SCOTT Adams is the name
behind a whole library of Adven-
tures and his games have intro-
duced many enthusiasts to micro
adventuring. My own introduc-
tion was his Adventureland on a
friend's machine. It is set in a
swampy forest near a sunny
meadow and progresses under-
ground to a maze of pits.

Various things lying about the
place seem rather innocuous,
but as the game develops a feel-
ing grows that most objects have
a purpose, and that some very
devious thinking will be needed
to find uses for, among other
things, an empty wine bladder
and patches of oily slime! The
large dragon, peacefully sleep-
ing in the meadow, begs a good
hard kick to wake him up — is he
really as impervious to attack as
he seems? And the "No Swim-
ming” sign by the lake is posi-
tively urging you to take a dip —
but with what consequences?
The object of the game is to col-
lect and store 13 treasures. To
say more would be to give away
too much.

So I'll merely say "“Bunyon”
and vibrate on to another Scott
Adams’' game — Pirate Adven-
ture. A strong theme runs
through this game which is lit-
tered with bottles of rum, treas-
ure chests, anchors and a parrot,
which is not only excessively
greedy but very loquacious.

The story begins in the
player's London flat, from where,
after some chilling discoveries,
it moves to Pirate Island. There it
soon becomes apparent that you
are being urged to do something
without being told quite what.

Pirate is not as deep as Adven-
tureland and the machine's
memory is not so fully packed.
But this is more than offset by a
delightful sense of humour run-
ning through the game,
climaxed by a cruel and drama-
tic hoax.

Both these games are avail-
able on the 16K TRS-80 and Video
Genie; the 16K Exidy Sorcerer;
24K Apple 2 and Apple 2 Plus.

The Adventure series by Scott
Adams. currently comprises 10

A swift glance down most software
catalogues will reveal a veritable
hoard of Adventure games.

They compete with Space Invader
and Asteroid type games for the
top-of-the-micro-pops. Which you
prefer depends on whether you like
to test your reactions and control, or
are the mystery-loving puzzle-solver

exclusive).

If you are new to Adventure and
wondering which to try first, or if you
are just wondering which to buy
next, | will be helping to guide you
through the Adventure jungle each
issue. A brief rundown of what to
expect from each Adventure, will
help you select tapes and discs to

type (these are by no means mutually

suit your taste a little less randomly.

games. All games are written in
machine code and have a "save
game” feature enabling the cur-
rent state of the game to be
recorded and reloaded later.

Each month [shall be bringing
you tips on how to write an
Adventure program in Basic. In
order to do this you will require a
machine with at least BK RAM
and capable of holding many
string variables, arrays (single
dimension will do). It will alse
need string manipulation state-
ments like: MIDS$, LEFTS,
RIGHTS. LEN, plus the ability to
concatenate.

Having devised your plot and
drawn a map the next step is to
number the locations from zero,
and draw up a table. For simpli-
city I have shown a five location
map in Figure 1 and the corres-
ponding table in Figure 2. All
exits in the example are com-
pass bearings, hence the exit
column entry for location 0
shows "ES"-—E(ast S(outh) lead-
ing to destinations in the corres-
ponding positions of the destina-
tion column entry, of locations 1
and 2 respectively. If more than
10 locations were to be used,
double figures would be needed
in the destination column.

Type the contents of the table,
omitting the number column,
row by row into data statements.
Part of your program will now
look like this:

DIM L%(4), E®(4), D$(4)

UTC—

__{Qdvent

For 1=0 TO 4: READ
L§(I), ES(D), D$(I): NEXT
DATA COTTAGE, ES, 12, LANE,

WS, 03, FOREST...
and your logical network is
formed!

Putting aside sophisticated
word decoding routines for the
moment, we can test this net-
work out with the following sim-
ple routine:

150 (clear screen): LN=1: REM

CURRENT LOCATION IS 1
160 PRINT "I AMIN A "; L$(LN)
170 INPUT “"WHERE TO NOW";

R$ (clear screen): REM ANS-

WERN. S, Eor W
180 R$ = LEFT$(RS$, 1)

190 FOR I=1 TO LEN(E$(LN))
200 IF MID$ (E$ = VAL (MID$

(D$(LN).I. 1)): GOTO 160
210 NEXT
220 PRINT “I CAN'T GO THERE" :

GOTO 160

To place objects in these loca-
tions is now quite easy. Make an
object table as in Figure 3 using
array P to hold the current loca-
tion of each object. Read this in
from data statements as with the
locations. Now add these lines to
those above, and Hey Presto!
16508$="I CANSEE ": FORI=0

to 3
166 IF P()=LN THEN OS$ =

0S$ + O%(I)

167 NEXT: PRINT OS%

We can't manipulate the
objects yet — that will come after
we've had a look at word decod-
ing next month.

Coftage 1Llane Fig. 1 Simplified net-
{# Knife) work of locations show-
ing imitial positions
2 Forest 3 Meadow of objects in brackets
(3 Axe) (2 Cow] Mote: objects and loca-
tians independently
NI 4 Lake numbered
{1 Fish)
No Location Exits Destination
{Array LS (4)) ES (4) DS (4)
0 Cotiage ES 12
1 Lane WS 03
2 Forest NE 03
3 Meadow NWS 124
4 Lake N 3

Fig. 2: Location table derived from map in Fig. 1. The
namber column is merely the subscript used to access
the information on a given line. Note all variables are
character (string).

No. Object Place
Array DS (3) Pi3
] Knife]
1 Fish L]
2 Cow 3
3 Axe 2
Fig. 3: Object table derived from Fig. 1. Again the
number is the subscript Mote that since
lrrlr!'mll.utrﬂlﬂﬂﬂ<mll
location of an object it may be defined as integer

