
The newunicodechar package∗

Enrico Gregorio
Enrico dot Gregorio at univr dot it

April 8, 2018

1 Introduction
When using Unicode input with LATEX it’s not so uncommon to get an incompre-
hensible error message such as

Unicode char \u8:xxx not set up for use with LaTeX

where xxx may be the actual character we input or a combination of strange
characters. This happens because the utf8 option given to inputenc or inputenx
defines the LATEX meaning of many Unicode characters, but, of course, not all of
them.

For example, one might want to write some Latin words with prosodic marks,
i.e., the diacritics that tell whether a vowel is long or short, in order to distinguish
between ‘pŏpŭlus’ (people) and ‘pōpŭlus’ (poplar), but using the actual Unicode
characters that make the LATEX document easier to read; look at the following ta-
ble, where on the left the input is via the LATEX Internal Character Representation
(LICR) and on the right it’s via Unicode characters,

LICR Unicode
p\u{o}p\u{u}lus pŏpŭlus
p\={o}p\u{u}lus pōpŭlus

and judge by yourselves which one is better. Unfortunately, the utf8 option to
inputenc doesn’t define a meaning for ŏ, ō, and ŭ. As a matter of fact, only ă and
Ă are defined, as they are used in the Romanian language.

One might resort to \DeclareUnicodeCharacter in the document’s preamble,
but this requires looking up at the (long) list of Unicode characters and jotting
down the relevant numbers. For example, ŏ is U+014F, so the declaration

\DeclareUnicodeCharacter{014F}{\u{o}}

∗This document corresponds to newunicodechar v1.2, dated 2018/04/08.

1

would do for ŏ.
The present package introduces a simpler interface that frees the user from the

burden to look up in the tables: all it’s needed is

\newunicodechar{ŏ}{\u{o}}

You are not restricted to definition like this: for example, � is Unicode U+266A,
but you are not required to know it: if your editor can insert the character �, you
may define its meaning by loading a package that provides it and say

\usepackage{wasysym}
\newunicodechar{�}{\eighthnote}

Important note: the package will not work if the inputenc package is called with an
option different from utf8. As of April 2018, this encoding is assumed by default
in 8 bit TEX engines when running LATEX. However one can still load inputenc or
inputenx with the utf8 option (not utf8x).

A similar problem may arise even with X ELATEX. A frequently asked question
on mailing lists or discussion groups is how to print some particular character in a
different font than the main one of the document, say, for example, the Euro sign
which, in some fonts, is horrible. The usual answer is to write something like

\newfontfamily{\eurofont}{〈some font〉}
\catcode‘€=\active
\protected\def €{{\eurofont\char‘\€}}

which, for the average user, is somewhat scaring. With newunicodechar this may
be simplified into

\newfontfamily{\eurofont}{〈some font〉}
\newunicodechar{€}{{\eurofont\texteuro}}

2 Usage
The package requires the use of a Unicode engine, i.e., X ELATEX or LuaLATEX, or,
with (pdf)LATEX, the inputenc or inputenx package along with the utf8 option. It
won’t work with the utf8x option that employs a completely different mechanism
for parsing Unicode characters in (pdf)LATEX. It should be said that utf8x defines
many more characters than utf8, so that the present package wouldn’t be needed.

Of course the LATEX document must be written using a Unicode savvy editor.

The package has only one option, verbose, which is off by default. If the pack-verbose
age is called by \usepackage[verbose]{newunicodechar}, then the informative
message on the log file will show the old definition along with the warning about
the redefinition. Unfortunately this definition usually has a rather cryptic format;
for example, redefining ă would print
Redefining Unicode character; it meant
*** \IeC {\u a} ***
before your redefinition on input line 22.

2

Call the package with this option if you are worried about what you are redefining,
but the meaning of the Unicode character should correspond easily to just one
LICR entry. This option does nothing when a Unicode engine is used, because no
character is active initially (except for ~), so there should be non risk to redefine
anything.

The package provides only one command, \newunicodechar, which must be\newunicodechar
called with two arguments:

\newunicodechar{〈char〉}{〈code〉}

where 〈char〉 is the Unicode character to which we need to give a meaning and
〈code〉 is that meaning, that is the LATEX code that will be substituted to the
character. Here is what’s needed for the prosodic marks in Latin:

%\newunicodechar{Ă}{\u{A}} \newunicodechar{ă}{\u{a}}
\newunicodechar{Ĕ}{\u{E}} \newunicodechar{ĕ}{\u{e}}
\newunicodechar{Ĭ}{\u{I}} \newunicodechar{ı̆}{\u{\i}}
\newunicodechar{Ŏ}{\u{O}} \newunicodechar{ŏ}{\u{o}}
\newunicodechar{Ŭ}{\u{U}} \newunicodechar{ŭ}{\u{u}}
\newunicodechar{Ā}{\={A}} \newunicodechar{ā}{\={a}}
\newunicodechar{Ē}{\={E}} \newunicodechar{ē}{\={e}}
\newunicodechar{Ī}{\={I}} \newunicodechar{ı̄}{\={\i}}
\newunicodechar{Ō}{\={O}} \newunicodechar{ō}{\={o}}
\newunicodechar{Ū}{\={U}} \newunicodechar{ū}{\={u}}

The first line is commented out, because those characters are already defined. It
doesn’t hurt to give again a definition, LATEX will just warn about it.

Caution: when used with X ELATEX or LuaLATEX, there will be no warning, but
the standard setup doesn’t define any active character.

The first argument must consist of a single Unicode character, but the package
checks for it and raises an error otherwise; it will raise an error also if the first
argument consists of a plain ASCII character: defining them is not allowed in
(pdf)LATEX and would break almost everything in X ELATEX or LuaLATEX.

3 An easier way?
One could dispense with this package, since the same effect may be obtained in
the way we have already seen in X ELATEX or LuaLATEX; with (pdf)LATEX, calling
\newunicodechar{ū}{\={u}} is equivalent to say

\makeatletter
\@namedef{u8:\detokenize{ū}}{\={u}}
\makeatother

4 Implementation
The usual presentation, that we repeat here for completeness.

3

\ProvidesFile{newunicodechar.dtx}
\NeedsTeXFormat{LaTeX2e}[2008/04/05]
\ProvidesPackage{newunicodechar}

The date for the format has been chosen to match the last version of the
utf8enc.dfu file that provides definitions for Unicode characters.

Now the real macros. First of all we check that the typesetting engine is
sufficiently recent to include ε-TEX extensions.

1 \@ifundefined{eTeXversion}
2 {\PackageError{newunicodechar}{LaTeX engine too old, aborting}
3 {Please upgrade your TeX system}\@@end}{}

4.1 Options
There’s only one option.

4 \DeclareOption{verbose}{\let\nuc@verbose=T}
5 \ProcessOptions\relax

4.2 Error messages
6 \def\nuc@onebyteerr{\PackageError{newunicodechar}
7 {ASCII character requested}
8 {Only characters above U+007F may be defined; you asked
9 for\MessageBreak a plain ASCII character and your definition

10 has been ignored.}}
11 \def\nuc@emptyargerr{\PackageError{newunicodechar}
12 {Empty argument}
13 {You shouldn’t write \protect\newunicodechar{}{...}}}
14 \def\nuc@invalidargerr{\PackageError{newunicodechar}
15 {Invalid argument}
16 {The first argument to \protect\newunicodechar\space is
17 either\MessageBreak too long or an invalid sequence of bytes}}

4.3 Unicode engines
In case we are running a Unicode engine (xelatex or lualatex), the definition of
the main macro is easier: we check whether the character is above 127 and, in this
case, we make it active expanding to the second argument. This definition of the
main macro will be seen only if the engine has the ^^^^ convention for inputting
characters in hexadecimal format, so that ^^^^0021 is one token and \@gobble
will eat it up, making \next equal to \@empty; with an eight bit engine (latex or
pdflatex), \@gobble will swallow only ^^^.

In this case we define the main macro all in one swoop; first we check that the
first argument is nonempty, then we act only if it consists of only one (character)
token. Then if the charcode of this token is less than 127 we emit an error message;
otherwise we activate the character and define its (protected) expansion to be the
second argument. The last action, in this case, is to allow \newunicodechar only
in the preamble. Then we do \endinput. If the engine is not Unicode savvy,
everything up to the closing \fi is swallowed up.

4

\newunicodechar Here is the code for defining the Unicode engine version of the main macro. Notice
that we try being on the safe side by not assuming any particular category code
for ~, because we restore it after giving the definition where we need it to be active.
18 \begingroup
19 \catcode‘\^=7 \catcode30=12 \catcode‘\!=12 % for safety
20 \edef\next{\@gobble^^^^0021}
21 \expandafter\endgroup
22 \ifx\next\@empty % Start of code for Unicode engines
23 \chardef\nuc@atcode=\catcode‘\~
24 \catcode‘\~=\active
25 \def\newunicodechar#1#2{%
26 \if\relax\detokenize{#1}\relax
27 \nuc@emptyargerr
28 \else
29 \if\relax\detokenize\expandafter{\@cdr#1\@nil}\relax
30 \ifnum‘#1>\string"7F
31 \catcode‘#1=\active
32 \begingroup\lccode‘\~=‘#1
33 \lowercase{\endgroup\protected\def~}{#2}%
34 \else
35 \nuc@onebyteerr
36 \fi
37 \else
38 \nuc@invalidargerr
39 \fi
40 \fi}
41 \catcode‘\~=\nuc@atcode
42 \@onlypreamble\newunicodechar
43 \expandafter\endinput
44 \fi % End of code for Unicode engines

4.4 Eight bit engines
From now on we can assume an eight bit engine is used; we check that in-
putenc or inputenx has been loaded with the right option, otherwise we define
\newunicodechar to swallow its arguments, after a warning. We need to first
check for inputenx because it loads inputenc.
45 \def\nuc@stop{\PackageWarningNoLine{newunicodechar}
46 {This package only works if the document\MessageBreak
47 encoding is ‘utf8’}%
48 \let\newunicodechar\@gobbletwo\endinput}
49 \edef\@tempa{\detokenize{utf8}}
50 \edef\@tempb{\detokenize\expandafter{\inputencodingname}}
51 \ifx\@tempb\@tempa\else
52 \nuc@stop
53 \fi

\newunicodechar The main macro. We set the temporary switch to false and put in \nuc@tempa
the first argument, but detokenized, since it consists of active characters. We

5

check that it’s not empty and access to its first token that we put into \@tempb.
Then we call \nuc@check and if it sets the temporary switch to true, we execute
the definition, since the first argument is a valid UTF-8 character, but we issue
a warning if it already has a meaning. All we need to do is to define the macro
\csname u8:\nuc@tempa\endcsname, because that’s how inputenc acts. The part
between \ifdefined and the corresponding \fi will be executed only with the
verbose option.
54 \def\newunicodechar#1#2{%
55 \@tempswafalse
56 \edef\nuc@tempa{\detokenize{#1}}%
57 \if\relax\nuc@tempa\relax
58 \nuc@emptyargerr
59 \else
60 \edef\@tempb{\expandafter\@car\nuc@tempa\@nil}%
61 \nuc@check
62 \if@tempswa
63 \@ifundefined{u8:\nuc@tempa}{}
64 {\PackageWarning{newunicodechar}
65 {Redefining Unicode character\ifdefined\nuc@verbose;
66 it meant\MessageBreak
67 ***\space\space\nuc@meaning\space\space***\MessageBreak
68 before your redefinition\fi}}%
69 \@namedef{u8:\nuc@tempa}{#2}%
70 \fi
71 \fi
72 }

The first helper macro computes the number of bytes in the first argument, though
it appears to the user as a single character. The third is used for the verbose
option.
73 \def\nuc@getlength#1{%
74 \ifx#1\@nil
75 \expandafter\relax
76 \else
77 +1\expandafter\nuc@getlength
78 \fi}
79 \ifdefined\nuc@verbose
80 \def\nuc@meaning{\expandafter\expandafter\expandafter
81 \strip@prefix\expandafter\meaning\csname u8:\nuc@tempa\endcsname}
82 \fi

We select the action based on the length of the first argument; in case only one
byte appears, the user is trying to define an ASCII character, which is not allowed;
if the input is two, three, or four bytes long, we check whether the first byte has
the correct form: its binary form must be, respectively, 110xxxxx, 1110xxxx,
or 11110xxx, so not less than 192, 224, or 240. The macro \nuc@ch@ck does
precisely this, issuing an error message if the argument is invalid or else setting
the temporary switch to true.
83 \def\nuc@check{%

6

84 \ifcase\numexpr0\expandafter\nuc@getlength\nuc@tempa\@nil
85 \or %0
86 \nuc@onebyteerr\or %1
87 \nuc@ch@ck{192}\or %2
88 \nuc@ch@ck{224}\or %3
89 \nuc@ch@ck{240}\else %4
90 \nuc@invalidargerr
91 \fi}
92 \def\nuc@ch@ck#1{%
93 \expandafter\ifnum\expandafter‘\@tempb<#1\relax
94 \nuc@invalidargerr
95 \else
96 \@tempswatrue
97 \fi
98 }

Finally we disallow \newunicodechar outside the preamble.
99 \@onlypreamble\newunicodechar

Change History

v1.0
General: Initial version 1

v1.1
General: Added support for

inputenx 1, 5

v1.2

General: Now utf8 is default . . . 1, 5

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\^ 19
\~ 23, 24, 32, 41

D
\detokenize

. 26, 29, 49, 50, 56

I
\inputencodingname . 50

N
\newunicodechar 3, 13,

16, 18, 48, 54, 99
\nuc@atcode 23, 41
\nuc@ch@ck . . 87–89, 92
\nuc@check 61, 83
\nuc@emptyargerr . .

. 11, 27, 58
\nuc@getlength 73, 77, 84
\nuc@invalidargerr .

. . . . 14, 38, 90, 94

\nuc@meaning 67, 80
\nuc@onebyteerr 6, 35, 86
\nuc@stop 45, 52
\nuc@tempa . . 56, 57,

60, 63, 69, 81, 84
\nuc@verbose . . 4, 65, 79

P
\protected 33

V
verbose option 2

7

