Perl> Memory Manglement

Your friendly introduction to a wastrel.

What it is

* From the inside it's how Perl utilizes the
memory available to it on the machine.

* Today I'll look at Scalars, Hashes, & Arrays.

* From the outside it's how you design the
code to handle how Perl deals with things.

* Controlling the lifespan of data.

* Choosing the right structures.

Why you care

* Long lived, high-volume, or high-speed
app's need to avoid swapping, heap
fragmentation, or blowing ulimits.

* Examples are ETL, Bioinformatics, or long-
lived servers.

* Non-examples are JAPH or
WWW::Mechanize jobs that snag one page.

PerlGuts & Perl Data Intro

* The standard introduction to Perl's guts is

“perlguts” (use perldoc or view it as HTML
on CPAN).

* Perldoc also includes “perldebuguts” which
shows how to use the debugger to look
around for yourself.

* Simeon Cozens' Intro to Perl5 Internals is

avaialable online at:
http://www. fags.org/docs/perl5int/

A view from perldebuguts

Perl is a profligate wastrel when it comes to memory use. There is a
saying that to estimate memory usage of Perl, assume a reasonable
algorithm for memory allocation, multiply that estimate by 10, and
while you still may miss the mark, at least you won't be quite so
astonished. This is not absolutely true, but may provide a good grasp
of what happens.

Anecdotal estimates of source-to-compiled code bloat suggest an
eightfold increase. This means that the compiled form of reasonable
(normally commented, properly indented etc.) code will take about
eight times more space in memory than the code took on disk.

First a bit of history...

* In the beginning there was assembly, and
it was good — but it wasn't portable.

* Then there were A, B, and...

* C, which has been used for the guts of

nearly every language since — including
Perl.

* Perl uses C for its memory management.

C's Memory: Stack & Heap

* C memory is divided into Stack & Heap.

* Stack is automatically used and returnd
for each function call.

* Heap is persistent and managed by the
programmer.

* malloc adds to the heap and returns a pointer

to allocated memory.
* realloc resizes an allocation in the heap.

* free returns it to the O/S from the heap.

Perly Memory

* Perl's model is similar to C:

* subrotine calls have a “scratchpad” ("PAD”)

* variables are allocated in the heap.
* Perl uses malloc and realloc for its heap.
* Notice I didn't mention free: Perl only grows!

* Perl variables are pointers in the PAD to
memory on the heap.

Bugalboo of Heap:
Fragmentation

* You can have half the heap free, but it may
be in chunks too small for what you need.

* Often happens when allocations grow over
time and need to be copied into larger
chunks, leaving smaller ones behind.

* Perl's tendency to trade space for speed
can fragment the existing heap and require
extending it.

Perld Peep Show

* Devel::Peek displays the internals of an
item.

* It is really handy when used with the Perl
debugger: you can set things and eyeball
the consequences easily.

* Devel::Size is also handy for showing just
the memory footprint of an item.

* Both can be added to #! code or modules.

A View from the Perly Side

* Perl has — pretty much - scalars, arrays,
and hashes.

* Scalars do all the work of simple data
types in C and are managed in the Perl
code via “SV” structures (leaving out Magic
for the moment).

* Arrays are lists of scalars.

* Hashes are arrays of arrays.

Aside: NULL vs NUL

* NUL is an ACSII character with all zero bits
used to terminate strings in C.

* NULL is a pointer value that will never
compare true to a valid pointer.

* [t is used to check whether memory is
allocated.

* It may not be zero.

* It is not used to terminate strings.

Scalars: "SV*

* Because SV's can handle text, numeric,

and pointer values their perlguts are fairly
detailed.

* For memory management the main issues
are garbage collection (reference counting)
and handling text.

Text

* Strings are allocated as C-style strings,
with a list of characters followed by a NUL.

* They can grow by being extended or re-
allocated.

* But they don't shrink the way you might
expect.

Start Pointer & Length

* Amost anything in computing has a
tradeoff between space and speed: small is
slow, fast is big.

* Perl always trades space for speed.

* For example: Removing a character from
the start of a string does't free up any
memory, it just moves a 'start of string'
pointer in the SV and reduces the length
by one.

Example: filling memory

trivial example of an off-by-one error
that swallows memorv.
each of the strings on @text fills
1 000_001 char's, even if most of 1is
unused!
my (@dtext = ();
for(1 .. 1_000_000)
{
my $a = 'a' x 1_000_000;
substr $a, 0, 1, "' for 1 .. 999 999;

push @text, Sa

S perl -MDevel::Peek -Mdevel::Size -d -e 42;

DB<1> Sa = "'
DB<2> Dump \Sa

SV = PV(0x3371fd8) at 0x82035d8

REFCNT = 2 \Sa upped the ref count
PV = 0x834a550 ""\0 Notice trailing NUL
CUR = 0 0 offset to end

Using Devel::Size to look at the same variable, the empty string has a
36-byte memory footprint:

DB<3> p total_size $aj;

36 Even the empty string
takes up space.

Assigning a string to the variable allocates more space:

DB<4> Sa = 'a' x 8
DB<5> Dump \$a

SV = PV(0x38371fd3) at 0x82035d8

PV = 0x834a550 "aaaaaaaa"\O0
CUR = 8 8 char's of data

The size goes from 36 -> 44 bytes with the addition of 8 chars:

DB<6> p total_size $Sa
44

Removing a leading character does not free up any space.
The offset i1s increased by one, 1ignoringo one character (“x” .):

DB<7> substr $a, 0, 1, "'
DB<8> Dump \S$Sa
DB<9>

SV = PVIV(0x804e240) at 0x82035d8

v =1 (OFFSET) offset to start
PV = 0x834a551 ("x" .) "aaaaaaa"\O0
CUR = 7 length Sa

<10> p total_size $Sa
48 No change in size!

Try this a few more times and you end up with an offset of 8: 7 unused
chars, and a single character returned 1n the string. The SV still contains
the full 8 char's, but only one of them is accessable from perl in $a.

IV = 8 (OFFSET)
PV = 0x834a558 ("xxxxxxxx" .) "x"\O
CUR =1

And the variable's size has not changed:

DB<12> p total_size $Sa
48

Splicing off the end of a string does not re-allocate the memory: the NUL

1s moved down, but the allocated size does not change:
DB<40> Sa = 'a' x 8

DB<41> Dump Sa

SV = PV(0x8372b70) at 0x82028Db0
PV = 0x834b198 "aaaaaaaa"\0
CUR = 8

DB<42> substr $a, 1, length $a, '';
DB<43> Dump $Sa

SV = PV(0x8372b70) at 0x82028b0
PV = 0x834b198 "a"\o0
CUR =1

DB<43> p total_size $Sa
48

In fact, there 1sn't anything you can do to make the SV release its space:

DB<58>
DB<59>
36
DB<60>
DB<6l>
1060
DB<62>
DB<63>
1060
DB<o64d>
DB<65>
1060

$f — | I |
p total_size S$f

Sf = "x' x 1024
p total_size S$f

substr $f, 512, 512, '' half of it is empty
p total_size S$f

sSf = "' all of it 1is empty
p total_size S$f

This can be useful 1n cases where you have to re-allocate a large string: just

allocate a single varible once and use it as a buffer. Just don't expect to

chew through parts of a string from either end and recover the space.

The way to get your memory back 1s to assign the string to a new SV:

DB<oo6> Si = "x' x 1024

DB<67> substr $i, 512, 512, '
DB<68> $j = $Si

DB<69> p total_size S$i

1060

DB<70> p total_size $7

548

For example, read into a fixed buffer then assign the
my Sbuffer = '';

while(Sbuffer = <S$Sin>)

{

mangle the buffer as necessary, then assign it:

my Spost = S$buffer;

Takeaway

* Strings don't shrink.
* Use lexicals to return memory.

* Clean variables up before assigning them:
my $buffer = <$fh>;
$buffer =~ s{ $rx Higx;
$data{ $key } = $buffer;

Arrays are similar to tfext

* They are reduced by adding a skip count to
the array and reducing the length.

* This can lead to all sorts of conftusion if
you try to 'free up space' by shifting data
off of an array.

Empty arrays don't take up any extra space:

DB<14> @da = ()
DB<15> Dump \Qa

SV

= PVAV(0x8386a08)
ARRAY = 0x0
FILL = -1
MAX = -1
ARYLEN = 0x0

DB<I’> p total_size \Qa

100

at 0x8325d68

OK, it's empty...

But it still
takes up space

Adding to the array puts more SV's onto the arrays list:
DB<16> @a = ('a'.. 'h');
DB<17> Dump \@a

ARRAY = 0x838ae00

FILL = 7
MAX = 7/
ARYLEN = 0x0
SV = PV(0x8371fe8) at 0x8388fas8 Stringy SV...
REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0x8379340 "a"\0 With an 'x' and NUL...
CUR = 1
LEN = 4
Elt No. 1

SV = PV(0x8371f28) at 0x8389258 And another SV

DB<18> p total_size \Q@z
420 about 50 bytes/entry

Splicing off the front of the list does not free any memory:

DB<18> splice @Qa, 0, 7, ();
DB<19> Dump \Qa

ARRAY = 0x838aelc (offset=7) offset, just like strings
ALLOC = 0x838ae00

FILL = 0

MAX = 0
ARYLEN = 0xO0
FLAGS = (REAL)
Elt No. O

SV = PV(0x80ab908) at 0x838e2e0
REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0x837b5d0 "a"\o0

You recover space from SV's stored 1in an array, not the SA itself:

DB<82>
DB<84>
132
DB<85>
DB<86>
45140
DB<87>
DB<88>
26708
DB<89>
DB<90>
82776
DB<90>

@z = ()
p total_size \Qz

empty array
@z = ('z') x 1024
p total_size \@z

1024 text SV's
splice @z, 512, 512, ()
p total_size \@z

only 512 text SV's
splice @z, 0, 512, ()
p total_size \@z

no SV's, just the SA
Ay = @z

DB<91> p total_size \Qy

100

new var 1s empty

What about about queues?

* A classic arrangement is to shift work off
the front, pushing new tasks onto the
array.

* Which works fine, but doesn't do anything
to recover any space unless the array is
emptied completely by the shifts.

* New items are pushed onto the end,
regardless of unsed initial space.

Net result: shift+push on a non-empty array leaves you with a larger array.

DB<11> p total_size \(@a
340

DB<12> shift Qa;

DB<13> p total_size \Qa
304

DB<14> push @a, 'z’

DB<15> p total_size \(@a
364

SO,
reach a steady state,

a queue will eventually
but 1t

will be larger the initial:

my Qa = ('a' .. 'f£');
print
"Start: " (total_size \Qa
for('g' 'z!)
{

shift @Qa;

push @a, S$_;

print (total_size \la);

) ;

Start:

Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add

NN X g g ¢dnh’QT o033~ uU D5 Q

340
364
3604

3604

364

364

364

364

428
428
428
428
4238
428
428
428
428
428
428
428
428

When the array needs to be re-allocated then only its active portion is
copied to the new start address:

Sa = [1 .. 1_000_000 1],
print '0', total_size $aj;
for (1 .. 1_000_000)
{

shift @S$Sa;

push @Sa, $_;
print $_, total_size $Sa

0 20000100
1 24388692

Takeaway

* Like strings:
* Arrays don't shrink.
* Lexicals return their space.

* You can recover space from values stored
in the array, but the SA structure itself

only grows.

* Clean up the array and then assign it to a
new variable.

Hashes

* Hashes are composed of a bucket list
and collision chains of arrays (array of
arrays.

* You get 8 buckets with the hash
structure, even if it is empty.

DB<20> %a = ()
DB<21> Dump \%a

SV = PVHV(0x82dda9c) at 0x8325340

FLAGS = (SHAREKEYS)
ARRAY = 0x0

KEYS = 0

FILL = O

MAX = 7/

RITER = -1

EITER = 0x0

DB<22> p total_size \%a
76

DB<22> @a{ ('a'" .. 'z'") } = ()
DB<23> Dump \%a

FLAGS = (OOK,SHAREKEYS)

ARRAY = 0x838a8e8 (0:13, 1:12, 2:7) bucket use: 13 w/0, 12 w/1, 7 w/ 2

hash guality = 115.8% uneven distribution

KEYS = 26 keys in use

FILL = 19 buckets filled (12 + 7)

MAX = 31

RITER = -1

EITER = 0x0

Elt "w" HASH = 0x58a0bl20 collision chain == array

SV = NULL(0x0) at 0x838ebal remember that arrays do not give
REFCNT = 1 back all of their space!
FLAGS = ()

Elt "r" HASH = 0x26014be?2
SV = NULL(0x0) at 0x838e4d0
REFCNT = 1
FLAGS = ()
Elt "a" HASH = 0Oxcaz2e944?2
SV = NULL(0x0) at 0x83890f8
REFCNT = 1
FLAGS = ()
DB<24> p total_size \%a
1186 Keys only! ~ 45bytes/letter

DB<99> delete (@Qa{ 'a' 'm' }
DB<100> Dump \%a
ARRAY = 0x840a638 (0:19, 1:13)
hash quality = 175.0%
KEYS = 13
FILL = 13
MAX = 31
Elt "w" HASH = 0x58a0bl20
SV = NULL(0Ox0) at 0x83ee3dS8
REFCNT = 1
Elt "r" HASH = 0x26014be?2

DB<101> p total_size \%a
679

DB<102> %a = ()

DB<103> p total_size \%a
172

the SV's used for keys
go away, but the final
size 1is still larger
than the original hash.
incl. arrays for chains.

Takeaway

* Hashes are bigger than arrays.
* Hash chain is an array: it only grows.

* Even assigning @a = () or %a = () only gets
back the internal SV space, not the
scaffolding.

* Hashes grow in two dimensions over time
when use for persistent structures.

What can you do about it?

* Buffer inputs, clean them up then assign:

my $buffer = <$read>;
chomp, split, etc, and then...
push @linz, $buffer;

* Same with hashes and arrays: recycle static
varables for input and assign them to lexicals

for use.

* Generate structures before you fork: at
least the read-only portion will be shared.

Use arrays instead of hashes

* Store a tree as $tree{ parent } => @children
instead of $tree{ $child }{ $parent } = ();

* Regenerating the tree in pre-order is
simpler via @{ $tree{ $parent } } and small
arrays take up less space than hashes —
this makes a big ditference for handling
binary trees!

summary

* Perl does not give back space to the O/S.
* Scalar strings only grow.

* Array and hash structures only grow.

* Lexicals are a big help.

* Clean up butters before assigning them.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

