
RFC 9750
The Messaging Layer Security (MLS) Architecture

Abstract
The Messaging Layer Security (MLS) protocol (RFC 9420) provides a group key agreement
protocol for messaging applications. MLS is designed to protect against eavesdropping,
tampering, and message forgery, and to provide forward secrecy (FS) and post-compromise
security (PCS).

This document describes the architecture for using MLS in a general secure group messaging
infrastructure and defines the security goals for MLS. It provides guidance on building a group
messaging system and discusses security and privacy trade-offs offered by multiple security
mechanisms that are part of the MLS protocol (e.g., frequency of public encryption key rotation).
The document also provides guidance for parts of the infrastructure that are not standardized
by MLS and are instead left to the application.

While the recommendations of this document are not mandatory to follow in order to
interoperate at the protocol level, they affect the overall security guarantees that are achieved by
a messaging application. This is especially true in the case of active adversaries that are able to
compromise clients, the Delivery Service (DS), or the Authentication Service (AS).

Stream: Internet Engineering Task Force (IETF)
RFC: 9750
Category: Informational
Published: April 2025
ISSN: 2070-1721
Authors: B. Beurdouche

Inria & Mozilla
E. Rescorla E. Omara S. Inguva A. Duric

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9750

Beurdouche, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9750
https://www.rfc-editor.org/info/rfc9750

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. General Setting

2.1. Protocol Overview

2.2. Abstract Services

3. Overview of Operation

3.1. Step 1: Account Creation

3.2. Step 2: Initial Keying Material

3.3. Step 3: Adding Bob to the Group

3.4. Step 4: Adding Charlie to the Group

3.5. Other Group Operations

3.6. Proposals and Commits

3.7. Users, Clients, and Groups

4. Authentication Service

5. Delivery Service

5.1. Key Storage and Retrieval

5.2. Delivery of Messages

5.2.1. Strongly Consistent

5.2.2. Eventually Consistent

5.2.3. Welcome Messages

5.3. Invalid Commits

4

5

5

5

7

7

8

8

8

8

9

9

10

11

11

12

13

14

14

15

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 2

https://trustee.ietf.org/license-info

6. Functional Requirements

6.1. Membership Changes

6.2. Parallel Groups

6.3. Asynchronous Usage

6.4. Access Control

6.5. Handling Authentication Failures

6.6. Recovery After State Loss

6.7. Support for Multiple Devices

6.8. Extensibility

6.9. Application Data Framing and Type Advertisements

6.10. Federation

6.11. Compatibility with Future Versions of MLS

7. Operational Requirements

8. Security and Privacy Considerations

8.1. Assumptions on Transport Security Links

8.1.1. Integrity and Authentication of Custom Metadata

8.1.2. Metadata Protection for Unencrypted Group Operations

8.1.3. DoS Protection

8.1.4. Message Suppression and Error Correction

8.2. Intended Security Guarantees

8.2.1. Message Secrecy and Authentication

8.2.2. Forward Secrecy and Post-Compromise Security

8.2.3. Non-Repudiation vs. Deniability

8.2.4. Associating a User's Clients

8.3. Endpoint Compromise

8.3.1. Compromise of Symmetric Keying Material

8.3.2. Compromise by an Active Adversary with the Ability to Sign Messages

8.3.3. Compromise of Authentication with Access to a Signature Key

8.3.4. Security Considerations in the Context of a Full State Compromise

16

16

17

17

18

18

19

19

20

20

20

20

21

23

24

24

25

25

25

26

26

26

27

27

28

28

30

30

31

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 3

8.4. Service Node Compromise

8.4.1. General Considerations

8.4.2. Delivery Service Compromise

8.4.3. Authentication Service Compromise

8.5. Considerations for Attacks Outside of the Threat Model

8.6. No Protection Against Replay by Insiders

8.7. Cryptographic Analysis of the MLS Protocol

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Contributors

Authors' Addresses

32

32

33

34

36

37

37

37

37

37

38

40

41

1. Introduction
End-to-end security is used in the vast majority of instant messaging systems and is also
deployed in systems for other purposes such as calling and conferencing. In this context, "end-to-
end" captures the notion that users of the system enjoy some level of security -- with the precise
level depending on the system design -- even in the face of malicious actions by the operator of
the messaging system.

Messaging Layer Security (MLS) specifies an architecture (this document) and a protocol
 for providing end-to-end security in this setting. MLS is not intended as a full instant

messaging protocol but rather is intended to be embedded in concrete protocols, such as the
Extensible Messaging and Presence Protocol (XMPP) . Implementations of the MLS
protocol will interoperate at the cryptographic level, though they may have incompatibilities in
terms of how protected messages are delivered, contents of protected messages, and identity/
authentication infrastructures. The MLS protocol has been designed to provide the same
security guarantees to all users, for all group sizes, including groups of only two clients.

[RFC9420]

[RFC6120]

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 4

2. General Setting

2.1. Protocol Overview
MLS provides a way for clients to form groups within which they can communicate securely. For
example, a set of users might use clients on their phones or laptops to join a group and
communicate with each other. A group may be as small as two clients (e.g., for simple person-to-
person messaging) or as large as hundreds of thousands. A client that is part of a group is a
member of that group. As groups change membership and group or member properties, they
advance from one epoch to another and the cryptographic state of the group evolves.

The group is represented as a tree, which represents the members as the leaves of a tree. It is
used to efficiently encrypt to subsets of the members. Each member has a state called a LeafNode
object holding the client's identity, credentials, and capabilities.

Various messages are used in the evolution from epoch to epoch. A Proposal message proposes a
change to be made in the next epoch, such as adding or removing a member. A Commit message
initiates a new epoch by instructing members of the group to implement a collection of
proposals. Proposals and Commits are collectively called handshake messages. A KeyPackage
provides keys that can be used to add the client to a group, including a public encryption key
and a signature key (both stored in the KeyPackage's LeafNode object). A Welcome message
provides a new member to the group with the information to initialize their state for the epoch
in which they were added.

Of course most (but not all) applications use MLS to send encrypted group messages. An
application message is an MLS message with an arbitrary application payload.

Finally, a PublicMessage contains an integrity-protected MLS handshake message, while a
PrivateMessage contains a confidential, integrity-protected handshake or application message.

For a more detailed explanation of these terms, please consult the MLS protocol specification
.[RFC9420]

2.2. Abstract Services
MLS is designed to operate within the context of a messaging service, which may be a single
service provider, a federated system, or some kind of peer-to-peer system. The service needs to
provide two services that facilitate client communication using MLS:

An Authentication Service (AS), which is responsible for attesting to bindings between
application-meaningful identifiers and the public key material used for authentication in
the MLS protocol. The AS must also be able to generate credentials that encode these
bindings and validate credentials provided by MLS clients.
A Delivery Service (DS), which can receive and distribute messages between group
members. In the case of group messaging, the DS may also be responsible for acting as a
"broadcaster" where the sender sends a single message which is then forwarded to each

•

•

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 5

recipient in the group by the DS. The DS is also responsible for storing and delivering initial
public key material required by MLS clients in order to proceed with the group secret key
establishment that is part of the MLS protocol.

For presentation purposes, this document treats the AS and DS as conventional network
services. However, MLS does not require a specific implementation for the AS or DS. These
services may reside on the same server or different servers, they may be distributed between
server and client components, and they may even involve some action by users. For example:

Several secure messaging services today provide a centralized DS and rely on manual
comparison of clients' public keys as the AS.
MLS clients connected to a peer-to-peer network could instantiate a decentralized DS by
transmitting MLS messages over that network.
In an MLS group using a Public Key Infrastructure (PKI) for authentication, the AS would
comprise the certificate issuance and validation processes, both of which involve logic inside
MLS clients as well as various existing PKI roles (e.g., Certification Authorities).

It is important to note that the AS can be completely abstract in the case of a service provider
which allows MLS clients to generate, distribute, and validate credentials themselves. As with
the AS, the DS can be completely abstract if users are able to distribute credentials and messages
without relying on a central DS (as in a peer-to-peer system). Note, though, that in such
scenarios, clients will need to implement logic that assures the delivery properties required of
the DS (see Section 5.2).

Figure 1 shows the relationship of these concepts, with three clients and one group, and clients 2
and 3 being part of the group and client 1 not being part of any group.

•

•

•

Figure 1: A Simplified Messaging System

Authentication Delivery
Service (AS) Service (DS)

Group
........
. .
. .

Client 1 . Client 2 Client 3 .
. .
. Member 1 Member 2 .
. .
..................................

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 6

3. Overview of Operation
Figure 2 shows the formation of an example group consisting of Alice, Bob, and Charlie, with
Alice driving the creation of the group.

This process proceeds as follows.

Figure 2: Group Formation Example

Alice Bob Charlie AS DS

Create account
Credential

Create account Step 1
Credential

Create account
Credential

Initial Keying Material
Initial Keying Material Step 2

Initial Keying Material

Get Bob Initial Keying Material
Bob Initial Keying Material

Add Bob to group Step 3
Welcome(Bob)

Add Bob to group
Welcome(Bob)

Get Charlie Initial Keying Material
Charlie Initial Keying Material

Add Charlie to group
Welcome(Charlie) Step 4

Add Charlie to group
Add Charlie to group

Welcome(Charlie)

3.1. Step 1: Account Creation
Alice, Bob, and Charlie create accounts with a service provider and obtain credentials from the
AS. This is a one-time setup phase.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 7

3.2. Step 2: Initial Keying Material
Alice, Bob, and Charlie authenticate to the DS and store some initial keying material which is
used to send encrypted messages to them for the first time. This keying material is authenticated
with their long-term credentials. Although in principle this keying material can be reused for
multiple senders, in order to provide forward secrecy it is better for this material to be regularly
refreshed so that each sender can use a new key and delete older keys.

3.3. Step 3: Adding Bob to the Group
When Alice wants to create a group including Bob, she first uses the DS to look up his initial
keying material. She then generates two messages:

A message to the entire group (which at this point is just her and Bob) that adds Bob to the
group.
A Welcome message just to Bob encrypted with his initial keying material that includes the
secret keying information necessary to join the group.

She sends both of these messages to the DS, which is responsible for sending them to the
appropriate people. Note that the security of MLS does not depend on the DS forwarding the
Welcome message only to Bob, as it is encrypted for him; it is simply not necessary for other
group members to receive it.

•

•

3.4. Step 4: Adding Charlie to the Group
If Alice then wants to add Charlie to the group, she follows a similar procedure as with Bob. She
first uses the DS to look up his initial keying material and then generates two messages:

A message to the entire group (consisting of her, Bob, and Charlie) adding Charlie to the
group.
A Welcome message just to Charlie encrypted with his initial keying material that includes
the secret keying information necessary to join the group.

At the completion of this process, we have a group with Alice, Bob, and Charlie, which means
that they share a single encryption key which can be used to send messages or to key other
protocols.

•

•

3.5. Other Group Operations
Once the group has been created, clients can perform other actions, such as:

sending a message to everyone in the group
receiving a message from someone in the group
adding one or more clients to an existing group
removing one or more members from an existing group
updating their own key material

•
•
•
•
•

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 8

leaving a group (by asking to be removed)

Importantly, MLS does not itself enforce any access control on group operations. For instance,
any member of the group can send a message to add a new member or to evict an existing
member. This is in contrast to some designs in which there is a single group controller who can
modify the group. MLS-using applications are responsible for setting their own access control
policies. For instance, if only the group administrator is allowed to change group members, then
it is the responsibility of the application to inform members of this policy and who the
administrator is.

•

Proposal:

Commit:

3.6. Proposals and Commits
The general pattern for any change in the group state (e.g., to add or remove a user) is that it
consists of two messages:

This message describes the change to be made (e.g., add Bob to the group) but does
not effect a change.

This message changes the group state to include the changes described in a set of
proposals.

The simplest pattern is for a client to just send a Commit which contains one or more Proposals.
For instance, Alice could send a Commit with the Proposal Add(Bob) embedded to add Bob to the
group. However, there are situations in which one client might send a Proposal and another
might send the corresponding Commit. For instance, Bob might wish to remove himself from the
group and send a Remove proposal to do so (see). Because Bob
cannot send the Commit, an existing member must do so. Commits can apply to multiple valid
Proposals, in which case all the listed changes are applied.

It is also possible for a Commit to apply to an empty set of Proposals, in which case it just
updates the cryptographic state of the group without changing its membership.

Section 12.1.3 of [RFC9420]

3.7. Users, Clients, and Groups
While it's natural to think of a messaging system as consisting of groups of users, possibly using
different devices, in MLS the basic unit of operation is not the user but rather the "client".
Formally, a client is a set of cryptographic objects composed of public values such as a name (an
identity), a public encryption key, and a public signature key. As usual, a user demonstrates
ownership of the client by demonstrating knowledge of the associated secret values.

In some messaging systems, clients belonging to the same user must all share the same signature
key pair, but MLS does not assume this; instead, a user may have multiple clients with the same
identity and different keys. In this case, each client will have its own cryptographic state, and it
is up to the application to determine how to present this situation to users. For instance, it may
render messages to and from a given user identically regardless of which client they are
associated with, or it may choose to distinguish them. It is also possible to have multiple clients
associated with the same user share state, as described in Section 8.2.4.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 9

https://rfc-editor.org/rfc/rfc9420#section-12.1.3

When a client is part of a group, it is called a member. A group in MLS is defined as the set of
clients that have knowledge of the shared group secret established in the group key
establishment phase. Note that until a client has been added to the group and contributed to the
group secret in a manner verifiable by other members of the group, other members cannot
assume that the client is a member of the group; for instance, the newly added member might
not have received the Welcome message or been unable to decrypt it for some reason.

4. Authentication Service
The Authentication Service (AS) has to provide three services:

Issue credentials to clients that attest to bindings between identities and signature key pairs.
Enable a client to verify that a credential presented by another client is valid with respect to
a reference identifier.
Enable a group member to verify that a credential represents the same client as another
credential.

A member with a valid credential authenticates its MLS messages by signing them with the
private key corresponding to the public key bound by its credential.

The AS is considered an abstract layer by the MLS specification; part of this service could be, for
instance, running on the members' devices, while another part is a separate entity entirely. The
following examples illustrate the breadth of this concept:

A PKI could be used as an AS . The issuance function would be provided by the
certificate authorities in the PKI, and the verification function would correspond to
certificate verification by clients.
Several current messaging applications rely on users verifying each other's key fingerprints
for authentication. In this scenario, the issuance function is simply the generation of a key
pair (i.e., a credential is just an identifier and public key, with no information to assist in
verification). The verification function is the application function that enables users to
verify keys.
In a system based on end-user Key Transparency (KT) , the issuance function would
correspond to the insertion of a key in a KT log under a user's identity. The verification
function would correspond to verifying a key's inclusion in the log for a claimed identity,
together with the KT log's mechanisms for a user to monitor and control which keys are
associated with their identity.

By the nature of its role in MLS authentication, the AS is invested with a large amount of trust
and the compromise of the AS could allow an adversary to, among other things, impersonate
group members. We discuss security considerations regarding the compromise of the different
AS functions in detail in Section 8.4.3.

The association between members' identities and their signature keys is fairly flexible in MLS.
As noted above, there is no requirement that all clients belonging to a given user have the same
signature key (in fact, having duplicate signature keys in a group is forbidden). A member can

1.
2.

3.

• [RFC5280]

•

• [KT]

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 10

also rotate the signature key they use within a group. These mechanisms allow clients to use
different signature keys in different contexts and at different points in time, providing
unlinkability and post-compromise security benefits. Some security trade-offs related to this
flexibility are discussed in Section 8.

In many applications, there are multiple MLS clients that represent a single entity, such as a
human user with a mobile and desktop version of an application. Often, the same set of clients is
represented in exactly the same list of groups. In applications where this is the intended
situation, other clients can check that a user is consistently represented by the same set of
clients. This would make it more difficult for a malicious AS to issue fake credentials for a
particular user because clients would expect the credential to appear in all groups of which the
user is a member. If a client credential does not appear in all groups after some relatively short
period of time, clients have an indication that the credential might have been created without
the user's knowledge. Due to the asynchronous nature of MLS, however, there may be transient
inconsistencies in a user's client set, so correlating users' clients across groups is more of a
detection mechanism than a prevention mechanism.

5. Delivery Service
The Delivery Service (DS) plays two major roles in MLS:

As a directory service, providing the initial keying material for clients to use. This allows a
client to establish a shared key and send encrypted messages to other clients even if they're
offline.
Routing MLS messages among clients.

While MLS depends on correct behavior by the AS in order to provide endpoint authentication
and hence confidentiality of the group key, these properties do not depend on correct behavior
by the DS; even a malicious DS cannot add itself to groups or recover the group key. However,
depending precisely on how MLS is used, the DS may be able to determine group membership or
prevent changes to the group from taking place (e.g., by blocking group change messages).

•

•

5.1. Key Storage and Retrieval
Upon joining the system, each client stores its initial cryptographic key material with the DS.
This key material, called a KeyPackage, advertises the functional abilities of the client (e.g.,
supported protocol versions, supported extensions, etc.) and the following cryptographic
information:

A credential from the AS attesting to the binding between the identity and the client's
signature key.
The client's asymmetric encryption public key.

All the parameters in the KeyPackage are signed with the signature private key corresponding to
the credential. As noted in Section 3.7, users may own multiple clients, each with their own
keying material. Each KeyPackage is specific to an MLS version and cipher suite, but a client may

•

•

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 11

want to offer support for multiple protocol versions and cipher suites. As such, there may be
multiple KeyPackages stored by each user for a mix of protocol versions, cipher suites, and end-
user devices.

When a client wishes to establish a group or add clients to a group, it first contacts the DS to
request KeyPackages for each of the other clients, authenticates the KeyPackages using the
signature keys, includes the KeyPackages in Add proposals, and encrypts the information
needed to join the group (the GroupInfo object) with an ephemeral key; it then separately
encrypts the ephemeral key with the public encryption key (init_key) from each KeyPackage.
When a client requests a KeyPackage in order to add a user to a group, the DS should provide
the minimum number of KeyPackages necessary to satisfy the request. For example, if the
request specifies the MLS version, the DS might provide one KeyPackage per supported cipher
suite, even if it has multiple such KeyPackages to enable the corresponding client to be added to
multiple groups before needing to upload more fresh KeyPackages.

In order to avoid replay attacks and provide forward secrecy for messages sent using the initial
keying material, KeyPackages are intended to be used only once, and init_key is intended to be
deleted by the client after decryption of the Welcome message. The DS is responsible for
ensuring that each KeyPackage is only used to add its client to a single group, with the possible
exception of a "last resort" KeyPackage that is specially designated by the client to be used
multiple times. Clients are responsible for providing new KeyPackages as necessary in order to
minimize the chance that the "last resort" KeyPackage will be used.

Recommendation: Ensure that "last resort" KeyPackages don't get used by provisioning
enough standard KeyPackages.

Recommendation: Rotate "last resort" KeyPackages as soon as possible after being used or if
they have been stored for a prolonged period of time. Overall, avoid reusing "last resort"
KeyPackages as much as possible.

Recommendation: Ensure that the client for which a "last resort" KeyPackage has been used
is updating leaf keys as early as possible.

Recommendation: Ensure that clients delete the private component of their init_key after
processing a Welcome message, or after the rotation of the "last resort" KeyPackage.

Overall, it needs to be noted that key packages need to be updated when signature keys are
changed.

5.2. Delivery of Messages
The main responsibility of the DS is to ensure delivery of messages. Some MLS messages need
only be delivered to specific clients (e.g., a Welcome message initializing a new member's state),
while others need to be delivered to all the members of a group. The DS may enable the latter
delivery pattern via unicast channels (sometimes known as "client fanout"), broadcast channels
("server fanout"), or a mix of both.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 12

For the most part, MLS does not require the DS to deliver messages in any particular order.
Applications can set policies that control their tolerance for out-of-order messages (see Section 7),
and messages that arrive significantly out of order can be dropped without otherwise affecting
the protocol. There are two exceptions to this. First, Proposal messages should all arrive before
the Commit that references them. Second, because an MLS group has a linear history of epochs,
the members of the group must agree on the order in which changes are applied. Concretely, the
group must agree on a single MLS Commit message that ends each epoch and begins the next
one.

In practice, there's a realistic risk of two members generating Commit messages at the same time,
based on the same epoch, and both attempting to send them to the group at the same time. The
extent to which this is a problem, and the appropriate solution, depend on the design of the DS.
Per the CAP theorem , there are two general classes of distributed systems that the DS
might fall into:

Consistent and Partition-tolerant, or Strongly Consistent, systems, which can provide a
globally consistent view of data but have the inconvenience of clients needing to handle
rejected messages.
Available and Partition-tolerant, or Eventually Consistent, systems, which continue working
despite network issues but may return different views of data to different users.

Strategies for sequencing messages in strongly and eventually consistent systems are described
in the next two subsections. Most DSs will use the strongly consistent paradigm, but this remains
a choice that can be handled in coordination with the client and advertised in the KeyPackages.

However, note that a malicious DS could also reorder messages or provide an inconsistent view
to different users. The "generation" counter in MLS messages provides per-sender loss detection
and ordering that cannot be manipulated by the DS, but this does not provide complete
protection against partitioning. A DS can cause a partition in the group by partitioning key
exchange messages; this can be detected only by out-of-band comparison (e.g., confirming that
all clients have the same epoch_authenticator value). A mechanism for more robust
protections is discussed in .

Other forms of DS misbehavior are still possible that are not easy to detect. For instance, a DS
can simply refuse to relay messages to and from a given client. Without some sort of side
information, other clients cannot generally detect this form of Denial-of-Service (DoS) attack.

[CAPBR]

•

•

[EXTENSIONS]

5.2.1. Strongly Consistent

With this approach, the DS ensures that some types of incoming messages have a linear order
and all members agree on that order. The Delivery Service is trusted to break ties when two
members send a Commit message at the same time.

As an example, there could be an "ordering server" DS that broadcasts all messages received to
all users and ensures that all clients see messages in the same order. This would allow clients to
only apply the first valid Commit for an epoch and ignore subsequent Commits. Clients that send
a Commit would then wait to apply it until it is broadcast back to them by the Delivery Service,
assuming that they do not receive another Commit first.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 13

Alternatively, the DS can rely on the epoch and content_type fields of an MLSMessage to
provide an order only to handshake messages, and possibly even filter or reject redundant
Commit messages proactively to prevent them from being broadcast. There is some risk
associated with filtering; this is discussed further in Section 5.3.

5.2.2. Eventually Consistent

With this approach, the DS is built in a way that may be significantly more available or
performant than a strongly consistent system, but where it offers weaker consistency
guarantees. Messages may arrive to different clients in different orders and with varying
amounts of latency, which means clients are responsible for reconciliation.

This type of DS might arise, for example, when group members are sending each message to
each other member individually or when a distributed peer-to-peer network is used to
broadcast messages.

Upon receiving a Commit from the DS, clients can either:

Pause sending new messages for a short amount of time to account for a reasonable degree
of network latency and see if any other Commits are received for the same epoch. If
multiple Commits are received, the clients can use a deterministic tie-breaking policy to
decide which to accept, and then resume sending messages as normal.
Accept the Commit immediately but keep a copy of the previous group state for a short
period of time. If another Commit for a past epoch is received, clients use a deterministic tie-
breaking policy to decide if they should continue using the Commit they originally accepted
or revert and use the later one. Note that any copies of previous or forked group states must
be deleted within a reasonable amount of time to ensure that the protocol provides forward
secrecy.

If the Commit references an unknown proposal, group members may need to solicit the DS or
other group members individually for the contents of the proposal.

1.

2.

5.2.3. Welcome Messages

Whenever a commit adds new members to a group, MLS requires the committer to send a
Welcome message to the new members. Applications should ensure that Welcome messages are
coupled with the tie-breaking logic for commits (see Sections 5.2.1 and 5.2.2). That is, when
multiple commits are sent for the same epoch, applications need to ensure that only Welcome
messages corresponding to the commit that "succeeded" are processed by new members.

This is particularly important when groups are being reinitialized. When a group is reinitialized,
it is restarted with a different protocol version and/or cipher suite but identical membership.
Whenever an authorized member sends and commits a ReInit proposal, this immediately
freezes the existing group and triggers the creation of a new group with a new group_id.

Ideally, the new group would be created by the same member that committed the ReInit
proposal (including sending Welcome messages for the new group to all of the previous group's
members). However, this operation is not always atomic, so it's possible for a member to go

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 14

offline after committing a ReInit proposal but before creating the new group. If this happens, it's
necessary for another member to continue the reinitialization by creating the new group and
sending out Welcome messages.

This has the potential to create a race condition, where multiple members try to continue the
reinitialization at the same time, and members receive multiple Welcome messages for each
attempt at reinitializing the same group. Ensuring that all members agree on which
reinitialization attempt is "correct" is key to prevent this from causing forks.

5.3. Invalid Commits
Situations can arise where a malicious or buggy client sends a Commit that is not accepted by all
members of the group, and the DS is not able to detect this and reject the Commit. For example, a
buggy client might send an encrypted Commit with an invalid set of proposals, or a malicious
client might send a malformed Commit of the form described in .

In situations where the DS is attempting to filter redundant Commits, the DS might update its
internal state under the assumption that a Commit has succeeded and thus end up in a state
inconsistent with the members of the group. For example, the DS might think that the current
epoch is now n+1 and reject any commits from other epochs, while the members think the epoch
is n, and as a result, the group is stuck -- no member can send a Commit that the DS will accept.

Such "desynchronization" problems can arise even when the DS takes no stance on which
Commit is "correct" for an epoch. The DS can enable clients to choose between Commits, for
example by providing Commits in the order received and allowing clients to reject any Commits
that violate their view of the group's policies. As such, all honest and correctly implemented
clients will arrive at the same "first valid Commit" and choose to process it. Malicious or buggy
clients that process a different Commit will end up in a forked view of the group.

When these desynchronizations happen, the application may choose to take action to restore the
functionality of the group. These actions themselves can have security implications. For
example, a client developer might have a client automatically rejoin a group, using an external
join, when it processes an invalid Commit. In this operation, however, the client trusts that the
GroupInfo provided by the DS faithfully represents the state of the group, and not, say, an earlier
state containing a compromised leaf node. In addition, the DS may be able to trigger this
condition by deliberately sending the victim an invalid Commit. In certain scenarios, this trust
can enable the DS or a malicious insider to undermine the post-compromise security guarantees
provided by MLS.

Actions to recover from desynchronization can also have availability and DoS implications. For
example, if a recovery mechanism relies on external joins, a malicious member that deliberately
posts an invalid Commit could also post a corrupted GroupInfo object in order to prevent
victims from rejoining the group. Thus, careful analysis of security implications should be made
for any system for recovering from desynchronization.

Section 16.12 of [RFC9420]

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 15

https://rfc-editor.org/rfc/rfc9420#section-16.12

6. Functional Requirements
MLS is designed as a large-scale group messaging protocol and hence aims to provide both
performance and security (e.g., integrity and confidentiality) to its users. Messaging systems that
implement MLS provide support for conversations involving two or more members, and aim to
scale to groups with tens of thousands of members, typically including many users using
multiple devices.

6.1. Membership Changes
MLS aims to provide agreement on group membership, meaning that all group members have
agreed on the list of current group members.

Some applications may wish to enforce Access Control Lists (ACLs) to limit addition or removal
of group members to privileged clients or users. Others may wish to require authorization from
the current group members or a subset thereof. Such policies can be implemented at the
application layer, on top of MLS. Regardless, MLS does not allow for or support addition or
removal of group members without informing all other members.

Membership of an MLS group is managed at the level of individual clients. In most cases, a client
corresponds to a specific device used by a user. If a user has multiple devices, the user will
generally be represented in a group by multiple clients (although applications could choose to
have devices share keying material). If an application wishes to implement operations at the
level of users, it is up to the application to track which clients belong to a given user and ensure
that they are added/removed consistently.

MLS provides two mechanisms for changing the membership of a group. The primary
mechanism is for an authorized member of the group to send a Commit that adds or removes
other members. A secondary mechanism is an "external join": A member of the group publishes
certain information about the group, which a new member can use to construct an "external"
Commit message that adds the new member to the group. (There is no similarly unilateral way
for a member to leave the group; they must be removed by a remaining member.)

With both mechanisms, changes to the membership are initiated from inside the group. When
members perform changes directly, this is clearly the case. External joins are authorized
indirectly, in the sense that a member publishing a GroupInfo object authorizes anyone to join
who has access to the GroupInfo object, subject to whatever access control policies the
application applies for external joins.

Both types of joins are done via a Commit message, which could be blocked by the DS or rejected
by clients if the join is not authorized. The former approach requires that Commits be visible to
the DS; the latter approach requires that clients all share a consistent policy. In the unfortunate
event that an unauthorized member is able to join, MLS enables any member to remove them.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 16

Application setup may also determine other criteria for membership validity. For example, per-
device signature keys can be signed by an identity key recognized by other participants. If a
certificate chain is used to authenticate device signature keys, then revocation by the owner
adds an alternative mechanism to prompt membership removal.

An MLS group's secrets change on every change of membership, so each client only has access to
the secrets used by the group while they are a member. Messages sent before a client joins or
after they are removed are protected with keys that are not accessible to the client. Compromise
of a member removed from a group does not affect the security of messages sent after their
removal. Messages sent during the client's membership are also secure as long as the client has
properly implemented the MLS deletion schedule, which calls for the secrets used to encrypt or
decrypt a message to be deleted after use, along with any secrets that could be used to derive
them.

6.2. Parallel Groups
Any user or client may have membership in several groups simultaneously. The set of members
of any group may or may not overlap with the members of another group. MLS guarantees that
the FS and PCS goals within a given group are maintained and not weakened by user
membership in multiple groups. However, actions in other groups likewise do not strengthen
the FS and PCS guarantees within a given group, e.g., key updates within a given group following
a device compromise do not provide PCS healing in other groups; each group must be updated
separately to achieve these security objectives. This also applies to future groups that a member
has yet to join, which are likewise unaffected by updates performed in current groups.

Applications can strengthen connectivity among parallel groups by requiring periodic key
updates from a user across all groups in which they have membership.

MLS provides a pre-shared key (PSK) mechanism that can be used to link healing properties
among parallel groups. For example, suppose a common member M of two groups A and B has
performed a key update in group A but not in group B. The key update provides PCS with regard
to M in group A. If a PSK is exported from group A and injected into group B, then some of these
PCS properties carry over to group B, since the PSK and secrets derived from it are only known
to the new, updated version of M, not to the old, possibly compromised version of M.

6.3. Asynchronous Usage
No operation in MLS requires two distinct clients or members to be online simultaneously. In
particular, members participating in conversations protected using MLS can update the group's
keys, add or remove new members, and send messages without waiting for another user's reply.

Messaging systems that implement MLS have to provide a transport layer for delivering
messages asynchronously and reliably.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 17

6.4. Access Control
Because all clients within a group (members) have access to the shared cryptographic material,
the MLS protocol allows each member of the messaging group to perform operations. However,
every service/infrastructure has control over policies applied to its own clients. Applications
managing MLS clients can be configured to allow for specific group operations. On the one hand,
an application could decide that a group administrator will be the only member to perform Add
and Remove operations. On the other hand, in many settings such as open discussion forums,
joining can be allowed for anyone.

While MLS application messages are always encrypted, MLS handshake messages can be sent
either encrypted (in an MLS PrivateMessage) or unencrypted (in an MLS PublicMessage).
Applications may be designed such that intermediaries need to see handshake messages, for
example to enforce policy on which commits are allowed, or to provide MLS ratchet tree data in
a central location. If handshake messages are unencrypted, it is especially important that they be
sent over a channel with strong transport encryption (see Section 8) in order to prevent external
attackers from monitoring the status of the group. Applications that use unencrypted handshake
messages may take additional steps to reduce the amount of metadata that is exposed to the
intermediary. Everything else being equal, using encrypted handshake messages provides
stronger privacy properties than using unencrypted handshake messages, as it prevents
intermediaries from learning about the structure of the group.

If handshake messages are encrypted, any access control policies must be applied at the client,
so the application must ensure that the access control policies are consistent across all clients to
make sure that they remain in sync. If two different policies were applied, the clients might not
accept or reject a group operation and end up in different cryptographic states, breaking their
ability to communicate.

Recommendation: Avoid using inconsistent access control policies, especially when using
encrypted group operations.

MLS allows actors outside the group to influence the group in two ways: External signers can
submit proposals for changes to the group, and new joiners can use an external join to add
themselves to the group. The external_senders extension ensures that all members agree on
which signers are allowed to send proposals, but any other policies must be assured to be
consistent, as noted above.

Recommendation: Have an explicit group policy setting the conditions under which external
joins are allowed.

6.5. Handling Authentication Failures
Within an MLS group, every member is authenticated to every other member by means of
credentials issued and verified by the AS. MLS does not prescribe what actions, if any, an
application should take in the event that a group member presents an invalid credential. For
example, an application may require such a member to be immediately evicted or may allow

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 18

some grace period for the problem to be remediated. To avoid operational problems, it is
important for all clients in a group to have a consistent view of which credentials in a group are
valid, and how to respond to invalid credentials.

Recommendation: Have a uniform credential validation process to ensure that all group
members evaluate other members' credentials in the same way.

Recommendation: Have a uniform policy for how invalid credentials are handled.

In some authentication systems, it is possible for a previously valid credential to become invalid
over time. For example, in a system based on X.509 certificates, credentials can expire or be
revoked. The MLS update mechanisms allow a client to replace an old credential with a new one.
This is best done before the old credential becomes invalid.

Recommendation: Proactively rotate credentials, especially if a credential is about to
become invalid.

6.6. Recovery After State Loss
Group members whose local MLS state is lost or corrupted can reinitialize their state by
rejoining the group as a new member and removing the member representing their earlier
state. An application can require that a client performing such a reinitialization prove its prior
membership with a PSK that was exported from the previous state.

There are a few practical challenges to this approach. For example, the application will need to
ensure that all members have the required PSK, including any new members that have joined
the group since the epoch in which the PSK was issued. And of course, if the PSK is lost or
corrupted along with the member's other state, then it cannot be used to recover.

Reinitializing in this way does not provide the member with access to group messages
exchanged during the state loss window, but enables proof of prior membership in the group.
Applications may choose various configurations for providing lost messages to valid group
members that are able to prove prior membership.

6.7. Support for Multiple Devices
It is common for users within a group to own multiple devices. A new device can be added to a
group and be considered as a new client by the protocol. This client will not gain access to the
history even if it is owned by someone who owns another member of the group. MLS does not
provide direct support for restoring history in this case, but applications can elect to provide
such a mechanism outside of MLS. Such mechanisms, if used, may reduce the FS and PCS
guarantees provided by MLS.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 19

6.8. Extensibility
The MLS protocol provides several extension points where additional information can be
provided. Extensions to KeyPackages allow clients to disclose additional information about their
capabilities. Groups can also have extension data associated with them, and the group
agreement properties of MLS will confirm that all members of the group agree on the content of
these extensions.

6.9. Application Data Framing and Type Advertisements
Application messages carried by MLS are opaque to the protocol and can contain arbitrary data.
Each application that uses MLS needs to define the format of its application_data and any
mechanism necessary to determine the format of that content over the lifetime of an MLS group.
In many applications, this means managing format migrations for groups with multiple
members who may each be offline at unpredictable times.

Recommendation: Use the content mechanism defined in , unless the specific
application defines another mechanism that more appropriately addresses the same
requirements for that application of MLS.

The MLS framing for application messages also provides a field where clients can send
information that is authenticated but not encrypted. Such information can be used by servers
that handle the message, but group members are assured that it has not been tampered with.

[EXTENSIONS]

6.10. Federation
The protocol aims to be compatible with federated environments. While this document does not
specify all necessary mechanisms required for federation, multiple MLS implementations can
interoperate to form federated systems if they use compatible authentication mechanisms,
cipher suites, application content, and infrastructure functionalities. Federation is described in
more detail in .[FEDERATION]

6.11. Compatibility with Future Versions of MLS
It is important that multiple versions of MLS be able to coexist in the future. Thus, MLS offers a
version negotiation mechanism; this mechanism prevents version downgrade attacks where an
attacker would actively rewrite messages with a lower protocol version than the messages
originally offered by the endpoints. When multiple versions of MLS are available, the
negotiation protocol guarantees that the creator is able to select the best version out of those
supported in common by the group.

In MLS 1.0, the creator of the group is responsible for selecting the best cipher suite supported
across clients. Each client is able to verify availability of protocol version, cipher suites, and
extensions at all times once it has at least received the first group operation message.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 20

Each member of an MLS group advertises the protocol functionality they support. These
capability advertisements can be updated over time, e.g., if client software is updated while the
client is a member of a group. Thus, in addition to preventing downgrade attacks, the members
of a group can also observe when it is safe to upgrade to a new cipher suite or protocol version.

7. Operational Requirements
MLS is a security layer that needs to be integrated with an application. A fully functional
deployment of MLS will have to make a number of decisions about how MLS is configured and
operated. Deployments that wish to interoperate will need to make compatible decisions. This
section lists all of the dependencies of an MLS deployment that are external to the protocol
specification, but would still need to be aligned within a given MLS deployment, or for two
deployments to potentially interoperate.

The protocol has a built-in ability to negotiate protocol versions, cipher suites, extensions,
credential types, and additional proposal types. For two deployments to interoperate, they must
have overlapping support in each of these categories. The required_capabilities extension
() can promote interoperability with a wider set of clients by ensuring
that certain functionality continues to be supported by a group, even if the clients in the group
aren't currently relying on it.

MLS relies on the following network services, which need to be compatible in order for two
different deployments based on them to interoperate.

An Authentication Service, described fully in Section 4, defines the types of credentials
which may be used in a deployment and provides methods for:

Issuing new credentials with a relevant credential lifetime,
Validating a credential against a reference identifier,
Validating whether or not two credentials represent the same client, and
Optionally revoking credentials which are no longer authorized.

A Delivery Service, described fully in Section 5, provides methods for:

Delivering messages for a group to all members in the group.
Delivering Welcome messages to new members of a group.
Uploading new KeyPackages for a user's own clients.
Downloading KeyPackages for specific clients. Typically, KeyPackages are used once and
consumed.

Additional services may or may not be required, depending on the application design:

In cases where group operations are not encrypted, the DS has the ability to observe and
maintain a copy of the public group state. In particular, this is useful for either (1) clients
that do not have the ability to send the full public state in a Welcome message when
inviting a user or (2) clients that need to recover from losing their state. Such public state

Section 7.2 of [RFC9420]

•

1.
2.
3.
4.

•

1.
2.
3.
4.

•

◦

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 21

https://rfc-editor.org/rfc/rfc9420#section-7.2

can contain privacy-sensitive information such as group members' credentials and related
public keys; hence, services need to carefully evaluate the privacy impact of storing this
data on the DS.
If external joiners are allowed, there must be a method for publishing a serialized
GroupInfo object (with an external_pub extension) that corresponds to a specific group
and epoch, and for keeping that object in sync with the state of the group.
If an application chooses not to allow external joining, it may instead provide a method
for external users to solicit group members (or a designated service) to add them to a
group.
If the application uses PSKs that members of a group may not have access to (e.g., to
control entry into the group or to prove membership in the group in the past, as discussed
in Section 6.6), there must be a method for distributing these PSKs to group members who
might not have them -- for instance, if they joined the group after the PSK was generated.
If an application wishes to detect and possibly discipline members that send malformed
commits with the intention of corrupting a group's state, there must be a method for
reporting and validating malformed commits.

MLS requires the following parameters to be defined, which must be the same for two
implementations to interoperate:

The maximum total lifetime that is acceptable for a KeyPackage.
How long to store the resumption PSK for past epochs of a group.
The degree of tolerance that's allowed for out-of-order message delivery:

How long to keep unused nonce and key pairs for a sender.
A maximum number of unused key pairs to keep.
A maximum number of steps that clients will move a secret tree ratchet forward in
response to a single message before rejecting it.
Whether to buffer messages that aren't yet able to be understood due to other messages
not arriving first, and, if so, how many and for how long -- for example, Commit messages
that arrive before a proposal they reference or application messages that arrive before the
Commit starting an epoch.

If implementations differ in these parameters, they will interoperate to some extent but may
experience unexpected failures in certain situations, such as extensive message reordering.

MLS provides the following locations where an application may store arbitrary data. The format
and intention of any data in these locations must align for two deployments to interoperate:

Application data, sent as the payload of an encrypted message.
Additional authenticated data, sent unencrypted in an otherwise encrypted message.
Group IDs, as decided by group creators and used to uniquely identify a group.
Application-level identifiers of public key material (specifically, the application_id
extension as defined in).

◦

◦

◦

◦

•
•
•

◦
◦
◦

◦

•
•
•
•

Section 5.3.3 of [RFC9420]

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 22

https://rfc-editor.org/rfc/rfc9420#section-5.3.3

MLS requires the following policies to be defined, which restrict the set of acceptable behaviors
in a group. These policies must be consistent between deployments for them to interoperate:

A policy on which cipher suites are acceptable.
A policy on any mandatory or forbidden MLS extensions.
A policy on when to send proposals and commits in plaintext instead of encrypted.
A policy for which proposals are valid to have in a commit, including but not limited to:

When a member is allowed to add or remove other members of the group.
When, and under what circumstances, a reinitialization proposal is allowed.
When proposals from external senders are allowed and how to authorize those proposals.
When external joiners are allowed and how to authorize those external commits.
Which other proposal types are allowed.

A policy of when members should commit pending proposals in a group.
A policy of how to protect and share the GroupInfo objects needed for external joins.
A policy for when two credentials represent the same client, distinguishing the following
two cases:

When there are multiple devices for a given user.
When a single device has multiple signature keys -- for instance, if the device has keys
corresponding to multiple overlapping time periods.

A policy on how long to allow a member to stay in a group without updating its leaf keys
before removing them.

Finally, there are some additional application-defined behaviors that are partially an individual
application's decision but may overlap with interoperability:

When and how to pad messages.
When to send a reinitialization proposal.
How often clients should update their leaf keys.
Whether to prefer sending full commits or partial/empty commits.
Whether there should be a required_capabilities extension in groups.

•
•
•
•

◦
◦
◦
◦
◦

•
•
•

◦
◦

•

•
•
•
•
•

8. Security and Privacy Considerations
MLS adopts the Internet threat model and therefore assumes that the attacker has
complete control of the network. It is intended to provide the security services described in
Section 8.2 in the face of attackers who can:

Monitor the entire network.
Read unprotected messages.
Generate, inject, and delete any message in the unprotected transport layer.

[RFC3552]

•
•
•

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 23

While MLS should be run over a secure transport such as QUIC or TLS , the
security guarantees of MLS do not depend on the transport. This departs from the usual design
practice of trusting the transport because MLS is designed to provide security even in the face of
compromised network elements, especially the DS.

Generally, MLS is designed under the assumption that the transport layer is present to keep
metadata private from network observers, while the MLS protocol provides confidentiality,
integrity, and authentication guarantees for the application data (which could pass through
multiple systems). Additional properties such as partial anonymity or deniability could also be
achieved in specific architecture designs.

In addition, these guarantees are intended to degrade gracefully in the presence of compromise
of the transport security links as well as of both clients and elements of the messaging system, as
described in the remainder of this section.

[RFC9000] [RFC8446]

8.1. Assumptions on Transport Security Links
As discussed above, MLS provides the highest level of security when its messages are delivered
over an encrypted transport, thus preventing attackers from selectively interfering with MLS
communications as well as protecting the already limited amount of metadata. Very little
information is contained in the unencrypted header of the MLS protocol message format for
group operation messages, and application messages are always encrypted in MLS.

Recommendation: Use transports that provide reliability and metadata confidentiality
whenever possible, e.g., by transmitting MLS messages over a protocol such as TLS
or QUIC .

MLS avoids the need to send the full list of recipients to the server for dispatching messages
because that list could potentially contain tens of thousands of recipients. Header metadata in
MLS messages typically consists of an opaque group_id, a numerical value to determine the
epoch of the group (the number of changes that have been made to the group), and whether the
message is an application message, a proposal, or a commit.

Even though some of this metadata information does not consist of sensitive information, when
correlated with other data a network observer might be able to reconstruct sensitive
information. Using a secure channel to transfer this information will prevent a network attacker
from accessing this MLS protocol metadata if it cannot compromise the secure channel.

[RFC8446]
[RFC9000]

8.1.1. Integrity and Authentication of Custom Metadata

MLS provides an authenticated "Additional Authenticated Data" (AAD) field for applications to
make data available outside a PrivateMessage, while cryptographically binding it to the message.

Recommendation: Use the "Additional Authenticated Data" field of the PrivateMessage
instead of using other unauthenticated means of sending metadata throughout the
infrastructure. If the data should be kept private, the infrastructure should use encrypted
application messages instead.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 24

8.1.2. Metadata Protection for Unencrypted Group Operations

Having no secure channel to exchange MLS messages can have a serious impact on privacy
when transmitting unencrypted group operation messages. Observing the contents and
signatures of the group operation messages may lead an adversary to extract information about
the group membership.

Recommendation: Never use the unencrypted mode for group operations without using a
secure channel for the transport layer.

8.1.3. DoS Protection

In general, we do not consider DoS resistance to be the responsibility of the protocol. However, it
should not be possible for anyone aside from the DS to perform a trivial DoS attack from which
it is hard to recover. This can be achieved through the secure transport layer, which prevents
selective attack on MLS communications by network attackers.

In the centralized setting, DoS protection can typically be performed by using tickets or cookies
which identify users to a service for a certain number of connections. Such a system helps in
preventing anonymous clients from sending arbitrary numbers of group operation messages to
the DS or the MLS clients.

Recommendation: Use credentials uncorrelated with specific users to help prevent DoS
attacks, in a privacy-preserving manner. Note that the privacy of these mechanisms has to be
adjusted in accordance with the privacy expected from secure transport links. (See more
discussion in the next section.)

8.1.4. Message Suppression and Error Correction

As noted above, MLS is designed to provide some robustness in the face of tampering within the
secure transport, e.g., tampering by the DS. The confidentiality and authenticity properties of
MLS prevent the DS from reading or writing messages. MLS also provides a few tools for
detecting message suppression, with the caveat that message suppression cannot always be
distinguished from transport failure.

Each encrypted MLS message carries a per-sender incrementing "generation" number. If a group
member observes a gap in the generation sequence for a sender, then they know that they have
missed a message from that sender. MLS also provides a facility for group members to send
authenticated acknowledgments of application messages received within a group.

As discussed in Section 5, the DS is trusted to select the single Commit message that is applied in
each epoch from among the Commits sent by group members. Since only one Commit per epoch
is meaningful, it's not useful for the DS to transmit multiple Commits to clients. The risk remains
that the DS will use the ability maliciously.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 25

8.2. Intended Security Guarantees
MLS aims to provide a number of security guarantees, covering authentication, as well as
confidentiality guarantees to different degrees in different scenarios.

8.2.1. Message Secrecy and Authentication

MLS enforces the encryption of application messages and thus generally guarantees
authentication and confidentiality of application messages sent in a group.

In particular, this means that only other members of a given group can decrypt the payload of a
given application message, which includes information about the sender of the message.

Similarly, group members receiving a message from another group member can authenticate
that group member as the sender of the message and verify the message's integrity.

Message content can be deniable if the signature keys are exchanged over a deniable channel
prior to signing messages.

Depending on the group settings, handshake messages can be encrypted as well. If that is the
case, the same security guarantees apply.

MLS optionally allows the addition of padding to messages, mitigating the amount of
information leaked about the length of the plaintext to an observer on the network.

8.2.2. Forward Secrecy and Post-Compromise Security

MLS provides additional protection regarding secrecy of past messages and future messages.
These cryptographic security properties are forward secrecy (FS) and post-compromise security
(PCS).

FS means that access to all encrypted traffic history combined with access to all current keying
material on clients will not defeat the secrecy properties of messages older than the oldest key of
the compromised client. Note that this means that clients have to delete the appropriate keys as
soon as they have been used with the expected message; otherwise, the secrecy of the messages
and the security of MLS are considerably weakened.

PCS means that if a group member's state is compromised at some time t1 but the group member
subsequently performs an update at some time t2, then all MLS guarantees apply to messages
sent by the member after time t2 and to messages sent by other members after they have
processed the update. For example, if an attacker learns all secrets known to Alice at time t1,
including both Alice's long-term secret keys and all shared group keys, but Alice performs a key
update at time t2, then the attacker is unable to violate any of the MLS security properties after
the updates have been processed.

Both of these properties are satisfied even against compromised DSs and ASes in the case where
some other mechanism for verifying keys is in use, such as Key Transparency .[KT]

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 26

Confidentiality is mainly ensured on the client side. Because FS and PCS rely on the active
deletion and replacement of keying material, any client which is persistently offline may still be
holding old keying material and thus be a threat to both FS and PCS if it is later compromised.

MLS partially defends against this problem by active members including new keying material.
However, not much can be done on the inactive side especially in the case where the client has
not processed messages.

Recommendation: Mandate key updates from clients that are not otherwise sending
messages and evict clients that are idle for too long.

These recommendations will reduce the ability of idle compromised clients to decrypt a
potentially long set of messages that might have been sent after the point of compromise.

The precise details of such mechanisms are a matter of local policy and beyond the scope of this
document.

8.2.3. Non-Repudiation vs. Deniability

MLS provides strong authentication within a group, such that a group member cannot send a
message that appears to be from another group member. Additionally, some services require
that a recipient be able to prove to the service provider that a message was sent by a given
client, in order to report abuse. MLS supports both of these use cases. In some deployments,
these services are provided by mechanisms which allow the receiver to prove a message's origin
to a third party. This is often called "non-repudiation".

Roughly speaking, "deniability" is the opposite of "non-repudiation", i.e., the property that it is
impossible to prove to a third party that a message was sent by a given sender. MLS does not
make any claims with regard to deniability. It may be possible to operate MLS in ways that
provide certain deniability properties, but defining the specific requirements and resulting
notions of deniability requires further analysis.

8.2.4. Associating a User's Clients

When a user has multiple devices, the base MLS protocol only describes how to operate each
device as a distinct client in the MLS groups that the user is a member of. As a result, the other
members of the group will be able to identify which of a user's devices sent each message and,
therefore, which device the user was using at the time. Group members would also be able to
detect when the user adds or removes authorized devices from their account. For some
applications, this may be an unacceptable breach of the user's privacy.

This risk only arises when the leaf nodes for the clients in question provide data that can be
used to correlate the clients. One way to mitigate this risk is by only doing client-level
authentication within MLS. If user-level authentication is still desirable, the application would
have to provide it through some other mechanism.

It is also possible to maintain user-level authentication while hiding information about the
clients that a user owns. This can be done by having the clients share cryptographic state, so that
they appear as a single client within the MLS group. Appearing as a single client has the privacy

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 27

benefits of no longer leaking which device was used to send a particular message and no longer
leaking the user's authorized devices. However, the application would need to provide a
synchronization mechanism so that the state of each client remains consistent across changes to
the MLS group. Flaws in this synchronization mechanism may impair the ability of the user to
recover from a compromise of one of their devices. In particular, state synchronization may
make it easier for an attacker to use one compromised device to establish exclusive control of a
user's account, locking them out entirely and preventing them from recovering.

8.3. Endpoint Compromise
The MLS protocol adopts a threat model which includes multiple forms of endpoint/client
compromise. While adversaries are in a strong position if they have compromised an MLS client,
there are still situations where security guarantees can be recovered thanks to the PCS
properties achieved by the MLS protocol.

In this section we will explore the consequences and recommendations regarding the following
compromise scenarios:

The attacker has access to a symmetric encryption key.
The attacker has access to an application ratchet secret.
The attacker has access to the group secrets for one group.
The attacker has access to a signature oracle for any group.
The attacker has access to the signature key for one group.
The attacker has access to all secrets of a user for all groups (full state compromise).

•
•
•
•
•
•

8.3.1. Compromise of Symmetric Keying Material

As described above, each MLS epoch creates a new group secret.

These group secrets are then used to create a per-sender ratchet secret, which in turn is used to
create a per-sender Authenticated Encryption with Associated Data (AEAD) key that is
then used to encrypt MLS plaintext messages. Each time a message is sent, the ratchet secret is
used to create a new ratchet secret and a new corresponding AEAD key. Because of the
properties of the key derivation function, it is not possible to compute a ratchet secret from its
corresponding AEAD key or compute ratchet secret n-1 from ratchet secret n.

Below, we consider the compromise of each of these pieces of keying material in turn, in
ascending order of severity. While this is a limited kind of compromise, it can be realistic in
cases of implementation vulnerabilities where only part of the memory leaks to the adversary.

[RFC5116]

8.3.1.1. Compromise of AEAD Keys
In some circumstances, adversaries may have access to specific AEAD keys and nonces which
protect an application message or a group operation message. Compromise of these keys allows
the attacker to decrypt the specific message encrypted with that key but no other; because the
AEAD keys are derived from the ratchet secret, it cannot generate the next ratchet secret and
hence not the next AEAD key.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 28

In the case of an application message, an AEAD key compromise means that the encrypted
application message will be leaked as well as the signature over that message. This means that
the compromise has both confidentiality and privacy implications on the future AEAD
encryptions of that chain. In the case of a group operation message, only the privacy is affected,
as the signature is revealed, because the secrets themselves are protected by Hybrid Public Key
Encryption (HPKE). Note that under that compromise scenario, authentication is not affected in
either of these cases. As every member of the group can compute the AEAD keys for all the
chains (they have access to the group secrets) in order to send and receive messages, the
authentication provided by the AEAD encryption layer of the common framing mechanism is
weak. Successful decryption of an AEAD encrypted message only guarantees that some member
of the group -- or in this case an attacker who has compromised the AEAD keys -- sent the
message.

Compromise of the AEAD keys allows the attacker to send an encrypted message using that key,
but the attacker cannot send a message to a group that appears to be from any valid client
because the attacker cannot forge the signature. This applies to all the forms of symmetric key
compromise described in Section 8.3.1.

8.3.1.2. Compromise of Ratchet Secret Material
When a ratchet secret is compromised, the adversary can compute both the current AEAD keys
for a given sender and any future keys for that sender in this epoch. Thus, it can decrypt current
and future messages by the corresponding sender. However, because it does not have previous
ratchet secrets, it cannot decrypt past messages as long as those secrets and keys have been
deleted.

Because of its forward secrecy guarantees, MLS will also retain secrecy of all other AEAD keys
generated for other MLS clients, outside this dedicated chain of AEAD keys and nonces, even
within the epoch of the compromise. MLS provides post-compromise security against an active
adaptive attacker across epochs for AEAD encryption, which means that as soon as the epoch is
changed, if the attacker does not have access to more secret material they won't be able to access
any protected messages from future epochs.

8.3.1.3. Compromise of the Group Secrets of a Single Group for One or More Group Epochs
An adversary who gains access to a set of group secrets -- as when a member of the group is
compromised -- is significantly more powerful. In this section, we consider the case where the
signature keys are not compromised. This can occur if the attacker has access to part of the
memory containing the group secrets but not to the signature keys which might be stored in a
secure enclave.

In this scenario, the adversary gains the ability to compute any number of ratchet secrets for the
epoch and their corresponding AEAD encryption keys and thus can encrypt and decrypt all
messages for the compromised epochs.

If the adversary is passive, it is expected from the PCS properties of the MLS protocol that as
soon as the compromised party remediates the compromise and sends an honest Commit
message, the next epochs will provide message secrecy.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 29

If the adversary is active, the adversary can engage in the protocol itself and perform updates on
behalf of the compromised party with no ability for an honest group to recover message secrecy.
However, MLS provides PCS against active adaptive attackers through its Remove group
operation. This means that as long as other members of the group are honest, the protocol will
guarantee message secrecy for all messages exchanged in the epochs after the compromised
party has been removed.

8.3.2. Compromise by an Active Adversary with the Ability to Sign Messages

If an active adversary has compromised an MLS client and can sign messages, two different
scenarios emerge. In the strongest compromise scenario, the attacker has access to the signing
key and can forge authenticated messages. In a weaker, yet realistic scenario, the attacker has
compromised a client but the client signature keys are protected with dedicated hardware
features which do not allow direct access to the value of the private key and instead provide a
signature API.

When considering an active adaptive attacker with access to a signature oracle, the compromise
scenario implies a significant impact on both the secrecy and authentication guarantees of the
protocol, especially if the attacker also has access to the group secrets. In that case, both secrecy
and authentication are broken. The attacker can generate any message, for the current and
future epochs, until the compromise is remediated and the formerly compromised client sends
an honest update.

Note that under this compromise scenario, the attacker can perform all operations which are
available to a legitimate client even without access to the actual value of the signature key.

8.3.3. Compromise of Authentication with Access to a Signature Key

The difference between having access to the value of the signature key and only having access to
a signing oracle is not about the ability of an active adaptive network attacker to perform
different operations during the time of the compromise; the attacker can perform every
operation available to a legitimate client in both cases.

There is a significant difference, however, in terms of recovery after a compromise.

Because of the PCS guarantees provided by the MLS protocol, when a previously compromised
client recovers from compromise and performs an honest Commit, both secrecy and
authentication of future messages can be recovered as long as the attacker doesn't otherwise get
access to the key. Because the adversary doesn't have the signing key, they cannot authenticate
messages on behalf of the compromised party, even if they still have control over some group
keys by colluding with other members of the group.

This is in contrast with the case where the signature key is leaked. In that case, the compromised
endpoint needs to refresh its credentials and invalidate the old credentials before the attacker
will be unable to authenticate messages.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 30

Beware that in both oracle and private key access, an active adaptive attacker can follow the
protocol and request to update its own credential. This in turn induces a signature key rotation,
which could provide the attacker with part or the full value of the private key, depending on the
architecture of the service provider.

Recommendation: Signature private keys should be compartmentalized from other secrets
and preferably protected by a Hardware Security Module (HSM) or dedicated hardware
features to allow recovery of the authentication for future messages after a compromise.

Recommendation: When the credential type supports revocation, the users of a group
should check for revoked keys.

8.3.4. Security Considerations in the Context of a Full State Compromise

In real-world compromise scenarios, it is often the case that adversaries target specific devices
to obtain parts of the memory or even the ability to execute arbitrary code in the targeted device.

Also, recall that in this setting, the application will often retain the unencrypted messages. If so,
the adversary does not have to break encryption at all to access sent and received messages.
Messages may also be sent by using the application to instruct the protocol implementation.

Recommendation: If messages are stored on the device, they should be protected using
encryption at rest, and the keys used should be stored securely using dedicated mechanisms
on the device.

Recommendation: If the threat model of the system includes an adversary that can access
the messages on the device without even needing to attack MLS, the application should delete
plaintext and ciphertext messages as soon as practical after encryption or decryption.

Note that this document makes a clear distinction between the way signature keys and other
group shared secrets must be handled. In particular, a large set of group secrets cannot
necessarily be assumed to be protected by an HSM or secure enclave features. This is especially
true because these keys are frequently used and changed with each message received by a client.

However, the signature private keys are mostly used by clients to send a message. They also
provide strong authentication guarantees to other clients; hence, we consider that their
protection by additional security mechanisms should be a priority.

Overall, there is no way to detect or prevent these compromises, as discussed in the previous
sections: Performing separation of the application secret states can help recovery after
compromise; this is the case for signature keys, but similar concerns exist for a client's
encryption private keys.

Recommendation: The secret keys used for public key encryption should be stored similarly
to the way the signature keys are stored, as keys can be used to decrypt the group operation
messages and contain the secret material used to compute all the group secrets.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 31

Even if secure enclaves are not perfectly secure or are even completely broken, adopting
additional protections for these keys can ease recovery of the secrecy and authentication
guarantees after a compromise where, for instance, an attacker can sign messages without
having access to the key. In certain contexts, the rotation of credentials might only be triggered
by the AS through ACLs and hence be beyond the capabilities of the attacker.

8.4. Service Node Compromise

8.4.1. General Considerations

8.4.1.1. Privacy of the Network Connections
There are many scenarios leading to communication between the application on a device and
the DS or the AS. In particular, when:

The application connects to the AS to generate or validate a new credential before
distributing it.
The application fetches credentials at the DS prior to creating a messaging group (one-to-one
or more than two clients).
The application fetches service provider information or messages on the DS.
The application sends service provider information or messages to the Delivery Service.

In all these cases, the application will often connect to the device via a secure transport which
leaks information about the origin of the request, such as the IP address and -- depending on the
protocol -- the MAC address of the device.

Similar concerns exist in the peer-to-peer use cases for MLS.

Recommendation: In the case where privacy or anonymity is important, using adequate
protection such as Multiplexed Application Substrate over QUIC Encryption (MASQUE)

, Tor , or a VPN can improve metadata protection.

More generally, using anonymous credentials in an MLS-based architecture might not be enough
to provide strong privacy or anonymity properties.

•

•

•
•

[MASQUE-PROXY] [Tor]

8.4.1.2. Storage of Metadata and Encryption at Rest on the Servers
In the case where private data or metadata has to be persisted on the servers for functionality
(mappings between identities and push tokens, group metadata, etc.), it should be stored
encrypted at rest and only decrypted upon need during the execution. Honest service providers
can rely on such "encryption at rest" mechanisms to be able to prevent access to the data when
not using it.

Recommendation: Store cryptographic material used for server-side decryption of sensitive
metadata on the clients and only send it when needed. The server can use the secret to open
and update encrypted data containers after which they can delete these keys until the next
time they need it, in which case those can be provided by the client.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 32

Recommendation: Rely on group secrets exported from the MLS session for server-side
encryption at rest and update the key after each removal from the group. Otherwise, rotate
those keys on a regular basis.

8.4.2. Delivery Service Compromise

MLS is intended to provide strong guarantees in the face of compromise of the DS. Even a totally
compromised DS should not be able to read messages or inject messages that will be acceptable
to legitimate clients. It should also not be able to undetectably remove, reorder, or replay
messages.

However, a malicious DS can mount a variety of DoS attacks on the system, including total DoS
attacks (where it simply refuses to forward any messages) and partial DoS attacks (where it
refuses to forward messages to and from specific clients). As noted in Section 5.2, these attacks
are only partially detectable by clients without an out-of-band channel. Ultimately, failure of the
DS to provide reasonable service must be dealt with as a customer service matter, not via
technology.

Because the DS is responsible for providing the initial keying material to clients, it can provide
stale keys. This does not inherently lead to compromise of the message stream, but does allow
the DS to attack post-compromise security to a limited extent. This threat can be mitigated by
having initial keys expire.

Initial keying material (KeyPackages) using the basic credential type is more vulnerable to
replacement by a malicious or compromised DS, as there is no built-in cryptographic binding
between the identity and the public key of the client.

Recommendation: Prefer a credential type in KeyPackages which includes a strong
cryptographic binding between the identity and its key (for example, the x509 credential
type). When using the basic credential type, take extra care to verify the identity (typically
out of band).

8.4.2.1. Privacy of Delivery and Push Notifications
Push tokens provide an important mechanism that is often ignored from the standpoint of
privacy considerations. In many modern messaging architectures, applications are using push
notification mechanisms typically provided by OS vendors. This is to make sure that when
messages are available at the DS (or via other mechanisms if the DS is not a central server), the
recipient application on a device knows about it. Sometimes the push notification can contain
the application message itself, which saves a round trip with the DS.

To "push" this information to the device, the service provider and the OS infrastructures use
unique per-device, per-application identifiers called push tokens. This means that the push
notification provider and the service provider have information on which devices receive
information and at which point in time. Alternatively, non-mobile applications could use a
WebSocket or persistent connection for notifications directly from the DS.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 33

Even though the service provider and the push notification provider can't necessarily access the
content (typically encrypted MLS messages), no technical mechanism in MLS prevents them
from determining which devices are recipients of the same message.

For secure messaging systems, push notifications are often sent in real time, as it is not
acceptable to create artificial delays for message retrieval.

Recommendation: If real-time notifications are not necessary, one can delay notifications
randomly across recipient devices using a mixnet or other techniques.

Note that with a legal request to ask the service provider for the push token associated with an
identifier, it is easy to correlate the token with a second request to the company operating the
push notification system to get information about the device, which is often linked with a real
identity via a cloud account, a credit card, or other information.

Recommendation: If stronger privacy guarantees are needed with regard to the push
notification provider, the client can choose to periodically connect to the DS without the need
of a dedicated push notification infrastructure.

Applications can also consider anonymous systems for server fanout (for example,).[Loopix]

8.4.3. Authentication Service Compromise

The Authentication Service design is left to the infrastructure designers. In most designs, a
compromised AS is a serious matter, as the AS can serve incorrect or attacker-provided
identities to clients.

The attacker can link an identity to a credential.
The attacker can generate new credentials.
The attacker can sign new credentials.
The attacker can publish or distribute credentials.

An attacker that can generate or sign new credentials may or may not have access to the
underlying cryptographic material necessary to perform such operations. In that last case, it
results in windows of time for which all emitted credentials might be compromised.

Recommendation: Use HSMs to store the root signature keys to limit the ability of an
adversary with no physical access to extract the top-level signature private key.

Note that historically some systems generate signature keys on the AS and distribute the private
keys to clients along with their credential. This is a dangerous practice because it allows the AS
or an attacker who has compromised the AS to silently impersonate the client.

•
•
•
•

8.4.3.1. Authentication Compromise: Ghost Users and Impersonation
One important property of MLS is that all members know which other members are in the
group at all times. If all members of the group and the AS are honest, no parties other than the
members of the current group can read and write messages protected by the protocol for that
group.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 34

This guarantee applies to the cryptographic identities of the members. Details about how to
verify the identity of a client depend on the MLS credential type used. For example,
cryptographic verification of credentials can be largely performed autonomously (e.g., without
user interaction) by the clients themselves for the x509 credential type.

In contrast, when MLS clients use the basic credential type, some other mechanism must be
used to verify identities. For instance, the Authentication Service could operate some sort of
directory server to provide keys, or users could verify keys via an out-of-band mechanism.

Recommendation: Select the MLS credential type with the strongest security which is
supported by all target members of an MLS group.

Recommendation: Do not use the same signature key pair across groups. Update all keys for
all groups on a regular basis. Do not preserve keys in different groups when suspecting a
compromise.

If the AS is compromised, it could validate a signature key pair (or generate a new one) for an
attacker. The attacker could then use this key pair to join a group as if it were another of the
user's clients. Because a user can have many MLS clients running the MLS protocol, it possibly
has many signature key pairs for multiple devices. These attacks could be very difficult to detect,
especially in large groups where the UI might not reflect all the changes back to the users. If the
application participates in a key transparency mechanism in which it is possible to determine
every key for a given user, then this would allow for detection of surreptitiously created false
credentials.

Recommendation: Make sure that MLS clients reflect all the membership changes to the
users as they happen. If a choice has to be made because the number of notifications is too
high, the client should provide a log of state of the device so that the user can examine it.

Recommendation: Provide a key transparency mechanism for the AS to allow public
verification of the credentials authenticated by this service.

While the ways to handle MLS credentials are not defined by the protocol or the architecture
documents, the MLS protocol has been designed with a mechanism that can be used to provide
out-of-band authentication to users. The authentication_secret generated for each user at
each epoch of the group is a one-time, per-client authentication secret which can be exchanged
between users to prove their identities to each other. This can be done, for instance, using a QR
code that can be scanned by the other parties.

Recommendation: Provide one or more out-of-band authentication mechanisms to limit the
impact of an AS compromise.

We note, again, that the AS may not be a centralized system and could be realized by many
mechanisms such as establishing prior one-to-one deniable channels, gossiping, or using trust on
first use (TOFU) for credentials used by the MLS protocol.

Another important consideration is the ease of redistributing new keys on client compromise,
which helps recovering security faster in various cases.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 35

8.4.3.2. Privacy of the Group Membership
Group membership is itself sensitive information, and MLS is designed to limit the amount of
persistent metadata. However, large groups often require an infrastructure that provides server
fanout. In the case of client fanout, the destination of a message is known by all clients; hence,
the server usually does not need this information. However, servers may learn this information
through traffic analysis. Unfortunately, in a server-side fanout model, the Delivery Service can
learn that a given client is sending the same message to a set of other clients. In addition, there
may be applications of MLS in which the group membership list is stored on some server
associated with the DS.

While this knowledge is not a breach of the protocol's authentication or confidentiality
guarantees, it is a serious issue for privacy.

Some infrastructures keep a mapping between keys used in the MLS protocol and user identities.
An attacker with access to this information due to compromise or regulation can associate
unencrypted group messages (e.g., Commits and Proposals) with the corresponding user identity.

Recommendation: Use encrypted group operation messages to limit privacy risks whenever
possible.

In certain cases, the adversary can access specific bindings between public keys and identities. If
the signature keys are reused across groups, the adversary can get more information about the
targeted user.

Recommendation: Ensure that linking between public keys and identities only happens in
expected scenarios.

8.5. Considerations for Attacks Outside of the Threat Model
Physical attacks on devices storing and executing MLS principals are not considered in depth in
the threat model of the MLS protocol. While non-permanent, non-invasive attacks can
sometimes be equivalent to software attacks, physical attacks are considered outside of the MLS
threat model.

Compromise scenarios typically consist of a software adversary, which can maintain active
adaptive compromise and arbitrarily change the behavior of the client or service.

On the other hand, security goals consider that honest clients will always run the protocol
according to its specification. This relies on implementations of the protocol to securely
implement the specification, which remains non-trivial.

Recommendation: Additional steps should be taken to protect the device and the MLS clients
from physical compromise. In such settings, HSMs and secure enclaves can be used to protect
signature keys.

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 36

8.6. No Protection Against Replay by Insiders
MLS does not protect against one group member replaying a PrivateMessage sent by another
group member within the same epoch that the message was originally sent. Similarly, MLS does
not protect against the replay (by a group member or otherwise) of a PublicMessage within the
same epoch that the message was originally sent. Applications for whom replay is an important
risk should apply mitigations at the application layer, as discussed below.

In addition to the risks discussed in Section 8.3.1, an attacker with access to the ratchet secrets
for an endpoint can replay PrivateMessage objects sent by other members of the group by taking
the signed content of the message and re-encrypting it with a new generation of the original
sender's ratchet. If the other members of the group interpret a message with a new generation
as a fresh message, then this message will appear fresh. (This is possible because the message
signature does not cover the generation field of the message.) Messages sent as PublicMessage
objects similarly lack replay protections. There is no message counter comparable to the
generation field in PrivateMessage.

Applications can detect replay by including a unique identifier for the message (e.g., a counter)
in either the message payload or the authenticated_data field, both of which are included in
the signatures for PublicMessage and PrivateMessage.

8.7. Cryptographic Analysis of the MLS Protocol
Various academic works have analyzed MLS and the different security guarantees it aims to
provide. The security of large parts of the protocol has been analyzed by (for MLS Draft
7), (for MLS Draft 11), and (for MLS Draft 12).

Individual components of various drafts of the MLS protocol have been analyzed in isolation
and with differing adversarial models. For example, , , ,

, , , , and analyze the ratcheting tree sub-protocol
of MLS that facilitates key agreement; analyzes the sub-protocol of MLS for group
state agreement and authentication; and analyzes the key derivation paths in the
ratchet tree and key schedule. Finally, analyzes the authentication and cross-group
healing guarantees provided by MLS.

[BBN19]
[ACDT21] [AJM20]

[BBR18] [ACDT19] [ACCKKMPPWY19]
[AJM20] [ACJM20] [AHKM21] [CGWZ25] [WPB25]

[WPBB22]
[BCK21]

[CHK21]

9. IANA Considerations
This document has no IANA actions.

10. References

[RFC5116]

10.1. Normative References

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 37

[RFC9420]

, ,
, , January 2008,

.

, , , , , and
, , ,
, July 2023, .

McGrew, D. "An Interface and Algorithms for Authenticated Encryption" RFC
5116 DOI 10.17487/RFC5116 <https://www.rfc-editor.org/info/
rfc5116>

Barnes, R. Beurdouche, B. Robert, R. Millican, J. Omara, E. K. Cohn-
Gordon "The Messaging Layer Security (MLS) Protocol" RFC 9420 DOI 10.17487/
RFC9420 <https://www.rfc-editor.org/info/rfc9420>

[ACCKKMPPWY19]

[ACDT19]

[ACDT21]

[ACJM20]

[AHKM21]

[AJM20]

[BBN19]

[BBR18]

[BCK21]

10.2. Informative References

, , , , , ,
, , , and ,

,
, 2019, .

, , , and ,
,

, 2019, .

, , , and ,
, ,

2021, .

, , , and ,
, , 2020,

.

, , , and ,
, , 2021,

.

, , and , ,
, 2020, .

, , and ,
,

, 2019, .

, , and ,

, , 2018,
.

, , and ,
, , 2021,
.

Alwen, J. Capretto, M. Cueto, M. Kamath, C. Klein, K. Markov, I. Pascual-
Perez, G. Pietrzak, K. Walter, M. M. Yeo "Keep the Dirt: Tainted TreeKEM,
Adaptively and Actively Secure Continuous Group Key Agreement" Cryptology
ePrint Archive <https://eprint.iacr.org/2019/1489>

Alwen, J. Coretti, S. Dodis, Y. Y. Tselekounis "Security Analysis and
Improvements for the IETF MLS Standard for Group Messaging" Cryptology
ePrint Archive <https://eprint.iacr.org/2019/1189.pdf>

Alwen, J. Coretti, S. Dodis, Y. Y. Tselekounis "Modular Design of Secure
Group Messaging Protocols and the Security of MLS" Cryptology ePrint Archive

<https://eprint.iacr.org/2021/1083.pdf>

Alwen, J. Coretti, S. Jost, D. M. Mularczyk "Continuous Group Key
Agreement with Active Security" Cryptology ePrint Archive <https://
eprint.iacr.org/2020/752.pdf>

Alwen, J. Hartmann, D. Kiltz, E. M. Mularczyk "Server-Aided Continuous
Group Key Agreement" Cryptology ePrint Archive <https://eprint.iacr.org/
2021/1456.pdf>

Alwen, J. Jost, D. M. Mularczyk "On The Insider Security of MLS"
Cryptology ePrint Archive <https://eprint.iacr.org/2020/1327.pdf>

Bhargavan, K. Beurdouche, B. P. Naldurg "Formal Models and Verified
Protocols for Group Messaging: Attacks and Proofs for IETF MLS" HAL ID
hal-02425229 <https://inria.hal.science/hal-02425229/document>

Bhargavan, K. Barnes, R. E. Rescorla "TreeKEM: Asynchronous
Decentralized Key Management for Large Dynamic Groups - A protocol
proposal for Messaging Layer Security (MLS)" HAL ID hal-02425247
<https://hal.inria.fr/hal-02425247/file/treekem+%281%29.pdf>

Brzuska, C. Cornelissen, E. K. Kohbrok "Security Analysis of the MLS Key
Distribution" Cryptology ePrint Archive <https://eprint.iacr.org/
2021/137.pdf>

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 38

https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc9420
https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1189.pdf
https://eprint.iacr.org/2021/1083.pdf
https://eprint.iacr.org/2020/752.pdf
https://eprint.iacr.org/2020/752.pdf
https://eprint.iacr.org/2021/1456.pdf
https://eprint.iacr.org/2021/1456.pdf
https://eprint.iacr.org/2020/1327.pdf
https://inria.hal.science/hal-02425229/document
https://hal.inria.fr/hal-02425247/file/treekem+%281%29.pdf
https://eprint.iacr.org/2021/137.pdf
https://eprint.iacr.org/2021/137.pdf

[CAPBR]

[CGWZ25]

[CHK21]

[EXTENSIONS]

[FEDERATION]

[KT]

[Loopix]

[MASQUE-PROXY]

[RFC3552]

[RFC5280]

[RFC6120]

[RFC8446]

, ,

, , July 2000,
.

, , , and ,
, 2025,

.

, , and ,
,

, August 2021,
.

, , ,
, 19 February 2025,

.

 and , ,
, , 9 September 2023,

.

, , ,
, 25 February 2025,

.

, , , , and ,
, ,

August 2017.

, , ,
, 18 February 2025,

.

 and ,
, , , , July 2003,

.

, , , , , and ,

, , , May 2008,
.

, ,
, , March 2011,

.

, , ,
, August 2018, .

Brewer, E. A. "Towards robust distributed systems (abstract)" Proceedings of
the nineteenth annual ACM symposium on Principles of distributed computing,
p. 7 DOI 10.1145/343477.343502 <https://dl.acm.org/doi/
10.1145/343477.343502>

Cremers, C. Günsay, E. Wesselkamp, V. M. Zhao "ETK: External-Operations
TreeKEM and the Security of MLS in RFC 9420" <https://eprint.iacr.org/
2025/229.pdf>

Cremers, C. Hale, B. K. Kohbrok "The Complexities of Healing in Secure
Group Messaging: Why Cross-Group Effects Matter" Proceedings of the 30th
USENIX Security Symposium <https://www.usenix.org/system/files/
sec21-cremers.pdf>

Robert, R. "The Messaging Layer Security (MLS) Extensions" Work in Progress
Internet-Draft, draft-ietf-mls-extensions-06 <https://
datatracker.ietf.org/doc/html/draft-ietf-mls-extensions-06>

Omara, E. R. Robert "The Messaging Layer Security (MLS) Federation"
Work in Progress Internet-Draft, draft-ietf-mls-federation-03
<https://datatracker.ietf.org/doc/html/draft-ietf-mls-federation-03>

McMillion, B. "Key Transparency Architecture" Work in Progress Internet-
Draft, draft-ietf-keytrans-architecture-03 <https://
datatracker.ietf.org/doc/html/draft-ietf-keytrans-architecture-03>

Piotrowska, A. M. Hayes, J. Elahi, T. Meiser, S. G. Danezis "The Loopix
Anonymity System" Proceedings of the 26th USENIX Security Symposium

Schinazi, D. "The MASQUE Proxy" Work in Progress Internet-Draft, draft-
schinazi-masque-proxy-05 <https://datatracker.ietf.org/doc/
html/draft-schinazi-masque-proxy-05>

Rescorla, E. B. Korver "Guidelines for Writing RFC Text on Security
Considerations" BCP 72 RFC 3552 DOI 10.17487/RFC3552 <https://
www.rfc-editor.org/info/rfc3552>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Saint-Andre, P. "Extensible Messaging and Presence Protocol (XMPP): Core" RFC
6120 DOI 10.17487/RFC6120 <https://www.rfc-editor.org/info/
rfc6120>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 39

https://dl.acm.org/doi/10.1145/343477.343502
https://dl.acm.org/doi/10.1145/343477.343502
https://eprint.iacr.org/2025/229.pdf
https://eprint.iacr.org/2025/229.pdf
https://www.usenix.org/system/files/sec21-cremers.pdf
https://www.usenix.org/system/files/sec21-cremers.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-mls-extensions-06
https://datatracker.ietf.org/doc/html/draft-ietf-mls-extensions-06
https://datatracker.ietf.org/doc/html/draft-ietf-mls-federation-03
https://datatracker.ietf.org/doc/html/draft-ietf-keytrans-architecture-03
https://datatracker.ietf.org/doc/html/draft-ietf-keytrans-architecture-03
https://datatracker.ietf.org/doc/html/draft-schinazi-masque-proxy-05
https://datatracker.ietf.org/doc/html/draft-schinazi-masque-proxy-05
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc8446

[RFC9000]

[Tor]

[WPB25]

[WPBB22]

 and ,
, , , May 2021,

.

, .

, , and ,

, 2025, .

, , , and ,
,

, 2022, .

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

"The Tor Project" <https://torproject.org/>

Wallez, T. Protzenko, J. K. Bhargavan "TreeKEM: A Modular Machine-
Checked Symbolic Security Analysis of Group Key Agreement in Messaging
Layer Security" <https://eprint.iacr.org/2025/410.pdf>

Wallez, T. Protzenko, J. Beurdouche, B. K. Bhargavan "TreeSync:
Authenticated Group Management for Messaging Layer Security" Cryptology
ePrint Archive <https://eprint.iacr.org/2022/1732.pdf>

Contributors
Richard Barnes
Cisco

rlb@ipv.sxEmail:

Katriel Cohn-Gordon
Meta Platforms

me@katriel.co.ukEmail:

Cas Cremers
CISPA Helmholtz Center for Information Security

cremers@cispa.deEmail:

Britta Hale
Naval Postgraduate School

britta.hale@nps.eduEmail:

Albert Kwon
Badge Inc.

kwonalbert@badgeinc.comEmail:

Konrad Kohbrok
Phoenix R&D

konrad.kohbrok@datashrine.deEmail:

Rohan Mahy
Wire

rohan.mahy@wire.comEmail:

Brendan McMillion
brendanmcmillion@gmail.comEmail:

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 40

https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://torproject.org/
https://eprint.iacr.org/2025/410.pdf
https://eprint.iacr.org/2022/1732.pdf
mailto:rlb@ipv.sx
mailto:me@katriel.co.uk
mailto:cremers@cispa.de
mailto:britta.hale@nps.edu
mailto:kwonalbert@badgeinc.com
mailto:konrad.kohbrok@datashrine.de
mailto:rohan.mahy@wire.com
mailto:brendanmcmillion@gmail.com

Thyla van der Merwe
tjvdmerwe@gmail.comEmail:

Jon Millican
Meta Platforms

jmillican@meta.comEmail:

Raphael Robert
Phoenix R&D

ietf@raphaelrobert.comEmail:

Authors' Addresses
Benjamin Beurdouche
Inria & Mozilla

ietf@beurdouche.comEmail:

Eric Rescorla
ekr@rtfm.comEmail:

Emad Omara
emad.omara@gmail.comEmail:

Srinivas Inguva
singuva@yahoo.comEmail:

Alan Duric
alan@duric.netEmail:

RFC 9750 MLS Architecture April 2025

Beurdouche, et al. Informational Page 41

mailto:tjvdmerwe@gmail.com
mailto:jmillican@meta.com
mailto:ietf@raphaelrobert.com
mailto:ietf@beurdouche.com
mailto:ekr@rtfm.com
mailto:emad.omara@gmail.com
mailto:singuva@yahoo.com
mailto:alan@duric.net

	RFC 9750
	The Messaging Layer Security (MLS) Architecture
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. General Setting
	2.1. Protocol Overview
	2.2. Abstract Services

	3. Overview of Operation
	3.1. Step 1: Account Creation
	3.2. Step 2: Initial Keying Material
	3.3. Step 3: Adding Bob to the Group
	3.4. Step 4: Adding Charlie to the Group
	3.5. Other Group Operations
	3.6. Proposals and Commits
	3.7. Users, Clients, and Groups

	4. Authentication Service
	5. Delivery Service
	5.1. Key Storage and Retrieval
	5.2. Delivery of Messages
	5.2.1. Strongly Consistent
	5.2.2. Eventually Consistent
	5.2.3. Welcome Messages

	5.3. Invalid Commits

	6. Functional Requirements
	6.1. Membership Changes
	6.2. Parallel Groups
	6.3. Asynchronous Usage
	6.4. Access Control
	6.5. Handling Authentication Failures
	6.6. Recovery After State Loss
	6.7. Support for Multiple Devices
	6.8. Extensibility
	6.9. Application Data Framing and Type Advertisements
	6.10. Federation
	6.11. Compatibility with Future Versions of MLS

	7. Operational Requirements
	8. Security and Privacy Considerations
	8.1. Assumptions on Transport Security Links
	8.1.1. Integrity and Authentication of Custom Metadata
	8.1.2. Metadata Protection for Unencrypted Group Operations
	8.1.3. DoS Protection
	8.1.4. Message Suppression and Error Correction

	8.2. Intended Security Guarantees
	8.2.1. Message Secrecy and Authentication
	8.2.2. Forward Secrecy and Post-Compromise Security
	8.2.3. Non-Repudiation vs. Deniability
	8.2.4. Associating a User's Clients

	8.3. Endpoint Compromise
	8.3.1. Compromise of Symmetric Keying Material
	8.3.1.1. Compromise of AEAD Keys
	8.3.1.2. Compromise of Ratchet Secret Material
	8.3.1.3. Compromise of the Group Secrets of a Single Group for One or More Group Epochs

	8.3.2. Compromise by an Active Adversary with the Ability to Sign Messages
	8.3.3. Compromise of Authentication with Access to a Signature Key
	8.3.4. Security Considerations in the Context of a Full State Compromise

	8.4. Service Node Compromise
	8.4.1. General Considerations
	8.4.1.1. Privacy of the Network Connections
	8.4.1.2. Storage of Metadata and Encryption at Rest on the Servers

	8.4.2. Delivery Service Compromise
	8.4.2.1. Privacy of Delivery and Push Notifications

	8.4.3. Authentication Service Compromise
	8.4.3.1. Authentication Compromise: Ghost Users and Impersonation
	8.4.3.2. Privacy of the Group Membership

	8.5. Considerations for Attacks Outside of the Threat Model
	8.6. No Protection Against Replay by Insiders
	8.7. Cryptographic Analysis of the MLS Protocol

	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Contributors
	Authors' Addresses

 The Messaging Layer Security (MLS) Architecture

 Inria & Mozilla

 ietf@beurdouche.com

 ekr@rtfm.com

 emad.omara@gmail.com

 singuva@yahoo.com

 alan@duric.net

 SEC
 mls
 security
 authenticated key exchange
 end-to-end encryption

 The Messaging Layer Security (MLS) protocol (RFC 9420)
provides a group key agreement protocol for messaging applications.
MLS is designed to protect against eavesdropping, tampering, and message
forgery, and to provide forward secrecy (FS) and post-compromise security
(PCS).

 This document describes the architecture for using MLS in a general
secure group messaging infrastructure and defines the security goals
for MLS. It provides guidance on building a group messaging system
and discusses security and privacy trade-offs offered by multiple
security mechanisms that are part of the MLS protocol (e.g., frequency
of public encryption key rotation). The document also provides
guidance for parts of the infrastructure that are not standardized by
MLS and are instead left to the application.
 While the recommendations of this document are not mandatory to follow in order
to interoperate at the protocol level, they affect the overall security
guarantees that are achieved by a messaging application. This is especially true
in the case of active adversaries that are able to compromise clients, the
Delivery Service (DS), or the Authentication Service (AS).

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . General Setting

 . Protocol Overview

 . Abstract Services

 . Overview of Operation

 . Step 1: Account Creation

 . Step 2: Initial Keying Material

 . Step 3: Adding Bob to the Group

 . Step 4: Adding Charlie to the Group

 . Other Group Operations

 . Proposals and Commits

 . Users, Clients, and Groups

 . Authentication Service

 . Delivery Service

 . Key Storage and Retrieval

 . Delivery of Messages

 . Strongly Consistent

 . Eventually Consistent

 . Welcome Messages

 . Invalid Commits

 . Functional Requirements

 . Membership Changes

 . Parallel Groups

 . Asynchronous Usage

 . Access Control

 . Handling Authentication Failures

 . Recovery After State Loss

 . Support for Multiple Devices

 . Extensibility

 . Application Data Framing and Type Advertisements

 . Federation

 . Compatibility with Future Versions of MLS

 . Operational Requirements

 . Security and Privacy Considerations

 . Assumptions on Transport Security Links

 . Integrity and Authentication of Custom Metadata

 . Metadata Protection for Unencrypted Group Operations

 . DoS Protection

 . Message Suppression and Error Correction

 . Intended Security Guarantees

 . Message Secrecy and Authentication

 . Forward Secrecy and Post-Compromise Security

 . Non-Repudiation vs. Deniability

 . Associating a User's Clients

 . Endpoint Compromise

 . Compromise of Symmetric Keying Material

 . Compromise by an Active Adversary with the Ability to Sign Messages

 . Compromise of Authentication with Access to a Signature Key

 . Security Considerations in the Context of a Full State Compromise

 . Service Node Compromise

 . General Considerations

 . Delivery Service Compromise

 . Authentication Service Compromise

 . Considerations for Attacks Outside of the Threat Model

 . No Protection Against Replay by Insiders

 . Cryptographic Analysis of the MLS Protocol

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Contributors

 Authors' Addresses

 Introduction
 End-to-end security is used in the vast majority of instant messaging systems
and is also deployed in systems for other purposes such as calling and conferencing.
In this context, "end-to-end" captures
the notion that users of the system enjoy some level of security -- with the
precise level depending on the system design -- even in the face of malicious
actions by the operator of the messaging system.
 Messaging Layer Security (MLS) specifies an architecture (this document) and a
protocol for providing end-to-end security in this
setting. MLS is not intended as a full instant messaging protocol but rather is
intended to be embedded in concrete protocols, such as the Extensible Messaging and Presence Protocol (XMPP) .
Implementations of the MLS protocol will interoperate at the cryptographic
level, though they may have incompatibilities in terms of how protected messages
are delivered, contents of protected messages, and identity/authentication
infrastructures.
The MLS protocol has been designed to provide the same security guarantees to
all users, for all group sizes, including groups of only two clients.

 General Setting

 Protocol Overview
 MLS provides a way for clients to form groups within which they can
communicate securely. For example, a set of users might use clients on their
phones or laptops to join a group and communicate with each other. A group may
be as small as two clients (e.g., for simple person-to-person messaging) or as
large as hundreds of thousands. A client that is part of a group is a member
of that group. As groups change membership and group or member properties, they
advance from one epoch to another and the cryptographic state of the group
evolves.
 The group is represented as a tree, which represents the members as the leaves
of a tree. It is used to efficiently encrypt to subsets of the members. Each
member has a state called a LeafNode object holding the client's identity,
credentials, and capabilities.
 Various messages are used in the evolution from epoch to epoch.
A Proposal message proposes
a change to be made in the next epoch, such as adding or removing a member.
A Commit message initiates a new epoch by instructing members of the group to
implement a collection of proposals. Proposals and Commits are collectively
called handshake messages.
A KeyPackage provides keys that can be used to add the client to a group,
including a public encryption key and a signature key (both stored in
the KeyPackage's LeafNode object).
A Welcome message provides a new member to the group with the information to
initialize their state for the epoch in which they were added.
 Of course most (but not all) applications use MLS to send encrypted group messages.
An application message is an MLS message with an arbitrary application payload.
 Finally, a PublicMessage contains an integrity-protected MLS handshake message,
while a PrivateMessage contains a confidential, integrity-protected handshake
or application message.
 For a more detailed explanation of these terms, please consult the MLS protocol
specification .

 Abstract Services
 MLS is designed to operate within the context of a messaging service, which
may be a single service provider, a federated system, or some kind of
peer-to-peer system. The service needs to provide two services that
facilitate client communication using MLS:

 An Authentication Service (AS), which is responsible for
attesting to bindings between application-meaningful identifiers and the
public key material used for authentication in the MLS protocol. The
AS must also be able to generate credentials that encode these
bindings and validate credentials provided by MLS clients.

 A Delivery Service (DS), which can receive and distribute
messages between group members. In the case of group messaging, the DS
may also be responsible for acting as a "broadcaster" where the sender
sends a single message which is then forwarded to each recipient in the group
by the DS. The DS is also responsible for storing and delivering initial
public key material required by MLS clients in order to proceed with the group
secret key establishment that is part of the MLS protocol.

 For presentation purposes, this document treats the AS and DS as conventional
network services. However, MLS does not require a specific implementation
for the AS or DS. These services may reside on the same server or different
servers, they may be distributed between server and client components, and they
may even involve some action by users. For example:

 Several secure messaging services today provide a centralized DS and rely on
manual comparison of clients' public keys as the AS.

 MLS clients connected to a peer-to-peer network could instantiate a
decentralized DS by transmitting MLS messages over that network.

 In an MLS group using a Public Key Infrastructure (PKI) for authentication,
the AS would comprise the certificate issuance and validation processes,
both of which involve logic inside MLS clients as well as various
existing PKI roles (e.g., Certification Authorities).

 It is important to note that the AS can be
completely abstract in the case of a service provider which allows MLS
clients to generate, distribute, and validate credentials themselves.
As with the AS, the DS can be completely abstract if
users are able to distribute credentials and messages without relying
on a central DS (as in a peer-to-peer system). Note,
though, that in such scenarios, clients will need to implement logic
that assures the delivery properties required of the DS (see
).
 shows the relationship of these concepts,
with three clients and one group, and clients 2 and 3 being
part of the group and client 1 not being part of any group.

 A Simplified Messaging System

 Authentication
 Delivery
 Service
 (AS)
 Service
 (DS)
 Group

 .
 .
 .
 .
 Client
 1
 .
 Client
 2
 Client
 3
 .
 .
 .
 .
 Member
 1
 Member
 2
 .
 .
 .

 +----------------+ +--------------+
 | Authentication | | Delivery |
 | Service (AS) | | Service (DS) |
 +----------------+ +-------+------+
 / | \ Group
 /|........\................
 / . | \ .
 +--------+-+ . +----+-----+ +----------+ .
 | Client 1 | . | Client 2 | | Client 3 | .
 +----------+ . +----------+ +----------+ .
 . Member 1 Member 2 .
 . .

 Overview of Operation
 shows the formation of an example
group consisting of Alice, Bob, and Charlie, with Alice
 driving the creation of the group.

 Group Formation Example

 Alice
 Bob
 Charlie
 AS
 DS
 Create
 account
 Credential
 Create
 account
 Step
 1
 Credential
 Create
 account
 Credential
 Initial
 Keying
 Material
 Initial
 Keying
 Material
 Step
 2
 Initial
 Keying
 Material
 Get
 Bob
 Initial
 Keying
 Material
 Bob
 Initial
 Keying
 Material
 Add
 Bob
 to
 group
 Step
 3
 Welcome(Bob)
 Add
 Bob
 to
 group
 Welcome(Bob)
 Get
 Charlie
 Initial
 Keying
 Material
 Charlie
 Initial
 Keying
 Material
 Add
 Charlie
 to
 group
 Welcome(Charlie)
 Step
 4
 Add
 Charlie
 to
 group
 Add
 Charlie
 to
 group
 Welcome(Charlie)

Alice Bob Charlie AS DS

Create account ---------------------------------> |
<------------------------------------- Credential |
 Create account -----------------------> | Step 1
 <--------------------------- Credential |
 Create account -------------> |
 <----------------- Credential |

Initial Keying Material -----------------------------------> |
 Initial Keying Material -------------------------> | Step 2
 Initial Keying Material ---------------> |

Get Bob Initial Keying Material ---------------------------> |
<------------------------------- Bob Initial Keying Material |
Add Bob to group --> | Step 3
Welcome(Bob) --> |
 <-------------------------------- Add Bob to group |
 <------------------------------------ Welcome(Bob) |

Get Charlie Initial Keying Material -----------------------> |
<--------------------------- Charlie Initial Keying Material |
Add Charlie to group --------------------------------------> |
Welcome(Charlie) --> | Step 4
 <---------------------------- Add Charlie to group |
 <----------------- Add Charlie to group |
 <--------------------- Welcome(Charlie) |

 This process proceeds as follows.

 Step 1: Account Creation
 Alice, Bob, and Charlie create accounts with a service provider and obtain
credentials from the AS. This is a one-time setup phase.

 Step 2: Initial Keying Material
 Alice, Bob, and Charlie authenticate to the DS and store some initial
keying material which is used to send encrypted messages to them
for the first time. This keying material is authenticated with their
long-term credentials. Although in principle this keying material
can be reused for multiple senders, in order to provide forward secrecy
it is better for this material to be regularly refreshed so that each
sender can use a new key and delete older keys.

 Step 3: Adding Bob to the Group
 When Alice wants to create a group including Bob, she first uses the DS to look
up his initial keying material. She then generates two messages:

 A message to the entire group (which at this point is just her and Bob)
that adds Bob to the group.

 A Welcome message just to Bob encrypted with his initial keying material that
includes the secret keying information necessary to join the group.

 She sends both of these messages to the DS, which is responsible
for sending them to the appropriate people. Note that the security of MLS
does not depend on the DS forwarding the Welcome message only to Bob, as it
is encrypted for him; it is simply not necessary for other group members
to receive it.

 Step 4: Adding Charlie to the Group
 If Alice then wants to add Charlie to the group, she follows a similar procedure
as with Bob. She first uses the DS to look
up his initial keying material and then generates two messages:

 A message to the entire group (consisting of her, Bob, and Charlie) adding
Charlie to the group.

 A Welcome message just to Charlie encrypted with his initial keying material that
includes the secret keying information necessary to join the group.

 At the completion of this process, we have a group with Alice, Bob, and Charlie,
which means that they share a single encryption key which can be used to
send messages or to key other protocols.

 Other Group Operations
 Once the group has been created, clients can perform other actions,
such as:

 sending a message to everyone in the group

 receiving a message from someone in the group

 adding one or more clients to an existing group

 removing one or more members from an existing group

 updating their own key material

 leaving a group (by asking to be removed)

 Importantly, MLS does not itself enforce any access control on group
operations. For instance, any member of the group can send a message
to add a new member or to evict an existing member.
This is in contrast to some designs in which there is a single group
controller who can modify the group. MLS-using applications are
responsible for setting their own access control policies. For instance,
if only the group administrator is allowed to change group members,
then it is the responsibility of the application to inform members
of this policy and who the administrator is.

 Proposals and Commits
 The general pattern for any change in the group state (e.g., to add or remove
a user) is that it consists of two messages:

 Proposal:

 This message describes the change to be made (e.g., add Bob to the group)
but does not effect a change.

 Commit:

 This message changes the group state to include the changes described in
a set of proposals.

 The simplest pattern is for a client to just send a Commit which contains one or
more Proposals. For instance, Alice could send a Commit with the Proposal
Add(Bob) embedded to add Bob to the group. However, there are situations in
which one client might send a Proposal and another might send the corresponding Commit. For
instance, Bob might wish to remove himself from the group and send a Remove
proposal to do so (see). Because Bob cannot send
the Commit, an existing member must do so. Commits can apply to multiple valid
Proposals, in which case all the listed changes are applied.
 It is also possible for a Commit to apply to an empty set of Proposals,
in which case it just updates the cryptographic state of the group
without changing its membership.

 Users, Clients, and Groups
 While it's natural to think of a messaging system as consisting of groups of
users, possibly using different devices, in MLS the basic unit of operation is
not the user but rather the "client". Formally, a client is a set of
cryptographic objects composed of public values such as a name (an identity), a
public encryption key, and a public signature key. As usual, a user demonstrates
ownership of the client by demonstrating knowledge of the associated secret
values.
 In some messaging systems, clients belonging to the same user must all share the
same signature key pair, but MLS does not assume this; instead, a user may have
multiple clients with the same identity and different keys. In this case, each
client will have its own cryptographic state, and it is up to the application to
determine how to present this situation to users. For instance, it may render
messages to and from a given user identically regardless of which client they
are associated with, or it may choose to distinguish them.
It is also possible to have multiple clients associated with
the same user share state, as described in .
 When a client is part of a group, it is called a member. A group in MLS is
defined as the set of clients that have knowledge of the shared group secret
established in the group key establishment phase. Note that until a client has
been added to the group and contributed to the group secret in a manner
verifiable by other members of the group, other members cannot assume that the
client is a member of the group; for instance, the newly added member might not
have received the Welcome message or been unable to decrypt it for some reason.

 Authentication Service
 The Authentication Service (AS) has to provide three services:

 Issue credentials to clients that attest to bindings between identities and
signature key pairs.

 Enable a client to verify that a credential presented by another client is
valid with respect to a reference identifier.

 Enable a group member to verify that a credential represents the same client
as another credential.

 A member with a valid credential authenticates its MLS messages by signing them
with the private key corresponding to the public key bound by its credential.
 The AS is considered an abstract layer by the MLS specification; part of this
service could be, for instance, running on the members' devices, while another
part is a separate entity entirely. The following examples illustrate the
breadth of this concept:

 A PKI could be used as an AS . The issuance function would be
provided by the certificate authorities in the PKI, and the verification
function would correspond to certificate verification by clients.

 Several current messaging applications rely on users verifying each other's
key fingerprints for authentication. In this scenario, the issuance function
is simply the generation of a key pair (i.e., a credential is just an
identifier and public key, with no information to assist in verification).
The verification function is the application function that enables users
to verify keys.

 In a system based on end-user Key Transparency (KT) , the
issuance function would correspond to the insertion of a key in a KT log under
a user's identity. The verification function would correspond to verifying a
key's inclusion in the log for a claimed identity, together with the KT log's
mechanisms for a user to monitor and control which keys are associated with
their identity.

 By the nature of its role in MLS authentication, the AS is invested with a
large amount of trust and the compromise of the AS could
allow an adversary to, among other things, impersonate group members. We discuss
security considerations regarding the compromise of the different AS
functions in detail in .
 The association between members' identities and their signature keys is fairly
flexible in MLS. As noted above, there is no requirement that all clients
belonging to a given user have the same signature key (in fact, having duplicate
signature keys in a group is forbidden). A member can
also rotate the signature key they use within a group. These mechanisms allow
clients to use different signature keys in different contexts and at different
points in time, providing unlinkability and post-compromise security benefits.
Some security trade-offs related to this flexibility are discussed in
 .

 In many applications, there are multiple MLS clients that represent a single
entity, such as a human user with a mobile and desktop version of an
application. Often, the same set of clients is represented in exactly the same
list of groups. In applications where this is the intended situation, other
clients can check that a user is consistently represented by the same set of
clients. This would make it more difficult for a malicious AS to issue fake
credentials for a particular user because clients would expect the credential to
appear in all groups of which the user is a member. If a client credential does
not appear in all groups after some relatively short period of time, clients
have an indication that the credential might have been created without the
user's knowledge. Due to the asynchronous nature of MLS, however, there may be
transient inconsistencies in a user's client set, so correlating users' clients
across groups is more of a detection mechanism than a prevention mechanism.

 Delivery Service
 The Delivery Service (DS) plays two major roles in MLS:

 As a directory service, providing the initial keying material for
clients to use. This allows a client to establish a shared key and send
encrypted messages to other clients even if they're offline.

 Routing MLS messages among clients.

 While MLS depends on correct behavior by the AS in
order to provide endpoint authentication and hence confidentiality of
the group key, these properties do not depend on correct behavior by
the DS; even a malicious DS cannot add itself to groups or recover
the group key. However, depending precisely on how MLS is used, the DS may
be able to determine group membership or prevent changes to the
group from taking place (e.g., by blocking group change messages).

 Key Storage and Retrieval
 Upon joining the system, each client stores its initial cryptographic key
material with the DS. This key material, called a KeyPackage,
advertises the functional abilities of the client (e.g., supported protocol
versions, supported extensions, etc.) and the following cryptographic information:

 A credential from the AS attesting to the binding between
the identity and the client's signature key.

 The client's asymmetric encryption public key.

 All the parameters in the KeyPackage are signed with the signature
private key corresponding to the credential.
As noted in , users may own multiple clients, each
with their own keying material. Each KeyPackage is specific to an MLS version
and cipher suite, but a client may want to offer support for multiple protocol
versions and cipher suites. As such, there may be multiple KeyPackages stored by
each user for a mix of protocol versions, cipher suites, and end-user devices.
 When a client wishes to establish a group or add clients to a group, it first
contacts the DS to request KeyPackages for each of the other clients,
authenticates the KeyPackages using the signature keys, includes the KeyPackages
in Add proposals, and encrypts the information needed to join the group
(the GroupInfo object) with an ephemeral key; it then separately encrypts the
ephemeral key with the public encryption key (init_key) from each KeyPackage.
When a client requests a KeyPackage in order to add a user to a group, the
DS should provide the minimum number of KeyPackages necessary to
satisfy the request. For example, if the request specifies the MLS version, the
DS might provide one KeyPackage per supported cipher suite, even if it has
multiple such KeyPackages to enable the corresponding client to be added to
multiple groups before needing to upload more fresh KeyPackages.

 In order to avoid replay attacks and provide forward secrecy for messages sent
using the initial keying material, KeyPackages are intended to be used only
once, and init_key is intended to be deleted by the client after decryption
of the Welcome message. The DS is responsible for ensuring that
each KeyPackage is only used to add its client to a single group, with the
possible exception of a "last resort" KeyPackage that is specially designated
by the client to be used multiple times. Clients are responsible for providing
new KeyPackages as necessary in order to minimize the chance that the "last
resort" KeyPackage will be used.
 Recommendation: Ensure that "last resort" KeyPackages don't get used by
provisioning enough standard KeyPackages.
 Recommendation: Rotate "last resort" KeyPackages as soon as possible
after being used or if they have been stored for a prolonged period of time.
Overall, avoid reusing "last resort" KeyPackages as much as possible.
 Recommendation: Ensure that the client for which a "last resort" KeyPackage
has been used is updating leaf keys as early as possible.
 Recommendation: Ensure that clients delete the private component
of their init_key after processing a Welcome message, or after the
rotation of the "last resort" KeyPackage.
 Overall, it needs to be noted that key packages need to be updated when
signature keys are changed.

 Delivery of Messages
 The main responsibility of the DS is to ensure delivery of
messages. Some MLS messages need only be delivered to specific clients (e.g., a
Welcome message initializing a new member's state), while others need to be
delivered to all the members of a group. The DS may enable the
latter delivery pattern via unicast channels (sometimes known as "client
fanout"), broadcast channels ("server fanout"), or a mix of both.
 For the most part, MLS does not require the DS to deliver messages
in any particular order. Applications can set policies that control their
tolerance for out-of-order messages (see), and
messages that arrive significantly out of order can be dropped without otherwise
affecting the protocol. There are two exceptions to this. First, Proposal
messages should all arrive before the Commit that references them. Second,
because an MLS group has a linear history of epochs, the members of the group
must agree on the order in which changes are applied. Concretely, the group
must agree on a single MLS Commit message that ends each epoch and begins the
next one.
 In practice, there's a realistic risk of two members generating Commit messages
at the same time, based on the same epoch, and both attempting to send them to
the group at the same time. The extent to which this is a problem, and the
appropriate solution, depend on the design of the DS. Per the CAP
theorem , there are two general classes of distributed systems that the
DS might fall into:

 Consistent and Partition-tolerant, or Strongly Consistent, systems, which can provide
a globally consistent view of data but have the inconvenience of clients needing
to handle rejected messages.

 Available and Partition-tolerant, or Eventually Consistent, systems, which continue
working despite network issues but may return different views of data to
different users.

 Strategies for sequencing messages in strongly and eventually consistent systems
are described in the next two subsections. Most DSs will use the
strongly consistent paradigm, but this remains a choice that can be handled in
coordination with the client and advertised in the KeyPackages.
 However, note that a malicious DS could also reorder messages or
provide an inconsistent view to different users. The "generation" counter in
MLS messages provides per-sender loss detection and ordering that cannot be
manipulated by the DS, but this does not provide complete protection against
partitioning. A DS can cause a partition in the group by partitioning key
exchange messages; this can be detected only by out-of-band comparison (e.g.,
confirming that all clients have the same epoch_authenticator value). A
mechanism for more robust protections is discussed in
 .
 Other forms of DS misbehavior are still possible that are not easy
to detect. For instance, a DS can simply refuse to relay messages
to and from a given client. Without some sort of side information, other clients
cannot generally detect this form of Denial-of-Service (DoS) attack.

 Strongly Consistent
 With this approach, the DS ensures that some types of incoming
messages have a linear order and all members agree on that order. The Delivery
Service is trusted to break ties when two members send a Commit message at the
same time.
 As an example, there could be an "ordering server" DS that
broadcasts all messages received to all users and ensures that all clients see
messages in the same order. This would allow clients to only apply the first
valid Commit for an epoch and ignore subsequent Commits. Clients that send a Commit
would then wait to apply it until it is broadcast back to them by the Delivery
Service, assuming that they do not receive another Commit first.

 Alternatively, the DS can rely on the epoch and content_type
fields of an MLSMessage to provide an order only to handshake messages, and
possibly even filter or reject redundant Commit messages proactively to prevent
them from being broadcast. There is some risk associated with filtering; this
is discussed further in .

 Eventually Consistent
 With this approach, the DS is built in a way that may be
significantly more available or performant than a strongly consistent system,
but where it offers weaker consistency guarantees. Messages may arrive to different
clients in different orders and with varying amounts of latency, which means
clients are responsible for reconciliation.

 This type of DS might arise, for example, when group members are
sending each message to each other member individually or when a distributed
peer-to-peer network is used to broadcast messages.
 Upon receiving a Commit from the DS, clients can either:

 Pause sending new messages for a short amount of time to account for a
reasonable degree of network latency and see if any other Commits are
received for the same epoch. If multiple Commits are received, the clients
can use a deterministic tie-breaking policy to decide which to accept, and
then resume sending messages as normal.

 Accept the Commit immediately but keep a copy of the previous group state for
a short period of time. If another Commit for a past epoch is received,
clients use a deterministic tie-breaking policy to decide if they should
continue using the Commit they originally accepted or revert and use the
later one. Note that any copies of previous or forked group states must be
deleted within a reasonable amount of time to ensure that the protocol provides
forward secrecy.

 If the Commit references an unknown proposal, group members may need to solicit
the DS or other group members individually for the contents of the
proposal.

 Welcome Messages
 Whenever a commit adds new members to a group, MLS requires the committer to
send a Welcome message to the new members. Applications should ensure that
Welcome messages are coupled with the tie-breaking logic for commits (see
Sections and). That is, when multiple
commits are sent for the same epoch, applications need to ensure that only
Welcome messages corresponding to the commit that "succeeded" are processed by
new members.
 This is particularly important when groups are being reinitialized. When a group
is reinitialized, it is restarted with a different protocol version and/or
cipher suite but identical membership. Whenever an authorized member sends and
commits a ReInit proposal, this immediately freezes the existing group and
triggers the creation of a new group with a new group_id.
 Ideally, the new group would be created by the same member that committed the
 ReInit proposal (including sending Welcome messages for the new group to all
of the previous group's members). However, this operation is not always atomic,
so it's possible for a member to go offline after committing a ReInit proposal
but before creating the new group. If this happens, it's necessary for another
member to continue the reinitialization by creating the new group and sending
out Welcome messages.
 This has the potential to create a race condition, where multiple members try to
continue the reinitialization at the same time, and members receive multiple
Welcome messages for each attempt at reinitializing the same group. Ensuring
that all members agree on which reinitialization attempt is "correct" is key to
prevent this from causing forks.

 Invalid Commits
 Situations can arise where a malicious or buggy client sends a Commit that is
not accepted by all members of the group, and the DS is not able to detect this
and reject the Commit. For example, a buggy client might send an encrypted
Commit with an invalid set of proposals, or a malicious client might send a
malformed Commit of the form described in .
 In situations where the DS is attempting to filter redundant Commits, the DS
might update its internal state under the assumption that a Commit has succeeded
and thus end up in a state inconsistent with the members of the group. For
example, the DS might think that the current epoch is now n+1 and reject any
commits from other epochs, while the members think the epoch is n, and as a
result, the group is stuck -- no member can send a Commit that the DS will
accept.
 Such "desynchronization" problems can arise even when the DS takes
no stance on which Commit is "correct" for an epoch. The DS can enable clients
to choose between Commits, for example by providing Commits in the order
received and allowing clients to reject any Commits that
violate their view of the group's policies. As such, all honest and
correctly implemented clients will arrive at the same "first valid Commit" and
choose to process it. Malicious or buggy clients that process a different Commit
will end up in a forked view of the group.

 When these desynchronizations happen, the application may choose to take action
to restore the functionality of the group. These actions themselves can have
security implications. For example, a client developer might have a client
automatically rejoin a group, using an external join, when it processes an
invalid Commit. In this operation, however, the client trusts that the
GroupInfo provided by the DS faithfully represents the state of the group, and
not, say, an earlier state containing a compromised leaf node. In addition, the
DS may be able to trigger this condition by deliberately sending the victim an
invalid Commit. In certain scenarios, this trust can enable the DS or a
malicious insider to undermine the post-compromise security guarantees provided
by MLS.
 Actions to recover from desynchronization can also have availability and DoS
implications. For example, if a recovery mechanism relies on external joins, a
malicious member that deliberately posts an invalid Commit could also post a
corrupted GroupInfo object in order to prevent victims from rejoining the group.
Thus, careful analysis of security implications should be made for any system
for recovering from desynchronization.

 Functional Requirements
 MLS is designed as a large-scale group messaging protocol and hence aims to
provide both performance and security (e.g., integrity and confidentiality)
to its users. Messaging systems that implement MLS provide support for
conversations involving two or more members, and aim to scale to groups with
tens of thousands of members, typically including many users using multiple devices.

 Membership Changes
 MLS aims to provide agreement on group membership, meaning that all group
members have agreed on the list of current group members.
 Some applications may wish to enforce Access Control Lists (ACLs) to limit addition or removal of group
members to privileged clients or users. Others may wish to require
authorization from the current group members or a subset thereof. Such policies
can be implemented at the application layer, on top of MLS. Regardless, MLS does
not allow for or support addition or removal of group members without informing
all other members.

 Membership of an MLS group is managed at the level of individual clients. In
most cases, a client corresponds to a specific device used by a user. If a user
has multiple devices, the user will generally be represented in a group by
multiple clients (although applications could choose to have devices share
keying material). If an application wishes to implement operations at the level
of users, it is up to the application to track which clients belong to a given
user and ensure that they are added/removed consistently.
 MLS provides two mechanisms for changing the membership of a group. The primary
mechanism is for an authorized member of the group to send a Commit that adds or
removes other members. A secondary mechanism is an "external join": A member of
the group publishes certain information about the group, which a new member can
use to construct an "external" Commit message that adds the new member to the
group. (There is no similarly unilateral way for a member to leave the group;
they must be removed by a remaining member.)

 With both mechanisms, changes to the membership are initiated from inside the
group. When members perform changes directly, this is clearly the case.
External joins are authorized indirectly, in the sense that a member publishing
a GroupInfo object authorizes anyone to join who has access to the GroupInfo
object, subject to whatever access control policies the application applies
for external joins.
 Both types of joins are done via a Commit message, which could be
blocked by the DS or rejected by clients if the join is not authorized. The
former approach requires that Commits be visible to the DS; the latter approach
requires that clients all share a consistent policy. In the unfortunate event
that an unauthorized member is able to join, MLS enables any member to remove
them.
 Application setup may also determine other criteria for membership validity. For
example, per-device signature keys can be signed by an identity key recognized
by other participants. If a certificate chain is used to authenticate device
signature keys, then revocation by the owner adds an alternative mechanism to prompt
membership removal.
 An MLS group's secrets change on every change of membership, so each client only
has access to the secrets used by the group while they are a member. Messages
sent before a client joins or after they are removed are protected with keys
that are not accessible to the client. Compromise of a member removed from a
group does not affect the security of messages sent after their removal.
Messages sent during the client's membership are also secure as long as the
client has properly implemented the MLS deletion schedule, which calls for the
secrets used to encrypt or decrypt a message to be deleted after use, along with
any secrets that could be used to derive them.

 Parallel Groups
 Any user or client may have membership in several groups simultaneously. The
set of members of any group may or may not overlap with the members of
another group. MLS guarantees that the FS and PCS goals within a given group are
maintained and not weakened by user membership in multiple groups. However,
actions in other groups likewise do not strengthen the FS and PCS guarantees
within a given group, e.g., key updates within a given group following a device
compromise do not provide PCS healing in other groups; each group must be
updated separately to achieve these security objectives. This also applies to
future groups that a member has yet to join, which are likewise unaffected by
updates performed in current groups.
 Applications can strengthen connectivity among parallel groups by requiring
periodic key updates from a user across all groups in which they have
membership.

 MLS provides a pre-shared key (PSK) mechanism that can be used to link healing properties
among parallel groups. For example, suppose a common member M of two groups A
and B has performed a key update in group A but not in group B. The key update
provides PCS with regard to M in group A. If a PSK is exported from group A and
injected into group B, then some of these PCS properties carry over to group B,
since the PSK and secrets derived from it are only known to the new, updated
version of M, not to the old, possibly compromised version of M.

 Asynchronous Usage
 No operation in MLS requires two distinct clients or members to be online
simultaneously. In particular, members participating in conversations protected
using MLS can update the group's keys, add or remove new members, and send
messages without waiting for another user's reply.
 Messaging systems that implement MLS have to provide a transport layer for
delivering messages asynchronously and reliably.

 Access Control
 Because all clients within a group (members) have access to the shared
cryptographic material, the MLS protocol allows each member of the messaging group
to perform operations. However, every service/infrastructure has control over
policies applied to its own clients. Applications managing MLS clients can be
configured to allow for specific group operations. On the one hand, an
application could decide that a group administrator will be the only member to
perform Add and Remove operations. On the other hand, in many settings such as
open discussion forums, joining can be allowed for anyone.

 While MLS application messages are always encrypted,
MLS handshake messages can be sent either encrypted (in an MLS
PrivateMessage) or unencrypted (in an MLS PublicMessage). Applications
may be designed such that intermediaries need to see handshake
messages, for example to enforce policy on which commits are allowed,
or to provide MLS ratchet tree data in a central location. If
handshake messages are unencrypted, it is especially important that
they be sent over a channel with strong transport encryption
(see) in order to prevent external
attackers from monitoring the status of the group. Applications that
use unencrypted handshake messages may take additional steps to reduce
the amount of metadata that is exposed to the intermediary. Everything
else being equal, using encrypted handshake messages provides stronger
privacy properties than using unencrypted handshake messages,
as it prevents intermediaries from learning about the structure
of the group.

 If handshake messages are encrypted, any access
control policies must be applied at the client, so the application must ensure
that the access control policies are consistent across all clients to make sure
that they remain in sync. If two different policies were applied, the clients
might not accept or reject a group operation and end up in different
cryptographic states, breaking their ability to communicate.
 Recommendation: Avoid using inconsistent access control policies,
especially when using encrypted group operations.
 MLS allows actors outside the group to influence the group in two ways: External
signers can submit proposals for changes to the group, and new joiners can use
an external join to add themselves to the group. The external_senders
extension ensures that all members agree on which signers are allowed to send
proposals, but any other policies must be assured to be consistent, as noted above.
 Recommendation: Have an explicit group policy setting the conditions under
which external joins are allowed.

 Handling Authentication Failures
 Within an MLS group, every member is authenticated to every other member by
means of credentials issued and verified by the AS. MLS
does not prescribe what actions, if any, an application should take in the event
that a group member presents an invalid credential. For example, an application
may require such a member to be immediately evicted or may allow some grace
period for the problem to be remediated. To avoid operational problems, it is
important for all clients in a group to have a consistent view of which
credentials in a group are valid, and how to respond to invalid credentials.
 Recommendation: Have a uniform credential validation process to ensure
that all group members evaluate other members' credentials in the same way.
 Recommendation: Have a uniform policy for how invalid credentials are
handled.
 In some authentication systems, it is possible for a previously valid credential
to become invalid over time. For example, in a system based on X.509
certificates, credentials can expire or be revoked. The MLS update mechanisms
allow a client to replace an old credential with a new one. This is best done
before the old credential becomes invalid.
 Recommendation: Proactively rotate credentials, especially if a credential
is about to become invalid.

 Recovery After State Loss
 Group members whose local MLS state is lost or corrupted can reinitialize their
state by rejoining the group as a new member and removing the member
representing their earlier state. An application can require that a client
performing such a reinitialization prove its prior membership with a PSK that
was exported from the previous state.
 There are a few practical challenges to this approach. For example, the
application will need to ensure that all members have the required PSK,
including any new members that have joined the group since the epoch in which
the PSK was issued. And of course, if the PSK is lost or corrupted along with
the member's other state, then it cannot be used to recover.
 Reinitializing in this way does not provide the member with access to group
messages exchanged during the state loss window, but enables proof of prior
membership in the group. Applications may choose various configurations for
providing lost messages to valid group members that are able to prove prior
membership.

 Support for Multiple Devices
 It is common for users within a group to own multiple devices. A new
device can be added to a group and be considered as a new client by the
protocol. This client will not gain access to the history even if it is owned by
someone who owns another member of the group. MLS does not provide direct
support for restoring history in this case, but applications can elect to
provide such a mechanism outside of MLS. Such mechanisms, if used, may reduce
the FS and PCS guarantees provided by MLS.

 Extensibility
 The MLS protocol provides several extension points where additional information
can be provided. Extensions to KeyPackages allow clients to disclose additional
information about their capabilities. Groups can also have extension data
associated with them, and the group agreement properties of MLS will confirm
that all members of the group agree on the content of these extensions.

 Application Data Framing and Type Advertisements
 Application messages carried by MLS are opaque to the protocol and can contain
arbitrary data. Each application that uses MLS needs to define the format of
its application_data and any mechanism necessary to determine the format of
that content over the lifetime of an MLS group. In many applications, this means
managing format migrations for groups with multiple members who may each be
offline at unpredictable times.
 Recommendation: Use the content mechanism defined in
 , unless the specific application defines another
mechanism that more appropriately addresses the same requirements for that
application of MLS.

 The MLS framing for application messages also provides a field where clients can
send information that is authenticated but not encrypted. Such information can
be used by servers that handle the message, but group members are assured that
it has not been tampered with.

 Federation
 The protocol aims to be compatible with federated environments. While this
document does not specify all necessary mechanisms required for federation,
multiple MLS implementations can interoperate to form federated systems if they
use compatible authentication mechanisms, cipher suites, application content, and
infrastructure functionalities. Federation is described in more detail in
 .

 Compatibility with Future Versions of MLS
 It is important that multiple versions of MLS be able to coexist in the
future. Thus, MLS offers a version negotiation mechanism; this mechanism
prevents version downgrade attacks where an attacker would actively rewrite
messages with a lower protocol version than the messages originally offered by the
endpoints. When multiple versions of MLS are available, the negotiation protocol
guarantees that the creator is able to select the best version out of those
supported in common by the group.
 In MLS 1.0, the creator of the group is responsible for selecting the best
cipher suite supported across clients. Each client is able to verify availability
of protocol version, cipher suites, and extensions at all times once it has at
least received the first group operation message.
 Each member of an MLS group advertises the protocol functionality they support.
These capability advertisements can be updated over time, e.g., if client
software is updated while the client is a member of a group. Thus, in addition
to preventing downgrade attacks, the members of a group can also observe when it
is safe to upgrade to a new cipher suite or protocol version.

 Operational Requirements
 MLS is a security layer that needs to be integrated with an application. A
fully functional deployment of MLS will have to make a number of decisions about
how MLS is configured and operated. Deployments that wish to interoperate will
need to make compatible decisions. This section lists all of the dependencies of
an MLS deployment that are external to the protocol specification, but would
still need to be aligned within a given MLS deployment, or for two deployments
to potentially interoperate.

 The protocol has a built-in ability to negotiate protocol versions,
cipher suites, extensions, credential types, and additional proposal types. For
two deployments to interoperate, they must have overlapping support in each of
these categories. The required_capabilities extension () can promote interoperability with a wider set of clients by
ensuring that certain functionality continues to be supported by a group, even
if the clients in the group aren't currently relying on it.
 MLS relies on the following network services, which need to be compatible in
order for two different deployments based on them to interoperate.

 An Authentication Service, described fully in ,
defines the types of credentials which may be used in a deployment and
provides methods for:

 Issuing new credentials with a relevant credential lifetime,

 Validating a credential against a reference identifier,

 Validating whether or not two credentials represent the same client, and

 Optionally revoking credentials which are no longer authorized.

 A Delivery Service, described fully in , provides
methods for:

 Delivering messages for a group to all members in the group.

 Delivering Welcome messages to new members of a group.

 Uploading new KeyPackages for a user's own clients.

 Downloading KeyPackages for specific clients. Typically, KeyPackages are
used once and consumed.

 Additional services may or may not be required, depending on the application
design:

 In cases where group operations are not encrypted, the DS has the ability to
observe and maintain a copy of the public group state. In particular, this
is useful for either (1) clients that do not have the ability to send the full public
state in a Welcome message when inviting a user or (2) clients that need to
recover from losing their state. Such public state can contain privacy-sensitive information such as group members' credentials and related public
keys; hence, services need to carefully evaluate the privacy impact of
storing this data on the DS.

 If external joiners are allowed, there must be a method for publishing a
serialized GroupInfo object (with an external_pub extension) that
corresponds to a specific group and epoch, and for keeping that object in sync with
the state of the group.

 If an application chooses not to allow external joining, it may
instead provide a method for external users to solicit group members (or a
designated service) to add them to a group.

 If the application uses PSKs that members of a group may not have access to
(e.g., to control entry into the group or to prove membership in the group
in the past, as discussed in), there must be a method for distributing
these PSKs to group members who might not have them -- for instance, if they
joined the group after the PSK was generated.

 If an application wishes to detect and possibly discipline members that send
malformed commits with the intention of corrupting a group's state, there
must be a method for reporting and validating malformed commits.

 MLS requires the following parameters to be defined, which must be the same for
two implementations to interoperate:

 The maximum total lifetime that is acceptable for a KeyPackage.

 How long to store the resumption PSK for past epochs of a group.

 The degree of tolerance that's allowed for out-of-order message delivery:

 How long to keep unused nonce and key pairs for a sender.

 A maximum number of unused key pairs to keep.

 A maximum number of steps that clients will move a secret tree ratchet
forward in response to a single message before rejecting it.

 Whether to buffer messages that aren't yet able to be understood due to
other messages not arriving first, and, if so, how many and for how long -- for
example, Commit messages that arrive before a proposal they reference or
application messages that arrive before the Commit starting an epoch.

 If implementations differ in these parameters, they will interoperate to some
extent but may experience unexpected failures in certain situations, such as
extensive message reordering.
 MLS provides the following locations where an application may store arbitrary
data. The format and intention of any data in these locations must align for two
deployments to interoperate:

 Application data, sent as the payload of an encrypted message.

 Additional authenticated data, sent unencrypted in an otherwise encrypted
message.

 Group IDs, as decided by group creators and used to uniquely identify a group.

 Application-level identifiers of public key material (specifically,
the application_id extension as defined in).

 MLS requires the following policies to be defined, which restrict the set of
acceptable behaviors in a group. These policies must be consistent between
deployments for them to interoperate:

 A policy on which cipher suites are acceptable.

 A policy on any mandatory or forbidden MLS extensions.

 A policy on when to send proposals and commits in plaintext instead of
encrypted.

 A policy for which proposals are valid to have in a commit, including but not
limited to:

 When a member is allowed to add or remove other members of the group.

 When, and under what circumstances, a reinitialization proposal is allowed.

 When proposals from external senders are allowed and how to authorize
those proposals.

 When external joiners are allowed and how to authorize those external
commits.

 Which other proposal types are allowed.

 A policy of when members should commit pending proposals in a group.

 A policy of how to protect and share the GroupInfo objects needed for
external joins.

 A policy for when two credentials represent the same client, distinguishing
 the following two cases:

 When there are multiple devices for a given user.

 When a single device has multiple signature keys -- for instance,
 if the device has keys corresponding to multiple overlapping time periods.

 A policy on how long to allow a member to stay in a group without updating its
leaf keys before removing them.

 Finally, there are some additional application-defined behaviors that are
partially an individual application's decision but may overlap with
interoperability:

 When and how to pad messages.

 When to send a reinitialization proposal.

 How often clients should update their leaf keys.

 Whether to prefer sending full commits or partial/empty commits.

 Whether there should be a required_capabilities extension in groups.

 Security and Privacy Considerations
 MLS adopts the Internet threat model and therefore assumes that the
attacker has complete control of the network. It is intended to provide the
security services described in in the face of
attackers who can:

 Monitor the entire network.

 Read unprotected messages.

 Generate, inject, and delete any message in the unprotected
transport layer.

 While MLS should be run over a secure transport such as QUIC or TLS
 , the security guarantees of MLS do not depend on the
transport. This departs from the usual design practice of trusting the transport
because MLS is designed to provide security even in the face of compromised
network elements, especially the DS.
 Generally, MLS is designed under the assumption that the transport layer is
present to keep metadata private from network observers, while the MLS protocol
provides confidentiality, integrity, and authentication guarantees for the
application data (which could pass through multiple systems). Additional
properties such as partial anonymity or deniability could also be achieved in
specific architecture designs.
 In addition, these guarantees are intended to degrade gracefully in the presence
of compromise of the transport security links as well as of both clients and
elements of the messaging system, as described in the remainder of this section.

 Assumptions on Transport Security Links
 As discussed above, MLS provides the highest level of security when its messages
are delivered over an encrypted transport, thus preventing attackers from
selectively interfering with MLS communications as well as
protecting the already limited amount of metadata. Very little
information is contained in the unencrypted header of the MLS protocol message
format for group operation messages, and application messages are always
encrypted in MLS.
 Recommendation: Use transports that provide reliability and metadata
confidentiality whenever possible, e.g., by transmitting MLS messages over
a protocol such as TLS or QUIC .
 MLS avoids the need to send the full list of recipients to the server for
dispatching messages because that list could potentially contain tens of
thousands of recipients. Header metadata in MLS messages typically consists of
an opaque group_id, a numerical value to determine the epoch of the group (the
number of changes that have been made to the group), and whether the message is
an application message, a proposal, or a commit.
 Even though some of this metadata information does not consist of sensitive
information, when correlated with other data a network observer might be able to
reconstruct sensitive information. Using a secure channel to transfer this
information will prevent a network attacker from accessing this MLS protocol
metadata if it cannot compromise the secure channel.

 Integrity and Authentication of Custom Metadata
 MLS provides an authenticated "Additional Authenticated Data" (AAD) field for
applications to make data available outside a PrivateMessage, while
cryptographically binding it to the message.
 Recommendation: Use the "Additional Authenticated Data" field of the
PrivateMessage instead of using other unauthenticated means of sending
metadata throughout the infrastructure. If the data should be kept private, the
infrastructure should use encrypted application messages instead.

 Metadata Protection for Unencrypted Group Operations
 Having no secure channel to exchange MLS messages can have a serious impact on
privacy when transmitting unencrypted group operation messages. Observing the
contents and signatures of the group operation messages may lead an adversary to
extract information about the group membership.
 Recommendation: Never use the unencrypted mode for group operations
without using a secure channel for the transport layer.

 DoS Protection
 In general, we do not consider DoS resistance to be the
responsibility of the protocol. However, it should not be possible for anyone
aside from the DS to perform a trivial DoS attack from which it is
hard to recover. This can be achieved through the secure transport layer,
which prevents selective attack on MLS communications by network
attackers.
 In the centralized setting, DoS protection can typically be performed by using
tickets or cookies which identify users to a service for a certain number of
connections. Such a system helps in preventing anonymous clients from sending
arbitrary numbers of group operation messages to the DS or the MLS
clients.
 Recommendation: Use credentials uncorrelated with specific users to help
prevent DoS attacks, in a privacy-preserving manner. Note that the privacy of
these mechanisms has to be adjusted in accordance with the privacy expected
from secure transport links. (See more discussion in the next section.)

 Message Suppression and Error Correction
 As noted above, MLS is designed to provide some robustness in the face of
tampering within the secure transport, e.g., tampering by the DS.
The confidentiality and authenticity properties of MLS prevent the DS from
reading or writing messages. MLS also provides a few tools for detecting
message suppression, with the caveat that message suppression cannot always be
distinguished from transport failure.

 Each encrypted MLS message carries a per-sender incrementing "generation" number.
If a group member observes a gap in the generation
sequence for a sender, then they know that they have missed a message from that
sender. MLS also provides a facility for group members to send authenticated
acknowledgments of application messages received within a group.
 As discussed in , the DS is trusted to select
the single Commit message that is applied in each epoch from among the Commits sent
by group members. Since only one Commit per epoch is meaningful, it's not
useful for the DS to transmit multiple Commits to clients. The risk remains
that the DS will use the ability maliciously.

 Intended Security Guarantees
 MLS aims to provide a number of security guarantees, covering authentication, as
well as confidentiality guarantees to different degrees in different scenarios.

 Message Secrecy and Authentication
 MLS enforces the encryption of application messages and thus generally
guarantees authentication and confidentiality of application messages sent in a
group.
 In particular, this means that only other members of a given group can decrypt
the payload of a given application message, which includes information about the
sender of the message.
 Similarly, group members receiving a message from another group member can
authenticate that group member as the sender of the message and verify the
message's integrity.
 Message content can be deniable if the signature keys are exchanged over a
deniable channel prior to signing messages.
 Depending on the group settings, handshake messages can be encrypted as well. If
that is the case, the same security guarantees apply.
 MLS optionally allows the addition of padding to messages, mitigating the amount
of information leaked about the length of the plaintext to an observer on the
network.

 Forward Secrecy and Post-Compromise Security
 MLS provides additional protection regarding secrecy of past messages and future
messages. These cryptographic security properties are forward secrecy (FS) and post-compromise security (PCS).
 FS means that access to all encrypted traffic history combined with
access to all current keying material on clients will not defeat the
secrecy properties of messages older than the oldest key of the
compromised client. Note that this means that clients have to delete the appropriate
keys as soon as they have been used with the expected message;
otherwise, the secrecy of the messages and the security of MLS are
considerably weakened.
 PCS means that if a group member's state is compromised at some time t1 but the
group member subsequently performs an update at some time t2, then all MLS
guarantees apply to messages sent by the member after time t2 and to messages sent by other
members after they have processed the update. For example, if an attacker learns
all secrets known to Alice at time t1, including both Alice's long-term secret
keys and all shared group keys, but Alice performs a key update at time t2, then
the attacker is unable to violate any of the MLS security properties after the
updates have been processed.
 Both of these properties are satisfied even against compromised DSs and ASes in
the case where some other mechanism for verifying keys is in use, such as Key
Transparency .
 Confidentiality is mainly ensured on the client side. Because FS and PCS rely on the active deletion and
replacement of keying material, any client which is persistently offline may
still be holding old keying material and thus be a threat to both FS and PCS if
it is later compromised.
 MLS partially defends against this problem by active members including
new keying material. However, not much can be done on the inactive side especially in the
case where the client has not processed messages.

 Recommendation: Mandate key updates from clients that are not otherwise
sending messages and evict clients that are idle for too long.
 These recommendations will reduce the ability of idle compromised clients to
decrypt a potentially long set of messages that might have been sent after the point of compromise.

 The precise details of such mechanisms are a matter of local policy and beyond
the scope of this document.

 Non-Repudiation vs. Deniability
 MLS provides strong authentication within a group, such that a group member
cannot send a message that appears to be from another group member.
Additionally, some services require that a recipient be able to prove to the
service provider that a message was sent by a given client, in order to report
abuse. MLS supports both of these use cases. In some deployments, these services
are provided by mechanisms which allow the receiver to prove a message's origin
to a third party. This is often called "non-repudiation".
 Roughly speaking, "deniability" is the opposite of "non-repudiation", i.e., the
property that it is impossible to prove to a third party that a message was sent
by a given sender. MLS does not make any claims with regard to deniability. It
may be possible to operate MLS in ways that provide certain deniability
properties, but defining the specific requirements and resulting notions of
deniability requires further analysis.

 Associating a User's Clients
 When a user has multiple devices, the base MLS protocol only describes how to
operate each device as a distinct client in the MLS groups that the user is a
member of. As a result, the other members of the group will be able to identify
which of a user's devices sent each message and, therefore, which device the user
was using at the time. Group members would also be able to detect when the user
adds or removes authorized devices from their account. For some applications,
this may be an unacceptable breach of the user's privacy.
 This risk only arises when the leaf nodes for the clients in question provide
data that can be used to correlate the clients. One way to mitigate this
risk is by only doing client-level authentication within MLS. If user-level
authentication is still desirable, the application would have to provide it
through some other mechanism.
 It is also possible to maintain user-level authentication while hiding
information about the clients that a user owns. This can be done by having the
clients share cryptographic state, so that they appear as a single client within
the MLS group. Appearing as a single client has the privacy benefits of no
longer leaking which device was used to send a particular message and no longer
leaking the user's authorized devices. However, the application would need to
provide a synchronization mechanism so that the state of each client remains consistent
across changes to the MLS group. Flaws in this synchronization mechanism may
impair the ability of the user to recover from a compromise of one of their
devices. In particular, state synchronization may make it easier for an attacker
to use one compromised device to establish exclusive control of a user's
account, locking them out entirely and preventing them from recovering.

 Endpoint Compromise
 The MLS protocol adopts a threat model which includes multiple forms of
endpoint/client compromise. While adversaries are in a strong position if
they have compromised an MLS client, there are still situations where security
guarantees can be recovered thanks to the PCS properties achieved by the MLS
protocol.
 In this section we will explore the consequences and recommendations regarding
the following compromise scenarios:

 The attacker has access to a symmetric encryption key.

 The attacker has access to an application ratchet secret.

 The attacker has access to the group secrets for one group.

 The attacker has access to a signature oracle for any group.

 The attacker has access to the signature key for one group.

 The attacker has access to all secrets of a user for all groups (full state
compromise).

 Compromise of Symmetric Keying Material
 As described above, each MLS epoch creates a new group secret.
 These group secrets are then used to create a per-sender ratchet secret, which
in turn is used to create a per-sender Authenticated Encryption with
 Associated Data (AEAD) key
that is then used to encrypt MLS plaintext messages. Each time a message is
sent, the ratchet secret is used to create a new ratchet secret and a new
corresponding AEAD key. Because of the properties of the key derivation
function, it is not possible to compute a ratchet secret from its corresponding
AEAD key or compute ratchet secret n-1 from ratchet secret n.

 Below, we consider the compromise of each of these pieces of keying material in
turn, in ascending order of severity. While this is a limited kind of
compromise, it can be realistic in cases of implementation vulnerabilities where
only part of the memory leaks to the adversary.

 Compromise of AEAD Keys
 In some circumstances, adversaries may have access to specific AEAD keys and
nonces which protect an application message or a group operation message. Compromise of
these keys allows the attacker to decrypt the specific message encrypted with
that key but no other; because the AEAD keys are derived from the ratchet
secret, it cannot generate the next ratchet secret and hence not the next AEAD
key.
 In the case of an application message, an AEAD key compromise means that the
encrypted application message will be leaked as well as the signature over that
message. This means that the compromise has both confidentiality and privacy
implications on the future AEAD encryptions of that chain. In the case of a
group operation message, only the privacy is affected, as the signature is
revealed, because the secrets themselves are protected by Hybrid Public Key Encryption (HPKE). Note
that under that compromise scenario, authentication is not affected in either of
these cases. As every member of the group can compute the AEAD keys for all the
chains (they have access to the group secrets) in order to send and receive
messages, the authentication provided by the AEAD encryption layer of the common
framing mechanism is weak. Successful decryption of an AEAD encrypted message
only guarantees that some member of the group -- or in this case an attacker
who has compromised the AEAD keys -- sent the message.
 Compromise of the AEAD keys allows the attacker to send an encrypted message
using that key, but the attacker cannot send a message to a group that appears to be from
any valid client because the attacker cannot forge the signature. This applies to all the
forms of symmetric key compromise described in .

 Compromise of Ratchet Secret Material
 When a ratchet secret is compromised, the adversary can compute both the current
AEAD keys for a given sender and any future keys for that sender in this
epoch. Thus, it can decrypt current and future messages by the corresponding
sender. However, because it does not have previous ratchet secrets, it cannot
decrypt past messages as long as those secrets and keys have been deleted.

 Because of its forward secrecy guarantees, MLS will also retain secrecy of all
other AEAD keys generated for other MLS clients, outside this dedicated chain
of AEAD keys and nonces, even within the epoch of the compromise. MLS provides
post-compromise security against an active adaptive attacker across epochs for
AEAD encryption, which means that as soon as the epoch is changed, if the
attacker does not have access to more secret material they won't be able to
access any protected messages from future epochs.

 Compromise of the Group Secrets of a Single Group for One or More Group Epochs
 An adversary who gains access to a set of group secrets -- as when a member of the
group is compromised -- is significantly more powerful. In this section, we
consider the case where the signature keys are not compromised. This can occur
if the attacker has access to part of the memory containing the group secrets
but not to the signature keys which might be stored in a secure enclave.
 In this scenario, the adversary gains the ability to compute any number of
ratchet secrets for the epoch and their corresponding AEAD encryption keys and
thus can encrypt and decrypt all messages for the compromised epochs.
 If the adversary is passive, it is expected from the PCS properties of the MLS
protocol that as soon as the compromised party remediates the compromise and
sends an honest Commit message, the next epochs will provide message secrecy.
 If the adversary is active, the adversary can engage in the protocol itself and
perform updates on behalf of the compromised party with no ability for an honest
group to recover message secrecy. However, MLS provides PCS against active
adaptive attackers through its Remove group operation. This means that as long
as other members of the group are honest, the protocol will guarantee message
secrecy for all messages exchanged in the epochs after the compromised party has
been removed.

 Compromise by an Active Adversary with the Ability to Sign Messages
 If an active adversary has compromised an MLS client and can sign messages, two
different scenarios emerge. In the strongest compromise scenario, the attacker
has access to the signing key and can forge authenticated messages. In a weaker,
yet realistic scenario, the attacker has compromised a client but the client
signature keys are protected with dedicated hardware features which do not allow
direct access to the value of the private key and instead provide a signature
API.
 When considering an active adaptive attacker with access to a signature oracle,
the compromise scenario implies a significant impact on both the secrecy and
authentication guarantees of the protocol, especially if the attacker also has
access to the group secrets. In that case, both secrecy and authentication are
broken. The attacker can generate any message, for the current and future
epochs, until the compromise is remediated and the formerly compromised client
sends an honest update.
 Note that under this compromise scenario, the attacker can perform all
operations which are available to a legitimate client even without access to the
actual value of the signature key.

 Compromise of Authentication with Access to a Signature Key
 The difference between having access to the value of the signature key and only
having access to a signing oracle is not about the ability of an active adaptive
network attacker to perform different operations during the time of the
compromise; the attacker can perform every operation available to a legitimate
client in both cases.
 There is a significant difference, however, in terms of recovery after a
compromise.
 Because of the PCS guarantees provided by the MLS protocol, when a previously
compromised client recovers from compromise and performs an honest Commit, both
secrecy and authentication of future messages can be recovered as long as the
attacker doesn't otherwise get access to the key. Because the adversary doesn't
have the signing key, they cannot authenticate messages on behalf of the
compromised party, even if they still have control over some group keys by
colluding with other members of the group.
 This is in contrast with the case where the signature key is leaked. In that
case, the compromised endpoint needs to refresh its credentials and invalidate
the old credentials before the attacker will be unable to authenticate messages.
 Beware that in both oracle and private key access, an active adaptive attacker
can follow the protocol and request to update its own credential. This in turn
induces a signature key rotation, which could provide the attacker with part or
the full value of the private key, depending on the architecture of the service
provider.
 Recommendation: Signature private keys should be compartmentalized from
other secrets and preferably protected by a Hardware Security Module (HSM) or dedicated hardware
features to allow recovery of the authentication for future messages after a
compromise.

 Recommendation: When the credential type supports revocation, the users of
a group should check for revoked keys.

 Security Considerations in the Context of a Full State Compromise
 In real-world compromise scenarios, it is often the case that adversaries target
specific devices to obtain parts of the memory or even the ability to execute
arbitrary code in the targeted device.
 Also, recall that in this setting, the application will often retain the
unencrypted messages. If so, the adversary does not have to break encryption at
all to access sent and received messages. Messages may also be sent by using the
application to instruct the protocol implementation.
 Recommendation: If messages are stored on the device, they should be
protected using encryption at rest, and the keys used should be stored
securely using dedicated mechanisms on the device.
 Recommendation: If the threat model of the system includes an adversary
that can access the messages on the device without even needing to attack
MLS, the application should delete plaintext and ciphertext messages as soon
as practical after encryption or decryption.
 Note that this document makes a clear distinction between the way signature keys
and other group shared secrets must be handled. In particular, a large set of
group secrets cannot necessarily be assumed to be protected by an HSM or secure
enclave features. This is especially true because these keys are frequently used
and changed with each message received by a client.
 However, the signature private keys are mostly used by clients to send a
message. They also provide strong authentication guarantees to other clients;
hence, we consider that their protection by additional security mechanisms should
be a priority.
 Overall, there is no way to detect or prevent these compromises, as discussed in
the previous sections: Performing separation of the application secret states
can help recovery after compromise; this is the case for signature keys, but
similar concerns exist for a client's encryption private keys.
 Recommendation: The secret keys used for public key encryption should be
stored similarly to the way the signature keys are stored, as keys can be used
to decrypt the group operation messages and contain the secret material used
to compute all the group secrets.
 Even if secure enclaves are not perfectly secure or are even completely broken,
adopting additional protections for these keys can ease recovery of the secrecy
and authentication guarantees after a compromise where, for instance, an
attacker can sign messages without having access to the key. In certain
contexts, the rotation of credentials might only be triggered by the AS through
ACLs and hence be beyond the capabilities of the attacker.

 Service Node Compromise

 General Considerations

 Privacy of the Network Connections
 There are many scenarios leading to communication between the application on a
device and the DS or the AS. In particular,
when:

 The application connects to the AS to generate or validate
a new credential before distributing it.

 The application fetches credentials at the DS prior to creating
a messaging group (one-to-one or more than two clients).

 The application fetches service provider information or messages on the
DS.

 The application sends service provider information or messages to the Delivery
Service.

 In all these cases, the application will often connect to the device via a
secure transport which leaks information about the origin of the request, such as
the IP address and -- depending on the protocol -- the MAC address of the device.
 Similar concerns exist in the peer-to-peer use cases for MLS.
 Recommendation: In the case where privacy or anonymity is
important, using adequate protection such as Multiplexed Application Substrate over QUIC Encryption (MASQUE)
 , Tor , or a VPN can improve metadata
protection.

 More generally, using anonymous credentials in an MLS-based architecture might
not be enough to provide strong privacy or anonymity properties.

 Storage of Metadata and Encryption at Rest on the Servers
 In the case where private data or metadata has to be persisted on the servers
for functionality (mappings between identities and push tokens, group
metadata, etc.), it should be stored encrypted at rest and only decrypted upon need
during the execution. Honest service providers can rely on such "encryption at
rest" mechanisms to be able to prevent access to the data when not using it.
 Recommendation: Store cryptographic material used for server-side
decryption of sensitive metadata on the clients and only send it when needed.
The server can use the secret to open and update encrypted data containers
after which they can delete these keys until the next time they need it, in
which case those can be provided by the client.
 Recommendation: Rely on group secrets exported from the MLS session for
server-side encryption at rest and update the key after each removal from the
group. Otherwise, rotate those keys on a regular basis.

 Delivery Service Compromise
 MLS is intended to provide strong guarantees in the face of compromise of the
DS. Even a totally compromised DS should not be able to read messages or inject
 messages that will be acceptable to legitimate clients. It should also not be
able to undetectably remove, reorder, or replay messages.
 However, a malicious DS can mount a variety of DoS attacks on the system,
including total DoS attacks (where it simply refuses to forward any messages)
and partial DoS attacks (where it refuses to forward messages to and from
specific clients). As noted in , these attacks are only
partially detectable by clients without an out-of-band channel. Ultimately,
failure of the DS to provide reasonable service must be dealt with as a customer
service matter, not via technology.
 Because the DS is responsible for providing the initial keying material to
clients, it can provide stale keys. This does not inherently lead to compromise
of the message stream, but does allow the DS to attack post-compromise security to a limited
extent. This threat can be mitigated by having initial keys expire.
 Initial keying material (KeyPackages) using the basic credential type is more
vulnerable to replacement by a malicious or compromised DS, as there is no
built-in cryptographic binding between the identity and the public key of the
client.
 Recommendation: Prefer a credential type in KeyPackages which includes a
strong cryptographic binding between the identity and its key (for example, the
 x509 credential type). When using the basic credential type, take extra
care to verify the identity (typically out of band).

 Privacy of Delivery and Push Notifications
 Push tokens provide an important mechanism that is often ignored from the standpoint of privacy considerations. In many modern messaging architectures, applications are using
push notification mechanisms typically provided by OS vendors. This is to make
sure that when messages are available at the DS (or via other
mechanisms if the DS is not a central server), the recipient application on a
device knows about it. Sometimes the push notification can contain the
application message itself, which saves a round trip with the DS.
 To "push" this information to the device, the service provider and the OS
infrastructures use unique per-device, per-application identifiers called
push tokens. This means that the push notification provider and the service
provider have information on which devices receive information and at which
point in time. Alternatively, non-mobile applications could use a WebSocket or
persistent connection for notifications directly from the DS.
 Even though the service provider and the push notification provider
can't necessarily access the content (typically encrypted MLS
messages), no technical mechanism in MLS prevents them from determining
which devices are recipients of the same message.
 For secure messaging systems, push notifications are often sent in real time, as it
is not acceptable to create artificial delays for message retrieval.
 Recommendation: If real-time notifications are not necessary, one can
delay notifications randomly across recipient devices using a mixnet or other
techniques.
 Note that with a legal request to ask the service provider for the push token
associated with an identifier, it is easy to correlate the token with a second
request to the company operating the push notification system to get information
about the device, which is often linked with a real identity via a cloud
account, a credit card, or other information.
 Recommendation: If stronger privacy guarantees are needed with regard to
the push notification provider, the client can choose to periodically connect
to the DS without the need of a dedicated push notification
infrastructure.
 Applications can also consider anonymous systems for server fanout (for
example,).

 Authentication Service Compromise
 The Authentication Service design is left to the infrastructure designers. In
most designs, a compromised AS is a serious matter, as the AS can serve
incorrect or attacker-provided identities to clients.

 The attacker can link an identity to a credential.

 The attacker can generate new credentials.

 The attacker can sign new credentials.

 The attacker can publish or distribute credentials.

 An attacker that can generate or sign new credentials may or may not have access
to the underlying cryptographic material necessary to perform such
operations. In that last case, it results in windows of time for which all
emitted credentials might be compromised.
 Recommendation: Use HSMs to store the root signature keys to limit the
ability of an adversary with no physical access to extract the top-level
signature private key.
 Note that historically some systems generate signature keys on the
AS and distribute the private keys to clients along with
their credential. This is a dangerous practice because it allows the AS or an
attacker who has compromised the AS to silently impersonate the client.

 Authentication Compromise: Ghost Users and Impersonation
 One important property of MLS is that all members know which other members are
in the group at all times. If all members of the group and the AS
are honest, no parties other than the members of the current group can
read and write messages protected by the protocol for that group.
 This guarantee applies to the cryptographic identities of the members.
Details about how to verify the identity of a client depend on the MLS
credential type used. For example, cryptographic verification of credentials can
be largely performed autonomously (e.g., without user interaction) by the
clients themselves for the x509 credential type.
 In contrast, when MLS clients use the basic credential type, some other
mechanism must be used to verify identities. For instance, the Authentication
Service could operate some sort of directory server to provide keys, or users
could verify keys via an out-of-band mechanism.
 Recommendation: Select the MLS credential type with the strongest security
which is supported by all target members of an MLS group.
 Recommendation: Do not use the same signature key pair across
groups. Update all keys for all groups on a regular basis. Do not preserve
keys in different groups when suspecting a compromise.
 If the AS is compromised, it could validate a signature
key pair (or generate a new one) for an attacker. The attacker could then use this key pair to join a
group as if it were another of the user's clients. Because a user can have many
MLS clients running the MLS protocol, it possibly has many signature key pairs
for multiple devices. These attacks could be very difficult to detect,
especially in large groups where the UI might not reflect all the changes back
to the users. If the application participates in a key transparency mechanism in
which it is possible to determine every key for a given user, then this
would allow for detection of surreptitiously created false credentials.
 Recommendation: Make sure that MLS clients reflect all the membership
changes to the users as they happen. If a choice has to be made because the
number of notifications is too high, the client should provide a log of state
of the device so that the user can examine it.
 Recommendation: Provide a key transparency mechanism for the
AS to allow public verification of the credentials
authenticated by this service.
 While the ways to handle MLS credentials are not defined by the protocol or the
architecture documents, the MLS protocol has been designed with a mechanism that
can be used to provide out-of-band authentication to users. The
 authentication_secret generated for each user at each epoch of the group is a
one-time, per-client authentication secret which can be exchanged between users
to prove their identities to each other. This can be done, for instance, using a QR
code that can be scanned by the other parties.

 Recommendation: Provide one or more out-of-band authentication mechanisms
to limit the impact of an AS compromise.
 We note, again, that the AS may not be a centralized
system and could be realized by many mechanisms such as establishing prior
one-to-one deniable channels, gossiping, or using trust on first use (TOFU) for
credentials used by the MLS protocol.
 Another important consideration is the ease of redistributing new keys on client
compromise, which helps recovering security faster in various cases.

 Privacy of the Group Membership
 Group membership is itself sensitive information, and MLS is designed to limit
the amount of persistent metadata. However, large groups often require an
infrastructure that provides server fanout. In the case of client fanout, the
destination of a message is known by all clients; hence, the server usually does
not need this information. However, servers may learn this information through
traffic analysis. Unfortunately, in a server-side fanout model, the Delivery
Service can learn that a given client is sending the same message to a set of
other clients. In addition, there may be applications of MLS in which the group
membership list is stored on some server associated with the DS.

 While this knowledge is not a breach of the protocol's authentication or
confidentiality guarantees, it is a serious issue for privacy.
 Some infrastructures keep a mapping between keys used in the MLS protocol and
user identities. An attacker with access to this information due to compromise
or regulation can associate unencrypted group messages (e.g., Commits and
Proposals) with the corresponding user identity.
 Recommendation: Use encrypted group operation messages to limit privacy
risks whenever possible.
 In certain cases, the adversary can access specific bindings between public keys
and identities. If the signature keys are reused across groups, the adversary
can get more information about the targeted user.
 Recommendation: Ensure that linking between public keys and identities
only happens in expected scenarios.

 Considerations for Attacks Outside of the Threat Model
 Physical attacks on devices storing and executing MLS principals are not
considered in depth in the threat model of the MLS protocol. While
non-permanent, non-invasive attacks can sometimes be equivalent to software
attacks, physical attacks are considered outside of the MLS threat model.
 Compromise scenarios typically consist of a software adversary, which can
maintain active adaptive compromise and arbitrarily change the behavior of the
client or service.
 On the other hand, security goals consider that honest clients will always run
the protocol according to its specification. This relies on implementations of
the protocol to securely implement the specification, which remains non-trivial.
 Recommendation: Additional steps should be taken to protect the device and
the MLS clients from physical compromise. In such settings, HSMs and secure
enclaves can be used to protect signature keys.

 No Protection Against Replay by Insiders
 MLS does not protect against one group member replaying a PrivateMessage sent by another
group member within the same epoch that the message was originally sent. Similarly, MLS
does not protect against the replay (by a group member or otherwise) of a PublicMessage
within the same epoch that the message was originally sent. Applications for
whom replay is an important risk should apply mitigations at the application layer, as
discussed below.
 In addition to the risks discussed in , an attacker
with access to the ratchet secrets for an endpoint can replay PrivateMessage
objects sent by other members of the group by taking the signed content of the
message and re-encrypting it with a new generation of the original sender's
ratchet. If the other members of the group interpret a message with a new
generation as a fresh message, then this message will appear fresh. (This is
possible because the message signature does not cover the generation field
of the message.) Messages sent as PublicMessage objects similarly lack replay
protections. There is no message counter comparable to the generation field
in PrivateMessage.
 Applications can detect replay by including a unique identifier for the message
(e.g., a counter) in either the message payload or the authenticated_data
field, both of which are included in the signatures for
PublicMessage and PrivateMessage.

 Cryptographic Analysis of the MLS Protocol
 Various academic works have analyzed MLS and the different security guarantees
it aims to provide. The security of large parts of the protocol has been
 analyzed by (for MLS Draft 7), (for MLS Draft 11), and (for MLS Draft 12).
 Individual components of various drafts of the MLS protocol have been
analyzed in isolation and with differing adversarial models. For
example, , , , ,
 , , , and analyze the
ratcheting tree sub-protocol of MLS that facilitates key agreement;
 analyzes the sub-protocol of MLS for group state agreement
and authentication; and analyzes the key derivation paths in
the ratchet tree and key schedule. Finally, analyzes the
authentication and cross-group healing guarantees provided by MLS.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 An Interface and Algorithms for Authenticated Encryption

 This document defines algorithms for Authenticated Encryption with Associated Data (AEAD), and defines a uniform interface and a registry for such algorithms. The interface and registry can be used as an application-independent set of cryptoalgorithm suites. This approach provides advantages in efficiency and security, and promotes the reuse of crypto implementations. [STANDARDS-TRACK]

 The Messaging Layer Security (MLS) Protocol

 Messaging applications are increasingly making use of end-to-end security mechanisms to ensure that messages are only accessible to the communicating endpoints, and not to any servers involved in delivering messages. Establishing keys to provide such protections is challenging for group chat settings, in which more than two clients need to agree on a key but may not be online at the same time. In this document, we specify a key establishment protocol that provides efficient asynchronous group key establishment with forward secrecy (FS) and post-compromise security (PCS) for groups in size ranging from two to thousands.

 Informative References

 Keep the Dirt: Tainted TreeKEM, Adaptively and Actively Secure Continuous Group Key Agreement

 Cryptology ePrint Archive

 Security Analysis and Improvements for the IETF MLS Standard for Group Messaging

 Cryptology ePrint Archive

 Modular Design of Secure Group Messaging Protocols and the Security of MLS

 Cryptology ePrint Archive

 Continuous Group Key Agreement with Active Security

 Cryptology ePrint Archive

 Server-Aided Continuous Group Key Agreement

 Cryptology ePrint Archive

 On The Insider Security of MLS

 Cryptology ePrint Archive

 Formal Models and Verified Protocols for Group Messaging: Attacks and Proofs for IETF MLS

 TreeKEM: Asynchronous Decentralized Key Management for Large Dynamic Groups - A protocol proposal for Messaging Layer Security (MLS)

 Security Analysis of the MLS Key Distribution

 Cryptology ePrint Archive

 Towards robust distributed systems (abstract)

 UC Berkeley and Inktomi

 Proceedings of the nineteenth annual ACM symposium on Principles of distributed computing, p. 7

 ETK: External-Operations TreeKEM and the Security of MLS in RFC 9420

 The Complexities of Healing in Secure Group Messaging: Why Cross-Group Effects Matter

 Proceedings of the 30th USENIX Security Symposium

 The Messaging Layer Security (MLS) Extensions

 Phoenix R&D

 The Messaging Layer Security (MLS) protocol is an asynchronous group
 authenticated key exchange protocol. MLS provides a number of
 capabilities to applications, as well as several extension points
 internal to the protocol. This document provides a consolidated
 application API, guidance for how the protocol's extension points
 should be used, and a few concrete examples of both core protocol
 extensions and uses of the application API.

 Work in Progress

 The Messaging Layer Security (MLS) Federation

 Google

 Phoenix R&D

 This document describes how the Messaging Layer Security (MLS)
 protocol can be used in a federated environment.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/mlswg/mls-federation.

 Work in Progress

 Key Transparency Architecture

 This document defines the terminology and interaction patterns
 involved in the deployment of Key Transparency (KT) in a general
 secure group messaging infrastructure, and specifies the security
 properties that the protocol provides. It also gives more general,
 non-prescriptive guidance on how to securely apply KT to a number of
 common applications.

 Work in Progress

 The Loopix Anonymity System

 Proceedings of the 26th USENIX Security Symposium

 The MASQUE Proxy

 Google LLC

 MASQUE (Multiplexed Application Substrate over QUIC Encryption) is a
 set of protocols and extensions to HTTP that allow proxying all kinds
 of Internet traffic over HTTP. This document defines the concept of
 a "MASQUE Proxy", an Internet-accessible node that can relay client
 traffic in order to provide privacy guarantees.

 Work in Progress

 Guidelines for Writing RFC Text on Security Considerations

 All RFCs are required to have a Security Considerations section. Historically, such sections have been relatively weak. This document provides guidelines to RFC authors on how to write a good Security Considerations section. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

 This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet. An overview of this approach and model is provided as an introduction. The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms. Standard certificate extensions are described and two Internet-specific extensions are defined. A set of required certificate extensions is specified. The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions. An algorithm for X.509 certification path validation is described. An ASN.1 module and examples are provided in the appendices. [STANDARDS-TRACK]

 Extensible Messaging and Presence Protocol (XMPP): Core

 The Extensible Messaging and Presence Protocol (XMPP) is an application profile of the Extensible Markup Language (XML) that enables the near-real-time exchange of structured yet extensible data between any two or more network entities. This document defines XMPP's core protocol methods: setup and teardown of XML streams, channel encryption, authentication, error handling, and communication primitives for messaging, network availability ("presence"), and request-response interactions. This document obsoletes RFC 3920. [STANDARDS-TRACK]

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 The Tor Project

 TreeKEM: A Modular Machine-Checked Symbolic Security Analysis of Group Key Agreement in Messaging Layer Security

 TreeSync: Authenticated Group Management for Messaging Layer Security

 Cryptology ePrint Archive

 Contributors

 Cisco

 rlb@ipv.sx

 Meta Platforms

 me@katriel.co.uk

 CISPA Helmholtz Center for Information Security

 cremers@cispa.de

 Naval Postgraduate School

 britta.hale@nps.edu

 Badge Inc.

 kwonalbert@badgeinc.com

 Phoenix R&D

 konrad.kohbrok@datashrine.de

 Wire

 rohan.mahy@wire.com

 brendanmcmillion@gmail.com

 tjvdmerwe@gmail.com

 Meta Platforms

 jmillican@meta.com

 Phoenix R&D

 ietf@raphaelrobert.com

 Authors' Addresses

 Inria & Mozilla

 ietf@beurdouche.com

 ekr@rtfm.com

 emad.omara@gmail.com

 singuva@yahoo.com

 alan@duric.net

