and the default second file name is KST. The default font is 20FG. /F also causes
a /X to be performed.
/1 [Lfile-name]
specifies a file which contains the names of input files, This is in licu of typing them all in each time MAT is
run. uscful for large subsystems incorporating many files. The input files listed should be separated by

commas or carriage-refurns.
N

causes output of only the symbol tables and cross-reference listing (if specified). No heading or title pages are

produced.
/P

On ITS, VALRETs a : PROCED to DDT and continucs. Uscful for long MAT runs.

8.2 The ML Listing Program MAT

i
r

!

1
|.l||r|||lI

i\

|
|

|

1

1

I\

il

|

128 I'he M. Programming Environment

fQ[message]
prints message at the botom of cach page. The default is a copyright message,
/R

creates a record file (this is automatic if "Jrec=" is used). Sce below for details about record files.
IS5

outputs cach file in a multiple hle listing scparately.
ST namelf nanel]

specifics nnnes to use on the title page (in licu of the file names of first inpur file).
AU

prints a separate symbaol 1able for each type of defined item in the iepur file{s) (c.g. FUNCT ION, GVAL, ctc.).
F K

declares that output is to be for the XGP. This changes the default pwrput file sccond name o @8XGP. IF /F is

uscd, /X is done automatically.

8.2.2. Subtitles
Subtitles can be used by including STRINGs in an input file which begin with the word SUBTITLE. The
remainder of the STRING will be used as part of the header of each output page until another subtitle is

found. The STRING need not be a COMMENT. Subtitles may have a maximum of 79 characters.

Any file containing subtitles will hive a table of contents at the beginning of the listing.

8.2.3. MAT Definition
The facility exists in MAT to cause user specified actions to occur at the time a specilic ATOM is about to be
cross-referenced. The most important use of this is for functions which define things which the user would

like MAT to recognize, for example, a function one of whose side-cffects is to SETG one of its arguments.

When MAT encounters an invocation of the function FOO, where FOO has been defined to MAT, it runs

code generated by the user’s Mar definition for FOO, which causes various actions to be performed.

Mar definitions are always located in o disk file which is specified by the 7D switch. Each definition must
be of the form:
[name argi arg? arg? ...]
where nagme is the name of the item which is being deflined and the args are action specifications as described
below.

The MDL. Listing Program MAT 8.2

.?__

T

1 .f|

(|

(1

ey

1181
| J

|

(I

1

|

|

| | #

|
f

Ihe MDL. Programming Environment L

The syntax of a MaT definition is somcwhat complex. Basically, there are two types of actions which can

take place: ‘sctting’ an ATOM 1o be equivalent w a specified type (i.c.. FUNCTION, MACRO, ctc.) or

‘eross-referencing’ the ATOM (i.c., making it zupp;‘nr in the cruss-reference listing).

‘The actual definition for an ATOM is a string of MAT action specifications, one for cach argument in a call
w that ATOM, For example, defining FOO to be

[FDO SETG SKIP SETG]
implics at least three arguments to FOO, the first and third of which should be treated as if they were SETGed.
Thus, if

<FO0 FROB 1 MUMBLE>
were encountered in an input file, it would be treated as though

<S5ETG FROB any>
<S5ETG MUMBLE any>

had been encountered. The symbol table would then point w the line on which the application of FOD
appecarcd as the location of the definitions of FROB and MUMBLE.
The following wkens are meaningful action specifications:

CREF mcans to cross-reference this ATOM,
SKIP means to do nothing with this argument (a place holder).
REST mecans that the rest of the action specifications may be repeated for the rest of the arguments.

namte {(where name is the name of a M. SUBR which causes some action to be routinely performed) means to
act as though the ATOM had had that SUBR applicd w it. For example, SETG will cause MAT Lo treat the

item as if a SETG had been performed on it Similarly, MANIFEST will cause MAT to believe it
MANIFESTed.

ALS0 means to do another thing tw this ATOM. Thus, [SETG ALSO MANIFES T] specifics that the argument
should be treated as though it were both SETGed and MANIFESTed.

=xy where xy arc two characters, causes a user defined symbol type (o be created. In the cross-reference, this
will appear as xy in front of the name of the ATOM.

Any of the preceding tokens may have | —oblisr added. This means that instead of the ATOM being sct o
the specified type. aron ! = oblist will be set. Thus, for example,
REST SETG!-FLAGS

might specify a function which takesa LIST of ATOMs and performs

82 The MDL Listing Program MAT

“r SEPE P

|

|

130 : The ML, Programming Environment

<SETG <IMNSERT aiom <GET FLAGS OBLIST>> amy>
on cach of them.

[SPEC xy mame] specifics name to be the expansion of xy for purposes of the symbol table. Name cannot
have spaces in iL

Since not all items to be recognized within a function call are at top level, there is a facility for telling MAT
te recognize structures. This is done by inserting the correct bracket (which MaT will cncounter) around the
part of the action specification referring to a structure. For cxample, a definition for GDECL (which is
handled internally, however) might be

REST (REST GDECL) SKIP
which specifies that the arguments are aliernaicly a LIST of things to GDECL and an argumcnt which is

unimportant

A special case of bracketing is when the location of the structure is not known. In this case, bracker!

means ‘find the next object that starts with this bracket’. An cxample later demonstrates this.

What follows are some examples from a real definition file,
[NEWSTRUC NEWTYPE SKIP REST SETG SKIP]
MEWSTRUC takes an ATOM which becomes the name of a NEWTYPE, the DECL for that TYPE (which is not
interesting to Ma7) and an arbitrary number of pairs of ATOMs (names of offsets in the structure) and their
DECLs {again, not intcresting).
[FLAGWORD REST SETG]
FLAGWORD takes an arbitrary number of ATOMs and SETGs them something.

[SPEC PG Pure-Gwval]
[SPEC 0B Object]

[SPEC AC Action]

[SPEC VB Verb]

[SPEC O0S Object-Synonym]
[SPEC AD Adjective]

These define the long descriptions for the newly defined symbol types created in the examples.
[PSETG =PG]

PSETG takes an ATOM and a value and SETGs the ATOM (also putting it in a LIST of ATOMs (o purify).
[GET=-0B.J "EREF“]

GET-0B8J takes a STRING PNAME of an ubject and returns the object. This definition allows "object™ to be
cross-referenced here. Mote that CREF is in quotes because the clement being dealt with is a STRING.

The MIDIL. Listing Program MAT 8.2

|

I

il

|

I'|||

|

The M. Programming Environment 131

[OBJECT ["=0B" REST "=05"] [REST "=AD" 1]
OBJECT crcates objects which are referenced by GET-0BJ. OBJECT first takes a VECTOR of STRINGs, the
first of which is the true objeet specifier (OB) and the rest of which are synonyms (05). The sccond argument
isaVECTOR of STRINGs, which arc PNAMEs of adjectives referring to the object (AD).

[ADD-ACTION "=AC!-ACTIOMNS" SKIP REST [[!"=VB!-WORDS" SKIP]]]
ADD-ACT ION creates “verbs”. The name of the verb is the first argument, which isa STRING. ADD-ACTION
SETGs sfring! ~ACT IONS to an item of type ACTION (AC). The sccond argument is not interesting. The rest
uf the arguments are VECTORs, somewhere in which is a VECTOR of o STRING and an uninteresting object.
ADD-ACTION SETGs this latter STRING (the PNAME of an ATOM in the WORDS OBLIST) to something of
type verb (VB). “This is about as complicated as a Ma1 type specification is likely to geL

[1ADD-ACTION "=AC!-ACTIONS ALSO =VB! -WORDS"™]
1ADD-ACT ION takes as its first argument a STRING which is SETGed buth in the ACTIONS DBLIST and in
the WORDS OBLIST. toan ACTION (AC) and a verb (VB), respectively,

8.2.4. MAT Record Files

Listing Record (or LREC) files, akin to @ LREC files, can be produced in MAT by including fife= in the jel
ling. Usc of an LREC file has the advantage that future invocations of MAT using it necd only output the
changed pages of the listing. ‘The LREC file produced will be placed in file and contains all relevant jel
information, so that future calls to MAT for comparison listings need only have fife= in the jof line. Additional
Jel may then be appended. ‘There is, however, no way © turn off flags once sct up. Therefore, if a
cross-reference file is o be used only occasionally, leaving the cruss-reference (/C) fAag off for the initial

listing and appending it at other times is preferable,

An alternate way of creating a Listing Record file is to use /R which is equivalent to
inpui-file-firsi-fife-name LREC=

in the jel. Obviously, /R is not sufficient for future comparisons.

8.3. The MDL-IPC Device Interface MUDINQ

MUIING is a small program that formulates, sends, and receives messages w and from Mi3s over the ITS
IPC (*Inter-process Communication®) device, “I'he user specifies a target ML process by its uname and jname,
cither on the jef line or o Muming directly. He then inputs the messuge (o be sent to that M. The message
sent is enclosed in an invisible protective shicld (an ERROR handler and so forth) to prevent it from
interfering in the operation of the target. The message is PARSEd and EVALed by the target, and the result
put in a file which is printed by MUDING when it appears.

8.2 The MIDL. Listing Program MAT

[

it

|
|

|

|
J

|

|

ll

|

132 I'he MIM. Programming Environment

e most common use of this program is to answer the question "What could my compilation (or

whatever) be doing after all this time? "The answer may be obtained by MUDINQIng a <FR&> or <F RAMES >
atit

Inquiring after the state of a compilation is such a common use of Mum~Ng that there is an alias of it,

SraTUS. which MUINNGs a <STATUS?> (sce section 5.1.1) at a compiler process and waits for a response.
Finally, an alias of MUDING called WitoM lists those MDL jobs listening on the IPC device.

For more details on the operation of the M. 1PC interface, scc [3].

The MDL-1PC Device Interface MUDING 8.3

B

|

W

1

W

133 The M. Programming Environment

References

(1]

Edward H. Black.

Using MDI.s Calico User Interface.

‘Technical Report §YS.11.21, MIT L.CS Programming 1'cchnology Division, 1976,
[2]

Richard M. Stallman.

EMACS.

Technical Report 519, MIT Al Lahoratory, August, 1979,
[3]

5. W. Galley and Greg Pfister.

Phe MBI Programming Fanguage.

M.L'T. Laboratory for Computer Science, 1979,
[4]

Peter Samson.

AMIDAS.

lechnical Report 90, MIT Al Laboratory, October, 1965,
[5]

P. David Lebling, R, V. Baron and lruce K. Daniels,
RMQDE: A Real-time FEdit Facility,
Technical Report S§YS.04.07-1, MIT 1.CS Programming ‘I'echnology Division, October, 1977,

Table of Contents

b

134

Table of Contents

e M. Programming Environment
i E

135

Index

"ECOMBT TAILOR® 91
TCMDL.5V>" T4
"{MDL>FIXUP.FILE"™ 73
T{MDL>5AV . FILE" 73
“{MDLLIB>= 73
“ADDED FILES" 74

“CLEAN® 109
“CRITIC" 55
“DEBUGR™ 41

"DELETE FIXUPS"™ 73
“"DELETE SAvS™ 73
“"EDIT"® 19 R
“FINDATOM™ 50
"FRMS5P" 19
*GLUE= 103
"GRLOAD® 39

L= &9

"LuUPr® 71
“MONITOR® 30,46
THMUDMAN® 3
“HUDRST= 74
"HMUDSAV; FIXUP FILE™ 73
“"HUDSAV;SAV FILE®" 73
“HMUDTHP" 73, 106
“FOUMP= 106
“PEG"= 10

"PP" 15

*PRELOD= 107
"PURITY" 108
“RDB*= 116,121
"RECORD™ 8D
"SUBRFY= 107
“TEMHAK™ 113
*TEMHLP™ 113
*TEMPLATE" 110
“TRACE" 44
SUNASSM™ 122
"UNMLINK®" 54

& 18, 21

&1 18

&LIS 1B

- 2

=INSERT 120
LHULL 15
LOUTCHAN 15

T 22

T 2

ADDRESS 116

ADR 122
ALREADY-USED-ELSEWHERE 12
ARG 12D

ASSEM 116
ASSEMBLE 115
ASSIGNED? 49

B 23

BA 29

Table of Contents

The MIJL, Programming Environment

BY 29

BLOCK 9. 40
BOOLEAN 111
BOUNDT 49

BREAKR 29
BUILD-TEMPLATE 113
BYTE 120

c 26

C: X6

CAN-NOT-BE-DUMPED 15
CAREFUL 82, 87
CHANMEL 40
CLEAN-MONITORS 49
CLEANUP 109
CLISTF 74

COMBAT 79, 83, 85. 90
COMMENT 15, 16
COMPILE 79, 92,93
COMPILE-TUNCTION 93
CRITIC 355
CRITIC-NOTES 35
cu 28

D 24

DEMAIN 74,76
DEBUG 41
DEBUG=-COMPILE BL 8BS
DEBUGR 15
DECLARE 118
DEFER=-FIND 70
DEFINE 41

DELETE 75

DL 23

DMOVE 120

DMOVEM 120

Do 27

DPOP 120

DPUSH 120

DR 23

DROP 10, 13
DUMP-RSUBRS 114
DUMP-TEMPLATES 114
E-PKG 20
E-VERBOSE 25
EDIT 15,19, 41
EDIT-TABLE 31
END 118

ENDELOCK 9
ENDPACKAGE 10, 13
ENTRY 10,12, 63
ENTRY-FIND TO
ENV 61

EPRINL 17

EPRINT 17

ERRET 38
EVAL-WHEN &1
EXPERIMENTAL 85
EXPFLOAD 41,82 BT

I

RN

137 The ML Programming Environment

QUT-FAST 44 suU 27
OUT-PRINT 45 SUB-ENTRY 118
OUT-UNTQUE 44 SUBRFY 106, 107
OUTCHAN 59 L SURY 104

P 25 sw 27

PA 29 TEMPLATE 110
FACKAGE 10,11, 12, 14, 63 TEMPLATE-DUMP 113
PACKAGE-FIND 70 TEMPMAME 81, B&
PACKAGE-MODE Bl B6 TITLE 118

PC 29 TRACE 15 44, 45
PCODE 76 TRANSLATE &7
PCOMP 79, 90 TRANSLATIONS &7
PDUMP 104, 106 TYPE-CODE 119
PHNAME 14 TYPE-WORD. 119
PPRINF 16 U 24

PPRINT 15 uc 28

PQUOTE 119 uL 24
PRECOMPILED 81,88 UM 10

PRINL 17 UNASSEMDLE 122
PRINT-CLE ANU® 110 UNDEF? 120
PSEUDO 119 UNLTNE 54

PT 25 UNPURIFY 54

PU 25 UNPURIFY-PAGE! - TUNLINK 54
PURET 54 UNTRACE 45
PURELST 109 UNTRANSLATE &7
PURIFY 107 up 24

Q 22 USE 10, 12, 13 14, 63
QR 22 USE-DATLM 10,13, 14
QUICKPRINT 16 USE-DEFER 66

R 23 USE-TOTAL 66
REREAE 122 ur 23
READI-INTERRUPTS 45 v 21,25
REASONABLE 82 87 VALUE 40
RCDEFINE 16 VYERBOSE 45
REDD 81, B6 VERTICAL 16
RENTRY 12 WM 31

REPAIR 42 WRITE!=-INTERRUPTS 46
RETRY 39 X 27

RFREEZE 121 TA 42

RM 31 +E 42

ROOT 12 tF 22

RPACKAGE 12 tN 42

RUNBREAK 122 0 42

RVECTOR 107 g 42

RW 30 TR 42

5 24 S 23

SAV T2 106

SAVE 108 Matr 126
SELF-FAST 44 Mubonik 126
SHORT-PRINT 29 Munoosm 86, 125
SIXBIT 119 Muinm 126

SL 24 Muivmg 131
SOURCE 81, 87 Muinst 126

SPEC-FIND 75
SPECIAL 81,87
SQUOZE 120,122
SR 24

STACK 120
STATUS 75, BD

Table of Contents

|
J

I

(i

I

il

il

136

EXPSPLICE 41,82 B7
EXTERMAL 13

F 23

FBIWN 72 105

FCOMP BD, 85
FEATURE? 61
FEATURES 61
FILE-ASSEMBLE 115
FILE-COMPILE 79
FILE-TEMPLATE 113
FIND-FILE 75
FINDATOM 350

FIXUP 15 72, 106
FLIST 75

FLOAD 14, 107
FLUSH-CLLANUP 110
FORM-FAST 44

FR& 18, 37

FREP 19

FREVAL 19

FRAMES 18, 37

FRATM 19

FRLVAL 19,37

FRM 18, 20

FRTYPE 19

G 25

GET-FILE 75

GETYP 119

GLUE 82 B7, 103, 104, 107, 121
GO 28

GROUP-DUMP 3%, 104, 113
GROUP-GLUE 104
GROUP-LOAD 26, 39, 82, 106, 107, 108
GROUP-PURIFY 108
HAIRY-ANALYSIS B3
HELP 43

I 25

I* 26

I: 5

IF-NEEDED 120

16 26

IN-BREAK 44
IN-PRINT 45

INCHAN 59
INDENT-DIF 43
INDENT-INC 43
INDENT -R0OD 43
INITIAL 14 65
INTERMAL-EMTRY 118, 121
IQUOTE 119

IT I7

K 26

K: X7

KB 30

KC 23

KEEP-FIXUPS 15 16,41
KILL-ALL-MONITORS 49
KILL-MONITOR 49
EILL-SUBRFY 107

Table of Contents

The MIMN. Programming Environment

KILL:PURITY 108
KT 30

L 23
L=ALWAYS-INQUIRE &3
L-COUNTE &9
L-COUNTP 69
L-FILE &9

L-FIND &9
L-LISTE &9
L-LISTP &9
L-LISTPE 70
L-LOAD &9
L-NO-DEFER 66, 68
L-NO-MAGIC &8
L-NOISY 68

L-0BL TD

L-PATH 70
L-SEARCH-PATH 64, 68, 69
L-SECOND-NAMES &4, 65 68
L-TRANSLATIOMS &7
L-UNUSE 10,13
L-WHERE &%
LAST-0UT 42
LIB-GC T2

LIBMUD &4
LIME-CHANMEL 115
LISTF 74

LOAD 14
LOOKAHEAD 16
LUP-ACT 71
LUP-ADD-DATUM T2
LUP-DCT 71
LUP-DEL 72
LUP-MOVE T2

M 27

MACRO B&
MACRO-COMPILE 82 B7
MACRO-FLUSH 82 87
MAGIC-RSUBR 40
MAKE-S5YM-TABLE 116
MANIFEST BS
MAX-SPACE 82 87
MCALL 103
MONITOR 47
MONMITORS 49
MONOBJ 48, 49
MONSPEC 49
MQUOTE 119
MUDDLE 117
NEWVAL 43

HODE 54

OPCODE 116

QUT-BREAE 45

LEEEE LR EE LR LR E LR

