The RC6" " Block Cipher

Ronald L. Rivest', M.J.B. Robshaw?, R. Sidney?, and Y.L. Yin?

! MLI.T. Laboratory for Computer Science, 545 Technology Square, Cambridge,
MA 02139, USA
rivest@theory.lcs.mit.edu
2 RSA Laboratories, 2955 Campus Drive, Suite 400, San Mateo, CA 94403, USA

{matt,ray,yiqun}@rsa.com

Abstract. We introduce the RC6 block cipher. RC6 is an evolu-
tionary improvement of RC5, designed to meet the requirements of the
Advanced Encryption Standard (AES). Like RC5, RC6 makes essential
use of data-dependent rotations. New features of RC6 include the use of
four working registers instead of two, and the inclusion of integer multi-
plication as an additional primitive operation. The use of multiplication
greatly increases the diffusion achieved per round, allowing for greater
security, fewer rounds, and increased throughput.

1 Introduction

RC6 " is a new block cipher submitted to NIST for consideration as the new
Advanced Encryption Standard (AES).

The design of RC6 began with a consideration of RC5 [17] as a potential
candidate for an AES submission. Modifications were then made to meet the
AES requirements, to increase security, and to improve performance. The inner
loop, however, is based around the same “half-round” found in RC5.

RC5 was intentionally designed to be extremely simple, to invite analysis
shedding light on the security provided by extensive use of data-dependent ro-
tations. Since RC5 was proposed in 1995, various studies [2, 4, 7, 10, 14, 18]
have provided a greater understanding of how RC5’s structure and operations
contribute to its security. While no practical attack on RC5 has been found, the
studies provide some interesting theoretical attacks, generally based on the fact
that the “rotation amounts” in RC5 do not depend on all of the bits in a regis-
ter. RC6 was designed to thwart such attacks, and indeed to thwart all known
attacks, providing a cipher that can offer the security required for the lifespan
of the AES.

To meet the requirements of the AES, a block cipher must handle 128-bit
input/output blocks. While RC5 is an exceptionally fast block cipher, extending
it to act on 128-bit blocks in the most natural manner would result in using
two 64-bit working registers. The specified target architecture and languages for
AES do not yet support 64-bit operations in an efficient and clean manner. Thus
we have modified the design to use four 32-bit registers rather than two 64-bit
registers. This has the advantage that we are doing two rotations per round

rather than the one found in a half-round of RC5, and we are using more bits of
data to determine rotation amounts in each round.

The philosophy of RC5 is to exploit operations (such as rotations) that are
efficiently implemented on modern processors. RC6 continues this trend, and
takes advantage of the fact that 32-bit integer multiplication is now efficiently
implemented on most processors. Integer multiplication is a very effective “dif-
fusion” primitive, and is used in RC6 to compute rotation amounts, so that the
rotation amounts are dependent on all of the bits of another register, rather than
just the low-order bits (as in RC5). As a result the new RC6 has much faster
diffusion than RC5. This also allows RC6 to run with fewer rounds at increased
security and with increased throughput.

We believe that RC6 is well-suited to meet all of the requirements of the
Advanced Encryption Standard.

2 Details of RC6

Like RC5, RC6 is a fully parameterized family of encryption algorithms. A ver-
sion of RC6 is more accurately specified as RC6-w/r/b where the word size is
w bits, encryption consists of a nonnegative number of rounds r, and b denotes
the length of the encryption key in bytes. Since the AES submission is targeted
at w = 32 and r = 20, we shall use RC6 as shorthand to refer to such versions.
When any other value of w or r is intended in the text, the parameter values
will be specified as RC6-w/r. Of particular relevance to the AES effort will be
the versions of RC6 with 16-, 24-, and 32-byte keys.

For all variants, RC6-w/r /b operates on units of four w-bit words using the
following six basic operations. The base-two logarithm of w will be denoted by
lg w.

a+b integer addition modulo 2%

a—b integer subtraction modulo 2

a®b bitwise exclusive-or of w-bit words

axb integer multiplication modulo 2%

a <K b rotate the w-bit word a to the left by the amount
given by the least significant lgw bits of b

a>>b rotate the w-bit word a to the right by the amount
given by the least significant lgw bits of b

Note that in the description of RC6 the term “round” is somewhat analogous
to the usual DES-like idea of a round: half of the data is updated by the other
half; and the two are then swapped. In RC5, the term “half-round” was used to
describe this style of action, and an RC5 round was deemed to consist of two
half-rounds. This seems to have become a potential cause of confusion, and so
RC6 reverts to using the term “round” in the more established way.

2.1 Key schedule

The key schedule of RC6-w/r/b is practically identical to the key schedule of
RC5-w/r/b. Indeed, the only difference is that for RC6-w/r/b, more words are
derived from the user-supplied key for use during encryption and decryption.
The key schedule algorithm is presented in full detail in the Appendix.

The user supplies a key of b bytes, where 0 < b < 255. From this key, 2r + 4
words (w bits each) are derived and stored in the array S[0,...,2r + 3]. This
array is used in both encryption and decryption.

2.2 Encryption and decryption

RC6 works with four w-bit registers A, B,C, D which contain the initial input
plaintext as well as the output ciphertext at the end of encryption. The first
byte of plaintext or ciphertext is placed in the least-significant byte of A; the
last byte of plaintext or ciphertext is placed into the most-significant byte of D.
We use (4,B,C,D) = (B,C,D, A) to mean the parallel assignment of values
on the right to registers on the left. Test vectors for encryption using RC6 are
provided in the Appendix.

Encryption with RC6-w/r/b

Input: Plaintext stored in four w-bit input registers A, B, C, D
Number r of rounds
w-bit round keys S[0,...,2r + 3]

Output: Ciphertext stored in A, B,C, D

Procedure: B = B+ S[0]
D =D+ S[1]
fori =1tor do
{
t=(Bx(2B+])xlgw
u=(Dx(2D+ 1)) xlgw
A=(Adt)xu)+ S[2(]
C=((Cou)xt)+ S[2i+1]
(A,B,C,D)=(B,C,D,A)
}
A=A+ 8S2r+2]
C=C+S[2r+3]

B OO B @0
! lgw lgw
S
S |
repea
| si2i | sei+1 for r
rounds

' [

l I

| |

T I -
—|— S[2r +2] T _|— S[2r + 3] T

f !

A c

o

Fig. 1. Encryption with RC6-w/r/b. Here f(z) = = x (2z + 1).

Decryption with RC6-w/r/b

Input: Ciphertext stored in four w-bit input registers A, B,C, D
Number 7 of rounds
w-bit round keys S[0,...,2r + 3]

Output: Plaintext stored in A, B,C, D

Procedure: C=C-S[2r+3|
A=A-S[2r+2]
for i = r downto 1 do
{

(A,B,C,D)=(D,A,B,(C)
u=(Dx 2D+ 1)) xlgw
t=(Bx(2B+])xlgw
C=(C-82i+1])>t)du
A=((A-S[2i)>u) Dt

3 Performance

In this section we provide some measurements of the encryption and decryption
time of RC6 and also the time required for key setup.

The performance figures shown here for an optimized ANSI C implementation
of RC6 were obtained using the compiler in Borland C*+ Development Suite 5.0
as specified in the AES submission requirements. Performance was measured on
a 266 MHz Pentium IT with 32 Mbytes of RAM running Windows 95. To improve
the accuracy of our timing measurements, maskable interrupts on the processor
were disabled while our timing tests were executed; in addition, each set of the
timing tests described in Sections 3.1 and 3.2 was executed 10 times, and we
report the average of the times thereby obtained.

The figures shown for an assembly language implementation of RC6 were
obtained on the same computer under identical conditions.

The performance figures given for an optimized Java implementation of RC6
were measured on a 180 MHz Pentium Pro with 64 Mbytes of RAM running
Windows NT 4.0. This implementation was compiled with JavaSoft’s JDK 1.1.6
compiler, and the performance of the resulting byte code was measured both
with JavaSoft’s JDK 1.1.6 interpreter (with JIT compilation disabled) and with
Symantec Corporation’s Java! JustInTime Compiler Version 210.054 for JDK
1.1.2. To improve the accuracy of our timing measurements, each set of the
timing tests described in Sections 3.1 and 3.2 was executed 10 times, and we
report the average of the times thereby obtained.

scheme cycles/block blocks/sec Mbytes/sec
at 200 MHz at 200 MHz

ANSI C RC6 encrypt (any size key) 616 325,000 5.19
ANSI C RC6 decrypt (any size key) 566 353,000 5.65
Java (JDK) RC6 encrypt (any size key) 16, 200 12,300 0.197
Java (JDK) RC6 decrypt (any size key) 16, 500 12,100 0.194
Java (JIT) RC6 encrypt (any size key) 1010 197,000 3.15
Java (JIT) RC6 decrypt (any size key) 955 209, 000 3.35
assembly RC6 encrypt (any size key) 254 787,000 12.6
assembly RC6 decrypt (any size key) 254 788,000 12.6

By way of comparison: RC5-32/16/16

ANSI C R(C5-32/16/16 encrypt 328 610,000 4.9
Java (JIT) RC5-32/16/16 encrypt 1,140 175,000 1.4
assembly R(C5-32/16/16 encrypt 148 1,350,000 10.8

Table 1. Speed of RC6 encryption and decryption in ANSI C, Java, and assembly.
RC6 figures have been rounded to three significant digits.

Our timing figures have been scaled to 200 MHz, and it is expected that
the tests NIST performs on the NIST reference platform will in general produce
figures which are comparable to ours (as explained in Section 3.2, a possible
exception to this expectation is key setup for ANSI C). Later in this section
we give estimates for the performance of RC6 on 8-bit platforms (as might be
found in smart cards) and some estimates for the requirements of a hardware
implementation of the algorithm.

3.1 Encryption/decryption in ANSI C, Java, and assembly

The encryption figures given for RC6 in Table 1 do not include key setup, and
are independent of the length of the user-supplied key. Timings in ANSI C

scheme cycles psecs key setups/sec
at 200 MHz at 200 MHz

ANSI C RC6-32/20/16 4,710 23.5 42,500
Java (JDK) RC6-32/20/16 107,000 537 1,860
Java (JIT) RC6-32/20/16 14,300 71.4 14,000
ANSI C RC6-32/20/24 4,710 23.6 42,400
Java (JDK) RC6-32/20/24 108,000 542 1,840
Java (JIT) RC6-32/20/24 14,300 715 14,000
ANSI C RC6-32/20/32 4,720 23.6 42,400
Java (JDK) RC6-32/20/32 110,000 548 1,820
Java (JIT) RC6-32/20/32 15,000 75.1 13,300

Table 2. Key setup times for RC6 in ANSI C and Java. All figures have been rounded
to three significant digits.

were obtained by encrypting and decrypting a single 3, 000-block piece of data
in ECB mode (since this seemed to be a reasonable real-life use of the NIST-
specified API); timings in Java were obtained by encrypting and decrypting
a single 100,000-block piece of data in ECB mode; and timings in assembly
language were obtained by iteratively encrypting and decrypting a single block
3,000 times.

Faster implementations may well be possible.

Slightly different methodologies may have been used to obtain the figures in
Table 1 for RC5-32/16/16 which are provided for the purpose of comparison.

3.2 Key setup in ANSI C and Java

The time required for key setup with RC6-32/20/b when using keys of length
b =128, b = 192, and b = 256 bits is shown in Table 2. Timings for ANSI C
were obtained by computing 3, 000 key schedules; timings for Java were obtained
by computing 10,000 key schedules. Because the NIST-specified C API for AES
submissions inputs keys as hexadecimal ASCII strings (rather than as simple

byte-strings), it was not used for timing key setup operations. Instead, an aux-
iliary key setup routine (which inputs keys as simple byte-strings) was used to
obtain these figures.

Faster implementations may well be possible.

3.3 Estimates of performance on 8-bit platforms

Here we give some crude estimates for the performance of RC6 on an 8-bit
processor. In particular, we consider estimates for Intel’s popular MCS 51 Mi-
crocontroller family [5]. The estimates we shall make can be considered to hold
for Phillips’ 80C51 family of processors [16] as well, since these two families have
very similar instruction sets and timings.

Encryption/decryption. We first consider the round function of RC6 (see
Section 2.2). It consists of six additions, two exclusive-ors, two squarings, two
left-rotates by five bits, and two left-rotates by a variable quantity r. Note that
we have counted B x (2B + 1) = 2B? + B as a squaring and two additions.

These basic operations can be implemented on an 8-bit processor in the
following way (ignoring addressing instructions):

1. A 32-bit addition can be computed using four 8-bit additions with carry
(ADDC).

2. A 32-bit exclusive-or can be computed using four 8-bit exclusive-ors (XRL).

3. A 32-bit squaring can be computed using six 8-bit by 8-bit multiplications
(MUL) and eleven additions with carry (ADDC). Note that six multiplications
are enough since we only need the lower 32 bits of the 64-bit product.

4. Rotating a 32-bit word left by five bit positions can be computed by rotating
the word right by one bit position three times and then permuting the four
bytes. Note that rotating the word right by one bit position can be done
using four byte rotations with carry (RRC).

5. Rotating a 32-bit word left by r can be computed by rotating the word left
or right by one bit position 7’ times (r' < 4, with average two) and then
permuting the four bytes appropriately. The five least-significant bits of r
are used to determine r' and the permutation which can be controlled using
jumps (JB).

6. Most instructions take one cycle except that MUL takes four cycles and JB
takes two cycles.

Putting things together, we can estimate the total number of cycles needed
for one round of RC6.

cycles per contributing

operation instructions operation cycles
add 4 ADDC 4 4x6=24

exclusive-or 4 XRL 4 4%x2=28
squaring 6 MUL, 11 ADDC 35 35x2=170
rotate left by 5 12 RRC 12 12x2=24
rotate left by r 8 RRC or RLC, 24 24 x 2 =48
(average over r) 8 JB
| total | | | 174 |

Taking conservative account of the addressing instructions, the pre-whitening,
post-whitening and any additional overheads, we estimate that encrypting one
block of data with RC6 requires around (174 x 20) x 4 = 13,920 cycles. Accord-
ing to Intel [5] each cycle takes one microsecond on a typical MCS 51 processor,
and so an estimate for the encryption speed of RC6 on this particular processor
is around (1,000,000/13,920) x 128 = 9.2 Kbits/second.

An implementation of RC6 for the Intel 8051 was recently completed and gave
a count of 13,535 cycles for encrypting one block of data. This gives encouraging
confirmation for the estimates we have just derived.

Key setup. The dominant loop in RC6 key setup is the last for loop (see
Appendix). For b = 16, 24, 32 and r = 20, the number of iterations in this
loop is v = 3 x max{20 x 2 + 4,b/4} = 132, which is independent of b. So the
estimates we make will be suitable for all key lengths of particular interest in
the AES submission.

Each iteration in the loop uses four 32-bit additions, one rotate to the left by
three, and one variable rotate to the left by . In addition there are some 8-bit
operations which we will just include as overheads. Following similar analysis
for encryption, we obtain that the total number of cycles for each iteration
(ignoring addressing instructions) is 52. Again, making a conservative estimate
for the additional overheads we get (52 x 132) x 4 = 27,456 cycles to setup a
128-; 192- and 256-bit key, requiring about 27 milliseconds on an Intel MCS 51.

3.4 Hardware estimates

For most applications, an implementation of RC6 in software is probably the best
choice. RC6’s primitive operations (add, subtract, multiply, exclusive-or, and
rotate) are very well-supported on modern microprocessors, and one therefore
benefits from the exceptional effort and care that has gone into the design of
such processors. Furthermore, using such an implementation technique allows
one to easily ride the technology curve that we are all familiar with that results
in Moore’s Law (a factor of two improvement every 18 months).

However, in certain cases it might be desirable to have a custom integrated
circuit implementing RC6. For example, one might wish to have the highest
attainable speed, or to integrate other functions around the RC6 algorithm.

Because RC6 uses the familiar primitive operations noted above, one can take
advantage of existing expertise in designing circuit modules for implementing
these primitives. For example, while one could implement RC6 using standard
gate-array technology, one would not benefit from the tremendous effort that
has been put into designing efficient multiplication circuitry. Indeed, a gate-
array implementation might very well perform more poorly than a processor-
based implementation. But this is not an atypical situation, and one can easily
design circuits that incorporate the best available multiplication circuitry as
submodules.

For a custom or semi-custom implementation, the most relevant parameters
are the silicon area, speed, and power consumption of a 32 x 32 integer multi-
plication. We have investigated this issue and find the following figures for this
operation:

— 120 x 100 microns in area with a standard 0.25 micron CMOS process,
— around three nanoseconds required for each multiply, and
— a power consumption of five milliwatts.

We conservatively estimate that a 32-bit variable rotate (a “barrel shifter”)
would take half of the area of the multiplier and one nanosecond to do. Also we
might estimate that a 32-bit full adder would take one quarter the multiplier
area and around one nanosecond. We further observe that the function f(x) =
z(2z + 1)(mod 2¥) can be computed by using only a multiplier that returns the
bottom 32 bits of the 64-bit product rather than implementing a full 32 x 32
multiplier. We estimate that such a “partial” multiplier would take around 60%
of the area of the full multiplier and three nannoseconds to do.

Considering a critical path for RC6, we can add up the relevant estimates.

| operation | time (ns) | area (mm?)]
32 x 32 “partial” multiplication 3 0.007
32-bit xor 0 0.000
32-bit barrel-shifter 1 0.006
32-bit carry-propagate add 1 0.003

| total |) | 0.016 |

For an efficient implementation, one would want to have two such circuits on
one chip. As a result, the total silicon area would be about 0.032 mm? for those
parts directly relevant to RC6; we allow another 0.018 mm? (say) for control,
I/0, etc. We therefore obtain an estimate that the computational area would be
around 0.05 mm?. Assuming that power consumption is proportional to area,
we have a total power budget of about 21 milliwatts.

With 20 rounds per block, we have a total encryption time of approximately
5 x 20 = 100 nanoseconds for each block, giving an estimated data rate of
around 1.3 Gbits/second. We would expect the decryption time to be similar to
that required for encryption, and for both encryption and decryption time to be
independent of the length of the user-supplied key.

10

We observe that these estimates are somewhat crude and also conservative.
It would also be possible to unwind the main encryption loop 20 times in some
modes of use which would allow for greatly improved performance at the cost of
additional area and power consumption.

4 TImplementation Issues

As might be expected from the description of the algorithm, RC6 is remarkably
compact. Indeed, we estimate that for Intel’s Pentium Pro microprocessor, a fast
assembly language implementation of RC6 (one which runs significantly faster
than the optimized C implementation we have provided with this submission)
could easily be written with well under 256 bytes of code each for the tasks of
key setup, block encryption, and block decryption.

Unlike many other encryption algorithms, RC6 does not use look-up tables
during encryption. This means that RC6 code and data can readily fit within
today’s on-chip cache memory, and typically do so with room to spare. RC6
encryption and decryption make use of a 176-byte key schedule and a bare
minimum of additional memory; to compute that 176-byte key schedule, the RC6
key setup process requires little more than an auxiliary array of approximately
the same size as the user’s supplied key. In addition, since the key schedule is only
176 bytes, it is possible to precompute and store the key schedules for hundreds
of keys. Then switching to one of these keys only requires switching the pointer
to the relevant key schedule, thereby providing key agility.

Given that the family of RC6-like algorithms is fully parameterized and that
RC6 can be efficiently and compactly implemented, the cipher appears to be
particularly versatile.

5 Design and Motivation

During the design of RC6 the following considerations were uppermost.

1. Security.
2. Simplicity.
3. Good performance.

5.1 Security and simplicity

The simplicity of RC5 has made it an attractive object for research. By being
readily accessible to both crude and sophisticated analysis many people have
been encouraged to look at the cipher and to assess the security it offers. RC6
was designed to build on the experience gained in using RC5 and to build on
the security offered by a remarkably simple cipher.

One can view the design of RC6 as progressing through the following steps:

1. Start with the basic half-round loop of RC5:

11

fori=1tor do

{
A= ((A® B) < B) + S]i]
(A,B) = (B, A)

2. Run two copies of RC5 in parallel: one on registers A, B and one on registers
C,D.

fori=1tor do

= (A® B) < B) + S[2i]
((C @ D)< D) + 8[2i + 1]

3. At the swap stage, instead of swapping A with B and C with D, permute
the registers by (4, B,C,D) = (B,C, D, A), so that the AB computation is
mixed with the CD computation. At this stage the inner loop looks like:

fori=1tor do

A= ((A® B) <« B) + S[2i]
C=((CeD)xk D)+ S[2i +1]
(A,B,C,D) = (B,C,D, A)

4. Mix up the AB computation with the C'D computation further, by switching
where the rotation amounts come from between the two computations:

fori=1tor do

A=((A® B) <« D) + S[2i]
C=(Ce® D)« B)+S[2i+1]
(A,B,C,D)=(B,C,D,A)

5. Instead of using B and D in a straightforward manner as above, we use
transformed versions of these registers, for some suitable transformation.
Our security goals are that the data-dependent rotation amount that will
be derived from the output of this transformation should depend on all
bits of the input word and that the transformation should provide good
mixing within the word. The particular choice of this transformation for

12

RC6 is the function f(z) = z(2z + 1)(mod 2v) followed by a left rotation
by five bit positions. This transformation appears to meet our security goals
while taking advantage of simple primitives that are efficiently implemented
on most modern processors. Note that f(z) is one-to-one modulo 2%, and
that the high-order bits of f(z), which determine the rotation amount used,
depend heavily on all the bits of x.

This gives us:

for i =1to r do
{
t=(Bx (2B+1))«k5
u=(Dx (2D +1)) k5
A=((Adt) < u) + S[2i]
C=((Cou)xt)+S[2i+1]
(A,B,C,D) = (B,C,D, A)

. At the beginning and end of the r rounds, add pre-whitening and post-
whitening steps. Without these steps, the plaintext reveals part of the input
to the first round of encryption and the ciphertext reveals part of the input
to the last round of encryption. The pre- and post-whitening steps help to
disguise this and leaves us with RC6:

B =B+ 5[0]
D =D+ S[1]
for i =1to r do
{
t=(Bx(2B+1))«k5
u=(Dx (2D +1)) k5
A=((Adt)<xu)+ S[2i
C=(Cou)xt)+S[2i+1]
(A,B,C,D) = (B,C,D, A)
}
A=A+ S[2r+2]
C=C+S[2r+3]

While it might appear that the evolution from RC5 to RC6 was straightfor-

ward, it in fact involved the design and analysis of literally dozens of alternatives.
RC6 is the design that captures the spirit of our three goals of security, simplicity
and performance the most effectively.

Note that in the preceding development, the decision to expand to four 32-bit

registers was made first (for performance reasons), and then the decision to use
the quadratic function f(z) = z(2z + 1)(mod 2%) was made later. If we had
decided to stick with a two register version of RC6 then we might have had the
following encryption scheme as an intermediate:

13

B = B+ S[0]
for i =1tor do
{
t=Bx(2B+1)«k5
A=((Adt)xt)+ S[i]
(4,B) = (B, A)
}
A=A+ S[r+1]

This variant of RC6 may be of independent interest, particularly when sup-
port for 64-bit arithmetic in C improves. However we merely mention this as an
aside here.

5.2 Good performance for a given level of security

Since the publication of RC5 there have been several notable papers providing
substantive progress in the analysis of RC5 [2, 7, 10, 18]. While the latest tech-
niques demonstrate that RC5-32/12/b, i.e. a 12-round version of RC5, might not
be suitable for longer-term security needs, these attacks currently fall short of
providing any real avenue for practical attack against a 16-round version.

Most existing cryptanalytic results on RC5 depend on what might be viewed
as a relatively slow avalanche of change between rounds. The integer addition
helps to provide a reasonable amount of change due to the effect of the carry, but
the most dramatic changes take place when two different rotation amounts are
used at a similar point during the encryption of two related plaintexts. Typically
an attacker would aim to control the evolution of the differences from round to
round and, in versions of RC5 with fewer rounds, this can allow an attack to be
mounted.

The incremental changes in arriving at RC6 from RC5 have already been
outlined. Two significant changes are the introduction of the quadratic function
B x (2B + 1) (resp. D x (2D 4 1)) and the fixed rotation by five bits.

The quadratic function is aimed at providing a faster rate of diffusion thereby
improving the chances that simple differentials will spoil rotation amounts much
sooner than is accomplished with RC5. The quadratically transformed values
of B and D are used in place of B and D to modify the registers A and C,
increasing the nonlinearity of the scheme while not losing any entropy (since the
transformation is a permutation). The fixed rotation by five bits plays a simple
yet important role in complicating both linear and differential cryptanalysis.

6 Security

We conjecture that to attack RC6 the best approach?® available to the cryptana-
lyst is that of exhaustive search for the b-byte encryption key (or the expanded

3 Note that we are using RC6 to refer to the AES specific variant with w = 32 and
r=20.

14

key array S0, .. .,43] when the user-supplied encryption key is particularly long).
The work effort required for this is min{28%, 21498} operations.

The more advanced attacks of differential [1] and linear cryptanalysis [13],
while being feasible on small-round versions of the cipher, do not extend well to
attacking the full 20-round RC6 cipher. The main difficulty is that it is hard to
find good iterative characteristics or linear approximations with which an attack
might be mounted.

It is an interesting challenge to establish the most appropriate goals for secu-
rity against these more advanced attacks. To succeed, these attacks typically
require large amounts of data, and obtaining 2% blocks of known or chosen
plaintext-ciphertext pairs is a very different task from trying to recover one
key from among 2% possibilities (this latter task can be readily parallelized). It
is worth observing that with a cipher running at the rate of one terabit per sec-
ond (that is, encrypting data at the rate of 10*? bits/second), the time required
for 50 computers working in parallel to encrypt 264 blocks of data is more than
a year; to encrypt 280 blocks of data is more than 98,000 years; and to encrypt
2128 blocks of data is more than 10'° years.

While having a data requirement of 2%* blocks of data for a successful attack
might be viewed as sufficient in practical terms, we have aimed to provide a
much greater level of security. The community as a whole will decide which level
of security a cipher, in particular an AES candidate, should satisfy. Should this
be less than a data requirement of 2128 blocks of data then the number of rounds
of RC6 could potentially be reduced from our initial suggestion of 20 rounds,
thereby providing an improvement in performance.

For attacking an eight-round version of the cipher, RC6-32/8/b, one can con-
struct six-round characteristics or linear approximations. Assuming that these
could be used to attack the eight-round version of the cipher (an assumption
that, while reasonable, overlooks a vast number of practical details) the esti-
mated data required to mount a differential cryptanalytic attack on RC6-32/8/b
would be around 27® chosen plaintext pairs, and to mount a linear cryptanalytic
attack would be around 2%° known plaintexts. Consideration of more sophisti-
cated phenomena such as differentials [12] and linear hulls [15], together with
more customized techniques will reduce these figures by a moderate amount,
but they provide a reasonable illustration of the security that might be offered
by a version of RC6 with a few rounds.

Currently, it seems that a differential attack on the full 20-round RC6 cipher
appears to be most easily accomplished by using a six-round iterative character-
istic (although we have identified useful three- and four-round characteristics).
Considering a variety of options, the probability of one of the best 18-round
characteristics we are aware of in attacking RC6 is around 27254 and uses in-
teger subtraction as the notion of difference. (For some technical reasons, using
exclusive-or as the notion of difference can be more problematical.) To use this
characteristic in an attack would require more than the total number of available
chosen plaintext/ciphertext pairs. While we expect the amount of data required
for an attack to drop as more detailed analysis takes place we do not believe

15

that differential cryptanalysis can be successfully applied to RC6.

To mount a linear cryptanalytic attack, there appear to be two different op-
tions. The first might be to find a linear approximation over several rounds that
uses a linear approximation across the quadratic function. Since there appear
to be some very suitable linear approximations using the least significant bits
of this function, this might be an appealing strategy. Indeed, one can establish
useful six-round iterative linear approximations that can be used, at least in
principle, to attack reduced-round versions of RC6. However, the bias of these
approximations drops rapidly as more rounds are added, and soon the amount
of data required for a successful attack exceeds the amount of data available.
Instead, we note that an attacker might well pursue an alternative approach.

It is possible to find a two-round iterative linear approximation that does
not use an approximation across the combination of the quadratic function and
fixed rotation by five bit positions. Using basic but established techniques to
predict the bias of such an approximation, we observe that the data requirements
to exploit this approximation over a version of RC6 with 16 rounds is about
2142 known plaintexts. Further analysis demonstrated that additional techniques
could be used to bring the data requirements down to a little under 2'2® known
plaintexts. This provided our rationale for choosing 20 rounds for RC6.

With our current knowledge, the most successful avenue for a linear cryptan-
alytic attack on RC6 would be to use the two-round iterative approximation we
have just mentioned to build up an 18-round linear approximation with which
to attack the cipher. Using the same techniques as before to predict the data
requirements to use this approximation at first sight we might need 2'82 known
plaintexts, an amount which exceeds the available data. Enhanced techniques
can be used to reduce this figure by a moderate amount, but in the final as-
sessment we believe that the number of known plaintexts needed to exploit this
approximation readily exceeds the maximum number of plaintexts available. We
conclude that a linear cryptanalytic attack against RC6 is not possible using
these techniques. Further, we believe that the use of more sophisticated linear
approximations and the use of other more advanced linear approximation tech-
niques are exceptionally unlikely to provide sufficient gains as to offer an attack
requiring less than 2'2® known plaintexts.

We are aware of several potential enhancements to the essential attacks we
have described (in particular, the use of truncated and higher-order differen-
tials [9]), and we are also aware of some alternative approaches. However, all
these techniques have so far failed to improve on the attacks outlined here, and
we believe that all currently available sophisticated cryptanalytic attacks will
require more data than there is available. A report on our work and findings is
in preparation.

RC6 can easily be implemented in such a way as to be invulnerable to “timing
attacks” [11]. Many modern processors have constant-time rotation and multi-
plication instructions. Other processors may have a rotation or shift time that
depends linearly with the amount of rotation, but in this case it is usually easy
to arrange the work so that the total compute time is data-independent (for ex-

16

ample, by computing a rotate of ¢ bits using a left-shift of ¢ bits and a right-shift
of w—t bits). In either case, the RC6 encrypt/decrypt time is data-independent,
causing any potential timing attacks to fail.

Studies of RC5 have failed to reveal any weakness in the key setup. This
provided one of the motivations for using the same key setup in RC6 as was
used in RC5. The process of transforming the supplied key to the table of round
keys appears to be well-modeled by a pseudo-random process. Thus, while there
is no proof that no two keys yield the same table of round keys, it appears to
be highly unlikely. It can be estimated that the chance that there exist two
256-bit keys yielding the same table of 44 32-bit round keys is approximately
22x256-44x32 — 9896 — 10=270 (approximately). We feel that there is value in
the “one-way” structure of the key-setup routine that is more important than
the (infinitesimal) chance that there might be two keys that yield the same table
of round keys. One such value is the protection it provides against related-key
attacks, for example.

We can summarize our claims on the security of RC6 as follows:

— The best attack on RC6 appears to be exhaustive search for the user-supplied
encryption key.

— The data requirements to mount more sophisticated attacks on RC6 such as
differential and linear cryptanalysis exceed the available data.

— There are no known examples of what might be termed “weak” keys.

7 Flexibility and Future Directions

As we have already observed RC6 provides the user with a great amount of
flexibility with regards to the size of the encryption key, the number of rounds
and the word size of the basic computational unit.

While the submission of RC6 for consideration as the forthcoming AES is
based around the use of 32-bit words (giving a block size of 128 bits), future
developments and market demand might encourage an extension of RC6 to other
block sizes. Of most importance may be block sizes of 256 bits which would take
advantage of a word size of 64 bits and the performance offered by the next
generation of system architectures (see for example [3, 6]).

We note further that the structure of RC6 allows one to exploit a certain
degree of parallelism in the encryption and decryption routines. For example,
the computation of ¢t and u at each round can be computed in parallel as can
the updates of A and C. As processors move to include an increasingly amount
of internal parallelism (e.g., with the move to superscalar architectures), imple-
mentations of RC6 should show increased throughput.

8 Conclusions

RC6 is a secure, compact and simple block cipher. It offers good performance and
considerable flexibility. Furthermore its simplicity will allow analysts to quickly
refine and improve our estimates of its security.

17

9

Acknowledgements

Many people have been extremely helpful during the design of RC6. In particular
we would like to thank Burt Kaliski, Scott Contini, and Jeff Ylvisaker of RSA
Laboratories, Tom Knight of M.I.T., and Phil Rogaway of UC Davis.

References

1.

2.

10.

11.

12.

13.

14.

15.

E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Stan-
dard. Springer-Verlag, New York, 1993.

A. Biryukov and E. Kushilevitz. Improved cryptanalysis of RC5. To appear in pro-
ceedings of Advances in Cryptology — Eurocrypt 98, Lecture Notes in Computer
Science, 1998. Springer Verlag.

Hewlett Packard. Strategy description, May 22, 1997. Available at
http://www.hp.com/gsy/software/64bit/64bitwp.html.

M.H. Heys. Linearly weak keys of RC5. IEE Electronic Letters, Vol. 33, pages
836-838, 1997.

Intel Corporation. MCS 51 Microcontroller Family User’s Manual. February 1994.
Intel Corporation. The Next Generation of Microprocessor Architecture. October,
1997. Available at
http://www.intel.com/pressroom/archive/backgrnd/sp101497 .HTM.

B.S. Kaliski and Y.L. Yin. On differential and linear cryptanalysis of the RCbH
encryption algorithm. In D. Coppersmith, editor, Advances in Cryptology —
Crypto ’95, volume 963 of Lecture Notes in Computer Science, pages 171-184,
1995. Springer Verlag.

B.S. Kaliski and Y.L. Yin. On the Security of the RC5 Encryption Algorithm.
RSA Laboratories Technical Report TR-602. To appear.

L.R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor,
Fast Software Encryption, volume 1008 of Lecture Notes in Computer Science,
pages 196211, 1994. Springer Verlag.

L.R. Knudsen and W. Meier. Improved differential attacks on RC5. In N. Koblitz,
editor, Advances in Cryptology — Crypto ’96, volume 1109 of Lecture Notes in
Computer Science, pages 216228, 1996. Springer Verlag.

P.C. Kocher. Timing attacks on implementations of Diffie-hellman, RSA, DSS,
and other systems. In N. Koblitz, editor, Advances in Cryptology — Crypto 96,
volume 1109 of Lecture Notes in Computer Science, pages 104-113, 1996. Springer
Verlag.

X. Lai, J.L. Massey and S. Murphy. Markov ciphers and differential cryptanalysis.
In D.W. Davies, editor, Advances in Cryptology — Eurocrypt ’91, volume 547 of
Lecture Notes in Computer Science, pages 17-38, 1991. Springer-Verlag.

M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor,
Advances in Cryptology — Eurocrypt 93, volume 765 of Lecture Notes in Computer
Science, pages 386—397, 1994. Springer-Verlag.

S. Moriai, K. Aoki, and K. Ohta. Key-dependency of linear probability of RC5.
March 1996. To appear in IEICE Trans. Fundamentals.

K. Nyberg. Linear approximation of block ciphers. In A.D. Santis, editor, Advances
in Cryptology — Eurocrypt ’94, volume 950 of Lecture Notes in Computer Science,
pages 439444, 1994. Springer-Verlag.

18

16. Phillips Semiconductors. 80C51 Family Programmer’s Guide and Instruction Set.
November, 1996.

17. R.L. Rivest. The RC5 encryption algorithm. In B. Preneel, editor, Fast Software
Encryption, volume 1008 of Lecture Notes in Computer Science, pages 86-96, 1995.
Springer Verlag.

18. A. A. Selcuk. New results in linear cryptanalysis of RC5. In S. Vaudenay, editor,
Fast Software Encryption, volume 1372 of Lecture Notes in Computer Science,
pages 1-16, 1998, Springer-Verlag.

Appendix

Test vectors

Test vectors for encryption with RC6

plaintext 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
user key 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ciphertext 8f c3 ab 36 56 bl f7 78 cl1 29 df 4e 98 48 a4 le

plaintext 02 13 24 35 46 57 68 79 8a 9b ac bd ce df e0 f1
user key 01 23 45 67 89 ab cd ef 01 12 23 34 45 56 67 78
ciphertext 52 4e 19 2f 47 15 c6 23 1f 51 f6 36 7e a4 3f 18

plaintext 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

user key 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

ciphertext 6c d6 1b cb 19 Ob 30 38 4e 8a 3f 16 86 90 ae 82

plaintext 02 13 24 35 46 57 68 79 8a 9b ac bd ce df e0 f1

user key 01 23 45 67 89 ab cd ef 01 12 23 34 45 56 67 78
89 9a ab bc cd de ef f0

ciphertext 68 83 29 dO0 19 e5 05 04 le 52 e9 2a f9 52 91 d4

plaintext 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
user key 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00O 00 00 00 00 00 OO 00 00 00 00 00
ciphertext 8f 5f bd 05 10 d1 5f a8 93 fa 3f da 6e 85 7e c2

plaintext 02 13 24 35 46 57 68 79 8a 9b ac bd ce df e0 f1
user key 01 23 45 67 89 ab cd ef 01 12 23 34 45 56 67 78

89 9a ab bc cd de ef £f0O 10 32 54 76 98 ba dc fe
ciphertext c8 24 18 16 f0 d7 e4 89 20 ad 16 al 67 4e 5d 48

19

Key schedule for RC6

The key schedule of RC6-w/r/b is practically identical to the key schedule of
RC5-w/r/b and is presented here. The only difference is that more words are
derived from the user-supplied key for use during encryption and decryption.
The user supplies a key of b bytes. Sufficient zero bytes are appended to give a
key length equal to a non-zero integral number of words; these key bytes are then
loaded in little-endian fashion into an array of ¢ w-bit words L[0], ..., L[c — 1].
Thus the first byte of key is stored as the low-order byte of L[0], etc., and L[c—1]
is padded with high-order zero bytes if necessary. (Note that if b= 0 then ¢ =1
and L[0] = 0.) The number of w-bit words that will be generated for the additive
round keys is 2r + 4 and these are stored in the array S[0, ..., 2r + 3].

The constants Ps; = B7TE15163 and (32 = 9E3779B9 (hexadecimal) are the
same “magic constants” as used in the RC5 key schedule. The value of Psy is
derived from the binary expansion of e — 2, where e is the base of the natural
logarithm function. The value of Q35 is derived from the binary expansion of
¢ —1, where ¢ is the Golden Ratio. Similar definitions from RC5 for Ps4 etc. can
be used for versions of RC6 with other word sizes. These values are somewhat
arbitrary, and other values could be chosen to give “custom” or proprietary
versions of RC6.

Key schedule for RC6-w/r/b

Input: User-supplied b byte key preloaded into the ¢-word
array L[0,...,c — 1]
Number r of rounds

Output: w-bit round keys S0, ..., 2r + 3]
Procedure: S[0] = Py

fori=1to 2r+3do
Sli]=S[i — 1] + Qu

A=B=i=j=0

v =3 X max{c, 2r + 4}
for s=1 to v do
{
A=S[i]=(Sli]+ A+ B)«3
B=Ljjl=(L[j]+ A+ B)x (A+ B)
i = (i + 1)mod (2r + 4)
j=({+1)mode

This article was processed using the ITEX macro package with LLNCS style

20

