
ii

Greenstone gsdl-2.31 February 2001

GREENSTONE DIGITAL LIBRARY

DEVELOPER’S GUIDE

David Bainbridge, Dana McKay
and Ian H. Witten

Department of Computer Science
University of Waikato, New Zealand

Greenstone is a suite of software for building and distributing digital
library collections. It provides a new way of organizing information
and publishing it on the Internet or on CD-ROM. Greenstone is
produced by the New Zealand Digital Library Project at the
University of Waikato, and distributed in cooperation with UNESCO
and the Humanity Libraries Project. It is open-source software,
available from http://nzdl.org under the terms of the GNU General
Public License.

We want to ensure that this software works well for you.
Please report any problems to greenstone@cs.waikato.ac.nz

ii

About this manual

This manual explains how Greenstone works. It is aimed at those who
wish to customise collections and to develop and maintain the software.

Section 1 gives an insider’s account of the collection-building process,
including the directory structure and internal document format, and the
configuration file that governs the structure of each collection. Section 2
describes the parts of Greenstone that process source documents (and
metadata) and dictate how the information is accessed through the user
interface. It also describes “external” software components that are
distributed with Greenstone but were not implemented by the NZDL
group. Section 3 includes a comprehensive explanation of the structure of
the Greenstone runtime system, and also gives details of the software that
help to understand how it works and how to modify the system to suit
different needs. Section 4 describes the Greenstone configuration files,
and an Appendix introduces the C++ Standard Template Library.

When working with the Greenstone software, you may encounter
references to features that are not described in this manual, for
Greenstone is under constant development. To learn about software under
development, join the Greenstone mailing list (instructions at nzdl.org).

Companion documents

The complete set of Greenstone documents includes three volumes:

• Greenstone Digital Library Installer’s Guide
• Greenstone Digital Library User’s Guide
• Greenstone Digital Library Developer’s Guide (this document)

Acknowledgements

The Greenstone software is a collaborative effort between many people.
Rodger McNab and Stefan Boddie are the principal architects and
implementors. Contributions have been made by David Bainbridge,
George Buchanan, Hong Chen, Elke Duncker, Carl Gutwin, Geoff
Holmes, John McPherson, Craig Nevill-Manning, Gordon Paynter,
Bernhard Pfahringer, Todd Reed, Bill Rogers, and Stuart Yeates. Other
members of the New Zealand Digital Library project provided advice and
inspiration in the design of the system: Mark Apperley, Sally Jo
Cunningham, Steve Jones, Te Taka Keegan, Michel Loots, Malika
Mahoui and Lloyd Smith. We would also like to acknowledge all those
who have contributed to the GNU-licensed packages included in this
distribution: MG, GDBM, WGET, WVWARE, PDFTOHTML.

nzdl.org

Contents

About this manual ii

1 UNDERSTANDING THE COLLECTION-BUILDING PROCESS 1

1.1 Building collections from the command line 1
Collection building under Windows 2
Collection building under Unix 5
Differences between Windows and Unix 9

1.2 Greenstone directories 9

1.3 The import and build processes 9
Options accepted by both import.pl and buildcol.pl 10
The import process 10
The build process 11

1.4 GML documents 13
Document metadata 15
Inside GML documents 15

1.5 The collection configuration file 17
Subcollections 19

2 GETTING THE MOST OUT OF YOUR DOCUMENTS 21

2.1 Plugins 21
Plugin-specific options 25
Plugins to import proprietary formats 25
Assigning metadata from a file 27

2.2 Classifiers 28
List classifiers 32
The hierarchy classifier 32
How classifiers work 33

2.3 Formatting Greenstone output 34
Formatting Greenstone lists 35

iv CONTENTS

Examples of classifiers and format strings 36

2.4 Controlling the Greenstone user interface 39
The macro file format 39
Using macros 42

2.5 The packages directory 43

3 THE GREENSTONE RUNTIME SYSTEM 45

3.1 Process structure 45

3.2 Conceptual framework 48

3.3 How the conceptual framework fits together 51
Performing a search 51
Retrieving a document 53
Browsing a hierarchical classifier 55
Generating the home page 56

3.4 Source code 57

3.5 Common Greenstone types 58
The text_t object 58
Files in GSDLHOME/lib 60

3.7 The collection server 61
The Search object 61
Search and retrieval with MG 63
The Source object 64
The Filter object 68
Inherited Filter objects 69
Files in GSDLHOME/src/colservr 69

3.8 The protocol 72

3.9 The receptionist 74
Actions 75
Formatting 77
Macro language 78
Files in GSDLHOME/src/recpt 80

3.10 Initialisation 84

4 CONFIGURING YOUR GREENSTONE SITE 87

4.1 main.cfg 87

CONTENTS v

4.2 Site maintenance and logging 87

4.3 Language support 87

4.4 Page parameters and CGI arguments 89

4.5 gsdlsite.cfg 90

APPENDIX A: THE C++ STANDARD TEMPLATE LIBRARY 91
STL lists 91
STL maps 93

REFERENCES 97

vi CONTENTS

nzdl.org

1
Understanding the

collection-building process

End users of Greenstone can build collections using the Collector,
described in the Greenstone Digital Library User’s Guide (Section 3).
This makes it very easy to build collections modelled after existing ones
but with new content. However, it is not really feasible to use the
Collector to create collections with completely new structures. It does
invite you to edit the collection configuration file, which governs the
collection’s structure, but you need to know quite a lot about Greenstone
to make radical yet effective changes to the configuration file. This
section tells you what you need to know to do this. It also describes the
Greenstone directory structure and the format in which documents are
stored internally.

We assume throughout this manual that you have installed Greenstone on
your computer, be it Windows or Unix. If you have not yet done this you
should consult the Greenstone Digital Library Installer’s Guide. The
variable GSDLHOME will be used throughout to refer to the Greenstone
home directory, which is called %GSDLHOME% on Windows systems
and $GSDLHOME on Unix ones. You set this directory during the
installation procedure (on Windows, the default is C:\Program
Files\gsdl).

1.1 Building collections from the command line

Let us begin by walking through the operations involved in building a
collection from the command line, to help understand the process better.
Of course, for more user-friendly collection building, you should use the
Collector instead. The collection we take as an example is one that comes
on the Greenstone software distribution CD-ROM, and contains the
WWW home pages of many of the people who have worked on the New
Zealand Digital Library Project and the Greenstone software.

2 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

Separate subsections follow for building under Windows and Unix. In
fact, the two subsections are very nearly identical—you need only go
through the one that pertains to your system. When following the
walkthrough, you will probably find some operations mysterious and
arcane, but follow them closely—their meaning will be explained later
on. After the walkthroughs is a brief summary of the differences between
building a collection under the two systems.

Collection building under Windows

The first challenge when building a Greenstone collection from the
command line under Windows is to get at the “command prompt,” the
place where you type commands. Try looking in the Start menu, or under
the Programs submenu, for an entry like MS-DOS Prompt, DOS Prompt,
or Command Prompt. If you can’t find it, invoke the Run entry and try
typing command (or cmd) in the dialog box. If all else fails, seek help
from one who knows, such as your system administrator.

Change into the GSDLHOME directory (that is, %GSDLHOME%). At the
prompt, type setup.bat. This batch file (which you can read if you like)
tells the system where to look for Greenstone programs. On Windows
95/98 systems it may fail with an Out of environment space error. If this
happens, you should edit your system’s config.sys file (normally found at
C:\config.sys) and add the line shell=C:\command.com /e:4096 /p (where
C: is your system drive letter). You’ll need to reboot for this change to
take effect.

Now run the Perl program mkcol.pl, whose name stands for “make a
collection.” Depending on how your system is set up, you might run this
program by typing perl –S mkcol.pl, or simply mkcol.pl. If you’re not
accustomed to running Perl programs you’ll have to experiment. Once
you run it, mkcol.pl creates the directory structure that is required for a
new collection. A description of usage and a list of arguments will appear
on the screen. The only required argument is creator, which tells who
built the collection. A good name for the collection might be dlpeople, so
type the command mkcol.pl –creator <your-email-address-here>
dlpeople.

List the contents of your collection’s directory. There should be seven
subdirectories: archives, building, etc, images, import, index and perllib.

Source material for the dlpeople collection can be found on the
Greenstone distribution CD-ROM under the directory collect/dlpeople.
The CD-ROM drive is usually D:\ when using Windows—you can verify
this using the My Computer icon on your desktop. If you can’t find it,

UNDERSTANDING THE COLLECTION-BUILDING PROCESS 3

contact your system administrator.

Next, copy the contents of the D:\collect\dlpeople directory into the
dlpeople collection’s import directory. You can do this by selecting all the
contents of the dlpeople directory and dragging them across using the
visual file manager, or by typing the command

xcopy /s d:\collect\dlpeople* GSDLHOME\collect\dlpeople\import

In the collection’s etc directory there is a file called collect.cfg. Open it
using your favourite text editor. It should look something like Figure 1,
which shows the collection configuration file that was created by using
the command mkcol.pl –creator dana@example.com dlpeople.

Now you are ready to “import” the collection. This is the process of
bringing the documents into the Greenstone system, standardising the
document format, the way that metadata is specified, and the file structure
in which the documents are stored. Type import.pl at the prompt to get a
list of all the options for the import program. To keep things simple, stick
to the basic command import.pl dlpeople . Don’t worry about all the text
that scrolls past—it’s just reporting the progress of the import. Be aware

Figure 1
Collection
configuration file
created by mkcol.pl

creator dana@example.com
maintainer dana@example.com
public true
beta true

indexes document:text
defaultindex document:text

plugin ZIPPlug
plugin GMLPlug
plugin TEXTPlug
plugin HTMLPlug
plugin EMAILPlug
plugin ArcPlug
plugin RecPlug

classify AZList -metadata “Title”

collectionmeta collectionname "dlpeople"
collectionmeta iconcollection ""
collectionmeta collectionextra ""
collectionmeta .document:text "documents"

Figure 2
Collection icon

4 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

that importing this collection takes about five minutes on a 1000 MHz
computer, and correspondingly longer on slower machines.

Now let’s make some changes to the collection configuration file to
customize its appearance. First, give the collection a name. This will be
treated by web browsers as the page title for the front page of the
collection, and used as the collection icon in the absence of a picture.
Change the line that reads collectionmeta collectionname "dlpeople" to
something like collectionmeta collectionname "The People of the NZDL".

Add a description of your collection between the quotes of the line that
reads collectionmeta collectionextra "". This will be used as the About
this collection text on the collection’s home page. I added something
along the lines of “This collection is made up of the web pages of some of
the people who have worked on the Greenstone software.”

You can use any picture you can view in a web browser for a collection
icon—the image I created is shown in Figure 2. Put the location of the
image between the quotes of the line collectionmeta iconcollection "" in
the configuration file. To specify the image, use a URL starting with
httpprefix, where _httpprefix_ is a pointer to your GSDLHOME
directory, e.g. _httpprefix_/collect/dlpeople/images/icon.gif if you have
put the image in the collection’s images directory.

Save the collection configuration file, and close it—you won’t need to
look at it again during this tutorial.

The next phase is to “build” the collection, which creates all the indexes
and files that make the collection work. Type buildcol.pl at the command
prompt for a list of collection-building options. These options are
explained more fully in Section 1.3. For now, stick to the defaults by
typing buildcol.pl dlpeople at the prompt. Again, don’t worry about the
“progress report” text that scrolls past.

Make the collection “live” by using the visual file manager to copy the
contents of the collection’s building directory into the index directory or
from the command line enter rd /s index, then ren building index.

You should be able to access the collection from your Greenstone
homepage. You will have to reload the page if you already had it open in
your browser, or perhaps even close the browser and restart it (to prevent
caching problems). Alternatively, if you are using the “local library”
version of Greenstone you will have to restart the library program. To
view the new collection, click on the image. The result should look
something like Figure 3.

UNDERSTANDING THE COLLECTION-BUILDING PROCESS 5

Collection building under Unix

First change into the GSDLHOME directory (that is, $GSDLHOME). At
the prompt, type source setup.bash if you’re running the Bash shell, or
source setup.csh if you’re using the C shell. These scripts (which you can
read if you like) tell the system where to look for Greenstone programs.

Now type mkcol.pl. This is a Perl program whose name stands for “make
a collection.” It creates the directory structure that is required for a new
collection. A description of usage and a list of arguments will appear on
the screen. The only required argument is creator, which tells who built
the collection. A good name for the collection might be dlpeople, so type
the command mkcol.pl –creator <your-email-address-here> dlpeople.

List the contents of your collection’s directory. There should be seven
subdirectories: archives, building, etc, images, import, index and perllib.

Source material for the dlpeople collection can be found on the

Figure 3
“About” page for the
new collection

6 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

Greenstone distribution CD-ROM under the directory collect/dlpeople.
To get information from a CD-ROM under Linux type mount /cdrom at
the prompt: if this fails, contact your system administrator. Once
mounted, the CD-ROM can be used like any other directory, so type ls
/cdrom. This should reveal a directory called collect/dlpeople on the CD-
ROM.

Next, copy the contents of the /cdrom/collect/dlpeople directory into the
GSDLHOME/collect/dlpeople/import directory. To do this, type the
command

 cp –R /cdrom/collect/dlpeople/* GSDLHOME/collect/dlpeople/import/

Then type umount /cdrom/ to close the CD-ROM drive.

In the collection’s etc directory there is a file called collect.cfg. Open this
using your favourite text editor. It should look something like Figure 1,
which shows the collection configuration file that was created by using
the command mkcol.pl –creator dana@example.com dlpeople.

Now you are ready to “import” the collection. This is the process of
bringing the documents into the Greenstone system, standardising the
document format, the way that metadata is specified, and the file structure
in which the documents are stored. Type import.pl at the prompt to get a
list of all the options for the import program. To keep things simple, stick
to the basic command import.pl dlpeople . Don’t worry about all the text
that scrolls past—it’s just reporting the progress of the import. Be aware
that importing this collection takes about five minutes on a 1000 MHz
computer, and correspondingly longer on slower machines.

Now let’s make some changes to the collection configuration file to

Table 1 Differences between Windows and Linux, when building collections

Windows Linux

Run setup.bat to make Greenstone programs
available

Source setup.bash or setup.csh to make
programs available

Copy files from CD-ROM using D:\ and
visual manager or Windows commands

Copy files from CD-ROM using mount and
Unix commands

New collection index created by typing xcopy
/s building* index or using visual file
manager

New collection index created by typing mv
building/* index

Old collection index replaced by typing rd /s
index, then ren building index or by using
visual file manager.

Old collection index replaced by typing rm –R
index/* then mv building/* index

UNDERSTANDING THE COLLECTION-BUILDING PROCESS 7

customize its appearance. First, give the collection a name. This will be
treated by web browsers as the page title for the front page of the
collection, and used as the collection icon in the absence of a picture.
Change the line that reads collectionmeta collectionname "dlpeople" to
something like collectionmeta collectionname "The People of the NZDL".

Add a description of your collection between the quotes of the line that
reads collectionmeta collectionextra "". This will be used as the About
this collection text on the collection’s home page. I added something
along the lines of “This collection is made up of the web pages of some of
the people who have worked on the Greenstone software.”

You can use any picture you can view in a web browser for a collection
icon—the image I created is shown in Figure 2. Put the location of the
image between the quotes of the line collectionmeta iconcollection "" in
the configuration file. To specify the image, use a URL starting with
httpprefix, where _httpprefix_ is a pointer to your GSDLHOME
directory, e.g. _httpprefix_/collect/dlpeople/images/icon.gif if you have
put the image in the collection’s images directory.

Save the collection configuration file, and close it—you won’t need to
look at it again during this tutorial.

The next phase is to “build” the collection, which creates all the indexes
and files that make the collection work. Type buildcol.pl at the command
prompt for a list of collection-building options. These options are
explained more fully in Section 1.3. For now, stick to the defaults by
typing buildcol.pl dlpeople at the prompt. Again, don’t worry about the
“progress report” text that scrolls past.

Make the collection “live” by putting all the material that has just been
put in the collection’s building directory into the index directory. Type mv
building/* index/ (assuming you are in the dlpeople directory) at the
prompt. If you have built this collection before, first remove the old index
using rm –R index/*.

Figure 4
Structure of the
GSDLHOME
directory

script classify plugins colservr recpt mg

GSDLHOME

bin perllib cig-bin temp etc src packages mappings macros collect lib images docs

8 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

You should be able to access the collection from your Greenstone
homepage. You will have to reload the page if you already had it open in
your browser, or perhaps even close the browser and restart it (to prevent
caching problems). To view the new collection, click on the image. The
result should look something like Figure 3.

Table 2 Where in this document to find information about directories

Directory Contents Section

bin Executable code, including binaries in the directory with
your O/S name.

–

bin/script Perl scripts used for creating and building collections (for
example import.pl and buildcol.pl). To get a description of
any of these programs, type their name at the command
prompt.

1.3

perllib Perl modules used at import and build time (plugins, for
example).

2.1

perllib/plugins Perl code for document processing plugins. 2.1
perllib/classify Perl code for classifiers (for example the AZList code that

makes a document list based on the alphabetical order of
some attribute).

2.2

cgi-bin All Greenstone CGI scripts, which are moved to the system
cgi-bin directory.

–

tmp Directory used by Greenstone for storing temporary files. –
etc Configuration files, initialisation and error logs, user

authorisation databases.
–

src C++ code used for serving collections via a web server. 3
src/colservr C++ code for serving collections—answering queries and the

like.
3.7

src/recpt C++ code for getting queries from the user interface and
formatting query responses for the interface.

3.9

packages Source code for non-Greenstone software packages that are
used by Greenstone.

2.5

packages/mg The source code for MG, the compression and indexing
software used by Greenstone.

2.5

mappings Unicode translation tables (for example for the GB Chinese
character set).

–

macros The macro files used for the user interface. 2.4
collect Collections being served from this copy of Greenstone 1.1

lib C++ source code used by both the collection server and the
receptionist.

3.1

images Images used in the user interface. –
docs Documentation. –

UNDERSTANDING THE COLLECTION-BUILDING PROCESS 9

Differences between Windows and Unix

The collection building process under Unix is very similar to that under
Windows, but there are some small differences which are summarised in
Table 1.

1.2 Greenstone directories

Figure 4 shows the structure of the GSDLHOME directory. Table 2 gives
a brief description of the contents of each of the directories shown in the
diagram. Some directories are better described in a later section of the
manual—use the section guide in Table 2 to see where to find more
information.

1.3 The import and build processes

In the command-line collection-building process that we walked through
in Section 1.1, one command, import.pl, is used for importing documents
and another, buildcol.pl, for building the collection. This section gives
more information about what these programs do and the various options
they support. We use the variable col_name to refer to the collection

Table 3 Options for the import and build processes

Option Argument Function

–verbosity Number 0–3 Control how much information about the process will
be printed to standard error; 0 gives a little, 3 gives
lots.

–archivedir Directory name Specify where the archive files (GML files and an
information file) are stored—that is, where import.pl
puts them and where buildcol.pl finds them. Defaults
to GSDLHOME/collect/col_name/archives

–maxdocs Number >0 Indicates the maximum number of documents to be
imported or built. Useful when testing a new
collection configuration file, or new plugins.

–collectdir Directory name Specify where the collection can be found. Defaults to
GSDLHOME/collect/col_name

–out Filename Specify a file to which to write all output messages,
which defaults to standard error (the screen). Useful
when working with debugging statements.

–keepold None Do not remove the result of the previous import or
build operation. In the case of import, do not remove
the contents of the archives directory; when building,
do not remove the content of the building directory.

–debug None Print plugin output to standard output.

10 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

being built or imported.

Options accepted by both import.pl and buildcol.pl

The import and build processes have many similarities, and as a result
take many of the same options, described in Table 3. (Remember that to
see the options for any Greenstone Perl script you just type its name with
no options at the command prompt).

The import process

The import process’s primary responsibility is to convert documents from
their native format into the GML (Greenstone Markup Language) format
used within Greenstone, and write a summary file (called archives.inf)
which will be used when the collection is built. Import.pl needs to know
what plugins should be used, and where to find the original document
files. Table 3 shows the options common to both import and build
processes; Table 4 shows additional options applicable to the import
process only.

Figure 5 represents the import process implemented by the import.pl
program. Each oval represents a module used to perform tasks that relate
to a specific part of the Greenstone system. All these modules can be
found in the GSDLHOME/perllib directory.

Table 4 Additional options for the import process

Option Argument Function

–importdir Directory name Where material to be imported is found. Defaults to
GSDLHOME/collect/col_name/import.

–removeold None Remove the contents of the archives directory before
importing.

–gzip None Use the GNU utility to “zip up” the GML documents
produced by import. (This requires ZIPPlug to be
included in the plugin list, and gzip to be installed on
your machine).

–groupsize Number >0 The number of documents to group together into one
GML file. Defaults to 1 (that is, one document per
file).

–sortmeta Metadata tag
name

Sort the documents alphabetically by the named
metadata tag. However, if the collection has more than
one group in the collection (i.e. groupsize >1), this
functionality is disabled.

UNDERSTANDING THE COLLECTION-BUILDING PROCESS 11

For step 3, note that import variables like importdir and archivedir can be
set from the collection configuration file or from the command line. If set
in the command line, any configuration file setting is ignored.

In step 6, the archives information file (archives.inf) is created.

Step 7 creates an object that knows where documents are to be saved, and
obeys any special saving instructions (such as sortmeta, which sorts the
documents according to a specified metadata tag).

Most of the work done in the import process is actually accomplished by
plugins, which are called by the plugin module. This module creates a
pipeline of the plugins specified in the collection configuration file. It also
handles the writing of GML documents (using a document object).

The build process

During the building process the text is compressed, and the full-text
indexes that are specified in the collection configuration file are created.

Figure 5
Steps in the import
process

If old archives are to
be purged

arcinfo

plugin

docsave

arcinfo

colcfg
2. Read collection

configuration file

1. Parse command
line arguments

3. Set variables not
already set

plugin
4. Load all the

required plugins

7. Define document
saving procedure

6. Read the archives
information file

5. Delete old
archives directory

8. Parse input docu-
ments to MCM

10. Write archives
information file

parsargv

9. Save documents
as GMLplugin

12 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

Moreover, all necessary information about how the collection is to appear
on the web is precalculated and incorporated into the collection—for
example information about icons and titles, and information produced by
classifiers. Buildcol.pl has many options that it shares with import.pl,
shown in Table 3, and some that are specific to its purpose, in Table 5.

The diagram in Figure 6 represents the execution of buildcol.pl. Many of
the steps are common to the import process. The first one that is not is
step 4 (to the left). This is performed only if the create_images option has
been set. Then, the images are created and registered in the collection
configuration file by a function in the buildcol.pl script. For this to work
properly, GIMP (GNU Image Manipulation Program), and the Gimp Perl
module, must be installed and properly configured. Also, there must be
write (as well as read) access to the collection configuration file.

Step 5 first checks to see whether there is a collection-specific build
procedure. A few collections require special build-time processing, in
which case a collection-specific builder must be written and placed in the
collection’s perllib directory, named by the collection name with
“builder” suffixed. Collection-specific builders are derived from
mgbuilder. In step 5 the builder (be it the default or a collection-specific
one) is initialised with information such as how many documents are to
be included, whether or not the old version of the collection is to be

Table 5 Additional options for the build process

Option Argument Function

–builddir Directory name Specify where the result of building is to be stored
(defaults to GSDLHOME/collect/col_name/building).

–index Index name (e.g.
section:Title)

Specify which indexes to build. This defaults to all the
indexes indicated in the collection configuration file.

–allclassifications None Prevent the build process from removing
classifications that include no documents (for
example, the “X” classification in titles if there are no
documents whose titles start with the letter X).

–create_images None Create collection icons automatically (to use this,
GIMP, and the Gimp Perl module, must be installed).

–mode all,
compress_text,
infodb, or
build_index

Determine what the build process is to do (defaults to
all). All does a full build, compress_text only
compresses the document text, infodb creates a
database of information pertaining to the
collection—name, files, associated files, classification
information and the like—and build_index builds the
indexes specified in the collection configuration file
or on the command line.

UNDERSTANDING THE COLLECTION-BUILDING PROCESS 13

retained, and where the building and archive directories are located.

Step 6 is the actual building step, in which the document text is
compressed and indexed, collection titles and icons are stored in a
collection information database, and data structures are built to support
the required classifiers. All these steps are handled by mgbuilder (or the
collection-specific builder), which in turn uses the MG (“Managing
Gigabytes,” see Witten et al., 1999) software for compressing and
indexing. The parts of the collection that are built can be specified by the
mode option, but the default is to build everything—compressed text,
indexes, and collection information database.

Recall that to make a collection available over the web once it is built,
you must move it from the collection’s building directory to the index
directory. Collections are not built directly into index because large
collections may take hours or days to build. It is important that the
building process does not affect an existing copy of the collection until
the build is complete.

1.4 GML documents

All source documents are brought into the Greenstone system by
converting them to a format known as “Greenstone Markup Language” or
GML. This format marks documents into sections, and can also be used to
store metadata at the document or section level.

The HTML convention of tags enclosed in angle brackets is adopted for
markup. Any <, >, or " characters within the text are stored as their HTML

equivalent <, > and ".

Figure 6
Steps in the build
process

mgbuilder

colcfg
2. Read collection

configuration file

1. Parse command
line arguments

3. Set variables not
already set

5. Locate and load
collection builder

6. Build required
collection parts

If collection icons
required

4. Create collection
icons

parsargv

14 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

Table 6 Subtags of <gsdlsection>

gsdlsourcefilename Original file from which the GML was generated
gsdldoctype Type of document (currently the only recognised type is indexed_doc)

gsdlassocfile File associated with the document (e.g. an image file)
gsdlnum Subsection number (this does not exist at the document’s top level)

Figure 7
Three examples of
documents in
GML format

(a) <gsdlsection
 gsdlsourcefilename = "uu02fe.txt"
 gsdldoctype = "indexed_doc"
 Identifier="HASHa723e7e164df07c833bfc4"
 Title = "Freshwater Resources in Arid Lands"
 gsdlassocfile="cover.jpg:image/jpeg"
 gsdlassocfile="p21.jpg:image/jpeg"
 gsdlassocfile="p22.jpg:image/jpeg">

 This is the text of the document
</gsdlsection>

(b) <gsdlsection
 gsdlsourcefilename = "uu02fe.txt"
 gsdldoctype = "indexed_doc"
 Identifier="HASHa723e7e164df07c833bfc4"
 Title = "Freshwater Resources in Arid Lands">
 <gsdlsection gsdlnum="1" Title="Preface">

 This is the text of the preface
 </gsdlsection>
 <gsdlsection gsdlnum="2" Title="Conclusions">
 <gsdlsection gsdlnum="1" Title="Part 1">

 This is the first part of the conclusions
 </gsdlsection>
 <gsdlsection gsdlnum="2" Title="Part 2">

 This is the second part of the conclusions
 </gsdlsection>
</gsdlsection>

(c) <gsdlsection
 gsdlsourcefilename = "uu02fe.txt"
 gsdldoctype = "indexed_doc"
 Identifier="HASHa723e7e164df07c833bfc4"
 Title = "Freshwater Resources in Arid Lands">
 <gsdlsection gsdlnum="1" Title="Chapter 1">
 <gsdlsection gsdlnum="1">

 This is the text of the first page of chapter 1
 </gsdlsection>
 <gsdlsection gsdlnum="2">

 This is the text of the second page of chapter 1
 </gsdlsection>
 </gsdlsection>
 <gsdlsection gsdlnum="2" Title="Chapter 2">
 <gsdlsection gsdlnum="1">

 This is the text of the first and only page of chapter 2
 </gsdlsection>
 </gsdlsection>
</gsdlsection>

UNDERSTANDING THE COLLECTION-BUILDING PROCESS 15

A <gsdlsection> tag denotes the start of each document section, and the
corresponding </gsdlsection> closing tag marks the end of that section.
Each <gsdlsection> tag can contain any number of the subtags shown in
Table 6. Metadata is indicated within the gsdlsection tag (for example,
<gsdlsection Title=“Food and Nutrition Bulletin”>); thus different
metadata can be associated with individual sections of a document. Any
subtags other than those in Table 6 are considered to be metadata that is
attached to that section.

Figure 7a is a GML file that contains a simple document comprising a
single section with title, and three associated images. Figure 7b shows a
more complex document: a book with two sections called Preface and
Conclusions, the second of which has two subsections. Note that a chapter
is simply treated as a top-level section. In some collections documents are
split into individual pages. These are treated as sections, though they
don’t usually have titles. Figure 7c shows a book with two sections
(corresponding to chapters), the first of which has two pages and the
second one page.

Document metadata

Metadata is descriptive information such as author, title, date, keywords,
and so on, that is associated with a document. It has already been
mentioned that metadata is stored with documents. Looking at Figure 7,
you can see that metadata is stored within <gsdlsection> tags in
attribute=value pairs. One example is the line Title=“Freshwater
Resources in Arid Lands” in Table 2c—the title of a document is a piece
of metadata associated with it. The Dublin Core metadata standard1 is
used for defining metadata types. Table 7 shows what types are available
in the standard—starred entries are used in collections available from the
New Zealand Digital Library web site today. If there is no type that aptly
describes a particular kind of metadata, metadata types that are not in the
Dublin Core may be used too. For example, the Demo collection contains
how to and Magazine metadata.

Inside GML documents

Within a single document, the GML format imposes a limited amount of
structure. Documents are divided into paragraphs. They can be split
hierarchically into sections and subsections; these may be nested to any
depth. Each document has an associated Object Identifier or OID—these
are extended to identify sections and subsections by appending section

1 For more information on Dublin Core see the web site “The Dublin Core Metadata

Initiative” at http://purl.org/dc/, accessed 16 January 2001.

16 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

and subsection numbers, separated by periods, to the document’s OID.
For example, subsection 3 of section 2 of document HASHa7 is referred
to as HASHa7.2.3.

When you read a book in a Greenstone collection, the section hierarchy is
manifested in the table of contents of the book. For example, books in the
Demo collection have a hierarchical table of contents showing chapters,
sections, and subsections, as illustrated in Figure 8a. Documents in the
Computer Science Technical Reports collection do not have a hierarchical
subsection structure, but each document is split into pages and you can
browse around the pages of a retrieved document. Chapters, sections,
subsections, and pages are all implemented simply as “sections” within
the document.

The document structure is also used for searchable indexes. There are
three possible levels of index: document, section, and paragraph, though
most collections will not use all three levels. A document index contains
the full document—you use it to find all documents that contain a
particular set of words (the words may be scattered far and wide

Table 7 The Dublin Core metadata standard

 Name Metadata
subtag

Definition

*Title Title A name given to the resource
*Creator Creator An entity primarily responsible for making the content

of the resource
*Subject and keywords Subject The topic of the content of the resource
*Description Description An account of the content of the resource
*Publisher Publisher An entity responsible for making the resource available
 Contributor Contributor An entity responsible for making contributions to the

content of the resource
*Date Date The date that the resource was published or some other

important date associated with the resource.
 Resource type Type The nature or genre of the content of the resource
 Format Format The physical or digital manifestation of the resource
*Resource identifier Identifier An unambiguous reference to the resource within a

given context: this is the object identifier or OID
*Source Source A reference to a resource from which the present

resource is derived
*Language Language A language of the intellectual content of the resource
 Relation Relation A reference to a related resource
*Coverage Coverage The extent or scope of the content of the resource
 Rights management Rights Information about rights held in and over the resource

UNDERSTANDING THE COLLECTION-BUILDING PROCESS 17

throughout the document). When a section index is created, each portion
of text that is indexed stretches from a gsdlsection tag to the next-
occurring gsdlsection tag—thus a chapter that immediately begins with a
new section will produce an empty document in the index. Sections and
subsections are treated alike: the hierarchical document structure is
flattened for the purposes of creating searchable indexes.

The pulldown menu in Figure 8b shows the searchable indexes for the
Demo collection. “Chapters” and “section titles” are section-level
indexes, while “entire books” is a document-level index. As well as
indexes of text, indexes of any kind of metadata can also be created. For
example, some collections offer searchable indexes of section titles, and
Figure 8b illustrates this.

1.5 The collection configuration file

The collection configuration file governs the structure of a collection as
seen by the user, allowing you to customise the “look and feel” of your
collection and the way in which its documents are processed and
presented. A simple collection configuration file is created when you run
mkcol.pl, which lists your name and E-mail address as the creator and
maintainer. Remember from the walkthrough that the creator argument is
required—this is where the E-mail address comes from.

Each line of the collection configuration file is essentially an “attribute,
value” pair. Each attribute gives a piece of information about the
collection that affects how it is supposed to look or how documents are to
be processed. Table 8 shows the items that can be included in a collection

Figure 8 Hierarchical
structure in the Demo
collection

18 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

configuration file, and what each is used for.

The collection configuration file created by the mkcol.pl script, shown in
Table 9, is a very simple one and contains a bare minimum of
information. Lines 1 and 2 stem from the creator option supplied to the
mkcol.pl program, and contain the E-mail addresses of the person who
created the collection, and that of the person responsible for maintaining
it (not necessarily the same person).

Line 3 indicates whether the collection will be available to the public
when it is built, and is either true (the default, meaning the collection will
be publicly available), or false (meaning that it will not). This is useful
when building collections to test software, or building collections of
material for personal use. Line 4 indicates whether the collection is beta
or not (this also defaults to true, meaning that the collection is a beta
release).

Line 5 determines what collection indexes are created at build time: In
this example only the document text is to be indexed. Indexes can be
constructed at the document, section, and paragraph levels. They can
contain the material in text, or in any metadata—most commonly Title.
The form used to specify an index is level:data. For example, to include
an index of section titles as well, you should change line 5 to indexes
document:text section:Title. More than one type of data can be included in
the same index by separating the data types with commas. For example, to
create a section-level index of titles, text and dates, the line should read
indexes section:text,Title,Date. The default index defined in line 6 is the
default to be used on the collection’s search page.

Table 8 Items in the collection configuration file

creator E-mail address of the collection’s creator
maintainer E-mail address of the collection’s maintainer

public Whether collection is to be made public or not
beta Whether collection is beta version or not

indexes List of indexes to build
defaultindex The default index

subcollection Define a subcollection based on metadata
indexsubcollections Specify which subcollections to index
defaultsubcollection The default indexsubcollection

languages List of languages to build indexes in
defaultlanguage Default index language

collectionmeta Defines collection-level metadata
plugin Specify a plugin to use at build time
format A format string (explained below)

classify Specify a classifier to use at build time

UNDERSTANDING THE COLLECTION-BUILDING PROCESS 19

Lines 7–13 specify which plugins to use when converting documents to
GML format and when building collections from GML files. Section 2.1
gives information about what plugins are available. The order in which
plugins are listed is the order in which they are tried on each document,
and once a plugin that is able to process a document is found, no more are
tried.

Line 14 specifies that an alphabetic list of titles is to be created for
browsing purposes. Browsing structures are constructed by “classifiers”.
Section 2.2 gives information about classifiers and what they can do.

Lines 15–18 are used to specify collection-level metadata. The long form
of the name is used as the collection’s “title” for the web browser. The
collectionicon entry gives the URL of the collection’s icon. If an index is
specified (as in line 18), the string following is displayed as the name of
that index on the collection’s search page. A particularly important piece
of collection-level metadata is collectionextra, which gives a stretch of
text, surrounded by double quotes, describing the collection. This will be
shown as the “About this collection” text.

This simple collection configuration file does not include any examples of
format strings, nor of the subcollection and language facilities provided
by the configuration file. Format strings are covered more thoroughly in
Section 2.3, but we will look at subcollections and languages here.

Subcollections

Greenstone allows you to define subcollections and build separate indexes
for each one. For example, in one collection there is a large subset of

Table 9 Collection configuration file created by mkcd.pl

Attribute Value
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

creator
maintainer
public
beta
indexes
defaultindex
plugin
plugin
plugin
plugin
plugin
plugin
plugin
classify
collectionmeta
collectionmeta
collectionmeta
collectionmeta

username@email.com
username@email.com
True
True
document:text
document:text
ZIPPlug
GMLPlug
TextPlug
HTMLPlug
EMAILPlug
ArcPlug
RecPlug
AZList metadata Title
collectionname "collect"
iconcollection ""
collectionextra ""
.document:text "documents"

20 UNDERSTANDING THE COLLECTION-BUILDING PROCESS

documents called Food and Nutrition Bulletin. We use this collection as
an example.

This collection has three indexes, all at the section level: one for the
whole collection, one for the Food and Nutrition Bulletin, and the third
for the remaining documents. The relevant lines from the collection
configuration file can be seen below.

indexes section:text
subcollection fn “Title/^Food and Nutrition Bulletin/i”
subcollection other “!Title/^Food and Nutrition Bulletin/i”
indexsubcollections fn other fn,other

The second and third lines define subcollections called fn, which contains
the Food and Nutrition Bulletin documents, and other, which contains the
remaining documents. The third field of these definitions is a Perl regular
expression that identifies these subsets using the Title metadata: we seek
titles that begin with Food and Nutrition Bulletin in the first case and ones
that do not in the second case (note the “!”). The final i makes the pattern-
matching case-insensitive. The metadata field, in this case Title, can be
any valid field, or Filename to match against the document’s original
filename. The fourth line, indexsubcollections, specifies three indexes:
one for the fn subcollection, one for the other subcollection, and the third
for both subcollections (i.e. all the documents). Note that if two entries
had been specified on the indexes line, the total number of indexes
generated would have been six rather than three.

If a collection contains documents in different languages, separate
indexes can be built for each language. Language is a metadata statement;
values are specified using the ISO 639 standard two-letter codes for
representing the names of languages—for example, en is English, zh is
Chinese, and mi is Maori. Since metadata values can be specified at the
section level, parts of a document can be in different languages.

For example, if the configuration file contained

indexes section:text section:Title document:text paragraph:text
languages en zh mi

section text, section title, document text, and paragraph text indexes
would be created for English, Chinese, and Maori—twelve indexes
altogether. Adding a couple of subcollections multiplies the number of
indexes again. Care is necessary to guard against index bloat.

(This index specification could be defined using the subcollection facility
rather than the languages facility. However, since the current syntax
precludes creating subcollections of subcollections, it would then be
impossible to index each language in the subcollections separately.)

nzdl.org

2
Getting the most out of your

documents

Collections can be individualised to make the information they contain
accessible in different ways. This chapter describes how Greenstone
extracts information from documents and presents it to the user: the
document processing (section 2.1) and classification structures (section
2.2), and user interface tools (sections 2.3 and 2.4).

2.1 Plugins

Plugins parse the imported documents and extract metadata from them.
For example, the HTML plugin converts HTML pages to GML and extracts
metadata which is explicit in the document format—such as titles,
enclosed by <title></title> tags.

All plugins are written in the Perl language. All derive from a basic
plugin called BasPlug, which performs universally-required operations
like creating a new GML document to work with, assigning an object
identifier (OID), and handling the sections in a document. Plugins are
kept in the perllib/plugins directory.

To find more about any plugin, just type pluginfo.pl plugin-name at the
command prompt. (You will need to invoke the appropriate setup script
first, if you haven’t already). This displays information about the plugin
on the screen—what plugin-specific options it takes, and what general
options are allowed.

You can easily write new plugins that process document formats not
handled by existing plugins, format documents in some special way, or
extract a new kind of metadata.

22 GETTING THE MOST OUT OF YOUR DOCUMENTS

General Options

Table 10 shows options that are accepted by any plugin derived from
BasPlug.

Document processing plugins

Document processing plugins are used by the collection-building software
to parse each source document in a way that depends on its format. A
collection’s configuration file lists all plugins that are used when building
it. During the import operation, each file or directory is passed to each

Table 10 Options applicable to all plugins

input_encoding Character encoding of the source documents. The default is to
automatically work out the character encoding of each individual
document. It is sometimes useful to set this value though, for example, if
you know that all your documents are plain ASCII, setting the input
encoding to ‘ascii’ will greatly increase the speed at which your
collection is imported and built. There are many possible values. Use
pluginfo.pl BasPlug to get a complete list.

default_encoding The encoding that will be used if input_encoding is ‘auto’ and automatic
encoding detection fails.

process_exp A Perl regular expression to match against filenames (for example, to
locate a certain kind of file extension). This dictates which files a plugin
will process. Each plugin has a default (HTMLPlug’s default is
(?i).html?—that is, anything with the extension .htm or .html).

block_exp A regular expression to match against filenames that are not to be passed
on to subsequent plugins. This can prevent annoying error messages
about files you aren’t interested in. Some plugins have default blocking
expressions—for example, HTMLPlug blocks files with .gif, .jpg, .jpeg,
.png, .rtf and .css extensions.

extract_acronyms Extract acronyms from documents and add them as metadata to the
corresponding GML documents.

markup_acronyms Add acronym information into document text.
extract_language Identify each document’s language and associate it as metadata. Note that

this will be done automatically if input_encoding is ‘auto’.
default_language If automatic language extraction fails, language metadata will be set to

this value.
first Extract a comma-separated list of the first stretch of text and add it as

FirstNNN metadata (often used as a substitute for Title).
extract_email Extract E-mail addresses and add them as document metadata.

extract_date Extract dates relating to the content of historical documents and add them
as Coverage metadata.

GETTING THE MOST OUT OF YOUR DOCUMENTS 23

Table 11 Greenstone plugins

Plugin Purpose File types Ignores files

General ArcPlug Processes files named in the file
archives.inf, which is used to communicate
between the import and build processes.
Must be included (unless import.pl will not
be used).

— —

RecPlug Recurses through a directory structure by
checking to see whether a filename is a
directory and if so, inserting all files in
the directory into the plugin pipeline.

— —

IndexPlug Assigns metadata from a (manually-
created) index.txt spreadsheet file used
mainly by UN collections.

— —

GMLPlug Processes GML files generated by
import.pl. Must be included (unless
import.pl will not be used).

.gml, .gm —

TEXTPlug Processes plain text by placing it
between <pre> </pre> tags (treating it
as preformatted).

.txt, .text —

HTMLPlug Processes HTML, replacing hyperlinks
appropriately. If the linked document is
not in the collection, an intermediate
page is inserted warning the user they are
leaving the collection. Extracts readily
available metadata such as Title.

.htm, .html,

.cgi, .php,

.asp, .shm,

.shtml

.gif, .jpeg,

.jpg, .png,

.css, .rtf

EMAILPlug Processes E-mail messages, recognising
author, subject, date, etc. This plugin
does not yet handle MIME-encoded E-
mails properly—although legible, they
often look rather strange.

Must end in
digits or digits
followed by
.Email

—

WordPlug Processes Microsoft Word documents,
extracting author and title where
available, and keeping diagrams and
pictures in their proper places. The
conversion utilities used by this plugin
often produce HTML that is poorly
formatted, and we recommend that you
provide the original documents for
viewing when building collections of
WORD files. However, the text that is
extracted from the documents is adequate
for searching and indexing purposes.

.doc .gif, .jpeg,
.jpg, .png,
.css, .rtf

24 GETTING THE MOST OUT OF YOUR DOCUMENTS

Table 11 Greenstone plugins (continued)

Plugin Purpose File types Ignores files

PDFPlug Processes PDF documents, extracting the
first line of text as a title. The pdftohtml
program fails on some PDF files. What
happens is that the conversion process
takes an exceptionally long time, and
often an error message relating to the
conversion process appears on the
screen. If this occurs, the only solution
that we can offer is to remove the
offending document from the collection
and re-import.

.pdf .gif, .jpeg,
.jpg, .png,
.css, .rtf

PSPlug Processes PostScript documents,
optionally extracting date, title and page
number metadata. This plugin does not
work on Windows systems because it
relies on ps2ascii, a Unix utility.

.ps .eps

HBPlug Processes HTML marked up for UN
collections

— —

FOXPlug Processes FoxBASE dbt files .dbt, .dbf —
ZIPPlug Uncompresses gzip, bzip, zip, and tar

files, provided the appropriate GNU tools
are available.

.gzip, .bzip,

.zip, .tar, .gz,

.bz, .tgz, .taz

—

Collection
Specific

PrePlug Processes HTML output using
PRESCRIPT, splitting documents into
pages for the Computer Science
Technical Reports collection.

.html, .html.gz —

GBPlug Processes Project Gutenberg
etext—which includes manually-entered
title information.

.txt.gz, .html,

.htm
—

TCCPlug Processes E-mail documents from
Computists’ Weekly

Must begin
with tcc or cw

—

plugin in turn until one is found that can process it—thus earlier plugins
take priority over later ones. If no plugin can process the file, a warning is
printed (to standard error) and processing passes to the next file. (This is
where the block_exp option can be useful—to prevent these error
messages for files that might be present but don’t need processing.)
During building, the same procedure is used, but the archives directory is
processed instead of the import directory.

The standard Greenstone plugins are listed in Table 11. Recursion is

GETTING THE MOST OUT OF YOUR DOCUMENTS 25

necessary to traverse directory hierarchies. Although the import (and
build) program does not perform explicit recursion, some plugins cause
indirect recursion. A plugin may itself pass files or directory names into
the plugin pipeline. For example, the standard way of recursing through a
hierarchical directory structure is to specify RecPlug, which does exactly
this. If present, it should be the last element in the pipeline. Only the first
three plugins in Table 11 are recursive.

Some plugins are written specifically for particular collections. For
example, the collection may have a document format not found
elsewhere, like the e-text used in the Gutenberg collection. These plugins
are found in the collection’s perllib/plugins directory. If a collection-
specific plugin has the same name as a general one, the collection-specific
version will be used.

Some document-processing plugins use external programs that parse
specific proprietary formats—for example, Microsoft Word—into either
plain text or HTML. A general plugin called ConvertToPlug invokes the
appropriate conversion program and passes the result to either TEXTPlug
or HTMLPlug. We describe this in more detail shortly.

Plugin-specific options

Some plugins have individual options, which control what they do in finer
detail than the general options allow. Table 12 describes them.

Plugins to import proprietary formats

Proprietary formats pose difficult problems for any digital library system.

Although documentation may be available about how they work, they are
subject to change without notice, and it is difficult to keep up with
changes. Greenstone has adopted the policy of using GPL (GNU Public
License) conversion utilities written by people dedicated to the task.
Utilities to convert Word and PDF formats are included in the packages
directory. These all convert documents to either text or HTML. Then
HTMLPlug and TEXTPlug are used to further convert them to the GML
format. ConvertToPlug is used to include the conversion utilities. Like
BasPlug it is never called directly. Rather, plugins written for individual
formats are derived from it as illustrated in Figure 9. ConvertToPlug uses
Perl’s dynamic inheritance scheme to inherit from either TEXTPlug or
HTMLPlug, depending on the format to which a source document has
been converted.

26 GETTING THE MOST OUT OF YOUR DOCUMENTS

When ConvertToPlug receives a document, it calls gsConvert.pl (found in
GSDLHOME/bin/script) to invoke the required conversion utility. Once
the document has been converted, it is returned to ConvertToPlug, which
invokes the text or HTML plugin as appropriate. Any plugin derived from
ConvertToPlug has an option convert_to, whose argument is either text or

Table 12 Plugin-specific options

Plugin Option Purpose

HTMLPlug nolinks Do not attempt to trap links within the collection.
This speeds up the import/build process, but any
links in the collection will be broken.

keep_head Do not strip out HTML headers.
no_metadata Do not attempt to find any metadata (this may

speed up the import/build process).
metadata_fields Takes a comma-separated list of metadata types

(defaults to Title) to extract. To rename the
metadata in the GML file, use tag<newname>
where tag is the HTML tag sought and newname
its new name.

hunt_creator_metadata Find as much metadata as possible about
authorship and put it in the GML document as
Creator metadata. You also need to include
Creator using the metadata_fields option.

w3mir Use this option if the w3mir program has been
used to create the structure of the documents to
be imported.

assoc_files Gives a Perl regular expression that describes
file types to be treated as associated files. The
default types are .jpg, .jpeg, .gif, .png, .css

rename_assoc_files Rename files associated with documents. During
this process the directory structure of any
associated files will become much shallower
(useful if a collection must be stored in limited
space).

title_sub Perl substitution expression to modify titles.
PSPlug extract_date Extract the creation date from the PostScript

header and store it as metadata.
extract_title Extract the document title from the PostScript

header and store it as title metadata.
extract_pages Extract the page numbers from the PostScript

document and add them to the appropriate
sections as metadata with the tag Pages

GETTING THE MOST OUT OF YOUR DOCUMENTS 27

html, to specify which intermediate format is preferred. Text is faster, but
HTML is better for pictures and suchlike.

Sometimes there are several conversion utilities for a particular format,
and gsConvert may invoke more than one for any given document. For
example, the preferred Word conversion utility wv does not cope with
anything less than Word 6, and a program called AnyToHTML, which
essentially just extracts whatever text strings can be found, is called to
convert Word 5 documents.

The steps involved in adding a new external document conversion utility
are:

1. Install the new conversion utility so that it is accessible by
Greenstone (we recommend you put it in the packages
directory).

2. Alter gsConvert.pl to use the new conversion utility. This
involves adding a new clause to the if statement in the main
function, and adding a function that calls the conversion utility.

3. Write a top-level plugin that inherits from ConvertToPlug to
catch the format and pass it on.

Assigning metadata from a file

Using IndexPlug, metadata can be assigned to documents from a
manually created spreadsheet-like file. We describe this in some detail, so
that you can create metadata “index” files in the appropriate format, or
alter IndexPlug to use a file format of your choice.

IndexPlug checks to see if index.txt exists, and if so, reads the list of files,

Figure 9 Plugin
inheritance hierarchy

BasPlug

HTMLPlug TEXTPlug

ConvertToPlug

WordPlug

28 GETTING THE MOST OUT OF YOUR DOCUMENTS

assigns metadata to them as specified, and passes each one in turn to the
plugin pipeline. The index.txt file associated with UN collections contains
extra metadata that is associated with each book. This includes the
Subject classification, Organisation, “how to” classification, and
Magazine title. The information was generated manually from
spreadsheet files supplied with the collection, by far the most time-
consuming part of making the collection.

An annotated excerpt of the index.txt file appears in Figure 10. The first
line is a key to what metadata fields are included, in this case Subject,
Organisation, Howto, and Magazine metadata. Subsequent lines give the
filename of a document followed by its metadata values. For example, the
second line of the example in Figure 10 assigns to the document that
originated in file bostid/b22bue the Subject 16.11, the Organisation
bostid, the “how to” start a butterfly farm, and nothing for Magazine. A
mechanism is provided to allow for multiple field values and missing
fields, by placing field names in angle brackets. The next line not only
assigns 14.12 to Subject and faobfs to Organisation but also assigns 16.11
to Subject as well; it makes no assignment to “how to”. All metadata
specifications may be repeated in a document file. This combines a
mechanism to utilise metadata provided in spreadsheet files with a way of
allowing more flexible non-column-oriented specifications.

2.2 Classifiers

Classifiers are used to create a collection’s browsing indexes. Examples
are the dlpeople collection’s Titles A-Z index, and the Subject, How to,
Organisation and Titles A-Z indexes in the Humanity Development

Figure 10
The index.text
metadata file, used by
IndexPlug

key: Subject Organization Howto Magazine

bostid/b22bue 16.11 bostid "start a butterfly farm"
faobetf/fb33fe 14.12 faobfs <Subject>16.11

faobetf/fb34fe 14.12 faobfs "farm snails" <Subject>16.11
bostid/b18ase 16.11 bostid "introduce little-known Asian farm animals with
a promising future"
bostid/b20cre 16.11 bostid

bostid/b17mie 16.11 bostid "introduce small animals and micro-livestock in
your farm"
bostid/b21wae 16.5 bostid "utilize the Water Buffalo more effectively"

 <Subject>16.11
ecourier/ec158e 23.15 ecc <Subject>8.1 "<Magazine>The Courier"

ecourier/ec159e 23.15 ecc <Subject>6.1 "<Magazine>The Courier"
ecourier/ec160e 23.15 ecc <Subject>21.1 "<Magazine>The Courier"
wb/wb34te 6.4 wb "achieve gender equality"

GETTING THE MOST OUT OF YOUR DOCUMENTS 29

Library—of which the Demo collection is a subset. The navigation bar
near the top of the screenshots in Figures 3 and 8a include the search
function, which is always provided, followed by buttons for any
classifiers that have been defined. The information used to support
browsing is stored in the collection information database, and is placed
there by classifiers which are called during the final phase of buildcol.pl.

Classifiers, like plugins, are specified in a collection’s configuration file.
For each one there is a line starting with the keyword classify and
followed by the name of the classifier and any options it takes. The basic
collection configuration file discussed in Section 1.5 includes the line
classify AZList –metadata Title, which makes an alphabetic list of titles
by taking all those with a Title metadata field, sorting them and splitting
them into alphabetic ranges. An example is shown in Figure 11.

A simpler classifier, called List, illustrated in Figure 12, creates a sorted
list of a given metadata element and displays it without any alphabetic
subsections. An example is the how to metadata in the Demo collection,
which is produced by a line classify List –metadata Howto in the
collection configuration file. Another general-purpose list classifier is
DateList, illustrated in Figure 13, which generates a selection list of date
ranges. (The DateList classifier is also used in the Greenstone Archives
collection.)

Other classifiers generate browsing structures that are explicitly
hierarchical. Hierarchical classifications are useful for subject
classifications and subclassifications, and organisational hierarchies. The
Demo collection’s configuration file contains the line
classify Hierarchy –hfile sub.txt –metadata Subject –sort Title , and Figure
14 shows the subject hierarchy browser that it produces. The bookshelf
with a bold title is the one currently being perused; above it you can see
the subject classification to which it belongs.

All classifiers generate a hierarchical structure that is used to display a
browsing index. The leaves (i.e. lowest levels) of the hierarchy are
usually documents, but in some classifiers they are sections. The internal
nodes of the hierarchy are either Vlist, Hlist, or Datelist. A Vlist is a list of
items displayed vertically down the page, like the “how to” index in the
Demo collection (see Figure 12). An Hlist is displayed horizontally. For
example, the AZList display in Figure 11 is a two-level hierarchy of
internal nodes consisting of an Hlist (giving the A-Z selector) whose
children are Vlists—and their children, in turn, are documents. A Datelist
(Figure 13) is a special kind of Vlist that allows selection by year and
month.

30 GETTING THE MOST OUT OF YOUR DOCUMENTS

Figure 11
Using the AZList
classifier

Figure 12
Using the List
classifier

Figure 13
Using the DateList
Classifier

Figure 14
Using the Hierarchy
classifier

GETTING THE MOST OUT OF YOUR DOCUMENTS 31

The lines used to specify classifiers in collection configuration files
contain a metadata argument that identifies the metadata by which the
documents are classified and sorted. Any document in the collection that
does not have this metadata defined will be omitted from the classifier
(but it will still be indexed and searchable). If no metadata argument is
specified, all documents will be included in the classifier, in the order in
which they are encountered during the building process. This is useful if
you want a list of all documents in your collection. The current set of
classifiers is listed in Table 13. Just as you can use the pluginfo.pl
program to find out about any plugin, there is a classinfo.pl program that
will give you information about any classifier, and the options it provides.

All classifiers accept the argument buttonname, which defines what is
written on the Greenstone navigation button that invokes the classifier (it
defaults to the name of the metadata argument). Buttons are provided for
each Dublin Core metadata type, and for some other types of metadata.

Each classifier receives an implicit name from its position in the
configuration file. For example, the third classifier specified in the file is
called CL3. This is used to name the collection information database
fields that define the classifier hierarchy.

Collection-specific classifiers can be written, and are stored in the

Table 13 Greenstone classifiers

Classifier Argument Purpose

Hierarchy Hierarchical classification
hfile Classification file

 metadata Metadata element to test against hfile identifier
sort Metadata element to sort documents by (defaults to

Title)
 buttonname Name of the button used to access this classifier

(defaults to value of metadata argument)
List A list of documents

metadata Include documents containing this metadata element
 buttonname Name of button used to access this classifier (defaults

to value of metadata argument)
SectionList List of sections in documents
AZList List of documents split into alphabetical ranges

metadata Include all documents containing this metadata element
 buttonname Name of button used to access this classifier (defaults

to value of metadata argument)
AZSectionList Like AZList but includes every section of the document
DateList Similar to AZList but sorted by date

32 GETTING THE MOST OUT OF YOUR DOCUMENTS

collection’s perllib/classify directory. The Humanity Development
Library (and consequently the Demo collection, which is a subset of it)
has a collection-specific classifier called HDLList, which is a minor
variant of AZList.

List classifiers

The various flavours of list classifier are shown below.

• SectionList—like List but the leaves are sections rather than
documents. All document sections are included except the top level.
This is used to create lists of sections (articles, chapters or whatever)
such as in the Computists’ Weekly collection, where each issue is a
single document and comprises several independent news items,
each in its own section.

• AZList—generates a two-level hierarchy comprising an HList whose
children are VLists, whose children are documents. The HList is an
A-Z selector that divides the documents into alphabetic ranges.
Documents are sorted alphabetically by metadata, and the resulting
list is split into ranges.

• AZSectionList—like AZList but the leaves are sections rather than
documents.

• DateList—like AZList except that the top-level HList allows
selection by year and its children are DateLists rather than VLists.
The metadata argument defaults to Date.

The hierarchy classifier

All classifiers are hierarchical. However, the list classifiers described
above have a fixed number of levels, whereas the “hierarchy” classifiers
described in this section have an arbitrary number of levels. Hierarchy
classifiers are more complex to specify than list classifiers.

The hfile argument gives the name of a file, like that in Figure 15, which

Figure 15
Part of sub.tex, the
hierarchy specification
file for the HDL
collection

1 1 "General reference"
1.2 1.2 "Dictionaries, glossaries, language courses, terminology
2 2 "Sustainable Development, International cooperation, Pro
2.1 2.1 "Development policy and theory, international cooperatio
2.2 2.2 "Development, national planning, national plans"
2.3 2.3 "Project planning and evaluation (incl. project managem
2.4 2.4 "Regional development and planning incl. regional profil
2.5 2.5 "Nongovernmental organisations (NGOs) in general, self-
2.6 2.6 "Organisations, institutions, United Nations (general, d
2.6.1 2.6.1 "United Nations"
2.6.2 2.6.2 "International organisations"
2.6.3 2.6.3 "Regional organisations"
2.6.5 2.6.5 "European Community - European Union"
2.7 2.7 "Sustainable Development, Development models and example
2.8 2.8 "Basic Human Needs"
2.9 2.9 "Hunger and Poverty Alleviation"

GETTING THE MOST OUT OF YOUR DOCUMENTS 33

defines the metadata hierarchy. Each line describes one classification, and
the descriptions have three parts:

• Identifier, which matches the value of the metadata (given by the
metadata argument) to the classification.

• Position-in-hierarchy marker, in multi-part numeric form, e.g. 2,
2.12, 2.12.6.

• The name of the classification. If this contains spaces, it should
be surrounded by quotation marks.

Figure 15 is part of the sub.txt file used to create the subject hierarchy in
the Humanity Development Library (and the Demo collection). This
example is a slightly confusing one because the number representing the
hierarchy appears twice on each line. The metadata type Hierarchy is
represented in documents with values in hierarchical numeric form, which
accounts for the first occurrence. It is the second occurrence that is used
to determine the hierarchy that the hierarchy browser implements.

The hierarchy classifier has an optional argument, sort, which determines
how the documents at the leaves are ordered. Any metadata can be
specified as the sort key. The default is to produce the list in the order in
which the building process encounters the documents. Ordering at
internal nodes is determined by the order in which things are specified in
the hfile argument.

How classifiers work

Classifiers are Perl objects, derived from BasClas.pm, and are stored in
the perllib/classify directory. They are used when the collection is built,
and their execution involves four steps:

1. The new method creates the classifier object.
2. The init method initialises the object with parameters such as

metadata type, button name and sort criterion.
3. The classify method is invoked once for each document, and

stores information about the classification made within the
classifier object.

4. The get_classify_info method returns the locally stored
classification information to the build process, which writes it to
the collection information database for use when the collection is
displayed.

The classify method retrieves each document’s OID, the metadata value
on which the document is to be classified, and, where necessary, the
metadata value on which the documents are to be sorted. The

34 GETTING THE MOST OUT OF YOUR DOCUMENTS

get_classify_info method performs all sorting and classifier-specific
processing (for example, in the case of the AZList classifier, it splits the
list into ranges).

The build process initialises the classifiers as soon as the builder object is
created (see Section 1.4). Classifications are created during the build
phase, when the information database is created, by classify.pm, which
resides in Greenstone’s perllib directory.

2.3 Formatting Greenstone output

The web pages you see when using Greenstone are not pre-stored but are
generated “on the fly” as they are needed. The appearance of many
aspects of the pages is controlled using “format strings.” Format strings
belong in the collection configuration file, introduced by the keyword
format followed by the name of the element to which the format applies.
There are two different kinds of page element that are controlled by
format strings. The first comprises the items on the page that show
documents or parts of documents. The second comprises the lists
produced by classifiers and searches. All format strings are interpreted at
the time that pages are displayed. Since they take effect as soon as any
changes in collect.cfg are saved, experimenting with format strings is
quick and easy.

Table 14 shows the format statements that affect the way documents look.
The DocumentButtons option controls what buttons are displayed on a
document page. Here, string is a list of buttons (separated by |), possible
values being Detach, Highlight, Expand Text, and Expand Contents.
Reordering the list reorders the buttons.

Table 14 The format options

format DocumentImages true/false If true, display a cover image at the top left of the
document page (default false).

format DocumentHeading formatstring If DocumentImages is false, the format string
controls how the document header shown at the top
left of the document page looks (default [Title]).

format DocumentContents true/false Display table of contents (if document is
hierarchical), or next/previous section arrows and
“page k of n” text (if not).

format DocumentButtons string Controls the buttons that are displayed on a
document page (default Detach|Highlight).

format DocumentText formatstring Format of the text to be displayed on a document
page (default [Text]).

format DocumentArrowsBottom true/false Display next/previous section arrows at bottom of
document page (default true).

GETTING THE MOST OUT OF YOUR DOCUMENTS 35

Formatting Greenstone lists

Format strings that control how lists look can apply at different levels of
the display structure. They can alter all lists of a certain type within a
collection (for example DateList), or all parts of a list (for example all the
entries in the Search list), or specific parts of a certain list (for example,
the vertical list part of an AZList classifier on title).

Following the keyword format is a two-part keyword, only one part of
which is mandatory. The first part identifies the list to which the format
applies. The list generated by a search is called Search, while the lists
generated by classifiers are called CL1, CL2, CL3,… for the first, second,
third,… classifier specified in collect.cfg. The second part of the keyword
is the part of the list to which the formatting is to apply—either HList (for
horizontal list, like the A-Z selector in an AZList), VList (for vertical list,
like the list of titles under an AZList), or DateList. For example:

format CL4VList ... applies to all VLists in CL4
format CL2HList ... applies to all HLists in CL2
format CL1DateList ... applies to all DateLists in CL1
format SearchVList ... applies to the Search Results list
format CL3 ... applies to all nodes in CL3, unless

otherwise specified
format VList ... applies to all VLists in all classifiers,

unless otherwise specified

The “...” in these examples stand for HTML format specifications that
control the information, and its layout, that appear on web pages
displaying the classifier. As well as HTML specifications, any metadata
may appear within square brackets: its value is interpolated in the
indicated place. Also, any of the items in Table 15 may appear in format
strings. The syntax for the strings also includes a conditional statement,
which is illustrated in an example below.

Recall that all classifiers produce hierarchies. Each level of the hierarchy
is displayed in one of four possible ways. We have already encountered
HList, VList, and DateList. There is also Invisible, which is how the very
top levels of hierarchies are displayed—because the name of the classifier
is already shown separately on the Greenstone navigation bar.

Table 15 Items that may appear in format strings

[Text] The document’s text
[link] … [/link] The HTML to link to the document itself
[icon] An appropriate icon (e.g. the little text icon in a Search Results string)
[num] The document result number (useful for debugging).

36 GETTING THE MOST OUT OF YOUR DOCUMENTS

Examples of classifiers and format strings

Figure 16 shows part of the collection configuration file for the Demo
collection. We use this as an example because it has several classifiers
which are quite richly formatted. Note that statements in collection
configuration files must not contain newline characters—in the Table,
longer lines are broken up for readability.

Line 4 specifies the Demo collection’s How To classifier. This is the
fourth in the collection configuration file, and is therefore referred to as
CL4. The corresponding format statement is line 7 of Figure 16. The
“how to” information is generated from the List classifier, and its
structure is the plain list of titles shown in Figure 12. The titles are linked
to the documents themselves: clicking a title brings up the relevant
document. The children of the hierarchy’s top level are displayed as a
VList (vertical list), which lists the sections vertically. As the associated
format statement indicates, each element of the list is on a newline
(“
”) and contains the Howto text, hyperlinked to the document itself.

Line 1 specifies the Demo collection’s Subject classification, referred to
as CL1 (the first in the configuration file), and Line 3 the Organisation
classification CL3. Both are generated by the Hierarchy classifier and
therefore comprise a hierarchical structure of VLists.

Line 2 shows the final classification for the Demo collection, Titles A-Z
(CL2). Note that there are no corresponding format strings for these three
classifiers. Greenstone has built-in defaults for each format string type
and so it’s not necessary to set a format string unless you want to override
the default.

This accounts for the four classify lines in Figure 16. Coincidentally, there
are also four format lines. We have already discussed one, the CL4Vlist
one. The remaining three are the first type of format string, documented
in Table 14. For example, line 8 places the cover image at the top left of
each document page. Line 9 formats the actual document text, with the
title of the relevant chapter or section preceding the text itself. These are
illustrated in Figure 17.

Figure 16
Excerpt from the
Demo collection’s
collect.cfg

1
2
3
4
5

6
7
8
9

10

classify Hierarchy -hfile sub.txt -metadata Subject -sort Title
classify AZList -metadata Title
classify Hierarchy -hfile org.txt -metadata Organisation -sort Title
classify List -metadata Howto
format SearchVList "<td valign=top [link][icon][/link]</td><td>{If}
 {[parent(All':'):Title],[parent(All':'):Title]:}
 [link][Title][/link]</td>"
format CL4Vlist "
[link][Howto][/link]"
format DocumentImages true
format DocumentText "<h3>[Title]</h3>\\n\\n<p>[Text]"
format DocumentButtons "Expand Text|Expand contents|Detach|Highlight"

GETTING THE MOST OUT OF YOUR DOCUMENTS 37

Line 5 of Figure 16 is a rather complicated specification that formats the
query result list returned by a search, whose parts are illustrated in Figure
18. A simplified version of the format string is

<td valign=top>[link][icon][/link]</td>
<td>[link][Title][/link]</td>

This is designed to appear as a table row, which is how the query results
list is formatted. It gives a small icon linked to the text, as usual, and the
document title, hyperlinked to the document itself.

In this collection, documents are hierarchical. In fact, the above hyperlink
anchor will evaluate to the title of the section returned by the query.
However, it would be better to augment it with the title of the enclosing
section, the enclosing chapter, and the book in which it occurs. There is a
special metadata item, parent, which is not stored in documents but is
implicit in any hierarchical document, that produces such a list. It either
returns the parent document, or, if used with the qualifier All, the list of
hierarchically enclosing parents, separated by a character string that can
be given after the All qualifier. Thus

<td valign=top>[link][icon][/link]</td>
 <td>{[parent(All': '):Title]: }[link][Title][/link]</td>

has the effect of producing a list containing the book title, chapter title,
etc. that enclose the target section, separated by colons, with a further
colon followed by a hyperlink to the target section’s title.

Figure 17
Formatting the
document

format DocumentImages true

format DocumentText
"<h3>[Title]</h3>\\n\\n<p>[Text]"

38 GETTING THE MOST OUT OF YOUR DOCUMENTS

Unfortunately, if the target is itself a book, there is no parent and so an
empty string will appear followed by a colon. To get around this problem,
you can use if and or … else statements in a format string:

{If}{[metadata], action-if-non-null, action-if-null}
{Or}{action, else another-action, else another-action, etc}

In either case curly brackets are used to signal that the statements should
be interpreted and not just printed out as text. The If tests whether the
metadata is empty and takes the first clause if not, otherwise the second
one (if it exists). Any metadata item can be used, including the special
metadata parent. The Or statement evaluates each action in turn until one
is found that is non-null. That one is sent to the output and the remaining
actions are skipped.

Returning to line 5 of Figure 16, the full format string is

<td valign=top>[link][icon][/link]</td>
<td>{If}{[parent(All': '):Title],
 [parent(All': '):Title]:}
 [link][Title][/link]</td>

This precedes the parent specification with a conditional that checks
whether the result will be empty and only outputs the parent string when
it is present. Incidentally, parent can be qualified by Top instead of All,
which gives the top-level document name that encloses a section—in this
case, the book name. No separating string is necessary with Top.

Some final examples illustrate other features. The DateList in Figure 13 is
used in the Dates classification of the Computists’ Weekly collection
(which happens to be the second classifier, CL2). The classifier and

Figure 18
Formatting the search
results

[link][Title][/link]

[link][icon][/link]

[parent(All': '):
Title]

GETTING THE MOST OUT OF YOUR DOCUMENTS 39

format specifications are shown below. The DateList classifier differs
from AZList in that it always sorts by Date metadata, and the bottom
branches of the browsing hierarchy use DateList instead of VList, which
causes the year and month to be added at the left of the document listings.

classify AZSectionList metadata=Creator
format CL2Vlist "<td>[link][icon][/link]</td>

<td>[Creator]</td>
<td> [Title]</td>
<td>[parent(Top):Date]</td>"

The format specification shows these VLists in the appropriate way.

The format-string mechanism is powerful, but tricky to learn. The best
way is by studying existing collection configuration files.

2.4 Controlling the Greenstone user interface

The entire Greenstone user interface is controlled by macros which reside
in the GSDLHOME/macros directory. They are written in a language
designed especially for Greenstone, and are used by the library program
at run time to generate web pages. Translating the macro language into
HTML is the last step in displaying a page. Thus changes to a macro file
affect the display immediately, making experimentation quick and easy.
All macro files used by library are listed in GSDLHOME/etc/main.cfg
and loaded every time it starts.

Web pages are generated on the fly for a number of reasons, and the
macro system is how Greenstone implements the necessary flexibility.
Pages can be presented in many languages, and a different macro file is
used to store all the interface text in each language. When the library
program displays a page the macro interpreter checks a language variable
and loads the page in the appropriate language (this does not,
unfortunately, extend to translating document content). Also, the values
of certain display variables, like the number of documents found by a
search, are not known ahead of time; these are interpolated into the page
text in the form of macros.

The macro file format

Macro files have a .dm extension. Each file defines one or more packages,
each containing a series of macros used for a single purpose. Like
classifiers and plugins, there is a basis from which to build macros, called
base.dm; this file defines the basic content of a page.

Macros have names that begin and end with an underscore, and their

40 GETTING THE MOST OUT OF YOUR DOCUMENTS

content is defined using curly brackets. Content can be plain text, HTML

(including links to Java applets and JavaScript), macro names, or any
combination of these. This macro from base.dm defines the content of a
page in the absence of any overriding macro:

content {<p><h2>Oops</h2>_textdefaultcontent_}

The page will read “Oops” at the top, and _textdefaultcontent_, which is
defined, in English, to be The requested page could not be found. Please
use your browsers ‘back’ button or the above home button to return to the
Greenstone Digital Library, and in other languages to be a suitable
translation of this sentence.

textdefaultcontent and _content_ both reside in the global package
because they are required by all parts of the user interface. Macros can
use macros from other packages as content, but they must prefix their
names with their package name. For example,

collectionextra {This collection contains _about:numdocs_
documents. It was last built _about:builddate_ days ago.)

comes from english.dm, and is used as the default description of a
collection. It is part of the global package, but _numdocs_ and
builddate are both in the about package—hence the about: preceding
their names.

Macros often contain conditional statements. They resemble the format
string conditional described above, though their appearance is slightly
different. The basic format is _If_(x,y,z), where x is a condition, y is the
macro content to use if that condition is true, and z the content if it is
false. Comparison operators are the same as the simple ones used in Perl
(less than, greater than, equals, not equals). This example from base.dm is
used to determine how to display the top of a collection’s about page:

imagecollection {
 If("_iconcollection_" ne "",

 ,
 imagecollectionv)
}

This looks rather obscure. _iconcollection_ resolves to the empty string if
the collection doesn’t have an icon, or the filename of an image. To
paraphrase the above code: If there is a collection image, display the
About this Collection page header (referred to by _httppageabout_) and
then the image; otherwise use the alternative display _imagecollectionv_.

Macros can take arguments. Here is is a second definition for the

GETTING THE MOST OUT OF YOUR DOCUMENTS 41

imagecollection macro which immediately follows the definition given
above in the base.dm file:

imagecollection[v=1]{_imagecollectionv_}

The argument [v=1] specifies that the second definition is used when
Greenstone is running in text-only mode. The language macros work
similarly—apart from english.dm, because it is the default, all language
macros specify their language as an argument. For example,

textimagehome {Home Page}

appears in the English language macro file, whereas the German version
is

Table 16 The packages directory

Directory Package URL

mg MG, short for “Managing Gigabytes.”
Compression, indexing and search
software used to manage textual
information in Greenstone collections.

www.citri.edu.au/mg

wget Web mirroring software for use with
Greenstone. Written in C++

www.tuwien.ac.at/~prikryl/wget.html

w3mir A web mirroring program written in
Perl. This is not Greenstone’s preferred
mirroring program because it relies on a
specific outdated version of a certain
Perl module (which is distributed in the
w3mir directory).

www.math.uio.no/~janl/w3mir

windows Packages used when running under
Windows.

–

windows/gdbm Version of the GNU Database Manager
created for Windows. GDBM comes as a
standard part of Linux.

–

windows/crypt Encryption program used for passwords
for Greenstone’s administrative
functions.

–

wv Microsoft Word converter (for building
collections from Word documents)
slimmed down for Greenstone.

sourceforge.net/projects/wvware

pdftohtml PDF converter used when building
collections from PDF documents.

www.ra.informatik.uni-stuttgart.de/
~gosho/pdftohtml

yaz Z39.50 client program being used for
research in making Greenstone Z39.50
compliant. Progress is reported in the
README.gsdl file.

www.indexdata.dk

42 GETTING THE MOST OUT OF YOUR DOCUMENTS

textimagehome [l=de] {Hauptaseite}

The English and German versions are in the same package, though they
are in separate files (package definitions may span more than one file).
Greenstone uses its l argument at run time to determine which language to
display.

As a final example, Figure 19 shows an exerpt from the macro file
about.dm that is used to generate the “About this collection” page for
each collection. It shows three macros being defined, _pagetitle_,
content and _textabout_.

Using macros

Macros are powerful, and can be a little obscure. However, with a good
knowledge of HTML and a bit of practice, they become a quick and easy
way to customise your Greenstone site.

For example, suppose you wanted to create a static page that looked like
your current Greenstone site. You could create a new package, called
static, for example, in a new file, and override the _content_ macro. Add
the new filename to the list of macros in GSDLHOME/etc/main.cfg which
Greenstone loads every time it is invoked. Finally, access the new page at
http://servername/cgi-bin/library?a=p&p=static, where servername is
the name of your Greenstone server.

To change the “look and feel” of Greenstone you can edit the base and

Figure 19
Part of the about.dm
macro file

package about

##
about page content
##

pagetitle {_collectionname_}

content {
<center>
navigationbar
</center>
query:queryform
<p>_iconblankbar_
<p>_textabout_
textsubcollections
<h3>_help:textsimplehelpheading_</h3>
help:simplehelp
}

textabout {
<h3>_textabcol_</h3>
Global:collectionextra

}

GETTING THE MOST OUT OF YOUR DOCUMENTS 43

style packages. To change the Greenstone home page, edit the home
package (this is described in the Greenstone Digital Library Installer’s
Guide). To change the query page, edit query.dm.

Experiment freely with macros. Changes appear instantly, because
macros are interpreted as pages are displayed. The macro language is a
powerful tool that can be used to make your Greenstone site your own.

2.5 The packages directory

The packages directory, whose contents are shown in Table 16, is where
all the code used by Greenstone but written by other research teams
resides. All software distributed with Greenstone has been released under
the GNU Public license. The executables produced by these packages are
placed in the Greenstone bin directory. Each package is stored in a
directory of its own. Their functions vary widely, from indexing and
compression to converting Microsoft Word documents to HTML. Each
package has a README file which gives more information about it.

44 GETTING THE MOST OUT OF YOUR DOCUMENTS

nzdl.org

3
The Greenstone
runtime system

This chapter describes the Greenstone runtime system so that you can
augment and extend its capabilities. The software is written in C++ and
makes extensive use of virtual inheritance. If you are unfamiliar with this
language you should learn about it before proceeding. Deitel and Deitel
(1994) provide a comprehensive tutorial, while Stroustroup (1997) is the
definitive reference.

We begin by explaining the design philosophy behind the runtime system
since this has a strong bearing on implementation. Then we provide the
implementation details, which forms the main part of this chapter.

3.1 Process structure

Figure 20 shows several users, represented by computer terminals at the
top of the diagram, accessing three Greenstone collections. Before going
online, these collections undergo the importing and building processes
described in earlier chapters. First, documents, shown at the bottom of the
figure, are imported into the GML format. Then the GML files are built
into various searchable indexes and a collection information database that
includes the hierarchical structures that support browsing. This done, the
collection is ready to go online and respond to requests for information.

Two components are central to the design of the runtime system:
“receptionists” and “collection servers.” From a user’s point of view, a
receptionist is the point of contact with the digital library. It accepts user
input, typically in the form of keyboard entry and mouse clicks; analyzes
it; and then dispatches a request to the appropriate collection server (or
servers). This locates the requested piece of information and returns it to
the receptionist for presentation to the user. Collection servers act as an
abstract mechanism that handle the content of the collection, while

46 GREENSTONE RUNTIME SYSTEM

receptionists are responsible for the user interface.

As Figure 20 shows, receptionists communicate with collection servers
using a defined protocol. The implementation of this protocol depends on
the computer configuration on which the digital library system is running.
The most common case, and the simplest, is when there is one
receptionist and one collection server, and both run on the same
computer. This is what you get when you install Greenstone. In this case
the two processes are combined to form a single executable (called
library), and consequently using the protocol reduces to making function
calls. We call this the null protocol. It forms the basis for the standard
out-of-the-box Greenstone digital library system. This simplified
configuration is illustrated in Figure 21, with the receptionist, protocol
and collection server bound together as one entity, the library program.
The aim of this chapter is to show how it works.

Usually, a “server” is a persistent process that, once started, runs
indefinitely, responding to any requests that come in. Despite its name,
however, the collection server in the null protocol configuration is not a
server in this sense. In fact, every time any Greenstone web page is
requested, the library program is started up (by the CGI mechanism),
responds to the request, and then exits. We call it a “server” because it is

Figure 20
Overview of a general
Greenstone system

GREENSTONE RUNTIME SYSTEM 47

also designed to work in the more general configuration of Figure 20.

Surprisingly, this is not as slow as one might expect, and results in a
perfectly usable service. However, it is clearly inefficient. There is a
mechanism called Fast-CGI (www.fastcgi.com) which provides a middle
ground. Using it, the library program can remain in memory at the end of
the first execution, and have subsequent sets of CGI arguments fed to it,
thus avoiding repeated initialisation overheads and accomplishing much
the same behaviour as a server. Using Fast-CGI is an option in
Greenstone, and is enabled by recompiling the source code with
appropriate libraries.

As an alternative to the null protocol, the Greenstone protocol has also
been implemented using the well-known CORBA scheme (Slama et al.,
1999). This uses a unified object oriented paradigm to enable different
processes, running on different computer platforms and implemented in
different programming languages, to access the same set of distributed
objects over the Internet (or any other network). Then, scenarios like
Figure 19 can be fully implemented, with all the receptionists and
collection servers running on different computers.

Figure 21
The Greenstone
system using the “null
protocol”

48 GREENSTONE RUNTIME SYSTEM

This allows far more sophisticated interfaces to be set up to exactly the
same digital library collections. As just one example, Figure 22 shows a
graphical query interface, based on Venn diagrams, that lets users
manipulate Boolean queries directly. Written in Java, the interface runs
locally on the user’s own computer. Using CORBA, it accesses a remote
Greenstone collection server, written in C++.

The distributed protocol is still being refined and readied for use, and so
this manual does not discuss it further (see Bainbridge et al ., submitted,
for more information).

3.2 Conceptual framework

Figure 23 shows the “about this collection” page of a particular
Greenstone collection (the Project Gutenberg collection). Look at the
URL at the top. The page is generated as a result of running the CGI
program called library, which is the above-mentioned executable
comprising both receptionist and collection server connected by the null
protocol. The arguments to library are c=gberg, a=p, and p=about. They
can be interpreted as follows:

Figure 22
Graphical query
interface to
Greenstone

GREENSTONE RUNTIME SYSTEM 49

For the Project Gutenberg collection (c=gberg), the action is to
generate a page (a=p), and the page to generate is called “about”
(p=about).

Figure 24 illustrates the main parts of the Greenstone runtime system. At
the top, the receptionist first initialises its components, then parses the
CGI arguments to decide which action to call. In performing the action
(which includes further processing of the CGI arguments), the software
uses the protocol to access the content of the collection. The response is
used to generate a web page, with assistance from the format component
and the macro language.

The macro language, which we met in Section 2.4, is used to provide a
Greenstone digital library system with a consistent style, and to create
interfaces in different languages. Interacting with the library generates
bare bones of web pages; the macros in GSDLHOME/macros put flesh on
them.

The Macro Language object in Figure 24 is responsible for reading these
files and storing the parsed result in memory. Any action can use this
object to expand a macro. It can even create new macro definitions and

Figure 23
Generating the “about
this collection” page

50 GREENSTONE RUNTIME SYSTEM

override existing ones, adding a dynamic dimension to macro use.

The layout of the “about this collection” page (Figure 23) is known before
runtime, and encoded in the macro file about.dm. Headers, footers, and
the background image are not even mentioned because they are located in
the Global macro package. However, the specific “about” text for a
particular collection is not known in advance, but is stored in the
collection information database during the building process. This
information is retrieved using the protocol, and stored as
collectionextra in the Global macro package. To generate the content
of the page, the _content_ macro in the about package (shown in Figure
19) is expanded. This in turn expands _textabout_, which itself accesses
collectionextra, which had just been dynamically placed there.

One further important ingredient is the Format object. Format statements
in the collection configuration file affect the presentation of particular
pieces of information, as described in Section 2.3. They are handled by
the Format object in Figure 24. This object’s main task is to parse and
evaluate statements such as the format strings in Figure 16. As we learned
in Section 2.3, these can include references to metadata in square brackets
(e.g. [Title]), which need to be retrieved from the collection server.
Interaction occurs between the Format object and the Macro Language

Figure 24
Greenstone runtime
system

Protocol

Initialise

Collection Server

Source

Collection

Search

Filter

DatabaseIndexes DatabaseIndexes

Source

Collection

Search

Filter

.....

Initialise

FormatActions

Receptionist

Macro LanguageCGI Arguments

GREENSTONE RUNTIME SYSTEM 51

object, because format statements can include macros that, when
expanded, include metadata, which when expanded include macros, and
so on.

At the bottom of Figure 24, the collection server also goes through an
initialisation process, setting up Filter and Source objects to respond to
incoming protocol requests, and a Search object to assist in this task.
Ultimately these access the indexes and the collection information
database, both formed during collection building.

Ignoring blank lines, the receptionist contains 15,000 lines of code. The
collection server contains only 5,000 lines (75% of which are taken up by
header files). The collection server is more compact because content
retrieval is accomplished through two pre-compiled programs. MG, a full-
text retrieval system, is used for searching, and GDBM, a database
management system, is used to hold the collection information database.

To encourage extensibility and flexibility, Greenstone uses inheritance
widely—in particular, within Action, Filter, Source, and Search. For a
simple digital library dedicated to text-based collections, this means that
you need to learn slightly more to program the system. However, it also
means that MG and GDBM could easily be replaced should the need arise.
Furthermore, the software architecture is rich enough to support full
multimedia capabilities, such as controlling the interface through speech
input, or submitting queries as graphically drawn pictures.

3.3 How the conceptual framework fits together

Sections 3.7 and 3.9 explain the operation of the collection server and
receptionist in more detail, expanding on each module in Figure 23 and
describing how it is implemented. It is helpful to first work through
examples of a user interacting with Greenstone, and describe what goes
on behind the scenes. For the moment, we assume that all objects are
correctly initialised. Initialisation is a rather intricate procedure that we
revisit in Section 3.10.

Performing a search

When a user enters a query by pressing Begin search on the search page,
a new Greenstone action is invoked, which ends up by generating a new
HTML page using the macro language. Figure 25 shows the result of
searching the Project Gutenberg collection for the name Darcy. Hidden
within the HTML of the original search page is the statement a=q. When
the search button is pressed this statement is activated, and sets the new
action to be queryaction. Executing queryaction sets up a call to the

52 GREENSTONE RUNTIME SYSTEM

designated collection’s Filter object (c=gberg) through the protocol.

Filters are an important basic function of collection servers. Tailored for
both searching and browsing activities, they provide a way of selecting a
subset of information from a collection. In this case, the queryaction sets
up a filter request by:

• setting the filter request type to be QueryFilter (Section 3.7
describes the different filter types);

• storing the user’s search preferences—case-folding, stemming and
so on—in the filter request;

• calling the filter() function using the null protocol.

Calls to the protocol are synchronous. The receptionist is effectively
blocked until the filter request has been processed by the collection server
and any data generated has been returned.

When a protocol call of type QueryFilter is made, the Filter object (in
Figure 24) decodes the options and makes a call to the Search object,
which uses MG to do the actual search. The role of the Search object is to
provide an abstract program interface that supports searching, regardless
of the underlying search tool being used. The format used for returning

Figure 25
Searching the
Gutenberg collection
for Darcy

GREENSTONE RUNTIME SYSTEM 53

results also enforces abstraction, requiring the Search object to translate
the data generated by the search tool into a standard form.

Once the search results have been returned to the receptionist, the action
proceeds by formatting the results for display, using the Format object
and the Macro Language. As Figure 25 shows, this involves generating
the standard Greenstone header, footer, navigation bar and background;
repeating the main part of the query page just beneath the navigation bar;
and displaying a book icon, title and author for each matching entry. The
format of this last part is governed by the format SearchVList statement in
the collection configuration file. Before title and author metadata can be
displayed, they must be retrieved from the collection server. This requires
further calls to the protocol, this time using BrowseFilter.

Retrieving a document

Following the above query for Darcy, consider what happens when a
document is displayed. Figure 26 shows the result of clicking on the icon
beside The Golf Course Mystery in Figure 25.

The source text for the Gutenberg collection comprises one long file per
book. At build time, these files are split into separate pages every 200

Figure 26
The Golf Course
Mystery

54 GREENSTONE RUNTIME SYSTEM

lines or so, and relevant information for each page is stored in the indexes
and collection information database. The top of Figure 26 shows that this
book contains 104 computer-generated pages, and below it is the
beginning of page one: who entered it, the title, the author, and the
beginnings of a table of contents (this table forms part of the Gutenberg
source text, and was not generated by Greenstone). At the top left are
buttons that control the document’s appearance: just one page or the
whole document; whether query term highlighting is on or off; and
whether or not the book should be displayed in its own window, detached
from the main searching and browsing activity. At the top right is a
navigation aid that supports direct access to any page in the book: simply
type in the page number and press the “go to page” button. Alternatively,
the next and previous pages are retrieved by clicking on the arrow icons
either side of the page selection widget.

The action for retrieving documents, documentaction, is specified by
setting a=d and takes several additional arguments. Most important is the
document to retrieve: this is specified through the d variable. In Figure 26
it is set to d=HASH51e598821ed6cbbdf0942b.1 to retrieve the first page
of the document with the identifier HASH51e598821ed6cbbdf0942b,
known in more friendly terms as The Golf Course Mystery. There are
further variables: whether query term highlighting is on or off (hl) and

Figure 27
Browsing titles in the
Gutenberg collection

GREENSTONE RUNTIME SYSTEM 55

which page within a book is displayed (gt). These variables are used to
support the activities offered by the buttons on the page in Figure 26,
described above. Defaults are used if any of these variables are omitted.

The action follows a similar procedure to queryaction: appraise the CGI
arguments, access the collection server using the protocol, and use the
result to generate a web page. Options relating to the document are
decoded from the CGI arguments and stored in the object for further
work. To retrieve the document from the collection server, only the
document identifier is needed to set up the protocol call to
get_document(). Once the text is returned, considerable formatting must
be done. To achieve this, the code for documentaction accesses the stored
arguments and makes use of the Format object and the Macro Language.

Browsing a hierarchical classifier

Figure 27 shows an example of browsing, where the user has chosen
Titles A-Z and pressed the button for the letter K. The action that supports
this is also documentaction, given by the CGI argument a=d as before.
However, whereas before a d variable was included, this time there is
none. Instead, the node within the browsable classification hierarchy to

Figure 28
The New Zealand
Digital Library home
page

56 GREENSTONE RUNTIME SYSTEM

display is specified in the variable cl. In our case this represents titles
grouped under the letter K. This list was formed at build time and stored
in the collection information database.

Records that represent classifier nodes in the database use the prefix CL,
followed by numbers separated by periods (.) to designate where they lie
within the nested structure. Ignoring the search button (leftmost in the
navigation bar), classifiers are numbered sequentially in increasing order,
left to right, starting at 1. Thus the top level classifier node for titles in our
example is CL1 and the page sought is generated by setting cl=CL1.11.
This can be seen in the URL at the top of Figure 27.

To process a cl document request, the Filter object is used to retrieve the
node over the protocol. Depending on the data returned, further protocol
calls are made to retrieve document metadata. In this case, the titles of the
books are retrieved. However, if the node were an interior one whose
children are themselves nodes, the titles of the child nodes would be
retrieved. From a coding point of view this amounts to the same thing,
and is handled by the same mechanism.

Finally, all the retrieved information is bound together, using the macro
language, to produce the web page shown in Figure 27.

Generating the home page

As a final example, we look at generating the Greenstone home page.
Figure 28 shows the New Zealand Digital Library home page, and its
URL includes the arguments a=p and p=home. Thus, like the “about this
collection” page, it is generated by a pageaction (a=p), but this time the
page to produce is home (p=home). The macro language, therefore,
accesses the content of home.dm. There is no need to specify a collection
(with the c variable) in this case.

The purpose of the home page is to show what collections are available.
Clicking on an icon takes the user to the “about this collection” page for
that collection. The menu of collections is dynamically generated every
time the page is loaded, based on the collections that are in the file system
at that time. When a new one comes online, it automatically appears on
the home page when that page is reloaded (provided the collection is
stipulated to be “public”).

To do this the receptionist uses the protocol (of course). As part of
appraising the CGI arguments, pageaction is programmed to detect the
special case when p=home. Then, the action uses the protocol call
get_collection_list() to establish the current set of online collections. For

GREENSTONE RUNTIME SYSTEM 57

each of these it calls get_collectinfo() to obtain information about it. This
information includes whether the collection is publicly available, what the
URL is for the collection’s icon (if any), and the collection’s full name.
This information is used to generate an appropriate entry for the
collection on the home page.

3.4 Source code

The source code for Greenstone resides in GSDLHOME/src. It occupies
two subdirectories, recpt for the receptionist’s code and colservr for the
collection server’s. Greenstone runs on Windows systems right down to
Windows 3.1, and unfortunately this imposes an eight-character limit on
file and directory names. This explains why cryptic abbreviations like
recpt and colservr are used. The remaining subdirectories include
standalone utilities, mostly in support of the building process. They are
listed in Table 17.

Another directory, GSDLHOME/lib, includes low-level objects that are
used by both receptionist and collection server. This code is described in
Section 3.5.

Greenstone makes extensive use of the Standard Template Library (STL),
a widely used C++ library from Silicon Graphics (www.sgi.com) that is
the result of many years of design and development. Like all
programming libraries it takes some time to learn. Appendix A gives a
brief overview of key parts that are used throughout the Greenstone code.
For a fuller description, consult the official STL reference manual,
available online at www.sgi.com, or one of the many STL textbooks, for
example Josuttis (1999).

Table 17 Standalone programs included in Greenstone

Subdirectory Role

setpasswd/ Password support for Windows.
getpw/ Password support for Unix.
txt2db/ Convert an XML-like ASCII text format to GNU’s database format.
db2txt/ Convert the GNU database format to an XML-like ASCII text format.
phind/ Hierarchical phrase browsing tool.
hashfile/ Compute unique document ID based on content of file.
mgpp/ Rewritten and updated version of Managing Gigabytes package in C++.
w32server/ Local library server for Windows.
checkis/ Specific support for installing Greenstone under Windows.

58 GREENSTONE RUNTIME SYSTEM

3.5 Common Greenstone types

The objects defined in GSDLHOME/lib are low-level Greenstone objects,
built on top of STL, which pervade the entire source code. First we
describe text_t, an object used to represent Unicode text, in some detail.
Then we summarize the purpose of each library file.

The text_t object

Greenstone works with multiple languages, both for the content of a
collection and its user interface. To support this, Unicode is used
throughout the source code. The underlying object that realises a Unicode
string is text_t.

Unicode uses two bytes to store each character. Figure 29 shows the main
features of the text_t Application Program Interface (API). It fulfils the

Figure 29
The text_t API
(abridged)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

typedef vector<unsigned short> usvector;

class text_t {
protected:
usvector text;
unsigned short encoding; // 0 = unicode, 1 = other

public:
 // constructors
 text_t ();
 text_t (int i);
 text_t (char *s); // assumed to be a normal c string

 void setencoding (unsigned short theencoding);
 unsigned short getencoding ();

 // STL container support
 iterator begin ();
 iterator end ();

 void erase(iterator pos);
 void push_back(unsigned short c);
 void pop_back();

 void reserve (size_type n);

 bool empty () const {return text.empty();}
 size_type size() const {return text.size();}

 // added functionality
 void clear ();
 void append (const text_t &t);

 // support for integers
 void appendint (int i);
 void setint (int i);
 int getint () const;

 // support for arrays of chars
 void appendcarr (char *s, size_type len);
 void setcarr (char *s, size_type len);
};

GREENSTONE RUNTIME SYSTEM 59

two-byte requirement using the C++ built-in type short, which is defined
to be a two byte integer. The data type central to the text_t object is a
dynamic array of unsigned shorts built using the STL declaration
vector<unsigned short> and given the abbreviated name usvector.

The constructor functions (lines 10–12) explicitly support three forms of
initialisation: construction with no parameters, which generates an empty
Unicode string; construction with an integer parameter, which generates a
Unicode text version of the numeric value provided; and construction
with a char* parameter, which treats the argument as a null-terminated
C++ string and generates a Unicode version of it.

Following this, most of the detail (lines 17–28) is taken up maintaining an
STL vector-style container: begin(), end(), push_back(), empty() and so
forth. There is also support for clearing and appending strings, as well as
for converting an integer value into a Unicode text string, and returning
the corresponding integer value of text that represents a number.

There are many overloaded operators that do not appear in Figure 29. To
give a flavour of the operations supported, these are shown in Figure 30.
Line 4 supports assignment of one text_t object to another, and line 5
overloads the += operator to provide a more natural way to append one
text_t object to the end of another. It is also possible, through line 6, to
access a particular Unicode character (represented as a short) using array
subscripting []. Assign and append operators are provided for integers
and C++ strings. Lines 12–18 provide Boolean operators for comparing
two text_t objects: equals, does not equal, precedes alphabetically, and so
on.

Member functions that take const arguments instead of non-const ones are
also provided (but not shown here). Such repetition is routine in C++

Figure 30
The overloaded
operators to text_t

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

class text_t {
 // ...
 public:
 text_t &operator=(const text_t &x);
 text_t &operator+= (const text_t &t);
 reference operator[](size_type n);

 text_t &operator=(int i);
 text_t &operator+= (int i);^ \\
 text_t &operator= (char *s);
 text_t &operator+= (char *s);

 friend inline bool operator!=(const text_t& x, const text_t& y);
 friend inline bool operator==(const text_t& x, const text_t& y);
 friend inline bool operator< (const text_t& x, const text_t& y);
 friend inline bool operator> (const text_t& x, const text_t& y);
 friend inline bool operator>=(const text_t& x, const text_t& y);
 friend inline bool operator<=(const text_t& x, const text_t& y);
 // ...
};

60 GREENSTONE RUNTIME SYSTEM

objects, making the API fatter but no bigger conceptually. In reality,
many of these functions are implemented as single in-line statements. For
more detail, refer to the source file GSDLHOME/lib/text_t.h.

Files in GSDLHOME/lib

The header files in GSDLHOME/lib include a mixture of functions and
objects that provide useful support for the Greenstone runtime system.
Where efficiency is of concern, functions and member functions are
declared inline. For the most part, implementation details are contained
within a header file’s .cpp counterpart.

cfgread.h Functions to read and write configuration files. For example,
read_cfg_line() takes as arguments the input stream to use and the
text_tarray (shorthand for vector<text_t>) to fill out with the data that is
read.

display.h A sophisticated object used by the receptionist for setting, storing and
expanding macros, plus supporting types. Section 3.9 gives further
details.

fileutil.h Function support for several file utilities in an operating system
independent way. For example, filename_cat() takes up to six text_t
arguments and returns a text_t that is the result of concatenating the items
together using the appropriate directory separator for the current operating
system.

gsdlconf.h System-specific functions that answer questions such as: does the
operating system being used for compilation need to access strings.h as
well as string.h? Are all the appropriate values for file locking correctly
defined?

gsdltimes.h Function support for date and times. For example, time2text() takes
computer time, expressed as the number of seconds that have elapsed
since 1 January 1970, and converts it into the form YYYY/MM/DD
hh:mm:ss, which it returns as type text_t.

gsdltools.h Miscellaneous support for the Greenstone runtime system: clarify if
littleEndian or bigEndian; check whether Perl is available; execute a
system command (with a few bells and whistles); and escape special
macro characters in a text_t string.

gsdlunicode.h A series of inherited objects that support processing Unicode text_t
strings through IO streams, such as Unicode to UTF-8 and vice versa; and
the removal of zero-width spaces. Support for map files is also provided

GREENSTONE RUNTIME SYSTEM 61

through the mapconvert object, with mappings loaded from
GSDLHOME/mappings.

text_t.h Primarily the Unicode text object described above. It also provides two
classes for converting streams: inconvertclass and outconvertclass. These
are the base classes used in gsdlunicode.h.

3.7 The collection server

Now we systematically explain all the objects in the conceptual
framework of Figure 24. We start at the bottom of the diagram—which is
also the foundations of the system—with Search, Source and Filter, and
work our way up through the protocol layer and on to the central
components in the receptionist: Actions, Format and Macro Language.
Then we focus on object initialisation, since this is easier to understand
once the role of the various objects is known.

Most of the classes central to the conceptual framework are expressed
using virtual inheritance to aid extensibility. With virtual inheritance,
inherited objects can be passed around as their base class, but when a
member function is called it is the version defined in the inherited object
that is invoked. By ensuring that the Greenstone source code uses the base
class throughout, except at the point of object construction, this means
that different implementations—using, perhaps, radically different
underlying technologies—can be slotted into place easily.

For example, suppose a base class called BaseCalc provides basic
arithmetic: add, subtract, multiply and divide. If all its functions are
declared virtual, and arguments and return types are all declared as
strings, we can easily implement inherited versions of the object. One,
called FixedPrecisionCalc, might use C library functions to convert
between strings and integers and back again, implementing the
calculations using the standard arithmetic operators: +, –, *, and /.
Another, called InfinitePrecisionCalc, might access the string arguments
a character at a time, implementing arithmetic operations that are in
principal infinite in their precision. By writing a main program that uses
BaseCalc throughout, the implementation can be switched between fixed
precision and infinite precision by editing just one line: the point where
the calculator object is constructed.

The Search object

Figure 31 shows the base class API for the Search object in Figure 24. It
defines two virtual member functions: search() and
docTargetDocument(). As signified by the =0 that follows the argument

62 GREENSTONE RUNTIME SYSTEM

declaration, these are pure functions—meaning that a class that inherits
from this object must implement both (otherwise the compiler will
complain).

The class also includes two protected data fields: collectdir and cache. A
Search object is instantiated for a particular collection, and the collectdir
field is used to store where on the file system that collection (and more
importantly its index files) resides. The cache field retains the result of a
query. This is used to speed up subsequent queries that duplicate the
query (and its settings). While identical queries may seem unlikely, in fact
they occur on a regular basis. The Greenstone protocol is stateless. To
generate a results page like Figure 25 but for matches 11–20 of the same
query, the search is transmitted again, this time specifying that documents
11–20 are returned. Caching makes this efficient, for the fact that the
search has already been performed is detected and the results are lifted
straight from the cache.

Both data fields are applicable to every inherited object that implements a
searching mechanism. This is why they appear in the base class, and are
declared within a protected section of the class so that inherited classes
can access them directly.

Figure 31
The Search base class
API

class searchclass {
public:
 searchclass ();
 virtual ~searchclass ();
 // the index directory must be set before any searching
 // is done
 virtual void setcollectdir (const text_t &thecollectdir);
 // the search results are returned in queryresults
 // search returns 'true' if it was able to do a search
 virtual bool search(const queryparamclass &queryparams,
 queryresultsclass &queryresults)=0;
 // the document text for 'docnum' is placed in 'output'
 // docTargetDocument returns 'true' if it was able to
 // try to get a document
 // collection is needed to see if an index from the
 // collection is loaded. If no index has been loaded
 // defaultindex is needed to load one
 virtual bool docTargetDocument(const text_t &defaultindex,
 const text_t &defaultsubcollection,
 const text_t &defaultlanguage,
 const text_t &collection,
 int docnum,
 text_t &output)=0;
protected:
 querycache *cache;
 text_t collectdir; // the collection directory

};

GREENSTONE RUNTIME SYSTEM 63

Search and retrieval with MG

Greenstone uses MG (short for Managing Gigabytes, see Witten et al.,
1999) to index and retrieve documents, and the source code is included in
the GSDLHOME/packages directory. MG uses compression techniques to
maximise disk space utilisation without compromising execution speed.

Figure 32
API for direct access
to MG (abridged)

enum result_kinds {
 result_docs, // Return the documents found in last search
 result_docnums, // Return document id numbers and weights
 result_termfreqs, // Return terms and frequencies
 result_terms // Return matching query terms
};
int mgq_ask(char *line);
int mgq_results(enum result_kinds kind, int skip, int howmany,
 int (*sender)(char *, int, int, float, void *),
 void *ptr);
int mgq_numdocs(void);
int mgq_numterms(void);

int mgq_equivterms
 (unsigned char *wordstem,
 int (*sender)(char *, int, int, float, void *),
 void *ptr);

int mgq_docsretrieved (int *total_retrieved, int *is_approx);

int mgq_getmaxstemlen ();

void mgq_stemword (unsigned char *word);

Figure 33
The Source base class
API

class sourceclass {
public:
 sourceclass ();
 virtual ~sourceclass ();

 // configure should be called once for each configuration line
 virtual void configure
 (const text_t &key,
 const text_tarray &cfgline);

 // init should be called after all the configuration is done but
 // before any other methods are called
 virtual bool init (ostream &logout);

 // translate_OID translates OIDs using ".pr", ."fc" etc.
 virtual bool translate_OID (const text_t &OIDin, text_t &OIDout,
 comerror_t &err, ostream &logout);

 // get_metadata fills out the metadata if possible, if it is not
 // responsible for the given OID then it will return false.
 virtual bool get_metadata
 (const text_t &requestParams,
 const text_t &refParams,
 bool getParents,
 const text_tset &fields,
 const text_t &OID,
 MetadataInfo_tmap &metadata,
 comerror_t &err, ostream &logout);

 virtual bool get_document (const text_t &OID, text_t &doc,
 comerror_t &err, ostream &logout);
};

64 GREENSTONE RUNTIME SYSTEM

For a collection of English documents, the compressed text and full text
indexes together typically occupy one third the space of the original
uncompressed text alone. Search and retrieval is often quicker than the
equivalent operation on the uncompressed version, because there are
fewer disk operations.

MG is normally used interactively by typing commands from the
command line, and one way to implement mgsearchclass would be to use
the C library system() call within the object to issue the appropriate MG

commands. A more efficient approach, however, is to tap directly into the
MG code using function calls. While this requires a deeper understanding
of the MG code, much of the complexity can be hidden behind a new API
that becomes the point of contact for the object mgsearchclass. This is the
role of colserver/mgq.c, whose API is shown in Figure 32.

The way to supply parameters to MG is via mgq_ask(), which takes text
options in a format identical to that used at the command line, such as:

mgq_ask(".set casefold off");

It is also used to invoke a query. Results are accessed through
mgq_results, which takes a pointer to a function as its fourth parameter.
This provides a flexible way of converting the information returned in MG

data structures into those needed by mgsearchclass. Calls such as
mgq_numdocs(), mgq_numterms(), and mgq_docsretrieved() also return
information, but this time more tightly prescribed. The last two give
support for stemming.

The Source object

The role of Source in Figure 24 is to access document metadata and
document text, and its base class API is shown in Figure 33. A member
function maps to each task: get_metadata() and get_document()
respectively. Both are declared virtual, so the version provided by a
particular implementation of the base class is called at runtime. One
inherited version of this object uses GDBM to implement get_metadata()
and MG to implement get_document(): we detail this version below.

Other member functions seen in Figure 33 are configure(), init(), and
translate_OID(). The first two relate to the initialisation process described
in Section 3.10.

The remaining one, translate_OID(), handles the syntax for expressing
document identifiers. In Figure 26 we saw how a page number could be
appended to a document identifier to retrieve just that page. This was
possible because pages were stored as “sections” when the collection was

GREENSTONE RUNTIME SYSTEM 65

built. Appending “.1” to an OID retrieves the first section of the
corresponding document. Sections can be nested, and are accessed by
concatenating section numbers separated by periods.

As well as hierarchical section numbers, the document identifier syntax
supports a form of relative access. For the current section of a document it
is possible to access the first child by appending .fc, the last child by
appending .lc, the parent by appending .pr, the next sibling by appending
.ns, and the previous sibling by appending .ps.

The translate_OID() function uses parameters OIDin and OIDout to hold
the source and result of the conversion. It takes two further parameters,
err and logout. These communicate any error status that may arise during
the translation operation, and determine where to send logging
information. The parameters are closely aligned with the protocol, as we
shall see in Section 3.8.

Figure 34
The GDBM database
for the Gutenberg
collection (excerpt)

———————————————————————-
[HASH01d7b30d4827b51282919e9b]
<doctype> doc
<hastxt> 0
<Title> The Winter's Tale
<Creator> William Shakespeare
<archivedir> HASH01d7/b30d4827.dir
<thistype> Invisible
<childtype> Paged
<contains>
".1;".2;".3;".4;".5;".6;".7;".8;".9;".10;".11;".12;".13;".14; \

".15;".16;".17;".18;".19;".20;".21;".22;".23;".24;".25;".26; \
 ".27;".28;".29;".30;".31;".32;".33;".34;".35
<docnum> 168483
———————————————————————-
[CL1]
<doctype> classify
<hastxt> 0
<childtype> HList
<Title> Title
<numleafdocs> 1818
<thistype> Invisible
<contains>
".1;".2;".3;".4;".5;".6;".7;".8;".9;".10;".11;".12;".13;".14; \
 ".15;".16;".17;".18;".19;".20;".21;".22;".23;".24
———————————————————————-
[CL1.1]
<doctype> classify
<hastxt> 0
<childtype> VList
<Title> A
<numleafdocs> 118
<contains> HASH0130bc5f9f90089b3723431f;HASH9cba43bacdab5263c98545; \
 HASH12c88a01da6e8379df86a7;HASH9c86579a83e1a2e4cf9736; \
 HASHdc2951a7ada1f36a6c3aca;HASHea4dda6bbc7cdeb4abfdee; \
 HASHce55006513c47235ac38ba;HASH012a33acaa077c0e612b9351; \
 HASH010dd1e923a123826ae30e4b;HASHaf674616785679fed4b7ee; \
 HASH0147eef4b9d1cb135e096619;HASHe69b9dbaa83ffb045d963b; \
 HASH01abc61c646c8e7a8ce88b10;HASH5f9cd13678e21820e32f3a; \
 HASHe8cbba1594c72c98f9aa1b;HASH01292a2b7b6b60dec96298bc; \
 ...

66 GREENSTONE RUNTIME SYSTEM

DATABASE RETRIEVAL WITH GDBM

GDBM is the GNU database manager program. It implements a flat record
structure of key/data pairs, and is backwards compatible with DBM and
NDBM. Operations include storage, retrieval and deletion of records by
key, and an unordered traversal of all keys.

Figure 34 shows an excerpt from the collection information database that
is created when building the Gutenberg collection. The excerpt was
produced using the Greenstone utility db2txt, which converts the GDBM

binary database format into textual form. Figure 34 contains three
records, separated by horizontal rules. The first record is a document
entry, the other two are part of the hierarchy created by the AZList
classifier for titles in the collection. The first line of each one is its key.

The document record stores the book’s title, author, and any other
metadata provided (or extracted) when the collection was built. It also
records values for internal use: where files associated with this document
reside (<archivedir>) and the document number used internally by MG

(<docnum>).

The field named <contains> stores a list of elements, separated by
semicolons, that point to related records in the database. For a document
record, <contains> is used to point to the nested sections. Subsequent
record keys are formed by concatenating the current key with one of the
child elements (separated by a period).

Figure 35
API for MG and GDBM

based version of
sourceclass (abridged)

class mggdbmsourceclass : public sourceclass {
protected:
 // Omitted, data fields that store:
 // collection specific file information
 // index substructure
 // information about parent
 // pointers to gdbm and mgsearch objects

public:
 mggdbmsourceclass ();
 virtual ~mggdbmsourceclass ();

 void set_gdbmptr (gdbmclass *thegdbmptr);
 void set_mgsearchptr (searchclass *themgsearchptr);

 void configure (const text_t &key, const text_tarray &cfgline);
 bool init (ostream &logout);
 bool translate_OID (const text_t &OIDin, text_t &OIDout,
 comerror_t &err, ostream &logout);
 bool get_metadata (const text_t &requestParams,
 const text_t &refParams,
 bool getParents, const text_tset &fields,
 const text_t &OID, MetadataInfo_tmap &metadata,
 comerror_t &err, ostream &logout);
 bool get_document (const text_t &OID, text_t &doc,
 comerror_t &err, ostream &logout);
};

GREENSTONE RUNTIME SYSTEM 67

The second record in Figure 34 is the top node for the classification
hierarchy of Titles A–Z. Its children, accessed through the <contains>
field, include CL1.1, CL1.2, CL1.3 and so on, and correspond to the
individual pages for the letters A, B, C etc. There are only 24 children: the
AZList classifier merged the Q–R and Y–Z entries because they covered
only a few titles.

The children in the <contains> field of the third record, CL1.1, are the
documents themselves. More complicated structures are possible—the
<contains> field can include a mixture of documents and further CL
nodes. Keys expressed relative to the current one are distinguished from
absolute keys because they begin with a quotation mark (").

USING MG AND GDBM TO IMPLEMENT A SOURCE OBJECT

The object that puts MG and GDBM together to realise an implementation
of sourceclass is mggdbmsourceclass. Figure 35 shows its API. The two
new member functions set_gdbmptr() and set_mgsearchptr() store
pointers to their respective objects, so that the implementations of
get_metadata() and get_document() can access the appropriate tools to
complete the job.

Figure 36
API for the Filter base
class

class filterclass {
protected:
 text_t gsdlhome;
 text_t collection;
 text_t collectdir;

 FilterOption_tmap filterOptions;

public:
 filterclass ();
 virtual ~filterclass ();

 virtual void configure
 (const text_t &key,
 const text_tarray &cfgline);
 virtual bool init (ostream &logout);

 // returns the name of this filter
 virtual text_t get_filter_name ();

 // returns the current filter options
 virtual void get_filteroptions
 (InfoFilterOptionsResponse_t &response,
 comerror_t &err, ostream &logout);

 virtual void filter (const FilterRequest_t &request,
 FilterResponse_t &response,
 comerror_t &err, ostream &logout);
};

68 GREENSTONE RUNTIME SYSTEM

The Filter object

The base class API for the Filter object in Figure 24 is shown in Figure
36. It begins with the protected data fields gsdlhome, collection, and
collectdir. These commonly occur in classes that need to access
collection-specific files.

• gsdlhome is the same as GSDLHOME, so that the object can locate
the Greenstone files.

• collection is the name of the directory corresponding to the
collection.

• collectdir is the full pathname of the collection directory (this is
needed because a collection does not have to reside within the
GSDLHOME area).

mggdbsourceclass is another class that includes these three data fields.

The member functions configure() and init() (first seen in sourceclass) are
used by the initialisation process. The object itself is closely aligned with
the corresponding filter part of the protocol; in particular
get_filteroptions() and filter() match one for one.

Central to the filter options are the two classes shown in Figure 37. Stored
inside FilterOption_t is the name of the option, its type, and whether or
not it is repeatable. The interpretation of validValues depends on the
option type. For a Boolean type the first value is false and the second is
true. For an integer type the first value is the minimum number, the
second the maximum. For an enumerated type all values are listed. For a
string type the value is ignored. For simpler situations, OptionValue_t is
used, which records as a text_t the name of the option and its value.

Figure 37
How a filter option is
stored

struct FilterOption_t {
 void clear (); \ void check_defaultValue ();
 FilterOption_t () {clear();}

 text_t name;

 enum type_t {booleant=0, integert=1, enumeratedt=2, stringt=3};
 type_t type;

 enum repeatable_t {onePerQuery=0, onePerTerm=1, nPerTerm=2};
 repeatable_t repeatable;

 text_t defaultValue;
 text_tarray validValues;
};

struct OptionValue_t {
 void clear ();

 text_t name;
 text_t value;
};

GREENSTONE RUNTIME SYSTEM 69

The request and response objects passed as parameters to filterclass are
constructed from these two classes, using associative arrays to store a set
of options such as those required for InfoFilterOptionsResponse_t. More
detail can be found in GSDLHOME/src/recpt/comtypes.h.

Inherited Filter objects

Two levels of inheritance are used for filters, as illustrated in Figure 38.
First a distinction is made between Query and Browse filters, and then for
the former there is a specific implementation based on MG. To operate
correctly, mgqueryfilterclass needs access to MG through mgsearchclass
and to GDBM through gdbmclass. browsefilterclass only needs access to
GDBM. Pointers to these objects are stored as protected data fields within
the respective classes.

Files in GSDLHOME/src/colservr

Here are the header files in GSDLHOME/src/colservr, with a description
of each. The filename generally repeats the object name defined within it.

browsefilter.h Inherited from filterclass, this object provides access to GDBM. (Described
above.)

collectserver.h This object binds Filters and Sources for one collection together, to form
the Collection object depicted in Figure 24.

colservrconfig.h Function support for reading the collection-specific files etc/collect.cfg
and index/build.cfg. The former is the collection’s configuration file. The

Figure 38
The inheritance
hierarchy for Filter Base class

filterclass

MG based Query
mgqueryfilterclass

Browse
browsefilterclass

Query
queryfilterclass

GDBM through gdbmclassMG through mgsearchclass

Filter

70 GREENSTONE RUNTIME SYSTEM

latter is a file generated by the building process that records the time of
the last successful build, an index map list, how many documents were
indexed, and how large they are in bytes (uncompressed).

filter.h The base class Filter object filterclass described above.

maptools.h Defines a class called stringmap that provides a mapping that remembers
the original order of a text_t map, but is fast to look up. Used in
mggdbmsourceclass and queryfilterclass.

mggdbmsource.h Inherited from sourceclass, this object provides access to MG and GDBM.
(Described above.)

mgppqueryfilter.h Inherited from queryfilterclass, this object provides an implementation of
QueryFilter based upon MG++, an improved version of MG written in
C++. Note that Greenstone is set up to use MG by default, since MG++ is
still under development.

mgppsearch.h Inherited from searchclass, this object provides an implementation of
Search using MG++. Like mgppqueryfilterclass, this is not used by
default.

Table 18 List of protocol calls

Protocol call Role

get_protocol_name() Returns the name of this protocol. Choices include nullproto, corbaproto,
and z3950proto. Used by protocol-sensitive parts of the runtime system to
decide which code to execute.

get_collection_list() Returns the list of collections that this protocol knows about.

has_collection() Returns true if the protocol can communicate with the named collection,
i.e. it is within its collection list.

ping() Returns true if a successful connection was made to the named collection.
In the null protocol the implementation is identical to has_collection().

get_collectinfo() Obtains general information about the named collection: when it was last
built, how many documents it contains, and so on. Also includes metadata
from the collection configuration file: “about this collection” text; the
collection icon to use, and so on.

get_filterinfo() Gets a list of all Filters for the named collection.

get_filteroptions() Gets all options for a particular Filter within the named collection.

filter() Supports searching and browsing. For a given filter type and option
settings, it accesses the content of the named collections to produce a
result set that is filtered in accordance with the option settings. The data
fields returned also depend on the option settings: examples include query
term frequency and document metadata.

get_document() Gets a document or section of a document.

GREENSTONE RUNTIME SYSTEM 71

mgq.h Function-level interface to the MG package. Principal functions are
mg_ask() and mg_results().

mgqueryfilter.h Inherited from queryfilterclass, this object provides an implementation of
QueryFilter based upon MG.

mgsearch.h Inherited from searchclass, this object provides an implementation of
Search using MG. (Described above.)

phrasequeryfilter.h Inherited from mgqueryclass, this object provides a phrase-based query
class. It is not used in the default installation. Instead mgqueryfilterclass
provides this capability through functional support from phrasesearch.h.

phrasesearch.h Functional support to implement phrase searching as a post-processing
operation.

querycache.h Used by searchclass and its inherited classes to cache the results of a

Figure 39
Null protocol API
(abridged)

class nullproto : public recptproto {
public:

 virtual text_t get_protocol_name ();

 virtual void get_collection_list (text_tarray &collist,
 comerror_t &err, ostream &logout);

 virtual void has_collection (const text_t &collection,
 bool &hascollection,
 comerror_t &err, ostream &logout);

 virtual void ping (const text_t &collection,
 bool &wassuccess,
 comerror_t &err, ostream &logout);

 virtual void get_collectinfo (const text_t &collection,
 ColInfoResponse_t &collectinfo,
 comerror_t &err, ostream &logout);

 virtual void get_filterinfo (const text_t &collection,
 InfoFiltersResponse_t &response,
 comerror_t &err, ostream &logout);

 virtual void get_filteroptions (const text_t &collection,
 const InfoFilterOptionsRequest_t &request,
 InfoFilterOptionsResponse_t &response,
 comerror_t &err, ostream &logout);

 virtual void filter (const text_t &collection,
 FilterRequest_t &request,
 FilterResponse_t &response,
 comerror_t &err, ostream &logout);

 virtual void get_document (const text_t &collection,
 const DocumentRequest_t &request,
 DocumentResponse_t &response,
 comerror_t &err, ostream &logout);
};

72 GREENSTONE RUNTIME SYSTEM

query, in order to make the generation of further search results pages
more efficient. (Described above.)

queryfilter.h Inherited from the Filter base class filterclass, this object establishes a
base class for Query filter objects. (Described above.)

queryinfo.h Support for searching: data structures and objects to hold query
parameters, document results and term frequencies.

search.h The base class Search object searchclass. (Described above.)

source.h The base class Source object sourceclass. (Described above.)

3.8 The protocol

Table 18 lists the function calls to the protocol, with a summary for each
entry. The examples in Section 3.3 covered most of these. Functions not
previously mentioned are has_collection(), ping(), get_protocol_name()
and get_filteroptions(). The first two provide yes/no answers to the
questions “does the collection exists on this server?” and “is it running?”
respectively. The purpose of the other two is to support multiple protocols
within an architecture that is distributed over different computers, not just
the null-protocol based single executable described here. One of these
distinguishes which protocol is being used. The other lets a receptionist
interrogate a collection server to find what options are supported, and so

Table 19 Actions in Greenstone

Action Role

action Base class for virtual inheritance.
authenaction Supports user authentication: prompts the user for a password if one has

not been entered; checks whether it is valid; and forces the user to log in
again if sufficient time lapses between accesses.

collectoraction Generates the pages for the Collector.
documentaction Retrieves documents, document sections, parts of the classification

hierarchy, or formatting information.
extlinkaction Takes a user directly to a URL that is external to a collection, possibly

generating an alert page first (dictated by the Preferences).
pageaction Generates a page in conjunction with the macro language.
pingaction Checks to see whether a collection is online.
queryaction Performs a search.
statusaction Generates the administration pages.
tipaction Brings up a random tip for the user.
usersaction Supports adding, deleting, and managing user access.

GREENSTONE RUNTIME SYSTEM 73

dynamically configure itself to take full advantage of the services offered
by a particular server.

Figure 39 shows the API for the null protocol. Comments, and certain low
level details, have been omitted (see the source file recpt/nullproto.h for
full details).

This protocol inherits from the base class recptproto. Virtual inheritance
is used so that more than one type of protocol—including protocols not
even conceived yet—can be easily supported in the rest of the source
code. This is possible because the base class object recptproto is used
throughout the source code, with the exception of the point of
construction. Here we specify the actual variety of protocol we wish to
use—in this case, the null protocol.

With the exception of get_protocol_name(), which takes no parameters
and returns the protocol name as a Unicode-compliant text string, all
protocol functions include an error parameter and an output stream as the
last two arguments. The error parameter records any errors that occur
during the execution of the protocol call, and the output stream is for
logging purposes. The functions have type void—they do not explicitly
return information as their final statement, but instead return data through
designated parameters such as the already-introduced error parameter. In
some programming languages, such routines would be defined as
procedures rather than functions, but C++ makes no syntactic distinction.

Most functions take the collection name as an argument. Three of the
member functions, get_filteroptions(), filter(), and get_document(), follow
the pattern of providing a Request parameter and receiving the results in a
Response parameter.

Figure 40
Using the
cgiargsinfoclass
from
pageaction.cpp

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

cgiarginfo arg_ainfo;
arg_ainfo.shortname = “a”;
arg_ainfo.longname = “action”;
arg_ainfo.multiplechar = true;
arg_ainfo.argdefault = “p”;
arg_ainfo.defaultstatus = cgiarginfo::weak;
arg_ainfo.savedarginfo = cgiarginfo::must;
argsinfo.addarginfo (NULL, arg_ainfo);

arg_ainfo.shortname = “p”;
arg_ainfo.longname = “page”;
arg_ainfo.multiplechar = true;
arg_ainfo.argdefault = “home”;
arg_ainfo.defaultstatus = cgiarginfo::weak;
arg_ainfo.savedarginfo = cgiarginfo::must;
argsinfo.addarginfo (NULL, arg_ainfo);

74 GREENSTONE RUNTIME SYSTEM

3.9 The receptionist

The final layer of the conceptual model is the receptionist. Once the CGI
arguments are parsed, the main activity is the execution of an Action,
supported by the Format and Macro Language objects. These are
described below. Although they are represented as objects in the
conceptual framework, Format and Macro Language objects are not
strictly objects in the C++ sense. In reality, Format is a collection of data
structures with a set of functions that operate on them, and the Macro
Language object is built around displayclass, defined in lib/display.h,
with stream conversion support from lib/gsdlunicode.h.

Figure 41
Action base class API

class action {
protected:
 cgiargsinfoclass argsinfo;
 text_t gsdlhome;

public:
 action ();
 virtual ~action ();

 virtual void configure (const text_t &key,
 const text_tarray &cfgline);
 virtual bool init (ostream &logout);

 virtual text_t get_action_name ();
 cgiargsinfoclass getargsinfo ();

 virtual bool check_cgiargs (cgiargsinfoclass &argsinfo,
 cgiargsclass &args,
 ostream &logout);
 virtual bool check_external_cgiargs (cgiargsinfoclass &argsinfo,
 cgiargsclass &args,
 outconvertclass &outconvert,
 const text_t &saveconf,
 ostream &logout);
 virtual void get_cgihead_info (cgiargsclass &args,
 recptprotolistclass *protos,
 response_t &response,
 text_t &response_data,
 ostream &logout);
 virtual bool uses_display (cgiargsclass &args);

 virtual void define_internal_macros (displayclass &disp,
 cgiargsclass &args,
 recptprotolistclass *protos,
 ostream &logout);
 virtual void define_external_macros (displayclass &disp,
 cgiargsclass &args,
 recptprotolistclass *protos,
 ostream &logout);

 virtual bool do_action (cgiargsclass &args,
 recptprotolistclass *protos,
 browsermapclass *browsers,
 displayclass &disp,
 outconvertclass &outconvert,
 ostream &textout,
 ostream &logout);
};

GREENSTONE RUNTIME SYSTEM 75

Actions

Greenstone supports the eleven actions summarised in Table 19.

The CGI arguments needed by an action are formally declared in its
constructor function using cgiarginfo (defined in recpt/cgiargs.h). Figure
40 shows an excerpt from the pageaction constructor function, which
defines the size and properties of the CGI arguments a and p.

For each CGI argument, the constructor must specify its short name (lines
2 and 10), which is the name of the CGI variable itself; a long name (lines
3 and 11) that is used to provide a more meaningful description of the
action; whether it represents a single or multiple character value (lines 4
and 12); a possible default value (lines 5 and 13); what happens when
more than one default value is supplied (lines 6 and 14) (since defaults

Figure 42
Core data structures in
Format

enum command_t {comIf, comOr, comMeta, comText, comLink, comEndLink,
 comNum, comIcon, comDoc,
 comHighlight, comEndHighlight};
enum pcommand_t {pNone, pImmediate, pTop, pAll};
enum dcommand_t {dMeta, dText};
enum mcommand_t {mNone, mCgiSafe};

struct metadata_t {
 void clear();
 metadata_t () {clear();}

 text_t metaname;
 mcommand_t metacommand;
 pcommand_t parentcommand;
 text_t parentoptions;
};

// The decision component of an {If}{decision,true-text,false-text}
// formatstring. The decision can be based on metadata or on text;
// normally that text would be a macro like
// _cgiargmode_.

struct decision_t {
 void clear();
 decision_t () {clear();}

 dcommand_t command;
 metadata_t meta;
 text_t text;
};

struct format_t {
 void clear();
 format_t () {clear();}

 command_t command;
 decision_t decision;
 text_t text;
 metadata_t meta;
 format_t *nextptr;
 format_t *ifptr;
 format_t *elseptr;
 format_t *orptr;
};

76 GREENSTONE RUNTIME SYSTEM

can also be set in configuration files); and whether or not the value is
preserved at the end of this action (lines 7 and 15)

Since it is built into the code, web pages that detail this information can
be generated automatically. The statusaction produces this information. It
can be viewed by entering the URL for the Greenstone administration
pages, which is http://localhost/gsdl/cgi-bin/library?a=status&
p=frameset.

The twelve inherited actions are constructed in main(), the top-level
function for the library executable, whose definition is given in
recpt/librarymain.cpp. This is also where the receptionist object (defined
in recpt/receptionist.cpp) is constructed. Responsibility for all the actions
is passed to the receptionist, which processes them by maintaining, as a
data field, an associative array of the Action base class, indexed by action
name.

Figure 41 shows the API for the Action base class. When executing an
action, receptionist calls several functions, starting with check_cgiargs().
Most help to check, set up, and define values and macros; while
do_action() actually generates the output page. If a particular inherited
object has no definition for a particular member function, it passes
through to the base class definition which implements appropriate default
behaviour.

Explanations of the member functions are as follows.

• get_action_name() returns the CGI a argument value that specifies
this action. The name should be short but may be more than one
character long.

• check_cgiargs() is called before get_cgihead_info(),
define_external_macros(), and do_action(). If an error is found a
message will be written to logout; if it is serious the function returns
false and no page content is produced.

• check_external_cgiargs() is called after check_cgiargs() for all

Figure 43
Data structures built
for sample format
statement

GREENSTONE RUNTIME SYSTEM 77

actions. It is intended for use only to override some other normal
behaviour, for example producing a login page when the requested
page needs authentication.

• get_cgihead_info() sets the CGI header information. If response is
set to location, then response_data contains the redirect address. If
response is set to content, then response_data contains the content
type.

• uses_display() returns true if the displayclass is needed to output the
page content (the default).

• define_internal_macros() defines all macros that are related to pages
generated by this action.

• define_external_macros() defines all macros that might be used by
other actions to produce pages.

• do_action() generates the output page, streamed through the macro
language object display and the output conversion object textout.
Returns false if there was an error which prevented the action from
outputting anything.

At the beginning of the class definition, argsinfo is the protected data
field (used in the code excerpt shown in Figure 40) that stores the CGI
argument information specified in an inherited Action constructor
function. The other data field, gsdlhome, records GSDLHOME for
convenient access.2 The object also includes configure() and init() for
initialisation purposes.

Formatting

Although formatting is represented as a single entity in Figure 24, in
reality it constitutes a collection of data structures and functions. They are
gathered together under the header file recpt/formattools.h. The core data
structures are shown in Figure 42.

The implementation is best explained using an example. When the format
statement

2 The value for gsdlhome comes from gsdlsite.cfg located in the same directory as the CGI

executable library, whereas GSDLHOME is set by running the setup script which
accesses a different file, so technically it is possible for the two values to be different.
While possible, it is not desirable, and the above text is written assuming they are the
same.

Figure 44
Illustration of macro
precedence

package query
header [] {_querytitle_}
header [l=en] {Search page}
header [c=demo] {<table
bgcolor=green><tr><td>_querytitle_</td></tr></table>}
header [v=1] {_textquery_}
header [l=fr,v=1,c=hdl] {HDL Page de recherche}

78 GREENSTONE RUNTIME SYSTEM

format CL1VList "[link][Title]{If}{[Creator], by
[Creator]}[/link]}"

is read from a collection configuration file, it is parsed by functions in
formattools.cpp and the interconnected data structure shown in Figure 43
is built. When the format statement needs to be evaluated by an action,
the data structure is traversed. The route taken at comIf and comOr nodes
depends on the metadata that is returned from a call to the protocol.

One complication is that when metadata is retrieved, it might include
further macros and format syntax. This is handled by switching back and
forth between parsing and evaluating, as needed.

Macro language

The Macro Language entity in Figure 24, like Format, does not map to a
single C++ class. In this case there is a core class, but the implementation
of the macro language also calls upon supporting functions and classes.

Again, the implementation is best explained using an example. First we
give some sample macro definitions that illustrate macro precedence,
then—with the aid of a diagram—we describe the core data structures
built to support this activity. Finally we present and describe the public
member functions to displayclass, the top-level macro object.

In a typical Greenstone installation, macro precedence is normally: c (for
the collection) takes precedence over v (for graphical or text-only
interface), which takes precedence over l (for the language). This is
accomplished by the line

macroprecedence c,v,l

Figure 45
Data structures that
represent the default
macros

GREENSTONE RUNTIME SYSTEM 79

in the main configuration file main.cfg. The macro statements in Figure
44 define sample macros for _header_ in the query package for various
settings of c, v, and l. If the CGI arguments given when an action is
invoked included c=hdl, v=1, and l=en, the macro _header_[v=1] would
be selected for display. It would be selected ahead of _content_[l=en]
because v has a higher precedence than l. The _content_[l=fr,v=1,c=hdl]
macro would not be selected because the page parameter for l is different.

Figure 45 shows the core data structure built when reading the macro files
specified in etc/main.cfg. Essentially, it is an associative array of
associative arrays of associative arrays. The top layer (shown on the left)
indexes which package the macro is from, and the second layer indexes
the macro name. The final layer indexes any parameters that were
specified, storing each one as the type mvalue which records, along with
the macro value, the file it came from. For example, the text defined for
header[l=en] in Figure 44 can be seen stored in the lower of the two
mvalue records in Figure 45.

The central object that supports the macro language is displayclass,
defined in lib/display.h. Its public member functions are shown in Figure
46. The class reads the specified macro files using loaddefaultmacros(),
storing in a protected section of the class (not shown) the type of data
structure shown in Figure 45. It is also permissible for macros to be set by
the runtime system using setmacro() (in an example of Section 3.2,
pageaction set _collectionextra_ to be the dynamically generated table of

Figure 46
Displayclass API
(abridged)

class displayclass
{
public:
 displayclass ();
 ~displayclass ();

 int isdefaultmacro (text_t package, const text_t ¯oname);
 int setdefaultmacro (text_t package, const text_t ¯oname,
 text_t params, const text_t ¯ovalue);
 int loaddefaultmacros (text_t thisfilename);

 void openpage (const text_t &thispageparams,
 const text_t &thisprecedence);
 void setpageparams (text_t thispageparams,
 text_t thisprecedence);

 int setmacro (const text_t ¯oname,
 text_t package,
 const text_t ¯ovalue);

 void expandstring (const text_t &inputtext, text_t &outputtext);
 void expandstring (text_t package, const text_t &inputtext,
 text_t &outputtext, int recursiondepth = 0);

 void setconvertclass (outconvertclass *theoutc) {outc = theoutc;}
 outconvertclass *getconvertclass () {return outc;}
 ostream *setlogout (ostream *thelogout);
};

80 GREENSTONE RUNTIME SYSTEM

available collections using this function.) This is supported by a set of
associative arrays similar to those used to represent macro files (it is not
identical, because the former does not require the “parameter” layer). In
displayclass, macros read from the file are referred to as default macros.
Local macros specified through setmacro() are referred to as current
macros, and are cleared from memory once the page has been generated.

When a page is to be produced, openpage() is first called to communicate
the current settings of the page parameters (l=en and so on). Following
that, text and macros are streamed through the class—typically from
within an actionclass—using code along the lines of:

cout << text_t2ascii << display << "_amacro_"
 << "_anothermacro_";

The result is that macros are expanded according to the page parameter
settings. If required, these settings can be changed partway through an
action by using setpageparams(). The remaining public member functions
provide lower level support.

Files in GSDLHOME/src/recpt

The principal objects in the receptionist have now been described. Below
we detail the supporting classes. Except where efficiency is
paramount—in which case definitions are in-line—implementation details
are contained within a header file’s .cpp counterpart. Supporting files
often include the word tool as part of the file name, as in OIDtools.h and
formattools.h.

A second set of lexically scoped files include the prefix z3950 . The files
provide remote access to online databases and catalogs that make their
content publicly available using the Z39.50 protocol.

Another large group of supporting files include the term browserclass.
These files are related through a virtual inheritance hierarchy. As a group
they support an abstract notion of browsing: serial page generation of
compartmentalised document content or metadata. Browsing activities
include perusing documents ordered alphabetically by title or
chronologically by date; progressing through the titles returned by a query
ten entries at a time; and accessing individual pages of a book using the
“go to page” mechanism. Each browsing activity inherits from
browserclass, the base class:

• datelistbrowserclass provides support for chronological lists;
• hlistbrowserclass provides support for horizontal lists;
• htmlbrowserclass provides support for pages of HTML;
• invbrowserclass provides support for invisible lists;

GREENSTONE RUNTIME SYSTEM 81

• pagedbrowserclass provides go to page support;
• vlistbrowserclass provides support for vertical lists.

Actions access browserclass objects through browsetools.h.

OIDtools.h Function support for evaluating document identifiers over the protocol.

action.h Base class for the Actions entity depicted in Figure 24.

authenaction.h Inherited action for handling authentication of a user.

browserclass.h Base class for abstract browsing activities.

browsetools.h Function support that accesses the browserclass hierarchy. Functionality
includes expanding and contracting contents, outputing a table of
contents, and generating control such as the “go to page” mechanism.

cgiargs.h Defines cgiarginfo used in Figure 40, and other data structure support for
CGI arguments.

cgiutils.h Function support for CGI arguments using the data structures defined in
cgiargs.h.

cgiwrapper.h Function support that does everything necessary to output a page using
the CGI protocol. Access is through the function

void cgiwrapper (receptionist &recpt, text_t collection);

which is the only function declared in the header file. Everything else in
the .cpp counterpart is lexically scoped to be local to the file (using the
C++ keyword static). If the function is being run for a particular
collection then collection should be set, otherwise it should be the empty
string "". The code includes support for Fast-CGI.

collectoraction.h Inherited action that facilitates end-user collection-building through the
Collector. The page generated comes from collect.dm and is controlled by
the CGI argument p=page.

comtypes.h Core types for the protocol.

converter.h Object support for stream converters.

datelistbrowserclass.h Inherited from browserclass, this object provides browsing support for
chronological lists such as that seen in the Greenstone Archives collection
under “dates” in the navigation bar.

82 GREENSTONE RUNTIME SYSTEM

documentaction.h Inherited action used to retrieve a document or part of a classification
hierarchy.

extlinkaction.h Inherited action that controls whether or not a user goes straight to an
external link or passes through a warning page alerting the user to the fact
that they are about to move outside the digital library system.

formattools.h Function support for parsing and evaluating collection configuration
format statements. Described in more detail in Section 3.9.2 above.

historydb.h Data structures and function support for managing a database of previous
queries so a user can start a new query that includes previous query terms.

hlistbrowserclass.h Inherited from browserclass, this object provides browsing support for
horizontal lists.

htmlbrowserclass.h Inherited from browserclass, this object provides browsing support for
HTML pages.

htmlgen.h Function support to highlight query terms in a text_t string.

htmlutils.h Function support that converts a text_t string into the equivalent HTML.
The symbols ", &, <, and > are converted into ", &, < and
> respectively.

infodbclass.h Defines two classes: gdbmclass and infodbclass. The former provides the
Greenstone API to GDBM; the latter is the object class used to store a
record entry read in from a GDBM database, and is essentially an
associative array of integer-indexed arrays of text_t strings.

invbrowserclass.h Inherited from browserclass, this object provides browsing support for
lists that are not intended for display (invisible).

nullproto.h Inherited from recptproto, this class realises the null protocol,
implemented through function calls from the receptionist to the collection
server.

pageaction.h Inherited action that, in conjunction with the macro file named in p=page,
generates a web page.

pagedbrowserclass.h Inherited from browserclass, this object provides browsing support for
the “go to page” mechanism seen (for example) in the Gutenberg
collection.

pingaction.h Inherited action that checks to see whether a particular collection is

GREENSTONE RUNTIME SYSTEM 83

responding.

queryaction.h Inherited action that takes the stipulated query, settings and preferences
and performs a search, generating as a result the subset of o=num
matching documents starting at position r=num.

querytools.h Function support for querying.

receptionist.h Top-level object for the receptionist. Maintains a record of CGI argument
information, instantiations of each inherited action, instantiations of each
inherited browser, the core macro language object displayclass, and all
possible converters.

recptconfig.h Function support for reading the site and main configuration files.

recptproto.h Base class for the protocol.

statusaction.h Inherited action that generates, in conjunction with status.dm, the various
administration pages.

tipaction.h Inherited action that produces, in conjunction with tip.dm, a web page
containing a tip taken at random from a list of tips stored in tip.dm.

userdb.h Data structure and function support for maintaining a GDBM database of
users: their password, groups, and so on.

usersaction.h An administrator action inherited from the base class that supports adding
and deleting users, as well as modifying the groups they are in.

vlistbrowserclass.h Inherited from browserclass, this object provides browsing support for
vertical lists, the mainstay of classifiers. For example, the children of the
node for titles beginning with the letter N are stipulated to be a VList.

z3950cfg.h Data structure support for the Z39.50 protocol. Used by z3950proto.cpp ,
which defines the main protocol class (inherited from the base class
recptproto), and configuration file parser zparse.y (written using YACC).

z3950proto.h Inherited from recptproto, this class realises the Z39.50 protocol so that a
Greenstone receptionist can access remote library sites running Z39.50
servers.

z3950server.h Further support for the Z39.50 protocol.

84 GREENSTONE RUNTIME SYSTEM

3.10Initialisation

Initialisation in Greenstone is an intricate operation that processes
configuration files and assigns default values to data fields. In addition to
inheritance and constructor functions, core objects define init() and
configure() functions to help standardise the task. Even so, the order of
execution can be difficult to follow. This section describes what happens.

Greenstone uses several configuration files for different purposes, but all
follow the same syntax. Unless a line starts with the hash symbol (#) or
consists entirely of white space, the first word defines a keyword, and the
remaining words represent a particular setting for that keyword.

The lines from configuration files are passed, one at a time, to configure()
as two arguments: the keyword and an array of the remaining words.
Based on the keyword, a particular version of configure() decides whether
the information is of interest, and if so stores it. For example,
collectserver (which maps to the Collection object in Figure 24) processes
the format statements in a collection’s configuration file. When the
keyword format is passed to configure(), an if statement is triggered that
stores in the object a copy of the function’s second argument.

After processing the keyword and before the function terminates, some
versions of configure() pass the data to configure() functions in other
objects. The Receptionist object calls configure() for Actions, Protocols,
and Browsers. The NullProtocol object calls configure() for each
Collection object; Collection calls Filters and Sources.

In C++, data fields are normally initialized by the object’s constructor
function. However, in Greenstone some initialisation depends on values
read from configuration files, so a second round of initialisation is
needed. This is the purpose of the init() member functions, and in some
cases it leads to further calls to configure().

Figure 47 shows diagnostic statements generated from a version of
Greenstone augmented to highlight the initialisation process. The program
starts in the main() function in recpt/librarymain.cpp. It constructs a
Receptionist object and a NullProtocol object, then scans gsdlsite.cfg
(located in the same directory as the library executable) for gsdlhome and
stores its value in a variable. For each online collection—as established
by reading in the directories present in GSDLHOME/collect—it
constructs a Collection object, through the NullProtocol object, that
includes within it Filters, Search and Source, plus few hardwired calls to

GREENSTONE RUNTIME SYSTEM 85

Figure 47
Initialising Greenstone
using the null protocol

============
Main program
============
Statically construct Receptionist
Statically construct NullProtocol
Establish the value for 'gsdlhome' by reading gsdlsite.cfg
Foreach directory in GSDLHOME/collect that isn't "modelcol":
 Add directory name (now treated as collection name) to NullProtocol:
 Dynamically construct Collection
 Dynamically construct Gdbm class
 Dynamically construct the Null Filter
 Dynamically construct the Browse Filter
 Dynamically construct MgSearch
 Dynamically construct the QueryFilter
 Dynamically construct the MgGdbmSource
 Configure Collection with 'collection'
 Passing 'collection' value on to Filters and Sources:
 Configure Receptionist with 'collectinfo':
 Passing 'collectinfo' value on to Actions, Protocols, and Browsers:

Add NullProtocol to Receptionist
Add in UTF-8 converter
Add in GB converter
Add in Arabic converter

Foreach Action:
 Statically construct Action
 Add Action to Receptionist
Foreach Browsers:
 Statically construct Browser
 Add Browser to Receptionist

Call function cgiwrapper:
 =================
 Configure objects
 =================
 Configure Receptionist with 'collection'
 Passing 'collection' value on to Actions, Protocols, and Browsers:
 NullProtocol not interested in 'collection'
 Configure Receptionist with 'httpimg'
 Passing 'httpimg' value on to Actions, Protocols, and Browsers:
 NullProtocol passing 'httpimg' on to Collection
 Passing 'httpimg' value on to Filters and Sources:
 Configure Receptionist with 'gwcgi'
 Passing 'gwcgi' value on to Actions, Protocols, and Browsers:
 NullProtocol passing 'gwcgi' on to Collection
 Passing 'gwcgi' value on to Filters and Sources:

 Reading in site configuration file gsdlsite.cfg
 Configure Recptionist with 'gsdlhome'
 Passing 'gsdlhome' value on to Actions, Protocols, and Browsers:
 NullProtocol passing 'gsdlhome' on to Collection
 Passing 'gsdlhome' value on to Filters and Sources:
 Configure Recptionist with ...
 ... and so on for all entries in gsdlsite.cfg
 Reading in main configuration file main.cfg
 Confiugre Recptionist with ...
 ... and so on for all entries in main.cfg

 ====================
 Initialising objects
 ====================
 Initialise the Receptionist
 Configure Receptionist with 'collectdir'
 Passing 'collectdir' value on to Actions, Protocols, and Browsers:
 NullProtocol not interested in 'collectdir'
 Read in Macro files
 Foreach Actions
 Initialise Action

 Foreach Protocol
 Initialise Protocol

 When Protocol==NullProtocol:
 Foreach Collection
 Reading Collection's build.cfg
 Reading Collection's collect.cfg
 Configure Collection with 'creator'
 Passing 'creator' value on to Filters and Sources:
 Configure Collection with 'maintainer'
 Passing 'maintainer' value on to Filters and Sources:
 ... and so on for all entries in collect.cfg

 Foreach Browsers
 Initialise Browser

 =============
 Generate page
 =============
 Parse CGI arguments
 Execute designated Action to produce page
End.

86 GREENSTONE RUNTIME SYSTEM

configure().

Next main() adds the NullProtocol object to the Receptionist, which keeps
a base class array of protocols in a protected data field, and then sets up
several converters. main() constructs all Actions and Browsers used in the
executable and adds them to the Receptionist. The function concludes by
calling cgiwrapper() in cgiwrapper.cpp, which itself includes substantial
object initialisation.

There are three sections to cgiwrapper(): configuration, initialisation and
page generation. First some hardwired calls to configure() are made. Then
gsdlsite.cfg is read and configure() is called for each line. The same is
done for etc/main.cfg.

The second phase of cgiwrapper() makes calls to init(). The Receptionist
makes only one call to its init() function, but the act of invoking this calls
init() functions in the various objects stored within it. First a hardwired
call to configure() is made to set collectdir, then the macro files are read.
For each action, its init() function is called. The same occurs for each
protocol stored in the receptionist—but in the system being described
only one protocol is stored, the NullProtocol. Calling init() for this object
causes further configuration: for each collection in the NullProtocol, its
collection-specific build.cfg and collect.cfg are read and processed, with a
call to configure() for each line.

The final phase of cgiwrapper() is to parse the CGI arguments, and then
call the appropriate action. Both these calls are made with the support of
the Receptionist object.

The reason for the separation of the configuration, initialisation, and page
generation code is that Greenstone is optimised to be run as a server
(using Fast-cgi or the Corba protocol). In this mode of operation, the
configuration and initialisation code is executed once, then the program
remains in memory and generates many web pages in response to requests
from clients, without requiring re-initalisation.

nzdl.org

4
Configuring your
Greenstone site

There are two configuration files in Greenstone that are used for
configuring various aspects of your Greenstone site. These files are
main.cfg, found in GSDLHOME/etc, and gsdlsite.cfg found in
GSDLHOME/cgi-bin. These files each control specific aspects of site-
wide configuration, and are quite powerful. Both of these files can be
viewed from the Greenstone administration page.

4.1 main.cfg

This file is used to configure the receptionist—that part of Greenstone
that fields queries and displays pages. With this file you can control
everything from the languages that the interface can use to what logs are
kept.

4.2 Site maintenance and logging

There are certain options that control how your Greenstone site is
maintained and whether there is a nominated maintainer. Table 20
describes the lines in the configuration file used to control these things.

4.3 Language support

There are two different lines in the main.cfg configuration file that allow
for support of different languages. One is the Encoding line, which
includes a specific type of character encoding, the other is the Language
line, which includes a user interface language as an option for the user
interface (provided that there is a language macro for that language).
These lines determine which languages and encodings will be available
from the preferences page.

88 CONFIGURING YOUR GREENSTONE SITE

Table 20 Configuration options for site maintenance and logging

Directory Contents Section

maintainer NULL or an E-mail address The E-mail address of the site maintainer to
be used for certain notification purposes. If
this is set to NULL, E-mail events (see
below) are disabled

MailServer NULL or a server name An outgoing mail server for this
Greenstone site. If this is not set it will
resolve to mail.maintainer’s-domain (so for
example if the maintainer is
help@example.com the server will default
to mail.example.com. If this doesn’t resolve
to a valid SMTP server, E-mail events will
not work

status enabled or disabled Determines whether the “Maintenance and
administration” page is to be made
available or not

collector enabled or disabled Determine whether or not the end user
collection building “collector” facility will
be available or not

logcgiargs true or false If set to true, a log of the usage of the site
will be kept in usage.txt.

usecookies true or false If set to true, cookies will collect
information about the site users. The
information collected will be written to
usage.txt (this only works if logcgiargs is
true)

LogDateFormat LocalTime or UTCTime or
Absolute

The format for the time information to be
written to the log. LocalTime will produce
the format “Thu Dec 07 12:34 NZDT
2000”, UTCTime is the same format but in
GMT time, and absolute is an integer
representing the number of seconds since
00:00:00 01/01/1970 GMT

LogEvents AllEvents or
CollectorEvents or disabled

Write a log of certain events to events.txt.
Currently only collector events (such as
creating and deleting collections) are
enabled. AllEvents will log all Greenstone
events, CollectorEvents will log only
events to do with the collector and disabled
won’t log any events

EmailEvents enabled or disabled E-mail the maintainer (if there is one—see
the maintainer option) every time an event
occurs

EmailUserEvents enabled or disabled E-mail the user on certain events—such as
the collector finishing a collection build

macrofiles a list of macro filenames Determine what macros are available for
Greenstone’s user interface software

CONFIGURING YOUR GREENSTONE SITE 89

The Encoding line has four options: shortname, longname, map and
multibyte. The shortname option is mandatory for all encodings, it is the
standard charset label. The longname option is the encoding name
displayed on the preferences page. It is not mandatory, and will default to
the shortname if not present. The map encoding is mandatory for all
encodings except utf8, which is handled internally (and should always be
enabled. The multibyte option should be set for all character sets that
require more than one byte per character. There are many encodings listed
in main.cfg, many of which are commented out with a preceding #. To
enable an encoding, remove the #.

The Language line has three options, shortname, longname, and
default_encoding. The shortname option is the ISO 639 two-letter
language symbol, and it is a required option. The longname option is the
display name for the language on the preferences page, and like the
Encoding longname option is not compulsory amd will default to the
shortname of the language if it is not present. The default_encoding
option is used to define the encoding preferred for this language.

4.4 Page parameters and CGI arguments

Page parameters and CGI arguments may be defined from within the
main.cfg configuration file. Recall from Figure 40 that most CGI
arguments are defined from within the library C++ code itself. However,
it is occasionally useful to define new arguments or edit existing ones at
configuration time (thus avoiding the need to recompile the library).

To do this you use the cgiarg configuration option. Cgiarg may take up to
six arguments; shortname, longname, multiplechar, argdefault,
defaultstatus and savedarginfo. These arguments correspond to the CGI
argument options described in Section 3.9. As an example, in
Greenstone’s default main.cfg file, the cgiarg configuration option is used
to set the default values of the existing a and p CGI arguments to p and
home respectively.

Page parameters are special cases of CGI arguments which correspond to
parameters in Greenstone’s macro files. For example, the l CGI argument
directly corresponds to the l= parameter in the macro files. To define a
CGI argument as also being a page parameter you use the pageparam
configuration option.

The best way to learn about the various configuration options accepted in
the main-cfg configuration file is to experiment with the file itself. Note
that if you are using the Windows local library version of Greenstone you
must restart the server before any changes made to configuration files will

90 CONFIGURING YOUR GREENSTONE SITE

take effect.

4.5 gsdlsite.cfg

This file sets variables that will be used by the library software and web-
server at run-time. It should be in the same directory as the library
program. Table 21 describe the lines used in this file.

Table 21 Lines in gsdlsite.cfg

Line Function

gsdlhome A path to the GSDLHOME directory.

httpprefix The web address of GSDLHOME. If the document root on your web
server is set to GSDLHOME you will not need this line.

httpimage The web address of the directory containing the images for the user
interface. If your web-server’s dpcument root is set to GSDLHOME this
will be /images.

gwcgi The web address of this cgi script (usually ends in library). This is not
needed if your web server sets the environment variable SCRIPT_NAME.

maxrequests (Only applies if fast-cgi is in use.) The number of requests fast-cgi should
process before it exits. If you are debugging the library this should be set
to a small number, if everything is fine it should be a large number.

nzdl.org

Appendix A:
The C++ Standard Template

Library

As the word “template” suggests, the Standard Template Library (STL) is
not just a plug-and-use object library. Coupled with the template
mechanism in C++, it provides a forum for programmers to concisely
develop their own objects that tap into the algorithmic capabilities
embedded within STL. This adds an extra layer of complexity, but it’s
worth it.

To help understand the Greenstone code excerpts given in this manual,
we give a few tutorial level examples that use STL.

STL lists

First we study two programs that implement an integer list. One uses
basic C++ types (the “old fashioned” way), the other uses STL. Figure 48
shows the source code implementation that does not use STL. Lines 5–8
define the basic data structure we are going to use: the field val stores the
integer value, and next points to the next element in the list—a classic
implementation of a linked list.

To demonstrate use of the data structure, the main program (lines 23–32)
sets up an integer list with elements [5, 4]. It then calls the function
total_int_list (defined over lines 10–21) which takes as its only parameter
a pointer to the head of a list and sums the values in it. The returned
answer (9 in our example) is printed to the screen.

The main work is accomplished by lines 12–18. First some initialisation:
the local variable total is set to zero, and curr to point to the start of the
list. Then a while loop adds the current integer element in the list to the
running total (total += curr->val;) before moving on to the next element
(curr = curr->next;). The while loop terminates when curr becomes

92 GREENSTONE RUNTIME SYSTEM

equal to nil, signifying that there are no more elements left to process.

Figure 49 shows an equivalent program using STL. It is no longer
necessary to define a suitable data structure in the code; all that is
necessary is the #include <list> directive on line 2 that includes the
template version for a list defined in STL. The object is called a
“container class” because when we declare a variable of this type we also
specify the type we want it to store. On line 19 an integer list is realised
with the statement list<int> vals;. Elements can be added to the object
using the member function push_back(), as is done on lines 20–21.

The main work is done by lines 6–12. There are still two initialisations
and a while loop, but other than that the new syntax has little in common
with the old. Central to this new way of processing is a variable of type
iterator (line 7). In STL many classes include iterator types to provide a
uniform way of working through a sequence of container objects. The
first element is returned with begin() and the element just past the last one
with end(). Moving to the next element is accomplished by the increment
operation ++, which is overloaded by the iterator class to implement this
task, and the value stored there is accessed through dereferencing (*curr
on line 10), which is also overloaded.

The STL implementation of this program is slightly smaller (25 lines

Figure 48
Programming a list
of integers from
scratch

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

#include <iostream.h>

#define nil 0

struct intlist {
 int val;
 struct intlist* next;
};

int total_int_list(intlist* head)
{
 int total = 0;
 intlist* curr = head;
 while (curr!=nil)
 {
 total += curr->val;
 curr = curr->next;
 }

 return total;
}

void main()
{
 intlist node1 = { 5, nil };
 intlist node2 = { 4, nil };
 node2.next = &node1;

 int total = total_int_list(&node2);
 cout << "List items total to: " << total << endl;
}

GREENSTONE RUNTIME SYSTEM 93

verses 31) than the conventional code. The gains are more noticeable in
larger projects, because the STL list object is more powerful than the
example here illustrates. It is, for instance, a doubly linked list that
supports several forms of insertion and deletion—something that would
require additional programming effort to add to the basic integer list
version.

Note that the parameter to total_int_list in Figure 49 was implemented as
a pointer, to correspond with the pointer used in total_int_list in Figure
48. In STL it is often more natural (and more desirable) to use references
rather than pointers. Then the parameter becomes list<int>& head, and
its member functions are called with the syntax head.begin(); and so on.

STL maps

When implementing a digital library system, it is useful to be able to store
elements in an array indexed by text strings rather than by numeric
indexes. In Greenstone, for example, this greatly simplifies storing the
macro files once they have been read; and the various configuration files.
A data type that supports such access is called an associative array, and is
often built in to modern high-level languages. It is also known by the
name hash array (most notably in Perl), since hashing is the normal
technique used to implement the text index.

In STL, associative arrays are accomplished using the map object. Figure
50 shows a somewhat contrived example that stores the age of three
people (Alice, Peter and Mary) in an associative array under their own

Figure 49
Programming a list
of integers using
STL

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include <iostream.h>
#include <list>

int total_int_list(list<int>* head)
{
 int total = 0;
 list<int>::iterator curr = head->begin();
 while (curr!=head->end())
 {
 total += *curr;
 curr++;
 }

 return total;
}

void main()
{
 list<int> vals;
 vals.push_back(5);
 vals.push_back(4);

 int total = total_int_list(&vals);
 cout << "List items total to: " << total << endl;
}

94 GREENSTONE RUNTIME SYSTEM

names (lines 19–22). The problem is to write a function that calculates the
total age of the people present, without knowing how many there are or
what their names are. Of course, this could be solved with a standard
numeric array of integers. The example is contrived to demonstrate the
features of the map object and bring out the similarity of processing with
the list object with an iterator.

Like list, map is a container class. However, when declaring a variable of
this type we must specify two3 things: the index type, and the element
type. As can be seen on line 19, we obtain an associative array that stores
integers using char* (which is how a string is declared in C++) as the
index type followed by int as the element type.

There are several ways to store elements in the associative array. In the
example on lines 21–22 the overloaded array subscript [] is used to
initialise the table with the ages of the three people. The similarity of
total_int_table—which performs the main calculation in the program—to
total_int_list in Figure 48 is striking. In fact, they are nearly identical, and
this is no coincidence. STL makes heavy use of inheritance so that
different objects still use the same fundamental operations. This is
particularly true with iterators. The small differences between the two
functions are that the iterator is now derived from map<char*, int>, and
access to its elements is with curr->second()—because dereferencing the
variable (*curr) is defined to return an object of type pair. This records

3 Technically there are four types, but the last two are optional. Since we are only giving a

basic introduction to this STL class, details about these last two types are omitted.

Figure 50
Using associative
arrays in STL

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include <iostream.h>
#include <map>

int total_int_table(map<char*, int>& table)
{
 int total = 0;
 map<char*, int>::iterator curr = table.begin();
 while (curr!=table.end())
 {
1 total += (curr->second);
 curr++;
 }

 return total;
}

int main()
{
 map<char*, int> table;
 table["Alice"] = 31;
 table["Peter"] = 24;
 table["Mary"] = 47;

 int total = total_int_table(table);
 cout << "Age total: " << total << endl;
 }

GREENSTONE RUNTIME SYSTEM 95

both the index name (first) and the element value (second), but we only
want the latter. Other than that, the code remains the same. The only
remaining difference—changing the function’s only argument from a
pointer to a reference—is superficial.

Two other STL types widely used in the Greenstone code are vector and
set. The former facilitates dynamic arrays, and the latter supports
mathematical set operations such as union, intersection and difference.

96 GREENSTONE RUNTIME SYSTEM

nzdl.org

References

Bainbridge, D., Buchanan, G., McPherson, J., Jones, S., Mahoui, A. and
Witten, I.H. (submitted) “Greenstone: A platform for distributed
digital library development.” Submitted to Joint Conference on
Digital Libraries, Virginia, 2001.

Deitel, H.M. and Deitel, P.J. (1994) C++: How to Program. Prentice
Hall, Englewood Cliffs, New Jersey.

Josuttis, N.M. (1999) The C++ standard library: a tutorial and reference.
Addison-Wesley, 1999.

Slama, D., Garbis, J. and Russell, P. (1999) Enterprise CORBA. Prentice
Hall, Englewood Cliffs, New Jersey.

Stroustroup, B. (1997) The C++ Programming Language. Addison-
Wesley.

Witten, I.H., Moffat, A. and Bell, T.C. (1999) Managing gigabytes:
compressing and indexing documents and images. Morgan Kaufmann,
San Francisco.

