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ABSTRACT

The hearing system, even in front of complex auditory scenes and
in unfavourable conditions, is able to separate and recognize au-
ditory events accurately. A great deal of effort has gone into the
understanding of how, after having captured the acoustical data,
the human auditory system processes them. The aim of this work
is the digital implementation of the decomposition of a complex
sound in separate parts as it would appear to a listener. This oper-
ation is called signal separation.

In this work, the separation of speech signal from complex
auditory scenes has been studied and an experimentation of the
techniques that address this problem has been done.

1. INTRODUCTION

The word Auditory Scene Analysis (ASA) was introduced by Breg-
man to denote the psychoacoustic field founded by him with the
objective of understanding how the auditory system and the hu-
man brain process the complex auditory scenes. In order to know
what it means, we can refer to Scheirer [1], who, with reference
to McAdams and Yost, defines auditory image as what a subject,
listening to many sources simultaneously, perceives as a single
source. Infact, a sound set is divided in auditory images that the
listener can imagine to hear independently. A sound group per-
ceived as made of auditory images is called auditory scene and the
perceptive process applied to an auditory scene is called auditory
scene analysis.

Recently, a new research field was introduced, the Computa-
tional Auditory Scene Analysis (CASA), aimed at developing com-
putational systems able to simulate what the Auditory Scene Anal-
ysis does.

The CASA systems can be classified as data-driven or predi-
ction-driven. The data-driven approach is based only on the input
signal features. The systems based on this approach are called
bottom-up, because, analyzing the information collected at low
level from the physical features of the sound, they build, at an
higher level, conceptually abstract descriptions. On the other hand,
the prediction-driven approach defines the top-down systems. The
latter approach addresses the problem of the auditory illusions, a
perceptive phenomenon that isn’t explainable with bottom-up pro-
cesses. We define an illusion as the twisted correspondence from
appearance and reality and an auditory illusion as the particular
illusion that involves the auditory system. Our project could be
defined as a bottom-up system.

One of the goals of the computational auditory scene analysis
is the speech segregation, i.e. the process that separates speech

signals from other interferring sounds. One other approach ad-
dressing this problem is the blind source separation. It is a statis-
tical technique used for separating concurrent sound sources and it
isn’t inspired by auditory processes as the techniques cited previ-
ously. The blind source separation relies on two main assumptions:
the signal sources must be statistically independent and the mix-
ing process must be linear. Infact, the signal sources distributions
aren’t known a priori and not even the mixing process nature. The
blind source separation algorithm tries to invert the mixing process
in order to reconstruct the single components.

In [2], we can find a comparison between the two techniques
mentioned so far, i.e. the computational auditory scene analysis
and the blind source separation. The authors submitted the same
input sounds, made of speech and noise signals simultaneously,
to the two different algorithms, chosen as rappresentative of the
two approaches. Analysing the collected results, they concluded
that the CASA system provides poor results in the case of large
band noises, such as random or vocal noises. They noticed that
the system performance is particularly bad if the noise signal is
a female speech. This is due to some errors in the pitch-tracking
procedure. The article underlines that the CASA approach perfor-
mances reflect the human capabilities, in the case, for example,
of the “cocktail party” effect. Infact, the hearing system capabili-
ties for the signal separation are limited when it is subject to many
concurrent auditory signals; for example, in a cocktail party we
can listen to different sound sources, but we can pay attention only
to one of them. The same limitation can be noticed in the CASA
system performance too. On the other hand, the blind source sepa-
ration is a powerful technique, but only if the following conditions
are respected: the number of the mixing signals must be equal to
the number of the available sources and the sources must be per-
fectly aligned in time. These conditions are quite restrictive but,
if respected, they can give satisfactory results. On the contrary,
the CASA algorithms require less conditions and, therefore, they
are more flexible. Since we want to be able to separate signals
in whatever condition, not being subject to restrictions, we stud-
ied the computational auditory scene analysis approach, in order
to exploit these positive results.

2. THE PROPOSED APPROACH

For the prototype implementation, we used particular techniques,
each one addressing a specific aim. We divided the structure in two
main connected blocks: the first one implements the pitch analy-
sis, while the second one achieves the resynthesis. The pitch anal-
ysis block is based on the Computational Auditory Scene Analysis
techniques. Using the correlogram and summary correlogram rep-
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resentations, it estimates the pitch of the input signal.
The correlogram represents sound as a three dimensional func-

tion of time, frequency and periodicity. A cochlear model serves
to transform a one dimensional acustic pressure into a two dimen-
sional map of neural firing rate as a function of time and place
along the cochlea. A third dimension is added to the representa-
tion by measuring the periodicities in the output from the cochlear
model [3]. In order to compute the pitch, by means of the cor-
relogram, we compute the summary correlogram, summing across
frequency channels, in each frame.

In our prototype, the analysis phase extracts, from the sound,
the data needed by the resyntesis phase.

The second block is based on the spectral analysis and the in-
verse Fourier Transform and it resyntesizes the signal, trying to
keep only the speech signal and to eliminate the other components.
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Figure 1: General diagram of the structure.

Fig. 1 represents the general diagram of the prototype struc-
ture. The input of the pitch analysis block is the signal containing
the complex auditory scene to be analysed. After the pitch esti-
mation of the components, the first block transmits the data to the
second block that resythesizes, from the original acoustic scene,
only the speech signal.

We will examine in detail each block in the following sections.

2.1. Signal analysis

In fig. 2 we report the diagram of the pitch analysis block.
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Figure 2: Diagram of the pitch analysis block.

The first block of the diagram contains the LyonPassiveEar
function of the Auditory Toolbox ( [4]) which, based on the Lyon’s
passive model, computes the firing rate along the auditory nerve
due to the input signal. Therefore, it computes the data represented
by the cochleagram. The cochleagram is, then, passed to the next
two blocks of fig. 2 that compute, respectively, the Enhanced Sum-
mary Autocorrelation Function (ESACF) and the summary correl-
ogram.

The computation of the ESACF, based on what presented in [5],
is composed of two operations: the computation of the Summary
Autocorrelation Function (SACF) and, following, the Enhancing.
We perform these two subsequent operations for each frame of the
input cochleagram. For the computation of the cochleagram, we
used an Hamming window of 1024-point and an hop-size of 256-
point, i.e. 1

4
of the window lenght. The reference sample rate is

16 KHz. The SACF is calculated by means of the “generalized au-
tocorrelation” but, as opposed to [5], we examine all the channels
of the cochleagram, instead of only two channels, in order to imi-
tate the method applied by human hearing system and to estimate
the pitch more accurately. The SACF is obtained by the following
equation:

SACF =

N channelsX

i=1

IDFT (jDFT (xi)j
k)

= IDFT (

N channelsX

i=1

jDFT (xi)j
k) (1)

where N channels is the number of frequency channels in the
cochleagram and k is the compression factor of the amplitudes in
the frequency domain. For k = 2 we have the standard autocorre-
lation. A good choice is k = 0:67, since we noticed that this value
allows us to obtain a graph which best shows the pitch estimation.

For each frame and each frequency channel of the cochlea-
gram, after the computation of the SACF, the Enhancing operation
gives prominence to the peaks which are candidates for the pitch
estimation, getting rid of the redundant or false information. In
this way, we can obtain the ESACF.

We have already introduced the way to compute the summary
correlogram. More precisely, if we define A(i; j; � ) as the auto-
correlation of the frame j, for the frequency channel i with lag �
and we consider N frequency channels, we define the summary
correlogram s(j; � ) for the frame j and lag � as follows:

s(j; �) =

NX

i=1

A(i; j; �) (2)

In order to highlight the useful peaks for the pitch estimation,
we multiply the summary correlogram by the ESACF.

Since we wanted a thorough estimation of the pitch, avoiding
that unnecessary peaks mask the actual signal peaks, we decided
to limit the range of the pitch search, according to the typical fre-
quency ranges of the voice, reported in table 1 coming from [7].

Subjects Typical frequency ranges (Hz)
Adult male 85-155

Adult female 165-255
Child (10 years old) 208-259
Baby (12 months) 247-410

Table 1: Typical frequency ranges of the voice.

According to these table and to tests, we considered the range
between 70 Hz and 250 Hz. Although from the table it seems that
the best range could be between 80 Hz and 260 Hz, we noted by
tests that the best result is achieved with the range between 70 Hz
and 250 Hz. Defining this range allows us to increase reliability in
the pitch estimation.
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Although we used the graph of the multiplication of the ESACF
and the summary correlogram together, and the definition of the
typical range of the voice, the pitch estimation is difficult, espe-
cially, when the lag is closest to zero. Infact, the abscissae axis of
the graph represents the lag in seconds and the pitch. measured
in Hz, is proportionally to the inverse of the lag. Therefore, high
pitches correspond to small lags. For solving this problem we used
the Lagrange interpolation. It receives the simplified autocorrela-
tion as input and returns the axis of the parabola, i.e. the line or-
thogonal to the abscissae axis where the vertex of the parabola is.
By means of the vertex of the parabola, we can estimate the signal
pitch frame by frame.

2.2. Signal resynthesis

The signal resynthesis block resynthesizes the speech signal in the
complex auditory scene, starting from the data obtained during the
pitch estimation phase.

In fig. 3 the general diagram of the resynthesis block is repre-
sented.
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Figure 3: Diagram of the resynthesis block.

It gets, as inputs, the signal and the pitch estimation and it re-
turns the resynthesized signal. This block is based on the precom-
putation of the Fourier transform of the 256-point normalized win-
dow and of the padded-16384-point window. The former is used
for separating two components with closest frequencies, while the
latter is used for reconstructing the amplitude of the signal spec-
trum.

Observing the fig. 3, we can note that data coming from the
pitch analysis phase are not directly used, but are interpolated. In-
fact, in the pitch analysis phase, we use a 1024-point Hamming
window, while, in the resynthesis phase, we use a 256-point Ham-
ming window. Moreover, the hop size, in the second processing
phase is not equal to 1

4
of the window length, but to 1

2
, since we

applied a FFT�1 technique with both an Hamming and a trian-
gular window. (We will examine the reason for this choice later in
the paper.) Therefore, during the resynthesis phase we have more
frames than in the pitch analysis one. Therefore, we need to inter-
polate the data of the pitch estimation, in order to have the same
number of frames in both the phases. This interpolation allows us
to obtain a pitch function with closest values among two frames.

The values from the interpolation are passed to the block which

finds the harmonics for each pitch found in each frame and sepa-
rates the components with too close frequencies, to avoid the su-
perposition of the main lobes in the frequencies domain. Further-
more, this block gets rid of the redundant harmonics.

Then, we pass the matrix mat peaks, which contains the pitches
of each frame and their harmonics, to the block that looks for the
scale factor to be applied to the Fourier transform of the normal-
ized padded-16384-point window, in order to reconstruct the am-
plitude of the signal spectrum. During the search for the scale
factor, we wonder also whether an harmonic is meaningful or it
is due to random noise. Therefore, if the amplitude (in dB) of
the padded STFT of the signal inside the examined bin is lower
than a threshold, the related harmonic is considered as meaning-
less and, so, its value is set to zero. An important topic, during the
development of the prototype was to establish the right “meaning-
fullness” threshold. During the testing phase, we noted that setting
the threshold to a value, such as 20 dB, could be a drastic choice,
because we don’t consider the window envelope in the frequency
domain. Infact, if we listen to the output signal, we can hear a
“liquid-like” sound. On the contrary, the Fourier transform of the
Hamming window slowly decrease outside the main lobe. There-
fore, we tried to choose a threshold decreasing proportionally with
the distance from the harmonic examined. We made some tests for
choosing the slope of the threshold, but we obtained good results
only for few input sounds. Since we faced the balance between
best quality for a restricted number of files and a lower quality for
a wide set of files, we decided to favour the latter one, setting the
threshold to a fixed level of 20 dB.

In this resynthesis phase, besides looking for the scale factor,
we shifted the Fourier transform of the normalized padded-16384-
point window to be centered on the frequency f0, with f0 indi-
cating each frequency in the matrix mat peaks. Since the precal-
culated Hamming window is real and symmetric about zero, also
the trasform is real and symmetric and, so, the phase is useless
for the computation. Therefore, we extracted the amplitude of the
shifted tranformed window and we scaled it by means of the scale
factor. The result of this operation is defined amp mat tmp. We
repeated the operations of this block for all the f0 values of the
mat peaks matrix, and each amp mat tmp was added to the previ-
ous ones, as we can see by the block called superposition of shifted
and scaled windows of fig. 3. In this way, we construct the ampli-
tude of the 16384-point spectrum of the STFT of the resyntesized
signal, recorded in the over amp matrix.

The over amp matrix is the input of the subsampling block,
bacause we need to have a non padded spectrum amplitude, and it
returns the new Y matrix. But it contains only the spectrum am-
plitude of the resynthesized signal. Therefore, it is necessary to
compute the spectrum phase. For this reason, from the 256-point
STFT of the original signal, we extracted the phase, recorded in
Y phase, on which we apply a phase unwrapping technique. This
method is recursive, but when the amplitude of a component is 40
dB lower than the maximum, while, in the next frame, it is higher
than the threshold, the phase unwrapping starts again. In this way,
we consider only the “active” components in each frame.

When we have both the amplitude and the phase of the spec-
trum, we are able to synthesize the signal. In the prototype, we
synthesize the signal by means of additive synthesis based on in-
verse Fast Fourier Transform, using two types of window: the
Hamming window in the frequency domain, since it has a low
sidelobe level allowing us to set few frequency points, and the
triangular window in the time domain, because, for an exact re-
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construction of the signal, the sum of two overlapping windows
must be 1 in the overlapping region and, in this region the ampli-
tudes and the phases of the partials must be interpolated by the
windows starting from the values of one frame to the ones of the
next frame [6].

The synthesis block returns the synthesized signal.

2.3. Observations

It is worth mentioning some techniques and original ideas that
helped us to implement our prototype.

First of all is the utilization of two separate blocks: one for the
pitch analysis and one for the resynthesis. Since our goal consisted
on separating audio sources, we thought to divide the whole pro-
cess in two steps that, first, extract the data from the auditory scene
and, second, exploiting these data, reconstruct only the required
scene portion, throwing away the rest. This division in two blocks
allows to accelerate the processing time. Infact, by estimating the
computing complexity, we found a balance between the analysis
and the resynthesis phases and, therefore, they can be allocated on
two distinct processors, allowing a concurrent elaboration.

As opposed to what proposed in [5], our Summary Autocorre-
lation Function examines all the frequency channels derived from
the cochleogram, instead of using only two channels. This idea
was introduced for trying to imitate the manner of how the hearing
system perceives audio signals. Using this new function, the sys-
tem is more accurate in its pitch estimation, even if the algorithm
is computationally more complex.

It is interesting, also, the introduction of the summary correlo-
gram in the pitch analysis block, due to non-excellent results from
the ESACF. Multiplying the two functions together, we can esti-
mate the pitch with better performance. Even if during the pitch
analysis phase we calculate the autocorrelation, channel by chan-
nel, both in the ESACF and the summary correlogram, in the for-
mer case it is a generalized autocorrelation with k = 0:67, while
in the latter case it is a standard autocorrelation, and, therefore, it
isn’t possible to merge the computation in only one operation.

About the resynthesis choices, there are three important points
to underline. First, we used a 256-point window and one padded-
16384-point window. Such extreme zero padding proved to be
beneficial to obtain accurate estimates of the amplitude of partials.
This is critical to avoid amplitude-modulated artifacts in signal re-
construction. Another fundamental aspect of the second step is the
application of the technique found in [6], that suggests an FFT�1-
based additive synthesis with better performances. Therefore, we
applied a Hamming window in the frequency domain and a trian-
gular window in the time domain. Infact, during the prototype de-
velopment, we had a bad signal reconstruction, even without added
noise, due to the fact that, when the sinusoids are moving, in the
frequency domain, we obtain a more pronunced lobe. Third, we
highlight the unwrapping process, that we start again every time a
component goes under 40 dB than the maximum value, consider-
ing only the “active” components in each frame.

One topic to consider is the prospect to simplify the blocks in
order to reduce the computational costs. Infact, we know that some
choices made during the prototype development have affected the
computational cost, but the prime goal was accuracy. If we want
to improve the prototype, accepting some compromises, we could
use a SACF computed only on two frequency bands and a padded-
8192-point window. But, if we want to reach a good result, without
disadvantages, we could develop the CorrelogramArray and the

LyonPassiveEar, on purpose, since, in this prototype version, we
applied the ones from the Auditory Toolbox, that doesn’t directly
address the problem we face.

3. CONCLUSIONS

We highlight that the prototype has been implemented using the
MATLAB 5.2 system, whose environment has been extended by
means of the Auditory Toolbox [4] and the STFT and the inverse
STFT functions, called stft and synthesis, available from
ftp://ftp.ci.tuwien.ac.at/pub/export/octave/
octave-ci.tar.gz
adapted for the MATLAB system and properly modified to match
our requirements.

The prototype was developed as a workbench for testing dif-
ferent analysis and reconstruction techniques. Several optimiza-
tions are possible and should be introduced to obtain a robust and
efficient implementation.
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