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ABSTRACT

In this study we present morphing methods for musical instru-
ment body models using DSP techniques. These methods are able
to transform a given body model gradually into another one in a
controlled way, and they guarantee stability of the body models
at each intermediate step. This enables to morph from a certain
sized body model to a larger or smaller one. It is also possible to
extrapolate beyond original models, thus creating new interesting
(out of this world) instrument bodies. The opportunity to create a
time-varying body, i.e., a model that changes in size over time,
results in an interesting audio effect. This paper exhibits mor-
phing mainly via guitar body examples, but naturally morphing
can also be extended to other instruments with reverberant res-
onators as their bodies. Morphing from a guitar body model to a
violin body model is viewed as an example. Implementation and
perceptual issues of the signal processing methods are discussed.
For related sound demonstrations, see www.acoustics.hut.fi/demo/
dafx2001-bodymorph/.

1. INTRODUCTION

The concept of morphing means a smooth transform from an ob-
ject to another, so that the in-between stages have identifiable char-
acteristics of both objects. Morphing is not a novel idea and the
concept has been used both for images and audio. When applied
for images, a morph process consists of smoothly changing images
that move from one image to another. In audio the concept and the
objective is the same: a perceived sound object should uniformly
transform to another sound. To achieve a convincing morph in au-
dio, spectrograms [1] and sinusoidal coding [2], [3] are often used
as the morph domain where interpolation between the extremes is
done. In audio, also (simple) parametric equalizers and shelving
filters have been morphed [4].

This study can be considered as a continuation of work done
on modulating instrument body models in [5], where frequency-
warped IIR body models were modulated through one driving pa-
rameter, the warping coefficient �. This enabled to alter the per-
ceived size of a guitar body model. Complete matching in morph-
ing between two body models cannot be achieved with that partic-
ular technique, whereas the techniques studied in this work make
complete matching viable both at the beginning and the end of
morphing trajectory. In addition, the shift between two different
sized models is more natural. To improve the change (or shift)
from a very large-size body model to a very small one it is use-
ful to add an intermediate size model between the two extremes.

Furthermore, an interesting morph is to move from one instrument
class to another, e.g., from a guitar to a violin.

This study introduces techniques to morph between instrument
body models, thus proposing an interesting and useful audio effect
that can be implemented to run in real-time.

2. INSTRUMENT BODY MODELS

The role of body and soundboard resonators in musical instru-
ments is twofold: (a) transmission of string vibration to the ra-
diated sound field in order to make the instrument louder and (b)
coloration of sound through spectral filtering and temporal spread-
ing (reverberation). In a typical body of a string instrument the box
exhibits mechanical resonances and the interior of the box create
air resonances, radiating through a sound hole. The generation
of the lowest resonances is relatively straightforward: a modified
Helmoholtz resonance (around 100 Hz) in a classical guitar and
the lowest mode of the top plate (around 200 Hz).

Physical modeling of the body behavior is rather complicated.
The Finite Element Method [6] can be useful at low frequencies,
while at higher frequencies the behavior can only be approximated
in a more statistical sense. One further complication is the radi-
ation pattern which varies for different vibration modes. Simu-
lations based on detailed physical models are out of question in
real-time sound synthesis and audio effects.

More practical modeling for audio frequency processing can
be achieved when the instrument body is simulated by a digital
filter. It is assumed that the propagation and air radiation of sound
from strings through the body is linear and time-invariant (LTI)
[7], [8], and [9], which in most cases is a valid assumption. Figure
1 depicts (a) the impulse response and (b) the magnitude response
measured from a classical guitar. Even better overall picture is
obtained from the time-frequency representation of Fig. 2.

Due to the LTI property, instrument bodies can be simulated
efficiently by digital filters, and with modern processors they can
be computed in real time. Different solutions to DSP-based body
modeling have been proposed, e.g., in [9], [10], including FIR and
IIR filters, frequency-warped filters, filters composed of separate
resonators, waveguide models, artificial reverberation algorithms,
etc.

A common feature for filter-based modeling techniques is that
their parameters can be varied in time in order to dynamically
change the body properties, thus making them potentially useful
in morphing type of sound synthesis and audio effects processing.
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Figure 1: Measured response of an acoustic guitar body: (a) im-
pulse response and (b) magnitude response.
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Figure 2: Time-frequency representation for the guitar body re-
sponse of Fig. 1.

2.1. Measurement and estimation of body models

For filter-based modeling there is need for measurement and es-
timation of real instrument bodies. A traditional technique is to
tap the bridge by an impulse hammer and to measure the radiated
sound response for example in front of the sound hole [9].

In [10] we have proposed another technique, particularly for
bridge pickups used for amplification of the acoustic guitar. There
the guitar is played with a spectrally rich set of sounds when the
bridge pickup output and radiated sound are recorded simultane-
ously. By deconvolution of the acoustic and the pickup signals
(division of Fourier transforms) an impulse response is estimated
for the body transfer.

After measuring a body impulse response, such as in Fig. 1,
the response can be modeled by any of the filter approaches de-
scribed in literature. As far as the model allows parametric inter-
polation through stable and meaningful states, it can be used for
morphing purposes. In this study body responses have been es-
timated with warped IIR (WIIR) filters [11], [12], [13], designed
with linear prediction (LP) methods.

3. MORPHING PRINCIPLES

Morphing of a musical instrument model can take many forms.
Here we consider the case of string instrument bodies1. First we
discuss general principles of body morphing, and in the next sec-
tion a set of realization cases are presented.

3.1. Morphing with single filter model

The easiest way of filter-based model morphing is to design a dig-
ital filter that makes a good fit to a measured or estimated body
in the beginning, and to another body, at the end of a morphing
interval, then interpolating in between meaningfully and in a sta-
ble way. It is desirable that the modal resonance behavior of the
bodies is reflected in the modeling, thus IIR type of filters are a
natural choice. Since interpolating IIR filter denominator coeffi-
cients directly does not guarantee stability, other methods must be
used, and they will be discussed in the next section.

The frequency resolution needed to represent single modes is
an important design question. The lowest modes in the guitar, up
to 2–4 kHz, may individually have an effect on perceived sound
quality [14]. Therefore for high-quality modeling at least up to 1–
2 kHz the filter should be able to follow both the spectral envelope
and the temporal decay properties of the body response to be mod-
eled. At higher frequencies we may model either (a) the spectral
envelope only (i.e., tone correction) with low filter pole density,
or (b) match the temporal decay properties also (i.e., reverbera-
tion), which requires high pole density. Warped linear prediction
is a natural choice for balancing between low- and high-frequency
resolutions [9].

Morphing between an initial and a final state is inherently an
interpolation problem. It is possible, however, to extrapolate pa-
rameters also beyond the initial and final states, possibly with out-
of-this-world effects, as far as the filter remains stable and the re-
sponse is meaningful. We will describe one such case below.

3.2. Morphing with multi-part models

Based on the different behavior of low- and high-frequency parts
of instrument bodies it is attractive to process them with separate
models. In [14] we have studied body models consisting of a filter
(such as warped IIR filter), for low-to-mid frequencies and using
reverb algorithms to model the high-frequency end. In morphing
applications this means that the two submodels are interpolated
separately and crossover filters are applied to restrict the frequency
range of each subsystem. Such partitioning could be extended to
more than two bands (e.g., multi-rate filters), although the com-
plexity grows.

3.3. Discrete Resonances

One more useful strategy for body filter models is to control some
modes individually. Typically this means the lowest two reso-
nances in the case of the classical guitar. These modes are elim-
inated from a measured/estimated model response and the rest of
the response is modeled as a single higher-order filter. During syn-
thesis the individual modes are interpolated separately and then the
two submodels are combined. This can be based on a parallel filter

1Morphing could also cover string models and plucking models,
although changing their properties, particularly the pitch, is more
like regular musical expression than real morphing.
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formulation, but cascaded second-order sections are a very natural
solution [15].

4. MORPHING REALIZATIONS

When morphing between two filters by interpolating the filter co-
efficients the crux of the matter is to ensure stability at each mor-
phing stage. The lack of assured stability at each stage is the rea-
son why pole-zero filters described by polynomial coefficients (ai)
cannot directly be used. In some cases morphing (interpolation)
with these kinds of filters might be realizable, but for example
large changes in the z-domain might cause instable intermediate
filters and hence produce an incomplete and distorted morph. The
solution to the matter is to represent the filter coefficients in a do-
main where stability at each morphing stage is assured when the
starting and end point filters are stable.

In this study the filter coefficients have been represented as re-
flection coefficients (RC) or as log area ratio (LAR) coefficients
[16]. In other words, morphing between two filters has been car-
ried out by interpolating reflection coefficients or log area ratio
coefficients. In addition to interpolation, LAR coefficients enable
extrapolation of filters. In this case we can go beyond morphing
and shift into previously unexisting body model dimensions. Be-
sides RC and LAR coefficients, line spectral frequencies (LSF) are
a possible domain to represent all-pole filters that would assure
stable morphs [16]. However, the use of line spectral frequency
representation for high-order body models are ill-behaved, since
significant numerical precision errors may occur.

4.1. Interpolating Reflection Coefficients

Representing coefficients of a zero-pole filter with reflection co-
efficients [16] enables us to morph from one filter to another by
interpolating directly between filter coefficients. When an all-pole
body filter of order p is presented by its filter coefficients, ai, the
reflection coefficients, aj , can be calculated as follows

ki = a
(i)
i (1)

a
(i�1)
j =

a
(i)
j � a

(i)
j a

(i)
i�j

1� k2i
; 1 � j � i� 1; (2)

where the index i takes values p, p � 1,...1. Initially, a(p)j =

aj ; 1 � j � p. Stability of the resulting filter is assured when
aj 2 [-1,1]. In the case of a zero-pole filter the nominator and the
denominator polynomial coefficients are treated separately with
Equations 1, and 2. Figure 3 illustrates magnitude responses when
a small guitar body model is morphed to a larger one by interpo-
lating reflection coefficients on a linear 12 step grid. The y-axis
indicates the stage of the morph so that 0 and 1 correspond to the
small and large body models, respectively. The body filters are
warped IIR filters of order 100. Figure 3 shows how resonances
are being morphed from one to another by subtly changing their
magnitude and/or frequency characteristics.

4.2. Extrapolating Log Area Ratio Coefficients

As with the reflection coefficients, LAR coefficients allow us to in-
terpolate directly between filter coefficients. The LAR coefficients
are derived from RCs:

gi = log
1 + ki

1� ki
: (3)
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Figure 3: Interpolation with reflection coefficients between two
body models. Small to large (0 to 1).

Whereas, RCs are bound 2 [-1,1] for stability reasons, LARs 2 [
- 1 to + 1] with an assurance of a stable filter. This makes ex-
trapolation of body models possible. Figure 4 depicts magnitude
responses when LAR coefficients have been used to extrapolate
beyond a small and a large guitar body filter. The original small
and large sized body models are situated at zero and one on the
y-axis, respectively. Whereas the changes in Fig. 3 might be more
subtle, the changes beyond the starting point filters in Fig. 4, i.e. y-
axis < 0 or > 1, are easily noticeable: drastic changes in resonance
and anti-resonance magnitudes and frequencies.

5. MORPHING BETWEEN INSTRUMENT CLASSES

Instruments that have a resonant body or a soundboard are in-
evitably effected by their presence, through its amplification and
coloration properties. The characteristics the body produces, chang-
es from an instrument body to another. The changes in the re-
sponses are present in different sized bodies of the same instru-
ment. Moreover, changes in response characteristics are even more
definite when bodies of two different instrument classes are com-
pared. Here we consider instrument body morphing from a classi-
cal guitar to a violin.

5.1. Case Study: Guitar to Violin

The bodies of a classical guitar and a violin differ in their physi-
cal size and shape. The difference in their size cause significant
changes in the behaviour of their low-frequency response. Since
the guitar body is larger in volume, longer wavelengths originate
when the air inside the body and the top-plate start to vibrate. This
again results in lower frequencies. As a consequence the two low-
est body resonances of the guitar are situated clearly at lower fre-
quencies than in the violin (e.g. guitar: 104 and 205 Hz, and vio-
lin: 270 and 490 Hz). In addition, the lowest body modes of the
guitar decay much slower than the ones in the violin body. Both
responses have a reverberant characteristic at high frequencies. In
contrast to the low-frequency behaviour, the frequency-dependent
decay at high frequencies can be considered to be much alike and
somewhat the same. First, we look at morphing from a guitar body
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Figure 4: Extrapolation with LAR coefficients beyond existing
body models. The original small and large sized body models are
situated at zero and one (y-axis), respectively.

to a violin body through a morph of two complete body models.
Then, we consider a morph where the two lowest body modes are
morphed separately from the rest of the body models. The sin-
gle resonators are implemented as second-order IIR filters and the
models representing the rest of the response are 100th-order WIIR
filters. The morphs discussed in this Section are linear interpola-
tion of RCs.

A morph between two complete body models is shown in Fig.
5, which zooms into low frequencies and displays eight morph
stages between the guitar (1) and the violin (0) bodies. As men-
tioned before, the lowest modes in the guitar body are at consid-
erably lower frequencies than in the violin body. Figure 5 shows
how the lowest guitar body mode becomes weaker in magnitude,
at each morph stage, and finally disappears. At the same time the
second guitar body resonance changes in frequency and magnitude
and becomes the first body mode of the violin.

A case, where the two lowest body modes are morphed sep-
arately from the rest of the body morph, is displayed in Fig. 6.
The figure displays intermediate stages between the guitar (1) and
violin (0) and zooms into low frequencies. The two lowest body
modes have been extracted from the body responses with second-
order notch filters. Each notch filter has two zero-pole pairs and
a flat magnitude spectrum at other frequencies than the intended
resonance. The inverse of the notch filter resynthesizes the ex-
tracted body mode exactly and each resonance filter is placed in
cascade with the complete body model. The complete body model
is created after the body modes have been extracted. See [17] for
a more detailed discussion on extraction and resynthesis of instru-
ment body modes. When comparing Figures 5 and 6 one can
notice how in the latter figure the low body modes shift in fre-
quency and change in magnitude and Q-values, while in Fig. 5 the
changes occur more in the magnitude domain. Furthermore, the
starting point responses are naturally the same, but the intermedi-
ate stages differ clearly. The audibility of the differences between
these kinds of morphs depends on the number of independently
morphed resonances, their frequency, magnitude and Q-value dif-
ferences and finally also on the speed of morphing from a model
to another. The lowest guitar body resonances ring longer and are
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Figure 5: Morphing between a guitar and a violin body response.
Figure shows eight stages between the bodies, so that 1 corre-
sponds to the guitar and 0 to the violin.

located at lower frequencies. This can be seen from Fig. 7, where
the morph of the lowest body mode is depicted by a zoomed view
of the z-plane. Poles (x) and zeros (o) move to higher frequencies
and move slightly away from the unit circle.

6. DISCUSSION

Now that some of the principle and realization issues related to in-
strument body morphing have been covered, it is natural to discuss
aspects involved in use of the morphing concepts. Instrument body
models composed of two or more parts enable the parts to be mor-
phed independently. For example, when two cascaded WIIR body
model filters have notably different morphing parameter, �, val-
ues, their modeling ability is concentrated on different frequency
regions, e.g., low- and high-frequencies. In this situation morph-
ing or extrapolating them in a different manner, e.g., unequal mor-
phing frequency or amplitude, gives more freedom to control the
audio effect. Input signal dependent morphing is a possibility to
create a controlled time-varying effect with some expression ca-
pabilities. On the basis of the level of the input signal, or amount
of high frequency energy, the stage of a morph or extrapolation
could shift to a chosen extreme with a desired rate and function.
Morphing is a relatively general concept and it could be possible
to apply the DSP ideas discussed in this paper to room responses
and reverberation modeling, too.

7. CONCLUSIONS

In this work morphing between instrument body models was stud-
ied. In addition, extrapolation beyond existing body models is
also found to be realizable. These interpolation and extrapolation
techniques provide yet another musical audio effect. Audio exam-
ples related to this topic will are available at www.acoustics.hut.fi
/demo/dafx2001-bodymorph/
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Figure 6: Morphing between a guitar (1) and a violin (0) body
response, so that two low-frequency resonances are morphed sep-
arately.
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[13] A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U. K.
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