Obiject::Trampoline

When having not the object you want
is what you need.

Steven Lembark
<lembark@wrkhors.com>

Er... what's “trampoline” object?

Trampolines not the object you want.

They are a proxy for the constructor of another
object — the one you want.

Their behavior 1s replacing themselves when you
call a method on them.

Aside from calling a separate constructor, the user
shouldn't know the trampoline ever existed.

Why bother?

* When you don't want an object until you need it:

— Connections to servers that not always used/available
(e.g., during development or unit testing).

— Avoid construcing expensive, seldom-used objects.

— Delay connections to back-end servers until necessary.

* Think of starting up a heavily-forked apache server
and not bringing your database to 1ts knees.

* Or not parsing really large XML until you use it.

WARNING:

The code you are about to see
contains graphic AUTOLOAD,
literal blessing, and re-

assignment of stack variables.

Parenthetical discresion 1S
advised.

How do you bounce an object?

* Easily, in Perl (pity the poor slobs using Java!).

— Perl's AUTOLOAD mechanism allows you to intercept
method calls cleanly.

— Passing arguments by reference allows replacing them on
the stack: assigning to $_[0] gives your caller a new
object on the fly.

- “goto &sub” replaces one call with another.

* Result: are-dispatched call with a new object.

Co-Operating Classes

The Object:: Trampoline (**O::T””) module uses two
classes: a constructor and dispatcher.

O::T 1tself 1s nothing but an AUTOLOAD.

It returns a closure blessed into
Object::Trampoline::Bounce (“O::T::B”).

O::T::B 1s nothing but (surprise!) an AUTOLOAD.

O::T::B replaces the object, re-dispatches the call.

Replacing an Object

* O::T::B::AUTOLOAD begins by replacing the stack
argument with the result of running itself:

* This replaces the caller's copy of the object with a
delayed call to the constructor.

* This new object 1s then used to locate the
requested subroutine via “can”.

Using Object:: Trampoline
* The difference you'll see in using a trampoline

object 1s 1n the constructor.

* The 'real’ class becomes the first argument, and
“Object:: Trampoline” becomes the new class:

my S$Sdbh = DBI->connect($dsn,@argz);
becomes:
my Sdbh = Object: :Trampoline->connect

('DBI', $dsn, @Qargz);

Under the hood

* O::T's AUTOLOAD handles the construction by
blessing a closure that does the real work:

my (undef, $class, (@argz) = @_;
my Smeth = (split SAUTOLOAD, '::')[-11];
my S$Ssub = sub { $class—->Smeth(Qargz) };

bless $sub, 'Object::Trampoline: :Bounce'

Using the object

* At this point the caller gets back what looks like an
ordinary object:

Sdbh starts out as a trampoline

my S$dbh =
Object: : Trampoline->connect('DBI', ...);

the method call converts it to a DBI object.
my $sth = $dbh->prepare(...);

from this point on there's no way to tell
that $dbh wasn't a DBI object all along.

Converting the Object

* The assignment to $_[0] is made in
O::T::B::AUTOLOAD.

* If $_[0]->can($method) then it uses goto,
otherwise it has to try $_[0]->$method(@argz) and
hope for the best (e.g., another AUTOLOAD).

* It also has contains a stub DESTROY to avoid
constructing objects when the go out of scope.

Object:: Trampoline::Bounce

our SAUTOLOAD = '';
AUTOLOAD
{
$_[0] = S_[0]->();
my S$class = ref $_[0];
my Smethod = (split /::/, SAUTOLOAD)[-1 1;
if(my $sub = $_[0]->can(S$Smethod))

{
goto &Ssub

}

else

{
my $obj = shift;
Sobj->Smethod(@_)

}

DESTROY {}

But wait, there's more!

* What if requiring the module 1s the expensive part?

* You want to delay the “use” until necessary, not just
the construction?

* Object:: Trampoline::Use does exactly that:

my sub
= sub

{

eval “package S$caller; use Sclass;

Sclass—->Smethod(@argz)
b i

Why use a closure?

* I could have stored the arguments 1n a hash, with
$object->{ class } and $object->{ arguments }.

* But then there would be a difference 1n handling
different objects that came from O::T or O::T::U.

* The closure allows each handler class to handle the

construction 1ts own way without to specialize
O::T::B for each of them.

Example: Server Handles

* Centralizing the data for your server handles can be
helpful.

* All of the mess for describing DBI, Syslog, HT'TP,
SOAP... connections can be pushed into one place.

* Catch: Not all of the servers are always available, or
necessary.

* Fix: Export trampolines.

Server::Handles

package Server: :Handle;

use Server::Configure

gw

) ;

dbi_user
syslog_server

Thandlerz =

dbh =>

Object: :Trampoline->connect('DBI', ...),

syslogh =>

Object: : Trampoline->openlog('Syslog: :Wrapper', ...),

sub 1mport

{

push the handlers out as-is via *$glob = \Svalue.
the values are shared and the first place they are
used bounces them for the entire process

Trampoline as a Factory

* This cannot be avoided, therefore it 1s a feature.

* Unwrapping the stack into a lexical betore calling a
method on the trampoline updates the lexical, not
the caller's copy.

Sfoo->my_wrapper;
sub my_wrapper
{
my $obj = shift; # my_wrapper copy of S$foo

Sobj->some_method; # updates $obj, not $foo

Caveat Utilitor

* Trampoline objects can only dispatch methods.

* If your object 1s tied then it'll blow up 1f you try to
access 1ts tied interface:

— $dbh->{ AutoCommit } = O; # dies here for trampoline

* None of the ways around this are transparent to the
user, but even with DBI the simple fix 1s to use
methods to configure the object.

“ref” IS not a method

* Until a method is called, “ref $object” will give you
“Object:: Trampoline::Bounce” and “reftype” will
give you back “CODE”.

* This mainly affects the use of inside-out data, since
$object_data{ refaddr $Sobject } will change after the
first method call.

Prototypes are Evil.

* Notice the closure:

Sclass—>$Sconstructor(@Qargz)

* Defining $constructor with a prototype of ($$) will
break even if you have two values in @argz!

* <soapbox>
Add code or use Class::Contract (whatever) to
actually validate the arguments. Breaking Perl's
calling convention only causes pain.

</soapbox>.

