
The codedescribe and codelisting Packages

Version 1.10

Alceu Frigeri*

June 2025

Abstract

This package is designed to be as class independent as possible, depending only on
expl3, scontents, listing and pifont. Unlike other packages of the kind, a minimal
set of macros/commands/environments is defined: most/all defined commands have
an “object type” as a keyval parameter, allowing for an easy expansion mechanism
(instead of the usual “one set of macros/environments” for each object type).

No assumption is made about page layout (besides “having a marginpar”), or un-
derlying macros, so that it can be used with any document class.

Contents

1 Introduction 1
1.1 Single versus Multi-column Classes . 2
1.2 Current Version . 2

2 codelisting Package 2
2.1 In Memory Code Storage . 2
2.2 Code Display/Demo . 2

2.2.1 Code Keys . 3

3 codedescribe Package 5
3.1 Package Options . 5
3.2 Object Type keys . 5

3.2.1 Format Keys . 5
3.2.2 Format Groups . 5
3.2.3 Object Types . 6
3.2.4 Customization . 6

3.3 Environments . 7
3.4 Typeset Commands . 8
3.5 Note/Remark Commands . 8
3.6 Auxiliary Commands and Environment . 9

1 Introduction

This package aims to document both Document level (i.e. final user) commands, as well
Package/Class level commands. It’s fully implemented using expl3 syntax and structures,
in special l3coffins, l3seq and l3keys. Besides those scontents and listing packages (see
[1] and [2]) are used to typeset code snippets. The package pifont is needed just to typeset
those (open)stars, in case one wants to mark a command as (restricted) expandable.

No other package/class is needed, any class can be used as the base one, which allows to
demonstrate the documented commands with any desired layout.

codelisting defines a few macros to display and demonstrate LATEX code (using listings

and scontents), whilst codedescribe defines a series of macros to display/enumerate macros
and environments (somewhat resembling the doc3 style).

*https://github.com/alceu-frigeri/codedescribe

1

1.1 Single versus Multi-column Classes

This package “can” be used with multi-column classes, given that the \linewidth and
\columnsep are defined appropriately. \linewidth shall defaults to text/column real width,
whilst \columnsep, if needed (2 or more columns) shall be greater than \marginparwidth plus
\marginparsep.

1.2 Current Version

This doc regards to codedescribe version 1.10 and codelisting version 1.10. Those two
packages are fairly stable, and given the ⟨obj-type⟩ mechanism (see 3.2) they can be easily
extended without changing their interface.

2 codelisting Package

It requires two packages: listings and scontents, defines an environment: codestore, com-
mands for listing/demo code: \tscode, \tsmergedcode, \tsdemo, \tsresult and \tsexec and
2 auxiliary commands: \setcodekeys and \setnewcodekey.

2.1 In Memory Code Storage

Thanks to scontents (expl3 based) it’s possible to store LATEX code snippets in a expl3

sequence variable.

\begin{codestore} [⟨stcontents-keys⟩]
\end{codestore}

This environment is an alias to scontents environment (from scontents package, see [1]),
all scontents keys are valid, with two additional ones: st and store-at which are aliases
to the store-env key. If an “isolated” ⟨st-name⟩ is given (unknown key), it is assumed that
the environment body shall be stored in it (for use with \tscode, \tsmergedcode, \tsdemo,
\tsresult and \tsexec).

codestore

Note: From scontents, ⟨st-name⟩ ⟨index⟩ed (The code is stored in a sequence
variable). It is possible to store as many code snippets as needed under the
same name. The first one will be ⟨index⟩→ 1, the second 2, and so on.

2.2 Code Display/Demo

\tscode* [⟨code-keys⟩] {⟨st-name⟩} [⟨index⟩]
\tsdemo* [⟨code-keys⟩] {⟨st-name⟩} [⟨index⟩]
\tsresult* [⟨code-keys⟩] {⟨st-name⟩} [⟨index⟩]

\tscode* just typesets ⟨st-name⟩ (created with codestore), in verbatim mode and syntax
highlight (from listings package [2]). The non-star version centers it and use just half of
the base line. The star version uses the full text width.
\tsdemo* first typesets ⟨st-name⟩, as above, then executes it. The non-start version place
them side-by-side, whilst the star version places one following the other.
(new 2024/01/06) \tsresult* only executes it. The non-start version centers it and use just
half of the base line, whilst the star version uses the full text width.

\tscode*

\tsdemo*

\tsresult*

updated: 2024/01/06
updated: 2025/04/29

only executes it. The non-start version centers it and use just half of the base line, whilst
the star version uses the full text width.

Note: (from stcontents package) ⟨index⟩ can be from 1 up to the number of
stored codes under the same ⟨st-name⟩. Defaults to 1.

Note: All are executed in a local group which is discarded at the end. This
is to avoid unwanted side effects, but might disrupt code execution that, for
instance, depends on local variables being set. That for, see \tsexec below.

For Example:

2

LATEX Code:

\begin{codestore}[stmeta]

Some \LaTeX~coding, for example: \ldots.

\end{codestore}

This will just typesets \tsobj[key]{stmeta}:

\tscode*[codeprefix={Sample Code:}] {stmeta}

and this will demonstrate it, side by side with source code:

\tsdemo[numbers=left,ruleht=0.5,

codeprefix={inner sample code},

resultprefix={inner sample result}] {stmeta}

LATEX Result:

This will just typesets stmeta:

Sample Code:

Some \LaTeX~coding, for example: \ldots.

and this will demonstrate it, side by side with source code:

inner sample code inner sample result

1 Some \LaTeX~coding, for example: \ldots. Some LATEX coding, for example:

\tsmergedcode* [⟨code-keys⟩] {⟨st-name-index list⟩}

This will typeset (as \tscode) the merged contents from ⟨st-name-index list⟩. The list
syntax comes from scontents (command \mergesc), where it is possible to refer to a single
index {⟨st-name A⟩} [⟨index⟩], a index range {⟨st-name B⟩} [⟨indexA-indexB⟩], or all indexes
from a ⟨st-name⟩, {⟨st-name C⟩} [⟨1-end⟩]. The special index ⟨1-end⟩ refers to all indexes
stored under a given ⟨st-name⟩.

\tsmergedcode*

new: 2025/04/29

Note: The brackets aren’t optional. For instance \tsmergedcode* [⟨code-keys⟩]
{ {⟨st-name A⟩} [⟨index⟩] , {⟨st-name B⟩} [⟨indexA-indexB⟩] , {⟨st-name
C⟩} [⟨1-end⟩] }

\tsexec {⟨st-name⟩} [⟨index⟩]

Unlike the previous commands which are all executed in a local group (discarded at the end)
this will execute the code stored at ⟨st-name⟩ [⟨index⟩] in the current LATEX group.

\tsexec

new: 2025/04/29

2.2.1 Code Keys

\setcodekeys {⟨code-keys⟩}

One has the option to set ⟨code-keys⟩ per \tscode, \tsmergedcode, \tsdemo and \tsresult

call (see 2.2), or globally, better said, in the called context group .

N.B.: All \tscode and \tsdemo commands create a local group in which
the ⟨code-keys⟩ are defined, and discarded once said local group is closed.
\setcodekeys defines those keys in the current context/group.

\setcodekeys

\setnewcodekey {⟨new-key⟩} {⟨code-keys⟩}

This will define a new key ⟨new-key⟩, which can be used with \tscode, \tsmergedcode, \tsdemo
and \tsresult. ⟨code-keys⟩ can be any of the following ones, including other ⟨new-key⟩s. Be
careful not to create a definition loop.

\setnewcodekey

new: 2025-05-01

3

settexcs, settexcs2, settexcs3 and settexcs4

texcs, texcs2, texcs3 and texcs4

texcsstyle, texcs2style, texcs3style and texcs4style

Those define sets of LATEX commands (csnames), the set variants initialize/redefine those
sets (an empty list, clears the set), while the others extend those sets. The style ones
redefines the command display style (an empty ⟨value⟩ resets the style to it’s default).

settexcs

texcs

texcsstyle

updated: 2025-05-01

setkeywd, setkeywd2, setkeywd3 and setkeywd4

keywd, keywd2, keywd3 and keywd4

keywdstyle, keywd2style, keywd3style and keywd4style

Same for other keywords sets.

setkeywd

keywd

keywdstyle

updated: 2025-05-01

setemph, setemph2, setemph3 and setemph4

emph, emph2, emph3 and emph4

emphstyle, emph2style, emph3style and emph4style

for some extra emphasis sets.

setemph

emph

emphstyle

updated: 2025-05-01

letter and other

These allow to redefine what a letter or other are (they correspond to the alsoletter and
alsoother keys from listings). The default value for the letter includes (sans the comma)
@ : _ , whilst other default value is an empty list.

letter

other

new: 2025-05-13

Note: You might want to consider setting letter to just letter={@,_} so you
don’t have to list all variants, but just the base name of a function.

numbers and numberstyle

numbers possible values are none (default) and left (to add tinny numbers to the left of the
listing). With numberstyle one can redefine the numbering style.

numbers

numberstyle

stringstyle and commentstyle

to redefine strings and comments formatting style.

stringstyle

codestyle

bckgndcolor

to change the listing background’s color.

bckgndcolor

codeprefix and resultprefix

those set the codeprefix (default: LATEX Code:) and resultprefix (default: LATEX Result:)

codeprefix

resultprefix

parindent

Sets the indentation to be used when ’demonstrating’ LATEX code (\tsdemo). Defaults to
whatever value \parindent was when the package was first loaded.

parindent

ruleht

When typesetting the ’code demo’ (\tsdemo) a set of rules are drawn. The Default, 1, equals
to \arrayrulewidth (usually 0.4pt).

ruleht

basicstyle

Sets the base font style used when typesetting the ’code demo’, default being \footnotesize

\ttfamily

basicstyle

new: 2023/11/18

4

3 codedescribe Package

This package aims at minimizing the number of commands, with object kind (if a macro,
or a function, or environment, or variable, or key ...) as a parameter, allowing for a simple
extension mechanism: other object types can be easily introduced without having to change,
or add commands.

3.1 Package Options

it will suppress the codelisting package load. In case it isn’t needed or another listing
package will be used.

nolisting

Changes the base skip, all skips (used by the environments at 3.3) are scaled from this. It
defaults to font size at load time.

base skip

3.2 Object Type keys

⟨obj-types⟩ defines the applied format, which is defined in terms of ⟨format-groups⟩ wich
defines a formatting function, font shape, bracketing, etc. to be applied.

3.2.1 Format Keys

Those are the primitive ⟨format-keys⟩ used when (re)defining ⟨format-groups⟩ and ⟨obj-types⟩
(see 3.2.4):

to typeset between angles,meta

to typeset *verbatim* between angles,xmeta

to typeset *verbatim*,verb

to typeset *verbatim*, suppressing all spaces,xverb

to typeset *verbatim*, suppressing all spaces and replacing a TF by TF,code

in case of a redefinition, to remove the ’base’ formatting,nofmt

to use a slanted font shape,slshape

to use an italic font shape,itshape

in case of a redefinition, to remove the ’base’ shape,noshape

defines the left bracket (when using \tsargs). Note: this key must have an
associated value,

lbracket

defines the right bracket (when using \tsargs). Note: this key must have an
associated value,

rbracket

defines the text color. Note: this key must have an associated value (a color,
as understood by xcolor package).

color

3.2.2 Format Groups

Using \defgroupfmt (see 3.2.4) one can (re)define custom ⟨format-groups⟩. The following
ones are pre-defined:

which sets meta and colormeta

which sets colorverb

which sets meta and coloroarg

which sets code and colorcode

which sets colorsyntax

which sets slshape and colorkeyval

which sets coloroption

which sets colordefaultval

which sets slshape and colorenv

which sets slshape and colorpkg

5

Note: color was used in the list above just as a ’reminder’ that a color is
defined/associated with the given group, it can be changed with \defgroupfmt.

3.2.3 Object Types

Object types are the ⟨keys⟩ used with \tsobj (and friends, see 3.4) defining the specific for-
matting to be used. With \defobjectfmt (see 3.2.4) one can (re-)define custom ⟨obj-types⟩.
The predefined ones are:

based on (group) metaarg, meta

based on (group) verb plus verb or xverbverb, xverb

based on (group) meta plus bracketsmarg

based on (group) oarg plus bracketsoarg, parg, xarg

based on (group) codecode, macro, function

based on (group) syntaxsyntax

based on (group) keyvalkeyval, key, keys, values

based on (group) optionoption

based on (group) defaultvaldefaultval

based on (group) envenv

based on (group) pkgpkg, pack

3.2.4 Customization

To create user defined groups/objects or change the pre-defined ones:

\defgroupfmt {⟨format-group⟩} {⟨format-keys⟩}

⟨format-group⟩ is the name of the new group (or one being redefined, which can be one of
the standard ones). ⟨format-keys⟩ is any combination of the keys from 3.2.1

\defgroupfmt

new: 2023/05/16

For example, one can redefine the code group standard color with \defgroupfmt{code}{color=red}

and all obj-types based on it will be typeset in red (in the standard case: code, macro and
function objects).

\defobjectfmt {⟨obj-type⟩} {⟨format-group⟩} {⟨format-keys⟩}

⟨obj-type⟩ is the name of the new ⟨object⟩ being defined (or redefined), ⟨format-group⟩ is the
base group to be used (see 3.2.2). ⟨format-keys⟩ (see 3.2.1) allow for further differentiation.

\defobjectfmt

new: 2023/05/16

For instance, the many optional ⟨*arg⟩ are defined as follow:

\colorlet {c__codedesc_oarg_color} { gray!90!black }

\defgroupfmt {oarg} { meta , color=c__codedesc_oarg_color }

\defobjectfmt {oarg} {oarg} { lbracket={[} , rbracket={]} }

\defobjectfmt {parg} {oarg} { lbracket={(} , rbracket={)} }

\defobjectfmt {xarg} {oarg} { lbracket={<} , rbracket={>} }

6

3.3 Environments

\begin{codedescribe} [⟨obj-keys⟩] {⟨csv-list⟩}
...

\end{codedescribe}

This is the main environment to describe Commands, Variables, Environments, etc. ⟨csv-list⟩
items will be listed in the left margin. The optional ⟨obj-keys⟩ defaults to just code, it can
be any object type as defined at 3.2.3 (and 3.2.4), besides the following keys:

To add a new line.new

To add an updated line.update

To add a NB line.note

For instance \begin{codedescribe}[rulecolor=white] will suppress the rules.rulecolor

A star ★ will be added to all items, signaling the commands are fully expand-
able.

EXP

A hollow star ✩ will be added to all items, signaling the commands are
restricted expandable.

rEXP

codedescribe

new: 2023/05/01
updated: 2023/05/01
updated: 2024/02/16
NB: a note example

Note: The keys new, update and note can be used multiple times. (2024/02/16)

\begin{codesyntax}

...

\end{codesyntax}

The codesyntax environment sets the fontsize and activates \obeylines, \obeyspaces , so one
can list macros/cmds/keys use, one per line.

codesyntax

Note: codesyntax environment shall appear only once, inside of a codedescribe
environment. An error will be raised if called outside. Take note, as well, this
is not a verbatim environment!

For example, the code for codedescribe (previous entry) is:

LATEX Code:

\begin{codedescribe}[env,new=2023/05/01,update=2023/05/01,note={a note example},update

=2024/02/16]{codedescribe}

\begin{codesyntax}

\tsmacro{\begin{codedescribe}}[obj-type]{csv-list}

\ldots

\tsmacro{\end{codedescribe}}{}

\end{codesyntax}

This is the main ...

\end{codedescribe}

\begin{describelist} [⟨item-indent⟩] {⟨obj-type⟩}
\describe {⟨item-name⟩} {⟨item-description⟩}
\describe {⟨item-name⟩} {⟨item-description⟩}
...

\end{describelist}

This sets a description like ’list’. In the non-star version the ⟨items-name⟩ will be typeset
on the marginpar. In the star version, ⟨item-description⟩ will be indented by ⟨item-indent⟩
(defaults to: 20mm). ⟨obj-type⟩ defines the object-type format used to typeset ⟨item-name⟩.

describelist

describelist*

\describe {⟨item-name⟩} {⟨item-description⟩}

This is the describelist companion macro. In case of the describe*, ⟨item-name⟩ will be
typeset in a box ⟨item-ident⟩ wide, so that ⟨item-description⟩ will be fully indented, oth-
erwise ⟨item-name⟩ will be typed in the marginpar.

\describe

Note: An error will be raised if called outside of a describelist or describelist*
environment.

7

3.4 Typeset Commands

Note that, in the following commands, ⟨obj-type⟩ refers to any object type defined in 3.2.3
and 3.2.4.

\typesetobj [⟨obj-type⟩] {⟨csv-list⟩}
\tsobj [⟨obj-type⟩] {⟨csv-list⟩}

This is the main typesetting command, each term of ⟨csv-list⟩ will be separated by a
comma and formatted as defined by ⟨obj-type⟩ (defaults to code). ⟨obj-type⟩ can be any
object from 3.2.3 (or 3.2.4) and the following keys:

To change the item separator. Defaults to a comma, can be anything.mid sep

To change the separator between the last two items. Defaults to “and”.sep

To set the separator between the last two items to a comma.comma

To produce a bnf style or list, like [abc|xdh|htf|hrf].bnf or

To produce a bnf style or list between angles, like ⟨abc|xdh|htf|hrf⟩.meta or

To produce a bnf style or list between parentheses, like (abc|xdh|htf|hrf).par or

\typesetobj

\tsobj

updated: 2025/05/29

\typesetargs [⟨obj-type⟩] {⟨csv-list⟩}
\tsargs [⟨obj-type⟩] {⟨csv-list⟩}

These will typeset ⟨csv-list⟩ as a list of parameters, like [⟨arg1⟩] [⟨arg2⟩] [⟨arg3⟩], or
{⟨arg1⟩} {⟨arg2⟩} {⟨arg3⟩}, etc. ⟨obj-type⟩ defines the formating AND kind of brackets used
(see 3.2): [] for optional arguments (oarg), {} for mandatory arguments (marg), and so on.

\typesetargs

\tsargs

\typesetmacro {⟨macro-list⟩} [⟨oargs-list⟩] {⟨margs-list⟩}
\tsmacro {⟨macro-list⟩} [⟨oargs-list⟩] {⟨margs-list⟩}

These are just a short-cut for
\tsobj[code]{macro-list} \tsargs[oarg]{oargs-list} \tsargs[marg]{margs-list}.

\typesetmacro

\tsmacro

\typesetmeta {⟨name⟩}
\tsmeta {⟨name⟩}

These will just typeset ⟨name⟩ between left/right ’angles’ (no other formatting).

\typesetmeta

\tsmeta

\typesetverb [⟨obj-type⟩] {⟨verbatim text⟩}
\tsverb [⟨obj-type⟩] {⟨verbatim text⟩}

Typesets ⟨verbatim text⟩ as is (verbatim...). ⟨obj-type⟩ defines the used format. The dif-
ference with \tsobj [verb]{something} is that ⟨verbatim text⟩ can contain commas (which,
otherwise, would be interpreted as a list separator in \tsobj.

\typesetverb

\tsverb

Note: This is meant for short expressions, and not multi-line, complex code
(one is better of, then, using 2.2). ⟨verbatim text⟩ must be balanced ! other-
wise, some low level TEX errors may pop out.

3.5 Note/Remark Commands

\typesetmarginnote {⟨note⟩}
\tsmarginnote {⟨note⟩}

\typesetmarginnote

\tsmarginnote

Typesets a small note at the margin.

8

\begin{tsremark} [⟨NB⟩]
\end{tsremark}

The environment body will be typeset as a text note. ⟨NB⟩ (defaults to Note:) is the note
begin (in boldface). For instance:

LATEX Code: LATEX Result:

Sample text. Sample test.

\begin{tsremark}[N.B.]

This is an example.

\end{tsremark}

Sample text. Sample test.

N.B. This is an example.

tsremark

3.6 Auxiliary Commands and Environment

In case the Document Class being used redefines the \maketitle command and/or abstract
environment, alternatives are provided (based on the article class).

\typesettitle {⟨title-keys⟩}
\tstitle {⟨title-keys⟩}

This is based on the \maketitle from the article class. The ⟨title-keys⟩ are:

\typesettitle

\tstitle

The title.title

Author’s name. It’s possible to use the \footnote command in it.author

Title’s date.date

\begin{tsabstract}

...

\end{tsabstract}

This is the abstract environment from the article class.

tsabstract

\typesetdate

\tsdate

This provides the current date (Month Year, format).

\typesetdate

\tsdate

new: 2023/05/16

References

[1] Pablo González. SCONTENTS - Stores LaTeX Contents. 2024, p. 48. url: http://
mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf (visited on
03/10/2025).

[2] Jobst Hoffmann. The Listings Package. 2024, p. 65. url: http://mirrors.ctan.org/
macros/latex/contrib/listings/listings.pdf (visited on 03/10/2025).

9

http://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
http://mirrors.ctan.org/macros/latex/contrib/scontents/scontents.pdf
http://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf
http://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf

	Introduction
	Single versus Multi-column Classes
	Current Version

	codelisting Package
	In Memory Code Storage
	Code Display/Demo
	Code Keys

	codedescribe Package
	Package Options
	Object Type keys
	Format Keys
	Format Groups
	Object Types
	Customization

	Environments
	Typeset Commands
	Note/Remark Commands
	Auxiliary Commands and Environment

