
RFC 9901
Selective Disclosure for JSON Web Tokens

Abstract
This specification defines a mechanism for the selective disclosure of individual elements of a
JSON data structure used as the payload of a JSON Web Signature (JWS). The primary use case is
the selective disclosure of JSON Web Token (JWT) claims.

Stream: Internet Engineering Task Force (IETF)
RFC: 9901
Category: Standards Track
Published: November 2025
ISSN: 2070-1721
Authors: D. Fett

Authlete
K. Yasuda
Keio University

B. Campbell
Ping Identity

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9901

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Fett, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9901
https://www.rfc-editor.org/info/rfc9901
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Feature Summary

1.2. Conventions and Terminology

2. Flow Diagram

3. Concepts

3.1. SD-JWT and Disclosures

3.2. Disclosing to a Verifier

3.3. Optional Key Binding

3.4. Verification

4. SD-JWT and SD-JWT+KB Data Formats

4.1. Issuer-Signed JWT

4.1.1. Hash Function Claim

4.1.2. Key Binding

4.2. Disclosures

4.2.1. Disclosures for Object Properties

4.2.2. Disclosures for Array Elements

4.2.3. Hashing Disclosures

4.2.4. Embedding Disclosure Digests in SD-JWTs

4.2.5. Decoy Digests

4.2.6. Recursive Disclosures

4.3. Key Binding JWT

4.3.1. Binding to an SD-JWT

4.3.2. Validating the Key Binding JWT

5. Example SD-JWT

5.1. Issuance

5.2. Presentation

4

5

6

7

7

8

8

8

8

9

10

11

12

12

12

14

14

15

16

16

18

19

19

19

20

25

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 2

6. Considerations on Nested Data in SD-JWTs

6.1. Example: Flat SD-JWT

6.2. Example: Structured SD-JWT

6.3. Example: SD-JWT with Recursive Disclosures

7. Verification and Processing

7.1. Verification of the SD-JWT

7.2. Processing by the Holder

7.3. Verification by the Verifier

8. JWS JSON Serialization

8.1. New Unprotected Header Parameters

8.2. Flattened JSON Serialization

8.3. General JSON Serialization

8.4. Verification of the JWS JSON Serialized SD-JWT

9. Security Considerations

9.1. Mandatory Signing of the Issuer-Signed JWT

9.2. Manipulation of Disclosures

9.3. Entropy of the Salt

9.4. Choice of a Hash Algorithm

9.5. Key Binding

9.6. Concealing Claim Names

9.7. Selectively Disclosable Validity Claims

9.8. Distribution and Rotation of Issuer Signature Verification Key

9.9. Forwarding Credentials

9.10. Integrity of SD-JWTs and SD-JWT+KBs

9.11. Explicit Typing

9.12. Key Pair Generation and Lifecycle Management

10. Privacy Considerations

10.1. Unlinkability

10.2. Storage of User Data

10.3. Confidentiality During Transport

26

27

28

29

31

31

33

34

35

35

35

37

38

39

39

39

40

40

41

41

42

42

42

43

43

43

44

44

46

46

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 3

10.4. Decoy Digests

10.5. Issuer Identifier

11. IANA Considerations

11.1. JSON Web Token Claims Registration

11.2. Media Type Registrations

11.3. Structured Syntax Suffixes Registration

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Additional Examples

A.1. Simple Structured SD-JWT

A.2. Complex Structured SD-JWT

A.3. SD-JWT-Based Verifiable Credentials (SD-JWT VC)

A.4. W3C Verifiable Credentials Data Model v2.0

A.5. Elliptic Curve Key Used in the Examples

Appendix B. Disclosure Format Considerations

Acknowledgements

Authors' Addresses

47

47

47

47

48

51

51

51

52

53

53

58

66

77

85

86

88

88

1. Introduction
The exchange of JSON data between systems is often secured against modification using JSON
Web Signatures (JWSs) . A popular application of JWS is the JSON Web Token (JWT)

, a format that is often used to represent a user's identity. An ID Token as defined in
OpenID Connect , for example, is a JWT containing the user's claims created by the
server for consumption by a relying party. In cases where the JWT is sent immediately from the
server to the relying party, as in OpenID Connect, the server can select at the time of issuance
which user claims to include in the JWT, minimizing the information shared with the relying
party who validates the JWT.

Another model is emerging that fully decouples the issuance of a JWT from its presentation. In
this model, a JWT containing many claims is issued to an intermediate party, who holds the JWT
(the Holder). The Holder can then present the JWT to different verifying parties (Verifiers) that

[RFC7515]
[RFC7519]

[OpenID.Core]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 4

each may only require a subset of the claims in the JWT. For example, the JWT may contain
claims representing both an address and a birthdate. The Holder may elect to disclose only the
address to one Verifier, and only the birthdate to a different Verifier.

Privacy principles of minimal disclosure in conjunction with this model demand a mechanism
enabling selective disclosure of data elements while ensuring that Verifiers can still check the
authenticity of the data provided. This specification defines such a mechanism for JSON
payloads of JWSs, with JWTs as the primary use case.

Selectively Disclosable JWT (SD-JWT) is based on an approach called "salted hashes": For any
data element that should be selectively disclosable, the Issuer of the SD-JWT does not include the
cleartext of the data in the JSON payload of the JWS structure; instead, a digest of the data takes
its place. For presentation to a Verifier, the Holder sends the signed payload along with the
cleartext of those claims it wants to disclose. The Verifier can then compute the digest of the
cleartext data and confirm it is included in the signed payload. To ensure that Verifiers cannot
guess cleartext values of non-disclosed data elements, an additional salt value is used when
creating the digest and sent along with the cleartext when disclosing it.

To prevent attacks in which an SD-JWT is presented to a Verifier without the Holder's consent,
this specification additionally defines a mechanism for binding the SD-JWT to a key under the
control of the Holder (Key Binding). When Key Binding is enforced, a Holder has to prove
possession of a private key belonging to a public key contained in the SD-JWT itself. It usually
does so by signing over a data structure containing transaction-specific data, herein defined as
the Key Binding JWT. An SD-JWT with a Key Binding JWT is called "SD-JWT+KB" in this
specification.

1.1. Feature Summary
This specification defines two primary data formats:

SD-JWT is a composite structure, consisting of a JWS plus optional Disclosures, enabling
selective disclosure of portions of the JWS payload. It comprises the following:

A format for enabling selective disclosure in nested JSON data structures, supporting
selectively disclosable object properties (name/value pairs) and array elements.
A format for encoding the selectively disclosable data items.
A format extending the JWS Compact Serialization, allowing for the combined transport of
the Issuer-signed JSON data structure and the disclosable data items.
An alternate format extending the JWS JSON Serialization, also allowing for transport of
the Issuer-signed JSON data structure and Disclosure data.

SD-JWT+KB is a composite structure of an SD-JWT and a cryptographic Key Binding that can
be presented to and verified by the Verifier. It comprises the following:

A mechanism for associating an SD-JWT with a key pair.
A format for a Key Binding JWT (KB-JWT) that allows proof of possession of the private
key of the associated key pair.

1.

◦

◦
◦

◦

2.

◦
◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 5

A format extending the SD-JWT format for the combined transport of the SD-JWT and the
KB-JWT.

◦

1.2. Conventions and Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Base64url:
Denotes the URL-safe base64 encoding without padding defined in .

Claim:
In this document, refers generally to object properties (name/value pairs) as well as array
elements.

Selective Disclosure:
Process of a Holder disclosing to a Verifier a subset of claims contained in a JWT issued by an
Issuer.

Selectively Disclosable JWT (SD-JWT):
A composite structure, consisting of an Issuer-signed JWT (JWS; see) and zero or
more Disclosures, which supports selective disclosure as defined in this document. It can
contain both regular claims and digests of selectively disclosable claims.

Disclosure:
A base64url-encoded string of a JSON array that contains a salt, a claim name (present when
the claim is a name/value pair and absent when the claim is an array element), and a claim
value. The Disclosure is used to calculate a digest for the respective claim. The term
Disclosure refers to the whole base64url-encoded string.

Key Binding:
Ability of the Holder to prove possession of an SD-JWT by proving control over a private key
during the presentation. When utilizing Key Binding, an SD-JWT contains the public key
corresponding to the private key controlled by the Holder (or a reference to this public key).

Key Binding JWT (KB-JWT):
A Key Binding JWT is said to "be tied to" a particular SD-JWT when its payload is signed using
the key included in the SD-JWT payload, and the KB-JWT contains a hash of the SD-JWT in its
sd_hash claim. Its format is defined in Section 4.3.

Selectively Disclosable JWT with Key Binding (SD-JWT+KB):
A composite structure, comprising an SD-JWT and a Key Binding JWT tied to that SD-JWT.

Processed SD-JWT Payload:
The JSON object resulting from verification and processing of the Issuer-signed SD-JWT, with
digest placeholders replaced by the corresponding values from the Disclosures.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 2 of [RFC7515]

[RFC7515]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 6

https://rfc-editor.org/rfc/rfc7515#section-2

Issuer:
An entity that creates SD-JWTs.

Holder:
An entity that received SD-JWTs from the Issuer and has control over them. In the context of
this document, the term may refer to the actual user, the supporting hardware and software
in their possession, or both.

Verifier:
An entity that requests, checks, and extracts the claims from an SD-JWT with its respective
Disclosures.

2. Flow Diagram

Figure 1: SD-JWT Issuance and Presentation Flow

 +------------+
 | |
 | Issuer |
 | |
 +------------+
 |
 Issues SD-JWT
 including all Disclosures
 |
 v
 +------------+
 | |
 | Holder |
 | |
 +------------+
 |
 Presents SD-JWT or SD-JWT+KB
 including selected Disclosures
 |
 v
 +-------------+
 | |+
 | Verifiers ||+
 | |||
 +-------------+||
 +-------------+|
 +-------------+

3. Concepts
This section describes SD-JWTs with their respective Disclosures and Key Binding at a
conceptual level, abstracting from the data formats described in Section 4.

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 7

3.1. SD-JWT and Disclosures
An SD-JWT, at its core, is a digitally signed JSON document containing digests over the selectively
disclosable claims with the Disclosures outside the document. Disclosures can be omitted
without breaking the signature, and modifications to them can be detected. Selectively
disclosable claims can be individual object properties (name/value pairs) or array elements.

Each digest value ensures the integrity of, and maps to, the respective Disclosure. Digest values
are calculated using a hash function over the Disclosures, each of which contains a
cryptographically secure random salt, the claim name (only when the claim is an object
property), and the claim value. The Disclosures are sent to the Holder with the SD-JWT in the
format defined in Section 4. When presenting an SD-JWT to a Verifier, the Holder only includes
the Disclosures for the claims that it wants to reveal to that Verifier.

An SD-JWT also contain cleartext claims that are always disclosed to the Verifier.MAY

3.2. Disclosing to a Verifier
To disclose to a Verifier a subset of the SD-JWT claim values, a Holder sends only the Disclosures
of those selectively released claims to the Verifier as part of the SD-JWT.

3.3. Optional Key Binding
Key Binding is an optional feature. When Key Binding is required by the use case, the SD-JWT

 contain information about the key material controlled by the Holder.

Note: How the public key is included in SD-JWT is described in Section 4.1.2.

When a Verifier requires Key Binding, the Holder presents an SD-JWT+KB, consisting of an SD-
JWT as well as a Key Binding JWT tied to that SD-JWT. The Key Binding JWT encodes a signature
by the Holder's private key over

a hash of the SD-JWT,
a nonce to ensure the freshness of the signature, and
an audience value to indicate the intended Verifier for the document.

Details of the format of Key Binding JWTs are described in Section 4.3.

MUST

•
•
•

3.4. Verification
At a high level, the Verifier

receives either an SD-JWT or an SD-JWT+KB from the Holder,
verifies the signature on the SD-JWT (or the SD-JWT inside the SD-JWT+KB) using the Issuer's
public key,

•
•

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 8

verifies the signature on the KB-JWT using the public key included (or referenced) in the SD-
JWT, if the Verifier's policy requires Key Binding, and
calculates the digests over the Holder-Selected Disclosures and verifies that each digest is
contained in the SD-JWT.

The detailed algorithm is described in Section 7.3.

•

•

4. SD-JWT and SD-JWT+KB Data Formats
An SD-JWT is composed of

an Issuer-signed JWT, and
zero or more Disclosures.

An SD-JWT+KB is composed of

an SD-JWT (i.e., an Issuer-signed JWT and zero or more Disclosures), and
a Key Binding JWT.

The Issuer-signed JWT, Disclosures, and Key Binding JWT are explained in Sections 4.1, 4.2, and
4.3, respectively.

The compact serialized format for the SD-JWT is the concatenation of each part delineated with
a single tilde ('~') character as follows, where "D.1" to "D.N" represent the respective Disclosures:

The order of the concatenated parts be the Issuer-signed JWT, a tilde character, zero or
more Disclosures each followed by a tilde character, and lastly the optional Key Binding JWT. In
the case that there is no Key Binding JWT, the last element be an empty string and the last
separating tilde character be omitted.

The serialized format for an SD-JWT+KB extends the SD-JWT format by concatenating a Key
Binding JWT.

The two formats can be distinguished by the final ~ character that is present on an SD-JWT. A
Verifier that expects an SD-JWT verify that the final tilde-separated component is empty. A
Verifier that expects an SD-JWT+KB verify that its final tilde-separated component is a
valid KB-JWT.

The Disclosures are linked to the Issuer-signed JWT through the digest values included therein.

When issuing to a Holder, the Issuer includes all the relevant Disclosures in the SD-JWT.

•
•

•
•

<Issuer-signed JWT>~<D.1>~<D.2>~...~<D.N>~

MUST

MUST
MUST NOT

<Issuer-signed JWT>~<D.1>~<D.2>~...~<D.N>~<KB-JWT>

MUST
MUST

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 9

When presenting to a Verifier, the Holder sends only the selected set of the Disclosures in the SD-
JWT.

The Holder send any subset of the Disclosures to the Verifier, i.e., none, some, or all
Disclosures. For data that the Holder does not want to reveal to the Verifier, the Holder
send Disclosures or reveal the salt values in any other way. A Holder send a
Disclosure that was not included in the issued SD-JWT or send a Disclosure more than once.

To further illustrate the SD-JWT format, the following examples show a few different SD-JWT
permutations, both with and without various constituent parts.

An SD-JWT without Disclosures:

An SD-JWT with Disclosures:

An SD-JWT+KB without Disclosures:

An SD-JWT+KB with Disclosures:

As an alternative illustration of the SD-JWT format, ABNF for the SD-JWT, SD-JWT+KB,
and various constituent parts is provided here (for those who celebrate):

MAY
MUST NOT

MUST NOT

<Issuer-signed JWT>~

<Issuer-signed JWT>~<Disclosure 1>~<Disclosure N>~

<Issuer-signed JWT>~<KB-JWT>

<Issuer-signed JWT>~<Disclosure 1>~<Disclosure N>~<KB-JWT>

[RFC5234]

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
BASE64URL = 1*(ALPHA / DIGIT / "-" / "_")
JWT = BASE64URL "." BASE64URL "." BASE64URL
DISCLOSURE = BASE64URL
SD-JWT = JWT "~" *(DISCLOSURE "~")
KB-JWT = JWT
SD-JWT-KB = SD-JWT KB-JWT

4.1. Issuer-Signed JWT
An SD-JWT has a JWT component that be signed using the Issuer's private key. It
use the none algorithm.

MUST MUST NOT

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 10

The payload of an SD-JWT is a JSON object according to the following rules:

The payload contain the _sd_alg key described in Section 4.1.1.
The payload contain one or more digests of Disclosures to enable selective disclosure of
the respective claims, created and formatted as described in Section 4.2.
The payload contain one or more decoy digests to obscure the actual number of claims
in the SD-JWT, created and formatted as described in Section 4.2.5.
The payload contain one or more permanently disclosed claims.
The payload contain the Holder's public key(s) or reference(s) thereto, as explained in
Section 4.1.2.
The payload contain further claims such as iss, iat, etc. as defined or required by the
application using SD-JWTs.
The payload contain the claims _sd or ... except for the purpose of conveying
digests as described in Sections 4.2.4.1 and 4.2.4.2, respectively.

The same digest value appear more than once in the SD-JWT.

Application and profiles of SD-JWT be explicitly typed. See Section 9.11 for more details.

It is the Issuer who decides which claims are selectively disclosable by the Holder and which are
not. Claims be included as plaintext as well, e.g., if hiding the particular claims from the
Verifier is not required in the intended use case. See Section 9.7 for considerations on making
validity-controlling claims such as exp selectively disclosable.

Claims that are not selectively disclosable are included in the SD-JWT in plaintext just as they
would be in any other JSON structure.

1. MAY

2. MAY

3. MAY

4. MAY

5. MAY

6. MAY

7. MUST NOT

MUST NOT

SHOULD

MAY

4.1.1. Hash Function Claim

The claim _sd_alg indicates the hash algorithm used by the Issuer to generate the digests as
described in Section 4.2. When used, this claim appear at the top level of the SD-JWT
payload. It be used in any object nested within the payload. If the _sd_alg claim is not
present at the top level, a default value of sha-256 be used.

This claim value is a case-sensitive string with the hash algorithm identifier. The hash algorithm
identifier be a hash algorithm value from the "Hash Name String" column in the "Named
Information Hash Algorithm Registry" or a value defined in another specification
and/or profile of this specification.

To promote interoperability, implementations support the sha-256 hash algorithm.

See Section 9 for requirements regarding entropy of the salt, minimum length of the salt, and
choice of a hash algorithm.

MUST
MUST NOT

MUST

MUST
[Hash.Algs]

MUST

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 11

4.1.2. Key Binding

If the Issuer wants to enable Key Binding, it includes a public key associated with the Holder, or
a reference thereto, using the cnf claim as defined in . The jwk confirmation method,
as defined in , is suggested for doing so, however, other confirmation
methods can be used.

Note that, as was stated in , if an application needs to represent multiple
proof-of-possession keys in the same SD-JWT, one way to achieve this is to use other
claim names, in addition to cnf, to hold the additional proof-of-possession key
information.

It is outside the scope of this document to describe how the Holder key pair is established. For
example, the Holder create a key pair and provide a public key to the Issuer, the Issuer
create the key pair for the Holder, or Holder and Issuer use pre-established key material.

Note: The examples throughout this document use the cnf claim with the jwk
member to include the raw public key by value in SD-JWT.

[RFC7800]
Section 3.2 of [RFC7800]

[RFC7800]

MAY MAY
MAY

4.2. Disclosures
Disclosures are created differently depending on whether a claim is an object property (name/
value pair) or an array element.

For a claim that is an object property, the Issuer creates a Disclosure as described in Section
4.2.1.
For a claim that is an array element, the Issuer creates a Disclosure as described in Section
4.2.2.

•

•

4.2.1. Disclosures for Object Properties

For each claim that is an object property and that is to be made selectively disclosable, the Issuer
 create a Disclosure as follows:

Create a JSON array of three elements in the following order:

A salt value. be a string. See Section 9.3 for security considerations. To achieve the
recommended entropy of the salt, the Issuer can base64url-encode 128 bits of
cryptographically secure random data, producing a string. The salt value be unique
for each claim that is to be selectively disclosed. The Issuer reveal the salt value
to any party other than the Holder.
The claim name, or key, as it would be used in a regular JWT payload. It be a string
and be _sd, ..., or a claim name existing in the object as a permanently
disclosed claim.

MUST

•

1. MUST

MUST
MUST NOT

2. MUST
MUST NOT

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 12

https://rfc-editor.org/rfc/rfc7800#section-3.2

The claim value, as it would be used in a regular JWT payload. The value can be of any
type that is allowed in JSON, including numbers, strings, booleans, arrays, null, and
objects.

base64url-encode the UTF-8 byte sequence of the JSON array. This string is the Disclosure.

Note: The order was decided based on readability considerations: Salts have a
constant length within the SD-JWT, claim names would be around the same length
all the time, and claim values would vary in size, potentially being large objects.

The following example illustrates the steps described above.

The array is created as follows:

The resultant Disclosure is:

WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsICJmYW1pbHlfbmFtZSIsICJNw7ZiaXVzIl0

Note that variations in whitespace, encoding of Unicode characters, ordering of object
properties, etc., are allowed in the JSON representation and no canonicalization needs to be
performed before base64url encoding because the digest is calculated over the base64url-
encoded value itself. For example, the following strings are all valid and encode the same claim
value "Möbius":

A different way to encode the Unicode umlaut:

WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsICJmYW1pbHlfbmFtZSIsICJNXHUwMGY2Yml1cyJd

No white space:

WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsImZhbWlseV9uYW1lIiwiTcO2Yml1cyJd

Newline characters between elements:

WwoiXzI2YmM0TFQtYWM2cTJLSTZjQlc1ZXMiLAoiZmFtaWx5X25hbWUiLAoiTcO2Yml1cyIKXQ

However, the digest is calculated over the respective base64url-encoded value itself, which
effectively signs the variation chosen by the Issuer and makes it immutable in the context of the
particular SD-JWT.

See Appendix B for some further considerations on the Disclosure format approach.

3.

•

["_26bc4LT-ac6q2KI6cBW5es", "family_name", "Möbius"]

•

•

•

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 13

4.2.2. Disclosures for Array Elements

For each claim that is an array element and that is to be made selectively disclosable, the Issuer
 create a Disclosure as follows:

The array contain two elements in this order:

The salt value as described in Section 4.2.1.
The array element that is to be hidden. This value can be of any type that is allowed in
JSON, including numbers, strings, booleans, arrays, and objects.

The Disclosure string is created by base64url-encoding the UTF-8 byte sequence of the resultant
JSON array as described in Section 4.2.1. The same considerations regarding variations in the
result of the JSON encoding apply.

For example, a Disclosure for the second element of the nationalities array in the following
JWT Claims Set:

could be created by first creating the following array:

The resultant Disclosure would be:

WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIkZSIl0

Note that the size of an array alone can potentially reveal unintended information.
The use of decoys, as described in Section 4.2.5, to consistently pad the size of an
array can help obscure the actual number of elements present in any particular
instance.

MUST

• MUST

1.
2.

{
 "nationalities": ["DE", "FR", "US"]
}

["lklxF5jMYlGTPUovMNIvCA", "FR"]

4.2.3. Hashing Disclosures

For embedding references to the Disclosures in the SD-JWT, each Disclosure is hashed using the
hash algorithm specified in the _sd_alg claim described in Section 4.1.1, or SHA-256 if no
algorithm is specified. The resultant digest is then included in the SD-JWT payload instead of the
original claim value, as described next.

The digest be computed over the US-ASCII bytes of the base64url-encoded value that is the
Disclosure. This follows the convention in JWS and JWE . The bytes of the
digest then be base64url encoded.

MUST
[RFC7515] [RFC7516]

MUST

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 14

It is important to note that:

The input to the hash function be the base64url-encoded Disclosure, not the bytes
encoded by the base64url string.
The bytes of the output of the hash function be base64url encoded, and are not the
bytes making up the (sometimes used) hex representation of the bytes of the digest.

For example, the base64url-encoded SHA-256 digest of the Disclosure
WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsICJmYW1pbHlfbmFtZSIsICJNw7ZiaXVzIl0 for the
family_name claim from Section 4.2.1 above is
X9yH0Ajrdm1Oij4tWso9UzzKJvPoDxwmuEcO3XAdRC0.

• MUST

• MUST

4.2.4. Embedding Disclosure Digests in SD-JWTs

For selectively disclosable claims, the digests of the Disclosures are embedded into the Issuer-
signed JWT instead of the claims themselves. The precise way of embedding depends on
whether a claim is an object property (name/value pair) or an array element.

For a claim that is an object property, the Issuer embeds a Disclosure digest as described in
Section 4.2.4.1.
For a claim that is an array element, the Issuer creates a Disclosure digest as described in
Section 4.2.4.2.

•

•

4.2.4.1. Object Properties
Digests of Disclosures for object properties are added to an array under the new key _sd in the
object. The _sd key refer to an array of strings, each string being a digest of a Disclosure or
a decoy digest as described in Section 4.2.5. An _sd key can be present at any level of the JSON
object hierarchy, including at the top-level, nested deeper as described in Section 6, or in
recursive Disclosures as described in Section 4.2.6.

The array be empty in case the Issuer decided not to selectively disclose any of the claims at
that level. However, it is to omit the _sd key in this case to save space.

The Issuer hide the original order of the claims in the array. To ensure this, it is
 to shuffle the array of hashes, e.g., by sorting it alphanumerically or randomly,

after potentially adding decoy digests as described in Section 4.2.5. The precise method does not
matter as long as it does not depend on the original order of elements.

For example, using the digest of the Disclosure from Section 4.2.3, the Issuer could create the
following SD-JWT payload to make family_name selectively disclosable:

MUST

MAY
RECOMMENDED

MUST
RECOMMENDED

{
 "given_name": "Alice",
 "_sd": ["X9yH0Ajrdm1Oij4tWso9UzzKJvPoDxwmuEcO3XAdRC0"]
}

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 15

4.2.4.2. Array Elements
Digests of Disclosures for array elements are added to the array in the same position as the
original claim value in the array. For each digest, an object of the form {"...": "<digest>"} is
added to the array. The key always be the string ... (three dots). The value be the
digest of the Disclosure created as described in Section 4.2.3. There be any other keys
in the object. Note that the string ... was chosen because the ellipsis character, typically
entered as three period characters, is commonly used in places where content is omitted from
the present context.

For example, using the digest of the array element Disclosure created in Section 4.2.2, the Issuer
could create the following SD-JWT payload to make the second element of the nationalities
array selectively disclosable:

As described in Section 7.3, Verifiers ignore all selectively disclosable array elements for which
they did not receive a Disclosure. In the example above, the verification process would output an
array with only two elements, ["DE", "US"], unless the matching Disclosure for the second
element is received, in which case the output would be a three-element array, ["DE", "FR",
"US"].

MUST MUST
MUST NOT

{
 "nationalities":
 ["DE", {"...":"w0I8EKcdCtUPkGCNUrfwVp2xEgNjtoIDlOxc9-PlOhs"},
 "US"]
}

4.2.5. Decoy Digests

An Issuer add additional digests to the SD-JWT payload that are not associated with any
claim. The purpose of such "decoy" digests is to make it more difficult for an adversarial Verifier
to see the original number of claims or array elements contained in the SD-JWT. Decoy digests

 be added both to the _sd array for objects as well as in arrays.

It is to create the decoy digests by hashing over a cryptographically secure
random number. The bytes of the digest then be base64url encoded as above. The same
digest function as for the Disclosures be used.

For decoy digests, no Disclosure is sent to the Holder, i.e., the Holder will see digests that do not
correspond to any Disclosure. See Section 10.4 for additional privacy considerations.

To ensure readability and replicability, the examples in this specification do not contain decoy
digests unless explicitly stated. For an example with decoy digests, see Appendix A.1.

MAY

MAY

RECOMMENDED
MUST

MUST

4.2.6. Recursive Disclosures

The algorithms above are compatible with "recursive Disclosures", in which one selectively
disclosed field reveals the existence of more selectively disclosable fields. For example, consider
the following JSON structure:

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 16

When the Holder has multiple nationalities, the Issuer may wish to conceal the presence of any
statement regarding nationalities while also allowing the Holder to reveal each of those
nationalities individually. This can be accomplished by first making the entries within the
"nationalities" array selectively disclosable, and then making the whole "nationalities" field
selectively disclosable.

The following shows each of the entries within the "nationalities" array being made selectively
disclosable:

Content of Disclosures:

Followed by making the whole "nationalities" array selectively disclosable:

Content of Disclosures:

{
 "family_name": "Möbius",
 "nationalities": ["DE", "FR", "UK"]
}

{
 "family_name": "Möbius",
 "nationalities": [
 { "...": "PmnlrRjhLcwf8zTDdK15HVGwHtPYjddvD362WjBLwro" }
 { "...": "r823HFN6Ba_lpSANYtXqqCBAH-TsQlIzfOK0lRAFLCM" },
 { "...": "nP5GYjwhFm6ESlAeC4NCaIliW4tz0hTrUeoJB3lb5TA" }
]
}

PmnlrRj... = ["16_mAd0GiwaZokU26_0i0h","DE"]
r823HFN... = ["fn9fN0rD-fFs2n303ZI-0c","FR"]
nP5GYjw... = ["YIKesqOkXXNzMQtsX_-_lw","UK"]

{
 "family_name": "Möbius",
 "_sd": ["5G1srw3RG5W4pVTwSsYxeOWosRBbzd18ZoWKkC-hBL4"]
}

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 17

With this set of Disclosures, the Holder could include the Disclosure with hash PmnlrRj... to
disclose only the "DE" nationality, or include both PmnlrRj... and r823HFN... to disclose both
the "DE" and "FR" nationalities, but hide the "UK" nationality. In either case, the Holder would
also need to include the Disclosure with hash 5G1srw3... to disclose the nationalities field
that contains the respective elements.

Note that making recursive redactions introduces dependencies between the Disclosure objects
in an SD-JWT. The r823HFN... Disclosure cannot be used without the 5G1srw3... Disclosure;
since a Verifier would not have a matching hash that would tell it where the content of the
r823HFN... Disclosure should be inserted. If a Disclosure object is included in an SD-JWT, then
the SD-JWT include any other Disclosure objects necessary to process the first Disclosure
object. In other words, any Disclosure object in an SD-JWT must "connect" to the claims in the
issuer-signed JWT, possibly via an intermediate Disclosure object. In the above example, it would
be illegal to include any one of the PmnlrRj..., r823HFN..., nP5GYjw... Disclosure objects
without also including the 5G1srw3... Disclosure object.

PmnlrRj... = ["16_mAd0GiwaZokU26_0i0h","DE"]
r823HFN... = ["fn9fN0rD-fFs2n303ZI-0c","FR"]
nP5GYjw... = ["YIKesqOkXXNzMQtsX_-_lw","UK"]
5G1srw3... = ["4drfeTtSUK3aY_-PF12gcX","nationalities",
 [
 { "...": "PmnlrRjhLcwf8zTDdK15HVGwHtPYjddvD362WjBLwro" },
 { "...": "r823HFN6Ba_lpSANYtXqqCBAH-TsQlIzfOK0lRAFLCM" },
 { "...": "nP5GYjwhFm6ESlAeC4NCaIliW4tz0hTrUeoJB3lb5TA" }
]
]

MUST

4.3. Key Binding JWT
This section defines the Key Binding JWT, which encodes a signature over an SD-JWT by the
Holder's private key.

The Key Binding JWT be a JWT according to , and it contain the following
elements:

in the JOSE header,

typ: . be kb+jwt, which explicitly types the Key Binding JWT as
recommended in .
alg: . A digital signature algorithm identifier such as per the IANA "JSON Web
Signature and Encryption Algorithms" registry. It be "none".

in the JWT payload,

iat: . The value of this claim be the time at which the Key Binding JWT
was issued using the syntax defined in .
aud: . The value be a single string that identifies the intended receiver of
the Key Binding JWT. How the value is represented is up to the protocol used and is out of
scope for this specification.

MUST [RFC7519] MUST

•

◦ REQUIRED MUST
Section 3.11 of [RFC8725]

◦ REQUIRED
MUST NOT

•

◦ REQUIRED MUST
[RFC7519]

◦ REQUIRED MUST

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 18

https://rfc-editor.org/rfc/rfc8725#section-3.11

"nonce": . Ensures the freshness of the signature or its binding to the given
transaction. The value type of this claim be a string. How this value is obtained is up
to the protocol used and is out of scope for this specification.
sd_hash: . The base64url-encoded hash value over the Issuer-signed JWT and
the selected Disclosures as defined below.

The general extensibility model of JWT means that additional claims and header parameters can
be added to the Key Binding JWT. However, unless there is a compelling reason, this be
avoided, as it may harm interoperability and burden conceptual integrity.

◦ REQUIRED
MUST

◦ REQUIRED

SHOULD

4.3.1. Binding to an SD-JWT

The hash value in the sd_hash claim binds the KB-JWT to the specific SD-JWT. The sd_hash value
 be computed over the US-ASCII bytes of the encoded SD-JWT, i.e., the Issuer-signed JWT, a

tilde character, and zero or more Disclosures selected for presentation to the Verifier, each
followed by a tilde character:

The bytes of the digest then be base64url encoded.

The same hash algorithm as for the Disclosures be used (defined by the _sd_alg element
in the Issuer-signed JWT or the default value, as defined in Section 4.1.1).

MUST

<Issuer-signed JWT>~<Disclosure 1>~<Disclosure 2>~...~<Disclosure N>~

MUST

MUST

4.3.2. Validating the Key Binding JWT

Whether to require Key Binding is up to the Verifier's policy, based on the set of trust
requirements (such as trust frameworks) it belongs to. See Section 9.5 for security considerations.

If the Verifier requires Key Binding, the Verifier ensure that the key with which it validates
the signature on the Key Binding JWT is the key specified in the SD-JWT as the Holder's public
key. For example, if the SD-JWT contains a cnf value with a jwk member, the Verifier would
parse the provided JWK and use it to verify the Key Binding JWT.

Details of the validation process are defined in Section 7.3.

MUST

5. Example SD-JWT
In this example, a simple SD-JWT is demonstrated. This example is split into issuance and
presentation.

Note: Throughout the examples in this document, line breaks were added to JSON
strings and base64-encoded strings to adhere to the line-length limit in RFCs and for
readability. JSON does not allow line breaks within strings.

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 19

5.1. Issuance
The following data about the user comprises the input JWT Claims Set used by the Issuer:

In this example, the following decisions were made by the Issuer in constructing the SD-JWT:

The nationalities array is always visible, but its contents are selectively disclosable.
The sub element as well as essential verification data (iss, exp, cnf, etc.) are always visible.
All other claims are selectively disclosable.
For address, the Issuer is using a flat structure, i.e., all the claims in the address claim can
only be disclosed in full. Other options are discussed in Section 6.

The following payload is used for the SD-JWT:

{
 "sub": "user_42",
 "given_name": "John",
 "family_name": "Doe",
 "email": "johndoe@example.com",
 "phone_number": "+1-202-555-0101",
 "phone_number_verified": true,
 "address": {
 "street_address": "123 Main St",
 "locality": "Anytown",
 "region": "Anystate",
 "country": "US"
 },
 "birthdate": "1940-01-01",
 "updated_at": 1570000000,
 "nationalities": [
 "US",
 "DE"
]
}

•
•
•
•

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 20

The respective Disclosures, created by the Issuer, are listed below. In the text below and in other
locations in this specification, the label "SHA-256 Hash:" is used as a shorthand for the label
"Base64url-Encoded SHA-256 Hash:".

Claim given_name:

SHA-256 Hash:

jsu9yVulwQQlhFlM_3JlzMaSFzglhQG0DpfayQwLUK4

Disclosure:

WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImdpdmVuX25hbWUiLCAiSm9obiJd

Contents:

["2GLC42sKQveCfGfryNRN9w", "given_name", "John"]

Claim family_name:

SHA-256 Hash:

TGf4oLbgwd5JQaHyKVQZU9UdGE0w5rtDsrZzfUaomLo

{
 "_sd": [
 "CrQe7S5kqBAHt-nMYXgc6bdt2SH5aTY1sU_M-PgkjPI",
 "JzYjH4svliH0R3PyEMfeZu6Jt69u5qehZo7F7EPYlSE",
 "PorFbpKuVu6xymJagvkFsFXAbRoc2JGlAUA2BA4o7cI",
 "TGf4oLbgwd5JQaHyKVQZU9UdGE0w5rtDsrZzfUaomLo",
 "XQ_3kPKt1XyX7KANkqVR6yZ2Va5NrPIvPYbyMvRKBMM",
 "XzFrzwscM6Gn6CJDc6vVK8BkMnfG8vOSKfpPIZdAfdE",
 "gbOsI4Edq2x2Kw-w5wPEzakob9hV1cRD0ATN3oQL9JM",
 "jsu9yVulwQQlhFlM_3JlzMaSFzglhQG0DpfayQwLUK4"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "user_42",
 "nationalities": [
 {
 "...": "pFndjkZ_VCzmyTa6UjlZo3dh-ko8aIKQc9DlGzhaVYo"
 },
 {
 "...": "7Cf6JkPudry3lcbwHgeZ8khAv1U1OSlerP0VkBJrWZ0"
 }
],
 "_sd_alg": "sha-256",
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 }
}

•

◦

◦

◦

•

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 21

Disclosure:

WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImZhbWlseV9uYW1lIiwgIkRvZSJd

Contents:

["eluV5Og3gSNII8EYnsxA_A", "family_name", "Doe"]

Claim email:

SHA-256 Hash:

JzYjH4svliH0R3PyEMfeZu6Jt69u5qehZo7F7EPYlSE

Disclosure:

WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImVtYWlsIiwgImpvaG5kb2VAZXhhbXBsZS5jb20i
XQ

Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "email", "johndoe@example.com"]

Claim phone_number:

SHA-256 Hash:

PorFbpKuVu6xymJagvkFsFXAbRoc2JGlAUA2BA4o7cI

Disclosure:

WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgInBob25lX251bWJlciIsICIrMS0yMDItNTU1LTAx
MDEiXQ

Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "phone_number", "+1-202-555-0101"]

Claim phone_number_verified:

SHA-256 Hash:

XQ_3kPKt1XyX7KANkqVR6yZ2Va5NrPIvPYbyMvRKBMM

Disclosure:

WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgInBob25lX251bWJlcl92ZXJpZmllZCIsIHRydWVd

Contents:

["Qg_O64zqAxe412a108iroA", "phone_number_verified", true]

Claim address:

SHA-256 Hash:

XzFrzwscM6Gn6CJDc6vVK8BkMnfG8vOSKfpPIZdAfdE

Disclosure:

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 22

WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRyZXNzIjog
IjEyMyBNYWluIFN0IiwgImxvY2FsaXR5IjogIkFueXRvd24iLCAicmVnaW9uIjogIkFueXN0YXRl
IiwgImNvdW50cnkiOiAiVVMifV0

Contents:

["AJx-095VPrpTtN4QMOqROA", "address", {"street_address": "123 Main St",
"locality": "Anytown", "region": "Anystate", "country": "US"}]

Claim birthdate:

SHA-256 Hash:

gbOsI4Edq2x2Kw-w5wPEzakob9hV1cRD0ATN3oQL9JM

Disclosure:

WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAxIl0

Contents:

["Pc33JM2LchcU_lHggv_ufQ", "birthdate", "1940-01-01"]

Claim updated_at:

SHA-256 Hash:

CrQe7S5kqBAHt-nMYXgc6bdt2SH5aTY1sU_M-PgkjPI

Disclosure:

WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgInVwZGF0ZWRfYXQiLCAxNTcwMDAwMDAwXQ

Contents:

["G02NSrQfjFXQ7Io09syajA", "updated_at", 1570000000]

Array Entry:

SHA-256 Hash:

pFndjkZ_VCzmyTa6UjlZo3dh-ko8aIKQc9DlGzhaVYo

Disclosure:

WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIlVTIl0

Contents:

["lklxF5jMYlGTPUovMNIvCA", "US"]

Array Entry:

SHA-256 Hash:

7Cf6JkPudry3lcbwHgeZ8khAv1U1OSlerP0VkBJrWZ0

Disclosure:

WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgIkRFIl0

Contents:

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 23

["nPuoQnkRFq3BIeAm7AnXFA", "DE"]

The payload is then signed by the Issuer to create the following Issuer-signed JWT:

Adding the Disclosures produces the SD-JWT:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
IkNyUWU3UzVrcUJBSHQtbk1ZWGdjNmJkdDJTSDVhVFkxc1VfTS1QZ2tqUEkiLCAiSnpZ
akg0c3ZsaUgwUjNQeUVNZmVadTZKdDY5dTVxZWhabzdGN0VQWWxTRSIsICJQb3JGYnBL
dVZ1Nnh5bUphZ3ZrRnNGWEFiUm9jMkpHbEFVQTJCQTRvN2NJIiwgIlRHZjRvTGJnd2Q1
SlFhSHlLVlFaVTlVZEdFMHc1cnREc3JaemZVYW9tTG8iLCAiWFFfM2tQS3QxWHlYN0tB
TmtxVlI2eVoyVmE1TnJQSXZQWWJ5TXZSS0JNTSIsICJYekZyendzY002R242Q0pEYzZ2
Vks4QmtNbmZHOHZPU0tmcFBJWmRBZmRFIiwgImdiT3NJNEVkcTJ4Mkt3LXc1d1BFemFr
b2I5aFYxY1JEMEFUTjNvUUw5Sk0iLCAianN1OXlWdWx3UVFsaEZsTV8zSmx6TWFTRnpn
bGhRRzBEcGZheVF3TFVLNCJdLCAiaXNzIjogImh0dHBzOi8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE2ODMwMDAwMDAsICJleHAiOiAxODgzMDAwMDAwLCAic3ViIjog
InVzZXJfNDIiLCAibmF0aW9uYWxpdGllcyI6IFt7Ii4uLiI6ICJwRm5kamtaX1ZDem15
VGE2VWpsWm8zZGgta284YUlLUWM5RGxHemhhVllvIn0sIHsiLi4uIjogIjdDZjZKa1B1
ZHJ5M2xjYndIZ2VaOGtoQXYxVTFPU2xlclAwVmtCSnJXWjAifV0sICJfc2RfYWxnIjog
InNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnYiOiAiUC0y
NTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbERsczd2Q2VH
ZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U2dDRqVDlG
MkhaUSJ9fX0.MczwjBFGtzf-6WMT-hIvYbkb11NrV1WMO-jTijpMPNbswNzZ87wY2uHz
-CXo6R04b7jYrpj9mNRAvVssXou1iw

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
IkNyUWU3UzVrcUJBSHQtbk1ZWGdjNmJkdDJTSDVhVFkxc1VfTS1QZ2tqUEkiLCAiSnpZ
akg0c3ZsaUgwUjNQeUVNZmVadTZKdDY5dTVxZWhabzdGN0VQWWxTRSIsICJQb3JGYnBL
dVZ1Nnh5bUphZ3ZrRnNGWEFiUm9jMkpHbEFVQTJCQTRvN2NJIiwgIlRHZjRvTGJnd2Q1
SlFhSHlLVlFaVTlVZEdFMHc1cnREc3JaemZVYW9tTG8iLCAiWFFfM2tQS3QxWHlYN0tB
TmtxVlI2eVoyVmE1TnJQSXZQWWJ5TXZSS0JNTSIsICJYekZyendzY002R242Q0pEYzZ2
Vks4QmtNbmZHOHZPU0tmcFBJWmRBZmRFIiwgImdiT3NJNEVkcTJ4Mkt3LXc1d1BFemFr
b2I5aFYxY1JEMEFUTjNvUUw5Sk0iLCAianN1OXlWdWx3UVFsaEZsTV8zSmx6TWFTRnpn
bGhRRzBEcGZheVF3TFVLNCJdLCAiaXNzIjogImh0dHBzOi8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE2ODMwMDAwMDAsICJleHAiOiAxODgzMDAwMDAwLCAic3ViIjog
InVzZXJfNDIiLCAibmF0aW9uYWxpdGllcyI6IFt7Ii4uLiI6ICJwRm5kamtaX1ZDem15
VGE2VWpsWm8zZGgta284YUlLUWM5RGxHemhhVllvIn0sIHsiLi4uIjogIjdDZjZKa1B1
ZHJ5M2xjYndIZ2VaOGtoQXYxVTFPU2xlclAwVmtCSnJXWjAifV0sICJfc2RfYWxnIjog
InNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnYiOiAiUC0y
NTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbERsczd2Q2VH
ZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U2dDRqVDlG
MkhaUSJ9fX0.MczwjBFGtzf-6WMT-hIvYbkb11NrV1WMO-jTijpMPNbswNzZ87wY2uHz
-CXo6R04b7jYrpj9mNRAvVssXou1iw~WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgI
mdpdmVuX25hbWUiLCAiSm9obiJd~WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImZh
bWlseV9uYW1lIiwgIkRvZSJd~WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImVtYWl
sIiwgImpvaG5kb2VAZXhhbXBsZS5jb20iXQ~WyJlSThaV205UW5LUHBOUGVOZW5IZGhR
IiwgInBob25lX251bWJlciIsICIrMS0yMDItNTU1LTAxMDEiXQ~WyJRZ19PNjR6cUF4Z
TQxMmExMDhpcm9BIiwgInBob25lX251bWJlcl92ZXJpZmllZCIsIHRydWVd~WyJBSngt
MDk1VlBycFR0TjRRTU9xUk9BIiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRyZXNzIjog
IjEyMyBNYWluIFN0IiwgImxvY2FsaXR5IjogIkFueXRvd24iLCAicmVnaW9uIjogIkFu
eXN0YXRlIiwgImNvdW50cnkiOiAiVVMifV0~WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZR
IiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAxIl0~WyJHMDJOU3JRZmpGWFE3SW8wOXN5
YWpBIiwgInVwZGF0ZWRfYXQiLCAxNTcwMDAwMDAwXQ~WyJsa2x4RjVqTVlsR1RQVW92T
U5JdkNBIiwgIlVTIl0~WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgIkRFIl0~

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 24

5.2. Presentation
The following non-normative example shows an SD-JWT+KB as it would be sent from the Holder
to the Verifier. Note that it consists of six tilde-separated parts, with the Issuer-signed JWT as
shown above in the beginning, four Disclosures (for the claims given_name, family_name,
address, and one of the nationalities) in the middle, and the Key Binding JWT as the last
element.

The following Key Binding JWT payload was created and signed for this presentation by the
Holder:

If the Verifier did not require Key Binding, then the Holder could have presented the SD-JWT
with selected Disclosures directly, instead of encapsulating it in an SD-JWT+KB.

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
IkNyUWU3UzVrcUJBSHQtbk1ZWGdjNmJkdDJTSDVhVFkxc1VfTS1QZ2tqUEkiLCAiSnpZ
akg0c3ZsaUgwUjNQeUVNZmVadTZKdDY5dTVxZWhabzdGN0VQWWxTRSIsICJQb3JGYnBL
dVZ1Nnh5bUphZ3ZrRnNGWEFiUm9jMkpHbEFVQTJCQTRvN2NJIiwgIlRHZjRvTGJnd2Q1
SlFhSHlLVlFaVTlVZEdFMHc1cnREc3JaemZVYW9tTG8iLCAiWFFfM2tQS3QxWHlYN0tB
TmtxVlI2eVoyVmE1TnJQSXZQWWJ5TXZSS0JNTSIsICJYekZyendzY002R242Q0pEYzZ2
Vks4QmtNbmZHOHZPU0tmcFBJWmRBZmRFIiwgImdiT3NJNEVkcTJ4Mkt3LXc1d1BFemFr
b2I5aFYxY1JEMEFUTjNvUUw5Sk0iLCAianN1OXlWdWx3UVFsaEZsTV8zSmx6TWFTRnpn
bGhRRzBEcGZheVF3TFVLNCJdLCAiaXNzIjogImh0dHBzOi8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE2ODMwMDAwMDAsICJleHAiOiAxODgzMDAwMDAwLCAic3ViIjog
InVzZXJfNDIiLCAibmF0aW9uYWxpdGllcyI6IFt7Ii4uLiI6ICJwRm5kamtaX1ZDem15
VGE2VWpsWm8zZGgta284YUlLUWM5RGxHemhhVllvIn0sIHsiLi4uIjogIjdDZjZKa1B1
ZHJ5M2xjYndIZ2VaOGtoQXYxVTFPU2xlclAwVmtCSnJXWjAifV0sICJfc2RfYWxnIjog
InNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnYiOiAiUC0y
NTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbERsczd2Q2VH
ZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U2dDRqVDlG
MkhaUSJ9fX0.MczwjBFGtzf-6WMT-hIvYbkb11NrV1WMO-jTijpMPNbswNzZ87wY2uHz
-CXo6R04b7jYrpj9mNRAvVssXou1iw~WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgI
mZhbWlseV9uYW1lIiwgIkRvZSJd~WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImFk
ZHJlc3MiLCB7InN0cmVldF9hZGRyZXNzIjogIjEyMyBNYWluIFN0IiwgImxvY2FsaXR5
IjogIkFueXRvd24iLCAicmVnaW9uIjogIkFueXN0YXRlIiwgImNvdW50cnkiOiAiVVMi
fV0~WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImdpdmVuX25hbWUiLCAiSm9obiJd
~WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIlVTIl0~eyJhbGciOiAiRVMyNTYiLCA
idHlwIjogImtiK2p3dCJ9.eyJub25jZSI6ICIxMjM0NTY3ODkwIiwgImF1ZCI6ICJodH
RwczovL3ZlcmlmaWVyLmV4YW1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF
9oYXNoIjogIjBfQWYtMkItRWhMV1g1eWRoX3cyeHp3bU82aU02NkJfMlFDRWFuSTRmVV
kifQ.T3SIus2OidNl41nmVkTZVCKKhOAX97aOldMyHFiYjHm261eLiJ1YiuONFiMN8Ql
CmYzDlBLAdPvrXh52KaLgUQ

{
 "nonce": "1234567890",
 "aud": "https://verifier.example.org",
 "iat": 1748537244,
 "sd_hash": "0_Af-2B-EhLWX5ydh_w2xzwmO6iM66B_2QCEanI4fUY"
}

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 25

After validation, the Verifier will have the following Processed SD-JWT Payload available for
further handling:

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "user_42",
 "nationalities": [
 "US"
],
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 },
 "family_name": "Doe",
 "address": {
 "street_address": "123 Main St",
 "locality": "Anytown",
 "region": "Anystate",
 "country": "US"
 },
 "given_name": "John"
}

6. Considerations on Nested Data in SD-JWTs
Being JSON, an object in an SD-JWT payload contain name/value pairs where the value is
another object or objects be elements in arrays. In SD-JWT, the Issuer decides for each claim
individually, on each level of the JSON, whether or not the claim should be selectively
disclosable. This choice can be made on each level independent of whether keys higher in the
hierarchy are selectively disclosable.

From this it follows that the _sd key containing digests appear multiple times in an SD-JWT,
and likewise, there be multiple arrays within the hierarchy with each having selectively
disclosable elements. Digests of selectively disclosable claims even appear within other
Disclosures.

The following examples illustrate some of the options an Issuer has. It is up to the Issuer to
decide which structure to use, depending on, for example, the expected use cases for the SD-JWT,
requirements for privacy, size considerations, or operating environment requirements. For
more examples with nested structures, see Appendices A.1 and A.2.

The following input JWT Claims Set is used as an example throughout this section:

MAY
MAY

MAY
MAY

MAY

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 26

Note: The following examples of the structures are non-normative and are not
intended to represent all possible options. They are also not meant to define or
restrict how address claim can be represented in an SD-JWT.

{
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "address": {
 "street_address": "Schulstr. 12",
 "locality": "Schulpforta",
 "region": "Sachsen-Anhalt",
 "country": "DE"
 }
}

6.1. Example: Flat SD-JWT
The Issuer can decide to treat the address claim as a block that can either be disclosed
completely or not at all. The following example shows that in this case, the entire address claim
is treated as an object in the Disclosure.

The Issuer would create the following Disclosure referenced by the one hash in the SD-JWT:

Claim address:

SHA-256 Hash:

fOBUSQvo46yQO-wRwXBcGqvnbKIueISEL961_Sjd4do

Disclosure:

WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRyZXNzIjog
IlNjaHVsc3RyLiAxMiIsICJsb2NhbGl0eSI6ICJTY2h1bHBmb3J0YSIsICJyZWdpb24iOiAiU2Fj
aHNlbi1BbmhhbHQiLCAiY291bnRyeSI6ICJERSJ9XQ

Contents:

["2GLC42sKQveCfGfryNRN9w", "address", {"street_address": "Schulstr. 12",
"locality": "Schulpforta", "region": "Sachsen-Anhalt", "country": "DE"}]

{
 "_sd": [
 "fOBUSQvo46yQO-wRwXBcGqvnbKIueISEL961_Sjd4do"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "_sd_alg": "sha-256"
}

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 27

6.2. Example: Structured SD-JWT
The Issuer may instead decide to make the address claim contents selectively disclosable
individually:

In this case, the Issuer would use the following data in the Disclosures for the address sub-
claims:

Claim street_address:

SHA-256 Hash:

9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM

Disclosure:

WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInN0cmVldF9hZGRyZXNzIiwgIlNjaHVsc3RyLiAx
MiJd

Contents:

["2GLC42sKQveCfGfryNRN9w", "street_address", "Schulstr. 12"]

Claim locality:

SHA-256 Hash:

6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0

Disclosure:

WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImxvY2FsaXR5IiwgIlNjaHVscGZvcnRhIl0

Contents:

["eluV5Og3gSNII8EYnsxA_A", "locality", "Schulpforta"]

Claim region:

SHA-256 Hash:

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "address": {
 "_sd": [
 "6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0",
 "9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM",
 "KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88",
 "WN9r9dCBJ8HTCsS2jKASxTjEyW5m5x65_Z_2ro2jfXM"
]
 },
 "_sd_alg": "sha-256"
}

•

◦

◦

◦

•

◦

◦

◦

•

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 28

KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88

Disclosure:

WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgInJlZ2lvbiIsICJTYWNoc2VuLUFuaGFsdCJd

Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "region", "Sachsen-Anhalt"]

Claim country:

SHA-256 Hash:

WN9r9dCBJ8HTCsS2jKASxTjEyW5m5x65_Z_2ro2jfXM

Disclosure:

WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgImNvdW50cnkiLCAiREUiXQ

Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "country", "DE"]

The Issuer may also make one sub-claim of address permanently disclosed and hide only the
other sub-claims:

In this case, there would be no Disclosure for country, since it is provided in the clear.

◦

◦

•

◦

◦

◦

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "address": {
 "_sd": [
 "6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0",
 "9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM",
 "KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88"
],
 "country": "DE"
 },
 "_sd_alg": "sha-256"
}

6.3. Example: SD-JWT with Recursive Disclosures
The Issuer may also decide to make the address claim contents selectively disclosable
recursively, i.e., the address claim is made selectively disclosable as well as its sub-claims:

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 29

The Issuer first creates Disclosures for the sub-claims and then includes their digests in the
Disclosure for the address claim:

Claim street_address:

SHA-256 Hash:

9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM

Disclosure:

WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInN0cmVldF9hZGRyZXNzIiwgIlNjaHVsc3RyLiAx
MiJd

Contents:

["2GLC42sKQveCfGfryNRN9w", "street_address", "Schulstr. 12"]

Claim locality:

SHA-256 Hash:

6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0

Disclosure:

WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImxvY2FsaXR5IiwgIlNjaHVscGZvcnRhIl0

Contents:

["eluV5Og3gSNII8EYnsxA_A", "locality", "Schulpforta"]

Claim region:

SHA-256 Hash:

KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88

Disclosure:

WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgInJlZ2lvbiIsICJTYWNoc2VuLUFuaGFsdCJd

Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "region", "Sachsen-Anhalt"]

{
 "_sd": [
 "HvrKX6fPV0v9K_yCVFBiLFHsMaxcD_114Em6VT8x1lg"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "_sd_alg": "sha-256"
}

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 30

Claim country:

SHA-256 Hash:

WN9r9dCBJ8HTCsS2jKASxTjEyW5m5x65_Z_2ro2jfXM

Disclosure:

WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgImNvdW50cnkiLCAiREUiXQ

Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "country", "DE"]

Claim address:

SHA-256 Hash:

HvrKX6fPV0v9K_yCVFBiLFHsMaxcD_114Em6VT8x1lg

Disclosure:

WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImFkZHJlc3MiLCB7Il9zZCI6IFsiNnZoOWJxLXpT
NEdLTV83R3BnZ1ZiWXp6dTZvT0dYcm1OVkdQSFA3NVVkMCIsICI5Z2pWdVh0ZEZST0NnUnJ0TmNH
VVhtRjY1cmRlemlfNkVyX2o3NmttWXlNIiwgIktVUkRQaDRaQzE5LTN0aXotRGYzOVY4ZWlkeTFv
VjNhM0gxRGEyTjBnODgiLCAiV045cjlkQ0JKOEhUQ3NTMmpLQVN4VGpFeVc1bTV4NjVfWl8ycm8y
amZYTSJdfV0

Contents:

["Qg_O64zqAxe412a108iroA", "address", {"_sd": ["6vh9bq-
zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0",
"9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM", "KURDPh4ZC19-3tiz-
Df39V8eidy1oV3a3H1Da2N0g88",
"WN9r9dCBJ8HTCsS2jKASxTjEyW5m5x65_Z_2ro2jfXM"]}]

•

◦

◦

◦

•

◦

◦

◦

7. Verification and Processing

7.1. Verification of the SD-JWT
Upon receiving an SD-JWT, either directly or as a component of an SD-JWT+KB, a Holder or
Verifier needs to ensure that:

the Issuer-signed JWT is valid, and
all Disclosures are valid and correspond to a respective digest value in the Issuer-signed
JWT (directly in the payload or recursively included in the contents of other Disclosures).

The Holder or the Verifier perform the following checks when receiving an SD-JWT to
validate the SD-JWT and extract the payload:

Separate the SD-JWT into the Issuer-signed JWT and the Disclosures (if any).

•
•

MUST

1.

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 31

Validate the Issuer-signed JWT:

Ensure that the used signing algorithm was deemed secure for the application. Refer to
, Sections 3.1 and 3.2 for details. The "none" algorithm be accepted.

Validate the signature over the Issuer-signed JWT per .
Validate the Issuer and that the signing key belongs to this Issuer.
Check that the _sd_alg claim value is understood and the hash algorithm is deemed
secure according to the Holder or Verifier's policy (see Section 4.1.1).

Process the Disclosures and embedded digests in the Issuer-signed JWT as follows:

For each Disclosure provided:

Calculate the digest over the base64url-encoded string as described in Section 4.2.3.

(*) Identify all embedded digests in the Issuer-signed JWT as follows:

Find all objects having an _sd key that refers to an array of strings.
Find all array elements that are objects with one key, that key being ... and referring to
a string.

(**) For each embedded digest found in the previous step:

Compare the value with the digests calculated previously and find the matching
Disclosure. If no such Disclosure can be found, the digest be ignored.
If the digest was found in an object's _sd key:

If the contents of the respective Disclosure is not a JSON array of three elements (salt,
claim name, claim value), the SD-JWT be rejected.
If the claim name is _sd or ..., the SD-JWT be rejected.
If the claim name already exists at the level of the _sd key, the SD-JWT be
rejected.
Insert, at the level of the _sd key, a new claim using the claim name and claim value
from the Disclosure.
Recursively process the value using the steps described in (*) and (**).

If the digest was found in an array element:

If the contents of the respective Disclosure is not a JSON array of two elements (salt,
value), the SD-JWT be rejected.
Replace the array element with the value from the Disclosure.
Recursively process the value using the steps described in (*) and (**).

Remove all array elements for which the digest was not found in the previous step.
Remove all _sd keys and their contents from the Issuer-signed JWT payload. If this results
in an object with no properties, it should be represented as an empty object {}.
Remove the claim _sd_alg from the SD-JWT payload.

2.

a.
[RFC8725] MUST NOT

b. Section 5.2 of [RFC7515]
c.
d.

3.

a.

i.

b.

i.
ii.

c.

i.
MUST

ii.

1.
MUST

2. MUST

3. MUST

4.

5.

iii.

1.
MUST

2.
3.

d.
e.

f.

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 32

https://rfc-editor.org/rfc/rfc8725#section-3.1
https://rfc-editor.org/rfc/rfc8725#section-3.2
https://rfc-editor.org/rfc/rfc7515#section-5.2

If any digest value is encountered more than once in the Issuer-signed JWT payload (directly
or recursively via other Disclosures), the SD-JWT be rejected.
If any Disclosure was not referenced by digest value in the Issuer-signed JWT (directly or
recursively via other Disclosures), the SD-JWT be rejected.
Check that the SD-JWT is valid using claims such as nbf, exp, and aud in the processed
payload, if present. If a required validity-controlling claim is missing (see Section 9.7), the
SD-JWT be rejected.

If any step fails, the SD-JWT is not valid, and processing be aborted. Otherwise, the JSON
document resulting from the preceding processing and verification steps, herein referred to as
the "Processed SD-JWT Payload", can be made available to the application to be used for its
intended purpose.

Note that these processing steps do not yield any guarantees to the Holder about
having received a complete set of Disclosures. That is, for some digest values in the
Issuer-signed JWT (which are not decoy digests), there may be no corresponding
Disclosures, for example, if the message from the Issuer was truncated. It is up to
the Holder how to maintain the mapping between the Disclosures and the plaintext
claim values to be able to display them to the user when needed.

4.
MUST

5.
MUST

6.

MUST

MUST

7.2. Processing by the Holder
The Issuer provides the Holder with an SD-JWT, not an SD-JWT+KB. If the Holder receives an SD-
JWT+KB, it be rejected.

When receiving an SD-JWT, the Holder do the following:

Process the SD-JWT as defined in Section 7.1 to validate it and extract the payload.
Ensure that the contents of claims in the payload are acceptable (depending on the
application; for example, check that any values the Holder can check are correct).

For presentation to a Verifier, the Holder perform the following (or equivalent) steps (in
addition to the checks described in Section 7.1 performed after receiving the SD-JWT):

Decide which Disclosures to release to the Verifier, obtaining consent if necessary (note that
if and how consent is attained is out of scope for this document).
Verify that each selected Disclosure satisfies one of the two following conditions:

The hash of the Disclosure is contained in the Issuer-signed JWT claims.
The hash of the Disclosure is contained in the claim value of another selected Disclosure.

Assemble the SD-JWT, including the Issuer-signed JWT and the selected Disclosures (see
Section 4 for the format).
If Key Binding is not required:

Send the SD-JWT to the Verifier.

MUST

MUST

1.
2.

MUST

1.

2.

a.
b.

3.

4.

a.

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 33

If Key Binding is required:

Create a Key Binding JWT tied to the SD-JWT.
Assemble the SD-JWT+KB by concatenating the SD-JWT and the Key Binding JWT.
Send the SD-JWT+KB to the Verifier.

5.

a.
b.
c.

7.3. Verification by the Verifier
Upon receiving a presentation from a Holder, in the form of either an SD-JWT or an SD-JWT+KB,
in addition to the checks described in Section 7.1, Verifiers need to ensure that

if Key Binding is required, then the Holder has provided an SD-JWT+KB, and
the Key Binding JWT is signed by the Holder and valid.

To this end, Verifiers follow the following steps (or equivalent):

Determine if Key Binding is to be checked according to the Verifier's policy for the use case
at hand. This decision be based on whether or not a Key Binding JWT is provided
by the Holder. Refer to Section 9.5 for details.
If Key Binding is required and the Holder has provided an SD-JWT (without Key Binding),
the Verifier reject the presentation.
If the Holder has provided an SD-JWT+KB, parse it into an SD-JWT and a Key Binding JWT.
Process the SD-JWT as defined in Section 7.1 to validate the presentation and extract the
payload.
If Key Binding is required:

Determine the public key for the Holder from the SD-JWT (see Section 4.1.2).
Ensure that a signing algorithm was used that was deemed secure for the application.
Refer to , Sections 3.1 and 3.2 for details. The "none" algorithm be
accepted.
Validate the signature over the Key Binding JWT per .
Check that the typ of the Key Binding JWT is kb+jwt (see Section 4.3).
Check that the creation time of the Key Binding JWT, as determined by the iat claim, is
within an acceptable window.
Determine that the Key Binding JWT is bound to the current transaction and was created
for this Verifier (replay detection) by validating nonce and aud claims.
Calculate the digest over the Issuer-signed JWT and Disclosures as defined in Section 4.3.1
and verify that it matches the value of the sd_hash claim in the Key Binding JWT.
Check that the Key Binding JWT is a valid JWT in all other respects, per and

.

If any step fails, the presentation is not valid and processing be aborted.

Otherwise, the Processed SD-JWT Payload can be passed to the application to be used for the
intended purpose.

•
•

MUST

1.
MUST NOT

2.
MUST

3.
4.

5.

a.
b.

[RFC8725] MUST NOT

c. Section 5.2 of [RFC7515]
d.
e.

f.

g.

h. [RFC7519]
[RFC8725]

MUST

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 34

https://rfc-editor.org/rfc/rfc8725#section-3.1
https://rfc-editor.org/rfc/rfc8725#section-3.2
https://rfc-editor.org/rfc/rfc7515#section-5.2

8. JWS JSON Serialization
This section describes an alternative format for SD-JWTs and SD-JWT+KBs using the JWS JSON
Serialization from . Supporting this format is .[RFC7515] OPTIONAL

disclosures:

kb_jwt:

8.1. New Unprotected Header Parameters
For both the General and Flattened JSON Serialization, the SD-JWT or SD-JWT+KB is represented
as a JSON object according to . The following new unprotected header
parameters are defined:

An array of strings where each element is an individual Disclosure as described
in Section 4.2.

Present only in an SD-JWT+KB, the Key Binding JWT as described in Section 4.3.

In an SD-JWT+KB, kb_jwt be present when using the JWS JSON Serialization, and the
digest in the sd_hash claim be computed over the SD-JWT as described in Section 4.3.1.
This means that even when using the JWS JSON Serialization, the representation as a regular SD-
JWT Compact Serialization be created temporarily to calculate the digest. In detail, the SD-
JWT Compact Serialization part is built by concatenating the protected header, the payload, and
the signature of the JWS JSON serialized SD-JWT using a . character as a separator, and using
the Disclosures from the disclosures member of the unprotected header.

Unprotected headers other than disclosures are not covered by the digest, and therefore, as
usual, are not protected against tampering.

Section 7.2 of [RFC7515]

MUST
MUST

MUST

8.2. Flattened JSON Serialization
In the case of Flattened JSON Serialization, there is only one unprotected header.

The following is a non-normative example of a JWS JSON serialized SD-JWT as issued using the
Flattened JSON Serialization:

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 35

https://rfc-editor.org/rfc/rfc7515#section-7.2

The following is an SD-JWT+KB with two Disclosures:

{
 "header": {
 "disclosures": [
 "WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInN1YiIsICJqb2huX2RvZV80M
 iJd",
 "WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiSm9ob
 iJd",
 "WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImZhbWlseV9uYW1lIiwgIkRvZ
 SJd",
 "WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgImJpcnRoZGF0ZSIsICIxOTQwL
 TAxLTAxIl0"
]
 },
 "payload": "eyJfc2QiOiBbIjRIQm42YUlZM1d0dUdHV1R4LXFVajZjZGs2V0JwWn
 lnbHRkRmF2UGE3TFkiLCAiOHNtMVFDZjAyMXBObkhBQ0k1c1A0bTRLWmd5Tk9PQV
 ljVGo5SE5hQzF3WSIsICJjZ0ZkaHFQbzgzeFlObEpmYWNhQ2FhN3VQOVJDUjUwVk
 U1UjRMQVE5aXFVIiwgImpNQ1hWei0tOWI4eDM3WWNvRGZYUWluencxd1pjY2NmRl
 JCQ0ZHcWRHMm8iXSwgImlzcyI6ICJodHRwczovL2lzc3Vlci5leGFtcGxlLmNvbS
 IsICJpYXQiOiAxNjgzMDAwMDAwLCAiZXhwIjogMTg4MzAwMDAwMCwgIl9zZF9hbG
 ciOiAic2hhLTI1NiIsICJjbmYiOiB7Imp3ayI6IHsia3R5IjogIkVDIiwgImNydi
 I6ICJQLTI1NiIsICJ4IjogIlRDQUVSMTladnUzT0hGNGo0VzR2ZlNWb0hJUDFJTG
 lsRGxzN3ZDZUdlbWMiLCAieSI6ICJaeGppV1diWk1RR0hWV0tWUTRoYlNJaXJzVm
 Z1ZWNDRTZ0NGpUOUYySFpRIn19fQ",
 "protected":
 "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0",
 "signature": "3oOtvPxU3QdDWUmfGexVB5rWyON2f1atg5rL825bvvD1g7ywjKDK
 y2UHqHoH2QS4FA99JbG5qnlqFaGXFChfjQ"
}

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 36

{
 "header": {
 "disclosures": [
 "WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImZhbWlseV9uYW1lIiwgIkRvZ
 SJd",
 "WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiSm9ob
 iJd"
],
 "kb_jwt": "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImtiK2p3dCJ9.eyJub25j
 ZSI6ICIxMjM0NTY3ODkwIiwgImF1ZCI6ICJodHRwczovL3ZlcmlmaWVyLmV4YW
 1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF9oYXNoIjogIlZqdFBz
 Z1pwUVRSeEtKdkRwU0otblhsWktFOVo5TGdENEZ5Q3d3b05NUncifQ.GrDvJ2j
 hYNmUvqdwVEIrxeTFEuI5qKSM7I6P95JmA6Wko-FBB5vPGQn0wvmdgjLCE2iDR
 h1r82zchjmABQ3V8w"
 },
 "payload": "eyJfc2QiOiBbIjRIQm42YUlZM1d0dUdHV1R4LXFVajZjZGs2V0JwWn
 lnbHRkRmF2UGE3TFkiLCAiOHNtMVFDZjAyMXBObkhBQ0k1c1A0bTRLWmd5Tk9PQV
 ljVGo5SE5hQzF3WSIsICJjZ0ZkaHFQbzgzeFlObEpmYWNhQ2FhN3VQOVJDUjUwVk
 U1UjRMQVE5aXFVIiwgImpNQ1hWei0tOWI4eDM3WWNvRGZYUWluencxd1pjY2NmRl
 JCQ0ZHcWRHMm8iXSwgImlzcyI6ICJodHRwczovL2lzc3Vlci5leGFtcGxlLmNvbS
 IsICJpYXQiOiAxNjgzMDAwMDAwLCAiZXhwIjogMTg4MzAwMDAwMCwgIl9zZF9hbG
 ciOiAic2hhLTI1NiIsICJjbmYiOiB7Imp3ayI6IHsia3R5IjogIkVDIiwgImNydi
 I6ICJQLTI1NiIsICJ4IjogIlRDQUVSMTladnUzT0hGNGo0VzR2ZlNWb0hJUDFJTG
 lsRGxzN3ZDZUdlbWMiLCAieSI6ICJaeGppV1diWk1RR0hWV0tWUTRoYlNJaXJzVm
 Z1ZWNDRTZ0NGpUOUYySFpRIn19fQ",
 "protected":
 "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0",
 "signature": "3oOtvPxU3QdDWUmfGexVB5rWyON2f1atg5rL825bvvD1g7ywjKDK
 y2UHqHoH2QS4FA99JbG5qnlqFaGXFChfjQ"
}

8.3. General JSON Serialization
In the case of General JSON Serialization, there are multiple unprotected headers (one per
signature). If present, disclosures and kb_jwt be included in the first unprotected
header and be present in any following unprotected headers.

The following is a non-normative example of a presentation of a JWS JSON serialized SD-JWT,
including a Key Binding JWT using the General JSON Serialization:

MUST
MUST NOT

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 37

{
 "payload": "eyJfc2QiOiBbIjRIQm42YUlZM1d0dUdHV1R4LXFVajZjZGs2V0JwWn
 lnbHRkRmF2UGE3TFkiLCAiOHNtMVFDZjAyMXBObkhBQ0k1c1A0bTRLWmd5Tk9PQV
 ljVGo5SE5hQzF3WSIsICJjZ0ZkaHFQbzgzeFlObEpmYWNhQ2FhN3VQOVJDUjUwVk
 U1UjRMQVE5aXFVIiwgImpNQ1hWei0tOWI4eDM3WWNvRGZYUWluencxd1pjY2NmRl
 JCQ0ZHcWRHMm8iXSwgImlzcyI6ICJodHRwczovL2lzc3Vlci5leGFtcGxlLmNvbS
 IsICJpYXQiOiAxNjgzMDAwMDAwLCAiZXhwIjogMTg4MzAwMDAwMCwgIl9zZF9hbG
 ciOiAic2hhLTI1NiIsICJjbmYiOiB7Imp3ayI6IHsia3R5IjogIkVDIiwgImNydi
 I6ICJQLTI1NiIsICJ4IjogIlRDQUVSMTladnUzT0hGNGo0VzR2ZlNWb0hJUDFJTG
 lsRGxzN3ZDZUdlbWMiLCAieSI6ICJaeGppV1diWk1RR0hWV0tWUTRoYlNJaXJzVm
 Z1ZWNDRTZ0NGpUOUYySFpRIn19fQ",
 "signatures": [
 {
 "header": {
 "disclosures": [
 "WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImZhbWlseV9uYW1lIiwgI
 kRvZSJd",
 "WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiS
 m9obiJd"
],
 "kid": "issuer-key-1",
 "kb_jwt": "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImtiK2p3dCJ9.eyJu
 b25jZSI6ICIxMjM0NTY3ODkwIiwgImF1ZCI6ICJodHRwczovL3ZlcmlmaW
 VyLmV4YW1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF9oYXNo
 IjogInFieUlXUDNwaFZneEVzRFJpd2R3OVc2QkozZHhpUEx1bWNZcFBidT
 RFYjgifQ.VyZqxaVHh1XE6M-kuax_7Laq42uFDrx17lLG2jluyKgy_PqC8
 5z4DVpISdMZDdSANGs-0zN2N7xnM-E1Pg0sOw"
 },
 "protected":
 "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0",
 "signature": "dz1N3uvhVHJjldyXwppmBLieTj0vuBMbzL06rnrLIuxEQb9B
 HoIOwGrWh-UadW4orRpEiEtjf7xyHDONMJ6tBw"
 },
 {
 "header": {
 "kid": "issuer-key-2"
 },
 "protected":
 "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0",
 "signature": "kuXio_U88RH_-fihAPET4AFUjj0BpxsT6yddMFIr6pfHKtAe
 0FOJNWQxU42rfnORuNQNTgGsf2A8LjEba5inNg"
 }
]
}

8.4. Verification of the JWS JSON Serialized SD-JWT
Verification of the JWS JSON serialized SD-JWT follows the rules defined in Section 3.4, except for
the following aspects:

The SD-JWT or SD-JWT+KB does not need to be split into component parts and the
Disclosures can be found in the disclosures member of the unprotected header.
To verify the digest in sd_hash in the Key Binding JWT of an SD-JWT+KB, the Verifier
assemble the string to be hashed as described in Section 8.1.

•

• MUST

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 38

9. Security Considerations
The security considerations help achieve the following properties:

Selective Disclosure:
An adversary in the role of the Verifier cannot obtain information from an SD-JWT about any
claim name or claim value that was not explicitly disclosed by the Holder unless that
information can be derived from other disclosed claims or sources other than the presented
SD-JWT.

Integrity:
A malicious Holder cannot modify names or values of selectively disclosable claims without
detection by the Verifier.

Additionally, as described in Section 9.5, the application of Key Binding can ensure that the
presenter of an SD-JWT credential is the Holder of the credential.

9.1. Mandatory Signing of the Issuer-Signed JWT
The JWT be signed by the Issuer to protect the integrity of the issued claims. An attacker
can modify or add claims if this JWT is not signed (e.g., change the "email" attribute to take over
the victim's account or add an attribute indicating a fake academic qualification).

The Verifier always check the signature of the Issuer-signed JWT to ensure that it has not
been tampered with since its issuance. The Issuer-signed JWT be rejected if the signature
cannot be verified.

The security of the Issuer-signed JWT depends on the security of the signature algorithm. Per the
last paragraph of , it is an application-specific decision to choose the
appropriate JWS algorithm from , including post-quantum algorithms, when they are
ready.

MUST

MUST
MUST

Section 5.2 of [RFC7515]
[JWS.Algs]

9.2. Manipulation of Disclosures
Holders can manipulate the Disclosures by changing the values of the claims before sending
them to the Verifier. The Verifier check the Disclosures to ensure that the values of the
claims are correct, i.e., the digests of the Disclosures are actually present in the signed SD-JWT.

A naive Verifier that extracts all claim values from the Disclosures (without checking the hashes)
and inserts them into the SD-JWT payload is vulnerable to this attack. However, in a structured
SD-JWT, without comparing the digests of the Disclosures, such an implementation could not
determine the correct place in a nested object where a claim needs to be inserted. Therefore, the
naive implementation would not only be insecure, but also incorrect.

The steps described in Section 7.3 ensure that the Verifier checks the Disclosures correctly.

MUST

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 39

https://rfc-editor.org/rfc/rfc7515#section-5.2

9.3. Entropy of the Salt
The security model that conceals the plaintext claims relies on the high entropy random data of
the salt as additional input to the hash function. The randomness ensures that the same
plaintext claim value does not produce the same digest value. It also makes it infeasible to guess
the preimage of the digest (thereby learning the plaintext claim value) by enumerating the
potential value space for a claim into the hash function to search for a matching digest value. It
is therefore vitally important that unrevealed salts cannot be learned or guessed, even if other
salts have been revealed. As such, each salt be created in such a manner that it is
cryptographically random, sufficiently long, and has high enough entropy that it is infeasible to
guess. A new salt be chosen for each claim independently of other salts. See "Randomness
Requirements for Security" for considerations on generating random values.

The minimum length of the randomly generated portion of the salt is 128 bits.

The Issuer ensure that a new salt value is chosen for each claim, including when the same
claim name occurs at different places in the structure of the SD-JWT. This can be seen in the
example in Appendix A.2, where multiple claims with the name type appear, but each of them
has a different salt.

MUST

MUST
[RFC4086]

RECOMMENDED

MUST

9.4. Choice of a Hash Algorithm
To ensure privacy of claims that are selectively disclosable but are not being disclosed in a given
presentation, the hash function ensure that it is infeasible to calculate any portion of the
three elements (salt, claim name, claim value) from a particular digest. This implies the hash
function be preimage resistant and should also not allow an observer to infer any partial
information about the undisclosed content. In the terminology of cryptographic commitment
schemes, the hash function needs to be computationally hiding.

To ensure the integrity of selectively disclosable claims, the hash function be second-
preimage resistant. That is, for any combination of salt, claim name, and claim value, it is
infeasible to find a different combination of salt, claim name, and claim value that results in the
same digest.

The hash function also be collision resistant. Although not essential to the anticipated
uses of SD-JWT, without collision resistance an Issuer may be able to find multiple Disclosures
that have the same hash value. In which case, the signature over the SD-JWT would not then
commit the Issuer to the contents of the JWT. The collision resistance of the hash function used
to generate digests match the collision resistance of the hash function used by the
signature scheme. For example, use of the ES512 signature algorithm would require a Disclosure
hash function with at least 256-bit collision resistance, such as SHA-512.

Inclusion in the "Named Information Hash Algorithm Registry" alone does not
indicate a hash algorithm's suitability for use in SD-JWT (it contains several heavily truncated
digests, such as sha-256-32 and sha-256-64, which are unfit for security applications).

MUST

MUST

MUST

SHOULD

SHOULD

[Hash.Algs]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 40

9.5. Key Binding
Key Binding aims to ensure that the presenter of an SD-JWT credential is actually the Holder of
the credential. An SD-JWT compatible with Key Binding contains a public key, or a reference to a
public key, that corresponds to a private key possessed by the Holder. The Verifier requires that
the Holder prove possession of that private key when presenting the SD-JWT credential.

Without Key Binding, a Verifier only gets the proof that the credential was issued by a particular
Issuer, but the credential itself can be replayed by anyone who gets access to it. This means that,
for example, after the credential was leaked to an attacker, the attacker can present the
credential to any Verifier that does not require a binding. Also, a malicious Verifier to which the
Holder presented the credential can present the credential to another Verifier if that other
Verifier does not require Key Binding.

Verifiers decide whether Key Binding is required for a particular use case before verifying
a credential. This decision can be informed by various factors including but not limited to the
following: business requirements, the use case, the type of binding between a Holder and its
credential that is required for a use case, the sensitivity of the use case, the expected properties
of a credential, the type and contents of other credentials expected to be presented at the same
time, etc.

It is important that a Verifier not make its security policy decisions based on data that can be
influenced by an attacker. For this reason, when deciding whether or not Key Binding is
required, Verifiers take into account whether the Holder has provided an SD-JWT+KB
or a bare SD-JWT; otherwise, an attacker could strip the KB-JWT from an SD-JWT+KB and
present the resultant SD-JWT.

Furthermore, Verifiers should be aware that Key Binding information may have been added to
an SD-JWT in a format that they do not recognize and therefore may not be able to tell whether
or not the SD-JWT supports Key Binding.

If a Verifier determines that Key Binding is required for a particular use case and the Holder
presents either a bare SD-JWT or an SD-JWT+KB with an invalid Key Binding JWT, then the
Verifier will reject the presentation when following the verification steps described in Section
7.3.

MUST

MUST NOT

9.6. Concealing Claim Names
SD-JWT ensures that names of claims that are selectively disclosable are always concealed
unless the claim's value is disclosed. This prevents an attacker from learning the names of such
claims. However, the names of the claims that are permanently disclosed are not hidden. This
includes the keys of objects that themselves are not concealed, but contain concealed claims.
This limitation needs to be taken into account by Issuers when creating the structure of the SD-
JWT.

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 41

9.7. Selectively Disclosable Validity Claims
An Issuer allow any content to be selectively disclosable that is critical for evaluating
the SD-JWT's authenticity or validity. The exact list of such content will depend on the
application and be listed by any application-specific profiles of SD-JWT. The following is
a list of registered JWT claim names that be considered as security critical:

iss (Issuer)
aud (Audience), although issuers allow individual entries in the array to be selectively
disclosable
exp (Expiration Time)
nbf (Not Before)
cnf (Confirmation Key)

Issuers will typically include claims controlling the validity of the SD-JWT in plaintext in the SD-
JWT payload, but there is no guarantee they will do so. Therefore, Verifiers cannot reliably
depend on that and need to operate as though security-critical claims might be selectively
disclosable.

Verifiers therefore ensure that all claims they deem necessary for checking the validity of
an SD-JWT in the given context are present (or disclosed, respectively) during validation of the
SD-JWT. This is implemented in the last step of the verification defined in Section 7.1.

The precise set of required validity claims will typically be defined by operating environment
rules, an application-specific profile, or the credential format, and include claims other
than those listed herein.

MUST NOT

SHOULD
SHOULD

•
• MAY

•
•
•

MUST

MAY

9.8. Distribution and Rotation of Issuer Signature Verification Key
This specification does not define how signature verification keys of Issuers are distributed to
Verifiers. However, it is that Issuers publish their keys in a way that allows for
efficient and secure key rotation and revocation, for example, by publishing keys at a predefined
location using the JSON Web Key Set (JWKS) format . Verifiers need to ensure that they
are not using expired or revoked keys for signature verification using reasonable and
appropriate means for the given key-distribution method.

RECOMMENDED

[RFC7517]

9.9. Forwarding Credentials
Any entity in possession of an SD-JWT (including an SD-JWT extracted from an SD-JWT+KB) can
forward it to any third party that does not enforce Key Binding. When doing so, that entity may
remove Disclosures such that the receiver learns only a subset of the claims contained in the
original SD-JWT.

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 42

For example, a device manufacturer might produce an SD-JWT containing information about
upstream and downstream supply chain contributors. Each supply chain party can verify only
the claims that were selectively disclosed to them by an upstream party, and they can choose to
further reduce the disclosed claims when presenting to a downstream party.

In some scenarios, this behavior could be desirable; if it is not, Issuers need to support and
Verifiers need to enforce Key Binding.

9.10. Integrity of SD-JWTs and SD-JWT+KBs
With an SD-JWT, the Issuer-signed JWT is integrity protected by the Issuer's signature, and the
values of the Disclosures are integrity protected by the digests included therein. The specific set
of Disclosures, however, is not integrity protected; the SD-JWT can be modified by adding or
removing Disclosures and still be valid.

With an SD-JWT+KB, the set of selected Disclosures is integrity protected. The signature in the
Key Binding JWT covers a specific SD-JWT, with a specific Issuer-signed JWT and a specific set of
Disclosures. Thus, the signature on the Key Binding JWT, in addition to proving Key Binding, also
assures the authenticity and integrity of the set of Disclosures the Holder disclosed. The set of
Disclosures in an SD-JWT+KB is the set that the Holder intended to send; no intermediate party
has added, removed, or modified the list of Disclosures.

9.11. Explicit Typing
 describes the use of explicit typing as one mechanism to prevent

confusion attacks (described in) in which one kind of JWT is mistaken
for another. SD-JWTs are also potentially subject to such confusion attacks, so in the absence of
other techniques, it is that application profiles of SD-JWT specify an explicit type
by including the typ header parameter when the SD-JWT is issued, and that Verifiers check this
value.

When explicit typing using the typ header is employed for an SD-JWT, it is that a
media type name of the format "application/example+sd-jwt" be used, where "example" is
replaced by the identifier for the specific kind of SD-JWT. The definition of typ in

 recommends that the "application/" prefix be omitted, so "example+sd-jwt" would be
the value of the typ header parameter.

Use of the cty content type header parameter to indicate the content type of the SD-JWT payload
can also be used to distinguish different types of JSON objects or different kinds of JWT Claim
Sets.

Section 3.11 of [RFC8725]
Section 2.8 of [RFC8725]

RECOMMENDED

RECOMMENDED

Section 4.1.9 of
[RFC7515]

9.12. Key Pair Generation and Lifecycle Management
Implementations of SD-JWT rely on asymmetric cryptographic keys and must therefore ensure
that key pair generation, handling, storage, and lifecycle management are performed securely.

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 43

https://rfc-editor.org/rfc/rfc8725#section-3.11
https://rfc-editor.org/rfc/rfc8725#section-2.8
https://rfc-editor.org/rfc/rfc7515#section-4.1.9

While the specific mechanisms for secure key management are out of scope for this document,
implementers should follow established best practices, such as those outlined in NIST SP 800-57
Part 1 . This includes:

Secure Generation: Using cryptographically secure methods and random number generators.
Secure Storage: Protecting private keys from unauthorized access.
Lifecycle Management: Ensuring secure key rotation, revocation, and disposal as needed.

Appropriate key management is essential, as any compromise can lead to unauthorized
disclosure or forgery of SD-JWTs.

[NIST.SP.800-57pt1r5]

•
•
•

10. Privacy Considerations

10.1. Unlinkability
Unlinkability is a property whereby adversaries are prevented from correlating credential
presentations of the same user beyond the user's consent. Without unlinkability, an adversary
might be able to learn more about the user than the user intended to disclose, for example:

Cooperating Verifiers might want to track users across services to build advertising profiles.
Issuers might want to track where users present their credentials to enable surveillance.
After a data breach at multiple Verifiers, publicly available information might allow linking
identifiable information presented to Verifier A with originally anonymous information
presented to Verifier B, therefore revealing the identities of users of Verifier B.

The following types of unlinkability are discussed below:

Presentation Unlinkability: A Verifier should not be able to link two presentations of the
same credential.
Verifier/Verifier Unlinkability: The presentations made to two different Verifiers should not
reveal that the same credential was presented (e.g., if the two Verifiers collude, or if they are
forced by a third party to reveal the presentations made to them, or data leaks from one
Verifier to the other).
Issuer/Verifier Unlinkability (Honest Verifier): An Issuer of a credential should not be able to
know that a user presented this credential unless the Verifier is sharing presentation data
with the Issuer accidentally, deliberately, or because it is forced to do so.
Issuer/Verifier Unlinkability (Careless/Colluding/Compromised/Coerced Verifier): >An Issuer
of a credential should under no circumstances be able to tell that a user presented this
credential to a certain Verifier. In particular, this includes cases when the Verifier
accidentally or deliberately shares presentation data with the Issuer or is forced to do so.

In all cases, unlinkability is limited to cases where the disclosed claims do not contain
information that directly or indirectly identifies the user. For example, when a taxpayer
identification number is contained in the disclosed claims, the Issuer and Verifier can easily link

•
•
•

•

•

•

•

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 44

the user's transactions. However, when the user only discloses a birthdate to one Verifier and a
postal code to another Verifier, the two Verifiers should not be able to determine that they were
interacting with the same user.

Issuer/Verifier unlinkability with a careless, colluding, compromised, or coerced Verifier cannot
be achieved in salted hash-based selective disclosure approaches, such as SD-JWT, as the issued
credential with the Issuer's signature is directly presented to the Verifier, who can forward it to
the Issuer. To reduce the risk of revealing the data later on, Section 10.2 defines requirements to
reduce the amount of data stored.

In considering Issuer/Verifier unlinkability, it is important to note the potential for an
asymmetric power dynamic between Issuers and Verifiers. This dynamic can compel an
otherwise Honest Verifier into collusion. For example, a governmental Issuer might have the
authority to mandate that a Verifier report back information about the credentials presented to
it. Legal requirements could further enforce this, explicitly undermining Issuer/Verifier
unlinkability. Similarly, a large service provider issuing credentials might implicitly pressure
Verifiers into collusion by incentivizing participation in their larger operating environment.
Deployers of SD-JWT must be aware of these potential power dynamics, mitigate them as much
as possible, and/or make the risks transparent to the user.

Contrary to that, Issuer/Verifier unlinkability with an Honest Verifier can generally be achieved.
However, a callback from the Verifier to the Issuer, such as a revocation check, could potentially
disclose information about the credential's usage to the Issuer. Where such callbacks are
necessary, they need to be executed in a manner that preserves privacy and does not disclose
details about the credential to the Issuer (the mechanism described in is an example of an
approach that discloses minimal information towards the Issuer). It is important to note that the
timing of such requests could potentially serve as a side channel.

Verifier/Verifier unlinkability and presentation unlinkability can be achieved using batch
issuance: A batch of credentials based on the same claims is issued to the Holder instead of just a
single credential. The Holder can then use a different credential for each Verifier or even for
each session with a Verifier. New Key Binding keys and salts be used for each credential in
the batch to ensure that the Verifiers cannot link the credentials using these values. Likewise,
claims carrying time information, like iat, exp, and nbf, either be randomized within a
time period considered appropriate (e.g., randomize iat within the last 24 hours and calculate
exp accordingly) or rounded (e.g., rounded down to the beginning of the day).

SD-JWT only conceals the value of claims that are not revealed. It does not meet the security
properties for anonymous credentials . In particular, colluding Verifiers and Issuers can
know when they have seen the same credential no matter what fields have been disclosed, even
when none have been disclosed. This behavior may not align with what users naturally
anticipate or are guided to expect from user-interface interactions, potentially causing them to
make decisions they might not otherwise make. Workarounds such as batch issuance, as
described above, help with keeping Verifiers from linking different presentations, but cannot
work for Issuer/Verifier unlinkability. This issue applies to all salted hash-based approaches,
including mDL/mDoc and SD-CWT .

[TSL]

MUST

MUST

[CL01]

[ISO.18013-5] [SD-CWT]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 45

10.2. Storage of User Data
Wherever user data is stored, it represents a potential target for an attacker. This target can be
of particularly high value when the data is signed by a trusted authority like an official national
identity service. For example, in OpenID Connect , signed ID Tokens can be stored
by Relying Parties. In the case of SD-JWT, Holders have to store SD-JWTs, and Issuers and
Verifiers may decide to do so as well.

Not surprisingly, a leak of such data risks revealing private data of users to third parties. Signed
user data, the authenticity of which can be easily verified by third parties, further exacerbates
the risk. As discussed in Section 9.5, leaked SD-JWTs may also allow attackers to impersonate
Holders unless Key Binding is enforced and the attacker does not have access to the Holder's
cryptographic keys.

Due to these risks, and the risks described in Section 10.1, systems implementing SD-JWT
 be designed to minimize the amount of data that is stored. All involved parties

 store SD-JWTs longer than strictly necessary, including in log files.

After Issuance, Issuers store the Issuer-signed JWT or the respective Disclosures.

Holders store SD-JWTs only in encrypted form, and, wherever possible, use hardware-
backed encryption in particular for the private Key Binding key. Decentralized storage of data,
e.g., on user devices, be preferred for user credentials over centralized storage. Expired
SD-JWTs be deleted as soon as possible.

After Verification, Verifiers store the Issuer-signed JWT or the respective
Disclosures. It may be sufficient to store the result of the verification and any user data that is
needed for the application.

Exceptions from the rules above can be made if there are strong requirements to do so (e.g.,
functional requirements or legal audit requirements), secure storage can be ensured, and the
privacy impact has been assessed.

[OpenID.Core]

SHOULD SHOULD
NOT

SHOULD NOT

SHOULD

SHOULD
SHOULD

SHOULD NOT

10.3. Confidentiality During Transport
If an SD-JWT or SD-JWT+KB is transmitted over an insecure channel during issuance or
presentation, an adversary may be able to intercept and read the user's personal data or
correlate the information with previous uses.

Usually, transport protocols for issuance and presentation of credentials are designed to protect
the confidentiality of the transmitted data, for example, by requiring the use of TLS.

This specification therefore considers the confidentiality of the data to be provided by the
transport protocol and does not specify any encryption mechanism.

Implementers ensure that the transport protocol provides confidentiality if the privacy of
user data or correlation attacks by passive observers are a concern.

MUST

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 46

To encrypt an SD-JWT or SD-JWT+KB during transit over potentially insecure or leakage-prone
channels, implementers use JSON Web Encryption (JWE) , encapsulating the SD-
JWT or SD-JWT+KB as the plaintext payload of the JWE. Especially, when an SD-JWT is
transmitted via a URL and information may be stored/cached in the browser or end up in web
server logs, the SD-JWT be encrypted using JWE.

MAY [RFC7516]

SHOULD

10.4. Decoy Digests
The use of decoy digests is when the number of claims (or the existence of
particular claims) can be a side channel disclosing information about otherwise undisclosed
claims. In particular, if a claim in an SD-JWT is present only if a certain condition is met (e.g., a
membership number is only contained if the user is a member of a group), the Issuer
add decoy digests when the condition is not met.

Decoy digests increase the size of the SD-JWT. The number of decoy digests (or whether to use
them at all) is a trade-off between the size of the SD-JWT and the privacy of the user's data.

RECOMMENDED

SHOULD

10.5. Issuer Identifier
An Issuer issuing only one type of SD-JWT might have privacy implications, because if the
Holder has an SD-JWT issued by that Issuer, its type and claim names can be determined.

For example, if a cancer research institute only issued SD-JWTs with cancer registry
information, it is possible to deduce that the Holder owning its SD-JWT is a cancer patient.

Moreover, the Issuer identifier alone may reveal information about the user.

For example, when a military organization or a drug rehabilitation center issues a vaccine
credential, Verifiers can deduce that the Holder is a military member or may have a substance
use disorder.

To mitigate this issue, a group of issuers may elect to use a common Issuer identifier. A group
signature scheme outside the scope of this specification may also be used, instead of an
individual signature.

11. IANA Considerations

Claim Name:
Claim Description:
Change Controller:
Specification Document(s):

11.1. JSON Web Token Claims Registration
IANA has registered the following Claims in the "JSON Web Token Claims" registry
established by .

_sd
Digests of Disclosures for object properties
IETF

Section 4.2.4.1 of RFC 9901

[JWT.Claims]
[RFC7519]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 47

Claim Name:
Claim Description:
Change Controller:
Specification Document(s):

Claim Name:
Claim Description:

Change Controller:
Specification Document(s):

Claim Name:
Claim Description:
Change Controller:
Specification Document(s):

...
Digest of the Disclosure for an array element
IETF

Section 4.2.4.2 of RFC 9901

_sd_alg
Hash algorithm used to generate Disclosure digests and digest over

presentation
IETF

Section 4.1.1 of RFC 9901

sd_hash
Digest of the SD-JWT to which the KB-JWT is tied
IETF

Section 4.3 of RFC 9901

11.2. Media Type Registrations
IANA has registered the following media types in the "Media Types" registry

 in the manner described in .

Note: For the media type value used in the typ header in the Issuer-signed JWT
itself, see Section 9.11.

[RFC2046]
[MediaTypes] [RFC6838]

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

11.2.1. SD-JWT Content

To indicate that the content is an SD-JWT:

application

sd-jwt

n/a

n/a

binary; application/sd-jwt values are a series of base64url-encoded
values (some of which may be the empty string) separated by period ('.') and tilde ('~')
characters.

See the Security Considerations sections of RFC 9901, , and
.

n/a

RFC 9901

[RFC7519]
[RFC8725]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 48

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):
File extension(s):
Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change Controller:

Applications requiring selective disclosure of integrity-
protected content.

n/a

n/a
n/a

n/a

Daniel Fett, mail@danielfett.de

COMMON

none

Daniel Fett, mail@danielfett.de

IETF

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):
File extension(s):
Macintosh file type code(s):

Person & email address to contact for further information:

11.2.2. JWS JSON Serialized SD-JWT Content

To indicate that the content is a JWS JSON serialized SD-JWT:

application

sd-jwt+json

n/a

n/a

binary; application/sd-jwt+json values are represented as a JSON
Object.

See the Security Considerations sections of RFC 9901 and .

n/a

RFC 9901

Applications requiring selective disclosure of content
protected by ETSI JAdES compliant signatures.

n/a

n/a
n/a

n/a

Daniel Fett, mail@danielfett.de

[RFC7515]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 49

Intended usage:

Restrictions on usage:

Author:

Change Controller:

COMMON

none

Daniel Fett, mail@danielfett.de

IETF

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):
File extension(s):
Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change Controller:

11.2.3. Key Binding JWT Content

To indicate that the content is a Key Binding JWT:

application

kb+jwt

n/a

n/a

binary; A Key Binding JWT is a JWT; JWT values are encoded as a
series of base64url-encoded values separated by period ('.') characters.

See the Security Considerations sections of RFC 9901, , and
.

n/a

RFC 9901

Applications utilizing a JWT-based proof-of-possession
mechanism.

n/a

n/a
n/a

n/a

Daniel Fett, mail@danielfett.de

COMMON

none

Daniel Fett, mail@danielfett.de

IETF

[RFC7519]
[RFC8725]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 50

[RFC2119]

[RFC5234]

[RFC6838]

[RFC7515]

[RFC7516]

12. References

12.1. Normative References

, , ,
, , March 1997,
.

 and ,
, , , , January 2008,

.

, , and ,
, , , , January

2013, .

, , and , , ,
, May 2015, .

 and , , ,
, May 2015, .

Name:

+suffix:

References:

Encoding considerations:

Interoperability considerations:

Fragment identifier considerations:

Security considerations:

Contact:

Author/Change controller:

11.3. Structured Syntax Suffixes Registration
IANA has registered "+sd-jwt" in the "Structured Syntax Suffixes" registry in
the manner described in , which can be used to indicate that the media type is
encoded as an SD-JWT.

SD-JWT

+sd-jwt

RFC 9901

binary; SD-JWT values are a series of base64url-encoded values
(some of which may be the empty string) separated by period ('.') or tilde ('~') characters.

n/a

n/a

See the Security Considerations sections of RFC 9901, , and
.

Daniel Fett, mail@danielfett.de

IETF

[StructuredSuffix]
[RFC6838]

[RFC7519]
[RFC8725]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and
Registration Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838

<https://www.rfc-editor.org/info/rfc6838>

Jones, M. Bradley, J. N. Sakimura "JSON Web Signature (JWS)" RFC 7515
DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. J. Hildebrand "JSON Web Encryption (JWE)" RFC 7516 DOI
10.17487/RFC7516 <https://www.rfc-editor.org/info/rfc7516>

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 51

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516

[RFC7519]

[RFC7800]

[RFC8174]

[RFC8725]

[CL01]

[Hash.Algs]

[ISO.18013-5]

[JWS.Algs]

[JWT.Claims]

[MediaTypes]

[NIST.SP.800-57pt1r5]

[OIDC.IDA]

[OpenID.Core]

[RFC2046]

, , and , , ,
, May 2015, .

, , and ,
, , , April 2016,

.

, ,
, , , May 2017,

.

, , and , ,
, , , February 2020,

.

12.2. Informative References

 and ,
,

, 2001, .

, ,
.

,
, , September 2021,

.

, ,
.

, , .

, , .

, ,
, , May 2020,

.

, , , , , and ,
, 1 October 2024,

.

, , , , and ,
, 15 December 2023,

.

 and ,
, , , November 1996,

.

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI
10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Jones, M. Bradley, J. H. Tschofenig "Proof-of-Possession Key Semantics for
JSON Web Tokens (JWTs)" RFC 7800 DOI 10.17487/RFC7800 <https://
www.rfc-editor.org/info/rfc7800>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Sheffer, Y. Hardt, D. M. Jones "JSON Web Token Best Current Practices"
BCP 225 RFC 8725 DOI 10.17487/RFC8725 <https://www.rfc-
editor.org/info/rfc8725>

Camenisch, J. A. Lysyanskaya "An Efficient System for Non-Transferable
Anonymous Credentials with Optional Anonymity Revocation" Cryptology
ePrint Archive, Paper 2001/019 <https://eprint.iacr.org/2001/019.pdf>

IANA "Named Information Hash Algorithm Registry" <https://www.iana.org/
assignments/named-information>

ISO/IEC "Personal identification - ISO-compliant driving license - Part 5: Mobile
driving license (mDL) application" ISO/IEC 18013-5:2021
<https://www.iso.org/standard/69084.html>

IANA "JSON Web Signature and Encryption Algorithms" <https://www.iana.org/
assignments/jose>

IANA "JSON Web Token Claims" <https://www.iana.org/assignments/jwt>

IANA "Media Types" <https://www.iana.org/assignments/media-types>

Barker, E. "Recommendation for Key Management: Part 1 - General"
NIST SP 800-57pt1r5 DOI 10.6028/NIST.SP.800-57pt1r5 <https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf>

Lodderstedt, T. Fett, D. Haine, M. Pulido, A. Lehmann, K. K. Koiwai
"OpenID Connect for Identity Assurance 1.0" <https://
openid.net/specs/openid-connect-4-identity-assurance-1_0.html>

Sakimura, N. Bradley, J. Jones, M. de Medeiros, B. C. Mortimore "OpenID
Connect Core 1.0 incorporating errata set 2" <https://
openid.net/specs/openid-connect-core-1_0.html>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046
<https://www.rfc-editor.org/info/rfc2046>

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 52

https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8725
https://www.rfc-editor.org/info/rfc8725
https://eprint.iacr.org/2001/019.pdf
https://www.iana.org/assignments/named-information
https://www.iana.org/assignments/named-information
https://www.iso.org/standard/69084.html
https://www.iana.org/assignments/jose
https://www.iana.org/assignments/jose
https://www.iana.org/assignments/jwt
https://www.iana.org/assignments/media-types
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc2046

[RFC4086]

[RFC7517]

[RFC8785]

[SD-CWT]

[SD-JWT-VC]

[StructuredSuffix]

[TSL]

[VC_DATA_v2.0]

, , and ,
, , , , June 2005,

.

, , , , May 2015,
.

, , and , ,
, , June 2020,
.

, , , and ,
, ,

, 20 October 2025,
.

, , and ,
, , , 6

November 2025,
.

, ,
.

, , and , ,
, , 20 October 2025,

.

, , , , and
, , ,

May 2025, .

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Jones, M. "JSON Web Key (JWK)" RFC 7517 DOI 10.17487/RFC7517
<https://www.rfc-editor.org/info/rfc7517>

Rundgren, A. Jordan, B. S. Erdtman "JSON Canonicalization Scheme (JCS)"
RFC 8785 DOI 10.17487/RFC8785 <https://www.rfc-editor.org/info/
rfc8785>

Prorock, M. Steele, O. Birkholz, H. R. Mahy "Selective Disclosure CBOR
Web Tokens (SD-CWT)" Work in Progress Internet-Draft, draft-ietf-spice-sd-
cwt-05 <https://datatracker.ietf.org/doc/html/draft-ietf-spice-sd-
cwt-05>

Terbu, O. Fett, D. B. Campbell "SD-JWT-based Verifiable Credentials (SD-
JWT VC)" Work in Progress Internet-Draft, draft-ietf-oauth-sd-jwt-vc-13

<https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-
vc-13>

IANA "Structured Syntax Suffixes" <https://www.iana.org/assignments/
media-type-structured-suffix>

Looker, T. Bastian, P. C. Bormann "Token Status List (TSL)" Work in
Progress Internet-Draft, draft-ietf-oauth-status-list-13 <https://
datatracker.ietf.org/doc/html/draft-ietf-oauth-status-list-13>

Sporny, M., Ed. Thiboeau, T., Ed. Jones, M. B., Ed. Cohen, G., Ed. I.
Herman, Ed. "Verifiable Credentials Data Model 2.0" W3C Recommendation

<https://www.w3.org/TR/vc-data-model-2.0/>

Appendix A. Additional Examples
The following examples are not normative and are provided for illustrative purposes only. In
particular, neither the structure of the claims nor the selection of selectively disclosable claims is
normative.

Line breaks have been added for readability.

A.1. Simple Structured SD-JWT
In this example, in contrast to Section 5, the Issuer decided to create a structured object for the
address claim, allowing individual members of the claim to be disclosed separately.

The following data about the user comprises the input JWT Claims Set used by the Issuer:

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 53

https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc8785
https://www.rfc-editor.org/info/rfc8785
https://datatracker.ietf.org/doc/html/draft-ietf-spice-sd-cwt-05
https://datatracker.ietf.org/doc/html/draft-ietf-spice-sd-cwt-05
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-vc-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-sd-jwt-vc-13
https://www.iana.org/assignments/media-type-structured-suffix
https://www.iana.org/assignments/media-type-structured-suffix
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-status-list-13
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-status-list-13
https://www.w3.org/TR/vc-data-model-2.0/

The Issuer also decided to add decoy digests to prevent the Verifier from deducing the true
number of claims.

The following payload is used for the SD-JWT:

{
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "given_name": "太郎",
 "family_name": "山田",
 "email": "\"unusual email address\"@example.jp",
 "phone_number": "+81-80-1234-5678",
 "address": {
 "street_address": "東京都港区芝公園４丁目２−８",
 "locality": "東京都",
 "region": "港区",
 "country": "JP"
 },
 "birthdate": "1940-01-01"
}

{
 "_sd": [
 "C9inp6YoRaEXR427zYJP7Qrk1WH_8bdwOA_YUrUnGQU",
 "Kuet1yAa0HIQvYnOVd59hcViO9Ug6J2kSfqYRBeowvE",
 "MMldOFFzB2d0umlmpTIaGerhWdU_PpYfLvKhh_f_9aY",
 "X6ZAYOII2vPN40V7xExZwVwz7yRmLNcVwt5DL8RLv4g",
 "Y34zmIo0QLLOtdMpXGwjBgLvr17yEhhYT0FGofR-aIE",
 "fyGp0WTwwPv2JDQln1lSiaeobZsMWA10bQ5989-9DTs",
 "ommFAicVT8LGHCB0uywx7fYuo3MHYKO15cz-RZEYM5Q",
 "s0BKYsLWxQQeU8tVlltM7MKsIRTrEIa1PkJmqxBBf5U"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "address": {
 "_sd": [
 "6aUhzYhZ7SJ1kVmagQAO3u2ETN2CC1aHheZpKnaF0_E",
 "AzLlFobkJ2xiaupREPyoJz-9-NSldB6Cgjr7fUyoHzg",
 "PzzcVu0qbMuBGSjulfewzkesD9zutOExn5EWNwkrQ-k",
 "b2Dkw0jcIF9rGg8_PF8ZcvncW7zwZj5ryBWvXfrpzek",
 "cPYJHIZ8Vu-f9CCyVub2UfgEk8jvvXezwK1p_JneeXQ",
 "glT3hrSU7fSWgwF5UDZmWwBTw32gnUldIhi8hGVCaV4",
 "rvJd6iq6T5ejmsBMoGwuNXh9qAAFATAci40oidEeVsA",
 "uNHoWYhXsZhVJCNE2Dqy-zqt7t69gJKy5QaFv7GrMX4"
]
 },
 "_sd_alg": "sha-256"
}

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 54

The digests in the SD-JWT payload reference the following Disclosures:

Claim sub:

SHA-256 Hash:

X6ZAYOII2vPN40V7xExZwVwz7yRmLNcVwt5DL8RLv4g

Disclosure:

WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInN1YiIsICI2YzVjMGE0OS1iNTg5LTQzMWQtYmFl
Ny0yMTkxMjJhOWVjMmMiXQ

Contents:

["2GLC42sKQveCfGfryNRN9w", "sub", "6c5c0a49-b589-431d-bae7-219122a9ec2c"]

Claim given_name:

SHA-256 Hash:

ommFAicVT8LGHCB0uywx7fYuo3MHYKO15cz-RZEYM5Q

Disclosure:

WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiXHU1OTJhXHU5MGNlIl0

Contents:

["eluV5Og3gSNII8EYnsxA_A", "given_name", "\u592a\u90ce"]

Claim family_name:

SHA-256 Hash:

C9inp6YoRaEXR427zYJP7Qrk1WH_8bdwOA_YUrUnGQU

Disclosure:

WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImZhbWlseV9uYW1lIiwgIlx1NWM3MVx1NzUzMCJd

Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "family_name", "\u5c71\u7530"]

Claim email:

SHA-256 Hash:

Kuet1yAa0HIQvYnOVd59hcViO9Ug6J2kSfqYRBeowvE

Disclosure:

WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgImVtYWlsIiwgIlwidW51c3VhbCBlbWFpbCBhZGRy
ZXNzXCJAZXhhbXBsZS5qcCJd

Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "email", "\"unusual email address\"@example.jp"]

Claim phone_number:

SHA-256 Hash:

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 55

s0BKYsLWxQQeU8tVlltM7MKsIRTrEIa1PkJmqxBBf5U

Disclosure:

WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgInBob25lX251bWJlciIsICIrODEtODAtMTIzNC01
Njc4Il0

Contents:

["Qg_O64zqAxe412a108iroA", "phone_number", "+81-80-1234-5678"]

Claim street_address:

SHA-256 Hash:

6aUhzYhZ7SJ1kVmagQAO3u2ETN2CC1aHheZpKnaF0_E

Disclosure:

WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgInN0cmVldF9hZGRyZXNzIiwgIlx1Njc3MVx1NGVh
Y1x1OTBmZFx1NmUyZlx1NTMzYVx1ODI5ZFx1NTE2Y1x1NTcxMlx1ZmYxNFx1NGUwMVx1NzZlZVx1
ZmYxMlx1MjIxMlx1ZmYxOCJd

Contents:

["AJx-095VPrpTtN4QMOqROA", "street_address",
"\u6771\u4eac\u90fd\u6e2f\u533a\u829d\u516c\u5712\uff14\u4e01\u76ee\uff12\u2
212\uff18"]

Claim locality:

SHA-256 Hash:

rvJd6iq6T5ejmsBMoGwuNXh9qAAFATAci40oidEeVsA

Disclosure:

WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgImxvY2FsaXR5IiwgIlx1Njc3MVx1NGVhY1x1OTBm
ZCJd

Contents:

["Pc33JM2LchcU_lHggv_ufQ", "locality", "\u6771\u4eac\u90fd"]

Claim region:

SHA-256 Hash:

PzzcVu0qbMuBGSjulfewzkesD9zutOExn5EWNwkrQ-k

Disclosure:

WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgInJlZ2lvbiIsICJcdTZlMmZcdTUzM2EiXQ

Contents:

["G02NSrQfjFXQ7Io09syajA", "region", "\u6e2f\u533a"]

Claim country:

SHA-256 Hash:

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 56

uNHoWYhXsZhVJCNE2Dqy-zqt7t69gJKy5QaFv7GrMX4

Disclosure:

WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImNvdW50cnkiLCAiSlAiXQ

Contents:

["lklxF5jMYlGTPUovMNIvCA", "country", "JP"]

Claim birthdate:

SHA-256 Hash:

MMldOFFzB2d0umlmpTIaGerhWdU_PpYfLvKhh_f_9aY

Disclosure:

WyJ5eXRWYmRBUEdjZ2wyckk0QzlHU29nIiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAxIl0

Contents:

["yytVbdAPGcgl2rI4C9GSog", "birthdate", "1940-01-01"]

The following decoy digests are added:

AzLlFobkJ2xiaupREPyoJz-9-NSldB6Cgjr7fUyoHzg

cPYJHIZ8Vu-f9CCyVub2UfgEk8jvvXezwK1p_JneeXQ

glT3hrSU7fSWgwF5UDZmWwBTw32gnUldIhi8hGVCaV4

b2Dkw0jcIF9rGg8_PF8ZcvncW7zwZj5ryBWvXfrpzek

fyGp0WTwwPv2JDQln1lSiaeobZsMWA10bQ5989-9DTs

Y34zmIo0QLLOtdMpXGwjBgLvr17yEhhYT0FGofR-aIE

The following is a presentation of the SD-JWT that discloses only region and country of the
address property:

◦

◦

•

◦

◦

◦

•
•
•
•
•
•

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 57

After validation, the Verifier will have the following Processed SD-JWT Payload available for
further handling:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
IkM5aW5wNllvUmFFWFI0Mjd6WUpQN1FyazFXSF84YmR3T0FfWVVyVW5HUVUiLCAiS3Vl
dDF5QWEwSElRdlluT1ZkNTloY1ZpTzlVZzZKMmtTZnFZUkJlb3d2RSIsICJNTWxkT0ZG
ekIyZDB1bWxtcFRJYUdlcmhXZFVfUHBZZkx2S2hoX2ZfOWFZIiwgIlg2WkFZT0lJMnZQ
TjQwVjd4RXhad1Z3ejd5Um1MTmNWd3Q1REw4Ukx2NGciLCAiWTM0em1JbzBRTExPdGRN
cFhHd2pCZ0x2cjE3eUVoaFlUMEZHb2ZSLWFJRSIsICJmeUdwMFdUd3dQdjJKRFFsbjFs
U2lhZW9iWnNNV0ExMGJRNTk4OS05RFRzIiwgIm9tbUZBaWNWVDhMR0hDQjB1eXd4N2ZZ
dW8zTUhZS08xNWN6LVJaRVlNNVEiLCAiczBCS1lzTFd4UVFlVTh0VmxsdE03TUtzSVJU
ckVJYTFQa0ptcXhCQmY1VSJdLCAiaXNzIjogImh0dHBzOi8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE2ODMwMDAwMDAsICJleHAiOiAxODgzMDAwMDAwLCAiYWRkcmVz
cyI6IHsiX3NkIjogWyI2YVVoelloWjdTSjFrVm1hZ1FBTzN1MkVUTjJDQzFhSGhlWnBL
bmFGMF9FIiwgIkF6TGxGb2JrSjJ4aWF1cFJFUHlvSnotOS1OU2xkQjZDZ2pyN2ZVeW9I
emciLCAiUHp6Y1Z1MHFiTXVCR1NqdWxmZXd6a2VzRDl6dXRPRXhuNUVXTndrclEtayIs
ICJiMkRrdzBqY0lGOXJHZzhfUEY4WmN2bmNXN3p3Wmo1cnlCV3ZYZnJwemVrIiwgImNQ
WUpISVo4VnUtZjlDQ3lWdWIyVWZnRWs4anZ2WGV6d0sxcF9KbmVlWFEiLCAiZ2xUM2hy
U1U3ZlNXZ3dGNVVEWm1Xd0JUdzMyZ25VbGRJaGk4aEdWQ2FWNCIsICJydkpkNmlxNlQ1
ZWptc0JNb0d3dU5YaDlxQUFGQVRBY2k0MG9pZEVlVnNBIiwgInVOSG9XWWhYc1poVkpD
TkUyRHF5LXpxdDd0NjlnSkt5NVFhRnY3R3JNWDQiXX0sICJfc2RfYWxnIjogInNoYS0y
NTYifQ.EOZa2YqK8j4i7cqBDkfPcTMaFsgPwcx3aYJkFoMfvV46LxL-PPqrWsIyNukB4
x8Y2LT31eIHDc4Wg4XNzaqu4w~WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgInJlZ2
lvbiIsICJcdTZlMmZcdTUzM2EiXQ~WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImN
vdW50cnkiLCAiSlAiXQ~

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "address": {
 "region": "港区",
 "country": "JP"
 }
}

A.2. Complex Structured SD-JWT
In this example, an SD-JWT with a complex object is represented. The data structures defined in
OpenID Connect for Identity Assurance are used.

The Issuer is using the following user data as the input JWT Claims Set:

[OIDC.IDA]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 58

The following payload is used for the SD-JWT:

{
 "verified_claims": {
 "verification": {
 "trust_framework": "de_aml",
 "time": "2012-04-23T18:25Z",
 "verification_process": "f24c6f-6d3f-4ec5-973e-b0d8506f3bc7",
 "evidence": [
 {
 "type": "document",
 "method": "pipp",
 "time": "2012-04-22T11:30Z",
 "document": {
 "type": "idcard",
 "issuer": {
 "name": "Stadt Augsburg",
 "country": "DE"
 },
 "number": "53554554",
 "date_of_issuance": "2010-03-23",
 "date_of_expiry": "2020-03-22"
 }
 }
]
 },
 "claims": {
 "given_name": "Max",
 "family_name": "Müller",
 "nationalities": [
 "DE"
],
 "birthdate": "1956-01-28",
 "place_of_birth": {
 "country": "IS",
 "locality": "Þykkvabæjarklaustur"
 },
 "address": {
 "locality": "Maxstadt",
 "postal_code": "12344",
 "country": "DE",
 "street_address": "Weidenstraße 22"
 }
 }
 },
 "birth_middle_name": "Timotheus",
 "salutation": "Dr.",
 "msisdn": "49123456789"
}

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 59

The digests in the SD-JWT payload reference the following Disclosures:

Claim time:

SHA-256 Hash:

vTwe3raHIFYgFA3xaUD2aMxFz5oDo8iBu05qKlOg9Lw

Disclosure:

WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInRpbWUiLCAiMjAxMi0wNC0yM1QxODoyNVoiXQ

Contents:

["2GLC42sKQveCfGfryNRN9w", "time", "2012-04-23T18:25Z"]

Claim verification_process:

SHA-256 Hash:

7h4UE9qScvDKodXVCuoKfKBJpVBfXMF_TmAGVaZe3Sc

{
 "_sd": [
 "-aSznId9mWM8ocuQolCllsxVggq1-vHW4OtnhUtVmWw",
 "IKbrYNn3vA7WEFrysvbdBJjDDU_EvQIr0W18vTRpUSg",
 "otkxuT14nBiwzNJ3MPaOitOl9pVnXOaEHal_xkyNfKI"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "verified_claims": {
 "verification": {
 "_sd": [
 "7h4UE9qScvDKodXVCuoKfKBJpVBfXMF_TmAGVaZe3Sc",
 "vTwe3raHIFYgFA3xaUD2aMxFz5oDo8iBu05qKlOg9Lw"
],
 "trust_framework": "de_aml",
 "evidence": [
 {
 "...": "tYJ0TDucyZZCRMbROG4qRO5vkPSFRxFhUELc18CSl3k"
 }
]
 },
 "claims": {
 "_sd": [
 "RiOiCn6_w5ZHaadkQMrcQJf0Jte5RwurRs54231DTlo",
 "S_498bbpKzB6Eanftss0xc7cOaoneRr3pKr7NdRmsMo",
 "WNA-UNK7F_zhsAb9syWO6IIQ1uHlTmOU8r8CvJ0cIMk",
 "Wxh_sV3iRH9bgrTBJi-aYHNCLt-vjhX1sd-igOf_9lk",
 "_O-wJiH3enSB4ROHntToQT8JmLtz-mhO2f1c89XoerQ",
 "hvDXhwmGcJQsBCA2OtjuLAcwAMpDsaU0nkovcKOqWNE"
]
 }
 },
 "_sd_alg": "sha-256"
}

•

◦

◦

◦

•

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 60

Disclosure:

WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgInZlcmlmaWNhdGlvbl9wcm9jZXNzIiwgImYyNGM2
Zi02ZDNmLTRlYzUtOTczZS1iMGQ4NTA2ZjNiYzciXQ

Contents:

["eluV5Og3gSNII8EYnsxA_A", "verification_process", "f24c6f-6d3f-4ec5-973e-
b0d8506f3bc7"]

Claim type:

SHA-256 Hash:

G5EnhOAOoU9X_6QMNvzFXjpEA_Rc-AEtm1bG_wcaKIk

Disclosure:

WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgInR5cGUiLCAiZG9jdW1lbnQiXQ

Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "type", "document"]

Claim method:

SHA-256 Hash:

WpxQ4HSoEtcTmCCKOeDslB_emucYLz2oO8oHNr1bEVQ

Disclosure:

WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgIm1ldGhvZCIsICJwaXBwIl0

Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "method", "pipp"]

Claim time:

SHA-256 Hash:

9wpjVPWuD7PK0nsQDL8B06lmdgV3LVybhHydQpTNyLI

Disclosure:

WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgInRpbWUiLCAiMjAxMi0wNC0yMlQxMTozMFoiXQ

Contents:

["Qg_O64zqAxe412a108iroA", "time", "2012-04-22T11:30Z"]

Claim document:

SHA-256 Hash:

IhwFrWUB63RcZq9yvgZ0XPc7Gowh3O2kqXeBIswg1B4

Disclosure:

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 61

WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImRvY3VtZW50IiwgeyJ0eXBlIjogImlkY2FyZCIs
ICJpc3N1ZXIiOiB7Im5hbWUiOiAiU3RhZHQgQXVnc2J1cmciLCAiY291bnRyeSI6ICJERSJ9LCAi
bnVtYmVyIjogIjUzNTU0NTU0IiwgImRhdGVfb2ZfaXNzdWFuY2UiOiAiMjAxMC0wMy0yMyIsICJk
YXRlX29mX2V4cGlyeSI6ICIyMDIwLTAzLTIyIn1d

Contents:

["AJx-095VPrpTtN4QMOqROA", "document", {"type": "idcard", "issuer":
{"name": "Stadt Augsburg", "country": "DE"}, "number": "53554554",
"date_of_issuance": "2010-03-23", "date_of_expiry": "2020-03-22"}]

Array Entry:

SHA-256 Hash:

tYJ0TDucyZZCRMbROG4qRO5vkPSFRxFhUELc18CSl3k

Disclosure:

WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgeyJfc2QiOiBbIjl3cGpWUFd1RDdQSzBuc1FETDhC
MDZsbWRnVjNMVnliaEh5ZFFwVE55TEkiLCAiRzVFbmhPQU9vVTlYXzZRTU52ekZYanBFQV9SYy1B
RXRtMWJHX3djYUtJayIsICJJaHdGcldVQjYzUmNacTl5dmdaMFhQYzdHb3doM08ya3FYZUJJc3dn
MUI0IiwgIldweFE0SFNvRXRjVG1DQ0tPZURzbEJfZW11Y1lMejJvTzhvSE5yMWJFVlEiXX1d

Contents:

["Pc33JM2LchcU_lHggv_ufQ", {"_sd":
["9wpjVPWuD7PK0nsQDL8B06lmdgV3LVybhHydQpTNyLI",
"G5EnhOAOoU9X_6QMNvzFXjpEA_Rc-AEtm1bG_wcaKIk",
"IhwFrWUB63RcZq9yvgZ0XPc7Gowh3O2kqXeBIswg1B4",
"WpxQ4HSoEtcTmCCKOeDslB_emucYLz2oO8oHNr1bEVQ"]}]

Claim given_name:

SHA-256 Hash:

S_498bbpKzB6Eanftss0xc7cOaoneRr3pKr7NdRmsMo

Disclosure:

WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImdpdmVuX25hbWUiLCAiTWF4Il0

Contents:

["G02NSrQfjFXQ7Io09syajA", "given_name", "Max"]

Claim family_name:

SHA-256 Hash:

Wxh_sV3iRH9bgrTBJi-aYHNCLt-vjhX1sd-igOf_9lk

Disclosure:

WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImZhbWlseV9uYW1lIiwgIk1cdTAwZmNsbGVyIl0

Contents:

["lklxF5jMYlGTPUovMNIvCA", "family_name", "M\u00fcller"]

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 62

Claim nationalities:

SHA-256 Hash:

hvDXhwmGcJQsBCA2OtjuLAcwAMpDsaU0nkovcKOqWNE

Disclosure:

WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFIl1d

Contents:

["nPuoQnkRFq3BIeAm7AnXFA", "nationalities", ["DE"]]

Claim birthdate:

SHA-256 Hash:

WNA-UNK7F_zhsAb9syWO6IIQ1uHlTmOU8r8CvJ0cIMk

Disclosure:

WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgImJpcnRoZGF0ZSIsICIxOTU2LTAxLTI4Il0

Contents:

["5bPs1IquZNa0hkaFzzzZNw", "birthdate", "1956-01-28"]

Claim place_of_birth:

SHA-256 Hash:

RiOiCn6_w5ZHaadkQMrcQJf0Jte5RwurRs54231DTlo

Disclosure:

WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13IiwgInBsYWNlX29mX2JpcnRoIiwgeyJjb3VudHJ5Ijog
IklTIiwgImxvY2FsaXR5IjogIlx1MDBkZXlra3ZhYlx1MDBlNmphcmtsYXVzdHVyIn1d

Contents:

["5a2W0_NrlEZzfqmk_7Pq-w", "place_of_birth", {"country": "IS", "locality":
"\u00deykkvab\u00e6jarklaustur"}]

Claim address:

SHA-256 Hash:

_O-wJiH3enSB4ROHntToQT8JmLtz-mhO2f1c89XoerQ

Disclosure:

WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImFkZHJlc3MiLCB7ImxvY2FsaXR5IjogIk1heHN0
YWR0IiwgInBvc3RhbF9jb2RlIjogIjEyMzQ0IiwgImNvdW50cnkiOiAiREUiLCAic3RyZWV0X2Fk
ZHJlc3MiOiAiV2VpZGVuc3RyYVx1MDBkZmUgMjIifV0

Contents:

["y1sVU5wdfJahVdgwPgS7RQ", "address", {"locality": "Maxstadt",
"postal_code": "12344", "country": "DE", "street_address":
"Weidenstra\u00dfe 22"}]

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 63

Claim birth_middle_name:

SHA-256 Hash:

otkxuT14nBiwzNJ3MPaOitOl9pVnXOaEHal_xkyNfKI

Disclosure:

WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgImJpcnRoX21pZGRsZV9uYW1lIiwgIlRpbW90aGV1
cyJd

Contents:

["HbQ4X8srVW3QDxnIJdqyOA", "birth_middle_name", "Timotheus"]

Claim salutation:

SHA-256 Hash:

-aSznId9mWM8ocuQolCllsxVggq1-vHW4OtnhUtVmWw

Disclosure:

WyJDOUdTb3VqdmlKcXVFZ1lmb2pDYjFBIiwgInNhbHV0YXRpb24iLCAiRHIuIl0

Contents:

["C9GSoujviJquEgYfojCb1A", "salutation", "Dr."]

Claim msisdn:

SHA-256 Hash:

IKbrYNn3vA7WEFrysvbdBJjDDU_EvQIr0W18vTRpUSg

Disclosure:

WyJreDVrRjE3Vi14MEptd1V4OXZndnR3IiwgIm1zaXNkbiIsICI0OTEyMzQ1Njc4OSJd

Contents:

["kx5kF17V-x0JmwUx9vgvtw", "msisdn", "49123456789"]

The following is a presentation of the SD-JWT:

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 64

The Verifier will have this Processed SD-JWT Payload available after validation:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
Ii1hU3puSWQ5bVdNOG9jdVFvbENsbHN4VmdncTEtdkhXNE90bmhVdFZtV3ciLCAiSUti
cllObjN2QTdXRUZyeXN2YmRCSmpERFVfRXZRSXIwVzE4dlRScFVTZyIsICJvdGt4dVQx
NG5CaXd6TkozTVBhT2l0T2w5cFZuWE9hRUhhbF94a3lOZktJIl0sICJpc3MiOiAiaHR0
cHM6Ly9pc3N1ZXIuZXhhbXBsZS5jb20iLCAiaWF0IjogMTY4MzAwMDAwMCwgImV4cCI6
IDE4ODMwMDAwMDAsICJ2ZXJpZmllZF9jbGFpbXMiOiB7InZlcmlmaWNhdGlvbiI6IHsi
X3NkIjogWyI3aDRVRTlxU2N2REtvZFhWQ3VvS2ZLQkpwVkJmWE1GX1RtQUdWYVplM1Nj
IiwgInZUd2UzcmFISUZZZ0ZBM3hhVUQyYU14Rno1b0RvOGlCdTA1cUtsT2c5THciXSwg
InRydXN0X2ZyYW1ld29yayI6ICJkZV9hbWwiLCAiZXZpZGVuY2UiOiBbeyIuLi4iOiAi
dFlKMFREdWN5WlpDUk1iUk9HNHFSTzV2a1BTRlJ4RmhVRUxjMThDU2wzayJ9XX0sICJj
bGFpbXMiOiB7Il9zZCI6IFsiUmlPaUNuNl93NVpIYWFka1FNcmNRSmYwSnRlNVJ3dXJS
czU0MjMxRFRsbyIsICJTXzQ5OGJicEt6QjZFYW5mdHNzMHhjN2NPYW9uZVJyM3BLcjdO
ZFJtc01vIiwgIldOQS1VTks3Rl96aHNBYjlzeVdPNklJUTF1SGxUbU9VOHI4Q3ZKMGNJ
TWsiLCAiV3hoX3NWM2lSSDliZ3JUQkppLWFZSE5DTHQtdmpoWDFzZC1pZ09mXzlsayIs
ICJfTy13SmlIM2VuU0I0Uk9IbnRUb1FUOEptTHR6LW1oTzJmMWM4OVhvZXJRIiwgImh2
RFhod21HY0pRc0JDQTJPdGp1TEFjd0FNcERzYVUwbmtvdmNLT3FXTkUiXX19LCAiX3Nk
X2FsZyI6ICJzaGEtMjU2In0.QoWYWtikm-AtjmPnNVshbGXQl5raEz15PByTmZwfTQg9
W2O3oR6j2tMmysTZZawdo6mNLR_PsZSI25qrUpiNTg~WyIyR0xDNDJzS1F2ZUNmR2Zye
U5STjl3IiwgInRpbWUiLCAiMjAxMi0wNC0yM1QxODoyNVoiXQ~WyJQYzMzSk0yTGNoY1
VfbEhnZ3ZfdWZRIiwgeyJfc2QiOiBbIjl3cGpWUFd1RDdQSzBuc1FETDhCMDZsbWRnVj
NMVnliaEh5ZFFwVE55TEkiLCAiRzVFbmhPQU9vVTlYXzZRTU52ekZYanBFQV9SYy1BRX
RtMWJHX3djYUtJayIsICJJaHdGcldVQjYzUmNacTl5dmdaMFhQYzdHb3doM08ya3FYZU
JJc3dnMUI0IiwgIldweFE0SFNvRXRjVG1DQ0tPZURzbEJfZW11Y1lMejJvTzhvSE5yMW
JFVlEiXX1d~WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgIm1ldGhvZCIsICJwaXBwI
l0~WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImdpdmVuX25hbWUiLCAiTWF4Il0~W
yJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImZhbWlseV9uYW1lIiwgIk1cdTAwZmNsb
GVyIl0~WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImFkZHJlc3MiLCB7ImxvY2Fsa
XR5IjogIk1heHN0YWR0IiwgInBvc3RhbF9jb2RlIjogIjEyMzQ0IiwgImNvdW50cnkiO
iAiREUiLCAic3RyZWV0X2FkZHJlc3MiOiAiV2VpZGVuc3RyYVx1MDBkZmUgMjIifV0~

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 65

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "verified_claims": {
 "verification": {
 "trust_framework": "de_aml",
 "evidence": [
 {
 "method": "pipp"
 }
],
 "time": "2012-04-23T18:25Z"
 },
 "claims": {
 "given_name": "Max",
 "family_name": "Müller",
 "address": {
 "locality": "Maxstadt",
 "postal_code": "12344",
 "country": "DE",
 "street_address": "Weidenstraße 22"
 }
 }
 }
}

A.3. SD-JWT-Based Verifiable Credentials (SD-JWT VC)
This example shows how the artifacts defined in this specification could be used in the context
of SD-JWT-based Verifiable Credentials (SD-JWT VC) to represent a hypothetical
identity credential with the data of a fictional German citizen.

Key Binding is applied using the Holder's public key passed in a cnf claim in the SD-JWT.

The following citizen data is the input JWT Claims Set:

[SD-JWT-VC]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 66

The following is the issued SD-JWT:

{
 "vct": "urn:eudi:pid:de:1",
 "iss": "https://pid-issuer.bund.de.example",
 "given_name": "Erika",
 "family_name": "Mustermann",
 "birthdate": "1963-08-12",
 "address": {
 "street_address": "Heidestraße 17",
 "locality": "Köln",
 "postal_code": "51147",
 "country": "DE"
 },
 "nationalities": [
 "DE"
],
 "sex": 2,
 "birth_family_name": "Gabler",
 "place_of_birth": {
 "locality": "Berlin",
 "country": "DE"
 },
 "age_equal_or_over": {
 "12": true,
 "14": true,
 "16": true,
 "18": true,
 "21": true,
 "65": false
 },
 "age_in_years": 62,
 "age_birth_year": 1963,
 "issuance_date": "2020-03-11",
 "expiry_date": "2030-03-12",
 "issuing_authority": "DE",
 "issuing_country": "DE"
}

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImRjK3NkLWp3dCJ9.eyJfc2QiOiBbIjBIWm1
uU0lQejMzN2tTV2U3QzM0bC0tODhnekppLWVCSjJWel9ISndBVGciLCAiMUNybjAzV21
VZVJXcDR6d1B2dkNLWGw5WmFRcC1jZFFWX2dIZGFHU1dvdyIsICIycjAwOWR6dkh1VnJ
XclJYVDVrSk1tSG5xRUhIbldlME1MVlp3OFBBVEI4IiwgIjZaTklTRHN0NjJ5bWxyT0F
rYWRqZEQ1WnVsVDVBMjk5Sjc4U0xoTV9fT3MiLCAiNzhqZzc3LUdZQmVYOElRZm9FTFB
5TDBEWVBkbWZabzBKZ1ZpVjBfbEtDTSIsICI5MENUOEFhQlBibjVYOG5SWGtlc2p1MWk
wQnFoV3FaM3dxRDRqRi1xREdrIiwgIkkwMGZjRlVvRFhDdWNwNXl5MnVqcVBzc0RWR2F
XTmlVbGlOel9hd0QwZ2MiLCAiS2pBWGdBQTlONVdIRUR0UkloNHU1TW4xWnNXaXhoaFd
BaVgtQTRRaXdnQSIsICJMYWk2SVU2ZDdHUWFnWFI3QXZHVHJuWGdTbGQzejhFSWdfZnY
zZk9aMVdnIiwgIkxlemphYlJxaVpPWHpFWW1WWmY4Uk1pOXhBa2QzX00xTFo4VTdFNHM
zdTQiLCAiUlR6M3FUbUZOSGJwV3JyT01aUzQxRjQ3NGtGcVJ2M3ZJUHF0aDZQVWhsTSI
sICJXMTRYSGJVZmZ6dVc0SUZNanBTVGIxbWVsV3hVV2Y0Tl9vMmxka2tJcWM4IiwgIld
UcEk3UmNNM2d4WnJ1UnBYemV6U2JrYk9yOTNQVkZ2V3g4d29KM2oxY0UiLCAiX29oSlZ
JUUlCc1U0dXBkTlM0X3c0S2IxTUhxSjBMOXFMR3NoV3E2SlhRcyIsICJ5NTBjemMwSVN
DaHlfYnNiYTFkTW9VdUFPUTVBTW1PU2ZHb0VlODF2MUZVIl0sICJpc3MiOiAiaHR0cHM
6Ly9waWQtaXNzdWVyLmJ1bmQuZGUuZXhhbXBsZSIsICJpYXQiOiAxNjgzMDAwMDAwLCA

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 67

The following payload is used for the SD-JWT:

iZXhwIjogMTg4MzAwMDAwMCwgInZjdCI6ICJ1cm46ZXVkaTpwaWQ6ZGU6MSIsICJfc2R
fYWxnIjogInNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnY
iOiAiUC0yNTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbER
sczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U
2dDRqVDlGMkhaUSJ9fX0.ZOZQTqmq8X1mCyFXi0wbV8xjctX1AlEa5TkdnkKOyWvLfW4
0XDb5oj9tzkgwff5s44IDnrfAdgLtmTcojs97_Q~WyIyR0xDNDJzS1F2ZUNmR2ZyeU5S
Tjl3IiwgImdpdmVuX25hbWUiLCAiRXJpa2EiXQ~WyJlbHVWNU9nM2dTTklJOEVZbnN4Q
V9BIiwgImZhbWlseV9uYW1lIiwgIk11c3Rlcm1hbm4iXQ~WyI2SWo3dE0tYTVpVlBHYm
9TNXRtdlZBIiwgImJpcnRoZGF0ZSIsICIxOTYzLTA4LTEyIl0~WyJlSThaV205UW5LUH
BOUGVOZW5IZGhRIiwgInN0cmVldF9hZGRyZXNzIiwgIkhlaWRlc3RyYVx1MDBkZmUgMT
ciXQ~WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImxvY2FsaXR5IiwgIktcdTAwZjZ
sbiJd~WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgInBvc3RhbF9jb2RlIiwgIjUxMT
Q3Il0~WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgImNvdW50cnkiLCAiREUiXQ~WyJ
HMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImFkZHJlc3MiLCB7Il9zZCI6IFsiQUxaRVJ
zU241V05pRVhkQ2tzVzhJNXFRdzNfTnBBblJxcFNBWkR1ZGd3OCIsICJEX19XX3VZY3Z
SejN0dlVuSUp2QkRIaVRjN0NfX3FIZDB4Tkt3SXNfdzlrIiwgImVCcENYVTFKNWRoSDJ
nNHQ4UVlOVzVFeFM5QXhVVmJsVW9kb0xZb1BobzAiLCAieE9QeTktZ0pBTEs2VWJXS0Z
MUjg1Y09CeVVEM0FiTndGZzNJM1lmUUVfSSJdfV0~WyJsa2x4RjVqTVlsR1RQVW92TU5
JdkNBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFIl1d~WyJuUHVvUW5rUkZxM0JJZUFtN0
FuWEZBIiwgInNleCIsIDJd~WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgImJpcnRoX
2ZhbWlseV9uYW1lIiwgIkdhYmxlciJd~WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13Iiwg
ImxvY2FsaXR5IiwgIkJlcmxpbiJd~WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImN
vdW50cnkiLCAiREUiXQ~WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgInBsYWNlX29m
X2JpcnRoIiwgeyJfc2QiOiBbIktVVmlhYUxuWTVqU01MOTBHMjlPT0xFTlBiYlhmaFNq
U1BNalphR2t4QUUiLCAiWWJzVDBTNzZWcVhDVnNkMWpVU2x3S1BEZ21BTGVCMXVaY2xG
SFhmLVVTUSJdfV0~WyJDOUdTb3VqdmlKcXVFZ1lmb2pDYjFBIiwgIjEyIiwgdHJ1ZV0~
WyJreDVrRjE3Vi14MEptd1V4OXZndnR3IiwgIjE0IiwgdHJ1ZV0~WyJIM28xdXN3UDc2
MEZpMnllR2RWQ0VRIiwgIjE2IiwgdHJ1ZV0~WyJPQktsVFZsdkxnLUFkd3FZR2JQOFpB
IiwgIjE4IiwgdHJ1ZV0~WyJNMEpiNTd0NDF1YnJrU3V5ckRUM3hBIiwgIjIxIiwgdHJ1
ZV0~WyJEc210S05ncFY0ZEFIcGpyY2Fvc0F3IiwgIjY1IiwgZmFsc2Vd~WyJlSzVvNXB
IZmd1cFBwbHRqMXFoQUp3IiwgImFnZV9lcXVhbF9vcl9vdmVyIiwgeyJfc2QiOiBbIjF
0RWl5elBSWU9Lc2Y3U3NZR01nUFpLc09UMWxRWlJ4SFhBMHI1X0J3a2siLCAiQ1ZLbmx
5NVA5MHlKczNFd3R4UWlPdFVjemFYQ1lOQTRJY3pSYW9ock1EZyIsICJhNDQtZzJHcjh
fM0FtSncyWFo4a0kxeTBRel96ZTlpT2NXMlczUkxwWEdnIiwgImdrdnkwRnV2QkJ2ajB
oczJaTnd4Y3FPbGY4bXUyLWtDRTctTmIyUXh1QlUiLCAiaHJZNEhubUY1YjVKd0M5ZVR
6YUZDVWNlSVFBYUlkaHJxVVhRTkNXYmZaSSIsICJ5NlNGclZGUnlxNTBJYlJKdmlUWnF
xalFXejB0TGl1Q21NZU8wS3FhekdJIl19XQ~WyJqN0FEZGIwVVZiMExpMGNpUGNQMGV3
IiwgImFnZV9pbl95ZWFycyIsIDYyXQ~WyJXcHhKckZ1WDh1U2kycDRodDA5anZ3IiwgI
mFnZV9iaXJ0aF95ZWFyIiwgMTk2M10~WyJhdFNtRkFDWU1iSlZLRDA1bzNKZ3RRIiwgI
mlzc3VhbmNlX2RhdGUiLCAiMjAyMC0wMy0xMSJd~WyI0S3lSMzJvSVp0LXprV3ZGcWJV
TEtnIiwgImV4cGlyeV9kYXRlIiwgIjIwMzAtMDMtMTIiXQ~WyJjaEJDc3loeWgtSjg2S
S1hd1FEaUNRIiwgImlzc3VpbmdfYXV0aG9yaXR5IiwgIkRFIl0~WyJmbE5QMW5jTXo5T
GctYzlxTUl6XzlnIiwgImlzc3VpbmdfY291bnRyeSIsICJERSJd~

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 68

The digests in the SD-JWT payload reference the following Disclosures:

Claim given_name:

SHA-256 Hash:

0HZmnSIPz337kSWe7C34l--88gzJi-eBJ2Vz_HJwATg

Disclosure:

WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImdpdmVuX25hbWUiLCAiRXJpa2EiXQ

Contents:

["2GLC42sKQveCfGfryNRN9w", "given_name", "Erika"]

Claim family_name:

SHA-256 Hash:

I00fcFUoDXCucp5yy2ujqPssDVGaWNiUliNz_awD0gc

Disclosure:

WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImZhbWlseV9uYW1lIiwgIk11c3Rlcm1hbm4iXQ

{
 "_sd": [
 "0HZmnSIPz337kSWe7C34l--88gzJi-eBJ2Vz_HJwATg",
 "1Crn03WmUeRWp4zwPvvCKXl9ZaQp-cdQV_gHdaGSWow",
 "2r009dzvHuVrWrRXT5kJMmHnqEHHnWe0MLVZw8PATB8",
 "6ZNISDst62ymlrOAkadjdD5ZulT5A299J78SLhM__Os",
 "78jg77-GYBeX8IQfoELPyL0DYPdmfZo0JgViV0_lKCM",
 "90CT8AaBPbn5X8nRXkesju1i0BqhWqZ3wqD4jF-qDGk",
 "I00fcFUoDXCucp5yy2ujqPssDVGaWNiUliNz_awD0gc",
 "KjAXgAA9N5WHEDtRIh4u5Mn1ZsWixhhWAiX-A4QiwgA",
 "Lai6IU6d7GQagXR7AvGTrnXgSld3z8EIg_fv3fOZ1Wg",
 "LezjabRqiZOXzEYmVZf8RMi9xAkd3_M1LZ8U7E4s3u4",
 "RTz3qTmFNHbpWrrOMZS41F474kFqRv3vIPqth6PUhlM",
 "W14XHbUffzuW4IFMjpSTb1melWxUWf4N_o2ldkkIqc8",
 "WTpI7RcM3gxZruRpXzezSbkbOr93PVFvWx8woJ3j1cE",
 "_ohJVIQIBsU4updNS4_w4Kb1MHqJ0L9qLGshWq6JXQs",
 "y50czc0ISChy_bsba1dMoUuAOQ5AMmOSfGoEe81v1FU"
],
 "iss": "https://pid-issuer.bund.de.example",
 "iat": 1683000000,
 "exp": 1883000000,
 "vct": "urn:eudi:pid:de:1",
 "_sd_alg": "sha-256",
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 }
}

•

◦

◦

◦

•

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 69

Contents:

["eluV5Og3gSNII8EYnsxA_A", "family_name", "Mustermann"]

Claim birthdate:

SHA-256 Hash:

Lai6IU6d7GQagXR7AvGTrnXgSld3z8EIg_fv3fOZ1Wg

Disclosure:

WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImJpcnRoZGF0ZSIsICIxOTYzLTA4LTEyIl0

Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "birthdate", "1963-08-12"]

Claim street_address:

SHA-256 Hash:

ALZERsSn5WNiEXdCksW8I5qQw3_NpAnRqpSAZDudgw8

Disclosure:

WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgInN0cmVldF9hZGRyZXNzIiwgIkhlaWRlc3RyYVx1
MDBkZmUgMTciXQ

Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "street_address", "Heidestra\u00dfe 17"]

Claim locality:

SHA-256 Hash:

D__W_uYcvRz3tvUnIJvBDHiTc7C__qHd0xNKwIs_w9k

Disclosure:

WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImxvY2FsaXR5IiwgIktcdTAwZjZsbiJd

Contents:

["Qg_O64zqAxe412a108iroA", "locality", "K\u00f6ln"]

Claim postal_code:

SHA-256 Hash:

xOPy9-gJALK6UbWKFLR85cOByUD3AbNwFg3I3YfQE_I

Disclosure:

WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgInBvc3RhbF9jb2RlIiwgIjUxMTQ3Il0

Contents:

["AJx-095VPrpTtN4QMOqROA", "postal_code", "51147"]

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 70

Claim country:

SHA-256 Hash:

eBpCXU1J5dhH2g4t8QYNW5ExS9AxUVblUodoLYoPho0

Disclosure:

WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgImNvdW50cnkiLCAiREUiXQ

Contents:

["Pc33JM2LchcU_lHggv_ufQ", "country", "DE"]

Claim address:

SHA-256 Hash:

RTz3qTmFNHbpWrrOMZS41F474kFqRv3vIPqth6PUhlM

Disclosure:

WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImFkZHJlc3MiLCB7Il9zZCI6IFsiQUxaRVJzU241
V05pRVhkQ2tzVzhJNXFRdzNfTnBBblJxcFNBWkR1ZGd3OCIsICJEX19XX3VZY3ZSejN0dlVuSUp2
QkRIaVRjN0NfX3FIZDB4Tkt3SXNfdzlrIiwgImVCcENYVTFKNWRoSDJnNHQ4UVlOVzVFeFM5QXhV
VmJsVW9kb0xZb1BobzAiLCAieE9QeTktZ0pBTEs2VWJXS0ZMUjg1Y09CeVVEM0FiTndGZzNJM1lm
UUVfSSJdfV0

Contents:

["G02NSrQfjFXQ7Io09syajA", "address", {"_sd":
["ALZERsSn5WNiEXdCksW8I5qQw3_NpAnRqpSAZDudgw8",
"D__W_uYcvRz3tvUnIJvBDHiTc7C__qHd0xNKwIs_w9k",
"eBpCXU1J5dhH2g4t8QYNW5ExS9AxUVblUodoLYoPho0", "xOPy9-
gJALK6UbWKFLR85cOByUD3AbNwFg3I3YfQE_I"]}]

Claim nationalities:

SHA-256 Hash:

y50czc0ISChy_bsba1dMoUuAOQ5AMmOSfGoEe81v1FU

Disclosure:

WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFIl1d

Contents:

["lklxF5jMYlGTPUovMNIvCA", "nationalities", ["DE"]]

Claim sex:

SHA-256 Hash:

90CT8AaBPbn5X8nRXkesju1i0BqhWqZ3wqD4jF-qDGk

Disclosure:

WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgInNleCIsIDJd

Contents:

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 71

["nPuoQnkRFq3BIeAm7AnXFA", "sex", 2]

Claim birth_family_name:

SHA-256 Hash:

KjAXgAA9N5WHEDtRIh4u5Mn1ZsWixhhWAiX-A4QiwgA

Disclosure:

WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgImJpcnRoX2ZhbWlseV9uYW1lIiwgIkdhYmxlciJd

Contents:

["5bPs1IquZNa0hkaFzzzZNw", "birth_family_name", "Gabler"]

Claim locality:

SHA-256 Hash:

KUViaaLnY5jSML90G29OOLENPbbXfhSjSPMjZaGkxAE

Disclosure:

WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13IiwgImxvY2FsaXR5IiwgIkJlcmxpbiJd

Contents:

["5a2W0_NrlEZzfqmk_7Pq-w", "locality", "Berlin"]

Claim country:

SHA-256 Hash:

YbsT0S76VqXCVsd1jUSlwKPDgmALeB1uZclFHXf-USQ

Disclosure:

WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImNvdW50cnkiLCAiREUiXQ

Contents:

["y1sVU5wdfJahVdgwPgS7RQ", "country", "DE"]

Claim place_of_birth:

SHA-256 Hash:

1Crn03WmUeRWp4zwPvvCKXl9ZaQp-cdQV_gHdaGSWow

Disclosure:

WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgInBsYWNlX29mX2JpcnRoIiwgeyJfc2QiOiBbIktV
VmlhYUxuWTVqU01MOTBHMjlPT0xFTlBiYlhmaFNqU1BNalphR2t4QUUiLCAiWWJzVDBTNzZWcVhD
VnNkMWpVU2x3S1BEZ21BTGVCMXVaY2xGSFhmLVVTUSJdfV0

Contents:

["HbQ4X8srVW3QDxnIJdqyOA", "place_of_birth", {"_sd":
["KUViaaLnY5jSML90G29OOLENPbbXfhSjSPMjZaGkxAE",
"YbsT0S76VqXCVsd1jUSlwKPDgmALeB1uZclFHXf-USQ"]}]

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 72

Claim 12:

SHA-256 Hash:

gkvy0FuvBBvj0hs2ZNwxcqOlf8mu2-kCE7-Nb2QxuBU

Disclosure:

WyJDOUdTb3VqdmlKcXVFZ1lmb2pDYjFBIiwgIjEyIiwgdHJ1ZV0

Contents:

["C9GSoujviJquEgYfojCb1A", "12", true]

Claim 14:

SHA-256 Hash:

y6SFrVFRyq50IbRJviTZqqjQWz0tLiuCmMeO0KqazGI

Disclosure:

WyJreDVrRjE3Vi14MEptd1V4OXZndnR3IiwgIjE0IiwgdHJ1ZV0

Contents:

["kx5kF17V-x0JmwUx9vgvtw", "14", true]

Claim 16:

SHA-256 Hash:

hrY4HnmF5b5JwC9eTzaFCUceIQAaIdhrqUXQNCWbfZI

Disclosure:

WyJIM28xdXN3UDc2MEZpMnllR2RWQ0VRIiwgIjE2IiwgdHJ1ZV0

Contents:

["H3o1uswP760Fi2yeGdVCEQ", "16", true]

Claim 18:

SHA-256 Hash:

CVKnly5P90yJs3EwtxQiOtUczaXCYNA4IczRaohrMDg

Disclosure:

WyJPQktsVFZsdkxnLUFkd3FZR2JQOFpBIiwgIjE4IiwgdHJ1ZV0

Contents:

["OBKlTVlvLg-AdwqYGbP8ZA", "18", true]

Claim 21:

SHA-256 Hash:

1tEiyzPRYOKsf7SsYGMgPZKsOT1lQZRxHXA0r5_Bwkk

Disclosure:

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 73

WyJNMEpiNTd0NDF1YnJrU3V5ckRUM3hBIiwgIjIxIiwgdHJ1ZV0

Contents:

["M0Jb57t41ubrkSuyrDT3xA", "21", true]

Claim 65:

SHA-256 Hash:

a44-g2Gr8_3AmJw2XZ8kI1y0Qz_ze9iOcW2W3RLpXGg

Disclosure:

WyJEc210S05ncFY0ZEFIcGpyY2Fvc0F3IiwgIjY1IiwgZmFsc2Vd

Contents:

["DsmtKNgpV4dAHpjrcaosAw", "65", false]

Claim age_equal_or_over:

SHA-256 Hash:

2r009dzvHuVrWrRXT5kJMmHnqEHHnWe0MLVZw8PATB8

Disclosure:

WyJlSzVvNXBIZmd1cFBwbHRqMXFoQUp3IiwgImFnZV9lcXVhbF9vcl9vdmVyIiwgeyJfc2QiOiBb
IjF0RWl5elBSWU9Lc2Y3U3NZR01nUFpLc09UMWxRWlJ4SFhBMHI1X0J3a2siLCAiQ1ZLbmx5NVA5
MHlKczNFd3R4UWlPdFVjemFYQ1lOQTRJY3pSYW9ock1EZyIsICJhNDQtZzJHcjhfM0FtSncyWFo4
a0kxeTBRel96ZTlpT2NXMlczUkxwWEdnIiwgImdrdnkwRnV2QkJ2ajBoczJaTnd4Y3FPbGY4bXUy
LWtDRTctTmIyUXh1QlUiLCAiaHJZNEhubUY1YjVKd0M5ZVR6YUZDVWNlSVFBYUlkaHJxVVhRTkNX
YmZaSSIsICJ5NlNGclZGUnlxNTBJYlJKdmlUWnFxalFXejB0TGl1Q21NZU8wS3FhekdJIl19XQ

Contents:

["eK5o5pHfgupPpltj1qhAJw", "age_equal_or_over", {"_sd":
["1tEiyzPRYOKsf7SsYGMgPZKsOT1lQZRxHXA0r5_Bwkk",
"CVKnly5P90yJs3EwtxQiOtUczaXCYNA4IczRaohrMDg", "a44-
g2Gr8_3AmJw2XZ8kI1y0Qz_ze9iOcW2W3RLpXGg", "gkvy0FuvBBvj0hs2ZNwxcqOlf8mu2-
kCE7-Nb2QxuBU", "hrY4HnmF5b5JwC9eTzaFCUceIQAaIdhrqUXQNCWbfZI",
"y6SFrVFRyq50IbRJviTZqqjQWz0tLiuCmMeO0KqazGI"]}]

Claim age_in_years:

SHA-256 Hash:

WTpI7RcM3gxZruRpXzezSbkbOr93PVFvWx8woJ3j1cE

Disclosure:

WyJqN0FEZGIwVVZiMExpMGNpUGNQMGV3IiwgImFnZV9pbl95ZWFycyIsIDYyXQ

Contents:

["j7ADdb0UVb0Li0ciPcP0ew", "age_in_years", 62]

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 74

Claim age_birth_year:

SHA-256 Hash:

LezjabRqiZOXzEYmVZf8RMi9xAkd3_M1LZ8U7E4s3u4

Disclosure:

WyJXcHhKckZ1WDh1U2kycDRodDA5anZ3IiwgImFnZV9iaXJ0aF95ZWFyIiwgMTk2M10

Contents:

["WpxJrFuX8uSi2p4ht09jvw", "age_birth_year", 1963]

Claim issuance_date:

SHA-256 Hash:

W14XHbUffzuW4IFMjpSTb1melWxUWf4N_o2ldkkIqc8

Disclosure:

WyJhdFNtRkFDWU1iSlZLRDA1bzNKZ3RRIiwgImlzc3VhbmNlX2RhdGUiLCAiMjAyMC0wMy0xMSJd

Contents:

["atSmFACYMbJVKD05o3JgtQ", "issuance_date", "2020-03-11"]

Claim expiry_date:

SHA-256 Hash:

78jg77-GYBeX8IQfoELPyL0DYPdmfZo0JgViV0_lKCM

Disclosure:

WyI0S3lSMzJvSVp0LXprV3ZGcWJVTEtnIiwgImV4cGlyeV9kYXRlIiwgIjIwMzAtMDMtMTIiXQ

Contents:

["4KyR32oIZt-zkWvFqbULKg", "expiry_date", "2030-03-12"]

Claim issuing_authority:

SHA-256 Hash:

6ZNISDst62ymlrOAkadjdD5ZulT5A299J78SLhM__Os

Disclosure:

WyJjaEJDc3loeWgtSjg2SS1hd1FEaUNRIiwgImlzc3VpbmdfYXV0aG9yaXR5IiwgIkRFIl0

Contents:

["chBCsyhyh-J86I-awQDiCQ", "issuing_authority", "DE"]

Claim issuing_country:

SHA-256 Hash:

_ohJVIQIBsU4updNS4_w4Kb1MHqJ0L9qLGshWq6JXQs

Disclosure:

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 75

WyJmbE5QMW5jTXo5TGctYzlxTUl6XzlnIiwgImlzc3VpbmdfY291bnRyeSIsICJERSJd

Contents:

["flNP1ncMz9Lg-c9qMIz_9g", "issuing_country", "DE"]

The following is an example of an SD-JWT+KB that discloses only nationality and the fact that
the person is over 18 years old:

This is the payload of the corresponding Key Binding JWT:

◦

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImRjK3NkLWp3dCJ9.eyJfc2QiOiBbIjBIWm1
uU0lQejMzN2tTV2U3QzM0bC0tODhnekppLWVCSjJWel9ISndBVGciLCAiMUNybjAzV21
VZVJXcDR6d1B2dkNLWGw5WmFRcC1jZFFWX2dIZGFHU1dvdyIsICIycjAwOWR6dkh1VnJ
XclJYVDVrSk1tSG5xRUhIbldlME1MVlp3OFBBVEI4IiwgIjZaTklTRHN0NjJ5bWxyT0F
rYWRqZEQ1WnVsVDVBMjk5Sjc4U0xoTV9fT3MiLCAiNzhqZzc3LUdZQmVYOElRZm9FTFB
5TDBEWVBkbWZabzBKZ1ZpVjBfbEtDTSIsICI5MENUOEFhQlBibjVYOG5SWGtlc2p1MWk
wQnFoV3FaM3dxRDRqRi1xREdrIiwgIkkwMGZjRlVvRFhDdWNwNXl5MnVqcVBzc0RWR2F
XTmlVbGlOel9hd0QwZ2MiLCAiS2pBWGdBQTlONVdIRUR0UkloNHU1TW4xWnNXaXhoaFd
BaVgtQTRRaXdnQSIsICJMYWk2SVU2ZDdHUWFnWFI3QXZHVHJuWGdTbGQzejhFSWdfZnY
zZk9aMVdnIiwgIkxlemphYlJxaVpPWHpFWW1WWmY4Uk1pOXhBa2QzX00xTFo4VTdFNHM
zdTQiLCAiUlR6M3FUbUZOSGJwV3JyT01aUzQxRjQ3NGtGcVJ2M3ZJUHF0aDZQVWhsTSI
sICJXMTRYSGJVZmZ6dVc0SUZNanBTVGIxbWVsV3hVV2Y0Tl9vMmxka2tJcWM4IiwgIld
UcEk3UmNNM2d4WnJ1UnBYemV6U2JrYk9yOTNQVkZ2V3g4d29KM2oxY0UiLCAiX29oSlZ
JUUlCc1U0dXBkTlM0X3c0S2IxTUhxSjBMOXFMR3NoV3E2SlhRcyIsICJ5NTBjemMwSVN
DaHlfYnNiYTFkTW9VdUFPUTVBTW1PU2ZHb0VlODF2MUZVIl0sICJpc3MiOiAiaHR0cHM
6Ly9waWQtaXNzdWVyLmJ1bmQuZGUuZXhhbXBsZSIsICJpYXQiOiAxNjgzMDAwMDAwLCA
iZXhwIjogMTg4MzAwMDAwMCwgInZjdCI6ICJ1cm46ZXVkaTpwaWQ6ZGU6MSIsICJfc2R
fYWxnIjogInNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnY
iOiAiUC0yNTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbER
sczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U
2dDRqVDlGMkhaUSJ9fX0.ZOZQTqmq8X1mCyFXi0wbV8xjctX1AlEa5TkdnkKOyWvLfW4
0XDb5oj9tzkgwff5s44IDnrfAdgLtmTcojs97_Q~WyJlSzVvNXBIZmd1cFBwbHRqMXFo
QUp3IiwgImFnZV9lcXVhbF9vcl9vdmVyIiwgeyJfc2QiOiBbIjF0RWl5elBSWU9Lc2Y3
U3NZR01nUFpLc09UMWxRWlJ4SFhBMHI1X0J3a2siLCAiQ1ZLbmx5NVA5MHlKczNFd3R4
UWlPdFVjemFYQ1lOQTRJY3pSYW9ock1EZyIsICJhNDQtZzJHcjhfM0FtSncyWFo4a0kx
eTBRel96ZTlpT2NXMlczUkxwWEdnIiwgImdrdnkwRnV2QkJ2ajBoczJaTnd4Y3FPbGY4
bXUyLWtDRTctTmIyUXh1QlUiLCAiaHJZNEhubUY1YjVKd0M5ZVR6YUZDVWNlSVFBYUlk
aHJxVVhRTkNXYmZaSSIsICJ5NlNGclZGUnlxNTBJYlJKdmlUWnFxalFXejB0TGl1Q21N
ZU8wS3FhekdJIl19XQ~WyJPQktsVFZsdkxnLUFkd3FZR2JQOFpBIiwgIjE4IiwgdHJ1Z
V0~WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFI
l1d~eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImtiK2p3dCJ9.eyJub25jZSI6ICIxMjM
0NTY3ODkwIiwgImF1ZCI6ICJodHRwczovL3ZlcmlmaWVyLmV4YW1wbGUub3JnIiwgIml
hdCI6IDE3NDg1MzcyNDQsICJzZF9oYXNoIjogIlBqTVlmTTA3VmJKZE14TElsdXZSTmI
4OEpGbGpTWDRuLUc0M1VjX0JTUk0ifQ.f3TeS_1BWEG78EbIJRh5wgv8nYumk7euzu6x
gbgpNB4pbQQqgRPWK-vQjlhhgU1EFGZ9LFakFX_0mgul1G_3mw

{
 "nonce": "1234567890",
 "aud": "https://verifier.example.org",
 "iat": 1748537244,
 "sd_hash": "PjMYfM07VbJdMxLIluvRNb88JFljSX4n-G43Uc_BSRM"
}

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 76

After validation, the Verifier will have the following Processed SD-JWT Payload available for
further handling:

{
 "iss": "https://pid-issuer.bund.de.example",
 "iat": 1683000000,
 "exp": 1883000000,
 "vct": "urn:eudi:pid:de:1",
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 },
 "age_equal_or_over": {
 "18": true
 },
 "nationalities": [
 "DE"
]
}

A.4. W3C Verifiable Credentials Data Model v2.0
This non-normative example illustrates how the artifacts defined in this specification could be
used to express a W3C Verifiable Credentials Data Model v2.0 payload .

Key Binding is applied using the Holder's public key passed in a cnf claim in the SD-JWT.

The following is the input JWT Claims Set:

[VC_DATA_v2.0]

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 77

The following is the issued SD-JWT:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/vaccination/v1"
],
 "type": [
 "VerifiableCredential",
 "VaccinationCertificate"
],
 "issuer": "https://example.com/issuer",
 "issuanceDate": "2023-02-09T11:01:59Z",
 "expirationDate": "2028-02-08T11:01:59Z",
 "name": "COVID-19 Vaccination Certificate",
 "description": "COVID-19 Vaccination Certificate",
 "credentialSubject": {
 "vaccine": {
 "type": "Vaccine",
 "atcCode": "J07BX03",
 "medicinalProductName": "COVID-19 Vaccine Moderna",
 "marketingAuthorizationHolder": "Moderna Biotech"
 },
 "nextVaccinationDate": "2021-08-16T13:40:12Z",
 "countryOfVaccination": "GE",
 "dateOfVaccination": "2021-06-23T13:40:12Z",
 "order": "3/3",
 "recipient": {
 "type": "VaccineRecipient",
 "gender": "Female",
 "birthDate": "1961-08-17",
 "givenName": "Marion",
 "familyName": "Mustermann"
 },
 "type": "VaccinationEvent",
 "administeringCentre": "Praxis Sommergarten",
 "batchNumber": "1626382736",
 "healthProfessional": "883110000015376"
 }
}

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 78

The following payload is used for the SD-JWT:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJAY29udGV4
dCI6IFsiaHR0cHM6Ly93d3cudzMub3JnLzIwMTgvY3JlZGVudGlhbHMvdjEiLCAiaHR0
cHM6Ly93M2lkLm9yZy92YWNjaW5hdGlvbi92MSJdLCAidHlwZSI6IFsiVmVyaWZpYWJs
ZUNyZWRlbnRpYWwiLCAiVmFjY2luYXRpb25DZXJ0aWZpY2F0ZSJdLCAiaXNzdWVyIjog
Imh0dHBzOi8vZXhhbXBsZS5jb20vaXNzdWVyIiwgImlzc3VhbmNlRGF0ZSI6ICIyMDIz
LTAyLTA5VDExOjAxOjU5WiIsICJleHBpcmF0aW9uRGF0ZSI6ICIyMDI4LTAyLTA4VDEx
OjAxOjU5WiIsICJuYW1lIjogIkNPVklELTE5IFZhY2NpbmF0aW9uIENlcnRpZmljYXRl
IiwgImRlc2NyaXB0aW9uIjogIkNPVklELTE5IFZhY2NpbmF0aW9uIENlcnRpZmljYXRl
IiwgImNyZWRlbnRpYWxTdWJqZWN0IjogeyJfc2QiOiBbIjFWX0stOGxEUThpRlhCRlhi
Wlk5ZWhxUjRIYWJXQ2k1VDB5Ykl6WlBld3ciLCAiSnpqTGd0UDI5ZFAtQjN0ZDEyUDY3
NGdGbUsyenk4MUhNdEJnZjZDSk5XZyIsICJSMmZHYmZBMDdaX1lsa3FtTlp5bWExeHl5
eDFYc3RJaVM2QjFZYmwySlo0IiwgIlRDbXpybDdLMmdldl9kdTdwY01JeXpSTEhwLVll
Zy1GbF9jeHRyVXZQeGciLCAiVjdrSkJMSzc4VG1WRE9tcmZKN1p1VVBIdUtfMmNjN3la
UmE0cVYxdHh3TSIsICJiMGVVc3ZHUC1PRERkRm9ZNE5semxYYzN0RHNsV0p0Q0pGNzVO
dzhPal9nIiwgInpKS19lU01YandNOGRYbU1aTG5JOEZHTTA4ekozX3ViR2VFTUotNVRC
eTAiXSwgInZhY2NpbmUiOiB7Il9zZCI6IFsiMWNGNWhMd2toTU5JYXFmV0pyWEk3Tk1X
ZWRMLTlmNlkyUEE1MnlQalNaSSIsICJIaXk2V1d1ZUxENWJuMTYyOTh0UHY3R1hobWxk
TURPVG5CaS1DWmJwaE5vIiwgIkxiMDI3cTY5MWpYWGwtakM3M3ZpOGViT2o5c214M0Mt
X29nN2dBNFRCUUUiXSwgInR5cGUiOiAiVmFjY2luZSJ9LCAicmVjaXBpZW50IjogeyJf
c2QiOiBbIjFsU1FCTlkyNHEwVGg2T0d6dGhxLTctNGw2Y0FheHJZWE9HWnBlV19sbkEi
LCAiM256THE4MU0yb04wNndkdjFzaEh2T0VKVnhaNUtMbWREa0hFREpBQldFSSIsICJQ
bjFzV2kwNkc0TEpybm4tX1JUMFJiTV9IVGR4blBKUXVYMmZ6V3ZfSk9VIiwgImxGOXV6
ZHN3N0hwbEdMYzcxNFRyNFdPN01HSnphN3R0N1FGbGVDWDRJdHciXSwgInR5cGUiOiAi
VmFjY2luZVJlY2lwaWVudCJ9LCAidHlwZSI6ICJWYWNjaW5hdGlvbkV2ZW50In0sICJf
c2RfYWxnIjogInNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJj
cnYiOiAiUC0yNTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxp
bERsczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVj
Q0U2dDRqVDlGMkhaUSJ9fX0.OZomvwO8iw4db89MYCeeomBVStXkT6u7G7FkicPWZnd2
_hGgr0l_u1NHgPVocuOt-m32Uu6kwtPmYFxKk0AOeA~WyIyR0xDNDJzS1F2ZUNmR2Zye
U5STjl3IiwgImF0Y0NvZGUiLCAiSjA3QlgwMyJd~WyJlbHVWNU9nM2dTTklJOEVZbnN4
QV9BIiwgIm1lZGljaW5hbFByb2R1Y3ROYW1lIiwgIkNPVklELTE5IFZhY2NpbmUgTW9k
ZXJuYSJd~WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgIm1hcmtldGluZ0F1dGhvcml
6YXRpb25Ib2xkZXIiLCAiTW9kZXJuYSBCaW90ZWNoIl0~WyJlSThaV205UW5LUHBOUGV
OZW5IZGhRIiwgIm5leHRWYWNjaW5hdGlvbkRhdGUiLCAiMjAyMS0wOC0xNlQxMzo0MDo
xMloiXQ~WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImNvdW50cnlPZlZhY2NpbmF0
aW9uIiwgIkdFIl0~WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImRhdGVPZlZhY2Np
bmF0aW9uIiwgIjIwMjEtMDYtMjNUMTM6NDA6MTJaIl0~WyJQYzMzSk0yTGNoY1VfbEhn
Z3ZfdWZRIiwgIm9yZGVyIiwgIjMvMyJd~WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiw
gImdlbmRlciIsICJGZW1hbGUiXQ~WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImJp
cnRoRGF0ZSIsICIxOTYxLTA4LTE3Il0~WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwg
ImdpdmVuTmFtZSIsICJNYXJpb24iXQ~WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgI
mZhbWlseU5hbWUiLCAiTXVzdGVybWFubiJd~WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13
IiwgImFkbWluaXN0ZXJpbmdDZW50cmUiLCAiUHJheGlzIFNvbW1lcmdhcnRlbiJd~WyJ
5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImJhdGNoTnVtYmVyIiwgIjE2MjYzODI3MzY
iXQ~WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgImhlYWx0aFByb2Zlc3Npb25hbCIs
ICI4ODMxMTAwMDAwMTUzNzYiXQ~

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/vaccination/v1"
],
 "type": [

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 79

The digests in the SD-JWT payload reference the following Disclosures:

Claim atcCode:

SHA-256 Hash:

1cF5hLwkhMNIaqfWJrXI7NMWedL-9f6Y2PA52yPjSZI

Disclosure:

 "VerifiableCredential",
 "VaccinationCertificate"
],
 "issuer": "https://example.com/issuer",
 "issuanceDate": "2023-02-09T11:01:59Z",
 "expirationDate": "2028-02-08T11:01:59Z",
 "name": "COVID-19 Vaccination Certificate",
 "description": "COVID-19 Vaccination Certificate",
 "credentialSubject": {
 "_sd": [
 "1V_K-8lDQ8iFXBFXbZY9ehqR4HabWCi5T0ybIzZPeww",
 "JzjLgtP29dP-B3td12P674gFmK2zy81HMtBgf6CJNWg",
 "R2fGbfA07Z_YlkqmNZyma1xyyx1XstIiS6B1Ybl2JZ4",
 "TCmzrl7K2gev_du7pcMIyzRLHp-Yeg-Fl_cxtrUvPxg",
 "V7kJBLK78TmVDOmrfJ7ZuUPHuK_2cc7yZRa4qV1txwM",
 "b0eUsvGP-ODDdFoY4NlzlXc3tDslWJtCJF75Nw8Oj_g",
 "zJK_eSMXjwM8dXmMZLnI8FGM08zJ3_ubGeEMJ-5TBy0"
],
 "vaccine": {
 "_sd": [
 "1cF5hLwkhMNIaqfWJrXI7NMWedL-9f6Y2PA52yPjSZI",
 "Hiy6WWueLD5bn16298tPv7GXhmldMDOTnBi-CZbphNo",
 "Lb027q691jXXl-jC73vi8ebOj9smx3C-_og7gA4TBQE"
],
 "type": "Vaccine"
 },
 "recipient": {
 "_sd": [
 "1lSQBNY24q0Th6OGzthq-7-4l6cAaxrYXOGZpeW_lnA",
 "3nzLq81M2oN06wdv1shHvOEJVxZ5KLmdDkHEDJABWEI",
 "Pn1sWi06G4LJrnn-_RT0RbM_HTdxnPJQuX2fzWv_JOU",
 "lF9uzdsw7HplGLc714Tr4WO7MGJza7tt7QFleCX4Itw"
],
 "type": "VaccineRecipient"
 },
 "type": "VaccinationEvent"
 },
 "_sd_alg": "sha-256",
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 }
}

•

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 80

WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImF0Y0NvZGUiLCAiSjA3QlgwMyJd

Contents:

["2GLC42sKQveCfGfryNRN9w", "atcCode", "J07BX03"]

Claim medicinalProductName:

SHA-256 Hash:

Hiy6WWueLD5bn16298tPv7GXhmldMDOTnBi-CZbphNo

Disclosure:

WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgIm1lZGljaW5hbFByb2R1Y3ROYW1lIiwgIkNPVklE
LTE5IFZhY2NpbmUgTW9kZXJuYSJd

Contents:

["eluV5Og3gSNII8EYnsxA_A", "medicinalProductName", "COVID-19 Vaccine
Moderna"]

Claim marketingAuthorizationHolder:

SHA-256 Hash:

Lb027q691jXXl-jC73vi8ebOj9smx3C-_og7gA4TBQE

Disclosure:

WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgIm1hcmtldGluZ0F1dGhvcml6YXRpb25Ib2xkZXIi
LCAiTW9kZXJuYSBCaW90ZWNoIl0

Contents:

["6Ij7tM-a5iVPGboS5tmvVA", "marketingAuthorizationHolder", "Moderna
Biotech"]

Claim nextVaccinationDate:

SHA-256 Hash:

R2fGbfA07Z_YlkqmNZyma1xyyx1XstIiS6B1Ybl2JZ4

Disclosure:

WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgIm5leHRWYWNjaW5hdGlvbkRhdGUiLCAiMjAyMS0w
OC0xNlQxMzo0MDoxMloiXQ

Contents:

["eI8ZWm9QnKPpNPeNenHdhQ", "nextVaccinationDate", "2021-08-16T13:40:12Z"]

Claim countryOfVaccination:

SHA-256 Hash:

JzjLgtP29dP-B3td12P674gFmK2zy81HMtBgf6CJNWg

Disclosure:

WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImNvdW50cnlPZlZhY2NpbmF0aW9uIiwgIkdFIl0

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 81

Contents:

["Qg_O64zqAxe412a108iroA", "countryOfVaccination", "GE"]

Claim dateOfVaccination:

SHA-256 Hash:

zJK_eSMXjwM8dXmMZLnI8FGM08zJ3_ubGeEMJ-5TBy0

Disclosure:

WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImRhdGVPZlZhY2NpbmF0aW9uIiwgIjIwMjEtMDYt
MjNUMTM6NDA6MTJaIl0

Contents:

["AJx-095VPrpTtN4QMOqROA", "dateOfVaccination", "2021-06-23T13:40:12Z"]

Claim order:

SHA-256 Hash:

b0eUsvGP-ODDdFoY4NlzlXc3tDslWJtCJF75Nw8Oj_g

Disclosure:

WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgIm9yZGVyIiwgIjMvMyJd

Contents:

["Pc33JM2LchcU_lHggv_ufQ", "order", "3/3"]

Claim gender:

SHA-256 Hash:

3nzLq81M2oN06wdv1shHvOEJVxZ5KLmdDkHEDJABWEI

Disclosure:

WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImdlbmRlciIsICJGZW1hbGUiXQ

Contents:

["G02NSrQfjFXQ7Io09syajA", "gender", "Female"]

Claim birthDate:

SHA-256 Hash:

Pn1sWi06G4LJrnn-_RT0RbM_HTdxnPJQuX2fzWv_JOU

Disclosure:

WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImJpcnRoRGF0ZSIsICIxOTYxLTA4LTE3Il0

Contents:

["lklxF5jMYlGTPUovMNIvCA", "birthDate", "1961-08-17"]

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 82

Claim givenName:

SHA-256 Hash:

lF9uzdsw7HplGLc714Tr4WO7MGJza7tt7QFleCX4Itw

Disclosure:

WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgImdpdmVuTmFtZSIsICJNYXJpb24iXQ

Contents:

["nPuoQnkRFq3BIeAm7AnXFA", "givenName", "Marion"]

Claim familyName:

SHA-256 Hash:

1lSQBNY24q0Th6OGzthq-7-4l6cAaxrYXOGZpeW_lnA

Disclosure:

WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgImZhbWlseU5hbWUiLCAiTXVzdGVybWFubiJd

Contents:

["5bPs1IquZNa0hkaFzzzZNw", "familyName", "Mustermann"]

Claim administeringCentre:

SHA-256 Hash:

TCmzrl7K2gev_du7pcMIyzRLHp-Yeg-Fl_cxtrUvPxg

Disclosure:

WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13IiwgImFkbWluaXN0ZXJpbmdDZW50cmUiLCAiUHJheGlz
IFNvbW1lcmdhcnRlbiJd

Contents:

["5a2W0_NrlEZzfqmk_7Pq-w", "administeringCentre", "Praxis Sommergarten"]

Claim batchNumber:

SHA-256 Hash:

V7kJBLK78TmVDOmrfJ7ZuUPHuK_2cc7yZRa4qV1txwM

Disclosure:

WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImJhdGNoTnVtYmVyIiwgIjE2MjYzODI3MzYiXQ

Contents:

["y1sVU5wdfJahVdgwPgS7RQ", "batchNumber", "1626382736"]

Claim healthProfessional:

SHA-256 Hash:

1V_K-8lDQ8iFXBFXbZY9ehqR4HabWCi5T0ybIzZPeww

Disclosure:

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

◦

•

◦

◦

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 83

WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgImhlYWx0aFByb2Zlc3Npb25hbCIsICI4ODMxMTAw
MDAwMTUzNzYiXQ

Contents:

["HbQ4X8srVW3QDxnIJdqyOA", "healthProfessional", "883110000015376"]

This is an example of an SD-JWT+KB that discloses only type, medicinalProductName, atcCode
of the vaccine, type of the recipient, type, order, and dateOfVaccination:

After the validation, the Verifier will have the following Processed SD-JWT Payload available for
further handling:

◦

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJAY29udGV4
dCI6IFsiaHR0cHM6Ly93d3cudzMub3JnLzIwMTgvY3JlZGVudGlhbHMvdjEiLCAiaHR0
cHM6Ly93M2lkLm9yZy92YWNjaW5hdGlvbi92MSJdLCAidHlwZSI6IFsiVmVyaWZpYWJs
ZUNyZWRlbnRpYWwiLCAiVmFjY2luYXRpb25DZXJ0aWZpY2F0ZSJdLCAiaXNzdWVyIjog
Imh0dHBzOi8vZXhhbXBsZS5jb20vaXNzdWVyIiwgImlzc3VhbmNlRGF0ZSI6ICIyMDIz
LTAyLTA5VDExOjAxOjU5WiIsICJleHBpcmF0aW9uRGF0ZSI6ICIyMDI4LTAyLTA4VDEx
OjAxOjU5WiIsICJuYW1lIjogIkNPVklELTE5IFZhY2NpbmF0aW9uIENlcnRpZmljYXRl
IiwgImRlc2NyaXB0aW9uIjogIkNPVklELTE5IFZhY2NpbmF0aW9uIENlcnRpZmljYXRl
IiwgImNyZWRlbnRpYWxTdWJqZWN0IjogeyJfc2QiOiBbIjFWX0stOGxEUThpRlhCRlhi
Wlk5ZWhxUjRIYWJXQ2k1VDB5Ykl6WlBld3ciLCAiSnpqTGd0UDI5ZFAtQjN0ZDEyUDY3
NGdGbUsyenk4MUhNdEJnZjZDSk5XZyIsICJSMmZHYmZBMDdaX1lsa3FtTlp5bWExeHl5
eDFYc3RJaVM2QjFZYmwySlo0IiwgIlRDbXpybDdLMmdldl9kdTdwY01JeXpSTEhwLVll
Zy1GbF9jeHRyVXZQeGciLCAiVjdrSkJMSzc4VG1WRE9tcmZKN1p1VVBIdUtfMmNjN3la
UmE0cVYxdHh3TSIsICJiMGVVc3ZHUC1PRERkRm9ZNE5semxYYzN0RHNsV0p0Q0pGNzVO
dzhPal9nIiwgInpKS19lU01YandNOGRYbU1aTG5JOEZHTTA4ekozX3ViR2VFTUotNVRC
eTAiXSwgInZhY2NpbmUiOiB7Il9zZCI6IFsiMWNGNWhMd2toTU5JYXFmV0pyWEk3Tk1X
ZWRMLTlmNlkyUEE1MnlQalNaSSIsICJIaXk2V1d1ZUxENWJuMTYyOTh0UHY3R1hobWxk
TURPVG5CaS1DWmJwaE5vIiwgIkxiMDI3cTY5MWpYWGwtakM3M3ZpOGViT2o5c214M0Mt
X29nN2dBNFRCUUUiXSwgInR5cGUiOiAiVmFjY2luZSJ9LCAicmVjaXBpZW50IjogeyJf
c2QiOiBbIjFsU1FCTlkyNHEwVGg2T0d6dGhxLTctNGw2Y0FheHJZWE9HWnBlV19sbkEi
LCAiM256THE4MU0yb04wNndkdjFzaEh2T0VKVnhaNUtMbWREa0hFREpBQldFSSIsICJQ
bjFzV2kwNkc0TEpybm4tX1JUMFJiTV9IVGR4blBKUXVYMmZ6V3ZfSk9VIiwgImxGOXV6
ZHN3N0hwbEdMYzcxNFRyNFdPN01HSnphN3R0N1FGbGVDWDRJdHciXSwgInR5cGUiOiAi
VmFjY2luZVJlY2lwaWVudCJ9LCAidHlwZSI6ICJWYWNjaW5hdGlvbkV2ZW50In0sICJf
c2RfYWxnIjogInNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJj
cnYiOiAiUC0yNTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxp
bERsczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVj
Q0U2dDRqVDlGMkhaUSJ9fX0.OZomvwO8iw4db89MYCeeomBVStXkT6u7G7FkicPWZnd2
_hGgr0l_u1NHgPVocuOt-m32Uu6kwtPmYFxKk0AOeA~WyJQYzMzSk0yTGNoY1VfbEhnZ
3ZfdWZRIiwgIm9yZGVyIiwgIjMvMyJd~WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwg
ImRhdGVPZlZhY2NpbmF0aW9uIiwgIjIwMjEtMDYtMjNUMTM6NDA6MTJaIl0~WyIyR0xD
NDJzS1F2ZUNmR2ZyeU5STjl3IiwgImF0Y0NvZGUiLCAiSjA3QlgwMyJd~WyJlbHVWNU9
nM2dTTklJOEVZbnN4QV9BIiwgIm1lZGljaW5hbFByb2R1Y3ROYW1lIiwgIkNPVklELTE
5IFZhY2NpbmUgTW9kZXJuYSJd~eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImtiK2p3dC
J9.eyJub25jZSI6ICIxMjM0NTY3ODkwIiwgImF1ZCI6ICJodHRwczovL3ZlcmlmaWVyL
mV4YW1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF9oYXNoIjogIklvV1VIO
TFsbGYzWEVybDQyYlEzc3hfNTNWMW8xdWpDejA4aERxSEs3RGsifQ.n0vzyIwCFMDVau
EaeJIWEKZZchxXMpXTQewHgAkARbOSZxB09IbXXtHfpoGqO_BtNFN2lShJEIQBGyc-Xp
HigA

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 84

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/vaccination/v1"
],
 "type": [
 "VerifiableCredential",
 "VaccinationCertificate"
],
 "issuer": "https://example.com/issuer",
 "issuanceDate": "2023-02-09T11:01:59Z",
 "expirationDate": "2028-02-08T11:01:59Z",
 "name": "COVID-19 Vaccination Certificate",
 "description": "COVID-19 Vaccination Certificate",
 "credentialSubject": {
 "vaccine": {
 "type": "Vaccine",
 "atcCode": "J07BX03",
 "medicinalProductName": "COVID-19 Vaccine Moderna"
 },
 "recipient": {
 "type": "VaccineRecipient"
 },
 "type": "VaccinationEvent",
 "order": "3/3",
 "dateOfVaccination": "2021-06-23T13:40:12Z"
 },
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 }
}

A.5. Elliptic Curve Key Used in the Examples
The following Elliptic Curve public key, represented in JWK format, can be used to validate the
Issuer signatures in the above examples:

The public key used to validate a Key Binding JWT can be found in the examples as the content
of the cnf claim.

{
 "kty": "EC",
 "crv": "P-256",
 "x": "b28d4MwZMjw8-00CG4xfnn9SLMVMM19SlqZpVb_uNtQ",
 "y": "Xv5zWwuoaTgdS6hV43yI6gBwTnjukmFQQnJ_kCxzqk8"
}

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 85

Appendix B. Disclosure Format Considerations
As described in Section 4.2, the Disclosure structure is JSON containing a salt and the cleartext
content of a claim, which is base64url encoded. The encoded value is the input used to calculate
a digest for the respective claim. The inclusion of digest value in the signed JWT ensures the
integrity of the claim value. Using encoded content as the input to the integrity mechanism is
conceptually similar to the approach in JWS and particularly useful when the content, like JSON,
can have different representations but is semantically equivalent, thus avoiding
canonicalization. Some further discussion of the considerations around this design decision
follows.

When receiving an SD-JWT, a Verifier must be able to recompute digests of the disclosed claim
values and, given the same input values, obtain the same digest values as signed by the Issuer.

Usually, JSON-based formats transport claim values as simple properties of a JSON object such as
this:

However, a problem arises when computation over the data needs to be performed and verified,
like signing or computing digests. Common signature schemes require the same byte string as
input to the signature verification as was used for creating the signature. In the digest approach
outlined above, the same problem exists: for the Issuer and the Verifier to arrive at the same
digest, the same byte string must be hashed.

JSON, however, does not prescribe a unique encoding for data, but allows for variations in the
encoded string. The data above, for example, can be encoded as

or as

...
 "family_name": "Möbius",
 "address": {
 "street_address": "Schulstr. 12",
 "locality": "Schulpforta"
 }
...

...
"family_name": "M\u00f6bius",
"address": {
 "street_address": "Schulstr. 12",
 "locality": "Schulpforta"
}
...

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 86

The two representations of the value in family_name are very different on the byte level, but
they yield equivalent objects. The same is true for the representations of address, which vary in
white space and order of elements in the object.

The variations in white space, ordering of object properties, and encoding of Unicode characters
are all allowed by the JSON specification, including further variations, e.g., concerning floating-
point numbers, as described in . Variations can be introduced whenever JSON data is
serialized or deserialized and unless dealt with, will lead to different digests and the inability to
verify signatures.

There are generally two approaches to deal with this problem:

Canonicalization: The data is transferred in JSON format, potentially introducing variations
in its representation, but is transformed into a canonical form before computing a digest.
Both the Issuer and the Verifier must use the same canonicalization algorithm to arrive at
the same byte string for computing a digest.
Source string hardening: Instead of transferring data in a format that may introduce
variations, a representation of the data is serialized. This representation is then used as the
hashing input at the Verifier, but also transferred to the Verifier and used for the same
digest calculation there. This means that the Verifier can easily compute and check the
digest of the byte string before finally deserializing and accessing the data.

Mixed approaches are conceivable, i.e., transferring both the original JSON data and a string
suitable for computing a digest, but such approaches can easily lead to undetected
inconsistencies resulting in time-of-check-time-of-use type security vulnerabilities.

In this specification, the source string hardening approach is used, as it allows for simple and
reliable interoperability without the requirement for a canonicalization library. To harden the
source string, any serialization format that supports the necessary data types could be used in
theory, like protobuf, msgpack, or pickle. In this specification, JSON is used and plaintext
contents of each Disclosure are encoded using base64url encoding for transport. This approach
means that SD-JWTs can be implemented purely based on widely available JWT, JSON, and
Base64 encoding and decoding libraries.

A Verifier can then easily check the digest over the source string before extracting the original
JSON data. Variations in the encoding of the source string are implicitly tolerated by the Verifier,
as the digest is computed over a predefined byte string and not over a JSON object.

...
"family_name": "Möbius",
"address": {"locality":"Schulpforta", "street_address":
 "Schulstr. 12"}
...

[RFC8785]

1.

2.

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 87

It is important to note that the Disclosures are neither intended nor suitable for direct
consumption by an application that needs to access the disclosed claim values after the
verification by the Verifier. The Disclosures are only intended to be used by a Verifier to check
the digests over the source strings and to extract the original JSON data. The original JSON data
is then used by the application. See Section 7.3 for details.

Acknowledgements
We would like to thank , , , , ,

, , , , , ,
, , , , , ,

, , , , , ,
, , , , , , ,

, , , , , ,
, , , , ,

, , , , , and
for their contributions (some of which were substantial) to this document and to the initial set of
implementations.

The work on this document was started at the OAuth Security Workshop 2022 in Trondheim,
Norway.

Alen Horvat Alex Hodder Anders Rundgren Arjan Geluk Chad Parry
Christian Bormann Christian Paquin Dale Bowie Dan Moore David Bakker David Waite Deb
Cooley Fabian Hauck Filip Skokan Giuseppe De Marco Jacob Ward Jeffrey Yasskin John Preuß
Mattsson Joseph Heenan Justin Richer Kushal Das Martin Thomson Matthew Miller Michael
Fraser Michael B. Jones Mike Prorock Nat Sakimura Neil Madden Oliver Terbu Orie Steele
Paul Bastian Peter Altmann Pieter Kasselman Richard Barnes Rohan Mahy Roman Danyliw
Ryosuke Abe Sami Rosendahl Shawn Butterfield Shawn Emery Simon Schulz Takahiko
Kawasaki Tobias Looker Torsten Lodderstedt Vittorio Bertocci Watson Ladd Yaron Sheffer

Authors' Addresses
Daniel Fett
Authlete

mail@danielfett.deEmail:
https://danielfett.de/URI:

Kristina Yasuda
Keio University

kristina@sfc.keio.ac.jpEmail:

Brian Campbell
Ping Identity

bcampbell@pingidentity.comEmail:

RFC 9901 SD-JWT November 2025

Fett, et al. Standards Track Page 88

mailto:mail@danielfett.de
https://danielfett.de/
mailto:kristina@sfc.keio.ac.jp
mailto:bcampbell@pingidentity.com

	RFC 9901
	Selective Disclosure for JSON Web Tokens
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Feature Summary
	1.2. Conventions and Terminology

	2. Flow Diagram
	3. Concepts
	3.1. SD-JWT and Disclosures
	3.2. Disclosing to a Verifier
	3.3. Optional Key Binding
	3.4. Verification

	4. SD-JWT and SD-JWT+KB Data Formats
	4.1. Issuer-Signed JWT
	4.1.1. Hash Function Claim
	4.1.2. Key Binding

	4.2. Disclosures
	4.2.1. Disclosures for Object Properties
	4.2.2. Disclosures for Array Elements
	4.2.3. Hashing Disclosures
	4.2.4. Embedding Disclosure Digests in SD-JWTs
	4.2.4.1. Object Properties
	4.2.4.2. Array Elements

	4.2.5. Decoy Digests
	4.2.6. Recursive Disclosures

	4.3. Key Binding JWT
	4.3.1. Binding to an SD-JWT
	4.3.2. Validating the Key Binding JWT

	5. Example SD-JWT
	5.1. Issuance
	5.2. Presentation

	6. Considerations on Nested Data in SD-JWTs
	6.1. Example: Flat SD-JWT
	6.2. Example: Structured SD-JWT
	6.3. Example: SD-JWT with Recursive Disclosures

	7. Verification and Processing
	7.1. Verification of the SD-JWT
	7.2. Processing by the Holder
	7.3. Verification by the Verifier

	8. JWS JSON Serialization
	8.1. New Unprotected Header Parameters
	8.2. Flattened JSON Serialization
	8.3. General JSON Serialization
	8.4. Verification of the JWS JSON Serialized SD-JWT

	9. Security Considerations
	9.1. Mandatory Signing of the Issuer-Signed JWT
	9.2. Manipulation of Disclosures
	9.3. Entropy of the Salt
	9.4. Choice of a Hash Algorithm
	9.5. Key Binding
	9.6. Concealing Claim Names
	9.7. Selectively Disclosable Validity Claims
	9.8. Distribution and Rotation of Issuer Signature Verification Key
	9.9. Forwarding Credentials
	9.10. Integrity of SD-JWTs and SD-JWT+KBs
	9.11. Explicit Typing
	9.12. Key Pair Generation and Lifecycle Management

	10. Privacy Considerations
	10.1. Unlinkability
	10.2. Storage of User Data
	10.3. Confidentiality During Transport
	10.4. Decoy Digests
	10.5. Issuer Identifier

	11. IANA Considerations
	11.1. JSON Web Token Claims Registration
	11.2. Media Type Registrations
	11.2.1. SD-JWT Content
	11.2.2. JWS JSON Serialized SD-JWT Content
	11.2.3. Key Binding JWT Content

	11.3. Structured Syntax Suffixes Registration

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Additional Examples
	A.1. Simple Structured SD-JWT
	A.2. Complex Structured SD-JWT
	A.3. SD-JWT-Based Verifiable Credentials (SD-JWT VC)
	A.4. W3C Verifiable Credentials Data Model v2.0
	A.5. Elliptic Curve Key Used in the Examples

	Appendix B. Disclosure Format Considerations
	Acknowledgements
	Authors' Addresses

 Selective Disclosure for JSON Web Tokens

 Authlete

 mail@danielfett.de
 https://danielfett.de/

 Keio University

 kristina@sfc.keio.ac.jp

 Ping Identity

 bcampbell@pingidentity.com

 SEC
 oauth
 security
 oauth2
 SD-JWT

 This specification defines a mechanism for the selective disclosure of individual elements of a JSON data structure used as the payload of a JSON Web Signature (JWS).
The primary use case is the selective disclosure of JSON Web Token (JWT) claims.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Feature Summary

 . Conventions and Terminology

 . Flow Diagram

 . Concepts

 . SD-JWT and Disclosures

 . Disclosing to a Verifier

 . Optional Key Binding

 . Verification

 . SD-JWT and SD-JWT+KB Data Formats

 . Issuer-Signed JWT

 . Hash Function Claim

 . Key Binding

 . Disclosures

 . Disclosures for Object Properties

 . Disclosures for Array Elements

 . Hashing Disclosures

 . Embedding Disclosure Digests in SD-JWTs

 . Decoy Digests

 . Recursive Disclosures

 . Key Binding JWT

 . Binding to an SD-JWT

 . Validating the Key Binding JWT

 . Example SD-JWT

 . Issuance

 . Presentation

 . Considerations on Nested Data in SD-JWTs

 . Example: Flat SD-JWT

 . Example: Structured SD-JWT

 . Example: SD-JWT with Recursive Disclosures

 . Verification and Processing

 . Verification of the SD-JWT

 . Processing by the Holder

 . Verification by the Verifier

 . JWS JSON Serialization

 . New Unprotected Header Parameters

 . Flattened JSON Serialization

 . General JSON Serialization

 . Verification of the JWS JSON Serialized SD-JWT

 . Security Considerations

 . Mandatory Signing of the Issuer-Signed JWT

 . Manipulation of Disclosures

 . Entropy of the Salt

 . Choice of a Hash Algorithm

 . Key Binding

 . Concealing Claim Names

 . Selectively Disclosable Validity Claims

 . Distribution and Rotation of Issuer Signature Verification Key

 . Forwarding Credentials

 . Integrity of SD-JWTs and SD-JWT+KBs

 . Explicit Typing

 . Key Pair Generation and Lifecycle Management

 . Privacy Considerations

 . Unlinkability

 . Storage of User Data

 . Confidentiality During Transport

 . Decoy Digests

 . Issuer Identifier

 . IANA Considerations

 . JSON Web Token Claims Registration

 . Media Type Registrations

 . Structured Syntax Suffixes Registration

 . References

 . Normative References

 . Informative References

 . Additional Examples

 . Simple Structured SD-JWT

 . Complex Structured SD-JWT

 . SD-JWT-Based Verifiable Credentials (SD-JWT VC)

 . W3C Verifiable Credentials Data Model v2.0

 . Elliptic Curve Key Used in the Examples

 . Disclosure Format Considerations

 Acknowledgements

 Authors' Addresses

 Introduction
 The exchange of JSON data between systems is often secured against modification using JSON Web Signatures (JWSs) .
A popular application of JWS is the JSON Web Token (JWT) , a format that is often used to represent a user's identity.
An ID Token as defined in OpenID Connect , for example, is a JWT containing the user's claims created by the server for consumption by a relying party.
In cases where the JWT is sent immediately from the server to the relying party, as in OpenID Connect, the server can select at the time of issuance which user claims to include in the JWT, minimizing the information shared with the relying party who validates the JWT.
 Another model is emerging that fully decouples the issuance of a JWT from its presentation.
In this model, a JWT containing many claims is issued to an intermediate party, who holds the JWT (the Holder).
The Holder can then present the JWT to different verifying parties (Verifiers) that each may only require a subset of the claims in the JWT.
For example, the JWT may contain claims representing both an address and a birthdate.
The Holder may elect to disclose only the address to one Verifier, and only the birthdate to a different Verifier.
 Privacy principles of minimal disclosure in conjunction with this model demand a mechanism enabling selective disclosure of data elements while ensuring that Verifiers can still check the authenticity of the data provided.
This specification defines such a mechanism for JSON payloads of JWSs, with JWTs as the primary use case.
 Selectively Disclosable JWT (SD-JWT) is based on an approach called "salted hashes": For any data element that should be selectively disclosable, the Issuer of the SD-JWT does not include the cleartext of the data in the JSON payload of the JWS structure; instead, a digest of the data takes its place.
For presentation to a Verifier, the Holder sends the signed payload along with the cleartext of those claims it wants to disclose.
The Verifier can then compute the digest of the cleartext data and confirm it is included in the signed payload.
To ensure that Verifiers cannot guess cleartext values of non-disclosed data elements, an additional salt value is used when creating the digest and sent along with the cleartext when disclosing it.
 To prevent attacks in which an SD-JWT is presented to a Verifier without the Holder's consent, this specification additionally defines a mechanism for binding the SD-JWT to a key under the control of the Holder (Key Binding).
When Key Binding is enforced, a Holder has to prove possession of a private key belonging to a public key contained in the SD-JWT itself.
It usually does so by signing over a data structure containing transaction-specific data, herein defined as the Key Binding JWT.
An SD-JWT with a Key Binding JWT is called "SD-JWT+KB" in this specification.

 Feature Summary
 This specification defines two primary data formats:

 SD-JWT is a composite structure, consisting of a JWS plus optional Disclosures, enabling selective disclosure of portions of the JWS payload. It comprises the following:

 A format for enabling selective disclosure in nested JSON data structures,
supporting selectively disclosable object properties (name/value pairs) and array elements.
 A format for encoding the selectively disclosable data items.
 A format extending the JWS Compact Serialization, allowing for the combined
transport of the Issuer-signed JSON data structure and the disclosable data items.
 An alternate format extending the JWS JSON Serialization, also allowing for
transport of the Issuer-signed JSON data structure and Disclosure data.

 SD-JWT+KB is a composite structure of an SD-JWT and a cryptographic Key Binding that can be presented to and verified by the Verifier. It comprises the following:

 A mechanism for associating an SD-JWT with a key pair.
 A format for a Key Binding JWT (KB-JWT) that allows proof of possession of the private key of
the associated key pair.
 A format extending the SD-JWT format for the combined transport of the SD-JWT
and the KB-JWT.

 Conventions and Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 Base64url:
 Denotes the URL-safe base64 encoding without padding defined in
 .
 Claim:
 In this document, refers generally to
object properties (name/value pairs) as well as array elements.
 Selective Disclosure:
 Process of a Holder disclosing to a Verifier a subset of claims contained in a JWT issued by an Issuer.
 Selectively Disclosable JWT (SD-JWT):
 A composite structure, consisting of an Issuer-signed JWT (JWS; see) and zero or more Disclosures, which
supports selective disclosure as defined in this document. It can contain both regular claims and digests of selectively disclosable claims.
 Disclosure:
 A base64url-encoded string of a JSON array that contains a salt, a claim name (present when the claim is a name/value pair and absent when the claim is an array element), and a claim value. The Disclosure is used to calculate a digest for the respective claim. The term Disclosure refers to the whole base64url-encoded string.
 Key Binding:
 Ability of the Holder to prove possession of an SD-JWT by proving
control over a private key during the presentation. When utilizing Key Binding, an SD-JWT contains
the public key corresponding to the private key controlled by the Holder (or a reference to this public key).
 Key Binding JWT (KB-JWT):
 A Key Binding JWT is said to "be tied to" a particular SD-JWT when its payload
is signed using the key included in the SD-JWT payload, and the KB-JWT contains
a hash of the SD-JWT in its sd_hash claim. Its format is defined in .
 Selectively Disclosable JWT with Key Binding (SD-JWT+KB):
 A composite structure, comprising an SD-JWT and a Key Binding JWT tied to that SD-JWT.
 Processed SD-JWT Payload:
 The JSON object resulting from verification and processing of the Issuer-signed SD-JWT,
with digest placeholders replaced by the corresponding values from the Disclosures.
 Issuer:
 An entity that creates SD-JWTs.
 Holder:
 An entity that received SD-JWTs from the Issuer and has control over them. In the context of this document, the term may refer to the actual user, the supporting hardware and software in their possession, or both.
 Verifier:
 An entity that requests, checks, and extracts the claims from an SD-JWT with its respective Disclosures.

 Flow Diagram

 SD-JWT Issuance and Presentation Flow

 +------------+
 | |
 | Issuer |
 | |
 +------------+
 |
 Issues SD-JWT
 including all Disclosures
 |
 v
 +------------+
 | |
 | Holder |
 | |
 +------------+
 |
 Presents SD-JWT or SD-JWT+KB
 including selected Disclosures
 |
 v
 +-------------+
 | |+
 | Verifiers ||+
 | |||
 +-------------+||
 +-------------+|
 +-------------+

 Concepts
 This section describes SD-JWTs with their respective Disclosures and Key Binding at a
conceptual level, abstracting from the data formats described in .

 SD-JWT and Disclosures
 An SD-JWT, at its core, is a digitally signed JSON document containing digests over the selectively disclosable claims with the Disclosures outside the document. Disclosures can be omitted without breaking the signature, and modifications to them can be detected. Selectively disclosable claims can be individual object properties (name/value pairs) or array elements.
 Each digest value ensures the integrity of, and maps to, the respective Disclosure. Digest values are calculated using a hash function over the Disclosures, each of which contains a cryptographically secure random salt, the claim name (only when the claim is an object property), and the claim value. The Disclosures are sent to the Holder with the SD-JWT in the format defined in .
When presenting an SD-JWT to a Verifier, the Holder only includes the Disclosures for the claims that it wants to reveal to that Verifier.
 An SD-JWT MAY also contain cleartext claims that are always disclosed to the Verifier.

 Disclosing to a Verifier
 To disclose to a Verifier a subset of the SD-JWT claim values, a Holder sends only the Disclosures of those selectively released claims to the Verifier as part of the SD-JWT.

 Optional Key Binding
 Key Binding is an optional feature. When Key Binding is required by the use case, the SD-JWT MUST contain information about the key material controlled by the Holder.

 Note: How the public key is included in SD-JWT is described in .

 When a Verifier requires Key Binding, the Holder presents an SD-JWT+KB, consisting of an SD-JWT as well as a Key Binding JWT tied to that SD-JWT.
The Key Binding JWT encodes a signature by the Holder's private key over

 a hash of the SD-JWT,
 a nonce to ensure the freshness of the signature, and
 an audience value to indicate the intended Verifier for the document.

 Details of the format of Key Binding JWTs are described in .

 Verification
 At a high level, the Verifier

 receives either an SD-JWT or an SD-JWT+KB from the Holder,
 verifies the signature on the SD-JWT (or the SD-JWT inside the SD-JWT+KB) using the Issuer's public key,
 verifies the signature on the KB-JWT using the public key included (or referenced) in the SD-JWT, if the Verifier's policy requires Key Binding, and
 calculates the digests over the Holder-Selected Disclosures and verifies that each digest is contained in the SD-JWT.

 The detailed algorithm is described in .

 SD-JWT and SD-JWT+KB Data Formats
 An SD-JWT is composed of

 an Issuer-signed JWT, and
 zero or more Disclosures.

 An SD-JWT+KB is composed of

 an SD-JWT (i.e., an Issuer-signed JWT and zero or more Disclosures), and
 a Key Binding JWT.

 The Issuer-signed JWT, Disclosures, and Key Binding JWT are explained in Sections
 , , and , respectively.
 The compact serialized format for the SD-JWT is the concatenation of each part delineated with a single tilde ('~') character as follows, where "D.1" to "D.N" represent the respective Disclosures:

<Issuer-signed JWT>~<D.1>~<D.2>~...~<D.N>~

 The order of the concatenated parts MUST be the Issuer-signed JWT,
a tilde character, zero or more Disclosures each followed by a tilde character,
and lastly the optional Key Binding JWT.
In the case that there is no Key Binding JWT, the last element MUST be an empty
string and the last separating tilde character MUST NOT be omitted.
 The serialized format for an SD-JWT+KB extends the SD-JWT format by concatenating a Key Binding JWT.

<Issuer-signed JWT>~<D.1>~<D.2>~...~<D.N>~<KB-JWT>

 The two formats can be distinguished by the final ~ character that is present
on an SD-JWT. A Verifier that expects an SD-JWT MUST verify that the final
tilde-separated component is empty. A Verifier that expects an SD-JWT+KB MUST verify
that its final tilde-separated component is a valid KB-JWT.
 The Disclosures are linked to the Issuer-signed JWT through the
digest values included therein.
 When issuing to a Holder, the Issuer includes all the relevant Disclosures in the SD-JWT.
 When presenting to a Verifier, the Holder sends only the selected set of the Disclosures in the SD-JWT.
 The Holder MAY send any subset of the Disclosures to the Verifier, i.e.,
none, some, or all Disclosures. For data that the Holder does not want to reveal
to the Verifier, the Holder MUST NOT send Disclosures or reveal the salt values in any
other way. A Holder MUST NOT send a Disclosure that was not included in the issued
SD-JWT or send a Disclosure more than once.
 To further illustrate the SD-JWT format, the following examples show a few different
SD-JWT permutations, both with and without various constituent parts.
 An SD-JWT without Disclosures:

<Issuer-signed JWT>~

 An SD-JWT with Disclosures:

<Issuer-signed JWT>~<Disclosure 1>~<Disclosure N>~

 An SD-JWT+KB without Disclosures:

<Issuer-signed JWT>~<KB-JWT>

 An SD-JWT+KB with Disclosures:

<Issuer-signed JWT>~<Disclosure 1>~<Disclosure N>~<KB-JWT>

 As an alternative illustration of the SD-JWT format, ABNF for the
SD-JWT, SD-JWT+KB, and various constituent parts is provided here (for those who celebrate):

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
BASE64URL = 1*(ALPHA / DIGIT / "-" / "_")
JWT = BASE64URL "." BASE64URL "." BASE64URL
DISCLOSURE = BASE64URL
SD-JWT = JWT "~" *(DISCLOSURE "~")
KB-JWT = JWT
SD-JWT-KB = SD-JWT KB-JWT

 Issuer-Signed JWT
 An SD-JWT has a JWT component that MUST be signed using the Issuer's private
key. It MUST NOT use the none algorithm.
 The payload of an SD-JWT is a JSON object according to the following rules:

 The payload MAY contain the _sd_alg key described in .
 The payload MAY contain one or more digests of Disclosures to enable selective disclosure of the respective claims, created and formatted as described in .
 The payload MAY contain one or more decoy digests to obscure the actual number of claims in the SD-JWT, created and formatted as described in .
 The payload MAY contain one or more permanently disclosed claims.
 The payload MAY contain the Holder's public key(s) or reference(s) thereto, as explained in .
 The payload MAY contain further claims such as iss, iat, etc. as defined or required by the application using SD-JWTs.
 The payload MUST NOT contain the claims _sd or ... except for the purpose of conveying digests as described in Sections and , respectively.

 The same digest value MUST NOT appear more than once in the SD-JWT.
 Application and profiles of SD-JWT SHOULD be explicitly typed. See for more details.
 It is the Issuer who decides which claims are selectively disclosable by the Holder and which are not. Claims MAY be included as plaintext as well, e.g., if hiding the particular claims from the Verifier is not required in the intended use case. See for considerations on making validity-controlling claims such as exp selectively disclosable.
 Claims that are not selectively disclosable are included in the SD-JWT in plaintext just as they would be in any other JSON structure.

 Hash Function Claim
 The claim _sd_alg indicates the hash algorithm used by the Issuer to generate
the digests as described in . When used, this claim MUST
appear at the top level of the SD-JWT payload. It
 MUST NOT be used in any object nested within the payload. If the _sd_alg
claim is not present at the top level, a default value of sha-256 MUST be used.
 This claim value is a case-sensitive string with the hash algorithm identifier.
The hash algorithm identifier MUST be a hash algorithm value from the "Hash Name
String" column in the "Named Information Hash Algorithm Registry"
 or a value defined in another specification and/or
profile of this specification.
 To promote interoperability, implementations MUST support the sha-256 hash
algorithm.
 See for requirements regarding entropy of the salt,
minimum length of the salt, and choice of a hash algorithm.

 Key Binding
 If the Issuer wants to enable Key Binding, it includes a public key
associated with the Holder, or a reference thereto, using the cnf claim as defined in .
The jwk confirmation method, as defined in , is
suggested for doing so, however, other confirmation methods can be used.

 Note that, as was stated in ,
if an application needs to represent multiple proof-of-possession
keys in the same SD-JWT, one way to achieve this is to use other
claim names, in addition to cnf, to hold the additional proof-of-possession key information.

 It is outside the scope of this document to describe how the Holder key pair is
established. For example, the Holder MAY create a key pair and provide a public key to the Issuer,
the Issuer MAY create the key pair for the Holder, or
Holder and Issuer MAY use pre-established key material.

 Note: The examples throughout this document use the cnf claim with the jwk member to include
the raw public key by value in SD-JWT.

 Disclosures
 Disclosures are created differently depending on whether a claim is an object property (name/value pair) or an array element.

 For a claim that is an object property, the Issuer creates a Disclosure as described in .
 For a claim that is an array element, the Issuer creates a Disclosure as described in .

 Disclosures for Object Properties
 For each claim that is an object property and that is to be made selectively disclosable, the Issuer MUST create a Disclosure as follows:

 Create a JSON array of three elements in the following order:

 A salt value. MUST be a string. See for security considerations. To achieve the recommended entropy of the salt, the Issuer can base64url-encode 128 bits of cryptographically secure random data, producing a string. The salt value MUST be unique for each claim that is to be selectively disclosed. The Issuer MUST NOT reveal the salt value to any party other than the Holder.
 The claim name, or key, as it would be used in a regular JWT payload. It MUST be a string and MUST NOT be _sd, ..., or a claim name existing in the object as a permanently disclosed claim.
 The claim value, as it would be used in a regular JWT payload. The value can be of any type that is allowed in JSON, including numbers, strings, booleans, arrays, null, and objects.

 base64url-encode the UTF-8 byte sequence of the JSON array. This string is the Disclosure.

 Note: The order was decided based on readability considerations: Salts have a
constant length within the SD-JWT, claim names would be around the same length
all the time, and claim values would vary in size, potentially being large
objects.

 The following example illustrates the steps described above.
 The array is created as follows:

["_26bc4LT-ac6q2KI6cBW5es", "family_name", "Möbius"]

 The resultant Disclosure is:
 WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsICJmYW1pbHlfbmFtZSIsICJNw7ZiaXVzIl0
 Note that variations in whitespace, encoding of Unicode characters, ordering of object properties, etc., are allowed
in the JSON representation and no canonicalization needs to be performed before base64url encoding because the digest is calculated over the base64url-encoded value itself.
For example, the following strings are all valid and encode the
same claim value "Möbius":

 A different way to encode the Unicode umlaut:
 WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsICJmYW1pbHlfbmFtZSIsICJNXHUwMGY2Yml1cyJd

 No white space:
 WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsImZhbWlseV9uYW1lIiwiTcO2Yml1cyJd

 Newline characters between elements:
 WwoiXzI2YmM0TFQtYWM2cTJLSTZjQlc1ZXMiLAoiZmFtaWx5X25hbWUiLAoiTcO2Yml1cyIKXQ

 However, the digest is calculated over the respective base64url-encoded value itself, which effectively signs the variation chosen by the Issuer and makes it immutable in the context of the particular SD-JWT.
 See for some further considerations on the Disclosure format approach.

 Disclosures for Array Elements
 For each claim that is an array element and that is to be made selectively disclosable, the Issuer MUST create a Disclosure as follows:

 The array MUST contain two elements in this order:

 The salt value as described in .
 The array element that is to be hidden. This value can be of any type that is allowed in JSON, including numbers, strings, booleans, arrays, and objects.

 The Disclosure string is created by base64url-encoding the UTF-8 byte sequence of the resultant JSON array as described in . The same considerations regarding
variations in the result of the JSON encoding apply.
 For example, a Disclosure for the second element of the nationalities array in the following JWT Claims Set:

{
 "nationalities": ["DE", "FR", "US"]
}

 could be created by first creating the following array:

["lklxF5jMYlGTPUovMNIvCA", "FR"]

 The resultant Disclosure would be:
 WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIkZSIl0

 Note that the size of an array alone can potentially reveal unintended information.
The use of decoys, as described in , to consistently pad the size of an array can help obscure
the actual number of elements present in any particular instance.

 Hashing Disclosures
 For embedding references to the Disclosures in the SD-JWT, each Disclosure is hashed using the hash algorithm specified in the _sd_alg claim described in , or SHA-256 if no algorithm is specified. The resultant digest is then included in the SD-JWT payload instead of the original claim value, as described next.
 The digest MUST be computed over the US-ASCII bytes of the base64url-encoded value that is the Disclosure. This follows the convention in JWS and JWE . The bytes of the digest MUST then be base64url encoded.
 It is important to note that:

 The input to the hash function MUST be the base64url-encoded Disclosure, not the bytes encoded by the base64url string.
 The bytes of the output of the hash function MUST be base64url encoded, and are not the bytes making up the (sometimes used) hex representation of the bytes of the digest.

 For example, the base64url-encoded SHA-256 digest of the Disclosure
 WyJfMjZiYzRMVC1hYzZxMktJNmNCVzVlcyIsICJmYW1pbHlfbmFtZSIsICJNw7ZiaXVzIl0
for the family_name claim from above is
 X9yH0Ajrdm1Oij4tWso9UzzKJvPoDxwmuEcO3XAdRC0.

 Embedding Disclosure Digests in SD-JWTs
 For selectively disclosable claims, the digests of the Disclosures are embedded into the Issuer-signed JWT instead of the claims themselves. The precise way of embedding depends on whether a claim is an object property (name/value pair) or an array element.

 For a claim that is an object property, the Issuer embeds a Disclosure digest as described in .
 For a claim that is an array element, the Issuer creates a Disclosure digest as described in .

 Object Properties
 Digests of Disclosures for object properties are added to an array under the new
key _sd in the object. The _sd key MUST refer to an array of strings, each
string being a digest of a Disclosure or a decoy digest as described in .
An _sd key can be present at any level of the JSON object hierarchy, including at the top-level,
nested deeper as described in , or in recursive Disclosures as described in .
 The array MAY be empty in case the Issuer decided not to selectively disclose
any of the claims at that level. However, it is RECOMMENDED to omit the _sd
key in this case to save space.
 The Issuer MUST hide the original order of the claims in the array. To ensure
this, it is RECOMMENDED to shuffle the array of hashes, e.g., by sorting it
alphanumerically or randomly, after potentially adding
decoy digests as described in . The precise method does not matter as long as it
does not depend on the original order of elements.
 For example, using the digest of the Disclosure from ,
the Issuer could create the following SD-JWT payload to make family_name
selectively disclosable:

{
 "given_name": "Alice",
 "_sd": ["X9yH0Ajrdm1Oij4tWso9UzzKJvPoDxwmuEcO3XAdRC0"]
}

 Array Elements
 Digests of Disclosures for array elements are added to the array in the same
position as the original claim value in the array. For each digest, an object
of the form {"...": "<digest>"} is added to the array. The key MUST always be the
string ... (three dots). The value MUST be the digest of the Disclosure created as
described in . There MUST NOT be any other keys in the
object. Note that the string ... was chosen because the ellipsis character, typically entered as three period characters, is commonly used in places where content is omitted from the present context.
 For example, using the digest of the array element Disclosure created in ,
the Issuer could create the following SD-JWT payload to make the second element
of the nationalities array selectively disclosable:

{
 "nationalities":
 ["DE", {"...":"w0I8EKcdCtUPkGCNUrfwVp2xEgNjtoIDlOxc9-PlOhs"},
 "US"]
}

 As described in , Verifiers ignore all selectively
disclosable array elements for which they did not receive a Disclosure. In the
example above, the verification process would output an array with only two
elements, ["DE", "US"], unless the matching Disclosure for the second element is received,
in which case the output would be a three-element array, ["DE", "FR", "US"].

 Decoy Digests
 An Issuer MAY add additional digests to the SD-JWT payload that are not associated with
any claim. The purpose of such "decoy" digests is to make it more difficult for
an adversarial Verifier to see the original number of claims or array elements contained in the SD-JWT. Decoy
digests MAY be added both to the _sd array for objects as well as in arrays.
 It is RECOMMENDED to create the decoy digests by hashing over a
cryptographically secure random number. The bytes of the digest MUST then be
base64url encoded as above. The same digest function as for the Disclosures MUST
be used.
 For decoy digests, no Disclosure is sent to the Holder, i.e., the Holder will
see digests that do not correspond to any Disclosure. See
 for additional privacy considerations.
 To ensure readability and replicability, the examples in this specification do
not contain decoy digests unless explicitly stated. For an example
with decoy digests, see .

 Recursive Disclosures
 The algorithms above are compatible with "recursive Disclosures", in which one
selectively disclosed field reveals the existence of more selectively
disclosable fields. For example, consider the following JSON structure:

{
 "family_name": "Möbius",
 "nationalities": ["DE", "FR", "UK"]
}

 When the Holder has multiple nationalities, the Issuer may wish to conceal
the presence of any statement regarding nationalities while also allowing the
Holder to reveal each of those nationalities individually.
This can be accomplished by first making the entries within the "nationalities"
array selectively disclosable, and then making the whole "nationalities" field
selectively disclosable.
 The following shows each of the entries within the "nationalities" array being made selectively disclosable:

{
 "family_name": "Möbius",
 "nationalities": [
 { "...": "PmnlrRjhLcwf8zTDdK15HVGwHtPYjddvD362WjBLwro" }
 { "...": "r823HFN6Ba_lpSANYtXqqCBAH-TsQlIzfOK0lRAFLCM" },
 { "...": "nP5GYjwhFm6ESlAeC4NCaIliW4tz0hTrUeoJB3lb5TA" }
]
}

 Content of Disclosures:

PmnlrRj... = ["16_mAd0GiwaZokU26_0i0h","DE"]
r823HFN... = ["fn9fN0rD-fFs2n303ZI-0c","FR"]
nP5GYjw... = ["YIKesqOkXXNzMQtsX_-_lw","UK"]

 Followed by making the whole "nationalities" array selectively disclosable:

{
 "family_name": "Möbius",
 "_sd": ["5G1srw3RG5W4pVTwSsYxeOWosRBbzd18ZoWKkC-hBL4"]
}

 Content of Disclosures:

PmnlrRj... = ["16_mAd0GiwaZokU26_0i0h","DE"]
r823HFN... = ["fn9fN0rD-fFs2n303ZI-0c","FR"]
nP5GYjw... = ["YIKesqOkXXNzMQtsX_-_lw","UK"]
5G1srw3... = ["4drfeTtSUK3aY_-PF12gcX","nationalities",
 [
 { "...": "PmnlrRjhLcwf8zTDdK15HVGwHtPYjddvD362WjBLwro" },
 { "...": "r823HFN6Ba_lpSANYtXqqCBAH-TsQlIzfOK0lRAFLCM" },
 { "...": "nP5GYjwhFm6ESlAeC4NCaIliW4tz0hTrUeoJB3lb5TA" }
]
]

 With this set of Disclosures, the Holder could include the Disclosure with hash
 PmnlrRj... to disclose only the "DE" nationality, or include both PmnlrRj...
and r823HFN... to disclose both the "DE" and "FR" nationalities, but hide the
"UK" nationality. In either case, the Holder would also need to include the
Disclosure with hash 5G1srw3... to disclose the nationalities field that
contains the respective elements.
 Note that making recursive redactions introduces dependencies between the
Disclosure objects in an SD-JWT. The r823HFN... Disclosure cannot be used
without the 5G1srw3... Disclosure; since a Verifier would not have a matching
hash that would tell it where the content of the r823HFN... Disclosure should
be inserted. If a Disclosure object is included in an SD-JWT, then the SD-JWT
 MUST include any other Disclosure objects necessary to process the first
Disclosure object. In other words, any Disclosure object in an SD-JWT must
"connect" to the claims in the issuer-signed JWT, possibly via an intermediate
Disclosure object. In the above example, it would be illegal to include any one
of the PmnlrRj..., r823HFN..., nP5GYjw... Disclosure objects without also
including the 5G1srw3... Disclosure object.

 Key Binding JWT
 This section defines the Key Binding JWT, which encodes a
signature over an SD-JWT by the Holder's private key.
 The Key Binding JWT MUST be a JWT according to , and it MUST contain the following elements:

 in the JOSE header,

 typ: REQUIRED. MUST be kb+jwt, which explicitly types the Key Binding JWT as recommended in .

 alg: REQUIRED. A digital signature algorithm identifier such as per the IANA "JSON Web Signature and Encryption Algorithms" registry. It MUST NOT be "none".

 in the JWT payload,

 iat: REQUIRED. The value of this claim MUST be the time at which the Key Binding JWT was issued using the syntax defined in .

 aud: REQUIRED. The value MUST be a single string that identifies the intended receiver of the Key Binding JWT. How the value is represented is up to the protocol used and is out of scope for this specification.
 "nonce": REQUIRED. Ensures the freshness of the signature or its binding to the given transaction. The value type of this claim MUST be a string. How this value is obtained is up to the protocol used and is out of scope for this specification.

 sd_hash: REQUIRED. The base64url-encoded hash value over the Issuer-signed JWT and the selected Disclosures as defined below.

 The general extensibility model of JWT means that additional claims and header parameters can be added to the Key Binding JWT.
However, unless there is a compelling reason, this SHOULD be avoided, as it may harm interoperability and burden conceptual integrity.

 Binding to an SD-JWT
 The hash value in the sd_hash claim binds the KB-JWT to the specific SD-JWT.
The sd_hash value MUST be computed over the US-ASCII bytes of the
encoded SD-JWT, i.e.,
the Issuer-signed JWT, a tilde character, and zero or more Disclosures selected
for presentation to the Verifier, each followed by a tilde character:

<Issuer-signed JWT>~<Disclosure 1>~<Disclosure 2>~...~<Disclosure N>~

 The bytes of the digest MUST then be base64url encoded.
 The same hash algorithm as for the Disclosures MUST be used (defined by
the _sd_alg element in the Issuer-signed JWT or the default value, as defined
in).

 Validating the Key Binding JWT
 Whether to require Key Binding is up to the Verifier's policy, based on the set
of trust requirements (such as trust frameworks) it belongs to. See
 for security considerations.
 If the Verifier requires Key Binding, the Verifier MUST ensure that the key with which it validates the signature on
the Key Binding JWT is the key specified in the SD-JWT as the Holder's public
key. For example, if the SD-JWT contains a cnf value with a jwk member, the
Verifier would parse the provided JWK and use it to verify the Key Binding JWT.
 Details of the validation process are defined in .

 Example SD-JWT
 In this example, a simple SD-JWT is demonstrated. This example is split into issuance and presentation.

 Note: Throughout the examples in this document, line breaks were added to
JSON strings and base64-encoded strings to adhere to the line-length limit
in RFCs and for readability. JSON does not allow line breaks within strings.

 Issuance
 The following data about the user comprises the input JWT Claims Set used by the Issuer:

{
 "sub": "user_42",
 "given_name": "John",
 "family_name": "Doe",
 "email": "johndoe@example.com",
 "phone_number": "+1-202-555-0101",
 "phone_number_verified": true,
 "address": {
 "street_address": "123 Main St",
 "locality": "Anytown",
 "region": "Anystate",
 "country": "US"
 },
 "birthdate": "1940-01-01",
 "updated_at": 1570000000,
 "nationalities": [
 "US",
 "DE"
]
}

 In this example, the following decisions were made by the Issuer in constructing the SD-JWT:

 The nationalities array is always visible, but its contents are selectively disclosable.
 The sub element as well as essential verification data (iss, exp, cnf, etc.) are always visible.
 All other claims are selectively disclosable.
 For address, the Issuer is using a flat structure, i.e., all the claims
in the address claim can only be disclosed in full. Other options are
discussed in .

 The following payload is used for the SD-JWT:

{
 "_sd": [
 "CrQe7S5kqBAHt-nMYXgc6bdt2SH5aTY1sU_M-PgkjPI",
 "JzYjH4svliH0R3PyEMfeZu6Jt69u5qehZo7F7EPYlSE",
 "PorFbpKuVu6xymJagvkFsFXAbRoc2JGlAUA2BA4o7cI",
 "TGf4oLbgwd5JQaHyKVQZU9UdGE0w5rtDsrZzfUaomLo",
 "XQ_3kPKt1XyX7KANkqVR6yZ2Va5NrPIvPYbyMvRKBMM",
 "XzFrzwscM6Gn6CJDc6vVK8BkMnfG8vOSKfpPIZdAfdE",
 "gbOsI4Edq2x2Kw-w5wPEzakob9hV1cRD0ATN3oQL9JM",
 "jsu9yVulwQQlhFlM_3JlzMaSFzglhQG0DpfayQwLUK4"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "user_42",
 "nationalities": [
 {
 "...": "pFndjkZ_VCzmyTa6UjlZo3dh-ko8aIKQc9DlGzhaVYo"
 },
 {
 "...": "7Cf6JkPudry3lcbwHgeZ8khAv1U1OSlerP0VkBJrWZ0"
 }
],
 "_sd_alg": "sha-256",
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 }
}

 The respective Disclosures, created by the Issuer, are listed below.
In the text below and in other locations in this specification,
the label "SHA-256 Hash:" is used as a shorthand for the label "Base64url-Encoded SHA-256 Hash:".

 Claim given_name:

 SHA-256 Hash:
 jsu9yVulwQQlhFlM_3JlzMaSFzglhQG0DpfayQwLUK4

 Disclosure:
 WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImdpdmVuX25hbWUiLCAiSm9obiJd

 Contents:
 ["2GLC42sKQveCfGfryNRN9w", "given_name", "John"]

 Claim family_name:

 SHA-256 Hash:
 TGf4oLbgwd5JQaHyKVQZU9UdGE0w5rtDsrZzfUaomLo

 Disclosure:
 WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImZhbWlseV9uYW1lIiwgIkRvZSJd

 Contents:
 ["eluV5Og3gSNII8EYnsxA_A", "family_name", "Doe"]

 Claim email:

 SHA-256 Hash:
 JzYjH4svliH0R3PyEMfeZu6Jt69u5qehZo7F7EPYlSE

 Disclosure:
 WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImVtYWlsIiwgImpvaG5kb2VAZXhhbXBsZS5jb20iXQ

 Contents:
 ["6Ij7tM-a5iVPGboS5tmvVA", "email", "johndoe@example.com"]

 Claim phone_number:

 SHA-256 Hash:
 PorFbpKuVu6xymJagvkFsFXAbRoc2JGlAUA2BA4o7cI

 Disclosure:
 WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgInBob25lX251bWJlciIsICIrMS0yMDItNTU1LTAxMDEiXQ

 Contents:
 ["eI8ZWm9QnKPpNPeNenHdhQ", "phone_number", "+1-202-555-0101"]

 Claim phone_number_verified:

 SHA-256 Hash:
 XQ_3kPKt1XyX7KANkqVR6yZ2Va5NrPIvPYbyMvRKBMM

 Disclosure:
 WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgInBob25lX251bWJlcl92ZXJpZmllZCIsIHRydWVd

 Contents:
 ["Qg_O64zqAxe412a108iroA", "phone_number_verified", true]

 Claim address:

 SHA-256 Hash:
 XzFrzwscM6Gn6CJDc6vVK8BkMnfG8vOSKfpPIZdAfdE

 Disclosure:
 WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRyZXNzIjogIjEyMyBNYWluIFN0IiwgImxvY2FsaXR5IjogIkFueXRvd24iLCAicmVnaW9uIjogIkFueXN0YXRlIiwgImNvdW50cnkiOiAiVVMifV0

 Contents:
 ["AJx-095VPrpTtN4QMOqROA", "address", {"street_address": "123 Main St", "locality": "Anytown", "region": "Anystate", "country": "US"}]

 Claim birthdate:

 SHA-256 Hash:
 gbOsI4Edq2x2Kw-w5wPEzakob9hV1cRD0ATN3oQL9JM

 Disclosure:
 WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAxIl0

 Contents:
 ["Pc33JM2LchcU_lHggv_ufQ", "birthdate", "1940-01-01"]

 Claim updated_at:

 SHA-256 Hash:
 CrQe7S5kqBAHt-nMYXgc6bdt2SH5aTY1sU_M-PgkjPI

 Disclosure:
 WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgInVwZGF0ZWRfYXQiLCAxNTcwMDAwMDAwXQ

 Contents:
 ["G02NSrQfjFXQ7Io09syajA", "updated_at", 1570000000]

 Array Entry:

 SHA-256 Hash:
 pFndjkZ_VCzmyTa6UjlZo3dh-ko8aIKQc9DlGzhaVYo

 Disclosure:
 WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIlVTIl0

 Contents:
 ["lklxF5jMYlGTPUovMNIvCA", "US"]

 Array Entry:

 SHA-256 Hash:
 7Cf6JkPudry3lcbwHgeZ8khAv1U1OSlerP0VkBJrWZ0

 Disclosure:
 WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgIkRFIl0

 Contents:
 ["nPuoQnkRFq3BIeAm7AnXFA", "DE"]

 The payload is then signed by the Issuer to create the following Issuer-signed JWT:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
IkNyUWU3UzVrcUJBSHQtbk1ZWGdjNmJkdDJTSDVhVFkxc1VfTS1QZ2tqUEkiLCAiSnpZ
akg0c3ZsaUgwUjNQeUVNZmVadTZKdDY5dTVxZWhabzdGN0VQWWxTRSIsICJQb3JGYnBL
dVZ1Nnh5bUphZ3ZrRnNGWEFiUm9jMkpHbEFVQTJCQTRvN2NJIiwgIlRHZjRvTGJnd2Q1
SlFhSHlLVlFaVTlVZEdFMHc1cnREc3JaemZVYW9tTG8iLCAiWFFfM2tQS3QxWHlYN0tB
TmtxVlI2eVoyVmE1TnJQSXZQWWJ5TXZSS0JNTSIsICJYekZyendzY002R242Q0pEYzZ2
Vks4QmtNbmZHOHZPU0tmcFBJWmRBZmRFIiwgImdiT3NJNEVkcTJ4Mkt3LXc1d1BFemFr
b2I5aFYxY1JEMEFUTjNvUUw5Sk0iLCAianN1OXlWdWx3UVFsaEZsTV8zSmx6TWFTRnpn
bGhRRzBEcGZheVF3TFVLNCJdLCAiaXNzIjogImh0dHBzOi8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE2ODMwMDAwMDAsICJleHAiOiAxODgzMDAwMDAwLCAic3ViIjog
InVzZXJfNDIiLCAibmF0aW9uYWxpdGllcyI6IFt7Ii4uLiI6ICJwRm5kamtaX1ZDem15
VGE2VWpsWm8zZGgta284YUlLUWM5RGxHemhhVllvIn0sIHsiLi4uIjogIjdDZjZKa1B1
ZHJ5M2xjYndIZ2VaOGtoQXYxVTFPU2xlclAwVmtCSnJXWjAifV0sICJfc2RfYWxnIjog
InNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnYiOiAiUC0y
NTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbERsczd2Q2VH
ZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U2dDRqVDlG
MkhaUSJ9fX0.MczwjBFGtzf-6WMT-hIvYbkb11NrV1WMO-jTijpMPNbswNzZ87wY2uHz
-CXo6R04b7jYrpj9mNRAvVssXou1iw

 Adding the Disclosures produces the SD-JWT:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
IkNyUWU3UzVrcUJBSHQtbk1ZWGdjNmJkdDJTSDVhVFkxc1VfTS1QZ2tqUEkiLCAiSnpZ
akg0c3ZsaUgwUjNQeUVNZmVadTZKdDY5dTVxZWhabzdGN0VQWWxTRSIsICJQb3JGYnBL
dVZ1Nnh5bUphZ3ZrRnNGWEFiUm9jMkpHbEFVQTJCQTRvN2NJIiwgIlRHZjRvTGJnd2Q1
SlFhSHlLVlFaVTlVZEdFMHc1cnREc3JaemZVYW9tTG8iLCAiWFFfM2tQS3QxWHlYN0tB
TmtxVlI2eVoyVmE1TnJQSXZQWWJ5TXZSS0JNTSIsICJYekZyendzY002R242Q0pEYzZ2
Vks4QmtNbmZHOHZPU0tmcFBJWmRBZmRFIiwgImdiT3NJNEVkcTJ4Mkt3LXc1d1BFemFr
b2I5aFYxY1JEMEFUTjNvUUw5Sk0iLCAianN1OXlWdWx3UVFsaEZsTV8zSmx6TWFTRnpn
bGhRRzBEcGZheVF3TFVLNCJdLCAiaXNzIjogImh0dHBzOi8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE2ODMwMDAwMDAsICJleHAiOiAxODgzMDAwMDAwLCAic3ViIjog
InVzZXJfNDIiLCAibmF0aW9uYWxpdGllcyI6IFt7Ii4uLiI6ICJwRm5kamtaX1ZDem15
VGE2VWpsWm8zZGgta284YUlLUWM5RGxHemhhVllvIn0sIHsiLi4uIjogIjdDZjZKa1B1
ZHJ5M2xjYndIZ2VaOGtoQXYxVTFPU2xlclAwVmtCSnJXWjAifV0sICJfc2RfYWxnIjog
InNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnYiOiAiUC0y
NTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbERsczd2Q2VH
ZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U2dDRqVDlG
MkhaUSJ9fX0.MczwjBFGtzf-6WMT-hIvYbkb11NrV1WMO-jTijpMPNbswNzZ87wY2uHz
-CXo6R04b7jYrpj9mNRAvVssXou1iw~WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgI
mdpdmVuX25hbWUiLCAiSm9obiJd~WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImZh
bWlseV9uYW1lIiwgIkRvZSJd~WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImVtYWl
sIiwgImpvaG5kb2VAZXhhbXBsZS5jb20iXQ~WyJlSThaV205UW5LUHBOUGVOZW5IZGhR
IiwgInBob25lX251bWJlciIsICIrMS0yMDItNTU1LTAxMDEiXQ~WyJRZ19PNjR6cUF4Z
TQxMmExMDhpcm9BIiwgInBob25lX251bWJlcl92ZXJpZmllZCIsIHRydWVd~WyJBSngt
MDk1VlBycFR0TjRRTU9xUk9BIiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRyZXNzIjog
IjEyMyBNYWluIFN0IiwgImxvY2FsaXR5IjogIkFueXRvd24iLCAicmVnaW9uIjogIkFu
eXN0YXRlIiwgImNvdW50cnkiOiAiVVMifV0~WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZR
IiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAxIl0~WyJHMDJOU3JRZmpGWFE3SW8wOXN5
YWpBIiwgInVwZGF0ZWRfYXQiLCAxNTcwMDAwMDAwXQ~WyJsa2x4RjVqTVlsR1RQVW92T
U5JdkNBIiwgIlVTIl0~WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgIkRFIl0~

 Presentation
 The following non-normative example shows an SD-JWT+KB as
it would be sent from the Holder to the Verifier. Note that it consists of six
tilde-separated parts, with the Issuer-signed JWT as shown above in the beginning,
four Disclosures (for the claims given_name, family_name, address, and one of the
 nationalities) in the middle, and the Key Binding JWT as the last element.

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
IkNyUWU3UzVrcUJBSHQtbk1ZWGdjNmJkdDJTSDVhVFkxc1VfTS1QZ2tqUEkiLCAiSnpZ
akg0c3ZsaUgwUjNQeUVNZmVadTZKdDY5dTVxZWhabzdGN0VQWWxTRSIsICJQb3JGYnBL
dVZ1Nnh5bUphZ3ZrRnNGWEFiUm9jMkpHbEFVQTJCQTRvN2NJIiwgIlRHZjRvTGJnd2Q1
SlFhSHlLVlFaVTlVZEdFMHc1cnREc3JaemZVYW9tTG8iLCAiWFFfM2tQS3QxWHlYN0tB
TmtxVlI2eVoyVmE1TnJQSXZQWWJ5TXZSS0JNTSIsICJYekZyendzY002R242Q0pEYzZ2
Vks4QmtNbmZHOHZPU0tmcFBJWmRBZmRFIiwgImdiT3NJNEVkcTJ4Mkt3LXc1d1BFemFr
b2I5aFYxY1JEMEFUTjNvUUw5Sk0iLCAianN1OXlWdWx3UVFsaEZsTV8zSmx6TWFTRnpn
bGhRRzBEcGZheVF3TFVLNCJdLCAiaXNzIjogImh0dHBzOi8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE2ODMwMDAwMDAsICJleHAiOiAxODgzMDAwMDAwLCAic3ViIjog
InVzZXJfNDIiLCAibmF0aW9uYWxpdGllcyI6IFt7Ii4uLiI6ICJwRm5kamtaX1ZDem15
VGE2VWpsWm8zZGgta284YUlLUWM5RGxHemhhVllvIn0sIHsiLi4uIjogIjdDZjZKa1B1
ZHJ5M2xjYndIZ2VaOGtoQXYxVTFPU2xlclAwVmtCSnJXWjAifV0sICJfc2RfYWxnIjog
InNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnYiOiAiUC0y
NTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbERsczd2Q2VH
ZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U2dDRqVDlG
MkhaUSJ9fX0.MczwjBFGtzf-6WMT-hIvYbkb11NrV1WMO-jTijpMPNbswNzZ87wY2uHz
-CXo6R04b7jYrpj9mNRAvVssXou1iw~WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgI
mZhbWlseV9uYW1lIiwgIkRvZSJd~WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImFk
ZHJlc3MiLCB7InN0cmVldF9hZGRyZXNzIjogIjEyMyBNYWluIFN0IiwgImxvY2FsaXR5
IjogIkFueXRvd24iLCAicmVnaW9uIjogIkFueXN0YXRlIiwgImNvdW50cnkiOiAiVVMi
fV0~WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImdpdmVuX25hbWUiLCAiSm9obiJd
~WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIlVTIl0~eyJhbGciOiAiRVMyNTYiLCA
idHlwIjogImtiK2p3dCJ9.eyJub25jZSI6ICIxMjM0NTY3ODkwIiwgImF1ZCI6ICJodH
RwczovL3ZlcmlmaWVyLmV4YW1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF
9oYXNoIjogIjBfQWYtMkItRWhMV1g1eWRoX3cyeHp3bU82aU02NkJfMlFDRWFuSTRmVV
kifQ.T3SIus2OidNl41nmVkTZVCKKhOAX97aOldMyHFiYjHm261eLiJ1YiuONFiMN8Ql
CmYzDlBLAdPvrXh52KaLgUQ

 The following Key Binding JWT payload was created and signed for this presentation by the Holder:

{
 "nonce": "1234567890",
 "aud": "https://verifier.example.org",
 "iat": 1748537244,
 "sd_hash": "0_Af-2B-EhLWX5ydh_w2xzwmO6iM66B_2QCEanI4fUY"
}

 If the Verifier did not require Key Binding, then the Holder could have
presented the SD-JWT with selected Disclosures directly, instead of encapsulating it in
an SD-JWT+KB.
 After validation, the Verifier will have the following Processed SD-JWT Payload available for further handling:

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "user_42",
 "nationalities": [
 "US"
],
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 },
 "family_name": "Doe",
 "address": {
 "street_address": "123 Main St",
 "locality": "Anytown",
 "region": "Anystate",
 "country": "US"
 },
 "given_name": "John"
}

 Considerations on Nested Data in SD-JWTs
 Being JSON, an object in an SD-JWT payload MAY contain name/value pairs where the value is another object or objects MAY be elements in arrays. In SD-JWT, the Issuer decides for each claim individually, on each level of the JSON, whether or not the claim should be selectively disclosable. This choice can be made on each level independent of whether keys higher in the hierarchy are selectively disclosable.
 From this it follows that the _sd key containing digests MAY appear multiple
times in an SD-JWT, and likewise, there MAY be multiple arrays within the
hierarchy with each having selectively disclosable elements. Digests of
selectively disclosable claims MAY even appear within other Disclosures.
 The following examples illustrate some of the options an Issuer has. It is up to the Issuer to decide which structure to use, depending on, for example, the expected use cases for the SD-JWT, requirements for privacy, size considerations, or operating environment requirements. For more examples with nested structures, see Appendices and .
 The following input JWT Claims Set is used as an example throughout this section:

{
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "address": {
 "street_address": "Schulstr. 12",
 "locality": "Schulpforta",
 "region": "Sachsen-Anhalt",
 "country": "DE"
 }
}

 Note: The following examples of the structures are non-normative and are not intended to
represent all possible options. They are also not meant to define or restrict
how address claim can be represented in an SD-JWT.

 Example: Flat SD-JWT
 The Issuer can decide to treat the address claim as a block that can either be disclosed completely or not at all. The following example shows that in this case, the entire address claim is treated as an object in the Disclosure.

{
 "_sd": [
 "fOBUSQvo46yQO-wRwXBcGqvnbKIueISEL961_Sjd4do"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "_sd_alg": "sha-256"
}

 The Issuer would create the following Disclosure referenced by the one hash in the SD-JWT:

 Claim address:

 SHA-256 Hash:
 fOBUSQvo46yQO-wRwXBcGqvnbKIueISEL961_Sjd4do

 Disclosure:
 WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImFkZHJlc3MiLCB7InN0cmVldF9hZGRyZXNzIjogIlNjaHVsc3RyLiAxMiIsICJsb2NhbGl0eSI6ICJTY2h1bHBmb3J0YSIsICJyZWdpb24iOiAiU2FjaHNlbi1BbmhhbHQiLCAiY291bnRyeSI6ICJERSJ9XQ

 Contents:
 ["2GLC42sKQveCfGfryNRN9w", "address", {"street_address": "Schulstr. 12", "locality": "Schulpforta", "region": "Sachsen-Anhalt", "country": "DE"}]

 Example: Structured SD-JWT
 The Issuer may instead decide to make the address claim contents selectively disclosable individually:

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "address": {
 "_sd": [
 "6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0",
 "9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM",
 "KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88",
 "WN9r9dCBJ8HTCsS2jKASxTjEyW5m5x65_Z_2ro2jfXM"
]
 },
 "_sd_alg": "sha-256"
}

 In this case, the Issuer would use the following data in the Disclosures for the address sub-claims:

 Claim street_address:

 SHA-256 Hash:
 9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM

 Disclosure:
 WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInN0cmVldF9hZGRyZXNzIiwgIlNjaHVsc3RyLiAxMiJd

 Contents:
 ["2GLC42sKQveCfGfryNRN9w", "street_address", "Schulstr. 12"]

 Claim locality:

 SHA-256 Hash:
 6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0

 Disclosure:
 WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImxvY2FsaXR5IiwgIlNjaHVscGZvcnRhIl0

 Contents:
 ["eluV5Og3gSNII8EYnsxA_A", "locality", "Schulpforta"]

 Claim region:

 SHA-256 Hash:
 KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88

 Disclosure:
 WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgInJlZ2lvbiIsICJTYWNoc2VuLUFuaGFsdCJd

 Contents:
 ["6Ij7tM-a5iVPGboS5tmvVA", "region", "Sachsen-Anhalt"]

 Claim country:

 SHA-256 Hash:
 WN9r9dCBJ8HTCsS2jKASxTjEyW5m5x65_Z_2ro2jfXM

 Disclosure:
 WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgImNvdW50cnkiLCAiREUiXQ

 Contents:
 ["eI8ZWm9QnKPpNPeNenHdhQ", "country", "DE"]

 The Issuer may also make one sub-claim of address permanently disclosed and hide only the other sub-claims:

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "address": {
 "_sd": [
 "6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0",
 "9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM",
 "KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88"
],
 "country": "DE"
 },
 "_sd_alg": "sha-256"
}

 In this case, there would be no Disclosure for country, since it is provided in the clear.

 Example: SD-JWT with Recursive Disclosures
 The Issuer may also decide to make the address claim contents selectively disclosable recursively, i.e., the address claim is made selectively disclosable as well as its sub-claims:

{
 "_sd": [
 "HvrKX6fPV0v9K_yCVFBiLFHsMaxcD_114Em6VT8x1lg"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "_sd_alg": "sha-256"
}

 The Issuer first creates Disclosures for the sub-claims and then includes their digests in the Disclosure for the address claim:

 Claim street_address:

 SHA-256 Hash:
 9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM

 Disclosure:
 WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInN0cmVldF9hZGRyZXNzIiwgIlNjaHVsc3RyLiAxMiJd

 Contents:
 ["2GLC42sKQveCfGfryNRN9w", "street_address", "Schulstr. 12"]

 Claim locality:

 SHA-256 Hash:
 6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0

 Disclosure:
 WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImxvY2FsaXR5IiwgIlNjaHVscGZvcnRhIl0

 Contents:
 ["eluV5Og3gSNII8EYnsxA_A", "locality", "Schulpforta"]

 Claim region:

 SHA-256 Hash:
 KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88

 Disclosure:
 WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgInJlZ2lvbiIsICJTYWNoc2VuLUFuaGFsdCJd

 Contents:
 ["6Ij7tM-a5iVPGboS5tmvVA", "region", "Sachsen-Anhalt"]

 Claim country:

 SHA-256 Hash:
 WN9r9dCBJ8HTCsS2jKASxTjEyW5m5x65_Z_2ro2jfXM

 Disclosure:
 WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgImNvdW50cnkiLCAiREUiXQ

 Contents:
 ["eI8ZWm9QnKPpNPeNenHdhQ", "country", "DE"]

 Claim address:

 SHA-256 Hash:
 HvrKX6fPV0v9K_yCVFBiLFHsMaxcD_114Em6VT8x1lg

 Disclosure:
 WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImFkZHJlc3MiLCB7Il9zZCI6IFsiNnZoOWJxLXpTNEdLTV83R3BnZ1ZiWXp6dTZvT0dYcm1OVkdQSFA3NVVkMCIsICI5Z2pWdVh0ZEZST0NnUnJ0TmNHVVhtRjY1cmRlemlfNkVyX2o3NmttWXlNIiwgIktVUkRQaDRaQzE5LTN0aXotRGYzOVY4ZWlkeTFvVjNhM0gxRGEyTjBnODgiLCAiV045cjlkQ0JKOEhUQ3NTMmpLQVN4VGpFeVc1bTV4NjVfWl8ycm8yamZYTSJdfV0

 Contents:
 ["Qg_O64zqAxe412a108iroA", "address", {"_sd": ["6vh9bq-zS4GKM_7GpggVbYzzu6oOGXrmNVGPHP75Ud0", "9gjVuXtdFROCgRrtNcGUXmF65rdezi_6Er_j76kmYyM", "KURDPh4ZC19-3tiz-Df39V8eidy1oV3a3H1Da2N0g88", "WN9r9dCBJ8HTCsS2jKASxTjEyW5m5x65_Z_2ro2jfXM"]}]

 Verification and Processing

 Verification of the SD-JWT
 Upon receiving an SD-JWT, either directly or as a component of an SD-JWT+KB, a Holder
or Verifier needs to ensure that:

 the Issuer-signed JWT is valid, and
 all Disclosures are valid and correspond to a respective digest value in the Issuer-signed JWT (directly in the payload or recursively included in the contents of other Disclosures).

 The Holder or the Verifier MUST perform the following checks when receiving
an SD-JWT to validate the SD-JWT and extract the payload:

 Separate the SD-JWT into the Issuer-signed JWT and the Disclosures (if any).

 Validate the Issuer-signed JWT:

 Ensure that the used signing algorithm was deemed secure for the application. Refer to , Sections and for details. The "none" algorithm MUST NOT be accepted.
 Validate the signature over the Issuer-signed JWT per .
 Validate the Issuer and that the signing key belongs to this Issuer.
 Check that the _sd_alg claim value is understood and the hash algorithm is deemed secure according to the Holder or Verifier's policy (see).

 Process the Disclosures and embedded digests in the Issuer-signed JWT as follows:

 For each Disclosure provided:

 Calculate the digest over the base64url-encoded string as described in .

 (*) Identify all embedded digests in the Issuer-signed JWT as follows:

 Find all objects having an _sd key that refers to an array of strings.
 Find all array elements that are objects with one key, that key being ... and referring to a string.

 (**) For each embedded digest found in the previous step:

 Compare the value with the digests calculated previously and find the matching Disclosure. If no such Disclosure can be found, the digest MUST be ignored.

 If the digest was found in an object's _sd key:

 If the contents of the respective Disclosure is not a JSON array of three elements (salt, claim name, claim value), the SD-JWT MUST be rejected.
 If the claim name is _sd or ..., the SD-JWT MUST be rejected.
 If the claim name already exists at the level of the _sd key, the SD-JWT MUST be rejected.
 Insert, at the level of the _sd key, a new claim using the claim name and claim value from the Disclosure.
 Recursively process the value using the steps described in (*) and (**).

 If the digest was found in an array element:

 If the contents of the respective Disclosure is not a JSON array of two elements (salt, value), the SD-JWT MUST be rejected.
 Replace the array element with the value from the Disclosure.
 Recursively process the value using the steps described in (*) and (**).

 Remove all array elements for which the digest was not found in the previous step.
 Remove all _sd keys and their contents from the Issuer-signed JWT payload. If this results in an object with no properties, it should be represented as an empty object {}.
 Remove the claim _sd_alg from the SD-JWT payload.

 If any digest value is encountered more than once in the Issuer-signed JWT payload (directly or recursively via other Disclosures), the SD-JWT MUST be rejected.
 If any Disclosure was not referenced by digest value in the Issuer-signed JWT (directly or recursively via other Disclosures), the SD-JWT MUST be rejected.
 Check that the SD-JWT is valid using claims such as nbf, exp, and aud in the processed payload, if present. If a required validity-controlling claim is missing (see), the SD-JWT MUST be rejected.

 If any step fails, the SD-JWT is not valid, and processing MUST be aborted. Otherwise, the JSON document resulting from the preceding processing and verification steps, herein referred to as the "Processed SD-JWT Payload", can be made available to the application to be used for its intended purpose.

 Note that these processing steps do not yield any guarantees to the Holder about having received a complete set of Disclosures. That is, for some digest values in the Issuer-signed JWT (which are not decoy digests), there may be no corresponding Disclosures, for example, if the message from the Issuer was truncated.
It is up to the Holder how to maintain the mapping between the Disclosures and the plaintext claim values to be able to display them to the user when needed.

 Processing by the Holder
 The Issuer provides the Holder with an SD-JWT, not an SD-JWT+KB. If the Holder
receives an SD-JWT+KB, it MUST be rejected.
 When receiving an SD-JWT, the Holder MUST do the following:

 Process the SD-JWT as defined in to validate it and extract the payload.
 Ensure that the contents of claims in the payload are acceptable (depending on the application; for example, check that any values the Holder can check are correct).

 For presentation to a Verifier, the Holder MUST perform the following (or equivalent) steps (in addition to the checks described in performed after receiving the SD-JWT):

 Decide which Disclosures to release to the Verifier, obtaining consent if necessary (note that if and how consent is attained is out of scope for this document).

 Verify that each selected Disclosure satisfies one of the two following conditions:

 The hash of the Disclosure is contained in the Issuer-signed JWT claims.
 The hash of the Disclosure is contained in the claim value of another selected Disclosure.

 Assemble the SD-JWT, including the Issuer-signed JWT and the selected Disclosures (see for the format).

 If Key Binding is not required:

 Send the SD-JWT to the Verifier.

 If Key Binding is required:

 Create a Key Binding JWT tied to the SD-JWT.
 Assemble the SD-JWT+KB by concatenating the SD-JWT and the Key Binding JWT.
 Send the SD-JWT+KB to the Verifier.

 Verification by the Verifier
 Upon receiving a presentation from a Holder, in the form of either an SD-JWT or
an SD-JWT+KB, in addition to the checks described in , Verifiers need to ensure that

 if Key Binding is required, then the Holder has provided an SD-JWT+KB, and
 the Key Binding JWT is signed by the Holder and valid.

 To this end, Verifiers MUST follow the following steps (or equivalent):

 Determine if Key Binding is to be checked according to the Verifier's policy
for the use case at hand. This decision MUST NOT be based on whether
or not a Key Binding JWT is provided by the Holder. Refer to for
details.
 If Key Binding is required and the Holder has provided an SD-JWT (without Key Binding), the Verifier MUST reject the presentation.
 If the Holder has provided an SD-JWT+KB, parse it into an SD-JWT and a Key Binding JWT.
 Process the SD-JWT as defined in to validate the presentation and extract the payload.

 If Key Binding is required:

 Determine the public key for the Holder from the SD-JWT (see).
 Ensure that a signing algorithm was used that was deemed secure for the application. Refer to , Sections and for details. The "none" algorithm MUST NOT be accepted.
 Validate the signature over the Key Binding JWT per .
 Check that the typ of the Key Binding JWT is kb+jwt (see).
 Check that the creation time of the Key Binding JWT, as determined by the iat claim, is within an acceptable window.
 Determine that the Key Binding JWT is bound to the current transaction and was created for this Verifier (replay detection) by validating nonce and aud claims.
 Calculate the digest over the Issuer-signed JWT and Disclosures as defined in and verify that it matches the value of the sd_hash claim in the Key Binding JWT.
 Check that the Key Binding JWT is a valid JWT in all other respects, per and .

 If any step fails, the presentation is not valid and processing MUST be aborted.
 Otherwise, the Processed SD-JWT Payload can be passed to the application to be used for the intended purpose.

 JWS JSON Serialization
 This section describes an alternative format for SD-JWTs and SD-JWT+KBs using the JWS JSON
Serialization from . Supporting this format is OPTIONAL.

 New Unprotected Header Parameters
 For both the General and Flattened JSON Serialization, the SD-JWT or SD-JWT+KB is represented
as a JSON object according to . The following new
unprotected header parameters are defined:

 disclosures:
 An array of strings where each element is an individual
Disclosure as described in .
 kb_jwt:
 Present only in an SD-JWT+KB, the Key Binding JWT as described in .

 In an SD-JWT+KB, kb_jwt MUST be present when using the JWS JSON Serialization,
and the digest in the sd_hash claim MUST be computed over the SD-JWT as described
in . This means that even when using
the JWS JSON Serialization, the representation as a regular SD-JWT Compact Serialization MUST be
created temporarily to calculate the digest. In detail, the SD-JWT Compact Serialization part is built
by concatenating the protected header, the payload, and the signature of the JWS
JSON serialized SD-JWT using a . character as a separator, and using the
Disclosures from the disclosures member of the unprotected header.
 Unprotected headers other than disclosures are not covered by the digest, and
therefore, as usual, are not protected against tampering.

 Flattened JSON Serialization
 In the case of Flattened JSON Serialization, there is only one unprotected
header.
 The following is a non-normative example of a JWS JSON serialized SD-JWT as
issued using the Flattened JSON Serialization:

{
 "header": {
 "disclosures": [
 "WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInN1YiIsICJqb2huX2RvZV80M
 iJd",
 "WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiSm9ob
 iJd",
 "WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImZhbWlseV9uYW1lIiwgIkRvZ
 SJd",
 "WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgImJpcnRoZGF0ZSIsICIxOTQwL
 TAxLTAxIl0"
]
 },
 "payload": "eyJfc2QiOiBbIjRIQm42YUlZM1d0dUdHV1R4LXFVajZjZGs2V0JwWn
 lnbHRkRmF2UGE3TFkiLCAiOHNtMVFDZjAyMXBObkhBQ0k1c1A0bTRLWmd5Tk9PQV
 ljVGo5SE5hQzF3WSIsICJjZ0ZkaHFQbzgzeFlObEpmYWNhQ2FhN3VQOVJDUjUwVk
 U1UjRMQVE5aXFVIiwgImpNQ1hWei0tOWI4eDM3WWNvRGZYUWluencxd1pjY2NmRl
 JCQ0ZHcWRHMm8iXSwgImlzcyI6ICJodHRwczovL2lzc3Vlci5leGFtcGxlLmNvbS
 IsICJpYXQiOiAxNjgzMDAwMDAwLCAiZXhwIjogMTg4MzAwMDAwMCwgIl9zZF9hbG
 ciOiAic2hhLTI1NiIsICJjbmYiOiB7Imp3ayI6IHsia3R5IjogIkVDIiwgImNydi
 I6ICJQLTI1NiIsICJ4IjogIlRDQUVSMTladnUzT0hGNGo0VzR2ZlNWb0hJUDFJTG
 lsRGxzN3ZDZUdlbWMiLCAieSI6ICJaeGppV1diWk1RR0hWV0tWUTRoYlNJaXJzVm
 Z1ZWNDRTZ0NGpUOUYySFpRIn19fQ",
 "protected":
 "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0",
 "signature": "3oOtvPxU3QdDWUmfGexVB5rWyON2f1atg5rL825bvvD1g7ywjKDK
 y2UHqHoH2QS4FA99JbG5qnlqFaGXFChfjQ"
}

 The following is an SD-JWT+KB with two Disclosures:

{
 "header": {
 "disclosures": [
 "WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImZhbWlseV9uYW1lIiwgIkRvZ
 SJd",
 "WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiSm9ob
 iJd"
],
 "kb_jwt": "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImtiK2p3dCJ9.eyJub25j
 ZSI6ICIxMjM0NTY3ODkwIiwgImF1ZCI6ICJodHRwczovL3ZlcmlmaWVyLmV4YW
 1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF9oYXNoIjogIlZqdFBz
 Z1pwUVRSeEtKdkRwU0otblhsWktFOVo5TGdENEZ5Q3d3b05NUncifQ.GrDvJ2j
 hYNmUvqdwVEIrxeTFEuI5qKSM7I6P95JmA6Wko-FBB5vPGQn0wvmdgjLCE2iDR
 h1r82zchjmABQ3V8w"
 },
 "payload": "eyJfc2QiOiBbIjRIQm42YUlZM1d0dUdHV1R4LXFVajZjZGs2V0JwWn
 lnbHRkRmF2UGE3TFkiLCAiOHNtMVFDZjAyMXBObkhBQ0k1c1A0bTRLWmd5Tk9PQV
 ljVGo5SE5hQzF3WSIsICJjZ0ZkaHFQbzgzeFlObEpmYWNhQ2FhN3VQOVJDUjUwVk
 U1UjRMQVE5aXFVIiwgImpNQ1hWei0tOWI4eDM3WWNvRGZYUWluencxd1pjY2NmRl
 JCQ0ZHcWRHMm8iXSwgImlzcyI6ICJodHRwczovL2lzc3Vlci5leGFtcGxlLmNvbS
 IsICJpYXQiOiAxNjgzMDAwMDAwLCAiZXhwIjogMTg4MzAwMDAwMCwgIl9zZF9hbG
 ciOiAic2hhLTI1NiIsICJjbmYiOiB7Imp3ayI6IHsia3R5IjogIkVDIiwgImNydi
 I6ICJQLTI1NiIsICJ4IjogIlRDQUVSMTladnUzT0hGNGo0VzR2ZlNWb0hJUDFJTG
 lsRGxzN3ZDZUdlbWMiLCAieSI6ICJaeGppV1diWk1RR0hWV0tWUTRoYlNJaXJzVm
 Z1ZWNDRTZ0NGpUOUYySFpRIn19fQ",
 "protected":
 "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0",
 "signature": "3oOtvPxU3QdDWUmfGexVB5rWyON2f1atg5rL825bvvD1g7ywjKDK
 y2UHqHoH2QS4FA99JbG5qnlqFaGXFChfjQ"
}

 General JSON Serialization
 In the case of General JSON Serialization, there are multiple unprotected
headers (one per signature). If present, disclosures and kb_jwt MUST be
included in the first unprotected header and MUST NOT be present in any
following unprotected headers.
 The following is a non-normative example of a presentation of a JWS JSON
serialized SD-JWT, including a Key Binding JWT using the General JSON
Serialization:

{
 "payload": "eyJfc2QiOiBbIjRIQm42YUlZM1d0dUdHV1R4LXFVajZjZGs2V0JwWn
 lnbHRkRmF2UGE3TFkiLCAiOHNtMVFDZjAyMXBObkhBQ0k1c1A0bTRLWmd5Tk9PQV
 ljVGo5SE5hQzF3WSIsICJjZ0ZkaHFQbzgzeFlObEpmYWNhQ2FhN3VQOVJDUjUwVk
 U1UjRMQVE5aXFVIiwgImpNQ1hWei0tOWI4eDM3WWNvRGZYUWluencxd1pjY2NmRl
 JCQ0ZHcWRHMm8iXSwgImlzcyI6ICJodHRwczovL2lzc3Vlci5leGFtcGxlLmNvbS
 IsICJpYXQiOiAxNjgzMDAwMDAwLCAiZXhwIjogMTg4MzAwMDAwMCwgIl9zZF9hbG
 ciOiAic2hhLTI1NiIsICJjbmYiOiB7Imp3ayI6IHsia3R5IjogIkVDIiwgImNydi
 I6ICJQLTI1NiIsICJ4IjogIlRDQUVSMTladnUzT0hGNGo0VzR2ZlNWb0hJUDFJTG
 lsRGxzN3ZDZUdlbWMiLCAieSI6ICJaeGppV1diWk1RR0hWV0tWUTRoYlNJaXJzVm
 Z1ZWNDRTZ0NGpUOUYySFpRIn19fQ",
 "signatures": [
 {
 "header": {
 "disclosures": [
 "WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImZhbWlseV9uYW1lIiwgI
 kRvZSJd",
 "WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiS
 m9obiJd"
],
 "kid": "issuer-key-1",
 "kb_jwt": "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImtiK2p3dCJ9.eyJu
 b25jZSI6ICIxMjM0NTY3ODkwIiwgImF1ZCI6ICJodHRwczovL3ZlcmlmaW
 VyLmV4YW1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF9oYXNo
 IjogInFieUlXUDNwaFZneEVzRFJpd2R3OVc2QkozZHhpUEx1bWNZcFBidT
 RFYjgifQ.VyZqxaVHh1XE6M-kuax_7Laq42uFDrx17lLG2jluyKgy_PqC8
 5z4DVpISdMZDdSANGs-0zN2N7xnM-E1Pg0sOw"
 },
 "protected":
 "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0",
 "signature": "dz1N3uvhVHJjldyXwppmBLieTj0vuBMbzL06rnrLIuxEQb9B
 HoIOwGrWh-UadW4orRpEiEtjf7xyHDONMJ6tBw"
 },
 {
 "header": {
 "kid": "issuer-key-2"
 },
 "protected":
 "eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0",
 "signature": "kuXio_U88RH_-fihAPET4AFUjj0BpxsT6yddMFIr6pfHKtAe
 0FOJNWQxU42rfnORuNQNTgGsf2A8LjEba5inNg"
 }
]
}

 Verification of the JWS JSON Serialized SD-JWT
 Verification of the JWS JSON serialized SD-JWT follows the rules defined in
 , except for the following aspects:

 The SD-JWT or SD-JWT+KB does not need to be split into component parts and the Disclosures
can be found in the disclosures member of the unprotected header.
 To verify the digest in sd_hash in the Key Binding JWT of an SD-JWT+KB, the Verifier MUST
assemble the string to be hashed as described in
 .

 Security Considerations
 The security considerations help achieve the following properties:

 Selective Disclosure:
 An adversary in the role
 of the Verifier cannot obtain information from an SD-JWT about any claim
 name or claim value that was not explicitly disclosed by the Holder unless
 that information can be derived from other disclosed claims or sources other
 than the presented SD-JWT.
 Integrity:

 A malicious Holder cannot modify
 names or values of selectively disclosable claims without detection by the
 Verifier.

 Additionally, as described in , the application of Key Binding can ensure that the presenter of an SD-JWT credential is the Holder of the credential.

 Mandatory Signing of the Issuer-Signed JWT
 The JWT MUST be signed by the Issuer to protect the integrity of the issued
claims. An attacker can modify or add claims if this JWT is not signed (e.g.,
change the "email" attribute to take over the victim's account or add an
attribute indicating a fake academic qualification).
 The Verifier MUST always check the signature of the Issuer-signed JWT to ensure that it
has not been tampered with since its issuance. The Issuer-signed JWT MUST be rejected if the signature cannot be verified.
 The security of the Issuer-signed JWT depends on the security of the signature algorithm.
Per the last paragraph of , it is an
application-specific decision to choose the appropriate JWS
algorithm from , including post-quantum algorithms, when they are ready.

 Manipulation of Disclosures
 Holders can manipulate the Disclosures by changing the values of the claims
before sending them to the Verifier. The Verifier MUST check the Disclosures to
ensure that the values of the claims are correct, i.e., the digests of the Disclosures are actually present in the signed SD-JWT.
 A naive Verifier that extracts
all claim values from the Disclosures (without checking the hashes) and inserts them into the SD-JWT payload
is vulnerable to this attack. However, in a structured SD-JWT, without comparing the digests of the
Disclosures, such an implementation could not determine the correct place in a
nested object where a claim needs to be inserted. Therefore, the naive implementation
would not only be insecure, but also incorrect.
 The steps described in ensure that the Verifier
checks the Disclosures correctly.

 Entropy of the Salt
 The security model that conceals the plaintext claims relies on the high entropy
random data of the salt as additional input to the hash function. The randomness
ensures that the same plaintext claim value does not produce the same digest value. It also
makes it infeasible to guess the preimage of the digest (thereby learning the
plaintext claim value) by enumerating the potential value
space for a claim into the hash function to search for a matching digest value.
It is therefore vitally important that unrevealed salts cannot be learned or guessed,
even if other salts have been revealed. As such, each salt MUST be created
in such a manner that it is cryptographically random, sufficiently long, and
has high enough entropy that it is infeasible to guess. A
new salt MUST be chosen for each claim independently of other salts.
See "Randomness Requirements for Security" for considerations
on generating random values.
 The RECOMMENDED minimum length of the randomly generated portion of the salt is 128 bits.
 The Issuer MUST ensure that a new salt value is chosen for each claim,
including when the same claim name occurs at different places in the
structure of the SD-JWT. This can be seen in the example in ,
where multiple claims with the name type appear, but each of them has
a different salt.

 Choice of a Hash Algorithm
 To ensure privacy of claims that are selectively disclosable but are not being disclosed in a given presentation,
the hash function MUST ensure that it is infeasible to calculate any portion of the three elements
(salt, claim name, claim value) from a particular digest. This implies the hash function MUST
be preimage resistant and should also not allow an observer to infer any partial information about
the undisclosed content. In the terminology of cryptographic commitment schemes, the hash function
needs to be computationally hiding.
 To ensure the integrity of selectively disclosable claims, the hash function MUST be second-preimage
resistant. That is, for any combination of salt, claim name, and claim value, it is infeasible to find a different combination of salt,
claim name, and claim value that results in the same digest.
 The hash function SHOULD also be collision resistant. Although not essential to the anticipated uses of
SD-JWT, without collision resistance an Issuer may be able to find multiple Disclosures that have the
same hash value. In which case, the signature over the SD-JWT would not then commit the Issuer to the contents of the
JWT. The collision resistance of the hash function used to generate digests SHOULD
match the collision resistance of the hash function used by the signature scheme. For example, use of
the ES512 signature algorithm would require a Disclosure hash function with at least 256-bit collision
resistance, such as SHA-512.
 Inclusion in the "Named Information Hash Algorithm Registry"
alone does not indicate a hash algorithm's suitability for use in SD-JWT (it contains several
heavily truncated digests, such as sha-256-32 and sha-256-64, which are unfit for security
applications).

 Key Binding
 Key Binding aims to ensure that the presenter of an SD-JWT credential is actually the Holder of the credential.
An SD-JWT compatible with Key Binding contains a public key, or a reference to a public key, that corresponds to a private key possessed by the Holder.
The Verifier requires that the Holder prove possession of that private key when presenting the SD-JWT credential.
 Without Key Binding, a Verifier only gets the proof that the
credential was issued by a particular Issuer, but the credential itself
can be replayed by anyone who gets access to it. This means that, for
example, after the credential was leaked to an attacker, the attacker can
present the credential to any Verifier that does not require a
binding. Also, a malicious Verifier to which the Holder presented the
credential can present the credential to another Verifier if that other
Verifier does not require Key Binding.
 Verifiers MUST decide whether Key Binding is required for a
particular use case before verifying a credential. This decision
can be informed by various factors including but not limited to the following:
business requirements, the use case, the type of
binding between a Holder and its credential that is required for a use
case, the sensitivity of the use case, the expected properties of a
credential, the type and contents of other credentials expected to be
presented at the same time, etc.
 It is important that a Verifier not make its security policy
decisions based on data that can be influenced by an attacker. For this reason, when deciding whether or not Key
Binding is required, Verifiers MUST NOT take into account
whether the Holder has provided an SD-JWT+KB or a bare SD-JWT; otherwise, an
attacker could strip the KB-JWT from an SD-JWT+KB and present the resultant SD-JWT.
 Furthermore, Verifiers should be aware that Key Binding information may have been added to an SD-JWT in a format that they do not recognize and therefore may not be able to tell whether or not the SD-JWT supports Key Binding.
 If a Verifier determines that Key Binding is required for a
particular use case and the Holder presents either a bare SD-JWT or an SD-JWT+KB with
an invalid Key Binding JWT, then the Verifier will reject the presentation
when following the verification steps described in .

 Concealing Claim Names
 SD-JWT ensures that names of claims that are selectively disclosable are
always concealed unless the claim's value is disclosed. This prevents an attacker from learning the names of such
claims. However, the names of the claims that are permanently
disclosed are not hidden. This includes the keys of objects that themselves
are not concealed, but contain concealed claims. This limitation
needs to be taken into account by Issuers when creating the structure of
the SD-JWT.

 Selectively Disclosable Validity Claims
 An Issuer MUST NOT allow any content to be selectively disclosable that is critical for evaluating the
SD-JWT's authenticity or validity.
The exact list of such content will depend on the application
and SHOULD be listed by any application-specific profiles of SD-JWT.
The following is a list of registered JWT claim names that SHOULD be considered as
security critical:

 iss (Issuer)

 aud (Audience), although issuers MAY allow individual entries in the array to be selectively disclosable

 exp (Expiration Time)

 nbf (Not Before)

 cnf (Confirmation Key)

 Issuers will typically include claims controlling the validity of the SD-JWT
in plaintext in the SD-JWT payload, but there is no guarantee they will do so. Therefore, Verifiers cannot
reliably depend on that and need to operate as though security-critical claims might be
selectively disclosable.
 Verifiers therefore MUST ensure that all claims they deem necessary for checking
the validity of an SD-JWT in the given context are present (or disclosed, respectively) during
validation of the SD-JWT. This is implemented in the last
step of the verification defined in .
 The precise set of required validity claims will typically be defined by
operating environment rules, an application-specific profile, or the credential format, and MAY include claims other than
those listed herein.

 Distribution and Rotation of Issuer Signature Verification Key
 This specification does not define how signature verification keys of
Issuers are distributed to Verifiers. However, it is RECOMMENDED that
Issuers publish their keys in a way that allows for efficient and secure
key rotation and revocation, for example, by publishing keys at a
predefined location using the JSON Web Key Set (JWKS) format .
Verifiers need to ensure that they are not using expired or revoked keys
for signature verification using reasonable and appropriate means for the given
key-distribution method.

 Forwarding Credentials
 Any entity in possession of an SD-JWT (including an SD-JWT extracted from an SD-JWT+KB) can forward it to any third party
that does not enforce Key Binding.
When doing so, that entity may remove Disclosures such that the receiver
learns only a subset of the claims contained in the original SD-JWT.
 For example, a device manufacturer might produce an SD-JWT
containing information about upstream and downstream supply chain contributors.
Each supply chain party can verify only the claims that were selectively disclosed to them
by an upstream party, and they can choose to further reduce the disclosed claims
when presenting to a downstream party.
 In some scenarios, this behavior could be desirable;
if it is not, Issuers need to support and Verifiers need to enforce Key Binding.

 Integrity of SD-JWTs and SD-JWT+KBs
 With an SD-JWT, the Issuer-signed JWT is integrity protected by the Issuer's
signature, and the values of the Disclosures are integrity protected by the digests
included therein. The specific set of Disclosures, however,
is not integrity protected; the SD-JWT can be modified by adding or
removing Disclosures and still be valid.
 With an SD-JWT+KB, the set of selected Disclosures is integrity protected.
The signature in the Key Binding JWT covers a
specific SD-JWT, with a specific Issuer-signed JWT and a specific set of
Disclosures. Thus, the signature on the Key Binding JWT, in addition to proving
Key Binding, also assures the authenticity and integrity of the set of
Disclosures the Holder disclosed. The set of Disclosures in an SD-JWT+KB is the set
that the Holder intended to send; no intermediate party has added, removed, or
modified the list of Disclosures.

 Explicit Typing
 describes the use of explicit typing as one mechanism to prevent confusion attacks
(described in) in which one kind of JWT is mistaken for another. SD-JWTs are also potentially
subject to such confusion attacks, so in the absence of other techniques, it is RECOMMENDED that application profiles of SD-JWT specify an explicit type
by including the typ header parameter when the SD-JWT is issued, and that Verifiers check this value.
 When explicit typing using the typ header is employed for an SD-JWT, it is RECOMMENDED that a media type name of the format
"application/example+sd-jwt" be used, where "example" is replaced by the identifier for the specific kind of SD-JWT.
The definition of typ in recommends that the "application/" prefix be omitted, so
"example+sd-jwt" would be the value of the typ header parameter.
 Use of the cty content type header parameter to indicate the content type of the SD-JWT payload can also be used to distinguish different types of JSON objects or different kinds of JWT Claim Sets.

 Key Pair Generation and Lifecycle Management
 Implementations of SD-JWT rely on asymmetric cryptographic keys and must therefore ensure that key pair generation,
handling, storage, and lifecycle management are performed securely.
 While the specific mechanisms for secure key management are out of scope for this document, implementers
should follow established best practices, such as those outlined in NIST SP 800-57 Part 1 .
This includes:

 Secure Generation: Using cryptographically secure methods and random number generators.
 Secure Storage: Protecting private keys from unauthorized access.
 Lifecycle Management: Ensuring secure key rotation, revocation, and disposal as needed.

 Appropriate key management is essential, as any compromise can lead to unauthorized disclosure or forgery of SD-JWTs.

 Privacy Considerations

 Unlinkability
 Unlinkability is a property whereby adversaries are prevented from correlating
credential presentations of the same user beyond the user's consent.
Without unlinkability, an adversary might be able to learn more about the user than the user
intended to disclose, for example:

 Cooperating Verifiers might want to track users across services to build
advertising profiles.
 Issuers might want to track where users present their credentials to enable
surveillance.
 After a data breach at multiple Verifiers, publicly available information
might allow linking identifiable information presented to Verifier A with
originally anonymous information presented to Verifier B, therefore revealing
the identities of users of Verifier B.

 The following types of unlinkability are discussed below:

 Presentation Unlinkability: A Verifier should not be able to link two
presentations of the same credential.
 Verifier/Verifier Unlinkability: The presentations made to two different
Verifiers should not reveal that the same credential was presented (e.g., if the two
Verifiers collude, or if they are forced by a third party to reveal the presentations
made to them, or data leaks from one Verifier to the other).
 Issuer/Verifier Unlinkability (Honest Verifier): An Issuer of a credential
should not be able to know that a user presented this credential unless
the Verifier is sharing presentation data with the Issuer
accidentally, deliberately, or because it is forced to do so.
 Issuer/Verifier Unlinkability (Careless/Colluding/Compromised/Coerced Verifier): >An Issuer of a
credential should under no circumstances be able to tell that a user presented this credential to
a certain Verifier. In particular, this includes cases when the Verifier accidentally or deliberately shares
presentation data with the Issuer or is forced to do so.

 In all cases, unlinkability is limited to cases where the disclosed claims do
not contain information that directly or indirectly identifies the user. For
example, when a taxpayer identification number is contained in the disclosed claims, the Issuer and
Verifier can easily link the user's transactions. However, when the user only
discloses a birthdate to one Verifier and a postal code to another Verifier, the two Verifiers should not be able to determine that they were interacting with the same user.
 Issuer/Verifier unlinkability with a careless, colluding, compromised, or coerced Verifier cannot be
achieved in salted hash-based selective disclosure approaches, such as SD-JWT, as the
issued credential with the Issuer's signature is directly presented to the Verifier, who can forward it to
the Issuer. To reduce the risk of revealing the data later on, defines
requirements to reduce the amount of data stored.
 In considering Issuer/Verifier unlinkability, it is important to note the potential for an asymmetric power dynamic
between Issuers and Verifiers. This dynamic can compel an otherwise Honest Verifier into collusion.
For example, a governmental Issuer might have the authority to mandate that a Verifier report back information
about the credentials presented to it. Legal requirements could further enforce this, explicitly undermining
Issuer/Verifier unlinkability. Similarly, a large service provider issuing credentials might implicitly pressure
Verifiers into collusion by incentivizing participation in their larger operating environment.
Deployers of SD-JWT must be aware of these potential power dynamics,
mitigate them as much as possible, and/or make the risks transparent to the user.
 Contrary to that, Issuer/Verifier unlinkability with an Honest Verifier can generally be achieved.
However, a callback from the Verifier to the Issuer, such as a revocation check, could potentially
disclose information about the credential's usage to the Issuer.
Where such callbacks are necessary, they need to be executed in a manner that
preserves privacy and does not disclose details about the credential to the Issuer
(the mechanism described in is an example of an approach
that discloses minimal information towards the Issuer). It is
important to note that the timing of such requests could potentially serve as a side channel.
 Verifier/Verifier unlinkability and presentation unlinkability can be achieved using batch issuance: A batch
of credentials based on the same claims is issued to the Holder instead of just
a single credential. The Holder can then use a different credential for each
Verifier or even for each session with a Verifier. New Key Binding keys and
salts MUST be used for each credential in the batch to ensure that the Verifiers
cannot link the credentials using these values. Likewise, claims carrying time
information, like iat, exp, and nbf, MUST either be randomized within a
time period considered appropriate (e.g., randomize iat within the last 24
hours and calculate exp accordingly) or rounded (e.g., rounded down to the
beginning of the day).
 SD-JWT only conceals the value of claims that are not revealed.
It does not meet the security properties for anonymous credentials . In
particular, colluding Verifiers and Issuers can know when they have seen the same
credential no matter what fields have been disclosed, even when none have been disclosed.
This behavior may not align with what users naturally anticipate or are guided to
expect from user-interface interactions, potentially causing them to make decisions
they might not otherwise make. Workarounds such as batch issuance, as
described above, help with keeping
Verifiers from linking different presentations, but cannot work for Issuer/Verifier unlinkability.
This issue applies to all salted hash-based approaches,
including mDL/mDoc and SD-CWT .

 Storage of User Data
 Wherever user data is stored, it represents a potential
target for an attacker. This target can be of particularly
high value when the data is signed by a trusted authority like an
official national identity service. For example, in OpenID Connect ,
signed ID Tokens can be stored by Relying Parties. In the case of
SD-JWT, Holders have to store SD-JWTs,
and Issuers and Verifiers may decide to do so as well.
 Not surprisingly, a leak of such data risks revealing private data of users
to third parties. Signed user data, the authenticity of which
can be easily verified by third parties, further exacerbates the risk.
As discussed in , leaked
SD-JWTs may also allow attackers to impersonate Holders unless Key
Binding is enforced and the attacker does not have access to the
Holder's cryptographic keys.
 Due to these risks, and the risks described in , systems implementing SD-JWT SHOULD be designed to minimize
the amount of data that is stored. All involved parties SHOULD NOT store SD-JWTs
longer than strictly necessary, including in log files.
 After Issuance, Issuers SHOULD NOT store the Issuer-signed JWT or the respective
Disclosures.
 Holders SHOULD store SD-JWTs only in
encrypted form, and, wherever possible, use hardware-backed encryption
in particular for the private Key Binding key. Decentralized storage
of data, e.g., on user devices, SHOULD be preferred for user
credentials over centralized storage. Expired SD-JWTs SHOULD be deleted
as soon as possible.
 After Verification, Verifiers SHOULD NOT store the Issuer-signed JWT or the
respective Disclosures. It may be
sufficient to store the result of the verification and any user data that is
needed for the application.
 Exceptions from the rules above can be made if there are strong requirements to do
so (e.g., functional requirements or legal audit requirements), secure storage can
be ensured, and the privacy impact has been assessed.

 Confidentiality During Transport
 If an SD-JWT or SD-JWT+KB is transmitted over an insecure
channel during issuance or presentation, an adversary may be able to
intercept and read the user's personal data or correlate the information with previous uses.
 Usually, transport protocols for issuance and presentation of credentials
are designed to protect the confidentiality of the transmitted data, for
example, by requiring the use of TLS.
 This specification therefore considers the confidentiality of the data to be
provided by the transport protocol and does not specify any encryption
mechanism.
 Implementers MUST ensure that the transport protocol provides confidentiality
if the privacy of user data or correlation attacks by passive observers are a concern.
 To encrypt an SD-JWT or SD-JWT+KB during transit over potentially insecure or leakage-prone channels, implementers MAY use JSON Web Encryption (JWE) , encapsulating the SD-JWT or SD-JWT+KB as the plaintext payload of the JWE.
Especially, when an SD-JWT is transmitted via a URL and information may be stored/cached in the browser or end up in web server logs, the SD-JWT SHOULD be encrypted using JWE.

 Decoy Digests
 The use of decoy digests is RECOMMENDED when the number of claims (or the existence of particular claims) can be a side channel disclosing information about otherwise undisclosed claims. In particular, if a claim in an SD-JWT is present only if a certain condition is met (e.g., a membership number is only contained if the user is a member of a group), the Issuer SHOULD add decoy digests when the condition is not met.
 Decoy digests increase the size of the SD-JWT. The number of decoy digests (or whether to use them at all) is a trade-off between the size of the SD-JWT and the privacy of the user's data.

 Issuer Identifier
 An Issuer issuing only one type of SD-JWT might have privacy implications, because if the Holder has an SD-JWT issued by that Issuer, its type and claim names can be determined.
 For example, if a cancer research institute only issued SD-JWTs with cancer registry information, it is possible to deduce that the Holder owning its SD-JWT is a cancer patient.
 Moreover, the Issuer identifier alone may reveal information about the user.
 For example, when a military organization or a drug rehabilitation center issues a vaccine credential, Verifiers can deduce that the Holder is a military member or may have a substance use disorder.
 To mitigate this issue, a group of issuers may elect to use a common Issuer identifier. A group signature scheme outside the scope of this specification may also be used, instead of an individual signature.

 IANA Considerations

 JSON Web Token Claims Registration
 IANA has registered the following Claims in the
"JSON Web Token Claims" registry established by .

 Claim Name:

 _sd
 Claim Description:
 Digests of Disclosures for object properties
 Change Controller:
 IETF
 Specification Document(s):

 of RFC 9901

 Claim Name:

 ...
 Claim Description:
 Digest of the Disclosure for an array element
 Change Controller:
 IETF
 Specification Document(s):

 of RFC 9901

 Claim Name:

 _sd_alg
 Claim Description:
 Hash algorithm used to generate Disclosure digests and digest over presentation
 Change Controller:
 IETF
 Specification Document(s):

 of RFC 9901

 Claim Name:

 sd_hash
 Claim Description:
 Digest of the SD-JWT to which the KB-JWT is tied
 Change Controller:
 IETF
 Specification Document(s):

 of RFC 9901

 Media Type Registrations
 IANA has registered the following media types in
the "Media Types" registry in the manner described
in .

 Note: For the media type value used in the typ header in the Issuer-signed JWT
itself, see .

 SD-JWT Content
 To indicate that the content is an SD-JWT:

 Type name:
 application
 Subtype name:
 sd-jwt
 Required parameters:
 n/a
 Optional parameters:
 n/a
 Encoding considerations:
 binary; application/sd-jwt values are a series of base64url-encoded values (some of which may be the empty string) separated by period ('.') and tilde ('~') characters.
 Security considerations:
 See the Security Considerations sections of RFC 9901, , and .
 Interoperability considerations:
 n/a
 Published specification:
 RFC 9901
 Applications that use this media type:
 Applications requiring selective disclosure of integrity-protected content.
 Fragment identifier considerations:
 n/a
 Additional information:

 Magic number(s):
 n/a
 File extension(s):
 n/a
 Macintosh file type code(s):
 n/a

 Person & email address to contact for further information:
 Daniel Fett, mail@danielfett.de
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author:
 Daniel Fett, mail@danielfett.de
 Change Controller:
 IETF

 JWS JSON Serialized SD-JWT Content
 To indicate that the content is a JWS JSON serialized SD-JWT:

 Type name:
 application
 Subtype name:
 sd-jwt+json
 Required parameters:
 n/a
 Optional parameters:
 n/a
 Encoding considerations:
 binary; application/sd-jwt+json values are represented as a JSON Object.
 Security considerations:
 See the Security Considerations sections of RFC 9901 and .
 Interoperability considerations:
 n/a
 Published specification:
 RFC 9901
 Applications that use this media type:
 Applications requiring selective disclosure of content protected by ETSI JAdES compliant signatures.
 Fragment identifier considerations:
 n/a
 Additional information:

 Magic number(s):
 n/a
 File extension(s):
 n/a
 Macintosh file type code(s):
 n/a

 Person & email address to contact for further information:
 Daniel Fett, mail@danielfett.de
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author:
 Daniel Fett, mail@danielfett.de
 Change Controller:
 IETF

 Key Binding JWT Content
 To indicate that the content is a Key Binding JWT:

 Type name:
 application
 Subtype name:
 kb+jwt
 Required parameters:
 n/a
 Optional parameters:
 n/a
 Encoding considerations:
 binary; A Key Binding JWT is a JWT; JWT values are encoded as a series of base64url-encoded values separated by period ('.') characters.
 Security considerations:
 See the Security Considerations sections of RFC 9901, , and .
 Interoperability considerations:
 n/a
 Published specification:
 RFC 9901
 Applications that use this media type:
 Applications utilizing a JWT-based proof-of-possession mechanism.
 Fragment identifier considerations:
 n/a
 Additional information:

 Magic number(s):
 n/a
 File extension(s):
 n/a
 Macintosh file type code(s):
 n/a

 Person & email address to contact for further information:
 Daniel Fett, mail@danielfett.de
 Intended usage:
 COMMON
 Restrictions on usage:
 none
 Author:
 Daniel Fett, mail@danielfett.de
 Change Controller:
 IETF

 Structured Syntax Suffixes Registration
 IANA has registered "+sd-jwt" in
the "Structured Syntax Suffixes" registry in
the manner described in , which can be used to indicate that
the media type is encoded as an SD-JWT.

 Name:
 SD-JWT
 +suffix:
 +sd-jwt
 References:
 RFC 9901
 Encoding considerations:
 binary; SD-JWT values are a series of base64url-encoded values (some of which may be the empty string) separated by period ('.') or tilde ('~') characters.
 Interoperability considerations:
 n/a
 Fragment identifier considerations:
 n/a
 Security considerations:
 See the Security Considerations sections of RFC 9901, , and .
 Contact:
 Daniel Fett, mail@danielfett.de
 Author/Change controller:
 IETF

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 Media Type Specifications and Registration Procedures

 This document defines procedures for the specification and registration of media types for use in HTTP, MIME, and other Internet protocols. This memo documents an Internet Best Current Practice.

 JSON Web Signature (JWS)

 JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication Codes (MACs) using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and an IANA registry defined by that specification. Related encryption capabilities are described in the separate JSON Web Encryption (JWE) specification.

 JSON Web Encryption (JWE)

 JSON Web Encryption (JWE) represents encrypted content using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries defined by that specification. Related digital signature and Message Authentication Code (MAC) capabilities are described in the separate JSON Web Signature (JWS) specification.

 JSON Web Token (JWT)

 JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted.

 Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)

 This specification describes how to declare in a JSON Web Token (JWT) that the presenter of the JWT possesses a particular proof-of- possession key and how the recipient can cryptographically confirm proof of possession of the key by the presenter. Being able to prove possession of a key is also sometimes described as the presenter being a holder-of-key.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 JSON Web Token Best Current Practices

 JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security tokens that contain a set of claims that can be signed and/or encrypted. JWTs are being widely used and deployed as a simple security token format in numerous protocols and applications, both in the area of digital identity and in other application areas. This Best Current Practices document updates RFC 7519 to provide actionable guidance leading to secure implementation and deployment of JWTs.

 Informative References

 An Efficient System for Non-Transferable Anonymous Credentials with Optional Anonymity Revocation

 IBM Research

 MIT

 Cryptology ePrint Archive, Paper 2001/019

 Named Information Hash Algorithm Registry

 IANA

 Personal identification - ISO-compliant driving license - Part 5: Mobile driving license (mDL) application

 ISO/IEC

 JSON Web Signature and Encryption Algorithms

 IANA

 JSON Web Token Claims

 IANA

 Media Types

 IANA

 Recommendation for Key Management: Part 1 - General

 Information Technology Laboratory

 OpenID Connect for Identity Assurance 1.0

 yes.com

 yes.com

 Considrd.Consulting Ltd

 Santander

 1&1 Mail & Media Development & Technology GmbH

 KDDI Corporation

 OpenID Connect Core 1.0 incorporating errata set 2

 NAT.Consulting

 Yubico

 Self-Issued Consulting

 Google

 Disney

 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

 This second document defines the general structure of the MIME media typing system and defines an initial set of media types. [STANDARDS-TRACK]

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 JSON Web Key (JWK)

 A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that represents a cryptographic key. This specification also defines a JWK Set JSON data structure that represents a set of JWKs. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries established by that specification.

 JSON Canonicalization Scheme (JCS)

 Cryptographic operations like hashing and signing need the data to be expressed in an invariant format so that the operations are reliably repeatable. One way to address this is to create a canonical representation of the data. Canonicalization also permits data to be exchanged in its original form on the "wire" while cryptographic operations performed on the canonicalized counterpart of the data in the producer and consumer endpoints generate consistent results.
 This document describes the JSON Canonicalization Scheme (JCS). This specification defines how to create a canonical representation of JSON data by building on the strict serialization methods for JSON primitives defined by ECMAScript, constraining JSON data to the Internet JSON (I-JSON) subset, and by using deterministic property sorting.

 Selective Disclosure CBOR Web Tokens (SD-CWT)

 mesur.io

 Tradeverifyd

 Fraunhofer SIT

 This specification describes a data minimization technique for use with CBOR Web Tokens (CWTs). The approach is based on the Selective Disclosure JSON Web Token (SD-JWT), with changes to align with CBOR Object Signing and Encryption (COSE) and CWTs.

 Work in Progress

 SD-JWT-based Verifiable Credentials (SD-JWT VC)

 MATTR

 Authlete Inc.

 Ping Identity

 This specification describes data formats as well as validation and processing rules to express Verifiable Credentials with JSON payloads with and without selective disclosure based on the SD-JWT [I-D.ietf-oauth-selective-disclosure-jwt] format.

 Work in Progress

 Structured Syntax Suffixes

 IANA

 Token Status List (TSL)

 MATTR

 Bundesdruckerei

 SPRIND

 This specification defines a mechanism called Token Status List (abbreviated TSL), data structures and processing rules for representing the status of tokens secured by JSON Object Signing and Encryption (JOSE) or CBOR Object Signing and Encryption (COSE), such as JWT, SD-JWT VC, CBOR Web Token and ISO mdoc. It also defines an extension point and a registry for future status mechanisms.

 Work in Progress

 Verifiable Credentials Data Model 2.0

 Digital Bazaar

 OpenLink Software

 Invited Expert

 Block

 W3C

 W3C Recommendation

 Additional Examples
 The following examples are not normative and are provided for
illustrative purposes only. In particular, neither the structure of the claims
nor the selection of selectively disclosable claims is normative.
 Line breaks have been added for readability.

 Simple Structured SD-JWT
 In this example, in contrast to , the Issuer decided to create a structured object for the address claim, allowing individual members of the claim to be disclosed separately.

 The following data about the user comprises the input JWT Claims Set used by the Issuer:

{
 "sub": "6c5c0a49-b589-431d-bae7-219122a9ec2c",
 "given_name": "太郎",
 "family_name": "山田",
 "email": "\"unusual email address\"@example.jp",
 "phone_number": "+81-80-1234-5678",
 "address": {
 "street_address": "東京都港区芝公園４丁目２−８",
 "locality": "東京都",
 "region": "港区",
 "country": "JP"
 },
 "birthdate": "1940-01-01"
}

 The Issuer also decided to add decoy digests to prevent the Verifier from deducing the true number of claims.
 The following payload is used for the SD-JWT:

{
 "_sd": [
 "C9inp6YoRaEXR427zYJP7Qrk1WH_8bdwOA_YUrUnGQU",
 "Kuet1yAa0HIQvYnOVd59hcViO9Ug6J2kSfqYRBeowvE",
 "MMldOFFzB2d0umlmpTIaGerhWdU_PpYfLvKhh_f_9aY",
 "X6ZAYOII2vPN40V7xExZwVwz7yRmLNcVwt5DL8RLv4g",
 "Y34zmIo0QLLOtdMpXGwjBgLvr17yEhhYT0FGofR-aIE",
 "fyGp0WTwwPv2JDQln1lSiaeobZsMWA10bQ5989-9DTs",
 "ommFAicVT8LGHCB0uywx7fYuo3MHYKO15cz-RZEYM5Q",
 "s0BKYsLWxQQeU8tVlltM7MKsIRTrEIa1PkJmqxBBf5U"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "address": {
 "_sd": [
 "6aUhzYhZ7SJ1kVmagQAO3u2ETN2CC1aHheZpKnaF0_E",
 "AzLlFobkJ2xiaupREPyoJz-9-NSldB6Cgjr7fUyoHzg",
 "PzzcVu0qbMuBGSjulfewzkesD9zutOExn5EWNwkrQ-k",
 "b2Dkw0jcIF9rGg8_PF8ZcvncW7zwZj5ryBWvXfrpzek",
 "cPYJHIZ8Vu-f9CCyVub2UfgEk8jvvXezwK1p_JneeXQ",
 "glT3hrSU7fSWgwF5UDZmWwBTw32gnUldIhi8hGVCaV4",
 "rvJd6iq6T5ejmsBMoGwuNXh9qAAFATAci40oidEeVsA",
 "uNHoWYhXsZhVJCNE2Dqy-zqt7t69gJKy5QaFv7GrMX4"
]
 },
 "_sd_alg": "sha-256"
}

 The digests in the SD-JWT payload reference the following Disclosures:

 Claim sub:

 SHA-256 Hash:
 X6ZAYOII2vPN40V7xExZwVwz7yRmLNcVwt5DL8RLv4g

 Disclosure:
 WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInN1YiIsICI2YzVjMGE0OS1iNTg5LTQzMWQtYmFlNy0yMTkxMjJhOWVjMmMiXQ

 Contents:
 ["2GLC42sKQveCfGfryNRN9w", "sub", "6c5c0a49-b589-431d-bae7-219122a9ec2c"]

 Claim given_name:

 SHA-256 Hash:
 ommFAicVT8LGHCB0uywx7fYuo3MHYKO15cz-RZEYM5Q

 Disclosure:
 WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImdpdmVuX25hbWUiLCAiXHU1OTJhXHU5MGNlIl0

 Contents:
 ["eluV5Og3gSNII8EYnsxA_A", "given_name", "\u592a\u90ce"]

 Claim family_name:

 SHA-256 Hash:
 C9inp6YoRaEXR427zYJP7Qrk1WH_8bdwOA_YUrUnGQU

 Disclosure:
 WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImZhbWlseV9uYW1lIiwgIlx1NWM3MVx1NzUzMCJd

 Contents:
 ["6Ij7tM-a5iVPGboS5tmvVA", "family_name", "\u5c71\u7530"]

 Claim email:

 SHA-256 Hash:
 Kuet1yAa0HIQvYnOVd59hcViO9Ug6J2kSfqYRBeowvE

 Disclosure:
 WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgImVtYWlsIiwgIlwidW51c3VhbCBlbWFpbCBhZGRyZXNzXCJAZXhhbXBsZS5qcCJd

 Contents:
 ["eI8ZWm9QnKPpNPeNenHdhQ", "email", "\"unusual email address\"@example.jp"]

 Claim phone_number:

 SHA-256 Hash:
 s0BKYsLWxQQeU8tVlltM7MKsIRTrEIa1PkJmqxBBf5U

 Disclosure:
 WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgInBob25lX251bWJlciIsICIrODEtODAtMTIzNC01Njc4Il0

 Contents:
 ["Qg_O64zqAxe412a108iroA", "phone_number", "+81-80-1234-5678"]

 Claim street_address:

 SHA-256 Hash:
 6aUhzYhZ7SJ1kVmagQAO3u2ETN2CC1aHheZpKnaF0_E

 Disclosure:
 WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgInN0cmVldF9hZGRyZXNzIiwgIlx1Njc3MVx1NGVhY1x1OTBmZFx1NmUyZlx1NTMzYVx1ODI5ZFx1NTE2Y1x1NTcxMlx1ZmYxNFx1NGUwMVx1NzZlZVx1ZmYxMlx1MjIxMlx1ZmYxOCJd

 Contents:
 ["AJx-095VPrpTtN4QMOqROA", "street_address", "\u6771\u4eac\u90fd\u6e2f\u533a\u829d\u516c\u5712\uff14\u4e01\u76ee\uff12\u2212\uff18"]

 Claim locality:

 SHA-256 Hash:
 rvJd6iq6T5ejmsBMoGwuNXh9qAAFATAci40oidEeVsA

 Disclosure:
 WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgImxvY2FsaXR5IiwgIlx1Njc3MVx1NGVhY1x1OTBmZCJd

 Contents:
 ["Pc33JM2LchcU_lHggv_ufQ", "locality", "\u6771\u4eac\u90fd"]

 Claim region:

 SHA-256 Hash:
 PzzcVu0qbMuBGSjulfewzkesD9zutOExn5EWNwkrQ-k

 Disclosure:
 WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgInJlZ2lvbiIsICJcdTZlMmZcdTUzM2EiXQ

 Contents:
 ["G02NSrQfjFXQ7Io09syajA", "region", "\u6e2f\u533a"]

 Claim country:

 SHA-256 Hash:
 uNHoWYhXsZhVJCNE2Dqy-zqt7t69gJKy5QaFv7GrMX4

 Disclosure:
 WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImNvdW50cnkiLCAiSlAiXQ

 Contents:
 ["lklxF5jMYlGTPUovMNIvCA", "country", "JP"]

 Claim birthdate:

 SHA-256 Hash:
 MMldOFFzB2d0umlmpTIaGerhWdU_PpYfLvKhh_f_9aY

 Disclosure:
 WyJ5eXRWYmRBUEdjZ2wyckk0QzlHU29nIiwgImJpcnRoZGF0ZSIsICIxOTQwLTAxLTAxIl0

 Contents:
 ["yytVbdAPGcgl2rI4C9GSog", "birthdate", "1940-01-01"]

 The following decoy digests are added:

 AzLlFobkJ2xiaupREPyoJz-9-NSldB6Cgjr7fUyoHzg

 cPYJHIZ8Vu-f9CCyVub2UfgEk8jvvXezwK1p_JneeXQ

 glT3hrSU7fSWgwF5UDZmWwBTw32gnUldIhi8hGVCaV4

 b2Dkw0jcIF9rGg8_PF8ZcvncW7zwZj5ryBWvXfrpzek

 fyGp0WTwwPv2JDQln1lSiaeobZsMWA10bQ5989-9DTs

 Y34zmIo0QLLOtdMpXGwjBgLvr17yEhhYT0FGofR-aIE

 The following is a presentation of the SD-JWT that discloses only region
and country of the address property:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
IkM5aW5wNllvUmFFWFI0Mjd6WUpQN1FyazFXSF84YmR3T0FfWVVyVW5HUVUiLCAiS3Vl
dDF5QWEwSElRdlluT1ZkNTloY1ZpTzlVZzZKMmtTZnFZUkJlb3d2RSIsICJNTWxkT0ZG
ekIyZDB1bWxtcFRJYUdlcmhXZFVfUHBZZkx2S2hoX2ZfOWFZIiwgIlg2WkFZT0lJMnZQ
TjQwVjd4RXhad1Z3ejd5Um1MTmNWd3Q1REw4Ukx2NGciLCAiWTM0em1JbzBRTExPdGRN
cFhHd2pCZ0x2cjE3eUVoaFlUMEZHb2ZSLWFJRSIsICJmeUdwMFdUd3dQdjJKRFFsbjFs
U2lhZW9iWnNNV0ExMGJRNTk4OS05RFRzIiwgIm9tbUZBaWNWVDhMR0hDQjB1eXd4N2ZZ
dW8zTUhZS08xNWN6LVJaRVlNNVEiLCAiczBCS1lzTFd4UVFlVTh0VmxsdE03TUtzSVJU
ckVJYTFQa0ptcXhCQmY1VSJdLCAiaXNzIjogImh0dHBzOi8vaXNzdWVyLmV4YW1wbGUu
Y29tIiwgImlhdCI6IDE2ODMwMDAwMDAsICJleHAiOiAxODgzMDAwMDAwLCAiYWRkcmVz
cyI6IHsiX3NkIjogWyI2YVVoelloWjdTSjFrVm1hZ1FBTzN1MkVUTjJDQzFhSGhlWnBL
bmFGMF9FIiwgIkF6TGxGb2JrSjJ4aWF1cFJFUHlvSnotOS1OU2xkQjZDZ2pyN2ZVeW9I
emciLCAiUHp6Y1Z1MHFiTXVCR1NqdWxmZXd6a2VzRDl6dXRPRXhuNUVXTndrclEtayIs
ICJiMkRrdzBqY0lGOXJHZzhfUEY4WmN2bmNXN3p3Wmo1cnlCV3ZYZnJwemVrIiwgImNQ
WUpISVo4VnUtZjlDQ3lWdWIyVWZnRWs4anZ2WGV6d0sxcF9KbmVlWFEiLCAiZ2xUM2hy
U1U3ZlNXZ3dGNVVEWm1Xd0JUdzMyZ25VbGRJaGk4aEdWQ2FWNCIsICJydkpkNmlxNlQ1
ZWptc0JNb0d3dU5YaDlxQUFGQVRBY2k0MG9pZEVlVnNBIiwgInVOSG9XWWhYc1poVkpD
TkUyRHF5LXpxdDd0NjlnSkt5NVFhRnY3R3JNWDQiXX0sICJfc2RfYWxnIjogInNoYS0y
NTYifQ.EOZa2YqK8j4i7cqBDkfPcTMaFsgPwcx3aYJkFoMfvV46LxL-PPqrWsIyNukB4
x8Y2LT31eIHDc4Wg4XNzaqu4w~WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgInJlZ2
lvbiIsICJcdTZlMmZcdTUzM2EiXQ~WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImN
vdW50cnkiLCAiSlAiXQ~

 After validation, the Verifier will have the following Processed SD-JWT Payload available for further handling:

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "address": {
 "region": "港区",
 "country": "JP"
 }
}

 Complex Structured SD-JWT
 In this example, an SD-JWT with a complex object is represented. The data
structures defined in OpenID Connect for Identity Assurance are used.
 The Issuer is using the following user data as the input JWT Claims Set:

{
 "verified_claims": {
 "verification": {
 "trust_framework": "de_aml",
 "time": "2012-04-23T18:25Z",
 "verification_process": "f24c6f-6d3f-4ec5-973e-b0d8506f3bc7",
 "evidence": [
 {
 "type": "document",
 "method": "pipp",
 "time": "2012-04-22T11:30Z",
 "document": {
 "type": "idcard",
 "issuer": {
 "name": "Stadt Augsburg",
 "country": "DE"
 },
 "number": "53554554",
 "date_of_issuance": "2010-03-23",
 "date_of_expiry": "2020-03-22"
 }
 }
]
 },
 "claims": {
 "given_name": "Max",
 "family_name": "Müller",
 "nationalities": [
 "DE"
],
 "birthdate": "1956-01-28",
 "place_of_birth": {
 "country": "IS",
 "locality": "Þykkvabæjarklaustur"
 },
 "address": {
 "locality": "Maxstadt",
 "postal_code": "12344",
 "country": "DE",
 "street_address": "Weidenstraße 22"
 }
 }
 },
 "birth_middle_name": "Timotheus",
 "salutation": "Dr.",
 "msisdn": "49123456789"
}

 The following payload is used for the SD-JWT:

{
 "_sd": [
 "-aSznId9mWM8ocuQolCllsxVggq1-vHW4OtnhUtVmWw",
 "IKbrYNn3vA7WEFrysvbdBJjDDU_EvQIr0W18vTRpUSg",
 "otkxuT14nBiwzNJ3MPaOitOl9pVnXOaEHal_xkyNfKI"
],
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "verified_claims": {
 "verification": {
 "_sd": [
 "7h4UE9qScvDKodXVCuoKfKBJpVBfXMF_TmAGVaZe3Sc",
 "vTwe3raHIFYgFA3xaUD2aMxFz5oDo8iBu05qKlOg9Lw"
],
 "trust_framework": "de_aml",
 "evidence": [
 {
 "...": "tYJ0TDucyZZCRMbROG4qRO5vkPSFRxFhUELc18CSl3k"
 }
]
 },
 "claims": {
 "_sd": [
 "RiOiCn6_w5ZHaadkQMrcQJf0Jte5RwurRs54231DTlo",
 "S_498bbpKzB6Eanftss0xc7cOaoneRr3pKr7NdRmsMo",
 "WNA-UNK7F_zhsAb9syWO6IIQ1uHlTmOU8r8CvJ0cIMk",
 "Wxh_sV3iRH9bgrTBJi-aYHNCLt-vjhX1sd-igOf_9lk",
 "_O-wJiH3enSB4ROHntToQT8JmLtz-mhO2f1c89XoerQ",
 "hvDXhwmGcJQsBCA2OtjuLAcwAMpDsaU0nkovcKOqWNE"
]
 }
 },
 "_sd_alg": "sha-256"
}

 The digests in the SD-JWT payload reference the following Disclosures:

 Claim time:

 SHA-256 Hash:
 vTwe3raHIFYgFA3xaUD2aMxFz5oDo8iBu05qKlOg9Lw

 Disclosure:
 WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgInRpbWUiLCAiMjAxMi0wNC0yM1QxODoyNVoiXQ

 Contents:
 ["2GLC42sKQveCfGfryNRN9w", "time", "2012-04-23T18:25Z"]

 Claim verification_process:

 SHA-256 Hash:
 7h4UE9qScvDKodXVCuoKfKBJpVBfXMF_TmAGVaZe3Sc

 Disclosure:
 WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgInZlcmlmaWNhdGlvbl9wcm9jZXNzIiwgImYyNGM2Zi02ZDNmLTRlYzUtOTczZS1iMGQ4NTA2ZjNiYzciXQ

 Contents:
 ["eluV5Og3gSNII8EYnsxA_A", "verification_process", "f24c6f-6d3f-4ec5-973e-b0d8506f3bc7"]

 Claim type:

 SHA-256 Hash:
 G5EnhOAOoU9X_6QMNvzFXjpEA_Rc-AEtm1bG_wcaKIk

 Disclosure:
 WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgInR5cGUiLCAiZG9jdW1lbnQiXQ

 Contents:
 ["6Ij7tM-a5iVPGboS5tmvVA", "type", "document"]

 Claim method:

 SHA-256 Hash:
 WpxQ4HSoEtcTmCCKOeDslB_emucYLz2oO8oHNr1bEVQ

 Disclosure:
 WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgIm1ldGhvZCIsICJwaXBwIl0

 Contents:
 ["eI8ZWm9QnKPpNPeNenHdhQ", "method", "pipp"]

 Claim time:

 SHA-256 Hash:
 9wpjVPWuD7PK0nsQDL8B06lmdgV3LVybhHydQpTNyLI

 Disclosure:
 WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgInRpbWUiLCAiMjAxMi0wNC0yMlQxMTozMFoiXQ

 Contents:
 ["Qg_O64zqAxe412a108iroA", "time", "2012-04-22T11:30Z"]

 Claim document:

 SHA-256 Hash:
 IhwFrWUB63RcZq9yvgZ0XPc7Gowh3O2kqXeBIswg1B4

 Disclosure:
 WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImRvY3VtZW50IiwgeyJ0eXBlIjogImlkY2FyZCIsICJpc3N1ZXIiOiB7Im5hbWUiOiAiU3RhZHQgQXVnc2J1cmciLCAiY291bnRyeSI6ICJERSJ9LCAibnVtYmVyIjogIjUzNTU0NTU0IiwgImRhdGVfb2ZfaXNzdWFuY2UiOiAiMjAxMC0wMy0yMyIsICJkYXRlX29mX2V4cGlyeSI6ICIyMDIwLTAzLTIyIn1d

 Contents:
 ["AJx-095VPrpTtN4QMOqROA", "document", {"type": "idcard", "issuer": {"name": "Stadt Augsburg", "country": "DE"}, "number": "53554554", "date_of_issuance": "2010-03-23", "date_of_expiry": "2020-03-22"}]

 Array Entry:

 SHA-256 Hash:
 tYJ0TDucyZZCRMbROG4qRO5vkPSFRxFhUELc18CSl3k

 Disclosure:
 WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgeyJfc2QiOiBbIjl3cGpWUFd1RDdQSzBuc1FETDhCMDZsbWRnVjNMVnliaEh5ZFFwVE55TEkiLCAiRzVFbmhPQU9vVTlYXzZRTU52ekZYanBFQV9SYy1BRXRtMWJHX3djYUtJayIsICJJaHdGcldVQjYzUmNacTl5dmdaMFhQYzdHb3doM08ya3FYZUJJc3dnMUI0IiwgIldweFE0SFNvRXRjVG1DQ0tPZURzbEJfZW11Y1lMejJvTzhvSE5yMWJFVlEiXX1d

 Contents:
 ["Pc33JM2LchcU_lHggv_ufQ", {"_sd": ["9wpjVPWuD7PK0nsQDL8B06lmdgV3LVybhHydQpTNyLI", "G5EnhOAOoU9X_6QMNvzFXjpEA_Rc-AEtm1bG_wcaKIk", "IhwFrWUB63RcZq9yvgZ0XPc7Gowh3O2kqXeBIswg1B4", "WpxQ4HSoEtcTmCCKOeDslB_emucYLz2oO8oHNr1bEVQ"]}]

 Claim given_name:

 SHA-256 Hash:
 S_498bbpKzB6Eanftss0xc7cOaoneRr3pKr7NdRmsMo

 Disclosure:
 WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImdpdmVuX25hbWUiLCAiTWF4Il0

 Contents:
 ["G02NSrQfjFXQ7Io09syajA", "given_name", "Max"]

 Claim family_name:

 SHA-256 Hash:
 Wxh_sV3iRH9bgrTBJi-aYHNCLt-vjhX1sd-igOf_9lk

 Disclosure:
 WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImZhbWlseV9uYW1lIiwgIk1cdTAwZmNsbGVyIl0

 Contents:
 ["lklxF5jMYlGTPUovMNIvCA", "family_name", "M\u00fcller"]

 Claim nationalities:

 SHA-256 Hash:
 hvDXhwmGcJQsBCA2OtjuLAcwAMpDsaU0nkovcKOqWNE

 Disclosure:
 WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFIl1d

 Contents:
 ["nPuoQnkRFq3BIeAm7AnXFA", "nationalities", ["DE"]]

 Claim birthdate:

 SHA-256 Hash:
 WNA-UNK7F_zhsAb9syWO6IIQ1uHlTmOU8r8CvJ0cIMk

 Disclosure:
 WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgImJpcnRoZGF0ZSIsICIxOTU2LTAxLTI4Il0

 Contents:
 ["5bPs1IquZNa0hkaFzzzZNw", "birthdate", "1956-01-28"]

 Claim place_of_birth:

 SHA-256 Hash:
 RiOiCn6_w5ZHaadkQMrcQJf0Jte5RwurRs54231DTlo

 Disclosure:
 WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13IiwgInBsYWNlX29mX2JpcnRoIiwgeyJjb3VudHJ5IjogIklTIiwgImxvY2FsaXR5IjogIlx1MDBkZXlra3ZhYlx1MDBlNmphcmtsYXVzdHVyIn1d

 Contents:
 ["5a2W0_NrlEZzfqmk_7Pq-w", "place_of_birth", {"country": "IS", "locality": "\u00deykkvab\u00e6jarklaustur"}]

 Claim address:

 SHA-256 Hash:
 _O-wJiH3enSB4ROHntToQT8JmLtz-mhO2f1c89XoerQ

 Disclosure:
 WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImFkZHJlc3MiLCB7ImxvY2FsaXR5IjogIk1heHN0YWR0IiwgInBvc3RhbF9jb2RlIjogIjEyMzQ0IiwgImNvdW50cnkiOiAiREUiLCAic3RyZWV0X2FkZHJlc3MiOiAiV2VpZGVuc3RyYVx1MDBkZmUgMjIifV0

 Contents:
 ["y1sVU5wdfJahVdgwPgS7RQ", "address", {"locality": "Maxstadt", "postal_code": "12344", "country": "DE", "street_address": "Weidenstra\u00dfe 22"}]

 Claim birth_middle_name:

 SHA-256 Hash:
 otkxuT14nBiwzNJ3MPaOitOl9pVnXOaEHal_xkyNfKI

 Disclosure:
 WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgImJpcnRoX21pZGRsZV9uYW1lIiwgIlRpbW90aGV1cyJd

 Contents:
 ["HbQ4X8srVW3QDxnIJdqyOA", "birth_middle_name", "Timotheus"]

 Claim salutation:

 SHA-256 Hash:
 -aSznId9mWM8ocuQolCllsxVggq1-vHW4OtnhUtVmWw

 Disclosure:
 WyJDOUdTb3VqdmlKcXVFZ1lmb2pDYjFBIiwgInNhbHV0YXRpb24iLCAiRHIuIl0

 Contents:
 ["C9GSoujviJquEgYfojCb1A", "salutation", "Dr."]

 Claim msisdn:

 SHA-256 Hash:
 IKbrYNn3vA7WEFrysvbdBJjDDU_EvQIr0W18vTRpUSg

 Disclosure:
 WyJreDVrRjE3Vi14MEptd1V4OXZndnR3IiwgIm1zaXNkbiIsICI0OTEyMzQ1Njc4OSJd

 Contents:
 ["kx5kF17V-x0JmwUx9vgvtw", "msisdn", "49123456789"]

 The following is a presentation of the SD-JWT:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJfc2QiOiBb
Ii1hU3puSWQ5bVdNOG9jdVFvbENsbHN4VmdncTEtdkhXNE90bmhVdFZtV3ciLCAiSUti
cllObjN2QTdXRUZyeXN2YmRCSmpERFVfRXZRSXIwVzE4dlRScFVTZyIsICJvdGt4dVQx
NG5CaXd6TkozTVBhT2l0T2w5cFZuWE9hRUhhbF94a3lOZktJIl0sICJpc3MiOiAiaHR0
cHM6Ly9pc3N1ZXIuZXhhbXBsZS5jb20iLCAiaWF0IjogMTY4MzAwMDAwMCwgImV4cCI6
IDE4ODMwMDAwMDAsICJ2ZXJpZmllZF9jbGFpbXMiOiB7InZlcmlmaWNhdGlvbiI6IHsi
X3NkIjogWyI3aDRVRTlxU2N2REtvZFhWQ3VvS2ZLQkpwVkJmWE1GX1RtQUdWYVplM1Nj
IiwgInZUd2UzcmFISUZZZ0ZBM3hhVUQyYU14Rno1b0RvOGlCdTA1cUtsT2c5THciXSwg
InRydXN0X2ZyYW1ld29yayI6ICJkZV9hbWwiLCAiZXZpZGVuY2UiOiBbeyIuLi4iOiAi
dFlKMFREdWN5WlpDUk1iUk9HNHFSTzV2a1BTRlJ4RmhVRUxjMThDU2wzayJ9XX0sICJj
bGFpbXMiOiB7Il9zZCI6IFsiUmlPaUNuNl93NVpIYWFka1FNcmNRSmYwSnRlNVJ3dXJS
czU0MjMxRFRsbyIsICJTXzQ5OGJicEt6QjZFYW5mdHNzMHhjN2NPYW9uZVJyM3BLcjdO
ZFJtc01vIiwgIldOQS1VTks3Rl96aHNBYjlzeVdPNklJUTF1SGxUbU9VOHI4Q3ZKMGNJ
TWsiLCAiV3hoX3NWM2lSSDliZ3JUQkppLWFZSE5DTHQtdmpoWDFzZC1pZ09mXzlsayIs
ICJfTy13SmlIM2VuU0I0Uk9IbnRUb1FUOEptTHR6LW1oTzJmMWM4OVhvZXJRIiwgImh2
RFhod21HY0pRc0JDQTJPdGp1TEFjd0FNcERzYVUwbmtvdmNLT3FXTkUiXX19LCAiX3Nk
X2FsZyI6ICJzaGEtMjU2In0.QoWYWtikm-AtjmPnNVshbGXQl5raEz15PByTmZwfTQg9
W2O3oR6j2tMmysTZZawdo6mNLR_PsZSI25qrUpiNTg~WyIyR0xDNDJzS1F2ZUNmR2Zye
U5STjl3IiwgInRpbWUiLCAiMjAxMi0wNC0yM1QxODoyNVoiXQ~WyJQYzMzSk0yTGNoY1
VfbEhnZ3ZfdWZRIiwgeyJfc2QiOiBbIjl3cGpWUFd1RDdQSzBuc1FETDhCMDZsbWRnVj
NMVnliaEh5ZFFwVE55TEkiLCAiRzVFbmhPQU9vVTlYXzZRTU52ekZYanBFQV9SYy1BRX
RtMWJHX3djYUtJayIsICJJaHdGcldVQjYzUmNacTl5dmdaMFhQYzdHb3doM08ya3FYZU
JJc3dnMUI0IiwgIldweFE0SFNvRXRjVG1DQ0tPZURzbEJfZW11Y1lMejJvTzhvSE5yMW
JFVlEiXX1d~WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgIm1ldGhvZCIsICJwaXBwI
l0~WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImdpdmVuX25hbWUiLCAiTWF4Il0~W
yJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImZhbWlseV9uYW1lIiwgIk1cdTAwZmNsb
GVyIl0~WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImFkZHJlc3MiLCB7ImxvY2Fsa
XR5IjogIk1heHN0YWR0IiwgInBvc3RhbF9jb2RlIjogIjEyMzQ0IiwgImNvdW50cnkiO
iAiREUiLCAic3RyZWV0X2FkZHJlc3MiOiAiV2VpZGVuc3RyYVx1MDBkZmUgMjIifV0~

 The Verifier will have this Processed SD-JWT Payload available after validation:

{
 "iss": "https://issuer.example.com",
 "iat": 1683000000,
 "exp": 1883000000,
 "verified_claims": {
 "verification": {
 "trust_framework": "de_aml",
 "evidence": [
 {
 "method": "pipp"
 }
],
 "time": "2012-04-23T18:25Z"
 },
 "claims": {
 "given_name": "Max",
 "family_name": "Müller",
 "address": {
 "locality": "Maxstadt",
 "postal_code": "12344",
 "country": "DE",
 "street_address": "Weidenstraße 22"
 }
 }
 }
}

 SD-JWT-Based Verifiable Credentials (SD-JWT VC)

This example shows how the artifacts defined in this specification could be used in the context of SD-JWT-based Verifiable Credentials (SD-JWT VC) to represent a hypothetical identity credential with the data of a fictional German citizen.

 Key Binding is applied
using the Holder's public key passed in a cnf claim in the SD-JWT.
 The following citizen data is the input JWT Claims Set:

{
 "vct": "urn:eudi:pid:de:1",
 "iss": "https://pid-issuer.bund.de.example",
 "given_name": "Erika",
 "family_name": "Mustermann",
 "birthdate": "1963-08-12",
 "address": {
 "street_address": "Heidestraße 17",
 "locality": "Köln",
 "postal_code": "51147",
 "country": "DE"
 },
 "nationalities": [
 "DE"
],
 "sex": 2,
 "birth_family_name": "Gabler",
 "place_of_birth": {
 "locality": "Berlin",
 "country": "DE"
 },
 "age_equal_or_over": {
 "12": true,
 "14": true,
 "16": true,
 "18": true,
 "21": true,
 "65": false
 },
 "age_in_years": 62,
 "age_birth_year": 1963,
 "issuance_date": "2020-03-11",
 "expiry_date": "2030-03-12",
 "issuing_authority": "DE",
 "issuing_country": "DE"
}

 The following is the issued SD-JWT:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImRjK3NkLWp3dCJ9.eyJfc2QiOiBbIjBIWm1
uU0lQejMzN2tTV2U3QzM0bC0tODhnekppLWVCSjJWel9ISndBVGciLCAiMUNybjAzV21
VZVJXcDR6d1B2dkNLWGw5WmFRcC1jZFFWX2dIZGFHU1dvdyIsICIycjAwOWR6dkh1VnJ
XclJYVDVrSk1tSG5xRUhIbldlME1MVlp3OFBBVEI4IiwgIjZaTklTRHN0NjJ5bWxyT0F
rYWRqZEQ1WnVsVDVBMjk5Sjc4U0xoTV9fT3MiLCAiNzhqZzc3LUdZQmVYOElRZm9FTFB
5TDBEWVBkbWZabzBKZ1ZpVjBfbEtDTSIsICI5MENUOEFhQlBibjVYOG5SWGtlc2p1MWk
wQnFoV3FaM3dxRDRqRi1xREdrIiwgIkkwMGZjRlVvRFhDdWNwNXl5MnVqcVBzc0RWR2F
XTmlVbGlOel9hd0QwZ2MiLCAiS2pBWGdBQTlONVdIRUR0UkloNHU1TW4xWnNXaXhoaFd
BaVgtQTRRaXdnQSIsICJMYWk2SVU2ZDdHUWFnWFI3QXZHVHJuWGdTbGQzejhFSWdfZnY
zZk9aMVdnIiwgIkxlemphYlJxaVpPWHpFWW1WWmY4Uk1pOXhBa2QzX00xTFo4VTdFNHM
zdTQiLCAiUlR6M3FUbUZOSGJwV3JyT01aUzQxRjQ3NGtGcVJ2M3ZJUHF0aDZQVWhsTSI
sICJXMTRYSGJVZmZ6dVc0SUZNanBTVGIxbWVsV3hVV2Y0Tl9vMmxka2tJcWM4IiwgIld
UcEk3UmNNM2d4WnJ1UnBYemV6U2JrYk9yOTNQVkZ2V3g4d29KM2oxY0UiLCAiX29oSlZ
JUUlCc1U0dXBkTlM0X3c0S2IxTUhxSjBMOXFMR3NoV3E2SlhRcyIsICJ5NTBjemMwSVN
DaHlfYnNiYTFkTW9VdUFPUTVBTW1PU2ZHb0VlODF2MUZVIl0sICJpc3MiOiAiaHR0cHM
6Ly9waWQtaXNzdWVyLmJ1bmQuZGUuZXhhbXBsZSIsICJpYXQiOiAxNjgzMDAwMDAwLCA
iZXhwIjogMTg4MzAwMDAwMCwgInZjdCI6ICJ1cm46ZXVkaTpwaWQ6ZGU6MSIsICJfc2R
fYWxnIjogInNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnY
iOiAiUC0yNTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbER
sczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U
2dDRqVDlGMkhaUSJ9fX0.ZOZQTqmq8X1mCyFXi0wbV8xjctX1AlEa5TkdnkKOyWvLfW4
0XDb5oj9tzkgwff5s44IDnrfAdgLtmTcojs97_Q~WyIyR0xDNDJzS1F2ZUNmR2ZyeU5S
Tjl3IiwgImdpdmVuX25hbWUiLCAiRXJpa2EiXQ~WyJlbHVWNU9nM2dTTklJOEVZbnN4Q
V9BIiwgImZhbWlseV9uYW1lIiwgIk11c3Rlcm1hbm4iXQ~WyI2SWo3dE0tYTVpVlBHYm
9TNXRtdlZBIiwgImJpcnRoZGF0ZSIsICIxOTYzLTA4LTEyIl0~WyJlSThaV205UW5LUH
BOUGVOZW5IZGhRIiwgInN0cmVldF9hZGRyZXNzIiwgIkhlaWRlc3RyYVx1MDBkZmUgMT
ciXQ~WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImxvY2FsaXR5IiwgIktcdTAwZjZ
sbiJd~WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgInBvc3RhbF9jb2RlIiwgIjUxMT
Q3Il0~WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgImNvdW50cnkiLCAiREUiXQ~WyJ
HMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImFkZHJlc3MiLCB7Il9zZCI6IFsiQUxaRVJ
zU241V05pRVhkQ2tzVzhJNXFRdzNfTnBBblJxcFNBWkR1ZGd3OCIsICJEX19XX3VZY3Z
SejN0dlVuSUp2QkRIaVRjN0NfX3FIZDB4Tkt3SXNfdzlrIiwgImVCcENYVTFKNWRoSDJ
nNHQ4UVlOVzVFeFM5QXhVVmJsVW9kb0xZb1BobzAiLCAieE9QeTktZ0pBTEs2VWJXS0Z
MUjg1Y09CeVVEM0FiTndGZzNJM1lmUUVfSSJdfV0~WyJsa2x4RjVqTVlsR1RQVW92TU5
JdkNBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFIl1d~WyJuUHVvUW5rUkZxM0JJZUFtN0
FuWEZBIiwgInNleCIsIDJd~WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgImJpcnRoX
2ZhbWlseV9uYW1lIiwgIkdhYmxlciJd~WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13Iiwg
ImxvY2FsaXR5IiwgIkJlcmxpbiJd~WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImN
vdW50cnkiLCAiREUiXQ~WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgInBsYWNlX29m
X2JpcnRoIiwgeyJfc2QiOiBbIktVVmlhYUxuWTVqU01MOTBHMjlPT0xFTlBiYlhmaFNq
U1BNalphR2t4QUUiLCAiWWJzVDBTNzZWcVhDVnNkMWpVU2x3S1BEZ21BTGVCMXVaY2xG
SFhmLVVTUSJdfV0~WyJDOUdTb3VqdmlKcXVFZ1lmb2pDYjFBIiwgIjEyIiwgdHJ1ZV0~
WyJreDVrRjE3Vi14MEptd1V4OXZndnR3IiwgIjE0IiwgdHJ1ZV0~WyJIM28xdXN3UDc2
MEZpMnllR2RWQ0VRIiwgIjE2IiwgdHJ1ZV0~WyJPQktsVFZsdkxnLUFkd3FZR2JQOFpB
IiwgIjE4IiwgdHJ1ZV0~WyJNMEpiNTd0NDF1YnJrU3V5ckRUM3hBIiwgIjIxIiwgdHJ1
ZV0~WyJEc210S05ncFY0ZEFIcGpyY2Fvc0F3IiwgIjY1IiwgZmFsc2Vd~WyJlSzVvNXB
IZmd1cFBwbHRqMXFoQUp3IiwgImFnZV9lcXVhbF9vcl9vdmVyIiwgeyJfc2QiOiBbIjF
0RWl5elBSWU9Lc2Y3U3NZR01nUFpLc09UMWxRWlJ4SFhBMHI1X0J3a2siLCAiQ1ZLbmx
5NVA5MHlKczNFd3R4UWlPdFVjemFYQ1lOQTRJY3pSYW9ock1EZyIsICJhNDQtZzJHcjh
fM0FtSncyWFo4a0kxeTBRel96ZTlpT2NXMlczUkxwWEdnIiwgImdrdnkwRnV2QkJ2ajB
oczJaTnd4Y3FPbGY4bXUyLWtDRTctTmIyUXh1QlUiLCAiaHJZNEhubUY1YjVKd0M5ZVR
6YUZDVWNlSVFBYUlkaHJxVVhRTkNXYmZaSSIsICJ5NlNGclZGUnlxNTBJYlJKdmlUWnF
xalFXejB0TGl1Q21NZU8wS3FhekdJIl19XQ~WyJqN0FEZGIwVVZiMExpMGNpUGNQMGV3
IiwgImFnZV9pbl95ZWFycyIsIDYyXQ~WyJXcHhKckZ1WDh1U2kycDRodDA5anZ3IiwgI
mFnZV9iaXJ0aF95ZWFyIiwgMTk2M10~WyJhdFNtRkFDWU1iSlZLRDA1bzNKZ3RRIiwgI
mlzc3VhbmNlX2RhdGUiLCAiMjAyMC0wMy0xMSJd~WyI0S3lSMzJvSVp0LXprV3ZGcWJV
TEtnIiwgImV4cGlyeV9kYXRlIiwgIjIwMzAtMDMtMTIiXQ~WyJjaEJDc3loeWgtSjg2S
S1hd1FEaUNRIiwgImlzc3VpbmdfYXV0aG9yaXR5IiwgIkRFIl0~WyJmbE5QMW5jTXo5T
GctYzlxTUl6XzlnIiwgImlzc3VpbmdfY291bnRyeSIsICJERSJd~

 The following payload is used for the SD-JWT:

{
 "_sd": [
 "0HZmnSIPz337kSWe7C34l--88gzJi-eBJ2Vz_HJwATg",
 "1Crn03WmUeRWp4zwPvvCKXl9ZaQp-cdQV_gHdaGSWow",
 "2r009dzvHuVrWrRXT5kJMmHnqEHHnWe0MLVZw8PATB8",
 "6ZNISDst62ymlrOAkadjdD5ZulT5A299J78SLhM__Os",
 "78jg77-GYBeX8IQfoELPyL0DYPdmfZo0JgViV0_lKCM",
 "90CT8AaBPbn5X8nRXkesju1i0BqhWqZ3wqD4jF-qDGk",
 "I00fcFUoDXCucp5yy2ujqPssDVGaWNiUliNz_awD0gc",
 "KjAXgAA9N5WHEDtRIh4u5Mn1ZsWixhhWAiX-A4QiwgA",
 "Lai6IU6d7GQagXR7AvGTrnXgSld3z8EIg_fv3fOZ1Wg",
 "LezjabRqiZOXzEYmVZf8RMi9xAkd3_M1LZ8U7E4s3u4",
 "RTz3qTmFNHbpWrrOMZS41F474kFqRv3vIPqth6PUhlM",
 "W14XHbUffzuW4IFMjpSTb1melWxUWf4N_o2ldkkIqc8",
 "WTpI7RcM3gxZruRpXzezSbkbOr93PVFvWx8woJ3j1cE",
 "_ohJVIQIBsU4updNS4_w4Kb1MHqJ0L9qLGshWq6JXQs",
 "y50czc0ISChy_bsba1dMoUuAOQ5AMmOSfGoEe81v1FU"
],
 "iss": "https://pid-issuer.bund.de.example",
 "iat": 1683000000,
 "exp": 1883000000,
 "vct": "urn:eudi:pid:de:1",
 "_sd_alg": "sha-256",
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 }
}

 The digests in the SD-JWT payload reference the following Disclosures:

 Claim given_name:

 SHA-256 Hash:
 0HZmnSIPz337kSWe7C34l--88gzJi-eBJ2Vz_HJwATg

 Disclosure:
 WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImdpdmVuX25hbWUiLCAiRXJpa2EiXQ

 Contents:
 ["2GLC42sKQveCfGfryNRN9w", "given_name", "Erika"]

 Claim family_name:

 SHA-256 Hash:
 I00fcFUoDXCucp5yy2ujqPssDVGaWNiUliNz_awD0gc

 Disclosure:
 WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgImZhbWlseV9uYW1lIiwgIk11c3Rlcm1hbm4iXQ

 Contents:
 ["eluV5Og3gSNII8EYnsxA_A", "family_name", "Mustermann"]

 Claim birthdate:

 SHA-256 Hash:
 Lai6IU6d7GQagXR7AvGTrnXgSld3z8EIg_fv3fOZ1Wg

 Disclosure:
 WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgImJpcnRoZGF0ZSIsICIxOTYzLTA4LTEyIl0

 Contents:
 ["6Ij7tM-a5iVPGboS5tmvVA", "birthdate", "1963-08-12"]

 Claim street_address:

 SHA-256 Hash:
 ALZERsSn5WNiEXdCksW8I5qQw3_NpAnRqpSAZDudgw8

 Disclosure:
 WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgInN0cmVldF9hZGRyZXNzIiwgIkhlaWRlc3RyYVx1MDBkZmUgMTciXQ

 Contents:
 ["eI8ZWm9QnKPpNPeNenHdhQ", "street_address", "Heidestra\u00dfe 17"]

 Claim locality:

 SHA-256 Hash:
 D__W_uYcvRz3tvUnIJvBDHiTc7C__qHd0xNKwIs_w9k

 Disclosure:
 WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImxvY2FsaXR5IiwgIktcdTAwZjZsbiJd

 Contents:
 ["Qg_O64zqAxe412a108iroA", "locality", "K\u00f6ln"]

 Claim postal_code:

 SHA-256 Hash:
 xOPy9-gJALK6UbWKFLR85cOByUD3AbNwFg3I3YfQE_I

 Disclosure:
 WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgInBvc3RhbF9jb2RlIiwgIjUxMTQ3Il0

 Contents:
 ["AJx-095VPrpTtN4QMOqROA", "postal_code", "51147"]

 Claim country:

 SHA-256 Hash:
 eBpCXU1J5dhH2g4t8QYNW5ExS9AxUVblUodoLYoPho0

 Disclosure:
 WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgImNvdW50cnkiLCAiREUiXQ

 Contents:
 ["Pc33JM2LchcU_lHggv_ufQ", "country", "DE"]

 Claim address:

 SHA-256 Hash:
 RTz3qTmFNHbpWrrOMZS41F474kFqRv3vIPqth6PUhlM

 Disclosure:
 WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImFkZHJlc3MiLCB7Il9zZCI6IFsiQUxaRVJzU241V05pRVhkQ2tzVzhJNXFRdzNfTnBBblJxcFNBWkR1ZGd3OCIsICJEX19XX3VZY3ZSejN0dlVuSUp2QkRIaVRjN0NfX3FIZDB4Tkt3SXNfdzlrIiwgImVCcENYVTFKNWRoSDJnNHQ4UVlOVzVFeFM5QXhVVmJsVW9kb0xZb1BobzAiLCAieE9QeTktZ0pBTEs2VWJXS0ZMUjg1Y09CeVVEM0FiTndGZzNJM1lmUUVfSSJdfV0

 Contents:
 ["G02NSrQfjFXQ7Io09syajA", "address", {"_sd": ["ALZERsSn5WNiEXdCksW8I5qQw3_NpAnRqpSAZDudgw8", "D__W_uYcvRz3tvUnIJvBDHiTc7C__qHd0xNKwIs_w9k", "eBpCXU1J5dhH2g4t8QYNW5ExS9AxUVblUodoLYoPho0", "xOPy9-gJALK6UbWKFLR85cOByUD3AbNwFg3I3YfQE_I"]}]

 Claim nationalities:

 SHA-256 Hash:
 y50czc0ISChy_bsba1dMoUuAOQ5AMmOSfGoEe81v1FU

 Disclosure:
 WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFIl1d

 Contents:
 ["lklxF5jMYlGTPUovMNIvCA", "nationalities", ["DE"]]

 Claim sex:

 SHA-256 Hash:
 90CT8AaBPbn5X8nRXkesju1i0BqhWqZ3wqD4jF-qDGk

 Disclosure:
 WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgInNleCIsIDJd

 Contents:
 ["nPuoQnkRFq3BIeAm7AnXFA", "sex", 2]

 Claim birth_family_name:

 SHA-256 Hash:
 KjAXgAA9N5WHEDtRIh4u5Mn1ZsWixhhWAiX-A4QiwgA

 Disclosure:
 WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgImJpcnRoX2ZhbWlseV9uYW1lIiwgIkdhYmxlciJd

 Contents:
 ["5bPs1IquZNa0hkaFzzzZNw", "birth_family_name", "Gabler"]

 Claim locality:

 SHA-256 Hash:
 KUViaaLnY5jSML90G29OOLENPbbXfhSjSPMjZaGkxAE

 Disclosure:
 WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13IiwgImxvY2FsaXR5IiwgIkJlcmxpbiJd

 Contents:
 ["5a2W0_NrlEZzfqmk_7Pq-w", "locality", "Berlin"]

 Claim country:

 SHA-256 Hash:
 YbsT0S76VqXCVsd1jUSlwKPDgmALeB1uZclFHXf-USQ

 Disclosure:
 WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImNvdW50cnkiLCAiREUiXQ

 Contents:
 ["y1sVU5wdfJahVdgwPgS7RQ", "country", "DE"]

 Claim place_of_birth:

 SHA-256 Hash:
 1Crn03WmUeRWp4zwPvvCKXl9ZaQp-cdQV_gHdaGSWow

 Disclosure:
 WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgInBsYWNlX29mX2JpcnRoIiwgeyJfc2QiOiBbIktVVmlhYUxuWTVqU01MOTBHMjlPT0xFTlBiYlhmaFNqU1BNalphR2t4QUUiLCAiWWJzVDBTNzZWcVhDVnNkMWpVU2x3S1BEZ21BTGVCMXVaY2xGSFhmLVVTUSJdfV0

 Contents:
 ["HbQ4X8srVW3QDxnIJdqyOA", "place_of_birth", {"_sd": ["KUViaaLnY5jSML90G29OOLENPbbXfhSjSPMjZaGkxAE", "YbsT0S76VqXCVsd1jUSlwKPDgmALeB1uZclFHXf-USQ"]}]

 Claim 12:

 SHA-256 Hash:
 gkvy0FuvBBvj0hs2ZNwxcqOlf8mu2-kCE7-Nb2QxuBU

 Disclosure:
 WyJDOUdTb3VqdmlKcXVFZ1lmb2pDYjFBIiwgIjEyIiwgdHJ1ZV0

 Contents:
 ["C9GSoujviJquEgYfojCb1A", "12", true]

 Claim 14:

 SHA-256 Hash:
 y6SFrVFRyq50IbRJviTZqqjQWz0tLiuCmMeO0KqazGI

 Disclosure:
 WyJreDVrRjE3Vi14MEptd1V4OXZndnR3IiwgIjE0IiwgdHJ1ZV0

 Contents:
 ["kx5kF17V-x0JmwUx9vgvtw", "14", true]

 Claim 16:

 SHA-256 Hash:
 hrY4HnmF5b5JwC9eTzaFCUceIQAaIdhrqUXQNCWbfZI

 Disclosure:
 WyJIM28xdXN3UDc2MEZpMnllR2RWQ0VRIiwgIjE2IiwgdHJ1ZV0

 Contents:
 ["H3o1uswP760Fi2yeGdVCEQ", "16", true]

 Claim 18:

 SHA-256 Hash:
 CVKnly5P90yJs3EwtxQiOtUczaXCYNA4IczRaohrMDg

 Disclosure:
 WyJPQktsVFZsdkxnLUFkd3FZR2JQOFpBIiwgIjE4IiwgdHJ1ZV0

 Contents:
 ["OBKlTVlvLg-AdwqYGbP8ZA", "18", true]

 Claim 21:

 SHA-256 Hash:
 1tEiyzPRYOKsf7SsYGMgPZKsOT1lQZRxHXA0r5_Bwkk

 Disclosure:
 WyJNMEpiNTd0NDF1YnJrU3V5ckRUM3hBIiwgIjIxIiwgdHJ1ZV0

 Contents:
 ["M0Jb57t41ubrkSuyrDT3xA", "21", true]

 Claim 65:

 SHA-256 Hash:
 a44-g2Gr8_3AmJw2XZ8kI1y0Qz_ze9iOcW2W3RLpXGg

 Disclosure:
 WyJEc210S05ncFY0ZEFIcGpyY2Fvc0F3IiwgIjY1IiwgZmFsc2Vd

 Contents:
 ["DsmtKNgpV4dAHpjrcaosAw", "65", false]

 Claim age_equal_or_over:

 SHA-256 Hash:
 2r009dzvHuVrWrRXT5kJMmHnqEHHnWe0MLVZw8PATB8

 Disclosure:
 WyJlSzVvNXBIZmd1cFBwbHRqMXFoQUp3IiwgImFnZV9lcXVhbF9vcl9vdmVyIiwgeyJfc2QiOiBbIjF0RWl5elBSWU9Lc2Y3U3NZR01nUFpLc09UMWxRWlJ4SFhBMHI1X0J3a2siLCAiQ1ZLbmx5NVA5MHlKczNFd3R4UWlPdFVjemFYQ1lOQTRJY3pSYW9ock1EZyIsICJhNDQtZzJHcjhfM0FtSncyWFo4a0kxeTBRel96ZTlpT2NXMlczUkxwWEdnIiwgImdrdnkwRnV2QkJ2ajBoczJaTnd4Y3FPbGY4bXUyLWtDRTctTmIyUXh1QlUiLCAiaHJZNEhubUY1YjVKd0M5ZVR6YUZDVWNlSVFBYUlkaHJxVVhRTkNXYmZaSSIsICJ5NlNGclZGUnlxNTBJYlJKdmlUWnFxalFXejB0TGl1Q21NZU8wS3FhekdJIl19XQ

 Contents:
 ["eK5o5pHfgupPpltj1qhAJw", "age_equal_or_over", {"_sd": ["1tEiyzPRYOKsf7SsYGMgPZKsOT1lQZRxHXA0r5_Bwkk", "CVKnly5P90yJs3EwtxQiOtUczaXCYNA4IczRaohrMDg", "a44-g2Gr8_3AmJw2XZ8kI1y0Qz_ze9iOcW2W3RLpXGg", "gkvy0FuvBBvj0hs2ZNwxcqOlf8mu2-kCE7-Nb2QxuBU", "hrY4HnmF5b5JwC9eTzaFCUceIQAaIdhrqUXQNCWbfZI", "y6SFrVFRyq50IbRJviTZqqjQWz0tLiuCmMeO0KqazGI"]}]

 Claim age_in_years:

 SHA-256 Hash:
 WTpI7RcM3gxZruRpXzezSbkbOr93PVFvWx8woJ3j1cE

 Disclosure:
 WyJqN0FEZGIwVVZiMExpMGNpUGNQMGV3IiwgImFnZV9pbl95ZWFycyIsIDYyXQ

 Contents:
 ["j7ADdb0UVb0Li0ciPcP0ew", "age_in_years", 62]

 Claim age_birth_year:

 SHA-256 Hash:
 LezjabRqiZOXzEYmVZf8RMi9xAkd3_M1LZ8U7E4s3u4

 Disclosure:
 WyJXcHhKckZ1WDh1U2kycDRodDA5anZ3IiwgImFnZV9iaXJ0aF95ZWFyIiwgMTk2M10

 Contents:
 ["WpxJrFuX8uSi2p4ht09jvw", "age_birth_year", 1963]

 Claim issuance_date:

 SHA-256 Hash:
 W14XHbUffzuW4IFMjpSTb1melWxUWf4N_o2ldkkIqc8

 Disclosure:
 WyJhdFNtRkFDWU1iSlZLRDA1bzNKZ3RRIiwgImlzc3VhbmNlX2RhdGUiLCAiMjAyMC0wMy0xMSJd

 Contents:
 ["atSmFACYMbJVKD05o3JgtQ", "issuance_date", "2020-03-11"]

 Claim expiry_date:

 SHA-256 Hash:
 78jg77-GYBeX8IQfoELPyL0DYPdmfZo0JgViV0_lKCM

 Disclosure:
 WyI0S3lSMzJvSVp0LXprV3ZGcWJVTEtnIiwgImV4cGlyeV9kYXRlIiwgIjIwMzAtMDMtMTIiXQ

 Contents:
 ["4KyR32oIZt-zkWvFqbULKg", "expiry_date", "2030-03-12"]

 Claim issuing_authority:

 SHA-256 Hash:
 6ZNISDst62ymlrOAkadjdD5ZulT5A299J78SLhM__Os

 Disclosure:
 WyJjaEJDc3loeWgtSjg2SS1hd1FEaUNRIiwgImlzc3VpbmdfYXV0aG9yaXR5IiwgIkRFIl0

 Contents:
 ["chBCsyhyh-J86I-awQDiCQ", "issuing_authority", "DE"]

 Claim issuing_country:

 SHA-256 Hash:
 _ohJVIQIBsU4updNS4_w4Kb1MHqJ0L9qLGshWq6JXQs

 Disclosure:
 WyJmbE5QMW5jTXo5TGctYzlxTUl6XzlnIiwgImlzc3VpbmdfY291bnRyeSIsICJERSJd

 Contents:
 ["flNP1ncMz9Lg-c9qMIz_9g", "issuing_country", "DE"]

 The following is an example of an SD-JWT+KB that discloses only nationality and the fact that the person is over 18 years old:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImRjK3NkLWp3dCJ9.eyJfc2QiOiBbIjBIWm1
uU0lQejMzN2tTV2U3QzM0bC0tODhnekppLWVCSjJWel9ISndBVGciLCAiMUNybjAzV21
VZVJXcDR6d1B2dkNLWGw5WmFRcC1jZFFWX2dIZGFHU1dvdyIsICIycjAwOWR6dkh1VnJ
XclJYVDVrSk1tSG5xRUhIbldlME1MVlp3OFBBVEI4IiwgIjZaTklTRHN0NjJ5bWxyT0F
rYWRqZEQ1WnVsVDVBMjk5Sjc4U0xoTV9fT3MiLCAiNzhqZzc3LUdZQmVYOElRZm9FTFB
5TDBEWVBkbWZabzBKZ1ZpVjBfbEtDTSIsICI5MENUOEFhQlBibjVYOG5SWGtlc2p1MWk
wQnFoV3FaM3dxRDRqRi1xREdrIiwgIkkwMGZjRlVvRFhDdWNwNXl5MnVqcVBzc0RWR2F
XTmlVbGlOel9hd0QwZ2MiLCAiS2pBWGdBQTlONVdIRUR0UkloNHU1TW4xWnNXaXhoaFd
BaVgtQTRRaXdnQSIsICJMYWk2SVU2ZDdHUWFnWFI3QXZHVHJuWGdTbGQzejhFSWdfZnY
zZk9aMVdnIiwgIkxlemphYlJxaVpPWHpFWW1WWmY4Uk1pOXhBa2QzX00xTFo4VTdFNHM
zdTQiLCAiUlR6M3FUbUZOSGJwV3JyT01aUzQxRjQ3NGtGcVJ2M3ZJUHF0aDZQVWhsTSI
sICJXMTRYSGJVZmZ6dVc0SUZNanBTVGIxbWVsV3hVV2Y0Tl9vMmxka2tJcWM4IiwgIld
UcEk3UmNNM2d4WnJ1UnBYemV6U2JrYk9yOTNQVkZ2V3g4d29KM2oxY0UiLCAiX29oSlZ
JUUlCc1U0dXBkTlM0X3c0S2IxTUhxSjBMOXFMR3NoV3E2SlhRcyIsICJ5NTBjemMwSVN
DaHlfYnNiYTFkTW9VdUFPUTVBTW1PU2ZHb0VlODF2MUZVIl0sICJpc3MiOiAiaHR0cHM
6Ly9waWQtaXNzdWVyLmJ1bmQuZGUuZXhhbXBsZSIsICJpYXQiOiAxNjgzMDAwMDAwLCA
iZXhwIjogMTg4MzAwMDAwMCwgInZjdCI6ICJ1cm46ZXVkaTpwaWQ6ZGU6MSIsICJfc2R
fYWxnIjogInNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJjcnY
iOiAiUC0yNTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxpbER
sczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVjQ0U
2dDRqVDlGMkhaUSJ9fX0.ZOZQTqmq8X1mCyFXi0wbV8xjctX1AlEa5TkdnkKOyWvLfW4
0XDb5oj9tzkgwff5s44IDnrfAdgLtmTcojs97_Q~WyJlSzVvNXBIZmd1cFBwbHRqMXFo
QUp3IiwgImFnZV9lcXVhbF9vcl9vdmVyIiwgeyJfc2QiOiBbIjF0RWl5elBSWU9Lc2Y3
U3NZR01nUFpLc09UMWxRWlJ4SFhBMHI1X0J3a2siLCAiQ1ZLbmx5NVA5MHlKczNFd3R4
UWlPdFVjemFYQ1lOQTRJY3pSYW9ock1EZyIsICJhNDQtZzJHcjhfM0FtSncyWFo4a0kx
eTBRel96ZTlpT2NXMlczUkxwWEdnIiwgImdrdnkwRnV2QkJ2ajBoczJaTnd4Y3FPbGY4
bXUyLWtDRTctTmIyUXh1QlUiLCAiaHJZNEhubUY1YjVKd0M5ZVR6YUZDVWNlSVFBYUlk
aHJxVVhRTkNXYmZaSSIsICJ5NlNGclZGUnlxNTBJYlJKdmlUWnFxalFXejB0TGl1Q21N
ZU8wS3FhekdJIl19XQ~WyJPQktsVFZsdkxnLUFkd3FZR2JQOFpBIiwgIjE4IiwgdHJ1Z
V0~WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgIm5hdGlvbmFsaXRpZXMiLCBbIkRFI
l1d~eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImtiK2p3dCJ9.eyJub25jZSI6ICIxMjM
0NTY3ODkwIiwgImF1ZCI6ICJodHRwczovL3ZlcmlmaWVyLmV4YW1wbGUub3JnIiwgIml
hdCI6IDE3NDg1MzcyNDQsICJzZF9oYXNoIjogIlBqTVlmTTA3VmJKZE14TElsdXZSTmI
4OEpGbGpTWDRuLUc0M1VjX0JTUk0ifQ.f3TeS_1BWEG78EbIJRh5wgv8nYumk7euzu6x
gbgpNB4pbQQqgRPWK-vQjlhhgU1EFGZ9LFakFX_0mgul1G_3mw

 This is the payload of the corresponding Key Binding JWT:

{
 "nonce": "1234567890",
 "aud": "https://verifier.example.org",
 "iat": 1748537244,
 "sd_hash": "PjMYfM07VbJdMxLIluvRNb88JFljSX4n-G43Uc_BSRM"
}

 After validation, the Verifier will have the following Processed SD-JWT Payload available for further handling:

{
 "iss": "https://pid-issuer.bund.de.example",
 "iat": 1683000000,
 "exp": 1883000000,
 "vct": "urn:eudi:pid:de:1",
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 },
 "age_equal_or_over": {
 "18": true
 },
 "nationalities": [
 "DE"
]
}

 W3C Verifiable Credentials Data Model v2.0
 This non-normative example illustrates how the artifacts defined in this specification
could be used to express a W3C Verifiable Credentials Data Model v2.0 payload .
 Key Binding is applied
using the Holder's public key passed in a cnf claim in the SD-JWT.
 The following is the input JWT Claims Set:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/vaccination/v1"
],
 "type": [
 "VerifiableCredential",
 "VaccinationCertificate"
],
 "issuer": "https://example.com/issuer",
 "issuanceDate": "2023-02-09T11:01:59Z",
 "expirationDate": "2028-02-08T11:01:59Z",
 "name": "COVID-19 Vaccination Certificate",
 "description": "COVID-19 Vaccination Certificate",
 "credentialSubject": {
 "vaccine": {
 "type": "Vaccine",
 "atcCode": "J07BX03",
 "medicinalProductName": "COVID-19 Vaccine Moderna",
 "marketingAuthorizationHolder": "Moderna Biotech"
 },
 "nextVaccinationDate": "2021-08-16T13:40:12Z",
 "countryOfVaccination": "GE",
 "dateOfVaccination": "2021-06-23T13:40:12Z",
 "order": "3/3",
 "recipient": {
 "type": "VaccineRecipient",
 "gender": "Female",
 "birthDate": "1961-08-17",
 "givenName": "Marion",
 "familyName": "Mustermann"
 },
 "type": "VaccinationEvent",
 "administeringCentre": "Praxis Sommergarten",
 "batchNumber": "1626382736",
 "healthProfessional": "883110000015376"
 }
}

 The following is the issued SD-JWT:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJAY29udGV4
dCI6IFsiaHR0cHM6Ly93d3cudzMub3JnLzIwMTgvY3JlZGVudGlhbHMvdjEiLCAiaHR0
cHM6Ly93M2lkLm9yZy92YWNjaW5hdGlvbi92MSJdLCAidHlwZSI6IFsiVmVyaWZpYWJs
ZUNyZWRlbnRpYWwiLCAiVmFjY2luYXRpb25DZXJ0aWZpY2F0ZSJdLCAiaXNzdWVyIjog
Imh0dHBzOi8vZXhhbXBsZS5jb20vaXNzdWVyIiwgImlzc3VhbmNlRGF0ZSI6ICIyMDIz
LTAyLTA5VDExOjAxOjU5WiIsICJleHBpcmF0aW9uRGF0ZSI6ICIyMDI4LTAyLTA4VDEx
OjAxOjU5WiIsICJuYW1lIjogIkNPVklELTE5IFZhY2NpbmF0aW9uIENlcnRpZmljYXRl
IiwgImRlc2NyaXB0aW9uIjogIkNPVklELTE5IFZhY2NpbmF0aW9uIENlcnRpZmljYXRl
IiwgImNyZWRlbnRpYWxTdWJqZWN0IjogeyJfc2QiOiBbIjFWX0stOGxEUThpRlhCRlhi
Wlk5ZWhxUjRIYWJXQ2k1VDB5Ykl6WlBld3ciLCAiSnpqTGd0UDI5ZFAtQjN0ZDEyUDY3
NGdGbUsyenk4MUhNdEJnZjZDSk5XZyIsICJSMmZHYmZBMDdaX1lsa3FtTlp5bWExeHl5
eDFYc3RJaVM2QjFZYmwySlo0IiwgIlRDbXpybDdLMmdldl9kdTdwY01JeXpSTEhwLVll
Zy1GbF9jeHRyVXZQeGciLCAiVjdrSkJMSzc4VG1WRE9tcmZKN1p1VVBIdUtfMmNjN3la
UmE0cVYxdHh3TSIsICJiMGVVc3ZHUC1PRERkRm9ZNE5semxYYzN0RHNsV0p0Q0pGNzVO
dzhPal9nIiwgInpKS19lU01YandNOGRYbU1aTG5JOEZHTTA4ekozX3ViR2VFTUotNVRC
eTAiXSwgInZhY2NpbmUiOiB7Il9zZCI6IFsiMWNGNWhMd2toTU5JYXFmV0pyWEk3Tk1X
ZWRMLTlmNlkyUEE1MnlQalNaSSIsICJIaXk2V1d1ZUxENWJuMTYyOTh0UHY3R1hobWxk
TURPVG5CaS1DWmJwaE5vIiwgIkxiMDI3cTY5MWpYWGwtakM3M3ZpOGViT2o5c214M0Mt
X29nN2dBNFRCUUUiXSwgInR5cGUiOiAiVmFjY2luZSJ9LCAicmVjaXBpZW50IjogeyJf
c2QiOiBbIjFsU1FCTlkyNHEwVGg2T0d6dGhxLTctNGw2Y0FheHJZWE9HWnBlV19sbkEi
LCAiM256THE4MU0yb04wNndkdjFzaEh2T0VKVnhaNUtMbWREa0hFREpBQldFSSIsICJQ
bjFzV2kwNkc0TEpybm4tX1JUMFJiTV9IVGR4blBKUXVYMmZ6V3ZfSk9VIiwgImxGOXV6
ZHN3N0hwbEdMYzcxNFRyNFdPN01HSnphN3R0N1FGbGVDWDRJdHciXSwgInR5cGUiOiAi
VmFjY2luZVJlY2lwaWVudCJ9LCAidHlwZSI6ICJWYWNjaW5hdGlvbkV2ZW50In0sICJf
c2RfYWxnIjogInNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJj
cnYiOiAiUC0yNTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxp
bERsczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVj
Q0U2dDRqVDlGMkhaUSJ9fX0.OZomvwO8iw4db89MYCeeomBVStXkT6u7G7FkicPWZnd2
_hGgr0l_u1NHgPVocuOt-m32Uu6kwtPmYFxKk0AOeA~WyIyR0xDNDJzS1F2ZUNmR2Zye
U5STjl3IiwgImF0Y0NvZGUiLCAiSjA3QlgwMyJd~WyJlbHVWNU9nM2dTTklJOEVZbnN4
QV9BIiwgIm1lZGljaW5hbFByb2R1Y3ROYW1lIiwgIkNPVklELTE5IFZhY2NpbmUgTW9k
ZXJuYSJd~WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgIm1hcmtldGluZ0F1dGhvcml
6YXRpb25Ib2xkZXIiLCAiTW9kZXJuYSBCaW90ZWNoIl0~WyJlSThaV205UW5LUHBOUGV
OZW5IZGhRIiwgIm5leHRWYWNjaW5hdGlvbkRhdGUiLCAiMjAyMS0wOC0xNlQxMzo0MDo
xMloiXQ~WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImNvdW50cnlPZlZhY2NpbmF0
aW9uIiwgIkdFIl0~WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImRhdGVPZlZhY2Np
bmF0aW9uIiwgIjIwMjEtMDYtMjNUMTM6NDA6MTJaIl0~WyJQYzMzSk0yTGNoY1VfbEhn
Z3ZfdWZRIiwgIm9yZGVyIiwgIjMvMyJd~WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiw
gImdlbmRlciIsICJGZW1hbGUiXQ~WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImJp
cnRoRGF0ZSIsICIxOTYxLTA4LTE3Il0~WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwg
ImdpdmVuTmFtZSIsICJNYXJpb24iXQ~WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgI
mZhbWlseU5hbWUiLCAiTXVzdGVybWFubiJd~WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13
IiwgImFkbWluaXN0ZXJpbmdDZW50cmUiLCAiUHJheGlzIFNvbW1lcmdhcnRlbiJd~WyJ
5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImJhdGNoTnVtYmVyIiwgIjE2MjYzODI3MzY
iXQ~WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgImhlYWx0aFByb2Zlc3Npb25hbCIs
ICI4ODMxMTAwMDAwMTUzNzYiXQ~

 The following payload is used for the SD-JWT:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/vaccination/v1"
],
 "type": [
 "VerifiableCredential",
 "VaccinationCertificate"
],
 "issuer": "https://example.com/issuer",
 "issuanceDate": "2023-02-09T11:01:59Z",
 "expirationDate": "2028-02-08T11:01:59Z",
 "name": "COVID-19 Vaccination Certificate",
 "description": "COVID-19 Vaccination Certificate",
 "credentialSubject": {
 "_sd": [
 "1V_K-8lDQ8iFXBFXbZY9ehqR4HabWCi5T0ybIzZPeww",
 "JzjLgtP29dP-B3td12P674gFmK2zy81HMtBgf6CJNWg",
 "R2fGbfA07Z_YlkqmNZyma1xyyx1XstIiS6B1Ybl2JZ4",
 "TCmzrl7K2gev_du7pcMIyzRLHp-Yeg-Fl_cxtrUvPxg",
 "V7kJBLK78TmVDOmrfJ7ZuUPHuK_2cc7yZRa4qV1txwM",
 "b0eUsvGP-ODDdFoY4NlzlXc3tDslWJtCJF75Nw8Oj_g",
 "zJK_eSMXjwM8dXmMZLnI8FGM08zJ3_ubGeEMJ-5TBy0"
],
 "vaccine": {
 "_sd": [
 "1cF5hLwkhMNIaqfWJrXI7NMWedL-9f6Y2PA52yPjSZI",
 "Hiy6WWueLD5bn16298tPv7GXhmldMDOTnBi-CZbphNo",
 "Lb027q691jXXl-jC73vi8ebOj9smx3C-_og7gA4TBQE"
],
 "type": "Vaccine"
 },
 "recipient": {
 "_sd": [
 "1lSQBNY24q0Th6OGzthq-7-4l6cAaxrYXOGZpeW_lnA",
 "3nzLq81M2oN06wdv1shHvOEJVxZ5KLmdDkHEDJABWEI",
 "Pn1sWi06G4LJrnn-_RT0RbM_HTdxnPJQuX2fzWv_JOU",
 "lF9uzdsw7HplGLc714Tr4WO7MGJza7tt7QFleCX4Itw"
],
 "type": "VaccineRecipient"
 },
 "type": "VaccinationEvent"
 },
 "_sd_alg": "sha-256",
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 }
}

 The digests in the SD-JWT payload reference the following Disclosures:

 Claim atcCode:

 SHA-256 Hash:
 1cF5hLwkhMNIaqfWJrXI7NMWedL-9f6Y2PA52yPjSZI

 Disclosure:
 WyIyR0xDNDJzS1F2ZUNmR2ZyeU5STjl3IiwgImF0Y0NvZGUiLCAiSjA3QlgwMyJd

 Contents:
 ["2GLC42sKQveCfGfryNRN9w", "atcCode", "J07BX03"]

 Claim medicinalProductName:

 SHA-256 Hash:
 Hiy6WWueLD5bn16298tPv7GXhmldMDOTnBi-CZbphNo

 Disclosure:
 WyJlbHVWNU9nM2dTTklJOEVZbnN4QV9BIiwgIm1lZGljaW5hbFByb2R1Y3ROYW1lIiwgIkNPVklELTE5IFZhY2NpbmUgTW9kZXJuYSJd

 Contents:
 ["eluV5Og3gSNII8EYnsxA_A", "medicinalProductName", "COVID-19 Vaccine Moderna"]

 Claim marketingAuthorizationHolder:

 SHA-256 Hash:
 Lb027q691jXXl-jC73vi8ebOj9smx3C-_og7gA4TBQE

 Disclosure:
 WyI2SWo3dE0tYTVpVlBHYm9TNXRtdlZBIiwgIm1hcmtldGluZ0F1dGhvcml6YXRpb25Ib2xkZXIiLCAiTW9kZXJuYSBCaW90ZWNoIl0

 Contents:
 ["6Ij7tM-a5iVPGboS5tmvVA", "marketingAuthorizationHolder", "Moderna Biotech"]

 Claim nextVaccinationDate:

 SHA-256 Hash:
 R2fGbfA07Z_YlkqmNZyma1xyyx1XstIiS6B1Ybl2JZ4

 Disclosure:
 WyJlSThaV205UW5LUHBOUGVOZW5IZGhRIiwgIm5leHRWYWNjaW5hdGlvbkRhdGUiLCAiMjAyMS0wOC0xNlQxMzo0MDoxMloiXQ

 Contents:
 ["eI8ZWm9QnKPpNPeNenHdhQ", "nextVaccinationDate", "2021-08-16T13:40:12Z"]

 Claim countryOfVaccination:

 SHA-256 Hash:
 JzjLgtP29dP-B3td12P674gFmK2zy81HMtBgf6CJNWg

 Disclosure:
 WyJRZ19PNjR6cUF4ZTQxMmExMDhpcm9BIiwgImNvdW50cnlPZlZhY2NpbmF0aW9uIiwgIkdFIl0

 Contents:
 ["Qg_O64zqAxe412a108iroA", "countryOfVaccination", "GE"]

 Claim dateOfVaccination:

 SHA-256 Hash:
 zJK_eSMXjwM8dXmMZLnI8FGM08zJ3_ubGeEMJ-5TBy0

 Disclosure:
 WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwgImRhdGVPZlZhY2NpbmF0aW9uIiwgIjIwMjEtMDYtMjNUMTM6NDA6MTJaIl0

 Contents:
 ["AJx-095VPrpTtN4QMOqROA", "dateOfVaccination", "2021-06-23T13:40:12Z"]

 Claim order:

 SHA-256 Hash:
 b0eUsvGP-ODDdFoY4NlzlXc3tDslWJtCJF75Nw8Oj_g

 Disclosure:
 WyJQYzMzSk0yTGNoY1VfbEhnZ3ZfdWZRIiwgIm9yZGVyIiwgIjMvMyJd

 Contents:
 ["Pc33JM2LchcU_lHggv_ufQ", "order", "3/3"]

 Claim gender:

 SHA-256 Hash:
 3nzLq81M2oN06wdv1shHvOEJVxZ5KLmdDkHEDJABWEI

 Disclosure:
 WyJHMDJOU3JRZmpGWFE3SW8wOXN5YWpBIiwgImdlbmRlciIsICJGZW1hbGUiXQ

 Contents:
 ["G02NSrQfjFXQ7Io09syajA", "gender", "Female"]

 Claim birthDate:

 SHA-256 Hash:
 Pn1sWi06G4LJrnn-_RT0RbM_HTdxnPJQuX2fzWv_JOU

 Disclosure:
 WyJsa2x4RjVqTVlsR1RQVW92TU5JdkNBIiwgImJpcnRoRGF0ZSIsICIxOTYxLTA4LTE3Il0

 Contents:
 ["lklxF5jMYlGTPUovMNIvCA", "birthDate", "1961-08-17"]

 Claim givenName:

 SHA-256 Hash:
 lF9uzdsw7HplGLc714Tr4WO7MGJza7tt7QFleCX4Itw

 Disclosure:
 WyJuUHVvUW5rUkZxM0JJZUFtN0FuWEZBIiwgImdpdmVuTmFtZSIsICJNYXJpb24iXQ

 Contents:
 ["nPuoQnkRFq3BIeAm7AnXFA", "givenName", "Marion"]

 Claim familyName:

 SHA-256 Hash:
 1lSQBNY24q0Th6OGzthq-7-4l6cAaxrYXOGZpeW_lnA

 Disclosure:
 WyI1YlBzMUlxdVpOYTBoa2FGenp6Wk53IiwgImZhbWlseU5hbWUiLCAiTXVzdGVybWFubiJd

 Contents:
 ["5bPs1IquZNa0hkaFzzzZNw", "familyName", "Mustermann"]

 Claim administeringCentre:

 SHA-256 Hash:
 TCmzrl7K2gev_du7pcMIyzRLHp-Yeg-Fl_cxtrUvPxg

 Disclosure:
 WyI1YTJXMF9OcmxFWnpmcW1rXzdQcS13IiwgImFkbWluaXN0ZXJpbmdDZW50cmUiLCAiUHJheGlzIFNvbW1lcmdhcnRlbiJd

 Contents:
 ["5a2W0_NrlEZzfqmk_7Pq-w", "administeringCentre", "Praxis Sommergarten"]

 Claim batchNumber:

 SHA-256 Hash:
 V7kJBLK78TmVDOmrfJ7ZuUPHuK_2cc7yZRa4qV1txwM

 Disclosure:
 WyJ5MXNWVTV3ZGZKYWhWZGd3UGdTN1JRIiwgImJhdGNoTnVtYmVyIiwgIjE2MjYzODI3MzYiXQ

 Contents:
 ["y1sVU5wdfJahVdgwPgS7RQ", "batchNumber", "1626382736"]

 Claim healthProfessional:

 SHA-256 Hash:
 1V_K-8lDQ8iFXBFXbZY9ehqR4HabWCi5T0ybIzZPeww

 Disclosure:
 WyJIYlE0WDhzclZXM1FEeG5JSmRxeU9BIiwgImhlYWx0aFByb2Zlc3Npb25hbCIsICI4ODMxMTAwMDAwMTUzNzYiXQ

 Contents:
 ["HbQ4X8srVW3QDxnIJdqyOA", "healthProfessional", "883110000015376"]

 This is an example of an SD-JWT+KB that discloses only type, medicinalProductName, atcCode of the vaccine, type of the recipient, type, order, and dateOfVaccination:

eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImV4YW1wbGUrc2Qtand0In0.eyJAY29udGV4
dCI6IFsiaHR0cHM6Ly93d3cudzMub3JnLzIwMTgvY3JlZGVudGlhbHMvdjEiLCAiaHR0
cHM6Ly93M2lkLm9yZy92YWNjaW5hdGlvbi92MSJdLCAidHlwZSI6IFsiVmVyaWZpYWJs
ZUNyZWRlbnRpYWwiLCAiVmFjY2luYXRpb25DZXJ0aWZpY2F0ZSJdLCAiaXNzdWVyIjog
Imh0dHBzOi8vZXhhbXBsZS5jb20vaXNzdWVyIiwgImlzc3VhbmNlRGF0ZSI6ICIyMDIz
LTAyLTA5VDExOjAxOjU5WiIsICJleHBpcmF0aW9uRGF0ZSI6ICIyMDI4LTAyLTA4VDEx
OjAxOjU5WiIsICJuYW1lIjogIkNPVklELTE5IFZhY2NpbmF0aW9uIENlcnRpZmljYXRl
IiwgImRlc2NyaXB0aW9uIjogIkNPVklELTE5IFZhY2NpbmF0aW9uIENlcnRpZmljYXRl
IiwgImNyZWRlbnRpYWxTdWJqZWN0IjogeyJfc2QiOiBbIjFWX0stOGxEUThpRlhCRlhi
Wlk5ZWhxUjRIYWJXQ2k1VDB5Ykl6WlBld3ciLCAiSnpqTGd0UDI5ZFAtQjN0ZDEyUDY3
NGdGbUsyenk4MUhNdEJnZjZDSk5XZyIsICJSMmZHYmZBMDdaX1lsa3FtTlp5bWExeHl5
eDFYc3RJaVM2QjFZYmwySlo0IiwgIlRDbXpybDdLMmdldl9kdTdwY01JeXpSTEhwLVll
Zy1GbF9jeHRyVXZQeGciLCAiVjdrSkJMSzc4VG1WRE9tcmZKN1p1VVBIdUtfMmNjN3la
UmE0cVYxdHh3TSIsICJiMGVVc3ZHUC1PRERkRm9ZNE5semxYYzN0RHNsV0p0Q0pGNzVO
dzhPal9nIiwgInpKS19lU01YandNOGRYbU1aTG5JOEZHTTA4ekozX3ViR2VFTUotNVRC
eTAiXSwgInZhY2NpbmUiOiB7Il9zZCI6IFsiMWNGNWhMd2toTU5JYXFmV0pyWEk3Tk1X
ZWRMLTlmNlkyUEE1MnlQalNaSSIsICJIaXk2V1d1ZUxENWJuMTYyOTh0UHY3R1hobWxk
TURPVG5CaS1DWmJwaE5vIiwgIkxiMDI3cTY5MWpYWGwtakM3M3ZpOGViT2o5c214M0Mt
X29nN2dBNFRCUUUiXSwgInR5cGUiOiAiVmFjY2luZSJ9LCAicmVjaXBpZW50IjogeyJf
c2QiOiBbIjFsU1FCTlkyNHEwVGg2T0d6dGhxLTctNGw2Y0FheHJZWE9HWnBlV19sbkEi
LCAiM256THE4MU0yb04wNndkdjFzaEh2T0VKVnhaNUtMbWREa0hFREpBQldFSSIsICJQ
bjFzV2kwNkc0TEpybm4tX1JUMFJiTV9IVGR4blBKUXVYMmZ6V3ZfSk9VIiwgImxGOXV6
ZHN3N0hwbEdMYzcxNFRyNFdPN01HSnphN3R0N1FGbGVDWDRJdHciXSwgInR5cGUiOiAi
VmFjY2luZVJlY2lwaWVudCJ9LCAidHlwZSI6ICJWYWNjaW5hdGlvbkV2ZW50In0sICJf
c2RfYWxnIjogInNoYS0yNTYiLCAiY25mIjogeyJqd2siOiB7Imt0eSI6ICJFQyIsICJj
cnYiOiAiUC0yNTYiLCAieCI6ICJUQ0FFUjE5WnZ1M09IRjRqNFc0dmZTVm9ISVAxSUxp
bERsczd2Q2VHZW1jIiwgInkiOiAiWnhqaVdXYlpNUUdIVldLVlE0aGJTSWlyc1ZmdWVj
Q0U2dDRqVDlGMkhaUSJ9fX0.OZomvwO8iw4db89MYCeeomBVStXkT6u7G7FkicPWZnd2
_hGgr0l_u1NHgPVocuOt-m32Uu6kwtPmYFxKk0AOeA~WyJQYzMzSk0yTGNoY1VfbEhnZ
3ZfdWZRIiwgIm9yZGVyIiwgIjMvMyJd~WyJBSngtMDk1VlBycFR0TjRRTU9xUk9BIiwg
ImRhdGVPZlZhY2NpbmF0aW9uIiwgIjIwMjEtMDYtMjNUMTM6NDA6MTJaIl0~WyIyR0xD
NDJzS1F2ZUNmR2ZyeU5STjl3IiwgImF0Y0NvZGUiLCAiSjA3QlgwMyJd~WyJlbHVWNU9
nM2dTTklJOEVZbnN4QV9BIiwgIm1lZGljaW5hbFByb2R1Y3ROYW1lIiwgIkNPVklELTE
5IFZhY2NpbmUgTW9kZXJuYSJd~eyJhbGciOiAiRVMyNTYiLCAidHlwIjogImtiK2p3dC
J9.eyJub25jZSI6ICIxMjM0NTY3ODkwIiwgImF1ZCI6ICJodHRwczovL3ZlcmlmaWVyL
mV4YW1wbGUub3JnIiwgImlhdCI6IDE3NDg1MzcyNDQsICJzZF9oYXNoIjogIklvV1VIO
TFsbGYzWEVybDQyYlEzc3hfNTNWMW8xdWpDejA4aERxSEs3RGsifQ.n0vzyIwCFMDVau
EaeJIWEKZZchxXMpXTQewHgAkARbOSZxB09IbXXtHfpoGqO_BtNFN2lShJEIQBGyc-Xp
HigA

 After the validation, the Verifier will have the following Processed SD-JWT Payload available for further handling:

{
 "@context": [
 "https://www.w3.org/2018/credentials/v1",
 "https://w3id.org/vaccination/v1"
],
 "type": [
 "VerifiableCredential",
 "VaccinationCertificate"
],
 "issuer": "https://example.com/issuer",
 "issuanceDate": "2023-02-09T11:01:59Z",
 "expirationDate": "2028-02-08T11:01:59Z",
 "name": "COVID-19 Vaccination Certificate",
 "description": "COVID-19 Vaccination Certificate",
 "credentialSubject": {
 "vaccine": {
 "type": "Vaccine",
 "atcCode": "J07BX03",
 "medicinalProductName": "COVID-19 Vaccine Moderna"
 },
 "recipient": {
 "type": "VaccineRecipient"
 },
 "type": "VaccinationEvent",
 "order": "3/3",
 "dateOfVaccination": "2021-06-23T13:40:12Z"
 },
 "cnf": {
 "jwk": {
 "kty": "EC",
 "crv": "P-256",
 "x": "TCAER19Zvu3OHF4j4W4vfSVoHIP1ILilDls7vCeGemc",
 "y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"
 }
 }
}

 Elliptic Curve Key Used in the Examples
 The following Elliptic Curve public key, represented in JWK format, can be used to validate the Issuer signatures in the above examples:

{
 "kty": "EC",
 "crv": "P-256",
 "x": "b28d4MwZMjw8-00CG4xfnn9SLMVMM19SlqZpVb_uNtQ",
 "y": "Xv5zWwuoaTgdS6hV43yI6gBwTnjukmFQQnJ_kCxzqk8"
}

 The public key used to validate a Key Binding JWT can be found in the examples as the content of the cnf claim.

 Disclosure Format Considerations
 As described in , the Disclosure structure is JSON containing a salt and the
cleartext content of a claim, which is base64url encoded. The encoded value is the input used to calculate
a digest for the respective claim. The inclusion of digest value in the signed JWT ensures the integrity of
the claim value. Using encoded content as the input to the integrity mechanism is conceptually similar to the
approach in JWS and particularly useful when the content, like JSON, can have different representations but is semantically equivalent, thus avoiding canonicalization. Some further discussion of the considerations around this design decision follows.
 When receiving an SD-JWT, a Verifier must
be able to recompute digests of the disclosed claim values and, given
the same input values, obtain the same digest values as signed by the
Issuer.
 Usually, JSON-based formats transport claim values as simple properties of a JSON object such as this:
 ...
 "family_name": "Möbius",
 "address": {
 "street_address": "Schulstr. 12",
 "locality": "Schulpforta"
 }
...

 However, a problem arises when computation over the data needs to be performed and verified, like signing or computing digests. Common signature schemes require the same byte string as input to the
signature verification as was used for creating the signature. In the digest approach outlined above, the same problem exists: for the Issuer and the
Verifier to arrive at the same digest, the same byte string must be hashed.
 JSON, however, does not prescribe a unique encoding for data, but allows for variations in the encoded string. The data above, for example, can be encoded as

...
"family_name": "M\u00f6bius",
"address": {
 "street_address": "Schulstr. 12",
 "locality": "Schulpforta"
}
...

 or as

...
"family_name": "Möbius",
"address": {"locality":"Schulpforta", "street_address":
 "Schulstr. 12"}
...

 The two representations of the value in family_name are very different on the byte level, but they yield
equivalent objects. The same is true for the representations of address, which vary in white space and order of elements in the object.
 The variations in white space, ordering of object properties, and
encoding of Unicode characters are all allowed by the JSON
specification, including further variations, e.g., concerning
floating-point numbers, as described in . Variations can be
introduced whenever JSON data is serialized or deserialized and unless
dealt with, will lead to different digests and the inability to verify
signatures.
 There are generally two approaches to deal with this problem:

 Canonicalization: The data is transferred in JSON format, potentially
introducing variations in its representation, but is transformed into a
canonical form before computing a digest. Both the Issuer and the Verifier
must use the same canonicalization algorithm to arrive at the same byte
string for computing a digest.
 Source string hardening: Instead of transferring data in a format that
may introduce variations, a representation of the data is serialized.
This representation is then used as the hashing input at the Verifier,
but also transferred to the Verifier and used for the same digest
calculation there. This means that the Verifier can easily compute and check the
digest of the byte string before finally deserializing and
accessing the data.

 Mixed approaches are conceivable, i.e., transferring both the original JSON data
and a string suitable for computing a digest, but such approaches can easily lead to
undetected inconsistencies resulting in time-of-check-time-of-use type security
vulnerabilities.
 In this specification, the source string hardening approach is used, as
it allows for simple and reliable interoperability without the
requirement for a canonicalization library. To harden the source string,
any serialization format that supports the necessary data types could
be used in theory, like protobuf, msgpack, or pickle. In this
specification, JSON is used and plaintext contents of each Disclosure are encoded using base64url encoding
for transport. This approach means that SD-JWTs can be implemented purely based
on widely available JWT, JSON, and Base64 encoding and decoding libraries.
 A Verifier can then easily check the digest over the source string before
extracting the original JSON data. Variations in the encoding of the source
string are implicitly tolerated by the Verifier, as the digest is computed over a
predefined byte string and not over a JSON object.
 It is important to note that the Disclosures are neither intended nor
suitable for direct consumption by
an application that needs to access the disclosed claim values after the verification by the Verifier. The
Disclosures are only intended to be used by a Verifier to check
the digests over the source strings and to extract the original JSON
data. The original JSON data is then used by the application. See
 for details.

 Acknowledgements
 We would like to thank , , , , , , ,
 , ,
 , ,
and for their contributions (some of which
were substantial) to this document and to the initial set of implementations.

 The work on this document was started at the OAuth Security Workshop 2022 in Trondheim,
Norway.

 Authors' Addresses

 Authlete

 mail@danielfett.de
 https://danielfett.de/

 Keio University

 kristina@sfc.keio.ac.jp

 Ping Identity

 bcampbell@pingidentity.com

