
The xintexpr and allied packages
Jean-François Burnol
jfbu (at) free (dot) fr

Package version: 1.4o (2025/09/06); documentation date: 2025/09/06.
From source file xint.dtx. Time-stamp: <07-09-2025 at 00:47:30 CEST>.

Part I. The xintexpr package
1 Introduction . 3
1.1 Compatible engines and formats 3
1.2 Usage 4
1.3 xintsession 4
1.4 polexpr 5

1.5 bnumexpr 5
1.6 Printing big numbers on the page 6
1.7 Repository 6
1.8 License and installation instructions 6

2 Syntax reference and user guide . 7
2.1 The three parsers 7
2.2 Output customization 10
2.3 Built-in operators and their precedences 14
Table of precedence levels of operators 15
2.4 Built-in functions 19
Table of functions in expressions 19
2.5 Generators of arithmetic progressions 36
2.6 Python slicing and indexing of one-dimen-

sional sequences 37
2.7 NumPy like nested slicing and indexing for

arbitrary oples and nutples 38
2.8 Tacit multiplication 38
2.9 User defined variables 39
2.10 User defined functions 43
2.11 Examples of user defined functions 51
2.12 Links to some (old) examples within this

document 54
2.13 Oples and nutples: the 1.4 terminology 55
2.14 Expansion (for geeks only) 59
2.15 Known bugs/features (last updated at 1.4n) 60

3 The macros of xintexpr (ancient documentation, mostly) . 63
4 The xinttrig package . 80
5 The xintlog package . 84
6 Macros of the xinttools package . 87
7 Additional (old) examples with xinttools or xintexpr or both . 108

Part II. The macro layer for expandable computations: xintcore, xint, xint-
frac, and some extras

8 The xint bundle . 127
9 Macros of the xintkernel package 142
10 Macros of the xintcore package 146
11 Macros of the xint package 151
12 Macros of the xintfrac package 163

13 Macros of the xintbinhex package 193
14 Macros of the xintgcd package 198
15 Macros of the xintseries package 200
16 Macros of the xintcfrac package 216

Part III. The xintexpr and allied packages source code
17 An introduction and a brief timeline 233
18 Package xintkernel implementation 236
19 Package xinttools implementation 259
20 Package xintcore implementation 302
21 Package xint implementation 359
22 Package xintbinhex implementation 400
23 Package xintgcd implementation 420

24 Package xintfrac implementation 430
25 Package xintseries implementation 525
26 Package xintcfrac implementation 534
27 Package xintexpr implementation 557
28 Package xinttrig implementation 689
29 Package xintlog implementation 712
30 Cumulative line and macro count 750

F(1250)=767476895
80568936999178927
70735217372394624
73500936993792414
59076297117041405
39724218387885529
62951090412321568
10495825130595867
25373159160966800
15791574354131667
63718960323987159
52911434545480699
13507248538315878
47481838130915181
04723762750273390
38726484850625

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

..xintkernel.

xintcore

.

xintbinhex

.

xinttools

.

xint

.

bnumexpr

.

xintgcd

.

xintfrac

.

xintexpr

.

polexpr

.

rlwrap etex
xintsession

.

xinttrig

.

xintlog

.

poormanlog

.

xintcfrac

.

xintseries

Dependency graph for the xint bundle components. Modules pointed to by arrows automatically import
the module from which the arrow originates.

bnumexpr is a LATEX package by the author which uses (by default) xintcore as its mathematical engine.
To use it under Plain eTEX issue first \input miniltx.tex then \input bnumexpr.sty.

polexpr handles definitions and algebraic operatione on one-variable polynomials, as well as root local-
ization to arbitrary precision. It works both with Plain TEX and with LATEX.

xinttrig and xintlog are loaded automatically by xintexpr; they should not be loaded directly via a
separate \usepackage (in LATEX).

poormanlog is a TEX and LATEX package by the author which is loaded automatically by xintlog.
xintsession is invoked on the command line as etex xintsession (or, much better if available: rlwrap ⤸

etex xintsession).

2

https://ctan.org/pkg/bnumexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/xintsession
https://ctan.org/pkg/poormanlog
https://ctan.org/pkg/bnumexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/poormanlog
https://ctan.org/pkg/xintsession

TOC
TOC, Start here , xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Part I.
The xintexpr package
1 Introduction . 3

2 Syntax reference and user guide . 7

3 The macros of xintexpr (ancient documentation, mostly) . 63

4 The xinttrig package . 80

5 The xintlog package . 84

6 Macros of the xinttools package . 87

7 Additional (old) examples with xinttools or xintexpr or both . 108

1. Introduction

.1 Compatible engines and formats 3

.2 Usage . 4

.3 xintsession . 4

.4 polexpr . 5

.5 bnumexpr . 5

.6 Printing big numbers on the page 6

.7 Repository . 6

.8 License and installation instructions 6

Jürgen Gilg's interest into what he called "XINT" was instrumental in keeping the author

motivated over the years. We exchanged on many topics extending beyond TEX and often reacted

similarly to private and public events. I knew he was a very kind and devoted person, who took

care of the needs of others prior to his own, although he never mentioned it. Jürgen suffered

a sudden, unexpected, and deadly stroke in May 2022. I will miss his friendship profoundly.

1.1. Compatible engines and formats
The components of the xint bundle can be used indifferently with Plain TEX (and other formats, as

mentioned next) or with LATEX. The sole difference being that with the latter the loading must be

done by \usepackage whereas with any non-LATEX format it has to be via \input (using .sty filename

extension, not .tex).

The engine can be PDFTEX, XeTEX, or LuaTEX.

With release 1.4n you can also use the packages with ConTEXt (only latest one, with LuaMetaTEX

engine), and OpTEX.

You can't use the xint bundle with Knuth's original tex binary, because its functionalities

require \numexpr and other e-TEX extensions as well as the more recent \expanded engine primitive

(and \pdfstrcomp or \strcmp).

xintexpr will be probably the main entry point, and it actually automatically loads most other

components. The aim of xintexpr is to provide expandable parsers of numerical expressions, either

floating point numbers or fractions.

3

TOC
TOC, Start here , xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

1.2. Usage
Here is an example:

\xintfloateval{cos(3Pi/17)*sin(1)^0.123 + log(3.42e5)}

13.57492307809003

You can get the result with more digits:

\xintSetDigits*{32}

\xintfloateval{cos(3Pi/17)*sin(1)^0.123 + log(3.42e5)}

13.574923078090031147995554039818

And with still more digits (the [-2] rounds away the two least significant digits of the result):

\xintSetDigits*{62}

\xintfloateval[-2]{cos(3Pi/17)*sin(1)^0.123 + log(3.42e5)}

13.5749230780900311479955540398179965151694656991408063951975

Here is now an example with fractions:

\xinteval{reduce(add(1/i^3, i=1..25))}

2560976152652211536408111110189/2131858131361319942957376000000

And two examples with large integers:

$2^{1000}=\printnumber{\xinteval{2^1000}}$.\newline

$100!^3=\printnumber{\xintiieval{100!^3}}$.

21000 = 1071508607186267320948425049060001810561404811705533607443750388370351051124936122493 ⤸
19837881569585812759467291755314682518714528569231404359845775746985748039345677748242309854 ⤸
21074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167 ⤸
660429831652624386837205668069376.

100!3 = 812851037046656979290580347413945278009541752752031190770857947476708884823373059685 ⤸
67201883750504781387762207126471259231411592064116091993540375458364906984360126190005190897 ⤸
02481351072344988957966094631503344938807996687425862917630302052505909887462286075836527716 ⤸
23341365916290092476956859429554672135618951275111007717373291473301054034842043089511584699 ⤸
57099274146970547638354741532999364798054400 ⤸
0000000000000000000000.

The \printnumber utility to wrap very long output is not part of the package. It is documented

in subsection 1.6 next.

The table of built-in functions and the one of built-in operators will give a quick overview of

the available syntax.

1.3. xintsession
The simplest way1 to test the syntax is to work interactively on the command line (this feature

is available since April 2021, the version of xintsession used here is 1.3a). Beware though that

ill-formed inputs will trigger TEX famously antiquated error handling, from which it is hard to

recover, altough hitting S may sometimes miraculously bring you back to the xintsession prompt.

rlwrap etex xintsession

[...welcome banner...]

Magic words: `&pause' (or `;'), `&help', `&bye',

`&exact', `&fp', `&int', `&pol'.

\jobname is xintsession

Transcript will go to log and to xintsession-210609_12h00.tex

Starting in exact mode (floating point evaluations use 16 digits)

>>> 2^100;

@_1 1267650600228229401496703205376

>>> cos(1);

1 I am assuming here in the displayed example a Unixen system, i.e. Mac OS or Linux, adapt to your environment.

4

https://ctan.org/pkg/xintsession
https://ctan.org/pkg/xintsession
https://ctan.org/pkg/xintsession

TOC
TOC, Start here , xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

@_2 0.5403023058681397

>>> &fp=32

(/usr/local/texlive/2021/texmf-dist/tex/generic/xint/xintlog.sty)

(/usr/local/texlive/2021/texmf-dist/tex/generic/xint/xinttrig.sty)

fp mode (log and trig reloaded at Digits=32)

>>> cos(1);

@_3 0.54030230586813971740093660744298

>>> 3^1000;

@_4 1.3220708194808066368904552597521e477

>>> &exact

exact mode (floating point evaluations use 32 digits)

>>> 3^1000;

@_5 13220708194808066368904552597521443659654220327521481676649203682268285

9734670489954077831385060806196390977769687258235595095458210061891186534272525

7953674027620225198320803878014774228964841274390400117588618041128947815623094

4380615661730540866744905061781254803444055470543970388958174653682549161362208

3026856377858229022841639830788789691855640408489893760937324217184635993869551

6765018940588109060426089671438864102814350385648747165832010614366132173102768

902855220001

>>> &bye

Did I say something wrong?

Session transcript written on xintsession-210609_12h00.tex

)

No pages of output.

Transcript written on xintsession.log.

1.4. polexpr
The package polexpr enriches the \xinteval syntax (but not the one of \xintfloateval) with a poly-

nomial type with associated constructor pol([c0,c1,...]), and polynomial specific functions such

as polgcd(pol1, pol2, ...).

Full usage of polynomials (and algebraic notations c_0 + c_1 x + c_2 x^2 + ... for input and

also output) goes through a dedicated \poldef parser which is based upon \xintdefvar/\xintdeffunc

and is a necessary step to then access via a dedicated macro interface operations such as identi-

fying all rational roots and isolating all real roots to arbitrary precision.

The simplest manner to experiment with polexpr is via the &pol mode of xintsession.

1.5. bnumexpr
This LATEX package loads xintcore and xintbinhex and provides \bnumeval which is a scaled-down

\xintiieval (omitting support for nested structures, functions, variables, boolean branching,

etc...). It can be used with Plain eTEX, thanks to miniltx. For this, use \input miniltx.tex

followed by \input bnumexpr.sty (remark: miniltx is not needed for xintexpr).

\bnumeval is thus a boosted \inteval which addition of support for arbitrarily large integers,

powers with ** and ^, rounded division with /, floored division with // and associated modulo /:,

factorials via ! postfix operator, comma separated multi-item expressions.

It also supports as \xintiieval does the ', ", 0b, 0o and 0x input prefixes and the optional

arguments [b], [o], or [h].

Further, it provides an interface (which does not exist with xintexpr) to let all operations be

done by macros of one's own choosing, as replacement for some or all of the operations by default

implemented via the help of xintcore and xintbinhex. It even makes it possible to add to the syntax

extra infix or postfix operators and to modify the precedence levels of those already defined.

5

https://ctan.org/pkg/polexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/xintsession
https://ctan.org/pkg/bnumexpr
https://ctan.org/pkg/miniltx
https://ctan.org/pkg/miniltx

TOC
TOC, Start here , xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

1.6. Printing big numbers on the page
When producing very long numbers there is the question of printing them on the page, without going

beyond the page limits. In this document, I have most of the time made use of a ``\printnumber''

macro, which is not provided by the package. A primitive form would be:

\def\allowsplits #1{\ifx #1\relax \else #1\hskip 0pt plus 1pt\relax

\expandafter\allowsplits\fi}%

\def\printnumber #1{\expandafter\allowsplits \romannumeral-`0#1\relax }%

This macro triggers ``f-expansion'' of its argument (and indeed \xinteval and friends expand

completely under such trigger), then it goes through the computation result character by char-

acter inserting TEX potential break points in-between them. It is ineffective in math mode, one

would need to add some \allowbreak's. The \printnumber used for building this documentation uses

slightly different and more sophisticated mechanisms and can be found in the source file xint.dtx.

1.7. Repository
It is at https://github.com/jfbu/xint. At this stage, it does not recored real-time development

status but only actual successive CTAN releases since 2013. Use it to report issues. Don't forget

to include @jfbu in the ticket else I will not be pinged.

A front page at https://jfbu.github.io/xint provides, in addition to the present xint.pdf and

to README.md a file CHANGES.html, which contains the complete list of changes relevant to user

level since the initial release of the package:

https://jfbu.github.io/xint/CHANGES.html

Its version xintchanges.md in Markdown format is included in the CTAN upload,

texdoc xintchanges.md

Warning: I don't have the time to maintain perfectly such large documentation. It combines old

documentation which never really got updated and may be locally obsolete with more recent stuff

mostly written on occasion of the 1.4 release of January 2020 and the 1.4e one of May 2021, and

the intervening changes might also have made some of it not completely accurate, despite my best

efforts.

1.8. License and installation instructions
The xint bundle components are made available under the LaTeX Project Public License 1.3c. They

are included in all major TEX distributions, thus there is probably no need for a custom install:

just use the package manager to update if necessary the xint bundle components to the latest ver-

sion available.

Else, CTAN access provides xint.tds.zip which has all source code and documentation in a TDS-

compliant archive, only waiting to be unzip -d <DIR> into some suitable hierarchical structure.

See https://jfbu.github.io/xint for how to build from the CTAN xint.dtx source file.

6

https://github.com/jfbu/xint
https://ctan.org
https://jfbu.github.io/xint
https://jfbu.github.io/xint/CHANGES.html
https://ctan.org/pkg/xint
http://www.latex-project.org/lppl/lppl-1-3c.txt
https://ctan.org/pkg/xint
https://jfbu.github.io/xint
https://ctan.org/tex-archive/macros/generic/xint

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

2. Syntax reference and user guide

.1 The three parsers. 7

.2 Output customization 10

.3 Built-in operators and their precedences . . 14
Table of precedence levels of operators 15
.4 Built-in functions . 19
Table of functions in expressions 19
.5 Generators of arithmetic progressions 36
.6 Python slicing and indexing of one-dimen-

sional sequences . 37
.7 NumPy like nested slicing and indexing for

arbitrary oples and nutples 38
.8 Tacit multiplication . 38
.9 User defined variables. 39
.10 User defined functions 43
.11 Examples of user defined functions 51
.12 Links to some (old) examples within this

document . 54
.13 Oples and nutples: the 1.4 terminology . . . 55
.14 Expansion (for geeks only) 59
.15 Known bugs/features (last updated at 1.4n) 60

WARNING: this documentation goes sometimes into too much details, and does need some im-

provements. But there is no time for that at 1.4n. Although people do not believe me when

I say that, there is ample intellectual reward in actually reading the documentation, and it

would be nice if at least, at last someone on Earth did, once (as Jürgen Gilg some years back).

2.1. The three parsers
xintexpr provides three numerical expression parsers corresponding to these three respective

tasks:

\xintfloateval: evaluations with floating point numbers; the default precision is with 16 digits,

it can be set via \xintSetDigits*,

\xinteval: exact evaluations with fractions, decimal fixed point numbers, numbers in scientific

notation, with no size limitation,

\xintiieval: evaluations allowing only integers with no size limitation,

and two secondary ones which act like the exact evaluator then round the output to a given number

of fractional digits, or convert them to false or true according to whether they vanish or do notChanged
at 1.4m! vanish.

Please note the following:

• If you find that \xintfloateval is too much of a mouthful, you create an alias named,

for example, \fpeval. Oops, no, that is LATEX3 very efficient floating point engine. It

is faster at its (unchangeable) precision of 16 decimal digits than \xintfloateval due

to various reasons, one of them being that xintexpr birth was related to big integers

only, and floating point support in arbitrary precision was added on top of that, via

some expedients which have never been refactored, in view of the massive work that this

would entail by now. But for example you could do \let\evalfp\xintfloateval if you want

a shorter name. By the way \xintfloateval could very well have been christened \xintfpe ⤸
val but when the author wrote the first release in 2013 he was barely if at all aware of

existence of LATEX3, and of its l3fp component.

• Although \xinteval manipulates arbitrarily long integers or fractions it also accepts

scientific notation on input, as well as all the mathematical functions (evaluated using

the prevailing digits precision), and (depending on customization) can thus produce also

scientific notation on output.

• So far, individual operations and the printing routine of \xinteval do not automatically

reduce fractions to their lowest terms.

7

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

The interface is:

• \xinteval{⟨expression⟩} handles integers, decimal numbers, numbers in scientific notation

and fractions. The algebraic computations are done exactly, and in particular / simply con-

structs fractions. Use // for floored division.

\xinteval{add(x/(x+1), x = 1000..1014)}\par

4648482709767835886400149017599415343/310206597612274815392155150733157360

The output in this specific example came out irreducible. In general one needs a reduce()

wrapper for an irreducible output:

\[\xinteval{subs((y,reduce(y)), y = mul(x/1000, x = 10..[10]..90))}\]

362880000000000/1000000000000000000000000000, 567/1562500000000000

Arbitrarily long numbers are allowed in the input. The space character (contrarily to the

situation inside \numexpr) and also the underscore character (as allowed in Python too) can

serve to separate groups of digits for better readability. But the package currently provides

no macros to let the output be formatted with such separators.

\xinteval{123_456_789_012^5}

28679718616935524442942783005582105858543331562763768832

Hexadecimal, octal and binary (with fractional part allowed) can be input using suitable pre-New with
1.4n fixes: respectively " or 0x, ' or 0o, and 0b:

\xinteval{0b111111111111.111111111111}

4095.999755859375

• \xintieval[⟨D⟩]{⟨expression⟩} is the same parser as \xinteval, i.e. accepts the same inputs

and does all computations exactly in the same manner, but it then rounds its final result to

the nearest integer, or, in case there is an optional argument [D], to:

– if D>0: the nearest fixed point number with D digits after the decimal mark,

– if D=0: the nearest integer (as for \xintieval with no optional argument),

– if D<0: the rounded quotient by 10^(-D).

The optional argument [⟨D⟩] can also be located within the braces at the start of the expres-

sion (this was actually the legacy syntax until 1.4k).

• \xintiieval{⟨expression⟩} executes computations on (big) integers only. It is (only slightly)

faster than \xinteval for the same expression.

Attention: the forward slash / does the rounded integer division to match behaviour of \nume ⤸
xpr. The // operator does floored division as in \xinteval. The /: is the associated modulo

operator (we could easily let the catcode 12 % character be an alias, but using such an unusual

percent character would be a bit cumbersome in a TEX workflow, if only for matters of syntax

highlighting in TEX-aware text editors).

% add the i^5 only if i is a multiple of 7

\xintiieval{add((i/:7)?{omit}{i^5}, i=1000..1020)}

3122939154402144

An optional argument [h], [o], or [b] says to convert the output to hexadecimal, octal orNew with
1.4n binary:

\xintiieval[h]{3^100}

5A4653CA673768565B41F775D6947D55CF3813D1

8

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

• \xintfloateval[⟨Q⟩]{⟨expression⟩} does floating point computations with a given precision,

which defaults to 16. The precision P can be set using \xintDigits*:=P\relax or \xint-

SetDigits*{P} syntaxes.

Its optional argument [Q], if present, means to do a final float rounding to a mantissa of Q

digits (this thus makes sense only if Q<P).

A negative Q is allowed and means to round to P+Q digits only.

Prior to 1.4k the optional argument [⟨Q⟩] had to be located within the braces at the start of

the expression. The legacy syntax is and will keep being allowed.

The infix operator / will compute the correct rounding of the exact fraction. The operator //

is floored division and /: is its associated modulo (see also divmod()).

\begingroup

\xintDigits:=64\relax

\xintfloateval{sqrt(3)}

\endgroup

1.732050807568877293527446341505872366942805253810380628055806979

The four basic operations and the square root achieve correct rounding.2

On output, \xintfloateval uses \xintPFloat for each numeric leaf. This can be modified (cf.

\xintfloatexprPrintOne).

There is a core syntax:

• \xintexpr⟨expression⟩\relax,
• \xintiexpr⟨expression⟩\relax,
• \xintiiexpr⟨expression⟩\relax,
• \xintfloatexpr⟨expression⟩\relax,
• \xintboolexpr⟨expression⟩\relax.

\xintboolexpr⟨expression⟩\relax does all computations like \xintexpr then converts all (non-

empty) leaves3 to true or false (cf. \xintboolexprPrintOne). There is no \xintbooleval.4Changed
at 1.4m! Formerly the \xintexpr...\relax legacy syntax had to be prefixed by \xintthe if in typesetting

context, else an error was raised (deliberately). The \xintthe prefix was made optional at 1.4.

In an \edef these constructs expand to some braced nested data, all computations having been

completely done, which is prefixed with some \protected “typesetter” macros.

In an \edef, \xinteval (in contrast to \xintexpr), or \xintfloateval (in contrast to \xint-

floatexpr) expand the “typesetting macros” and the final complete expansion consists of explicit

digits and other characters such as those of scientific notation or square brackets.5

In LATEX it is possible to use the core syntax \xintexpr⟨expression⟩\relax also in so-called mov-

ing arguments, because when written out to a file the final expansion outcome uses only standard

catcodes and thus will get retokenized and expand as expected if it has been written to an external

file which is then reloaded.

One needs \xinteval et al. only if one really wants the final digits (and other characters), for

example in a context where TEX expects a number or a dimension.

As alternative to \xinteval{⟨expression⟩}, an equivalent is \xintthe\xintexpr⟨expression⟩\rel ⤸
ax. Similarly \xintthe can prefix all other core parsers. And one can also use \xinttheexpr as

shortcut for \xintthe\xintexpr.

Doing exact computations with fractions leads very quickly to very big results (and furthermore

one needs to use explicitly the reduce() function to convert the fractions into smallest terms).

Thus most probably what you want is \xintfloateval and \xintfloatexpr.

2 when the inputs are already floating point numbers with at most P-digits mantissas. 3 Currently, empty leaves are output using
\xintexprEmptyItem, i.e. default to []. This may change. 4 This was True and False prior to 1.4m. 5 \xinteval and \xint-
expr both expand completely in exactly two steps. And \xintexpr expands fully under f -expansion (of the \romannumeral 0 or -`0
type). As per \xinteval attention that it may expand to nothing, then naturally f -expansion propagates to tokens following up in
the input stream.

9

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

2.2. Output customization
2.2.1.

source
\xintfloatexprPrintOne et al. for numerical values

The package provides only minimal facilities for formatting the output from \xinteval or \xint-

floateval or.... And this output may well consist of comma separated values, even nested ones

with, by default, square brackets. First we explain how to influence the handling of individual

“leaves”.
Here are the default definitions to this effect:

\def\xintexprEmptyItem{[]} % (all parsers)

\def\xintexprPrintOne #1{\xintFracToSci{#1}} % \xinteval

\def\xintiexprPrintOne #1{\xintDecToString{#1}} % \xintieval

\def\xintiiexprPrintOne#1{#1} % \xintiieval

\def\xintfloatexprPrintOne [#1]#2{\xintPFloat[#1]{#2}} % \xintfloateval

\def\xintboolexprPrintOne#1{\xintiiifNotZero{#1}{true}{false}}

They can be re-defined to one's wishes. If configured to do anything non expandable they must be

\protected. LATEX users will want to use \RenewDocumentCommand for this.

TEX-hackers note:

• Actually, the defaults are more done in the style

\let\xintexprPrintOne\xintFracToSci

thus sparing grabbing the argument #1. And one can do

\def\xintexprPrintOne{\xintFracToSci}

too.

• \xintexprPrintOne defaults in truth to some private variant of \xintFracToSci with exactly the same

output but able to understand only certain limited types of inputs as used internally.

• \xintiiexprPrintOne is used with \xintiieval. But it gets replaced with \xintiiexprPrintOneHex,

\xintiiexprPrintOneOct, or \xintiiexprPrintOneOct if the optional argument [h], [o], or [b] is used.New with
1.4n These macros default to respectively \xintDecToHex, \xintDecToOct and \xintDecToBin.

• \xintfloatexprPrintOne defaults in fact to a private variant of \xintPFloat which assumes the optional

argument [P] is present as it will be the case always in this context. This optional argument [P] is the

optional argument [Q] of \xintfloateval (or Digits+Q if Q<0).

• The typesetter for \xintiiexpr simply prints ``as is'', but this may change in future, if some internal

format is used requiring a conversion step.

Here is a possibly not up-to-date list of macros of interest, whose documentations you might

consider reading (the first two require math mode):

• \xintTeXFromSci,

• \xintTeXFrac,

• \xintDecToString,

• \xintPRaw,

• \xintFracToSci,

• \xintFracToDecimal,

• \xintPFloat,

• and \xintFloatToDecimal.

Naming scheme, as one can see, has been pretty much incoherent, apologies.

Among packages providing macros formatting numeric values, there are numprint and its macro \n ⤸
p (or \numprint without the option np), and siunitx and its \num, and possibly more packages not

known to the author.6 These macros are suitable in combination with \xintFloat as in the example

below to customize the \xintfloateval output. Numerical output from \xinteval is more challenging

as individual values may naturally contain the / character for fractions which the above mentioned

packages will not know how to handle, as far as I know.

6 There does not seems to be yet a LATEX user level interface to the l3str-format package, part of l3experimental, which provides
an implementation of the Python format function.

10

https://ctan.org/pkg/numprint
https://ctan.org/pkg/siunitx
https://ctan.org/pkg/l3experimental

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Here an example, with LATEX and \num from siunitx:

\RenewDocummentCommand\xintfloatexprPrintOne{o m}{\num{\xintFloat[#1]{#2}}}

We could have used here simply \def with delimited parameters [#1]#2 because:

• the optional argument will always be present at time of use,

• \num is a \protected macro.

Note that when using only \def for the definition, the argument of \num is getting to be expanded

first, but \num would have done that anyhow.

With numprint, one can similarly do:

\RenewDocumentCommand\xintfloatexprPrintOne{o m}{\numprint{\xintPFloat[#1]{#2}}}

This used \xintPFloat rather than \xintFloat as with \num. This is because (in my limited testing)

\numprint with not silently remove a zero scientific exponent but it will typeset it, for example

as 1.5 · 100. So we use our own \xintPFloat poor man “prettifier”.
Maybe you want to use a macro which is unable to have \xintPFloat[#1]{#2} as argument because it

needs to see only a number in scientific notation and nothing else. If that macro is \protected,

do the definition with \def. It it is not \protected and not purely expandable either, one can do

this:

\protected\def\myfoo{\foo}%<<<--- with options perhaps

\def\xintfloatexprPrintOne[#1]#2{\myfoo{\xintPFloat[#1]{#2}}}

Then when \myfoo finally expands, its argument has been expanded already.

The current behaviour of \xintfloateval corresponds to this set-up:

\def\xintfloatexprPrintOne [#1]#2{\xintPFloat[#1]{#2}}

and to this default configuration of \xintPFloat:

\def\xintPFloatE{e}

\def\xintPFloatZero{0}

\def\xintPFloatIntSuffix{}

\def\xintPFloatLengthOneSuffix{}

\def\xintPFloatNoSciEmax{5}

\def\xintPFloatNoSciEmin{-4}

\def\xintPFloatMinTrimmed{4}

With the custom replacement

\def\xintfloatexprPrintOne{\xintFloatToDecimal}

the \xintfloateval output will use decimal fixed point notation, i.e. no scientific exponents, and

as many zeros as are needed (but no more, as trailing zeros will be removed from the significant

digits). Here is an example comparing outputs from the default configuration and custom ones:

\xintfloateval{exp(-32.456)/2000} (default, i.e. PFloat)\newline

\def\xintfloatexprPrintOne{\xintFloatToDecimal}%

\xintfloateval{exp(-32.456)/2000} (FloatToDecimal)\newline

\def\xintfloatexprPrintOne[#1]#2{\xintTeXFromSci{\xintFloat[#1]{#2}}}%

$\xintfloateval{exp(-32.456)/2000}$ (TeXFromSci on Float)\par % math mode required

4.013361680161317e-18 (default, i.e. PFloat)

0.000000000000000004013361680161317 (FloatToDecimal)

4.013361680161317 · 10-18 (TeXFromSci on Float)

Some examples showing now the effect of sensible customizations on \xinteval:

\xinteval{exp(-32.456)/2000} (default, i.e. FracToSci)\newline

\def\xintexprPrintOne{\xintFracToDecimal}%

\xinteval{exp(-32.456)/2000} (FracToDecimal)\newline

\def\xintexprPrintOne#1{\xintTeXFromSci{\xintFracToSci{#1}}}%

$\xinteval{exp(-32.456)/2000}$ (TexFromSci on FracToSci)\par % math mode required

8.026723360322633e-15/2000 (default, i.e. FracToSci)

0.000000000000008026723360322633/2000 (FracToDecimal)

8.026723360322633 · 10-15 · 2000-1 (TexFromSci on FracToSci)

Notice that the /2000 denominator remains ``as is'' in the output, in conformity with the docu-

11

https://ctan.org/pkg/siunitx
https://ctan.org/pkg/numprint

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

mented behaviour of \xintFracToSci in the first example and of \xintFracToDecimal for the second

example. This has not changed since 1.4 (the handling of the numerator part has changed at 1.4e

and again slightly at 1.4k, the zero value being now always printed as 0 and not 0 or 0.0 depending

on the input) but is to be considered unstable and undecided so far.

A slightly more costly typesetter could be for example:

\def\xintexprPrintOne#1{\xintDecToStringREZ{\xintIrr{#1}}}

Then

• the fraction (inclusive of its power of ten part) will be reduced to lowest terms (see \xint-

Irr),

• next the trailing zeros will be moved as an exponent (positive or negative) to the numerator,

• this numerator with a power of ten part will be printed in decimal fixed point notation, with

as few zeros as are needed,

• and finally the denominator B, which has been trimmed of trailing zeros, will be printed as /B

or not at all if B=1.

With the use case above:

\def\xintexprPrintOne#1{\xintDecToStringREZ{\xintIrr{#1}}}

\xinteval{exp(-32.456)/2000}\par

0.000000000000000008026723360322633/2

This trailing /2 is somewhat of a pain, but as documented and mentioned already \xint-

DecToStringREZ currently has not been educated to identify its presence and handle it. Slightly

faster (see \xintPIrr) is

\def\xintexprPrintOne#1{\xintDecToStringREZ{\xintPIrr{#1}}}

which with the used example produces the same output.

One can also consider this for math mode:

\def\xintexprPrintOne#1{\xintTeXFromSci{\xintDecToStringREZ{\xintIrr{#1}}}}

$\xinteval{exp(-32.456)/2000}$\par
0.000000000000000008026723360322633

2
See our hesitations about what \xintTeXFromSci should do with denominators.

TEX-hackers note: One can hope that in future \xintDecToString will identify denominators being products

of only two's and five's, but even then of course \xintTeXFromSci will have to decide how to handle other

denominators.

TEX-hackers note: The macro used as customization of \xintexprPrintOne (whose default is a private variant

of \xintFracToSci with exactly same output) must understand the internal xintfrac format A/B[N], but with

the /B and [N] parts being only optional. This is not a problem when using for this task (nested) macros of

xintfrac, as they of course accept such inputs as argument and in fact much more general ones.

In particular one can benefit from \xintRaw, or \xintRawBraced, to convert the argument into a well defined

shape (A/B[N] for the former and {N}{A}{B} for the latter) and then work from there.

The macro used by \xintfloatexprPrintOne has the guarantee that the [P] will be always present at expansion

time.

The customization should be compatible with being exposed to \expanded (which is like expansion in an \ ⤸
edef), either from being completely expandable or at the opposite from being \protected. LATEX2e commands

defined via \newcommand as macros with one optional parameter are not compatible with this requirement.

Attention! The interface requirements described above for the macros customizing the behaviours of \xint-

exprPrintOne and \xintfloatexprPrintOne may change at any release... as they depend on some internal struc-

tures and it is not certain backwards compatiblity will be maintained systematically in case of evolution.

2.2.2.
source

\xintthealign for output of general oples

With \xintthealign one can get nested data use a TEX alignment in the output. Here is an example :

\xintthealign\xintexpr ndseq(1/(i+j), i = 1..10; j=1..10)\relax

12

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

[[1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11],

[1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12],

[1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13],

[1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14],

[1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15],

[1/7, 1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16],

[1/8, 1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17],

[1/9, 1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18],

[1/10, 1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19],

[1/11, 1/12, 1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20]]

Attention, this \xintthealign must be a prefix to \xintexpr, or \xintfloatexpr etc..., but there

will be low-level TEX errors if it is used to prefix \xinteval et al. or \xinttheexpr et al.

It is possible to customize the behaviour of \xintthealign. For example:

\protected\def\xintexpralignbegin {\halign\bgroup\tabskip2ex\hfil##&&##\hfil\cr}%

\def\xintexpralignend {\crcr\egroup}% removed \protected at 1.4c

\protected\def\xintexpralignlinesep {,\cr}% separates "lines"

\protected\def\xintexpralignleftsep {&}% at left of first item in a "line"

% (after "left bracket")

\protected\def\xintexpraligninnersep {,&}% at the left of non-first items

\protected\def\xintexpralignrightsep {&}% at right of last item in a "line"

% (before "right bracket")

\protected\def\xintexpralignleftbracket {[}%

\protected\def\xintexpralignrightbracket{]}%

The above definitions use \protected with no strong reason, as the replacement tokens are not

expanding anyhow, but the idea is that this allows to execute a computation via an \edef and later

one can change the meaning of the auxiliary macros depending on what one wants to do with the

expansion result.

TEX-hackers note: \xintexpralignend is expanded once, after the body has been submitted to exhaustive

expansion (\expanded induced), and prior to the expansion of \xintexpralignbegin.

Although we will try to keep stable the way “regular arrays” as in the above example are rendered

by default, the \xintthealign macro (and its associated customizability) is to be considered work-Unstable!
in-progress and may experience breaking changes.

Use for example this for outputting to a file or a terminal:7

% Better here without \protected.

% We assume here \newlinechar has the LaTeX setting.

\def\xintexpralignbegin {}%

\def\xintexpralignend {}%

\def\xintexpralignlinesep {,^^J}% separates "lines"

\def\xintexpralignleftsep { }% at left of first item in a "line" (after brackets)

\def\xintexpraligninnersep {, }% at the left of non-first items

\def\xintexpralignrightsep { }% at right of last item in a "line" (before brackets)

\def\xintexpralignleftbracket {[}%

\def\xintexpralignrightbracket{]}%

In the LATEX example next using a pmatrix environment, \noexpand rather than \protected is used.

This environment will not break across pages, contrarily to the display produced by the default

\xintthealign configuration which uses TEX's \halign.

\[

\def\xintexpralignbegin {\begin{pmatrix}}%

\def\xintexpralignend {\end{pmatrix}}%

\def\xintexpralignlinesep {\noexpand\\}% needed to counteract an internal \expanded

7 With the xetex engine this will need its -8bit option else the ^^J in \xintexpralignlinesep will be printed literally instead of
being converted into a line separator in the file or terminal output.

13

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\def\xintexpraligninnersep {&}%

\let\xintexpralignleftbracket\empty \let\xintexpralignleftsep\empty

\let\xintexpralignrightbracket\empty \let\xintexpralignrightsep\empty

% by default amsmath matrices can have 10 columns at most

% (cf amsmath documentation for what to do to allow more)

l.c.m.=\xintthealign\xintiiexpr ndmap(lcm, 1..12; 1..10)\relax

\]

l.c.m. =

©­­­­­­­­­­­­­­­­­­­«

1 2 3 4 5 6 7 8 9 10

2 2 6 4 10 6 14 8 18 10

3 6 3 12 15 6 21 24 9 30

4 4 12 4 20 12 28 8 36 20

5 10 15 20 5 30 35 40 45 10

6 6 6 12 30 6 42 24 18 30

7 14 21 28 35 42 7 56 63 70

8 8 24 8 40 24 56 8 72 40

9 18 9 36 45 18 63 72 9 90

10 10 30 20 10 30 70 40 90 10

11 22 33 44 55 66 77 88 99 110

12 12 12 12 60 12 84 24 36 60

ª®®®®®®®®®®®®®®®®®®®¬
2.3. Built-in operators and their precedences
The parser implements precedence rules based on concepts which are summarized below (only for

binary infix operators):

• an infix operator has two associated precedence levels, say L for left and R for right,

• the parser proceeds from left to right, pausing each time it has found a new number and an

operator following it,

• the parser compares the left-precedence L of the new found operator to the right-precedence

R_last of the last delayed operation (which already has one argument and would like to know

if it can use the new found one): if L is at most equal to it, the delayed operation is now

executed, else the new-found operation is kept around to be executed first, once it will have

gathered its arguments, of which only one is known at this stage.

This means for example in the case of the multiplication * and the division operators /, //, /:

that they are parsed in a left-associative way because they all share the same (left and right)

precedence level. This is the case with the analogous operators from the Python language, as

well.

At 1.4g the power operators were changed to act in a right associative way. Again, this matches

the behaviour of e.g. Python:

\xinteval{2^-3^4}

1/2417851639229258349412352

The entries of Table 1 are hyperlinked to the more detailed discussion at each level. In these

entries the number within parentheses indicates the right-precedence, if it differs from the left.

∞ At this highest level of precedence, one finds:

functions and variables Functions (even the logic functions !() and ?() whose names consist of

a single non-letter character) must be used with parentheses. These parentheses may arise

from expansion after the function name is parsed (there are exceptions which are documented

at the relevant locations.)

* Python-like “unpacking” prefix operator. Sometimes one needs to use it as function *() (but

I can't find an example right now) but most of the time parentheses are unneeded.

14

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

∞: at this top level the syntax elements whose execution

is done prior to operators preceding them:

• built-in or user-defined functions,

• variables,

• the * unpacking operator,

• and intrinsic constituents of numbers: decimal mark

., e and E of scientific notation, hexadecimal prefix

".
Precedence ``Operators'' at this level

20 postfix ! and branching ?, ?? operators

- minus sign as unary operator inherits the right-

precedence of the infix operator it follows, if

that precedence is higher than the one of binary

+ and -, else it inherits the latter

18 (17) ^ and ** are synonymous; they act in a right-

associative way (Changed at 1.4g!)

16 (14) Tacit multiplication has an elevated (left)

precedence

14 *, /, // (floored division), and /: (associated

modulo, alias 'mod')

12 +, -

10 <, >, ==, <=, >=, != (they can be chained)

8 Boolean conjunction && and its alias 'and'

6 Boolean disjunction || and its alias 'or'. Also

'xor' and .., ..[,].., and : have this

precedence

4 the brackets for slicers and extractors [,]

3 the comma ,

2 the bracketers [,] construct nestable “arrays”

1 the parentheses (,), and the semi-colon ; in

iter(), rseq(), and further structures

• Binary operators have a left and a right precedence,

which for most coincide. The right precedence is in-

dicated within parentheses.

• Tacit multiplication has an elevated left precedence

level: (1+2)/(3+4)5 is computed as (1+2)/((3+4)*5)

and x/2y is interpreted as x/(2*y) when using vari-

ables.

Table 1: Precedence levels

15

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

. is decimal mark; the number scanner treats it as an inherent, optional and unique component

of a being formed number. \xintexpr 0.^2+2^.0\relax is interpreted as 0^2+2^0 and thus

produces 1.

Since release 1.2 an isolated decimal mark is illegal input in the xintexpr parsers (it

remains legal as argument to the macros of xintfrac).

e scientific notation.

E scientific notation. For output, see \xintPFloatE.

" prefix for hexadecimal input. Only uppercase letters, and one optional . separating integer

and fractional hexadecimal parts.

\xintexpr "FEDCBA9876543210\relax\newline

\xintexpr ".FEDCBA9876543210\relax\newline

\xintexpr 16^5-("F75DE.0A8B9+"8A21.F5746+16^-5)\relax

18364758544493064720

0.995555555555555555559410496613281793543137609958648681640625

0

It is possible that in future the " prefix could be dropped in favour of 0x prefix. This

would free " to be used for input of “string”-like entities.

20 The postfix operators ! and the branching conditionals ?, ??.

! computes the factorial of an integer.

? is used as (stuff)?{yes}{no}. It evaluates stuff and chooses the yes branch if the result

is non-zero, else it executes no. After evaluation of stuff it acts as a macro with two

mandatory arguments within braces, chooses the correct branch without evaluating the wrong
one. Once the braces are removed, the parser scans and expands the uncovered material.

?? is used as (stuff)??{<0}{=0}{>0}, where stuff is anything, its sign is evaluated and de-

pending on the sign the correct branch is un-braced, the two others are discarded with no

evaluation of their contents.

- As unary operator, the minus sign inherits as precedence the minimum of 12 (which is the prece-

dence for addition and subtraction) and of the (right-) precedence of the operators preceding

it (if any).

\xintexpr -3-4*-5^-7, (-3)-(4*(-(5^(-7))))\relax\newline

\xintexpr -3^-4*-5-7, (-((3^(-4))*(-5)))-7\relax\newline

|2^-10| gives \xintexpr 2^-10\relax\space

-234371/78125, -234371/78125

-562/81, -562/81

2^-10 gives 1/1024 and is thus perfectly legal, no need for parentheses.

The + character as prefix unary operator is simply ignored during input parsing.

18

^

** Both compute powers. They act in a right associative way.

\xintiiexpr 2^3^4\relax

2417851639229258349412352

16 see Tacit multiplication.

14

* multiplication

16

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

/ division:

• in \xinteval: exact division in the field of rational numbers (not automatically re-

duced to lowest terms),

• in \xintfloateval: correct rounding of the exact division; the two operands are, if

necessary, float-rounded before the fraction is evaluated and rounded (to obtain the

correcty rounded A/B without prior rounding of A and B see qfloat()),

• in \xintiieval: for compatibility with the legacy behaviour of / in \numexpr, it rounds

the exact fraction with half-integers going towards the infinity of the same sign.

The division is left-associative. Example:

\xintexpr reduce(100/50/2)\relax

1

// floored division (and thus produces an integer, see divmod() for details)

/: the associated modulo (see divmod() and mod())

Left-associativity applies to the division operators:

\xintexpr 100000/:13, 100000 'mod' 13\relax, \xintexpr 100000/:13/13\relax

4, 4, 4/13

Nothing special needs to be done in contexts such as LATEX3 \ExplSyntaxOn where : is of cat-

code letter, but if : is an active character one needs to use input such as /\string : (or

replace it with usage of the function mod()).

Bulky workarounds such as /\string : are unneeded if activation is due to Babel. SeeNew with
1.4n also \xintexprSafeCatcodes and a framed note found in subsection 3.1.

'mod' is same as /:.

Attention: with polexpr loaded, which allows ' in variable and function names, 'mod' can+
{

not follow a variable name. Add parentheses around the variable, or use /:.

12

+ addition

- subtraction. According to the general left-associativity rule in case of equal precedence,

it is left associative:

\xintiiexpr 100-50-2\relax

48

10 Comparison operators are (as in Python) all at the same level of precedence, use parentheses

for disambiguation.

< a<b evaluates to 1 if the strict inequality holds to 0 if not.

> a>b evaluates to 1 if the strict inequality holds to 0 if not.

== a==b evaluates to 1 if equality holds to 0 if not.

<= a<=b evaluates to 1 if left hand side is at most equal to right hand side, to 0 if not.

>= a>=b evaluates to 1 if left hand side is at least equal to right hand side, to 0 if not.

!= a!=b evaluates to 1 if they differ, to 0 if not.

Comparisons can be chained arbitrarily, e.g., x < y <= z != t is equivalent to x < y 'and' ⤸
y <= z 'and' z != t (and also to all(x<y, y<=z, z!=t)), except that if y and z involve com-

putations, they are evaluated only once. Currently there is no short-circuit here, i.e. even

if some intermediate comparison turns out false (in fact 0), all the remaining conditionals

will still be evaluated.

17

https://ctan.org/pkg/polexpr

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xintifboolexpr{1<=2!=3<4>1}{true}{\error},

\xintifboolexpr{1<=2>=3<4>1}{\error}{false},

\xintifboolexpr{3 != 3! == 6 != 4! == 24}{true}{\error}

true, false, true

8

&& logical conjunction. Evaluates to 1 if both sides are non-zero, to 0 if not.

'and' same as &&. See also the all() multi-arguments function.

Attention: with polexpr loaded, which allows ' in variable and function names, 'and' can+
{

not follow a variable name. Add parentheses around the variable, or use &&.

6

|| logical (inclusive) disjunction. Evaluates to 1 if one or both sides are non-zero, to 0 if

not.

'or' same as as ||. See also the any() multi-arguments function.

Attention: with polexpr loaded, which allows ' in variable and function names, 'or' can+
{

not follow a variable name. Add parentheses around the variable, or use ||.

'xor' logical (exclusive) disjunction.

Attention: with polexpr loaded, which allows ' in variable and function names, 'xor' can+
{

not follow a variable name. Add parentheses around the variable, or use the xor() function

syntax.

..

..[

].. Syntax for arithmetic progressions. See subsection 2.5.

: This is a separator involved in [a:b] Python-like slicing syntax.

4

[

] Involved in Python-like slicing [a:b] and extracting [N] syntax. And its extension à la

NumPy [a:b,N,c:d,...,:]. Ellipsis ... is not yet implemented. The “step” parameter as in

[a:b:step] is not yet implemented.

3

, The comma separates expressions (or function arguments).8

\xintiiexpr 2^3,3^4,5^6\relax

8, 81, 15625

2

[

] The bracketers construct nestable “array-like” structures. Arbitrary (heterogeneous)

nesting is allowed. For output related matters see \xintthealign (its usage is optional,

without it rendering is “one-dimensional”). Output shape of non-homogeneous arrays is to

be considered unstable at this time.

1

(

8 The comma is really like a binary operator, which may be called “join”. It has lowest precedence of all (apart the parentheses)
because when it is encountered all postponed operations are executed in order to finalize its first operand; only a new comma or
a closing parenthesis or the end of the expression will finalize its second operand.

18

https://ctan.org/pkg/polexpr
https://ctan.org/pkg/polexpr
https://ctan.org/pkg/polexpr

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

) The parentheses serve as mandatory part of the syntax for functions, and to disambiguate

precedences.9 They do not construct any nested structure.

; The semi-colon as involved as part of the syntax of iter(), rseq(), ndseq(), ndmap() has the

same precedence as a closing parenthesis.

\relax This is the expression terminator for \xintexpr et al. It may arise from expansion during

the parsing itself. As alternative to \xintexpr (et al.) use \xinteval (et al.) which have

the usual macro interface (with one mandatory argument).

The ; also serves as syntax terminator for \xintdefvar and \xintdeffunc. It can in this rôle

not arise from expansion as the expression body up to it is fetched by a delimited macro. But this

is done in a way which does not require any specific hiding for inner semi-colons as involved in

the syntax of iter(), etc...

2.4. Built-in functions
See Table 2 whose elements are hyperlinked to the corresponding definitions.

Functions are at the same top level of priority. All functions even ?() and !() require paren-

theses around their arguments.

!() atan2() first() iter() num() rbit() subs()

?() atan2d() flat() iterr() nuple() reduce() subsm()

‘*‘() binomial() float() inv() odd() reversed() subsn()

‘+‘() bool() float_dgt() last() pArg() round() tan()

abs() ceil() floor() lcm() pArgd() rrseq() tand()

add() cos() frac() len() pfactorial() rseq() tg()

all() cosd() gcd() log() pow() sec() togl()

any() cot() if() log10() pow10() secd() trunc()

acos() cotd() ifint() max() preduce() seq() unpack()

acosd() cotg() ifone() min() qfloat() sgn() xor()

Arg() csc() ifsgn() mod() qfrac() sin() zip()

Argd() cscd() ilog10() mul() qint() sinc()

asin() divmod() iquo() ndmap() qrand() sind()

asind() even() irem() ndseq() qraw() sqr()

atan() exp() isint() ndfillraw() random() sqrt()

atand() factorial() isone() not() randrange() sqrtr()

Table 2: Functions (click on names)
.4.1 Functions with no argument . 20
.4.2 Functions with one argument . 21
.4.3 Functions with an alphanumeric argument . 24
.4.4 Functions with one mandatory and a second but optional argument . 25
.4.5 Functions with two arguments . 26
.4.6 Functions with 3 or 4 arguments . 28
.4.7 Functions with an arbitrary number of arguments . 29
.4.8 Functions requiring dummy variables . 31

Miscellaneous notes:

• since release 1.3d gcd() and lcm() are extended to apply to fractions too, and do NOT require

the loading of xintgcd,

9 It is not apt to describle the opening parenthesis as an operator, but the closing parenthesis is analogous to a postfix unary
operator. It has lowest precedence which means that when it is encountered all postponed operations are executed to finalize its
operand. The start of this operand was decided by the opening parenthesis.

19

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

• The randomness related functions random(), qrand() and randrange() require that the TEX engine

provides the \uniformdeviate or \pdfuniformdeviate primitive. This is currently the case for

pdftex, (u)ptex, luatex, and also for xetex since TEXLive 2019.+
{

• togl() is provided for the case etoolbox package is loaded,

• bool(), togl() use delimited macros to fetch their argument and the closing parenthesis must

be explicit, it can not arise from on the spot expansion. The same holds for qint(), qfrac(),

qfloat(), qraw(), random() and qrand().

• Also functions with dummy variables use delimited macros for some tasks. See the relevant

explanations there.

• Functions may be called with oples as arguments as long as the total length is the number of

arguments the function expects.

2.4.1. Functions with no argument

random() returns a random float x verifying 0 <= x < 1. It obeys the prevailing precision as

set by \xintDigits: i.e. with P being the precision the random float multiplied by 10^P is an

integer, uniformly distributed in the 0..10^P-1 range.

This description implies that if x turns out to be <0.1 then its (normalized) mantissa has P- ⤸
1 digits and a trailing zero, if x<0.01 it has P-2 digits and two trailing zeros, etc... This

is what is observed also with Python's random(), of course with 10 replaced there by radix 2.

\pdfsetrandomseed 12345

\xintDigits:=37\relax

\xintthefloatexpr random()\relax\newline

\xintthefloatexpr random()\relax\par

0.2415544817596207455547929850209500042

0.2584863529993996627285461554203021352

qrand() returns a random float 0 <= x < 1 using 16 digits of precision (i.e. 10^{16}x is an in-

teger). This is provided when speed is a at premium as it is optimized for precision being

precisely 16.

% still with 37 digits as prevailing float precision

\xintthefloatexpr qrand(), random()\relax\newline

\xintDigits:=16\relax

\xintthefloatexpr qrand(), random()\relax\par

0.4883568991327765, 0.09165461826072383107532471669335645230

0.9069127435402274, 0.9106687541716861

One can use both qrand() and random() inside the \xintexpr parser too. But inside the integer

only \xintiiexpr parser they will cause some low-level error as soon as they get involved

in any kind of computation as they use an internal format not recognized by the integer-only

parser.

See further randrange(), which generates random integers.

Currently there is no uniform() function10 but it can be created by user:

\xintdeffloatfunc uniform(a, b):= a + (b-a)*random();

\romannumeral\xintreplicate{10}%

{%

\xintthefloatexpr uniform(123.45678, 123.45679)\relax\newline

}%

10 Because I am not sure how to handle rounding issues: should the computation proceed exactly and a rounding be done only at
very end?

20

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

123.4567849497100

123.4567812033226

123.4567863308250

123.4567896366777

123.4567849656655

123.4567849908270

123.4567889123433

123.4567896262979

123.4567846543719

123.4567832664043

rbit() returns a random 0 or 1.

2.4.2. Functions with one argument

num(x) truncates to the nearest integer (truncation towards zero). It has the same sign as x,

except of course with -1<x<1 as then num(x) is zero.

\xinttheexpr num(3.1415^20), num(1e20)\relax

8764785276, 100000000000000000000 The output is an explicit integer with as many zeros are as

necessary. Even in float expressions, there will be an intermediate stage where all needed

digits are there, but then the integer is immediately reparsed as a float to the target pre-

cision, either because some operation applies to it, or from the output routine of \xint-

floatexpr if it stood there alone. Hence, inserting something like num(1e10000) is costly as

it really creates ten thousand zeros, even though later the whole thing becomes a float again.

On the other hand naturally 1e10000 without num() would be simply parsed as a floating point

number and would cause no specific overhead.

frac(x) fractional part. For all numbers x=num(x)+frac(x), and frac(x) has the same sign as x

except when x is an integer, as then frac(x) vanishes.

\xintthefloatexpr frac(-355/113), frac(-1129.218921791279)\relax

-0.1415929203539820, -0.218921791279

reduce(x) reduces a fraction to smallest terms

\xinttheexpr reduce(50!/20!/20!/10!)\relax

1415997888807961859400

Recall that this is NOT done automatically, for example when adding fractions.

preduce(x) internally, fractions may have some power of ten part (for example when they got input

in scientific notation). This function ignores the decimal part when doing the reduction.

See \xintPIrr.

\xinttheexpr preduce(10e7/2), reduce(10e7/2)\relax

5e7, 50000000

abs(x) absolute value

sgn(x) sign. See also \xintifsgnexpr.

inv(x) inverse.

floor(x) floor function.

ceil(x) ceil function.

21

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

sqr(x) square.

ilog10(x) in \xintiiexpr the integer exponent a such that 10a ≤ abs(x) < 10a+1; returns (this may

evolve in future) -2147450880 if x vanishes (i.e. 0x7fff8000).

\xintiieval{ilog10(1), ilog10(-1234567), ilog10(-123456789123456789), ilog10(2**31)}\par

0, 6, 17, 9

See ilog10() for the behaviour in \xintexpr-essions.

sqrt(x) in \xintiiexpr, truncated square root; in \xintexpr or \xintfloatexpr this is the floating

point square root, and there is an optional second argument for the precision. See sqrt().

sqrtr(x) available only in \xintiiexpr, rounded square root.

factorial(x) factorial function (like the post-fix ! operator.) When used in \xintexpr or

\xintfloatexpr there is an optional second argument. See factorial().

?(x) is the truth value, 1 if non zero, 0 if zero. Must use parentheses.

!(x) is logical not, 0 if non zero, 1 if zero. Must use parentheses.

not(x) logical not.

even(x) is the evenness of the truncation num(x).

\xintthefloatexpr [3] seq((x,even(x)), x=-5/2..[1/3]..+5/2)\relax

-2.50, 1, -2.17, 1, -1.83, 0, -1.50, 0, -1.17, 0, -0.833, 1, -0.500, 1, -0.167, 1, 0.167, 1,

0.500, 1, 0.833, 1, 1.17, 0, 1.50, 0, 1.83, 0, 2.17, 1, 2.50, 1

odd(x) is the oddness of the truncation num(x).

\xintthefloatexpr [3] seq((x,odd(x)), x=-5/2..[1/3]..+5/2)\relax

-2.50, 0, -2.17, 0, -1.83, 1, -1.50, 1, -1.17, 1, -0.833, 0, -0.500, 0, -0.167, 0, 0.167, 0,

0.500, 0, 0.833, 0, 1.17, 1, 1.50, 1, 1.83, 1, 2.17, 0, 2.50, 0

isint(x) evaluates to 1 if x is an integer, to 0 if not. See ifint().

$\xinttheexpr -5/3..[1/3]..+5/3\relax

\rightarrow \xinttheexpr seq(isint(x), x=-5/3..[1/3]..+5/3)\relax$

-5/3, -4/3, -3/3, -2/3, -1/3, 0, 1/3, 2/3, 3/3, 4/3, 5/3 → 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0

isone(x) evaluates to 1 if x is 1, to 0 if not. See ifone().

$\xintthefloatexpr subs(((x-1)/x, x/x, (x+1)/x), x=2**30)\relax

\rightarrow

\xintthefloatexpr seq(isone(y), y=subs(((x-1)/x, x/x, (x+1)/x), x=2**30))\relax$

0.9999999990686774, 1, 1.000000000931323 → 0, 1, 0

qint(x) belongs with qfrac(), qfloat(), qraw() to a special category:

1. They require the closing parenthesis of their argument to be immediately visible, it can

not arise from expansion.

2. They grab the argument and store it directly; the format must be compatible with what is

expected at macro level.

3. And in particular the argument can not be a variable, it has to be numerical.

22

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

qint() achieves the same result as num, but the argument is grabbed as a whole without expan-

sion and handed over to the \xintiNum macro. The q stands for ``quick'', and qint is thought

out for use in \xintiiexpr...\relax with integers having dozens of digits.

Testing showed that using qint() starts getting advantageous for inputs having more (or f-
expanding to more) than circa 20 explicit digits. But for hundreds of digits the input gain

becomes a negligible proportion of (for example) the cost of a multiplication.

Leading signs and then zeroes will be handled appropriately but spaces will not be systemat-

ically stripped. They should cause no harm and will be removed as soon as the number is used

with one of the basic operators. This input mode does not accept decimal part or scientific
part.

\def\x{....many many many ... digits}\def\y{....also many many many digits...}

\xinttheiiexpr qint(\x)*qint(\y)+qint(\y)^2\relax\par

qfrac(x) does the same as qint except that it accepts fractions, decimal numbers, scientific

numbers as they are understood by the macros of package xintfrac. Thus, it is for use in

\xintexpr...\relax. It is not usable within an \xintiiexpr-ession, except if hidden inside

functions such as round or trunc which then produce integers acceptable to the integer-only

parser. It has nothing to do with frac (sigh...).

qfloat(x) does the same as qfrac and then converts to a float with the precision given by the setting

of \xintDigits. This can be used in \xintexpr to round a fraction as a float with the same

result as with the float() function (whereas using \xintfloatexpr A/B\relax inside \xint-

expr...\relax would first round A and B to the target precision); or it can be used inside

\xintfloatexpr...\relax as a faster alternative to wrapping the fraction in a sub-\xintexpr-

ession. For example, the next two computations done with 16 digits of precision do not give

the same result:

\xintthefloatexpr qfloat(12345678123456785001/12345678123456784999)-0.5\relax\newline

\xintthefloatexpr 12345678123456785001/12345678123456784999-0.5\relax\newline

\xintthefloatexpr 1234567812345679/1234567812345678-0.5\relax\newline

\xintthefloatexpr \xintexpr12345678123456785001/12345678123456784999\relax-0.5\newline

0.5

0.5000000000000010

0.5000000000000010

0.5

because the second is equivalent to the third, whereas the first one is equivalent to the

fourth one. Equivalently one can use qfrac to the same effect (the subtraction provoking the

rounding of its two arguments before further processing.)

Note that if the input needs no special rounding, the internal form of the output keeps a short

mantissa (it does not add padding zeros to make it of length equal to the float precision). For

example qfloat(2[20]) would keep internally the input format.

float_dgt(x) is like float() and avoids float()'s check whether it used with its second optional

argument. This is useful in the context of converting function definitions done via \xint-

deffunc (see explanations there) to functions usable in \xintfloateval.

nuple(x) is currently same as [...]. Reserved for possible alternative meaning in future.Do not
use! (1.4)

\xinteval{nuple(1,2,3)}

[1, 2, 3]

unpack(x) is alternative for * unpacking operator.

\xinteval{unpack([1,2,3])}

23

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

1, 2, 3

flat(ople) removes all nesting to produce a (non-bracketed) ople having the same leaves (some pos-

sibly empty) but located at depth 1.

\xinteval{flat([[[[1,[],3],[4,[[[5,6,[]],[8,9],[[],11]],12],[13,14]]], [[],16]]], [])}

1, [], 3, 4, 5, 6, [], 8, 9, [], 11, 12, 13, 14, [], 16, []

I almost delayed indefinitely release because I was hesitating on the name: perhaps betterunstable?
with flattened(), but long names add (negligible, but still) overhead compared to short names.

For this reason, consider that name may change.

2.4.3. Functions with an alphanumeric argument

bool(name) returns 1 if the TEX conditional \ifname would act as \iftrue and 0 otherwise. This

works with conditionals defined by \newif (in TEX or LATEX) or with primitive conditionals such

as \ifmmode. For example:

\xintifboolexpr{25*4-if(bool(mmode),100,75)}{YES}{NO}

will return NO if executed in math mode (the computation is then 100-100 = 0) and YES if not (the

if() conditional is described below; the \xintifboolexpr test automatically encapsulates its

first argument in an \xintexpr and follows the first branch if the result is non-zero (see

subsection 3.14)).

The alternative syntax 25*4-\ifmmode100\else75\fi could have been used here, the usefulness

of bool(name) lies in the availability in the \xintexpr syntax of the logic operators of con-

junction &&, inclusive disjunction ||, negation ! (or not), of the multi-operands functions

all, any, xor, of the two branching operators if and ifsgn (see also ? and ??), which allow

arbitrarily complicated combinations of various bool(name).

togl(name) returns 1 if the LATEX package etoolbox11 has been used to define a toggle named name,

and this toggle is currently set to true. Using togl in an \xintexpr..\relax without having

loaded etoolbox will result in an error from \iftoggle being a non-defined macro. If etoolbox

is loaded but togl is used on a name not recognized by etoolbox the error message will be of the

type ``ERROR: Missing \endcsname inserted.'', with further information saying that \protect

should have not been encountered (this \protect comes from the expansion of the non-expandable

etoolbox error message).

When bool or togl is encountered by the \xintexpr parser, the argument enclosed in a parenthe-

sis pair is expanded as usual from left to right, token by token, until the closing parenthesis

is found, but everything is taken literally, no computations are performed. For example tog ⤸
l(2+3) will test the value of a toggle declared to etoolbox with name 2+3, and not 5. Spaces

are gobbled in this process. It is impossible to use togl on such names containing spaces,

but \iftoggle{name with spaces}{1}{0} will work, naturally, as its expansion will pre-empt

the \xintexpr scanner.

There isn't in \xintexpr... a test function available analogous to the test{\ifsometest} con-

struct from the etoolbox package; but any expandable \ifsometest can be inserted directly in

an \xintexpr-ession as \ifsometest10 (or \ifsometest{1}{0}), for example if(\ifsometest{1}{ ⤸
0},YES,NO) (see the if operator below) works.

A straight \ifsometest{YES}{NO} would do the same more efficiently, the point of \ifsomete ⤸
st10 is to allow arbitrary boolean combinations using the (described later) && and || logic

operators: \ifsometest10 && \ifsomeothertest10 || \ifsomethirdtest10, etc... YES or NO

above stand for material compatible with the \xintexpr parser syntax.

See also \xintifboolexpr, in this context.

11 https://ctan.org/pkg/etoolbox

24

https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/etoolbox

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

2.4.4. Functions with one mandatory and a second but optional argument

round(x[, n]) Rounds its first argument to an integer multiple of 10^(-n) (i.e. it quantizes).
The case of negative n is new with 1.4a. Positive n corresponds to conversion to a fixed point

number with n digits after decimal mark.

\xinteval{round(-2^30/3^5,12), round(-2^30/3^5,-3)}

-4418690.633744855967, -4419e3

trunc(x[, n]) Truncates its first argument to an integer multiple of 10^(-n). The case of negative

n is new with 1.4a.

\xinteval{trunc(-2^30/3^5,12), trunc(-2^30/3^5,-3)}

-4418690.633744855967, -4418e3

float(x[, n]) Rounds its first argument to a floating point number, with a precision given by the

second argument, which must be positive.

\xinteval{float(-2^30/3^5,12), float(-2^30/3^5, 1)}

-4.41869063374e6, -4e6

For this example and earlier ones if the parser had been \xintfloateval, not \xinteval, the

first argument (here 2^30/3^5) would already have been computed as floating point number with

numerator and denominator rounded separately first to the prevailing precision. To avoid

that, use \xintexpr...\relax wrapper. Then the rounding or truncation will be applied to an

exact fraction.

sfloat(x[, n]) It is the same as float(), but in case of a short (non-fractional) input it gets stored

internally without adding zeros to make the mantissa have the \xinttheDigits length. One may

wonder then what is the utility of sfloat()? See for an example of use the documentation of

\xintdeffunc. Notice however that this is a bit experimental and may evolve in future when

xint gets a proper internal data structure for floating point numbers. The non-normalized

format is useful for multiplication or division, but float additions and subtractions usually

convert their arguments to a normalized mantissa.

ilog10(x[, n]) If there is an optional argument n, returns the (relative) integer a such that 10a ≤
abs(float(x, n)) < 10a+1. In absence of the optional argument:

• in \xintexpr, it returns the exponent a such that 10a ≤ abs(x) < 10a+1.

• in \xintfloatexpr, the input is first rounded to \xinttheDigits float precision, then the

exponent a is evaluated.

\xintfloateval{ilog10(99999999/10000000, 8), ilog10(-999999995/100000000, 8),

ilog10(-999999995/100000000, 9)}\newline

\xinteval{ilog10(-999999995/100000000), ilog10(-999999995/100000000, 8)}

0, 1, 0

0, 1

If the input vanishes the function outputs -2147450880 (i.e. -0x7fff8000 which is near the

minimal TeX number -0x7fffffff). This is also subject to change.

The integer-only variant for \xintiiexpr admits no optional argument.

sqrt(x[, n]) in \xintexpr...\relax and \xintfloatexpr...\relax it achieves the precision given by

the optional second argument. For legacy reasons the sqrt function in \xintiiexpr truncates
(to an integer), whereas sqrt in \xintfloatexpr...\relax (and in \xintexpr...\relax which

borrows it) rounds (in the sense of floating numbers). There is sqrtr in \xintiiexpr for

rounding to nearest integer.

\xinttheexpr sqrt(2,31)\relax\ and \xinttheiiexpr sqrt(num(2e60))\relax

25

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

1.41421356237309504880168872421 and 1414213562373095048801688724209

There is an integer only variant for \xintiiexpr.

factorial(x[, n]) when the second optional argument is made use of inside \xintexpr...\relax, this

switches to the use of the float version, rather than the exact one.

\xinttheexpr factorial (100,32)\relax, {\xintDigits:=32\relax \xintthefloatexpr

factorial (100)\relax}\newline

\xinttheexpr factorial (50)\relax\newline

\xinttheexpr factorial (50, 32)\relax

9.3326215443944152681699238856267e157, 9.3326215443944152681699238856267e157

30414093201713378043612608166064768844377641568960512000000000000

3.0414093201713378043612608166065e64

The integer only variant of course has no optional second argument.

randrange(A[, B]) when used with a single argument A returns a random integer 0 <= x < A, and when

used with two arguments A and B returns a random integer A <= x < B. As in Python it is an

“empty range” error in first case if A is zero or negative and in second case if B <= A.

Attention that the arguments are first converted to integers using \xintNum (i.e. truncated

towards zero).

The function can be used in all three parsers. Of course the size is not limited (but in the

float parser, the integer will be rounded if involved in any operation).

\pdfsetrandomseed 12345

\xinttheiiexpr randrange(10**20)\relax\newline

\xinttheiiexpr randrange(1234*10**16, 1235*10**16)\relax\newline

\printnumber{\xinttheiiexpr randrange(10**199,10**200)\relax}\par

12545314555479298502

12341249468233524155

3872427149656655225094489636677708166243633082496887337312033225820004454949709978664331 ⤸
9106687541716861906912743540227448009165461826072383107532471669335645234883568991327765 ⤸
395258486352999399662728

For the support macros see \xintRandomDigits, \xintiiRandRange, \xintiiRandRangeAtoB. For

some details regarding how xint uses the engine provided generator of pseudo-random numbers,

see \xintUniformDeviate.

2.4.5. Functions with two arguments

iquo(m, n) Only available in \xintiiexpr/\xintiieval context. Computes the Euclidean quotient.

Matches with the remainder defined in next item. See \xintiiQuo.

irem(m, n) Only available in \xintiiexpr/\xintiieval context. Computes the Euclidean remainder.

Attention that, following mathematical definition, it is always non-negative. See \xint-

iiRem.

mod(f, g) computes f - g*floor(f/g). Hence its output is a general fraction or floating point

number or integer depending on the used parser. If non-zero, it has the same sign as g.

Prior to 1.2p it computed f - g*trunc(f/g).

The /: and 'mod' infix operators are both mapped to the same underlying macro as this mod(f ⤸
, g) function. At 1.3 this macro produces smaller denominators when handling fractions than

formerly.

\xinttheexpr mod(11/7,1/13), reduce(((11/7)//(1/13))*1/13+mod(11/7,1/13)),

26

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

mod(11/7,1/13)- (11/7)/:(1/13), (11/7)//(1/13)\relax\newline

\xintthefloatexpr mod(11/7,1/13)\relax\par

3/91, 11/7, 0, 20

0.03296703296703260

Attention: the precedence rules mean that 29/5 /: 3/5 is handled like ((29/5)/:3)/5. This

is coherent with behaviour of Python language for example:

>>> 29/5 % 3/5, 11/3 % 17/19, 11/57

(0.5599999999999999, 0.19298245614035087, 0.19298245614035087)

>>> (29/5) % (3/5), (11/3) % (17/19), 5/57

(0.4, 0.08771929824561386, 0.08771929824561403)

For comparison (observe on the last lines how \xintfloatexpr is more accurate than Python!):

\noindent\xinttheexpr 29/5 /: 3/5, 11/3 /: 17/19\relax\newline

\xinttheexpr (29/5) /: (3/5), (11/3) /: (17/19)\relax\newline

\xintthefloatexpr 29/5 /: 3/5, 11/3 /: 17/19, 11/57\relax\newline

\xintthefloatexpr (29/5) /: (3/5), (11/3) /: (17/19), 5/57\relax\newline

5/57 = \xinttheexpr trunc(5/57, 20)\relax\dots\newline

14/25, 11/57

2/5, 5/57

0.56, 0.1929824561403509, 0.1929824561403509

0.4, 0.08771929824561420, 0.08771929824561404

5/57 = 0.08771929824561403508...

Regarding some details of behaviour in \xintfloatexpr, see discussion of divmod function

next.

divmod(f, g) computes the two mathematical values floor(f/g) and mod(f,g)=f - g*floor(f/g) and

produces them as a bracketed pair in other terms it is analogous to the Python divmod function.

Its output is equivalent to using f//g, f/:g but its implementation avoids doing twice the

needed division.

In \xintfloatexpr...\relax the modulo is rounded to the prevailing precision. The quotient is

like in the other parsers an exact integer. It will be rounded as soon as it is used in further

operations, or via the global output routine of \xintfloatexpr. Those examples behave as in
1.3f because assignments to multiple variables tacitly unpack if this is necessary.

\xintdefvar Q, R := divmod(3.7, 1.2);%

\xinttheexpr Q, R, 1.2Q + R\relax\newline

\xintdefiivar Q, R := divmod(100, 17);%

\xinttheiiexpr Q, R, 17Q + R\relax\newline

\xintdeffloatvar Q, R := divmod(100, 17e-20);%

\xintthefloatexpr Q, R, 17e-20 * Q + R\relax\newline

% show Q exactly, although defined as float it can be used in iiexpr:

\xinttheiiexpr Q\relax\ (we see it has more than 16 digits)\par

\xintunassignvar{Q}\xintunassignvar{R}%

3, 0.1, 3.7

5, 15, 100

5.882352941176471e20, 9e-20, 100

5882352941176471[5] (we see it has more than 16 digits)

Again: f//g or the first item output by divmod(f, g) is an integer q which when computed inside

\xintfloatexpr..\relax is not yet rounded to the prevailing float precision; the second item

f-q*g is the rounding to float precision of the exact mathematical value evaluated with this

exact q. This behaviour may change in future major release; perhaps q will be rounded and+
{

27

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

f-q*g will correspond to usage of this rounded q.

As \xintfloatexpr rounds its global result, or rounds operands at each arithmetic operation,

it requires special circumstances to show that the q is produced unrounded. Either as in the

above example or this one with comparison operators:

\xintDigits := 4\relax

\xintthefloatexpr if(12345678//23==537000, 1, 0), 12345678//23\relax\newline

\xintthefloatexpr if(float(12345678//23)==537000, 1, 0)\relax\par

\xintDigits := 16\relax

0, 537000

1

In the first line, the comparison is done with floor(12350000/23)=536957 (notice in passing

that 12345678//23 was evaluated as 12350000//23 because the operands are first rounded to 4

digits of floating point precision), hence the conditional takes the "False" branch. In the

second line the float forces rounding of the output to 4 digits, and the conditional takes the

"True" branch.

This example shows also that comparison operators in \xintfloatexpr..\relax act on unrounded

operands.

binomial(x, y) computes binomial coefficients. It returns zero if y<0 or x<y and raises an error

if x<0 (or if x>99999999.)

\xinttheexpr seq(binomial(20, i), i=0..20)\relax

1, 20, 190, 1140, 4845, 15504, 38760, 77520, 125970, 167960, 184756, 167960, 125970, 77520,

38760, 15504, 4845, 1140, 190, 20, 1

\printnumber{\xintthefloatexpr seq(binomial(100, 50+i), i=-5..+5)\relax}%

6.144847121413618e28, 7.347099819081500e28, 8.441348728306404e28, 9.320655887504988e28, 9 ⤸
.891308288780803e28, 1.008913445455642e29, 9.891308288780803e28, 9.320655887504988e28, 8. ⤸
441348728306404e28, 7.347099819081500e28, 6.144847121413618e28

The arguments must be (expand to) short integers.

pfactorial(a, b) computes partial factorials i.e. pfactorial(a,b) evaluates the product (a+1)... ⤸
b.

\xinttheexpr seq(pfactorial(20, i), i=20..30)\relax

1, 21, 462, 10626, 255024, 6375600, 165765600, 4475671200, 125318793600, 3634245014400,

109027350432000

The arguments must (expand to) short integers. See subsection 11.36 for the behaviour if the

arguments are negative.

ndfillraw(TEX-macro, n-uple) The second argument is [N1, N2, ..., Nk]. The construct fills an N1x ⤸
N2x...xNk hyperrectangular nested list by evaluating the given macro as many times as needed.

The expansion result goes directly into internal data and must thus comply with what is ex-

pected internally for an individual numeric leaf (at 1.4, xintfrac raw format worked for

\xintexpr or \xintfloatexpr, but not \xintiiexpr, and this may have changed since). ThisDo not
use! is an experimental function serving to generate either constant or random arrays. Atten-

tion that TEX-macro stands here for any expandable TEX macro, and an \xintexpr-ession at this

location thus requires an explicit \xinteval wrapping.

2.4.6. Functions with 3 or 4 arguments

if(cond,yes,no) (twofold-way conditional)

28

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

checks if cond is true or false and takes the corresponding branch. Any non zero number or

fraction is logical true. The zero value is logical false. Both ``branches'' are evaluated

(they are not really branches but just numbers). See also the ? operator.

ifint(x,yes,no) (twofold-way conditional)

checks if x is an integer and in that case chooses the ``yes'' branch.

See also isint().

ifone(x,yes,no) (twofold-way conditional)

checks if x is equal to one and in that case chooses the ``yes'' branch.

Slightly more efficient than if(x==1,..,..). See also isone().

ifsgn(cond,<0,=0,>0) (threefold-way conditional)

checks the sign of cond and proceeds correspondingly. All three are evaluated. See also the

?? operator.

2.4.7. Functions with an arbitrary number of arguments

The functions all(), any(), xor(), ‘+‘(), ‘*‘(), max(), min(), gcd(), lcm(), first(), last(),

reversed() and len() work both with “open” and “packed” lists (aka nutples).

Since 1.4, when used with a single argument which is a nutple, it is automatically unpacked. But

from 1.4 to 1.4h these functions could not be used with a single numeric argument: either they had

at least two arguments, or only one and it had to be a nutple. At 1.4i it is again possible to use

them with a lone numeric argument.

In the specific case of reversed() with a nutple argument the output is then repacked so that

the output is a nutple if and only if the input was one (the reversal does not propagate to deeper

nested nutple's, it applies only at depth one).

qraw(stuff) It injects directly tokens to represent internally numerical data. Will break at anyDo not
use! release modifying the internal data format specifications (which are not always documented).

all(x, y, ...) inserts a logical AND in-between its arguments and evaluates the resulting logical

assertion (as with all functions, all arguments are evaluated).

\xinteval{all(1,1,1), all([1,0,1]), all([1,1,1])}

1, 0, 1

any(x, y, ...) inserts a logical OR in-between its arguments and evaluates the resulting logical

assertion,

\xinteval{any(0,0,0), any([1,0,1]), any([0,0,0])}

0, 1, 0

xor(x, y, ...) inserts a logical XOR in-between its arguments and evaluates the resulting logical

assertion,

\xinteval{xor(1,1,1), xor([1,0,1]), xor([1,1,1])}

1, 0, 1

`+`(x, y, ...) adds (left ticks mandatory):

\xinttheexpr `+`(1,3,19), `+`(1**2,3**2,sqr(19)), `+`([1**2,3**2,sqr(19)])\relax

23, 371, 371

`*`(x, y, ...) multiplies (left ticks mandatory):

29

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xinttheexpr `*`(1,3,19), `*`(1^2,3^2,19^2), `*`([1^2,3^2,19^2])\relax

57, 3249, 3249

max(x, y, ...) maximum of the (arbitrarily many) arguments,

\xinttheexpr max(1,3,19), min([1,3,19])\relax

19, 1

min(x, y, ...) minimum of the (arbitrarily many) arguments,

\xinttheexpr min(1,3,19), min([1,3,19])\relax

1, 1

gcd(x, y, ...) computes the positive generator of the fractional ideal of rational numbers xZ + yZ +

... ⊂ Q. Since 1.4d the output is always in lowest terms.

This example shows how to reduce an n-uple to its primitive part:

\xinteval{gcd(7/300, 11/150, 13/60)}\newline

$(7/300, 11/150, 13/60)\to

(\xinteval{subsn(seq(reduce(x/D), x = L), D=gcd(L); L=7/300, 11/150, 13/60)})$\newline

\xintexpr gcd([7/300, 11/150, 13/60])\relax\par

1/300

(7/300, 11/150, 13/60) → (7, 22, 65)

1/300

MEMO Perhaps a future release will provide a primpart() function as built-in functionality.

In case of strict integers, using a \xintiiexpr...\relax wrapper is advantageous as the

integer-only gcd() is more efficient. As \xintiiexpr accepts only strict integers, doing

this may require wrapping the argument in num().

lcm(x, y, ...) computes the positive generator of the fractional ideal of rational numbers xZ∩yZ∩
... ⊂ Q.

\xinttheexpr lcm([7/300, 11/150, 13/60])\relax

1001/30 As for gcd(), since 1.4d the output is always in lowest terms. For strict integers it

is slightly advantageous to use a sub \xintiiexpr-ession.

first(x, y, ...) first item of the list or nutple argument:

\xintiiexpr first([last(-7..3), [58, 97..105]])\relax

3

last(x, y, ...) last item of the list or nutple argument:

\xintiiexpr last([-7..3, 58, first(97..105)])\relax

97

reversed(x, y, ...) reverses the order of the comma separated list or inside a nutple:

\xintiieval{reversed(reversed(1..5), reversed([1..5]))}

[5, 4, 3, 2, 1], 1, 2, 3, 4, 5

The above is correct as xintexpr functions may produce oples and this is the case here.

len(x, y, ...) computes the number of items in a comma separated list or inside a nutple (at first

level only: it is not a counter of leaves).

\xinttheiiexpr len(37.5), len(1..50, [101..150], 1001..1050), len([1..10])\relax

1, 101, 10

30

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

zip(*nutples) behaves similarly to the Python function of the same name: i.e. it produces an ople
of nutples, where the i-th nutple contains the i-th element from each of the argument nutples.
The ople ends when the shortest input nutple is exhausted. With a single nutple argument, it
returns an ople of 1-nutples. With no arguments, it returns the empty ople.

As there is no exact match in xintexpr of the concept of “iterator” object,12 there is a signif-

icant difference here that (for example) the zip(x,x,x) Python idiom to cluster the iterator

x into successive chunks of length 3 does not apply. Consider for this reason even the name

of the function as work-in-progress, susceptible to change.unstable?

\xintiieval{zip([1..9], [0, 1, 2], [11..29], [111..139])}

[1, 0, 11, 111], [2, 1, 12, 112], [3, 2, 13, 113]

See also \xintthespaceseparated for some possible usage in combination with flat().

2.4.8. Functions requiring dummy variables

The pseudo-functions subs(), seq(), subsm(), subsn(), iter(), add(), mul(), rseq(), iterr(),

rrseq(), iterr(), ndseq(), ndmap(), ndfillraw() use delimited macros for some tasks:

• for all of them, whenever a <varname>= chunk must be parsed into a (non-assigned) variable

name, then the equal sign must be visible,

• and if the syntax is with ,<varname>= the initial comma also must be visible (spaces do not

matter),

• for all of them but ndmap() and ndfillraw() the final closing parenthesis must be visible.

Although delimited macros involving commas are used to locate ,<varname= this is done in a way

silently ignoring commas located inside correctly balanced parentheses. Thus, as the examples

will show, nesting works as expected.

The semi-colons involved in the syntax may arise from expansion alone. For rseq(), iter(),

rrseq() and iterr() the ,<varname>= part may also be created from the expansion which will generate

the initial comma separated values delimited by a semi-colon.

Prior to 1.4, semi-colons needed to be braced or otherwise hidden when located in an expression

parsed by \xintdefvar or \xintdeffunc, to not be confused with the expression terminator.

seq(), rseq(), iter(), rrseq(), iterr() and also add(), mul(), but not subs() admit the omit,

abort, and break() keywords. This is a new feature at 1.4 for add() and mul().

In the case of a potentially infinite list generated by the <integer>++ syntax, use of abort or

of break() is mandatory, naturally.

All lowercase and uppercase Latin letters are pre-configured for usage as dummy variables. In

Unicode engines one can use \xintnewdummy to turn any letter into a usable dummy variable.

And since 1.4, \xintnewdummy works (in all engines) to turn a multi-letter word into a dummy

variable. In the descriptions, varname stands for such a dummy variable, either single-letter or

word.

subs(expr, varname=values) for variable substitution.

\xinttheexpr subs(subs(seq(x*z,x=1..10),z=y^2),y=10)\relax\newline

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Attention that xz generates an error, one must use explicitely x*z, else the parser expects a

variable with name xz.

subs() is useful when defining macros for which some argument will be used more than once but

may itself be a complicated expression or macro, and should be evaluated only once, for matters

12 Speaking of iterators, I have some ideas about this: as \xintexpr does not have the global expression in its hands it is difficult
to organize globally expandably the idea of iterator, but locally via syntax like the one for seq() this is feasible. When one thinks
about it, seq() is closely related to the iterator idea.

31

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

of efficiency. But subs() is helpless in function definitions: all places where a variable

is substituted will receive the complete recipe to compute the variable, rather than evaluate

only once.

One should rather define auxiliary functions to compute intermediate results. Or one can use

seq(). See the documentation of \xintdeffunc.

add(expr, varname=values) addition

\xintiiexpr add(x^3,x=1..20), add(x(x+1), x=1,3,19)\relax\newline

\xintiiexpr add(x^3, x = 1..[2]..20)\relax\newline % add only odd cubes

\xintiiexpr add((odd(x))?{x^3}{omit}, x = 1..20)\relax\par % add only odd cubes

44100, 394

19900

19900

At 1.4 (fixed at 1.4a), the keywords omit (as in example above), abort and break() are allowed.

The meaning of break() is specific: its argument serves as last operand for the addition, not

as ultimate value.

\xintiiexpr add((x>10)?{break(1000)}{x}, x = 1..15)\relax

1055

The @ special variable holds the so-far accumulated value. Initially its value is zero.

\xintiiexpr add(1 + @, i=1..10)\relax % iterates x <- 2x+1

1023

See ‘+‘() for syntax simply adding items of a list without usage of a dummy variable.

mul(expr, varname=values) multiplication

\xintiiexpr mul(x^2, x = 1, 3, 19, 37..50)\relax

21718466538487411085212279802172111087206400000000

The @ special variable holds the so-far accumulated value. Initially its value is one.

At 1.4 (fixed at 1.4a), the keywords omit, abort and break() are allowed. The meaning of

break() is specific: its argument serves as last operand for the multiplication, not as ul-

timate value.

\xintiieval{mul((i==100)?{break(i^4)}{i}, i = 98, 99, 100)}

970200000000

See ‘*‘() for syntax without a dummy variable.

seq(expr, varname=values) comma separated values generated according to a formula

\xintiiexpr seq(x(x+1)(x+2)(x+3),x=1..10), `*`(seq(3x+2,x=1..10))\relax

24, 120, 360, 840, 1680, 3024, 5040, 7920, 11880, 17160, 1162274713600

\smallskip

\leavevmode\vbox{\xintthealign\xintiiexpr [seq([seq(i^2+j^2, i=0..j)], j=0..10)]\relax}

[[0],

[1, 2],

[4, 5, 8],

[9, 10, 13, 18],

[16, 17, 20, 25, 32],

[25, 26, 29, 34, 41, 50],

[36, 37, 40, 45, 52, 61, 72],

[49, 50, 53, 58, 65, 74, 85, 98],

[64, 65, 68, 73, 80, 89, 100, 113, 128],

[81, 82, 85, 90, 97, 106, 117, 130, 145, 162],

[100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200]]

32

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

rseq(initial value; expr, varname=values) recursive sequence, @ for the previous value.

\printnumber {\xintthefloatexpr subs(rseq (1; @/2+y/2@, i=1..10),y=1000)\relax }\newline

1, 500.5, 251.2490009990010, 127.6145581634591, 67.72532736082604, 41.24542607499115, 32.7 ⤸
4526934448864, 31.64201586865079, 31.62278245070105, 31.62277660168434, 31.62277660168379

Attention: in the example above y/2@ is interpreted as y/(2*@). With versions 1.2c or earlier+
{

it would have been interpreted as (y/2)*@.

In case the initial stretch is a comma separated list, @ refers at the first iteration to the

whole list. Use parentheses at each iteration to maintain this ``nuple''. For example:

\printnumber{\xintthefloatexpr rseq(1,10^6;

(sqrt(@[0]*@[1]),(@[0]+@[1])/2), i=1..7)\relax }

1, 1e6, 1000, 500000.5, 22360.69095533499, 250500.25, 74842.22521066670, 136430.4704776675,

101048.3052657827, 105636.3478441671, 103316.8617608946, 103342.3265549749, 103329.593373 ⤸
4841, 103329.5941579348, 103329.5937657094, 103329.5937657095

Prior to 1.4 the above example had to be written with [@]. This is still possible (@ stands

for an ople with two items, bracketing then extracting is like extracting directly), but it

is leaner to drop the extra “packing”.

iter(initial value; expr, varname=values) is exactly like rseq, except that it only prints the last

iteration.

iter() is convenient to handle compactly higher order iterations. We can illustrate its use

with an expandable (!) implementation of the Brent-Salamin algorithm for the computation of

π:

\xintDigits:= 87\relax % we target 84 digits, and use 3 guard digits

\xintdeffloatfunc BS(a, b, t, p):= 0.5*(a+b), sqrt(a*b), t-p*sqr(a-b),

\xintiiexpr 2p\relax;

\xinteval

{trunc(% I feel truncation is better than rounding to display decimals of π
\xintfloatexpr

iter(1, sqrt(0.5), 1, 1; % initial values

% this 43 is 84/2 + 1

(@[0]-@[1]<2e-43)?% stopping criteria; takes into account that the

% exit computation (break() argument) doubles

% number of exact digits (roughly)

{break(sqr(@[0]+@[1])/@[2])} % ... do final computation,

{BS(@)}, % else do iteration

i=1++) % This generates infinite iteration. The i is not used.

\relax

% this 83 is 84 - 1 (there is a digit known to be 3 actually, before decimal mark)

, 83)% closing parenthesis of trunc()

}...% some dots following end of \xinteval argument

\xintDigits:=16\relax

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862...

You can try with \xintDigits:=1004\relax and 2e-501 in place of \xintDigits:=87\relax and 2e- ⤸
43, but be patient for some seconds for the result. Of course don't truncate the final result

to only 83 fractional decimal digits but 1000... and better to wrap the whole thing in \message

or \immediate\write128 or \edef because it will then run in the right margin.

Prior to 1.4 the above example had to use notation such as [@][0]; this would still work but

@[0] is leaner.

rrseq(initial values; expr, varname=values) recursive sequence with multiple initial terms. Say,

there are K of them. Then @1, ..., @4 and then @@(n) up to n=K refer to the last K values.

33

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Notice the difference with rseq() for which @ refers to a list of items in case the initial

value is a list and not a single item.13 Using rrseq() with @1 etc... accessors may be perhaps

a bit more efficient than using rseq() with a list as staring value and constructs such as @[⤸
0], @[1] (or rather @[-1], @[-2] to mimick what @1, @2, @3, @4 and @@(integer) do in rrseq().

\xinttheiiexpr rrseq(0,1; @1+@2, i=2..30)\relax

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,

17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040

\xinttheiiexpr rseq(1; 2@, i=1..10)\relax

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

\xinttheiiexpr rseq(1; 2@+1, i=1..10)\relax

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047

\xinttheiiexpr rseq(2; @(@+1)/2, i=1..5)\relax

2, 3, 6, 21, 231, 26796

\xinttheiiexpr rrseq(0,1,2,3,4,5; @1+@2+@3+@4+@@(5)+@@(6), i=1..20)\relax

0, 1, 2, 3, 4, 5, 15, 30, 59, 116, 229, 454, 903, 1791, 3552, 7045, 13974, 27719, 54984, 109065,

216339, 429126, 851207, 1688440, 3349161, 6643338

I implemented an Rseq which at all times keeps the memory of all previous items, but decided

to drop it as the package was becoming big.

iterr(initial values; expr, varname=values) same as rrseq but does not print any value until the last

K.

\xinttheiiexpr iterr(0,1; @1+@2, i=2..5, 6..10)\relax

% the iterated over list is allowed to have disjoint defining parts.

55

subsm(expr, var1=value1; var2=value2;; varN=valueN[;]) Simultaneous substitutions. The as-

signed values must not involve the variables. An optional final semi-colon is allowed.

\xintiieval{subsm(x+2y+3z+4t, x=1; y=10; z=100; t=1000;)}

4321

subsn(expr, var1=value1; var2=value2;; varN=valueN[;]) Simultaneous substitutions. The as-

signed values may involve all variables located further to its right. An optional final semi-

colon is allowed.

\xintiieval{subsn(x+y+z+t, x=20y; y=20z; z=20t; t=1)}

8421

ndmap(function, values1; values2;; valuesN[;]) Construction of a nested list (a priori having N

dimensions) from function values. The function must be an N-variable function (or a function

accepting arbitrarily many arguments), but it is not constrained to produce only scalar val-

ues. Only in the latter case is the output really an N-dimensional “ndlist” type object. An

optional final semi-colon in the input before the closing parenthesis is allowed.

\xintdeffunc foo(a,b,c,d) = a+b+c+d;

\begin{multicols}{2}

\xintthealign\xintexpr ndmap(foo, 1000,2000,3000; 100,200,300; 10,20,30; 1,2,3)\relax

\end{multicols}

13 Prior to 1.4, one could use @ in rrseq() and iterr() as an alias to @1. This undocumented feature is dropped and @ will break
rrseq() and iterr().

34

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

[[[[1111, 1112, 1113],

[1121, 1122, 1123],

[1131, 1132, 1133]],

[[1211, 1212, 1213],

[1221, 1222, 1223],

[1231, 1232, 1233]],

[[1311, 1312, 1313],

[1321, 1322, 1323],

[1331, 1332, 1333]]],

[[[2111, 2112, 2113],

[2121, 2122, 2123],

[2131, 2132, 2133]],

[[2211, 2212, 2213],

[2221, 2222, 2223],

[2231, 2232, 2233]],

[[2311, 2312, 2313],

[2321, 2322, 2323],

[2331, 2332, 2333]]],

[[[3111, 3112, 3113],

[3121, 3122, 3123],

[3131, 3132, 3133]],

[[3211, 3212, 3213],

[3221, 3222, 3223],

[3231, 3232, 3233]],

[[3311, 3312, 3313],

[3321, 3322, 3323],

[3331, 3332, 3333]]]]

ndseq(expr, var1=values1; var2=values2;; varN = valuesN[;]) Constructs a nested list (a pri-

ori having N dimensions) from substitutions in an expression involving N (dummy) variables.

The expression is not constrained to produce only scalar values. Only in the latter case is

the output really an N-dimensional “ndlist” type object. An optional final semi-colon in the

input before the closing parenthesis is allowed.

\begin{multicols}{2}

\xintthealign\xintexpr ndseq(a+b+c+d, a=1000,2000,3000; b=100,200,300;

c=10,20,30; d=1,2,3;)\relax

\end{multicols}% in case of page break, this makes amusing zigzag rendering

[[[[1111, 1112, 1113],

[1121, 1122, 1123],

[1131, 1132, 1133]],

[[1211, 1212, 1213],

[1221, 1222, 1223],

[1231, 1232, 1233]],

[[1311, 1312, 1313],

[1321, 1322, 1323],

[1331, 1332, 1333]]],

[[[2111, 2112, 2113],

[2121, 2122, 2123],

[2131, 2132, 2133]],

[[2211, 2212, 2213],

[2221, 2222, 2223],

[2231, 2232, 2233]],

[[2311, 2312, 2313],

[2321, 2322, 2323],

[2331, 2332, 2333]]],

[[[3111, 3112, 3113],

[3121, 3122, 3123],

[3131, 3132, 3133]],

[[3211, 3212, 3213],

[3221, 3222, 3223],

[3231, 3232, 3233]],

[[3311, 3312, 3313],

[3321, 3322, 3323],

[3331, 3332, 3333]]]]

Recursions may be nested, with @@@(n) giving access to the values of the outer recursion...and

there is even @@@@(n) to access the outer outer recursion but I never tried it!

The following keywords are recognized:

abort it is a pseudo-variable which indicates to stop here and now.

omit it is a pseudo-variable which says to omit this value and go to next one.

break(stuff) says to abort and insert stuff as last value.

<integer>++ serves to generate a potentially infinite list. In conjunction with an abort or

break() this is often more efficient than iterating over a pre-established list of values.

35

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xinttheiiexpr iter(1;(@>10^40)?{break(@)}{2@},i=1++)\relax

10889035741470030830827987437816582766592 is the smallest power of 2 with at least fourty one

digits.

The i=<integer>++ syntax (any letter is allowed in place of i) works only in the form <letter> ⤸
=<integer>++, something like x=10,17,30++ is not legal. The <integer> must be a TEX-allowable

integer.

First Fibonacci number at least |2^31| and its index

% we use iterr to refer via @1 and @2 to the previous and previous to previous.

\xinttheiiexpr iterr(0,1; (@1>=2^31)?{break(@1, i)}{@2+@1}, i=1++)\relax

First Fibonacci number at least 2^31 and its index 2971215073, 47. If one also wants the

previous Fibonacci number one only has to use break(@2, @1, i) in the above example.

2.5. Generators of arithmetic progressions
• a..b constructs the small integers from the ceil ⌈a⌉ to the floor ⌊b⌋ (possibly a decreasing

sequence): one has to be careful if using this for algorithms that 1..0 for example is not

empty or 1 but expands to 1, 0. Again, a..b can not be used with a and b greater than 231 - 1.

Also, only about at most 5000 integers can be generated (this depends upon some TEX memory

settings).

The .. has lower precedence than the arithmetic operations.

\xintexpr 1.5+0.4..2.3+1.1\relax; \xintexpr 1.9..3.4\relax; \xintexpr 2..3\relax

2, 3; 2, 3; 2, 3

The step of replacing a by its ceil and b by its floor is a kind of silly overhead, but a and

b are allowed to be themselves the result of computations and there is no notion of “int” type

in \xinteval. The solution is, when a and b are given explicit integers to temporarily switch

to the \xintiiexpr parser:

\xintexpr \xintiiexpr 1..10\relax\relax

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

On the other hand integers from \xintexpr 1..10\relax are already in raw xintfrac format

for example 3/1[0] which speeds up their usage in the macros internally involved in compu-

tations... thus perhaps what one gains on one side is lost on the other side.

• a..[d]..b generates “real” numbers along arithmetic progression of reason d. It does not
replace a by its ceil, nor b by its floor. The generated list is empty if b-a and d are of

opposite signs; if d=0 or if a=b the list expands to single element a.

\xintexpr 1.5..[1.01]..11.23\relax

1.5, 2.51, 3.52, 4.53, 5.54, 6.55, 7.56, 8.57, 9.58, 10.59

At 1.4, this generator behaves in \xintfloatexpr exactly as in \xintexpr, i.e. exactly. This

is breaking change.

\xintDigits:=6;

\xintexpr\xintfloatexpr 100..[1.23456]..110\relax\relax

\xintDigits:=16;

100, 101.23456, 102.46912, 103.70368, 104.93824, 106.1728, 107.40736, 108.64192, 109.87648

This demonstration embedded the float expression in the exact parser only to avoid the round-

ing to the prevailing precision on output, thus we can see that internally additions are done

exactly and not with 6 digits mantissas (in this example).

36

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

2.6. Python slicing and indexing of one-dimensional sequences
We denote here by list or sequence a general ople, either given as a variable or explicitly. In
the former case the parentheses are optional.14

• (list)[n] returns the n+1th item if n>=0. If n<0 it enumerates items from the tail. Items are

numbered as in Python, the first element corresponding to n=0.

\xintexpr (0..10)[6], (0..10)[-1], (0..10)[23*18-22*19]\relax

6, 10, 7

This also works for singleton oples which are in fact a number:

\xintexpr (7)[0], (7)[-1], 9, (7)[-2], 9\relax

7, 7, 9, 9

In the example above the parentheses serve to disambiguate from the raw xintfrac format such

as 7[-1] which, although discouraged, is accepted on input. And we used a trick to show that

(7)[-2] returns nil.

The behaviour changes for singleton oples which are not numbers. They are thus nutples, or

equivalently they are the bracketing (bracing, packing) of another ople. In this case, the

meaning of the syntax for item indexing is, as in Python, item extraction:

\xintexpr [0,1,2,3,4,5][2], [0,1,2,3,4,5][-3]\relax\newline

\xintexpr [0,[1,2,3,4,5],6][1][-1]\relax

2, 3

5

• (list)[:n] produces the first n elements if n>0, or suppresses the last |n| elements if n<0.

\xintiiexpr (0..10)[:6]\relax\ and \xintiiexpr (0..10)[:-6]\relax

0, 1, 2, 3, 4, 5 and 0, 1, 2, 3, 4

As above, the meaning change for nutples and fits with expectations from Python regarding its

sequence types:

\xintiiexpr [0..10][:6]\relax\ and \xintiiexpr [0..10][:-6]\relax

[0, 1, 2, 3, 4, 5] and [0, 1, 2, 3, 4]

• (list)[n:] suppresses the first n elements if n>0, or extracts the last |n| elements if n<0.

\xintiiexpr (0..10)[6:]\relax\ and \xintiiexpr (0..10)[-6:]\relax

6, 7, 8, 9, 10 and 5, 6, 7, 8, 9, 10

As above, the meaning change for nutples and fit with expectations from Python with tuple or

list types:

\xintiiexpr [0..10][6:]\relax\ and \xintiiexpr [0..10][-6:]\relax

[6, 7, 8, 9, 10] and [5, 6, 7, 8, 9, 10]

• Finally, (list)[a:b] also works according to the Python ``slicing'' rules (inclusive of neg-

ative indices). Notice though that stepping is currently not supported.

\xinttheiiexpr (1..20)[6:13]\relax\ = \xinttheiiexpr (1..20)[6-20:13-20]\relax

\newline

\xinttheiiexpr [1..20][6:13]\relax\ = \xinttheiiexpr [1..20][6-20:13-20]\relax

7, 8, 9, 10, 11, 12, 13 = 7, 8, 9, 10, 11, 12, 13

[7, 8, 9, 10, 11, 12, 13] = [7, 8, 9, 10, 11, 12, 13]

14 Even for an “open list”, if it is given as a variable then the indexing or slicing will not apply to its last item but to itself as an
entity.

37

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

• It is naturally possible to execute such slicing operations one after the other (the syntax

is simplified compared to before 1.4):

\xintexpr (1..50)[13:37][10:-10]\relax\newline

\xintexpr (1..50)[13:37][10:-10][-1]\relax

24, 25, 26, 27

27

2.7. NumPy like nested slicing and indexing for arbitrary oples and nutples
I will give one illustrative example and refer to the NumPy documentation for more.

Notice though that our interpretation of the syntax is more general than NumPy's concepts (of

basic slicing/indexing):

• slicing and itemizing apply also to non-bracketed objects i.e. oples,

• the leaves do not have to be all at the same depth,

• there are never any out-of-range index errors: out-of-range indices are silently ignored.

\begin{multicols}{3}

\xintdefvar myArray = ndseq(a+b+c, a=100,200,300; b=40,50,60; c=7,8,9);

myArray = \xintthealign\xintexpr myArray\relax

\columnbreak

mySubArray = \xintthealign\xintexpr myArray[0:2,0:2,0:2]\relax

myExtractedSubArray = \xintthealign\xintexpr myArray[0:2,0:2,0:2][0]\relax

\columnbreak

myExtractedSubArray = \xintthealign\xintexpr myArray[0:2,0:2,0:2][0,1]\relax

\noindent

firstExtractedScalar = \xintexpr myArray[0:2,0:2,0:2][0,1,0]\relax\newline

secondExtractedScalar = \xintexpr myArray[0,1,0]\relax\par

\end{multicols}

myArray =

[[[147, 148, 149],

[157, 158, 159],

[167, 168, 169]],

[[247, 248, 249],

[257, 258, 259],

[267, 268, 269]],

[[347, 348, 349],

[357, 358, 359],

[367, 368, 369]]]

mySubArray =

[[[147, 148],

[157, 158]],

[[247, 248],

[257, 258]]]

myExtractedSubArray =

[[147, 148],

[157, 158]]

myExtractedSubArray =

[157, 158]

firstExtractedScalar = 157

secondExtractedScalar = 157

As said before, stepping is not yet implemented. Also the NumPy extension to Python for item

selection (i.e. via a tuple of comma separated indices) is not yet implemented.

2.8. Tacit multiplication
Tacit multiplication (insertion of a *) applies when the parser is currently either scanning the

digits of a number (or its decimal part or scientific part, or hexadecimal input), or is looking

for an infix operator, and:

(1.) encounters a count or dimen or skip register or variable or an 𝜀-TEX expression, or

(2.) encounters a sub-\xintexpression, or

(3.) encounters an opening parenthesis, or

38

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

(4.) encounters a letter (which is interpreted as signaling the start of either a variable or a
function name), or

(5.) (of course, only when in state "looking for an operator") encounters a digit.

!!!!ATTENTION!!!!
Explicit digits prefixing a variable, or a function, whose name starts with an e or E will

trap the parser into trying to build a number in scientific notation. So the * must be explic-

itly inserted.

\xintdefiivar e := (2a+4b+6d+N)/:7;%

\xintdefiivar f := (c+11d+22*e)//451;% 22e would raise errors

I don't think I will fix this anytime soon...

For example, if x, y, z are variables all three of (x+y)z, x(y+z), (x+y)(x+z) will create a

tacit multiplication.

Furthermore starting with release 1.2e, whenever tacit multiplication is applied, in all

cases it always ``ties'' more than normal multiplication or division, but still less than+
{
power. Thus x/2y is interpreted as x/(2y) and similarly for x/2max(3,5) but x^2y is still

interpreted as (x^2)*y and 2n! as 2*n!.

\xintdefvar x:=30;\xintdefvar y:=5;%

\xinttheexpr (x+y)x, x/2y, x^2y, x!, 2x!, x/2max(x,y)\relax

1050, 30/10, 4500, 265252859812191058636308480000000, 530505719624382117272616960000000,

30/60

Since 1.2q tacit multiplication is triggered also in cases such as (1+2)5 or 10!20!30!.

\xinttheexpr (10+7)5, 4!4!, add(i, i=1..10)10, max(x, y)100\relax

85, 576, 550, 3000

The ``tie more'' rule applies to all cases of tacit multiplication. It impacts only situa-

tions with a division operator as the last seen operator, as multiplication is mathematically

associative.

\xinttheexpr 1/(3)5, (1+2)/(3+4)(5+6), 2/x(10), 2/10x,

3/y\xintiiexpr 5+6\relax, 1/x(y)\relax\

differ from\newline\xinttheexpr 1/3*5, (1+2)/(3+4)*(5+6), 2/x*(10), 2/10*x,

3/y*\xintiiexpr 5+6\relax, 1/x*(y)\relax\par

1/15, 3/77, 2/300, 2/300, 3/55, 1/150 differ from

5/3, 33/7, 20/30, 60/10, 33/5, 5/30

Note that y\xinttheiiexpr 5+6\relax would have tried to use a variable with name y11 rather

than doing y*11: tacit multiplication works only in front of sub-\xintexpressions, not in front

of \xinttheexpressions which are unlocked into explicit digits.

Here is an expression whose meaning is completely modified by the ``tie more'' property of tacit

multiplication:

\xintdeffunc e(z):=1+z(1+z/2(1+z/3(1+z/4)));

will be parsed as

\xintdeffunc e(z):=1+z*(1+z/(2*(1+z/(3*(1+z/4)))));

which is not at all the presumably hoped for:

\xintdeffunc e(z):=1+z*(1+(z/2)*(1+(z/3)*(1+(z/4))));

2.9. User defined variables
Since release 1.1 it is possible to make an assignment to a variable name and let it be known to

the parsers of xintexpr. Since 1.2p simultaneous assignments are possible. Since 1.4 simulta-

39

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

neous assignments are possible with a right-hand-side being a nutple which will be automatically

unpacked.

\xintdefvar myPi:=3.141592653589793238462643;%

$myPi = \xinteval{myPi}$\newline % (there is already built-in Pi variable)

\xintdefvar x_1, x_2, x_3 := 10, 20, 30;%

$x_1 = \xinteval{x_1}, x_2 = \xinteval{x_2}, x_3 = \xinteval{x_3}$\newline

\xintdefvar x_1, x_2, x_3 := [100, 200, 300];%

$x_1 = \xinteval{x_1}, x_2 = \xinteval{x_2}, x_3 = \xinteval{x_3}$\par

myPi = 3.141592653589793238462643

x1 = 10, x2 = 20, x3 = 30

x1 = 100, x2 = 200, x3 = 300

Simultaneous assignments with more variables than values do not raise an error but simply set

the extra variables to the nil value.

\xintdefiivar a, b, c := [1, 2];% will be automatically unpacked

The value of a is \xinteval{a}, the one of b is \xinteval{b} and

the one of c is \xinteval{c}.

The value of a is 1, the one of b is 2 and the one of c is .

\xintdefiivar a, b, c := 314;%

The value of a is \xinteval{a}, the one of b is \xinteval{b} and

the one of c is \xinteval{c}.

The value of a is 314, the one of b is and the one of c is .

Notice that nil variables must be used with caution as they break arithmetic operations if used

as operands to them. And they are not the same as the None variables, which can also be input as

[].

Simultaneous assignments with less variables than values do not raise an error but set the last

variable to be the ople concatenating the remaining values.

\xintdefiivar seq := 1..10;%

\xintdefiivar a, seq := seq;%

\xintdefiivar b, seq := seq;%

\xintdefiivar c, d, seq := seq;%

The value of a is \xinteval{a}, the one of b is \xinteval{b}, the one of c is \xinteval{c},

the one of d is \xinteval{d}, the one of seq is \xinteval{seq}.

The value of a is 1, the one of b is 2, the one of c is 3, the one of d is 4, the one of seq is 5, 6,

7, 8, 9, 10.

In the above we define a variable seq but there is a built-in function seq(). It is indeed

allowed to use the same name for both a variable and a function.15 But for safety we will unassign

seq now:

\xintunassignvar{a}\xintunassignvar{b}\xintunassignvar{c}\xintunassignvar{d}%

\xintunassignvar{seq}%

Single letter names a..z and A..Z are pre-declared by the package for use as a special type of

variables called ``dummy variables''. Unnassigning them restores this initial meaning. See

further \xintunassignvar and \xintnewdummy. Since 1.4 even assigned variables can be used in

the call signatures of function declarations.

Regarding the manipulation of an “open list” as above, there is no way to obtain with only one

use of the variable both its last item and the reduction of the variable to its truncated self.

One can do rather:

\xintdefiivar mylist := 1..10;%

\xintdefiivar z, mylist := last(mylist), mylist[:-1];%

The value of z is \xinteval{z} and mylist is now \xinteval{mylist}.\par

The value of z is 10 and mylist is now 1, 2, 3, 4, 5, 6, 7, 8, 9.

This uses twice mylist and is about the same as doing it in two steps:

15 But until a bugfix added at release 1.4i, some built-in function names (those implementing syntax with dummy variables, and
the so-called “pseudo”-functions) were fragile under such overloading.

40

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xintdefiivar w := last(mylist);%

\xintdefiivar mylist := mylist[:-1];%

The value of w is \xinteval{w} and mylist is now \xinteval{mylist}.%

\xintunassignvar{z}\xintunassignvar{w}\xintunassignvar{mylist}\par

The value of w is 9 and mylist is now 1, 2, 3, 4, 5, 6, 7, 8.

It is recommended generally speaking to work with “closed (i.e. bracketed) lists” because

only them and numbers can be arguments to functions (but see \xintdeffunc and the notion of vari-

adic last argument). For more on the Python-like slicing used above see subsection 2.6 and sub-

subsection 2.13.4. For more information relative to variables versus arguments see subsubsec-

tion 2.13.6.

• For catcodes issues (particularly, for the semi-colon used to delimit the fetched expres-

sion), see the discussion of \xintexprSafeCatcodes and some comments in the section docu-

menting \xintdeffunc.

• Both syntaxes \xintdefvar foo := <expr>; and \xintdefvar foo = <expr>; are accepted.

• Spaces in the variable name or around the equal sign are removed and are immaterial.

• The variable names are expanded in an \edef (and stripped of spaces). Example:

\xintdefvar x\xintListWithSep{, x}{\xintSeq{0}{10}} := seq(2**i, i = 0..10);%

This defines x0, x1, ..., x10 for future usage.

Legal variable names are composed of letters, digits, _ and @ and characters. A variable name

must start with a letter. Variable names starting with a @ or _ are reserved for internal usage.16

As x_1x_2 or even x_1x are licit variable names, and as the parser does not trace back its steps,

input syntax must be x_1*x_2 if the aim is to multiply such variables.

Using \xintdefvar, \xintdefiivar, or \xintdeffloatvar means that the variable value will be

computed using respectively \xintexpr, \xintiiexpr or \xintfloatexpr. It can then be used in all

three parsers, as long as the parser understands the format. Currently this means that variables

using \xintdefvar or \xintdeffloatvar can be used freely either with \xintexpr or \xintfloatexpr

but not with \xintiiexpr, and variables defined via \xintdefiivar can be used in all parsers.

When defining a variable with \xintdeffloatvar it (or generally speaking its numerical leaves)

is rounded to \xinttheDigits precision. So the variable holds the same value as would be printed

via \xintfloateval for the same computation.

Prior to 1.4e, this was the case only if the variable definition actually involved some compu-

tation.

However the \xintfloatexpr..\relax wrapper by itself induces no rounding. If it is encountered

in the typesetting flow, the print-out will be rounded to \xinttheDigits precision, but this is

an effet of behaving like \xintfloateval in this context.

% Since 1.4e, \xintdeffloatvar always rounds (to \xinttheDigits)

\xintdeffloatvar e:=2.7182818284590452353602874713526624977572470936999595749669676;%

1) \xintexpr e\relax\newline % shows the recorded value: it is rounded

2) \xintfloatexpr % when used in typesetting flow, acts like \xintfloateval:

2.7182818284590452353602874713526624977572470936999595749669676

\relax\newline % the print-out is rounded.

3) \xintexpr

\xintfloatexpr

2.7182818284590452353602874713526624977572470936999595749669676

\relax

\relax\newline

%

% but we can see via the \xintexpr wrapper all the digits were there rounding

16 The process of variable declaration does not check that these rules are met, and breakage will arise on use, if rules are not
followed. For example, prior to 1.4g, using a variable (illegally) declared with a name starting with a (normal, catcode 8) _ triggered
an infinite loop.

41

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

% can be forced using an extra 0+, the float() function, or the [D] option.

% tidbit: comparison operators do not pre-round, so 1.2345678 is not same as

% (1.2345678+0) in low precision.

%

\begingroup\xintDigits:=4;%

4) \xintifboolfloatexpr{1.2345 == 1.23456}

{\error}{Different! Comparisons do not pre-round to Digits precision.}\newline

5) \xintifboolfloatexpr{1.2345 == 1.2345 + 0}

{\error}{Different! Right hand side rounded from operation,

left hand side not rounded.}\par

\endgroup

1) 2.718281828459045

2) 2.718281828459045

3) 2.7182818284590452353602874713526624977572470936999595749669676

4) Different! Comparisons do not pre-round to Digits precision.

5) Different! Right hand side rounded from operation, left hand side not rounded.

After issuing \xintverbosetrue the values of defined variables are written out to the log (and

terminal). As in this example:

Package xintexpr Info: (on line 1)

Variable myPi defined with value {3141592653589793238462643[-24]}.

Package xintexpr Info: (on line 2)

Variable x_1 defined with value {10}.

Package xintexpr Info: (on line 2)

Variable x_2 defined with value {20}.

Package xintexpr Info: (on line 2)

Variable x_3 defined with value {30}.

Package xintexpr Info: (on line 3)

Variable List defined with value {0}{1}{3}{6}{10}{15}{21}{28}{36}{45}{55}

.

Package xintexpr Info: (on line 4)

Variable Nuple defined with value {{0}{1}{9}{36}{100}{225}{441}{784}{1296

}{2025}{3025}}.

Package xintexpr Info: (on line 5)

Variable FourthPowers defined with value {{0}{1}{81}{1296}{10000}{50625}{

194481}{614656}{1679616}{4100625}{9150625}}.

2.9.1.
source

\xintunassignvar

\xintunassignvar{⟨variable⟩} will make the ⟨variable⟩ un-assigned. For example in the previous

section we used

\xintdeffloatvar e := ...some value...;

To undo one either waits for the current scope (e.g. a LATEX environment) to expire or the impatient

does:

\xintunassignvar{e}

In this special case of using \xintunassignvar with a single ⟨letter⟩ the effect is actually to+
{
let the ⟨letter⟩ recover the meaning of a dummy variable (i.e. it is the same as using \xintnewdummy

documented in the next section):

% overwriting a dummy letter

\xintdefvar i := 3;%

\xinteval{i^3} is as expected but |\xinteval{add(i,i=1..10)}| computes

\xinteval{add(i,i=1..10)} because "i" has the fixed value 3.\newline

\xintunassignvar{i}% back to normal

After |\xintunassignvar{i}|

42

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

|\xinteval{add(i,i=..10)}| is evluated with "i" acting as a dummy variable

and thus outputs \xinteval{add(i,i=..10)}.\par

27 is as expected but \xinteval{add(i,i=1..10)} computes 30 because "i" has the fixed value 3.

After \xintunassignvar{i} \xinteval{add(i,i=..10)} is evluated with "i" acting as a dummy vari-

able and thus outputs 55.

Under \xintglobaldefstrue regime the effect of \xintunassignvar is of global scope.

2.9.2.
source

\xintnewdummy

Any catcode 11 character can serve as a dummy variable, via this declaration:

\xintnewdummy{<letter>}% the <letter> must be of catcode letter!

For example with LuaTEX or XeTEX the following works:

% Requires a Unicode engine

\xintnewdummy{ξ}
\xinteval{add(ξ, ξ=1..10)}
Starting with 1.4, it is allowed to use \xintnewdummy to define ``dummy variables'' having names

with more than one letter. They can then be used as expected:

% Requires a Unicode engine

\xintnewdummy{ατλν}
\xintdeffunc test(ατλν) = sqr(1 + ατλν);
\xinteval{seq(test(ατλν), ατλν = 0..10)}

Remark regarding OpTEX: it is a format using LuaTEX, but non ascii letters have catcode

``other''. So for the above example to compile with optex, the catcodes need to be set to ``let-

ter'' beforehand:

% Requires a Unicode engine

% next line is required if with OpTeX (only):

\xintFor* #1 in {ατλν}\do{\catcode`#1=11 }

\xintnewdummy{ατλν}
\xintdeffunc test(ατλν) = sqr(1 + ατλν);
\xinteval{seq(test(ατλν), ατλν = 0..10)}

Under \xintglobaldefstrue regime the effect of \xintnewdummy is of global scope.

2.9.3.
source

\xintensuredummy,
source

\xintrestorevariable

Use

\xintensuredummy{<character>}

...

... code using the (catcode 11) character as a dummy variable

...

\xintrestorevariable{<character>}

if other parts need the letter as an assigned variable name. For example xinttrig being written

at high level needs a few genuine dummy variables, and it uses \xintensuredummy to be certain

everything is ok.

2.10. User defined functions
2.10.1 \xintdeffunc . 44
2.10.2 \xintdefiifunc . 47
2.10.3 \xintdeffloatfunc . 47
2.10.4 \xintdefufunc, \xintdefiiufunc, \xintdeffloatufunc . 47
2.10.5 Using the same name for both a variable and a function . 50
2.10.6 \xintunassignexprfunc, \xintunassigniiexprfunc, \xintunassignfloatexprfunc . 50
2.10.7 \ifxintverbose conditional . 50
2.10.8 \ifxintglobaldefs conditional . 50

43

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

2.10.9 \xintNewFunction . 50

2.10.1.
source

\xintdeffunc

Here is an example:

\xintdeffunc

Rump(x,y):=1335 y^6/4 + x^2 (11 x^2 y^2 - y^6 - 121 y^4 - 2) + 11 y^8/2 + x/2y;

(notice the numerous tacit multiplications in this expression; and that x/2y is interpreted as

x/(2y).)

• The ending semi-colon is allowed to be of active catcode, as \xintdeffunc temporarily

resets catcodes via \xintexprSafeCatcodes before parsing the expression.

But this will fail if the whole thing is inside a macro definition. Then the used semi-

colon must be the standard one.

In the case of a LATEX document using Babel, and a language such as French which makes the

semi-colon active, it is still the standard one inside the preamble, so there is no problem

there.

For a macro definition done inside the document body, which, as I understand, is sin,

almost evil, either turn off locally the activation (\string; will not work because \xint-

deffunc uses delimited macros to fetch all the way to the semi-colon), or define in the

preamble \MyDefFunc{#1} to do \xintdeffunc #1; and use that in the \newcommand\foo inside

the document body.

• Semi-colons used inside the expression need not be hidden inside braces. (new with 1.4)

• The colon before the equal sign is optional and its (reasonable) catcode does not matter.

Here are a few important items (bookmark this for reading again later once you have gained expe-

rience in using this interface...):

• The function names are composed of letters, digits, underscores or @ signs. A function name

must start with a letter. It may be a single letter (see subsubsection 2.10.5).

• The variable names used in the function signature may be multi-letter words. It is also al-

lowed for them to already be in use for previously declared variables. Their meanings will

get restored for usage after the function declaration.

• A function can be declared with at most nine arguments. It can be declared as a function with

no arguments.

• If in the function declaration the last argument is prefixed by *, it stands for a nutple

which will gather all arguments of the function call beyond the first positional ones. See

subsubsection 2.13.6 for additional explanations on such “variadic” arguments.

• Recursive definitions are possible; for them to not generate error or fall in infinite loops,

the use of the short-circuit conditionals ? and ?? is mandatory.

• If a function is used in another definition it will check if it is applied to numerical argu-

ments and if this is the case will expand fully.

• The previous item has an exception for functions with no arguments; they never expand immedi-

ately in other function definitions (else they would be almost like variables). This provides

a way to define functions with parameters: simply let their definition use some functions with

no arguments.

44

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

• A function declared via \xintdeffunc remains unknown to \xintfloatexpr (or \xintfloateval).

See \xintdeffloatfunc, \xintdefiifunc. One can use the same formula in a new definition, but

if one wants the expansion to execute in a parser independent way, one can transfer a function

with scalar values like this:

\xintdeffloatfunc foo(x) := float_dgt(\xintexpr foo(x)\relax);

The float_dgt() wrapper (which was renamed at 1.4e) is in order for the float variant to pro-

duce an already-rounded value, possibly speeding-up usage if used as input for other func-

tions. Using float() here would work the same but the produced function would incorporate a

routine to check (at time of use, because at time of definition it is impossible to tell what

will be the case) if it is applied to one or two arguments.

• And in the reverse direction one can do:

\xintdeffunc bar(x) := \xintfloatexpr bar(float(x))\relax;

With this the transplanted float-function will expand in \xintexpr as it would have in \xint-

floatexpr, i.e. using float operations; this is different from declaring the function again

with the same expression as used for the original, as it would have then been parsed with a

mapping of infix operators to the macros doing the exact operations, not the floating point

ones.

The inner float() above is not mandatory but recommended: the macro associated to the user

float function bar(x) may use many times its argument x and does not worry about rounding

it, because its expectation is that it is already rounded; but in \xintexpr that value could

very well be a fraction 19/13 and its float rounding will be done again by each float macro

receiving it as argument; with a float() used as above this will have already been done once

and the ulterior roundings are faster: they have nothing to do apart from realizing that they

have nothing to do.... One can also use sfloat(), this would serve to nothing for the 19/13

case but would possibly for a short integer input involved in multiplications.

Here it is not needed to use float_dgt(), because it will be identified at time of definition

that float() is used without optional argument.

An external float_dgt() could be added but is not a priori necessary, except perhaps if the bar ⤸
() function has been defined at a low level using support macros producing output with garbage

extra digits, which usually would be rounded out in input to other float functions.

A function once declared is a first class citizen, its expression is entirely parsed and con-

verted into a big nested f-expandable macro.

When used its action is via this defined macro. For example

\xintdeffunc

e(z):=(((((((((z/10+1)z/9+1)z/8+1)z/7+1)z/6+1)z/5+1)z/4+1)z/3+1)z/2+1)z+1;

creates a macro whose meaning one can find in the log file, after \xintverbosetrue. Here it is (it

has at 1.4 an extra external brace pair compared to what happened with earlier releases):

Function e for \xintexpr parser associated to \XINT_expr_userfunc_e with me

aning macro:#1->{\xintAdd {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\x

intDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\

xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {

\xintMul {\xintAdd {\xintDiv {\xintMul {\xintAdd {\xintDiv {#1}{10}}{1}}{#1}}{9

}}{1}}{#1}}{8}}{1}}{#1}}{7}}{1}}{#1}}{6}}{1}}{#1}}{5}}{1}}{#1}}{4}}{1}}{#1}}{3}

}{1}}{#1}}{2}}{1}}{#1}}{1}}

The above is not entirely true. At 1.4, \xintdeffunc is more powerful and digests more of the

syntax but it may have to store it in such a way that usage will be done via a sub-expression: hence

it is not the case that the original expression has been entirely parsed. See \xintNewFunction

for related discussion.

45

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

The main difficulty of \xintdeffunc is with the pseudo-functions seq(), iter(), etc..., which

admit the keywords omit, abort, break(). We have no alternative for them, if the iterated over

values are not entirely numerical than to postpone expansion, but this means simply storing for

later a possibly big sub-expression.

At 1.4 we did some obstinate work to make this working but:

• this means that the stored function body has not been entirely parsed, parsing will happen on

the fly at each execution for small or large bits,

• there remains a main stumbling-block. If the variables used in the function declaration are

used only in the iterated over values or the initial values, then the mechanism may work. If

however they are used not only in those values iterated over but directly in the expression

which the generators map to the iterated over values, then it will break certainly. Indeed at

this stage the variables are simply names, and it is impossible to transfer the mechanism which

converts these names into numerical arguments for delayed usage by the declared function.

Except if one is ready to basically freeze the entire thing; which then is not any different

at all than using \xintNewFunction.

Conclusion: if some \xintdeffunc break, check if it does not fit the above criterion before

reporting... and recall \xintNewFunction is your friend. It has the big advantage of declaring a

function for all parsers simultaneously!

A special note on subs(): it is and has always been hopeless in \xintdeffunc context. All it

does (if it works at all) after being malaxed by \xintdeffunc is to copy over at the indicated

places the recipe to compute something. Thus at every location where that something is needed it

will be evaluated from scratch again. Yes, this is disappointing. But... on the other hand the

more general seq() does work, or pretends to work. Let me illustrate to make thinks clear. We

start with this:

\xintverbosetrue

\xintdeffunc foo(x,y,z) = subs(S + S^2, S = x+y+z);

\xintdeffunc bar(x,y,z) = seq(S + S^2, S = x+y+z);

\xintexpr foo(100,10,1), bar(100,10,1)\relax

\xintverbosefalse

12432, 12432

It produces in the log:

Package xintexpr Info: (on line 2)

Function foo for \xintexpr parser associated to \XINT_expr_userfunc_foo wit

h meaning macro:#1#2#3->{\xintAdd {\xintAdd {\xintAdd {#1}{#2}}{#3}}{\xintPow {

\xintAdd {\xintAdd {#1}{#2}}{#3}}{2}}}

Package xintexpr Info: (on line 3)

Function bar for \xintexpr parser associated to \XINT_expr_userfunc_bar wit

h meaning macro:#1#2#3->\expanded \bgroup \expanded {\unexpanded {\XINT_expr_se

q:_b {\xintbareeval S + S^2\relax !S}}{\xintAdd {\xintAdd {#1}{#2}}{#3}}^}

Even without understanding all details one sees that in the first case the \xintAdd {\xintAdd { ⤸
#1}{#2}}{#3}} appears twice, and in the second case only once. But in the second case we have a

yet to evaluate expression. So the second approach is not much different in its effect than using

the more simple-minded \xintNewFunction. Besides one gets a feeling why the function arguments

can not appear in the expression but only in the iterated over values, because there is no way to

understand what x, y, z are supposed to mean without adding extra structure showing they map to

#1, #2, #3.

The above remarks apply to subsm() and subsn(). Even if they do work in \xintdeffunc context

(warning, testing at 1.4 release has remained minimal), they will not bring added efficiency if the

substituted values are to be used multiple times. They may still be useful to visually simplify

the input of a big expression by expressing it in terms of smaller constituents.

46

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Another workaround if one wants genuine (not “macro”-) functions for some expression where the

same thing is used multiple times is to define helper functions computing the intermediate data.

One can see illustrations of this in the code source of xinttrig (or in the matrix multiplication

example at the end of this chapter).

2.10.2.
source

\xintdefiifunc

With \xintdeffunc the created function is known by the \xintexpr parser only. For usage in the

\xintiiexpr parser, it is required to use \xintdefiifunc.

2.10.3.
source

\xintdeffloatfunc

With \xintdeffunc the created function is known by the \xintexpr parser only. For usage in the

\xintfloatexpr parser, it is required to use \xintdeffloatfunc.

Note: the optional argument [Q] accepted by \xintfloatexpr does not work with \xintdeffloatfunc.

It is still possible to wrap the expression in float(expression,Q), if it evaluates to a scalar.

2.10.4.
source

\xintdefufunc,
source

\xintdefiiufunc,
source

\xintdeffloatufunc

This allows to define so-called “Universal functions”. This is terminology borrowed from NumPy.

Here is an example:

\xintdefiivar Array = ndmap(lcm, 1..5; 1..10; 1..10);

Array = \xintthealign\xintiiexpr Array\relax

\xintdefiiufunc foo(x) = x^3;

\begin{figure}[htbp]

\caption{Output of a universal function acting on an array}\label{fig:ufunc}

\centeredline{$\vcenter{\xintthealign\xintiiexpr foo(Array)\relax}$}

\end{figure}

See \autopageref{fig:ufunc} for the output.

Array =

[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],

[2, 2, 6, 4, 10, 6, 14, 8, 18, 10],

[3, 6, 3, 12, 15, 6, 21, 24, 9, 30],

[4, 4, 12, 4, 20, 12, 28, 8, 36, 20],

[5, 10, 15, 20, 5, 30, 35, 40, 45, 10],

[6, 6, 6, 12, 30, 6, 42, 24, 18, 30],

[7, 14, 21, 28, 35, 42, 7, 56, 63, 70],

[8, 8, 24, 8, 40, 24, 56, 8, 72, 40],

[9, 18, 9, 36, 45, 18, 63, 72, 9, 90],

[10, 10, 30, 20, 10, 30, 70, 40, 90, 10]],

[[2, 2, 6, 4, 10, 6, 14, 8, 18, 10],

[2, 2, 6, 4, 10, 6, 14, 8, 18, 10],

[6, 6, 6, 12, 30, 6, 42, 24, 18, 30],

[4, 4, 12, 4, 20, 12, 28, 8, 36, 20],

[10, 10, 30, 20, 10, 30, 70, 40, 90, 10],

[6, 6, 6, 12, 30, 6, 42, 24, 18, 30],

[14, 14, 42, 28, 70, 42, 14, 56, 126, 70],

[8, 8, 24, 8, 40, 24, 56, 8, 72, 40],

[18, 18, 18, 36, 90, 18, 126, 72, 18, 90],

[10, 10, 30, 20, 10, 30, 70, 40, 90, 10]],

[[3, 6, 3, 12, 15, 6, 21, 24, 9, 30],

[6, 6, 6, 12, 30, 6, 42, 24, 18, 30],

[3, 6, 3, 12, 15, 6, 21, 24, 9, 30],

47

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

[12, 12, 12, 12, 60, 12, 84, 24, 36, 60],

[15, 30, 15, 60, 15, 30, 105, 120, 45, 30],

[6, 6, 6, 12, 30, 6, 42, 24, 18, 30],

[21, 42, 21, 84, 105, 42, 21, 168, 63, 210],

[24, 24, 24, 24, 120, 24, 168, 24, 72, 120],

[9, 18, 9, 36, 45, 18, 63, 72, 9, 90],

[30, 30, 30, 60, 30, 30, 210, 120, 90, 30]],

[[4, 4, 12, 4, 20, 12, 28, 8, 36, 20],

[4, 4, 12, 4, 20, 12, 28, 8, 36, 20],

[12, 12, 12, 12, 60, 12, 84, 24, 36, 60],

[4, 4, 12, 4, 20, 12, 28, 8, 36, 20],

[20, 20, 60, 20, 20, 60, 140, 40, 180, 20],

[12, 12, 12, 12, 60, 12, 84, 24, 36, 60],

[28, 28, 84, 28, 140, 84, 28, 56, 252, 140],

[8, 8, 24, 8, 40, 24, 56, 8, 72, 40],

[36, 36, 36, 36, 180, 36, 252, 72, 36, 180],

[20, 20, 60, 20, 20, 60, 140, 40, 180, 20]],

[[5, 10, 15, 20, 5, 30, 35, 40, 45, 10],

[10, 10, 30, 20, 10, 30, 70, 40, 90, 10],

[15, 30, 15, 60, 15, 30, 105, 120, 45, 30],

[20, 20, 60, 20, 20, 60, 140, 40, 180, 20],

[5, 10, 15, 20, 5, 30, 35, 40, 45, 10],

[30, 30, 30, 60, 30, 30, 210, 120, 90, 30],

[35, 70, 105, 140, 35, 210, 35, 280, 315, 70],

[40, 40, 120, 40, 40, 120, 280, 40, 360, 40],

[45, 90, 45, 180, 45, 90, 315, 360, 45, 90],

[10, 10, 30, 20, 10, 30, 70, 40, 90, 10]]]

See page 49 for the output.

The function can be applied to any nested strucure:

\xintiiexpr foo([1, [2, [3, [4, [5, 6, 7, 8, 9, 10]]]]])\relax

[1, [8, [27, [64, [125, 216, 343, 512, 729, 1000]]]]]

It must be defined as function acting on scalars, but its value type is not constrained.

\xintdefiivar Array = [1..10];

\xintdefiiufunc foo(x) = [1..x];

\xintthealign\xintiiexpr foo(Array)\relax

[[1],

[1, 2],

[1, 2, 3],

[1, 2, 3, 4],

[1, 2, 3, 4, 5],

[1, 2, 3, 4, 5, 6],

[1, 2, 3, 4, 5, 6, 7],

[1, 2, 3, 4, 5, 6, 7, 8],

[1, 2, 3, 4, 5, 6, 7, 8, 9],

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]

It is even allowed to produce oples and act on oples:

\xintdefiivar Ople = 1..10;

\xintdefiiufunc bar(x) = x, x^2, x^3;

\xintiiexpr bar(Ople)\relax

1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64, 5, 25, 125, 6, 36, 216, 7, 49, 343, 8, 64, 512, 9, 81, 729,

10, 100, 1000

48

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Figure 1: Output of a universal function acting on an array
[[[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000],

[8, 8, 216, 64, 1000, 216, 2744, 512, 5832, 1000],

[27, 216, 27, 1728, 3375, 216, 9261, 13824, 729, 27000],

[64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000],

[125, 1000, 3375, 8000, 125, 27000, 42875, 64000, 91125, 1000],

[216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000],

[343, 2744, 9261, 21952, 42875, 74088, 343, 175616, 250047, 343000],

[512, 512, 13824, 512, 64000, 13824, 175616, 512, 373248, 64000],

[729, 5832, 729, 46656, 91125, 5832, 250047, 373248, 729, 729000],

[1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000]],

[[8, 8, 216, 64, 1000, 216, 2744, 512, 5832, 1000],

[8, 8, 216, 64, 1000, 216, 2744, 512, 5832, 1000],

[216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000],

[64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000],

[1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000],

[216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000],

[2744, 2744, 74088, 21952, 343000, 74088, 2744, 175616, 2000376, 343000],

[512, 512, 13824, 512, 64000, 13824, 175616, 512, 373248, 64000],

[5832, 5832, 5832, 46656, 729000, 5832, 2000376, 373248, 5832, 729000],

[1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000]],

[[27, 216, 27, 1728, 3375, 216, 9261, 13824, 729, 27000],

[216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000],

[27, 216, 27, 1728, 3375, 216, 9261, 13824, 729, 27000],

[1728, 1728, 1728, 1728, 216000, 1728, 592704, 13824, 46656, 216000],

[3375, 27000, 3375, 216000, 3375, 27000, 1157625, 1728000, 91125, 27000],

[216, 216, 216, 1728, 27000, 216, 74088, 13824, 5832, 27000],

[9261, 74088, 9261, 592704, 1157625, 74088, 9261, 4741632, 250047, 9261000],

[13824, 13824, 13824, 13824, 1728000, 13824, 4741632, 13824, 373248, 1728000],

[729, 5832, 729, 46656, 91125, 5832, 250047, 373248, 729, 729000],

[27000, 27000, 27000, 216000, 27000, 27000, 9261000, 1728000, 729000, 27000]],

[[64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000],

[64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000],

[1728, 1728, 1728, 1728, 216000, 1728, 592704, 13824, 46656, 216000],

[64, 64, 1728, 64, 8000, 1728, 21952, 512, 46656, 8000],

[8000, 8000, 216000, 8000, 8000, 216000, 2744000, 64000, 5832000, 8000],

[1728, 1728, 1728, 1728, 216000, 1728, 592704, 13824, 46656, 216000],

[21952, 21952, 592704, 21952, 2744000, 592704, 21952, 175616, 16003008, 2744000],

[512, 512, 13824, 512, 64000, 13824, 175616, 512, 373248, 64000],

[46656, 46656, 46656, 46656, 5832000, 46656, 16003008, 373248, 46656, 5832000],

[8000, 8000, 216000, 8000, 8000, 216000, 2744000, 64000, 5832000, 8000]],

[[125, 1000, 3375, 8000, 125, 27000, 42875, 64000, 91125, 1000],

[1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000],

[3375, 27000, 3375, 216000, 3375, 27000, 1157625, 1728000, 91125, 27000],

[8000, 8000, 216000, 8000, 8000, 216000, 2744000, 64000, 5832000, 8000],

[125, 1000, 3375, 8000, 125, 27000, 42875, 64000, 91125, 1000],

[27000, 27000, 27000, 216000, 27000, 27000, 9261000, 1728000, 729000, 27000],

[42875, 343000, 1157625, 2744000, 42875, 9261000, 42875, 21952000, 31255875, 343000],

[64000, 64000, 1728000, 64000, 64000, 1728000, 21952000, 64000, 46656000, 64000],

[91125, 729000, 91125, 5832000, 91125, 729000, 31255875, 46656000, 91125, 729000],

[1000, 1000, 27000, 8000, 1000, 27000, 343000, 64000, 729000, 1000]]]

49

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

2.10.5. Using the same name for both a variable and a function

It is licit to overload a variable name (all Latin letters are predefined as dummy variables) with a

function name and vice versa. The parsers will decide from the context if the function or variable

interpretation must be used (dropping various cases of tacit multiplication as normally applied).

\xintdefiifunc f(x):=x^3;

\xinttheiiexpr add(f(f),f=100..120)\relax\newline

\xintdeffunc f(x,y):=x^2+y^2;

\xinttheexpr mul(f(f(f,f),f(f,f)),f=1..10)\relax

\xintunassigniiexprfunc{f}\xintunassignexprfunc{f}%

28205100

186188134867578885427848806400000000

2.10.6.
source

\xintunassignexprfunc,
source

\xintunassigniiexprfunc,
source

\xintunassignfloatexprfunc

Function names can be unassigned via \xintunassignexprfunc{⟨name⟩}, \xintunassigniiexprfunc{⟨name⟩},
and \xintunassignfloatexprfunc{⟨name⟩}.
\xintunassignexprfunc{e}

\xintunassignexprfunc{f}

Warning: no check is done to avoid undefining built-in functions...

2.10.7.
source

\ifxintverbose conditional

With \xintverbosetrue the meanings of the functions (or rather their associated macros) will be

written to the log. For example the Rump declaration above generates this in the log file:

Function Rump for \xintexpr parser associated to \XINT_expr_userfunc_Rump w

ith meaning macro:#1#2->{\xintAdd {\xintAdd {\xintAdd {\xintDiv {\xintMul {1335

}{\xintPow {#2}{6}}}{4}}{\xintMul {\xintPow {#1}{2}}{\xintSub {\xintSub {\xintS

ub {\xintMul {11}{\xintMul {\xintPow {#1}{2}}{\xintPow {#2}{2}}}}{\xintPow {#2}

{6}}}{\xintMul {121}{\xintPow {#2}{4}}}}{2}}}}{\xintDiv {\xintMul {11}{\xintPow

{#2}{8}}}{2}}}{\xintDiv {#1}{\xintMul {2}{#2}}}}

The meanings written out to the log for more complicated functions may sometimes use the

same character at different locations but with different catcodes.+
{

It may thus be impossible to retokenize it (even after having removed the extra spaces from

the added line breaks).

This is in contrast with variable values which are always output in the log in the benign

way, using digits, braces and some characters of catcode 12.

2.10.8.
source

\ifxintglobaldefs conditional

If true user defined variables (\xintdefvar, ...) and functions (\xintdeffunc, ..., \xint-

NewFunction) for the expression parsers, as well as macros obtained via \xintNewExpr et al. have

global scope. If false (default) they have local scope.

2.10.9.
source

\xintNewFunction

This is syntactic sugar which allows to use notation of functions for what is nothing more in

disguise than a TEX macro. Here is an example:

\xintNewFunction {foo}[3]{add(mul(x+i, i=#1..#2),x=1..#3)}

We now have a genuine function foo() of three variables which can be used in all three parsers.
\xintexpr seq(foo(0, 3, j), j= 1..10)\relax

50

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

24, 144, 504, 1344, 3024, 6048, 11088, 19008, 30888, 48048

Each time the created “macro-function” foo() will be encountered the corresponding replacement

text will get inserted as a sub-expression (of the same type as the surrounding one), the macro

parameters having been replaced with the (already evaluated) function arguments, and the parser

will then have to parse the expression. It is very much like a macro substitution, but with paren-

theses and comma separated arguments (which can be arbitrary expressions themselves).

It differs fundamentally from \xintdeffunc as it realizes no pre-parsing whatsoever of the as-

sociated sub-expression; using it shortens the input but not the parsing time (which however is

most of the time negligible compared to actual numerical computations). Use it for syntax which

\xintdeffunc does not parse successfully.

2.11. Examples of user defined functions
2.11.1. Example with vectors and matrices

Suppose we want to manipulate 3-dimensional vectors, which will be represented as nutples of

length 3. And let's add a bit of matrix algebra.

\xintdeffunc dprod(V, W) := V[0]*W[0] + V[1]*W[1] + V[2]*W[2];

\xintdeffunc cprod(V, W) := [V[1]*W[2] - V[2]*W[1],

V[2]*W[0] - V[0]*W[2],

V[0]*W[1] - V[1]*W[0]];

\xintdeffunc Det3(U, V, W) := dprod(cprod(U, V), W);

\xintdeffunc DetMat(M) = Det3(*M);

\xintdeffunc RowMat(U, V, W) := [U, V, W];

\xintdeffunc ColMat(U, V, W) := [[U[0], V[0], W[0]],

[U[1], V[1], W[1]],

[U[2], V[2], W[2]]];

\xintdeffunc MatMul(A, B) :=

[[A[0,0]*B[0,0]+A[0,1]*B[1,0]+A[0,2]*B[2,0],

A[0,0]*B[0,1]+A[0,1]*B[1,1]+A[0,2]*B[2,1],

A[0,0]*B[0,2]+A[0,1]*B[1,2]+A[0,2]*B[2,2]],

[A[1,0]*B[0,0]+A[1,1]*B[1,0]+A[1,2]*B[2,0],

A[1,0]*B[0,1]+A[1,1]*B[1,1]+A[1,2]*B[2,1],

A[1,0]*B[0,2]+A[1,1]*B[1,2]+A[1,2]*B[2,2]],

[A[2,0]*B[0,0]+A[2,1]*B[1,0]+A[2,2]*B[2,0],

A[2,0]*B[0,1]+A[2,1]*B[1,1]+A[2,2]*B[2,1],

A[2,0]*B[0,2]+A[2,1]*B[1,2]+A[2,2]*B[2,2]]];

\xintdefvar vec1, vec2, vec3 := [1, 1, 1], [1, 1/2, 1/4], [1, 1/3, 1/9];

\xintdefvar mat1 = RowMat(vec1, vec2, vec3);

\xintdefvar mat2 = ColMat(vec1, vec2, vec3);

\xintdefvar mat12 = MatMul(mat1,mat2);

\xintdefvar mat21 = MatMul(mat2,mat1);

Some computations (|align| executes multiple times hence we pre-computed!):

\begin{align*}

M_1 &= \vcenter{\xintthealign \xintexpr mat1\relax}&&\qquad

M_2 . M_1 = \vcenter{\xintthealign \xintexpr mat21\relax}\\[3\jot]

M_2 &= \vcenter{\xintthealign \xintexpr mat2\relax}&&\qquad

M_1 . M_2 = \vcenter{\xintthealign \xintexpr mat12\relax}

\end{align*}

$$

\det(M_1) = \xinteval{DetMat(mat1)},\quad

\det(M_1.M_2) = \xinteval{reduce(DetMat(mat12))},\quad

51

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\det(M_2.M_1) = \xinteval{reduce(DetMat(mat21))}

$$

Some computations (align executes multiple times hence we pre-computed!):

M1 =

[[1, 1, 1],

[1, 1/2, 1/4],

[1, 1/3, 1/9]]

M2.M1 =

[[3, 11/6, 49/36],

[11/6, 49/36, 251/216],

[49/36, 251/216, 1393/1296]]

M2 =

[[1, 1, 1],

[1, 1/2, 1/3],

[1, 1/4, 1/9]]

M1.M2 =

[[3, 7/4, 13/9],

[7/4, 21/16, 43/36],

[13/9, 43/36, 91/81]]

det(M1) = -1/18, det(M1.M2) = 1/324, det(M2.M1) = 1/324

For some hair-raising experience check the \xintverbosetrue output in the log... here is an al-

ternative with two (three, counting dprod()) helper functions:

% annoying that Tr also starts Trace, but Spur is available

% well Sp also starts Spectrum. Big problems.

\xintdeffunc Tr(M) :=

[[M[0,0], M[1,0], M[2,0]],

[M[0,1], M[1,1], M[2,1]],

[M[0,2], M[1,2], M[2,2]]];

\xintdeffunc MatMul_a(r1, r2, r3, c1, c2, c3) :=

[[dprod(r1, c1), dprod(r1, c2), dprod(r1, c3)],

[dprod(r2, c1), dprod(r2, c2), dprod(r2, c3)],

[dprod(r3, c1), dprod(r3, c2), dprod(r3, c3)]];

\xintdeffunc MatMul(A, B) := MatMul_a(*A, *Tr(B));

And once we have the transpose and the scalar product of vectors, we can simply use ndmap() for

a lean syntax (this would extend to arbitrary dimension):

\xintdeffunc MatMul(A, B) = ndmap(dprod, *A; *Tr(B));

\xintdefvar mat1212 = MatMul(mat12, mat12);

\begingroup

\def\xintexprPrintOne #1{\xintTeXFrac{#1}}%

\def\xintexpralignbegin {\begin{pmatrix}}%

\def\xintexpralignend {\end{pmatrix}}%

\def\xintexpralignlinesep {\noexpand\\[2\jot]}% counteract an internal \expanded

\def\xintexpraligninnersep {&}%

\let\xintexpralignleftbracket\empty \let\xintexpralignleftsep\empty

\let\xintexpralignrightbracket\empty \let\xintexpralignrightsep\empty

$$ \xintthealign \xintexpr mat1\relax \cdot \xintthealign \xintexpr mat2\relax \cdot

\xintthealign \xintexpr mat1\relax \cdot \xintthealign \xintexpr mat2\relax =

\xintthealign \xintexpr mat12\relax ^2 = \xintthealign \xintexpr mat1212\relax$$

$$ \det(M_1\cdot M_2 \cdot M_1 \cdot M_2) = \xinteval{reduce(DetMat(mat1212))}$$

\endgroup©­­­«
1 1 1

1 1
2

1
4

1 1
3

1
9

ª®®®¬ ·
©­­­«
1 1 1

1 1
2

1
3

1 1
4

1
9

ª®®®¬ ·
©­­­«
1 1 1

1 1
2

1
4

1 1
3

1
9

ª®®®¬ ·
©­­­«
1 1 1

1 1
2

1
3

1 1
4

1
9

ª®®®¬ =
©­­­«
3 7

4
13
9

7
4

21
16

43
36

13
9

43
36

91
81

ª®®®¬
2

=
©­­­«
18337
1296

48067
5184

93853
11664

48067
5184

128809
20736

253687
46656

93853
11664

253687
46656

501289
104976

ª®®®¬
det(M1 · M2 · M1 · M2) =

1

104976

52

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

2.11.2. Example with the Rump test

Let's try out our Rump() function:

\xinttheexpr Rump(77617,33096)\relax.

-54767/66192. Nothing problematic for an exact evaluation, naturally!

Thus to test the Rump polynomial (it is not quite a polynomial with its x/2y final term) with

floats, we must also declare Rump as a function to be used there:

\xintdeffloatfunc

Rump(x,y):=333.75 y^6 + x^2 (11 x^2 y^2 - y^6 - 121 y^4 - 2) + 5.5 y^8 + x/2y;

The numbers are scanned with the current precision, hence as here it is 16, they are scanned

exactly in this case. We can then vary the precision for the evaluation.

\def\CR{\cr}

\halign

{\tabskip1ex

\hfil\bfseries#&\xintDigits:=\xintiloopindex\relax

\xintthefloatexpr Rump(77617,33096)#\cr

\xintiloop [8+1]

\xintiloopindex &\relax\CR

\ifnum\xintiloopindex<40 \repeat

}

8 7e29

9 -1e28

10 5e27

11 -3e26

12 4e25

13 3e24

14 3e23

15 -2e22

16 1e21

17 -5e20

18 1.17260394005317863

19 1.000000000000000001e18

20 -9.9999999999999998827e16

21 1.00000000000000011726e16

22 3.000000000000001172604e15

23 -9.9999999999998827396060e13

24 -1.99999999999988273960599e13

25 -1.999999999998827396059947e12

26 1.1726039400531786318588349

27 -5.99999999988273960599468214e10

28 -9.999999988273960599468213681e8

29 2.0000000117260394005317863186e8

30 1.00000011726039400531786318588e7

31 -999998.8273960599468213681411651

32 200001.17260394005317863185883490

33 -9998.82739605994682136814116509548

34 -1998.827396059946821368141165095480

35 -198.82739605994682136814116509547982

36 21.1726039400531786318588349045201837

37 -0.8273960599468213681411650954798162920

38 -0.82739605994682136814116509547981629200

39 -0.827396059946821368141165095479816292000

40 -0.8273960599468213681411650954798162919990

53

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

2.11.3. Examples of recursive definitions

Recursive definitions require using the short-circuit branching operators.

\xintdeffunc GCD(a,b):=(b)?{GCD(b,a/:b)}{a};

This of course is the Euclide algorithm: it will be here applied to variables which may be frac-

tions. For example:

\xinttheexpr GCD(385/102, 605/238)\relax

55/714

There is already a built-in gcd() (which accepts arbitrarily many arguments):

\xinttheexpr gcd(385/102, 605/238)\relax

55/714

Our second example is modular exponentiation:

\xintdefiifunc powmod_a(x, m, n) :=

isone(m)?

% m=1, return x modulo n

{ x /: n }

% m > 1 test if odd or even and do recursive call

{ odd(m)? { x*sqr(powmod_a(x, m//2, n)) /: n }

{ sqr(powmod_a(x, m//2, n)) /: n }

}

;

\xintdefiifunc powmod(x, m, n) := (m)?{powmod_a(x, m, n)}{1};

I have made the definition here for the \xintiiexpr parser; we could do the same for the \xintexpr-

parser (but its usage with big powers would quickly create big denominators, think powmod(1/2, 1 ⤸
000, 1) for example.)

\xinttheiiexpr seq(powmod(x, 1000, 128), x=9, 11, 13, 15, 17, 19, 21)\relax\par

65, 97, 33, 1, 1, 33, 97

The function assumes the exponent is non-negative (the Python pow behaved the same until 3. ⤸
8 release), but zealous users will add the necessary code for negative exponents, after having

defined another function for modular inverse!

If function A needs function B which needs function A start by giving to B some dummy definition,

define A, then define B properly. TODO: add some example here...

2.12. Links to some (old) examples within this document
• The utilities provided by xinttools (section 6), some completely expandable, others not, are

of independent interest. Their use is illustrated through various examples: among those,

it is shown in subsection 7.8 how to implement in a completely expandable way the Quick Sort

algorithm and also how to illustrate it graphically. Other examples include some dynami-

cally constructed alignments with automatically computed prime number cells: one using a

completely expandable prime test and \xintApplyUnbraced (subsection 7.2), another one with

\xintFor* (subsection 7.6).

• One has also a computation of primes within an \edef (subsection 6.15), with the help of

\xintiloop. Also with \xintiloop an automatically generated table of factorizations (sub-

section 7.5).

• The code for the title page fun with Fibonacci numbers is given in subsection 3.18 with \xint-

For* joining the game.

• The computations of π and log 2 (subsection 15.11) using xint and the computation of the con-

vergents of e with the further help of the xintcfrac package are among further examples.

• Also included, an expandable implementation of the Brent-Salamin algorithm for evaluating π.

54

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

• The subsection 7.4 implements expandably the Miller-Rabin pseudo-primality test.

• The functionalities of xintexpr are illustrated with various other examples, in subsubsec-

tion 2.10.1, Functions with dummy variables, subsection 7.1 or Recursive definitions.

2.13. Oples and nutples: the 1.4 terminology
Skip this on first reading, else you will never start using the package. SKIP THIS! (under-

stood?)

In this section I will describe a mathematical terminology which models how the parser handles

the input syntax with numbers, commas, and brackets, and how it maps internally to TEX specific

concept, particularly braces and macro arguments.
.13.1 Base terminology . 55
.13.2 Items (and sub-items) versus elements . 56
.13.3 Oples as trees . 57
.13.4 Ople slicing and indexing . 57
.13.5 Nested slicing of oples . 58
.13.6 Function arguments versus variables . 58
.13.7 Final words on leaves . 59
.13.8 Farewell, thanks for your visit! . 59

2.13.1. Base terminology

We start with a set A of atoms, which represent numeric data. In TEX syntax such atoms are always

braced, more precisely, currently they look like

{raw format within TEX braces}

The TEX braces are not set-theoretical braces here, they are simply used for TEXnical reasons (one

could imagine using rather some terminator token, but ultimately support macros for built-in and

user defined functions rely on TEX macros with undelimited parameters, at least so far).

Our category C of “oples” is the smallest collection of totally ordered finite sets verifying

these properties:

1. The empty set ∅ is an ople, i.e. it belongs to C.

2. Each singleton set {O} whose element O is either an atom a ∈ A or an ople qualifies as an ople.

3. C is stable by concatenation.

Notes:

• We refer to the empty set ∅ via the variable nil.17

• It is convenient to accept the empty set as being also an atom. If this is done, then we may

refer to the original atoms (elements of A) as non empty numerical data.

• Concatenation is represented in the syntax by the comma. Thus repeated commas are like only

one and nil is a neutral element.

• A singleton ople {a} whose single element is a (non-empty) atom is called a number.18

• The operation of constructing {O} from the ople O is called bracing (set theory, TEX), or brack-
eting (xintexpr input syntax, Python lists), or packing (as a reverse to Python's unpacking of

sequence type objects). In the expression input syntax it corresponds to enclosing O within

square brackets: [O].

17 There is actually a built-in variable with this name. At 1.4, \xintexpr \relax is legal and also generates the nil. 18 This has
to be taken in a general sense, for example with polexpr, polynomials are represented by such “numbers”.

55

https://ctan.org/pkg/polexpr

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

• A braced ople is called a nutple. Among them {nil} (aka {∅}) is a bit special. It is called

the none-ple.19 It is not nil.20

Each ople has a length which is its cardinality as set. The singleton oples are called one-ples.
There are thus two types of one-ples:

• numbers {a}, a ∈ A,

• nutples {O}, O ∈ C.

If we consider the empty set nil on the same footing as atoms, the two types have only one com-

mon object which is the none-ple. As a rule arithmetic operations will either break or silently

convert the none-ple to the zero value:

\xinteval{3+[], 5^[], 10*[]}

3, 1, 0 . But attention that \xintiieval in contrast to \xinteval is broken by such inputs.

2.13.2. Items (and sub-items) versus elements

In order to illustrate these concepts, let us consider how one should interpret notation such as

3,5,7,9 when it arises in an \xintexpression:

tempting vocabulary: Each of 3, 5, 7, and 9 is an item, or element of the (comma separated) list.
In other terms we have here a list with 4 items.

rigorous vocabulary: each one of 3, 5, 7, 9 stands for an ople (of the one-ple type) and 3,5,7,9

stands for their concatenation.

It is important to understand that in an \xintexpression, there is no difference between 3,5,7 and

3,,,,5,,,,,,,,,7. So the view of the comma as separator is misleading. In other terms, the comma

is NOT a separator but the (associative) operator of concatenation of totally ordered sets, and

the number 3 for example represents a (singleton) set.

If we want to refer to 3 or 5 or 7 or 9 as “the items of the (open) list 3,5,7,9” (and probably

this documentation already has such utterances, due to legacy reasons from the pre-1.4 internal

model), we must realize that this clashes with using the word item as synonymous to element in the

set-theoretical sense.

To repeat, any ople O is a finite totally ordered set: if not the empty set, it has elements a1,

..., ak, and the above means that its items are the singleton oples (aka one-ples) I1 = {a1}, ...,

Ik = {ak}. Each aj may be an atom, then Ij is a number, or aj is an ople (possibly the empty set),

then Ij is a nutple whose depth is one more than the one of the ople aj.

Thus we can refer to “items” but must then understand they are not “elements”: “items” are “sin-
gleton sub-sets”. The cardinality (aka length) of an ople is also the number of its items. It

would be tempting to use the terminology “sub-item” to keep in mind they are “sub-sets” but this

would again create confusion: a nutple has only one item which is itself; and we need some ter-

minology to refer to the individual numbers in the nutple given in input as [1,2,3] for example.

It is natural to refer to 1, 2, 3 as “sub-items” of [1,2,3] as the latter may be an “item” (it is in

particular an “item” of itself, the unique one at that).

We distinguish the oples of length zero (there is only one, the empty set) or at least two as

those which can never be an “item”. Those of length one, the one-ples, are exactly those which can

be “items”. Among them some may have “sub-items”, they are the nutples with the exception of the

none-ple. And the others do not have “sub-items”, they are the numbers and the none-ple (whose

19 Prior to version 1.4j of this documentation it was called the not-ple. 20 There is (experimental) a pre-defined “None” variable
which stands for the none-ple. It can also be input as [].

56

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

input syntax is either [] or the variable None).21

2.13.3. Oples as trees

We say that the empty set nil and atoms are leaves.
We associate with any ople a tree. The root is the ople. In the case of the nil ople, there is

nothing else than the root, which we then consider also a leaf. Else the children at top level are

the successive elements (not “items”!) of the ople.22 Among the elements some are atoms giving

leaves of the tree, others are nutples which in turn have children. In the special case of the

none-ple we consider it has a child, which is the empty set and this is why we consider the empty

set nil to be also a potential leaf. We then proceed recursively. We thus obtain from the root

ople a tree whose vertices are either oples or leaves. Only the empty set nil is both a leaf and

an ople.
Considering the empty set nil as an atom fits with the xintexpr internal implementation based

on TEX: nil is an empty pair of braces {}, whereas an atom is a braced representation of a numeric

value using digits and other characters. We construct oples by putting one after the other such

constituents and bracing them, and then repeating the process recursively.

It has also an impact on the definition of the depth (a.k.a as maximal dimension) of an ople.
For example the ople {∅A1A2} with three elements, among them the empty set and two atoms is said to

have depth 1, or to have maximal dimension 1. And {{∅}A1A2} is of depth 2 because it has a leaf (the

empty set) which is a child of a child of the ople. NumPy ndarrays have a more restricted structure

for example {{A00A01}{A10A11}} is a 2-dimensional array, where all leaves are at the same depth.

When slicing empties the array from its atoms, NumPy keeps the shape information but prints the

array as []. This will not be the case with xintexpr, which has no other way to indicate the shape

than display it.

\xinteval{[[],[]]}

[[], []]

\xinteval{[[0,1],[10,11]][:,2:]}

[[], []]

2.13.4. Ople slicing and indexing

“Set-theoretical” slicing of an ople means replacing it with one of its subsets. This applies also

if it is a number. Then it can be sliced only to itself or to the empty set (indeed it has only one

element, which is an atom). Similarly the none-ple can only be sliced to give itself or the empty

set. And more generally a nutple is a singleton so also can only be set-sliced to either the empty

set or itself.

xintexpr extends “Python-like” slicing to act on oples:
• if they are not nutples set-theoretical slicing applies,

• if they are nutples (only case having a one-to-one correspondence in Python) then the slicing

happens within brackets: i.e. the nutple is unpacked then the set-theoretical slicing is

applied, then the result is repacked to produce a new nutple.

21 A note on the \xintverbosetrue regime: for a variable defined to be 3,5,7,9, it will say that its value is {3}{5}{7}{9}, because
it does not keep the external set-theoretical braces. The braces here are only TEX braces, and {3} is an atom. The number would
be {{3}} with the external braces being set-theoretical and also used internally as TEX braces. From the four numbers {{3}}, ...,
{{9}} concatenation gives {{3}{5}{7}{9}}, which is the ople 3,5,7,9. But the log view drops deliberately the external braces. If
the variable is defined to be the nutple [3,5,7,9], then the log view will be {{3}{5}{7}{9}} (up to details on how exactly the
numeric quantities are coded) and the actual internal TEX entity will be {{{3}{5}{7}{9}}}, where the two external layers of braces
are both set-theoretical and TEXnical braces. 22 We could also consider a tree for which the children of the root node would be
its items and recursively; in that case the leaves would be numbers and possibly the None. The tree of the nil would be the empty
tree, the tree of None would have a single node and no edges. Such a tree would match the input syntax (of course applying the
rule that iterated commas are like only one). The tree which is described in this section matches more directly the internal syntax,
hence is more useful to the author, who is also the sole reader who extracts some benefit from reading this documentation once
in a while.

57

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

With these conventions the none-ple for example is invariant under slicing: unpacking it gives the

empty set, which has only the empty set as subset and repacking gives back the none-ple. Slicing

a general nutple returns a nutple but now of course in general distinct from the first one.

The input syntax for Python slicing is to postfix a variable or a parenthesized ople with [a:b].

See subsection 2.6 for more. There are never any out-of-range errors when slicing or indexing.

All operations are licit and resolved by the nil, a.k.a. empty set.

“Set-theoretical” item indexing of an ople means reducing it to a subset which is a singleton.

It is thus a special case of set-theoretical slicing (which is the general process of selecting a

subset as replacement of a set).

xintexpr extends “Python-like” indexing to act on oples:
• if they are not nutples set-theoretical item indexing applies,

• if they are nutples (only case having a one-to-one correspondence in Python) then the meaning

becomes extracting: i.e. the nutple is unpacked then the set-theoretical indexing is applied,

but the result is not repacked.
For example when applied to the none-ple we always obtain the nil. Whereas as we saw slicing the

none-ple always gives back the none-ple. Indexing is denoted in the syntax by postfixing by [N].

Thus for nutples (which are analogous to Python objects), there is genuine difference between the

[N] extractor and the [N:N+1] slicer. But for oples which are either nil, a number, or of length

at least 2, there is no difference.

2.13.5. Nested slicing of oples

Nested slicing is a concept from NumPy, which is extended by xintexpr to trees of varying depths.

We have a chain of slicers and extractors. I will describe only the case of slicers and letting

them act on a nutple. The first slicer gives back a new nutple. The second slicer will be applied

to each of one of its remaining elements. However some of them may be atoms or the empty set. In

the NumPy context all leaves are at the same depth thus this can happen only when we have reached

beyond the last dimension (axis). This is not permitted by NumPy and generates an error. xint-

expr does not generate an error. But any attempt to slice an atom or the empty set (as element of

its container) removes it. Recall we call them leaves. We can not slice leaves. We can only slice

non-leaf elements: such items are necessarily nutples. The procedure then applies recursively.

If we handle an extractor rather than a slicer, the procedure is similar: we can not extract out

of an atom or the empty set. They are thus removed. Else we have a nutple. It is thus unpacked

and replaced by the selected element. This element may be an atom or the empty set and any further

slicer or extractor will remove them, or it is a nutple and the procedure applies with the next

slicer/extractor.

xintexpr allows to apply such a [a:b,c:d,N,e:f,...] chain of slicing/extracting also to an ople,
which is not a nutple. We simply apply the first step as has been described previously and succes-

sive steps will only get applied to either nutples or leaves, the latter getting silently removed

by any attempted operation.

2.13.6. Function arguments versus variables

In a function declaration with \xintdeffunc, the call signature is parsed as a comma separated

list, so here it is not true that repeated commas are like only one: repeated commas are not

allowed and will break the function declaration.

When xintexpr parses a function call, it first constructs the ople which is delimited by the

opening and closing parentheses, then it applies the function body, after having mapped the suc-

cessive items (not the elements) of the parsed ople to the variables appearing in the function call

signature. Hence the arguments in the call signature stand for one-ples (i.e. either numbers or

nutples).

Let me explain why we can not define a function foo(A,B) of two oples: the function call will

evaluate as an ople what is enclosed within the parentheses. It is then impossible in general to

58

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

split this uniquely into two oples A and B, except if for example we know a priori the length of

A. We could imagine defining a declarative interface for a foo(A,B) with A preset to have 37 items

or at least a pre-defined number of items but this is extraneous layer for a functionality no-one

will use.

The alternative would be to consider that declaring foo(A,B) means A will pick-up always the

first item and B all the remaining ones, and thus will be an ople; here, there are some TEXnical

implementation reasons which have dissuaded the author to do this.

In its place, a special syntax foo(A,*B) for the declaration of the function is available. It

means that B stands for the nutple which receives as items all arguments in the function call beyond

the first one already assigned to A.

More generally, the last positional argument in a function declaration can have the form

*⟨argname⟩. This then means that ⟨argname⟩ represents a nutple which will receive as items all

arguments in the function call remaining after the earlier positional arguments have been as-

signed. The declared function body is free to again use the syntax *⟨argname⟩ which will unpack

it and thus produce the ople concatenating all such optional arguments.

With \xintdefvar one can define a variable with value an ople of arbitrary cardinality. Such

a variable can be used in a function call, it will then occupy the place of as many arguments as

its cardinality (which is its number of elements, hence of its associated items). For example if

function foo was declared as a function of 5 arguments f(a,b,c,d,e) it is legitimate to use it as

f(A,B) if A is an ople-valued variable of length three and B of length two. The actual arguments

a,b,c,d,e will be made to match the three items of A and the two items of B.

2.13.7. Final words on leaves

In case things were too clear, let's try to add a bit of confusion with an extra word on leaves.
When we discuss informally (particularly to compare with NumPy) an input such as

[[1, 2], [3, 4]]

we may well refer to 1, 2, 3, and 4 as being “the leaves of the 2d array”. But obviously we have here

numbers and previously we explained that a number is not a leaf, its atom is. Well, the point here

is that we must make a difference between the input form as above and the actual constructed ople
the parser will obtain out of it. In the input we do have numbers. The comma is a concatenator,
it is not a separator for enumeration! The ople which corresponds to it has a TEX representation

like this:

{{{1}{2}}{{3}{4}}}

where we don't have the numbers anymore (which would look like {{1}}, {{2}}, ...) but numeric

atoms {1}, {2}, {3}, {4} where the braces are TEX braces and not set-theoretical braces (the other

braces are both). Hence we should see the above as the ople {{A00A01}{A10A11}} with atoms A00 = {1},

..., being the leaves of the tree associated to (or which is) the ople.
Numbers may be called the leaves of the input, but once parsed, the input becomes an ople which is

(morally) a tree whose leaves are atoms (and the empty set). This discussion can also be revisited

with footnote 22 in mind.

2.13.8. Farewell, thanks for your visit!

I hope this is clear to everyone. If not, maybe time to say this section is not needed to understand

almost all of the manual, but I needed to write it to be able to maintain in future my own software.

2.14. Expansion (for geeks only)
As mentioned already, the parsers are compatible with expansion-only context.

Also, they expand the expression piece by piece: the normal mode of operation of the parsers is

to unveil the parsed material token by token. Unveiling is a process combining space swallowing,

brace removal (one level generally), and f-expansion.

59

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

For example a closing parenthesis after some function arguments does not have to be immediately

visible, it and the arguments themselves may arise from f-expansion (applied before grabbing each

successive token). Even the ending \relax may arise from expansion. Even though the \xinteval

user interface means that the package has at some point the entire expression in its hands, it im-

mediately re-inserts it into token stream with an additional postfixed \relax and from this point

on has lost any ways (a simple-minded delimited macro won't do because the expression is allowed

to contain sub-\xintexpressions, even nested) to manipulate formally again the whole thing; it

can only re-discover it one token at a time.

This general behaviour (which allows much more freedom in assembling expressions than is usu-

ally the case with familiar programming languages such as Python, although admittedly that free-

dom will prove useful only to power-TEXusers and possibly does not have that many significant use

cases) has significative exceptions. These exceptions are mostly related to “pseudo”-functions.
A “pseudo”-function will grab some of its arguments via delimited macros. For example subs(expr ⤸
1,x=expr2) needs to see the comma, equal sign and closing parenthesis. But it has mechanisms to

allow expr1 and expr2 to possess their own commas and parentheses.

Inner semi-colons on the other hand currently always can originate from expansion. Defining

functions or variables requires a visible semi-colon acting as delimiter of the expression, but

inner semi-colons do not need to be hidden within braces or macros.

The expansion stops only when the ending \relax has been found (it is then removed from the token

stream).

For catcode related matters see \xintexprSafeCatcodes.

A word of warning on the bracketed optional argument of respectively \xintfloatexpr and \xint-

iexpr. When defining macros which will hand over some argument to one of these two parsers, the

argument may potentially start with a left square bracket [(e.g. argument could be [1, 2, 3])

and this will break the parser. The fix is to use in the macro definition \xintfloatexpr\empty.

This extra \empty token will prevent the parser from thinking there is an optional argument and it

will then disappear during expansion.
If comparing to other languages able to handle floating point numbers or big integers, such as Python, one should take

into account that what the xint packages manipulate are streams of ascii bytes, one per digit. At no time (due to ex-
pandability) is it possible to store intermediate results in an arithmetic CPU register; each elementary operation via
\the\numexpr will output digit tokens (hence as many bytes), not things such as handles to memory locations where some num-
bers are stored as memory words. The process can never put aside things but can only possibly permute them with upcoming
tokens, to use them later, or, via combinations of \expanded and \unexpanded or some other more antiquated means grab some
tokens and shift the expansion to some distant locations to later come back. The process is a never-ending one-dimensional
one...

2.15. Known bugs/features (last updated at 1.4n)
\xinteval{\xintLength{\par\par\par}} complains about a Runaway argument:

\xintLength{\par\par\par} has no issue as \xintLength is a \long macro but this is not the

case of \xinteval. Most macros of a non arithmetic nature in xintkernel and xinttools are

declared \long but absolutely none in xintexpr, and its dependencies xint, etc... As a remark

in passing, I could not use the LATEX \item directly:23

Runaway argument?

{|\xinteval {\xintLength {

! Paragraph ended before \@item was complete.

<to be read again>

\par

l.4434 \item[{|\xinteval{\xintLength{\par

\par\par}| complains about a Runawa...

This is the reason I guess why everything is a priori \long in the LATEX3 interface except if

asked for otherwise (as far as I know).

23 For those who wonder my custom \verb employs a \scantokens approach, so it can be used in the argument of a macro, for
example \footnote {\verb |\verb |}.

60

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

Although most macros are dealing with inputs which can only be with digits and some other

character tokens, it would still be quite some work to chase all top-level ones. Besides, in

pratice, it does help better locate ill-formed input.

if(100>0,(100,125),(100,128)) breaks my code: This is a feature. This is a syntax error, as

the comma serves to contatenate "oples" (see subsection 2.13), and parentheses do not cre-

ate analogs of "tuples", so this input is parsed the same as

if(100>0,100,125,100,128)

which is an error as if() requires exactly three arguments, not five. Use:

if(100>0,[100,125],[100,128])

which will expand to the "tuple" [100,125].

\xintdeffunc foo(x):= gcd((x>0)?{[x,125]}{[x,128]}); creates a broken function: Bug. Normally

gcd() (and other multi-arguments functions) work both with open lists of arguments or brack-

eted lists ("nutples") and the above syntax would work perfectly fine in numerical context.

But the presence of the ? breaks in \xintdeffunc context the flexibility of gcd().

Currently working alternatives:

\xintdeffunc foo(x) := gcd(if(x>0, [x,125], [x,128]));

\xintdeffunc foo(x) := if(x>0, gcd(x,125), gcd(x,128));

\xintdeffunc foo(x) := if(x>0, gcd([x,125]), gcd([x,128]));

\xintdeffunc foo(x) := gcd((x>0)?{x,125}{x,128});

\xintdeffunc foo(x) := (x>0)?{gcd(x,125)}{gcd(x,128)};

\xintdeffunc foo(x) := (x>0)?{gcd([x,125])}{gcd([x,128])};

The same problem will arise with an ?? nested inside gcd() or similar functions, in an \xint-

deffunc.

\xinteval{0^-.5} says "0 raised to power -1" Feature. Half integer exponents are handled via a

square-root extraction, so here xintexpr wanted to first raise 0 to power -1, as reported.

Comparison operator == crashes with nutples Not yet implemented...

I liked the “broadcasting” [1..10]^10 syntax, but it was removed at 1.4 Patience... seq(x^10,x=1.. ⤸
10) is alternative (add external [..] to get a nutple).

1e\numexpr 5+2\relax crashes Not clear yet if bug or feature. The syntax accepted in the sci-

entific part is limited, and failure is expected: hitting a \numexpr when parsing a number

triggers insertion of a tacit multiplication and then 1e is missing the scientific exponent.

The same happens with 1e(2+3). Use syntax such as 1e\the\numexpr5+2\relax, or 1e\xinteval{ ⤸
5+2} (although here this relies on output format of \xinteval using integer notation with no

decoration in this case).

seq(1e-i,i=1..5) crashes Not clear if bug or feature. Use seq(1e\xinteval{-i},i=1..5) or, as a

possibly faster way seq(1e\xintiieval{-i},i=\xintiiexpr1..5\relax).

omit/abort if nested and not last in the sub-expression cause a crash For example seq(subs((i)?{i} ⤸
{abort},t=i)+10, i=-2, -1, 0, 1) crashes, due to the presence of the +10. This is a long-

standing limitation, applying ever since omit/abort were added to the syntax at 1.1. Even

without the +10 the nested case was broken by a 1.4 regression and got fixed only at 1.4h.

The non-nested case seq((i)?{i}{abort}+10, i=-2, -1, 0, 1) works and the “must be last in

expression if nested” limitation is currently considered a feature.

\xintdeffunc X(a,k)= add(n^k, n=1..a); creates a broken function: Bug. Sadly \xintdeffunc has

problems. When it does not work, use \xintNewFunction to define the function. Examples:

61

TOC
TOC, Start here, xintexpr , xintexpr (old doc), xinttrig, xintlog, xinttools, Examples, xint bundle

\xintNewFunction{myX}[2]{add(n^#2, n=1..#1)}\xinteval{myX(10,7)}\newline

\xintNewFunction{myY}[2]{mul(1 - j/#1, j=1..#2-1)}\xintfloateval{myY(10,10)}

18080425

0.00036288

seq([i,i\string ^2], i=1..10) crashes with Ooops, looks like we are missing a]. Aborting! Bug. The

cause is that the square brackets do not hide the comma from seq() parsing. Contrarily to what

happens with parentheses, there is no balancing mechanism for square brackets. Work-arounds:

either use an extra pair of parentheses seq(([i,i^2]), ...) or hide the inner comma within

braces seq([i{,}i^2], ...).

subs([x,x^2],x=3); crashes with Ooops, looks like we are missing a]. Aborting! Bug. Same cause

as previous one. Workaround: use parentheses subs(([x,x^2]),x=3 or curly braces subs({[x ⤸
,x^2]},x=3.

\xinteval{subs({[x^10,x^20,x^30]}, x=17)}

[2015993900449, 4064231406647572522401601, 8193465725814765556554001028792218849]

seq([x,2x,3x],x=3..5); crashes with Ooops, looks like we are missing a]. Aborting! Bug. Same cause

as previous one. The workaround is again to use braces to hide the inner commas.

\xinteval{seq({[x^10,x^20,x^30]}, x=1, 2, 3)}

[1, 1, 1], [1024, 1048576, 1073741824], [59049, 3486784401, 205891132094649]

iter([1,10^6];[sqrt(@[0]*@[1]),(@[0]+@[1])/2], i=1..7) also complains with Ooops, looks like
we are missing a]. Aborting! Bug. Turns out that braces would not do the job here, but parentheses

do work:

% 32 digits and 8 iterations v------ parentheses added ------v

\xintfloateval{iter([1,10^6];([sqrt(@[0]*@[1]),(@[0]+@[1])/2]), i=1..8)}

[103329.59376570941022723837701642, 103329.59376570941022723837701642]

More bugs are known to the author and many more no doubt exist.

62

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

3. The macros of xintexpr (ancient documentation, mostly)

.1 The \xintexpr expressions 63

.2 \numexpr or \dimexpr expressions, count
and dimension registers and variables 66

.3 Catcodes and spaces . 66

.4 Expandability, \xintexpro 67

.5 \xintDigits*, \xintSetDigits* 68

.6 \xintiexpr, \xinttheiexpr 68

.7 \xintiiexpr, \xinttheiiexpr 68

.8 \xintboolexpr, \xinttheboolexpr 69

.9 \xintfloatexpr, \xintthefloatexpr 70

.10 \xinteval, \xintieval, \xintiieval,
\xintfloateval . 70

.11 Using an expression parser within another
one . 71

.12 The \xintthecoords macro 71

.13 The \xintthespaceseparated macro 72

.14 \xintifboolexpr, \xintifboolfloatexpr,
\xintifbooliiexpr . 73

.15 \xintifsgnexpr, \xintifsgnfloatexpr,
\xintifsgniiexpr . 73

.16 The \xintNewExpr, \xintNewIIExpr,
\xintNewFloatExpr, \xintNewIExpr, and
\xintNewBoolExpr macros 73

.17 Analogies and differences of \xintiiexpr
with \numexpr . 74

.18 Chaining expressions for expandable algo-
rithmics . 75

.19 When expandability is too much. 78

.20 Acknowledgements (2013/05/25) 79

The xintexpr package was first released with version 1.07 (2013/05/25) of the xint bundle. It

was substantially enhanced with release 1.1 from 2014/10/28.

The 1.4 release from 2020/01/31 maintains the same general architecture but needed adapting all

the code base for the switch from \csname to \expanded techniques. On this occasion the mechanism

for defining functions was substantially strengthened. The parser core mechanisms were improved

too.

The package loads automatically xintfrac and xinttools.

This section should be trimmed to contain only information not already covered in section 2.

3.1. The
source

\xintexpr expressions
An xintexpression is a construct \xintexpr⟨expandable_expression⟩\relax where the expandable ex-x ★
pression is read and completely expanded from left to right.

An \xintexpr...\relax must end in a \relax (which will be absorbed). Contrarily to a \numexpr

expression, it is printable as is without a prefix \the or \number (don't use them with \xintexpr

this will raise an error).

But one can use \xintthe prefix if one does need the explicit digits and other characters as in

the final typesetted result.

As an alternative and equivalent syntax to

\xintexpr round(<expression>, D)\relax

there is

\xintiexpr [D] <expression> \relax

For D>0 this produces a decimal number with D figures after the decimal mark, which is the rounding

of the expression. For D=0 the rounding to an integer is produced. For D<0 (and this was changed

at 1.4f), the rounded quotient of the expression by 1e|D| is produced.

• the expression may contain arbitrarily many levels of nested parenthesized sub-expressions,

• the expression may contain explicitely or from a macro expansion a sub-expression \xintexpr. ⤸
..\relax, which itself may contain a sub-expressions etc...

• to let sub-contents evaluate as a sub-unit it should thus be either

1. parenthesized,

2. or a sub-expression \xintexpr...\relax.

63

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

• to use an expression as argument to macros from xintfrac, or more generally to macros which

expand their arguments, one must use the \xinttheexpr...\relax or \xintthe\xintexpr...\relax

forms.

• one should not use \xintthe\xintexpr...\relax as a sub-constituent of another expression but

only the \xintexpr...\relax form which is more efficient in this context.

• each xintexpression, whether prefixed or not with \xintthe, is completely expandable and ob-

tains its result in two expansion steps.

The information now following is possibly in need of updates.

• An expression is built the standard way with opening and closing parentheses, infix operators,

and (big) numbers, with possibly a fractional part, and/or scientific notation (except for

\xintiiexpr which only admits big integers). All variants work with comma separated expres-

sions. On output each comma will be followed by a space. A decimal number must have digits

either before or after the decimal mark.

• As everything gets expanded, the characters ., +, -, *, /, ^, !, &, |, ?, :, <, >, =, (,), ",],

[, @ and the comma , should not (if used in the expression) be active.

– Babel-activated characters (for example !, ?, ; and : with French) are not a problem.New with
1.4n – If the character is active due to some other mechanism, prefix it with \string.

– A few syntax elements involving the comma, the equal sign and the closing parenthesis

are implemented using delimited macros. They are not allowed to be catcode active (even

via Babel) and \string will not work. Use then \xintexprSafeCatcodes, see next.

One can use \xintexprSafeCatcodes to reset all characters potentially needed by \xintexpr

to their standard catcodes and \xintexprRestoreCatcodes then restores the former status.

Note that this is what \xintdefvar and \xintdeffunc do automatically. Expandable \xint-

floateval et al. can't do that.

• Count registers and \numexpr-essions are accepted (LaTeX's counters can be inserted using \va ⤸
lue) natively without \the or \number as prefix. Also dimen registers and control sequences,

skip registers and control sequences (LATEX's lengths), \dimexpr-essions, \glueexpr-essions are

automatically unpacked using \number, discarding the stretch and shrink components and giving

the dimension value in sp units (1/65536th of a TEX point). Furthermore, tacit multiplication

is implied, when the (count or dimen or glue) register or variable, or the (\numexpr or \dimex ⤸
pr or \glueexpr) expression is immediately prefixed by a (decimal) number. See subsection 2.8

for the complete rules of tacit multiplication.+
{

• With a macro \x defined like this:

\def\x {\xintexpr \a + \b \relax} or \edef\x {\xintexpr \a+\b\relax}

one may then do \xintthe\x, either for printing the result on the page or to use it in some other

macros expanding their arguments. The \edef does the computation immediately but keeps it in

a protected form. Naturally, the \edef is only possible if \a and \b are already defined. With

both approaches the \x can be inserted in other expressions, as for example (assuming naturally

as we use an \edef that in the `yet-to-be computed' case the \a and \b now have some suitable

meaning):

\edef\y {\xintexpr \x^3\relax}

• There is also \xintboolexpr ... \relax and \xinttheboolexpr ... \relax.

• See also \xintifboolexpr (subsection 3.14) and the bool() and togl() functions in section 2.

Here is an example. Well in fact the example ended up using only \xintboolexpr so it was modi-

fied to use \xintifboolexpr.

64

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

\xintdeffunc A(p,q,r) = p && (q || r) ;

\xintdeffunc B(p,q,r) = p || (q && r) ;

\xintdeffunc C(p,q,r) = xor(p, q, r) ;

\centeredline{\normalcolor

\begin{tabular}{ccrclcl}

\xintFor* #1 in {{False}{True}} \do {%

\xintFor* #2 in {{False}{True}} \do {%

\xintFor* #3 in {{False}{True}} \do {%

#1 &AND &(#2 &OR)&is&\textcolor[named]{OrangeRed}

{\xintifboolexpr{A(#1,#2,#3)}{true}{false}}\\

#1 &OR &(#2 &AND)&is&\textcolor[named]{OrangeRed}

{\xintifboolexpr{B(#1,#2,#3)}{yes}{no}}\\

#1 &XOR & #2 &XOR &is&\textcolor[named]{OrangeRed}

{\xintifboolexpr{C(#1,#2,#3)}{oui}{non}}\\

}}}

\end{tabular}%

}

False AND (False OR False) is false

False OR (False AND False) is no

False XOR False XOR False is non

False AND (False OR True) is false

False OR (False AND True) is no

False XOR False XOR True is oui

False AND (True OR False) is false

False OR (True AND False) is no

False XOR True XOR False is oui

False AND (True OR True) is false

False OR (True AND True) is yes

False XOR True XOR True is non

True AND (False OR False) is false

True OR (False AND False) is yes

True XOR False XOR False is oui

True AND (False OR True) is true

True OR (False AND True) is yes

True XOR False XOR True is non

True AND (True OR False) is true

True OR (True AND False) is yes

True XOR True XOR False is non

True AND (True OR True) is true

True OR (True AND True) is yes

True XOR True XOR True is oui

• See also \xintifsgnexpr.

• There is \xintfloatexpr ... \relax where the algebra is done in floating point approximation

(also for each intermediate result). Use the syntax \xintDigits:=N\relax to set the precision.

Default: 16 digits.

\xintthefloatexpr 2^100000\relax: 9.990020930143845e30102

The square-root operation can be used in \xintexpr, it is computed as a float with the precision

set by \xintDigits or by the optional second argument:

\xinttheexpr sqrt(2,60)\relax\newline

Here the [60] is to avoid truncation to |\xinttheDigits| of precision on output.

\newline

65

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

\printnumber{\xintthefloatexpr [60] sqrt(2,60)\relax}

1.41421356237309504880168872420969807856967187537694807317668

Here the [60] is to avoid truncation to \xinttheDigits of precision on output.

1.41421356237309504880168872420969807856967187537694807317668

Floats are quickly indispensable when using the power function, as exact results will easily

have hundreds, even thousands of digits.

\xintDigits:=48\relax \xintthefloatexpr 2^100000\relax

9.99002093014384507944032764330033590980429139054e30102

Only integer and (in \xintfloatexpr...\relax) half-integer exponents are allowed.

• if one uses macros within \xintexpr..\relax one should obviously take into account that the

parser will not see the macro arguments, hence one cannot use the syntax there, except if the

arguments are themselves wrapped as \xinttheexpr...\relax and assuming the macro f-expands
these arguments.

3.2. \numexpr or \dimexpr expressions, count and dimension registers and
variables

Count registers, count control sequences, dimen registers, dimen control sequences (like \parind ⤸
ent), skips and skip control sequences, \numexpr, \dimexpr, \glueexpr, \fontdimen can be inserted

directly, they will be unpacked using \number which gives the internal value in terms of scaled

points for the dimensional variables: 1 pt = 65536 sp (stretch and shrink components are thus

discarded).

Tacit multiplication (see subsection 2.8) is implied, when a number or decimal number prefixes

such a register or control sequence. LATEX lengths are skip control sequences and LATEX counters

should be inserted using \value.

Release 1.2 of the \xintexpr parser also recognizes and prefixes with \number the \ht, \dp,

and \wd TEX primitives as well as the \fontcharht, \fontcharwd, \fontchardp and \fontcharic 𝜀-TEX
primitives.

In the case of numbered registers like \count255 or \dimen0 (or \ht0), the resulting digits will

be re-parsed, so for example \count255 0 is like 100 if \the\count255 would give 10. The same

happens with inputs such as \fontdimen6\font. And \numexpr 35+52\relax will be exactly as if 87

as been encountered by the parser, thus more digits may follow: \numexpr 35+52\relax 000 is like

87000. If a new \numexpr follows, it is treated as what would happen when \xintexpr scans a number

and finds a non-digit: it does a tacit multiplication.

\xinttheexpr \numexpr 351+877\relax\numexpr 1000-125\relax\relax{} is the same

as \xinttheexpr 1228*875\relax.

1074500 is the same as 1074500.

Control sequences however (such as \parindent) are picked up as a whole by \xintexpr, and the

numbers they define cannot be extended extra digits, a syntax error is raised if the parser finds

digits rather than a legal operation after such a control sequence.

A token list variable must be prefixed by \the, it will not be unpacked automatically (the parser

will actually try \number, and thus fail). Do not use \the but only \number with a dimen or skip, as

the \xintexpr parser doesn't understand pt and its presence is a syntax error. To use a dimension

expressed in terms of points or other TEX recognized units, incorporate it in \dimexpr...\relax.

Regarding how dimensional expressions are converted by TEX into scaled points see also subsec-

tion 8.7.

3.3. Catcodes and spaces
The main problems are caused by active characters, because \xintexpr et al. expand forward what-

ever comes from token stream; they apply \string only in a second step. For example the catcode

of & from && Boolean disjunction is not really important as long as it is not active, or comment,

66

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

or escape... or brace... or ignored... in brief, as long as it is reasonable, and in particular

whether @ is of catcode letter or other does not matter.

It is always possible to insert manually the \string in the expression before a problematic (but

reasonable) character catcode, or even to use \detokenize for a big chunk.

3.3.1.
source

\xintexprSafeCatcodes

Some problems with active characters can be resolved on the fly by prefixing them by \string but

some aspects of the parsing done by \xintexpr involves delimited macros which need the comma,

equality sign and closing parenthesis to have their standard catcodes.

So \xintexprSafeCatcodes is provided as a utility to set in one go catcodes of many characters

to \xintexpr-safely compatible values. This is a non-expandable step as it changes catcodes.

\xintdefvar, \xintdeffunc, et al., use it, and then they restore catcodes to the prior state via

\xintexprRestoreCatcodes.

3.3.2.
source

\xintexprRestoreCatcodes

Restores the catcodes to the state prevailing at the time of the last executed \xintexprSafeCatcodes

(if located at the same LATEX environment or TEX grouping level).

Prior to 1.4k, in a situation like the following:

\xintexprSafeCatcodes

....stuff possibly changing catcodes

\xintexprSafeCatcodes

....stuff possibly changing catcodes

\xintexprSafeCatcodes

....stuff possibly changing catcodes

\xintexprRestoreCatcodes

On exit, the catcodes recovered their status as prior to the first \xintexprSafeCatcodes. Since

1.4k, they are set to what they were prior to the last \xintexprSafeCatcodes, i.e. the mechanism

is now similar to a ``last in, first out'' stack.

Note that no global assignments are made so the behaviour can be modified by usage of TEX groups

or LATEX environments: e.g. if an \xintexprSafeCatcodes is issued inside a LATEX environment it does

not have to be paired by \xintexprRestoreCatcodes explicitly, the catcode scope is limited by the

environment.

Spaces inside an \xinttheexpr...\relax should mostly be innocuous (except inside macro argu-

ments).

\xintexpr and \xinttheexpr are for the most part agnostic regarding catcodes, but the characters

in the expression should not be “active” (except on purpose) as everything is expanded along the

way, and \xintexpr will choke on typesetting related commands. One can (in almost all cases) use

\string to prefix a problematic character.

Babel-activated characters are not a problem.New with
1.4n

Digits, slash, square brackets, minus sign, in the output from an \xinttheexpr are all of catcode

12. For \xintthefloatexpr the `e' in the output has its standard catcode ``letter''.

3.4. Expandability, \xintexpro
As is the case with all other package macros \xintexpr f-expands (in two steps) to its final (some-

what protected) result; and \xinttheexpr f-expands (in two steps) to the chain of digits (and

67

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

possibly minus sign -, decimal mark ., fraction slash /, scientific e, square brackets [,]) rep-

resenting the result.

The once expanded \xintexpr is \romannumeral0\xintexpro. And there are similarly \xintiexpro

\xintiiexpro and \xintfloatexpro. For an example see subsection 3.18.

An expression can only be legally terminated by a \relax token, which will be absorbed. This

token may arose from expansion, it does not have to be immediately visible.

It is quite possible to nest expressions among themselves; for example, if one needs inside

an \xintiiexpr...\relax to do some computations with fractions, rounding the final result to an

integer, one just has to insert \xintiexpr...\relax. The functioning of the infix operators will

not be in the least affected from the fact that the outer ``environment'' is the \xintiiexpr one.

3.5.
source

\xintDigits*,
source

\xintSetDigits*

These starred variants of \xintDigits and \xintSetDigits execute \xintreloadxinttrig and \xint-

reloadxintlog.

3.6.
source

\xintiexpr,
source

\xinttheiexpr

Equivalent to doing \xintexpr round(...)\relax (more precisely, round is applied to each leafx ★
item of the ople independently of its depth).

Intermediate calculations are exact, only the final output gets rounded. Half integers are

rounded towards +∞ for positive numbers and towards -∞ for negative ones.

An optional parameter D within brackets, immediately after \xintiexpr is allowed: it instructs

(for D>0) the expression to do its final rounding to the nearest value with that many digits af-

ter the decimal mark, i.e. \xintiexpr [D] <expression>\relax is equivalent (in case of a single

expression) to \xintexpr round(<expression>, D)\relax.

\xintiexpr [0] ... is the same as \xintiexpr ... and rounds to an integer.

The case of negative D gives quantization to an integer multiple of 1e-D. This was modified

at 1.4f and the produced value is now the rounded quotient by 1e-D (i.e. no trailing zeros nor

scientific exponent in the output).

If truncation rather than rounding is needed on can use \xintexpr trunc(...)\relax for trunca-

tion to an integer or \xintexpr trunc(...,D)\relax for quantization to an integer multiple or 1eD

(if D>0, for D<0 the analog would be trunc((...)/1e-D)). But this works only for a single scalar

value.

When defining a macro doing something such as \xintiexpr #1\relax, it is recommended to

rather use \xintiexpr\empty #1\relax, as the #1 may start with a [which without the \empty

would be interpreted by \xintiexpr as the start of the optional [D].

3.7.
source

\xintiiexpr,
source

\xinttheiiexpr

This variant does not know fractions. It deals almost only with long integers. Comma separatedx ★
lists of expressions are allowed.

It maps / to the rounded quotient. The operator // is, like in \xintexpr...\relax, mapped to

truncated division. The Euclidean quotient (which for positive operands is like the truncated

quotient) was, prior to release 1.1, associated to /. The function quo(a,b) can still be

employed.

The \xintiiexpr-essions use the `ii' macros for addition, subtraction, multiplication, power,

square, sums, products, Euclidean quotient and remainder.

68

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

The floor() and ceil() functions are available in this integer only parser, with arguments al-

lowed to be decimal numbers. But for example floor(5/3) returns the perhaps counter intuitive

value 2, because / does the rounded division to an integer. To force the parser to allow fractions

and not interpret / as integer-only operator, uses qfrac() as in the examples below.

Also round() and trunc() are allowed in \xintiiexpr-essions: they are mapped to \xintiRound

and \xintiTrunc which explains how they behave with respect to their optional second argument.

\xinttheiiexpr 5/3, round(5/3,3), trunc(5/3,3), trunc(\xintDiv {5}{3},3),

trunc(\xintRaw {5/3},3)\relax{} are problematic, but

%

\xinttheiiexpr 5/3, round(qfrac(5/3),3), trunc(qfrac(5/3),3), floor(qfrac(5/3)),

ceil(qfrac(5/3))\relax{} work!

2, 2000, 2000, 2000, 2000 are problematic, but 2, 1667, 1666, 1, 2 work!

Scientific notation is not accepted on input for operations, but can be wrapped in the num()

or round() functions. They will use as many zeroes as necessary on output.

% This illustrates output can only use pure integer notation:

\xinttheiiexpr num(1e80)\relax

100

% This should (as num truncates) compute 13456+10000:

\xinttheiiexpr num(13.4567e3)+num(10000123e-3)\relax

23456

The reduce function is not available and will raise an error. The frac function also. The sq ⤸
rt function is mapped to \xintiiSqrt which gives a truncated square root. The sqrtr function is

mapped to \xintiiSqrtR which gives a rounded square root.

One can use the Float macros if one is careful to use num, or round etc...on their output.

\xinttheiiexpr \xintFloatSqrt [20]{2},

\xintFloatSqrt [20]{3}\relax % no operations

14142135623730950488[-19], 17320508075688772935[-19] The above went through because no actual

operations were carried out. But it is dangerous because the ``printer'' for \xinttheiiexpr could

choke on such values. By default however it does nothing.

In the next example there will be an addition. So we firt apply round to get integers (the second

argument of round and trunc tells how many digits from after the decimal mark one should keep.)

\xinttheiiexpr round(\xintFloatSqrt [20]{2},19) +

round(\xintFloatSqrt [20]{3},19)\relax

31462643699419723423

The whole point of \xintiiexpr is to gain some speed in integer-only algorithms, and the above

explanations related to how to nevertheless use fractions therein are a bit peripheral. We ob-

served (2013/12/18) of the order of 30% speed gain when dealing with numbers with circa one hundred

digits (1.2: this info may be obsolete).

3.8.
source

\xintboolexpr,
source

\xinttheboolexpr

Equivalent to doing \xintexpr ...\relax and returning true if the result does not vanish, and fal ⤸x ★
se if the result is zero. As \xintexpr, this can be used on comma separated lists of expressions,

and even bracketed lists.

It can be customized, one only needs to modify the following:

\def\xintboolexprPrintOne#1{\xintiiifNotZero{#1}{true}{talse}}%

Not only are true and false usable in input, also True and False are pre-declared variables.

There is quirk in case it is used as a sub-expression: the boolean expression needs at least one

logic operation else the value is not standardized to 1 or 0, for example we get from

\xinttheexpr \xintboolexpr 1.23\relax\relax\newline

69

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

1.23

which is to be compared with

\xinttheboolexpr 1.23\relax

true

3.9.
source

\xintfloatexpr,
source

\xintthefloatexpr

\xintfloatexpr...\relax is a variant of \xintexpr...\relax which does floating point operations.x ★
The target precision for the computation is from the current setting of \xintDigits. Comma

separated lists of expressions are allowed.

An optional parameter within brackets [Q] is allowed at the very start of the expression:

• if positive it instructs the macro to round the result to that many digits of precision. It

thus makes sense to employ it only if this parameter is less than the \xinttheDigits precision.

• if negative it means to trim off that many digits (of course, in the sense of rounding the

values to shorter mantissas). Don't use it to trim all digits (or more than all)!

Since 1.2f all float operations first round their arguments; a parsed number is not rounded

prior to its use as operand to such a float operation.

\xintDigits:=36\relax

\xintthefloatexpr (1/13+1/121)*(1/179-1/173)/(1/19-1/18)\relax

0.00564487459334466559166166079096852897

\xintthefloatexpr\xintexpr (1/13+1/121)*(1/179-1/173)/(1/19-1/18)\relax\relax

0.00564487459334466559166166079096852912

The latter is the rounding of the exact result. The former one has its last three digits wrong

due to the cumulative effect of rounding errors in the intermediate computations, as compared to

exact evaluations.

I recall here from subsection 8.2 that with release 1.2f the float macros for addition, sub-

traction, multiplication and division round their arguments first to P significant places with P

the asked-for precision of the output; and similarly the power macros and the square root macro.

This does not modify anything for computations with arguments having at most P significant places

already.

When defining a macro doing something such as \xintfloatexpr #1\relax, it is recommended

to rather use \xintfloatexpr\empty #1\relax, as the #1 may start with a [which without the

\empty would be interpreted by \xintfloatexpr as the start of the optional [Q].

3.10.
source

\xinteval,
source

\xintieval,
source

\xintiieval,
source

\xintfloateval

\xinteval is an f-expandable macro which is basically defined in such a way that \xinteval{⟨expression⟩}x ★
behaves like \xinttheexpr{⟨expression⟩}\relax. It expands completely in two steps and delivers

its output using digits, the dot . as decimal separator, the letter e for scientific notation, the

slash / for fractions, as well as commas in case of multi-items expression and square brackets [

and] for nesting.

\xintieval is similarly related to \xinttheiexpr. It admits an optional argument [D] which mayx ★
be located in the expected location from conventions of LATEX2e macros with optional argument, but

had been long constrained (until 1.4k) to be inside the braces at the start of the expression.

\xintieval[7]{355/113} = \xintieval{[7]355/113}

3.1415929 = 3.1415929

70

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

When defining a macro doing something such as \xintieval{#1}, it is recommended to rather

use \xintieval{\empty #1}, as the #1 may start with a [which without the \empty would be

interpreted by \xintieval as the start of the optional [D].

\xintiieval is similarly related to \xinttheiiexpr.x ★
\xintfloateval is similarly related to \xintthefloatexpr. It admits an optional argument [Q]x ★

which may be located either outside (since 1.4k) or inside the braces.

\xintfloateval [7]{355/113} = \xintfloateval{[7] 355/113}

3.141593 = 3.141593

When negative, the optional argument tells how many digits to remove from the prevailing preci-

sion:

\xintfloateval[-2]{355/113}=

\xintfloateval{[-2]355/113} has \xinttheDigits\ minus 2 digits.

3.1415929203540= 3.1415929203540 has 16 minus 2 digits.

When defining a macro doing something such as \xintfloateval{#1}, it is recommended to

rather use \xintfloateval{\empty #1}, as the #1 may start with a [which without the \empt ⤸
y would be interpreted by \xintfloateval as the start of the optional [Q].

3.11. Using an expression parser within another one
This was already illustrated before. In the following:

\xintfloatexpr \xintexpr add(1/i, i=1234..1243)\relax ^100\relax

5.136088460396579e-210, the inner sum is computed exactly. Then it will be rounded to \xinttheDigits

significant digits, and then its power will be evaluated as a float operation. One should avoid

the "\xintthe" parsers in inner positions as this induces digit by digit parsing of the inner com-

putation result by the outer parser. Here is the same computation done with floats all the way:

\xintfloatexpr add(1/i, i=1234..1243)^100\relax

5.136088460396643e-210

Not surprisingly this differs from the previous one which was exact until raising to the 100th

power.

The fact that the inner expression occurs inside a bigger one has nil influence on its behaviour.

There is the limitation though that the outputs from \xintexpr and \xintfloatexpr can not be used

directly in \xinttheiiexpr integer-only parser. But one can do:

\xintiiexpr round(\xintfloatexpr 3.14^10\relax)\relax % or trunc

93174

3.12. The
source

\xintthecoords macro
It converts (in two expansion steps) the expansion result of \xintfloatexpr (or \xintexpr or

\xintiiexpr) into the (a, b) (c, d) ... format for list of coordinates as expected by the TikZ

coordinates syntax.

\begin{figure}[htbp]

\centering\begin{tikzpicture}[scale=10]\xintDigits:=8\relax

\clip (-1.1,-.25) rectangle (.3,.25);

\draw [blue] (-1.1,0)--(1,0);

\draw [blue] (0,-1)--(0,+1);

\draw [red] plot[smooth] coordinates {%

%%% \xintthecoords converts output of next expression into the

71

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

%%% (x1, y1) (x2, y2) ...

%%% format

\xintthecoords\xintfloatexpr

%%% This syntax -1+[0..4]/2 is currenty dropped at xint 1.4

%%% seq((x^2-1,mul(x-t,t=-1+[0..4]/2)),x=-1.2..[0.1]..+1.2)\relax

%%% Use this:

seq((x^2-1,mul(x-t,t=seq(-1+u/2, u=0..4))),x=-1.2..[0.1]..+1.2)

\relax

};

\end{tikzpicture}

\caption{Coordinates with \csbxint{thecoords}.}

\end{figure}

.

Figure 2: Coordinates with \xintthecoords.

It is currently undecided how \xintthecoords should handle bracketed data. Currently, it (or T ⤸Unstable!
ikZ) will break it the input contains nested structures. One can use it with flat() which removes

all nesting. And in combination with zip() it is easy to plot data given by some mechanism in

separate lists of x- and y-coordinates (see an example in next section)

3.13. The
source

\xintthespaceseparated macro
It converts (in two expansion steps) the expansion result of \xintfloatexpr (or \xintexpr or

\xintiiexpr) into the space separated format suitable for usage with PS-Tricks \listplot macro.

Here is for example some syntax (the replacement text of \foo, which is used here only to show

that indeed complete expansion is attained in two steps) which can be used as argument to \listpl ⤸
ot. Using 4 fractional decimal digits is sufficient when unit is the centimeter (it gives a fixed

point precision of one micron, amply enough for plots...).

\oodef\foo{%

\xintthespaceseparated

\xintiexpr[4]\xintfloatexpr seq((i, log10(i)), i=1..[0.5]..10)\relax\relax

}\meaning\foo

macro:->1.0000 0 1.5000 0.1761 2.0000 0.3010 2.5000 0.3979 3.0000 0.4771 3.5000 0.5441 4.0000

0.6021 4.5000 0.6532 5.0000 0.6990 5.5000 0.7404 6.0000 0.7782 6.5000 0.8129 7.0000 0.8451 7.5000

0.8751 8.0000 0.9031 8.5000 0.9294 9.0000 0.9542 9.5000 0.9777 10.0000 1.0000

Here we don't really need the inner \xintfloatexpr...\relax because the log10() function works

the same in the exact parser \xintexpr but in general this is recommended.

It is currently undecided how \xintthespaceseparated should handle bracketed data. Currently,Unstable!
it (or \listplot) will break if the input contains nested structures. One can use it with flat()

72

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

which removes all nesting. And in combination with zip() it is easy to plot data given by some

mechanism in separate lists of x- and y-coordinates.

% let's imagine we have something like this

\def\Xcoordinates{1, 3, 5, 7, 9}

\def\Ycoordinates{1, 9, 25, 49, 81}

% then:

|\xintthespaceseparated\xintexpr flat(zip([\Xcoordinates], [\Ycoordinates]))\relax|

is suitable to use as argument to |\listplot|, as it expands to

\xintthespaceseparated\xintexpr flat(zip([\Xcoordinates], [\Ycoordinates]))\relax

\xintthespaceseparated\xintexpr flat(zip([\Xcoordinates], [\Ycoordinates]))\relax is suitable

to use as argument to \listplot, as it expands to 1 1 3 9 5 25 7 49 9 81

3.14.
source

\xintifboolexpr,
source

\xintifboolfloatexpr,
source

\xintifbooliiexpr

\xintifboolexpr{⟨expr⟩}{⟨YES⟩}{⟨NO⟩} does \xinttheexpr<expr>\relax and then executes the ⟨YES⟩x n n ★
or the ⟨NO⟩ branch depending on whether the outcome was non-zero or zero. Thus one can read if
bool expr as meaning if not zero:

if ⟨expr⟩-ession does not vanish do ⟨YES⟩ else do ⟨NO⟩
The expression is not limited to using only comparison operators and Boolean logic (<, >, ==,

!=, &&, ||, all(), any(), xor(), bool(), togl(), ...), it can be the most general computation.

\xintifboolfloatexpr{⟨expr⟩}{⟨YES⟩}{⟨NO⟩} does \xintthefloatexpr⟨expr⟩\relax and then exe-x n n ★
cutes the ⟨YES⟩ or the ⟨NO⟩ branch depending on whether the outcome was non zero or zero.

\xintifbooliiexpr{⟨expr⟩}{⟨YES⟩}{⟨NO⟩} does \xinttheiiexpr⟨expr⟩\relax and then executes thex n n ★
⟨YES⟩ or the ⟨NO⟩ branch depending on whether the outcome was non zero or zero.

The expression argument must be a single one, comma separated sub-expressions will cause low-

level errors.

3.15.
source

\xintifsgnexpr,
source

\xintifsgnfloatexpr,
source

\xintifsgniiexpr

\xintifsgnexpr{⟨expr⟩}{⟨<0⟩}{⟨=0⟩}{⟨>0⟩} evaluates the \xintexpression and chooses the branchx n n n ★
corresponding to its sign.

\xintifsgnfloatexpr{⟨expr⟩}{⟨<0⟩}{⟨=0⟩}{⟨>0⟩} evaluates the \xintfloatexpression and choosesx n n n ★
the branch corresponding to its sign.

\xintifsgniiexpr{⟨expr⟩}{⟨<0⟩}{⟨=0⟩}{⟨>0⟩} evaluates the \xintiiexpression and chooses thex n n n ★
branch corresponding to its sign.

The expression argument must be a single one, comma separated sub-expressions will cause low-

level errors.

3.16. The
source

\xintNewExpr,
source

\xintNewIIExpr,
source

\xintNewFloatExpr,
source

\xintNewIExpr, and
\xintNewBoolExpr macros

\xintNewExpr macro is used as:

\xintNewExpr{\myformula}[n]{⟨stuff ⟩}, where

• ⟨stuff ⟩ will be inserted inside \xinttheexpr . . . \relax,

• n is an integer between zero and nine, inclusive, which is the number of parameters of \myfor ⤸
mula,

• the placeholders #1, #2, ..., #n are used inside ⟨stuff ⟩ in their usual rôle,24 25

• the [n] is mandatory, even for n=0.26

24 if \xintNewExpr is used inside a macro, the #’s must be doubled as usual. 25 the #’s will in pratice have their usual catcode,
but category code other #’s are accepted too. 26 there is some use for \xintNewExpr[0] compared to an \edef as \xintNewExpr
has some built-in catcode protection.

73

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

• the macro \myformula is defined without checking if it already exists, LATEX users might prefer

to do first \newcommand*\myformula {} to get a reasonable error message in case \myformula

already exists,

• the protection against active characters is done automatically (as long as the whole thing has

not already been fetched as a macro argument and the catcodes correspondingly already frozen).

It (if it succeeds) will be a completely expandable macro entirely built-up using \xintAdd,

\xintSub, \xintMul, \xintDiv, \xintPow, etc...as corresponds to the expression written with the

infix operators. Macros created by \xintNewExpr can thus be nested.

\xintNewFloatExpr \FA [2]{(#1+#2)^10}

\xintNewFloatExpr \FB [2]{sqrt(#1*#2)}

\begin{enumerate}[nosep]

\item \FA {5}{5}

\item \FB {30}{10}

\item \FA {\FB {30}{10}}{\FB {40}{20}}

\end{enumerate}

1. 1e10

2. 17.32050807568877

3. 3.891379490446502e16

The documentation is much shortened here because \xintNewExpr and \xintdeffunc are very much

related one with the other.

ATTENTION!

The original spirit of \xintNewExpr was to define a (possibly very big) macro using only

xintfrac, and this means in particular that it must be used only with arguments compatible

with the xintfrac input format.+
{

Thus an \xintexpr declared variable has no chance to work, it must be wrapped explicitly in

\xinteval{...} to be fetched as argument to a macro constructed by \xintNewExpr.

They share essentially the same limitations.

Notice though that \xintNewFloatExpr accepts and recognizes the optional argument [Q] of \xint-

floatexpr, contrarily to \xintdeffloatfunc. Use an \empty in case the contents are not known in

advance.

Historical note: prior to 1.4, xintexpr used a \csname..\endcsname encapsulation technique

which impacted the string pool memory. The \xintNewExpr was designed as a method to pre-parse the

expression and produce one single, gigantic, nested usage of the relevant xintfrac macros. This

way, only those macros were expanded which had nil impact on the TEX string pool.

Later on it was found that this mechanism could be employed to define functions. Basically

underneath 98% of \xintNewExpr and \xintdeffunc are using the same shared code.

3.17. Analogies and differences of
source

\xintiiexpr with \numexpr
\xintiiexpr..\relax is a parser of expressions knowing only (big) integers. There are, besides

the enlarged range of allowable inputs, some important differences of syntax between \numexpr and

\xintiiexpr and variants:

• Contrarily to \numexpr, the \xintiiexpr parser will stop expanding only after having encoun-

tered (and swallowed) a mandatory \relax token.

• In particular, spaces between digits (and not only around infix operators or parentheses) do

not stop \xintiiexpr, contrarily to the situation with numexpr: \the\numexpr 7 + 3 5\relax

74

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

expands (in one step)27 to 105\relax, whereas \xintthe\xintiiexpr 7 + 3 5\relax expands (in

two steps) to 42.28

• Inside an \edef, an expression \xintiiexpr...\relax get fully evaluated, whereas \numexpr

without \the or \number prefix would not, if not itself embedded in another \the\numexpr or

similar context.

• (ctd.) The private format to which \xintiiexpr...\relax (et al.) evaluates may use \xintthe

prefix to turn into explicit digits, (for example in arguments to some macros which expand

their arguments). The \the TEX primitive prefix would not work here.

• (ctd.) One can embed a \numexpr...\relax (with its \relax!) inside an \xintiiexpr...\rela ⤸
x without \the or \number, but the reverse situation requires usage of \xintthe or \xinteval

user interface,

• \the\numexpr -(1)\relax is illegal. In contrast \xinttheiiexpr -(1)\relax is perfectly le-

gal and gives the expected result (what else ?).

• \the\numexpr 2+-(1+1)\relax is illegal. In contrast \xinttheiiexpr 2+-(1+1)\relax is le-

gal.

• \the\numexpr 2\cnta\relax is illegal (with \cnta a \count register.) In contrast \xinttheii ⤸
expr 2\cnta\relax is perfectly legal and will do the tacit multiplication.

• \the\numexpr or \number\numexpr expands in one step, but \xintthe\xintiiexpr or \xinttheiiexpr

needs two steps.

3.18. Chaining expressions for expandable algorithmics
We will see in this section how to chain \xintexpr-essions with \expandafter's, like it is possi-

ble with \numexpr. For this it is convenient to use \romannumeral0\xintexpro which is the once-

expanded form of \xintexpr, as we can then chain using only one \expandafter each time.

For example, here is the code employed for the background of page 2. It computes (expandably,

of course!) the 1250th Fibonacci number.

\catcode`_ 11

\def\Fibonacci #1{% \Fibonacci{N} computes F(N) with F(0)=0, F(1)=1.

\expandafter\Fibonacci_a\expandafter

{\the\numexpr #1\expandafter}\expandafter

{\romannumeral0\xintiiexpro 1\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro 1\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro 1\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro 0\relax}}

%

\def\Fibonacci_a #1{%

\ifcase #1

\expandafter\Fibonacci_end_i

\or

\expandafter\Fibonacci_end_ii

\else

\ifodd #1

\expandafter\expandafter\expandafter\Fibonacci_b_ii

\else

\expandafter\expandafter\expandafter\Fibonacci_b_i

27 The \numexpr triggers continued expansion after the space following the 3 to check if some operator like + is upstream. But
after having found the 5 it treats it as and end-marker. 28 Since 1.2l one can also use the underscore _ to separate digits for
readability of long numbers.

75

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

\fi

\fi {#1}%

}% * signs are omitted from the next macros, tacit multiplications

\def\Fibonacci_b_i #1#2#3{\expandafter\Fibonacci_a\expandafter

{\the\numexpr #1/2\expandafter}\expandafter

{\romannumeral0\xintiiexpro sqr(#2)+sqr(#3)\expandafter\relax

\expandafter}\expandafter

{\romannumeral0\xintiiexpro (2#2-#3)#3\relax}%

}% end of Fibonacci_b_i

\def\Fibonacci_b_ii #1#2#3#4#5{\expandafter\Fibonacci_a\expandafter

{\the\numexpr (#1-1)/2\expandafter}\expandafter

{\romannumeral0\xintiiexpro sqr(#2)+sqr(#3)\expandafter\relax

\expandafter}\expandafter

{\romannumeral0\xintiiexpro (2#2-#3)#3\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro #2#4+#3#5\expandafter\relax\expandafter}\expandafter

{\romannumeral0\xintiiexpro #2#5+#3(#4-#5)\relax}%

}% end of Fibonacci_b_ii

% code as used on title page:

%\def\Fibonacci_end_i #1#2#3#4#5{\xintthe#5}

%\def\Fibonacci_end_ii #1#2#3#4#5{\xinttheiiexpr #2#5+#3(#4-#5)\relax}

% new definitions:

\def\Fibonacci_end_i #1#2#3#4#5{{#4}{#5}}% {F(N+1)}{F(N)} in \xintexpr format

\def\Fibonacci_end_ii #1#2#3#4#5%

{\expandafter

{\romannumeral0\xintiiexpro #2#4+#3#5\expandafter\relax

\expandafter}\expandafter

{\romannumeral0\xintiiexpro #2#5+#3(#4-#5)\relax}}% idem.

% \FibonacciN returns F(N) (in encapsulated format: needs \xintthe for printing)

\def\FibonacciN {\expandafter\xint_secondoftwo\romannumeral-`0\Fibonacci }%

\catcode`_ 8

The macro \Fibonacci produces not one specific value F(N) but a pair of successive values {F(N ⤸
)}{F(N+1)} which can then serve as starting point of another routine devoted to compute a whole

sequence F(N), F(N+1), F(N+2),..... Each of F(N) and F(N+1) is kept in the encapsulated internal

xintexpr format.

\FibonacciN produces the single F(N). It also keeps it in the private format; thus printing it

will need the \xintthe prefix.
Here a code snippet which checks the routine via a \message of the first 51 Fibonacci numbers (this is not an efficient way to

generate a sequence of such numbers, it is only for validating \FibonacciN).
\def\Fibo #1.{\xintthe\FibonacciN {#1}}%

\message{\xintiloop [0+1] \expandafter\Fibo\xintiloopindex.,

\ifnum\xintiloopindex<49 \repeat \xintthe\FibonacciN{50}.}

The way we use \expandafter's to chain successive \xintiiexpro evaluations is exactly analogous

to what is possible with \numexpr. The various \romannumeral0\xintiiexpro could very well all

have been \xintiiexpr's but then we would have needed \expandafter\expandafter\expandafter each

time.

There is a difference though: \numexpr does NOT expand inside an \edef, and to force its

expansion we must prefix it with \the or \number or \romannumeral or another \numexpr which is

itself prefixed, etc....

But \xintexpr, \xintiexpr, ..., expand fully in an \edef, with the completely expanded re-

sult encapsulated in a private format.

Using \xintthe as prefix is necessary to print the result (like \the or \number in the case

76

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

of \numexpr), but it is not necessary to get the computation done (contrarily to the situation

with \numexpr).

Our \Fibonacci expands completely under f-expansion, so we can use \fdef rather than \edef in a

situation such as

\fdef \X {\FibonacciN {100}} ,

but it is usually about as efficient to employ \edef. And if we want

\edef \Y {(\FibonacciN{100},\FibonacciN{200})} ,

then \edef is necessary.

Allright, so let's now give the code to generate {F(N)}{F(N+1)}{F(N+2)}..., using \Fibonacci

for the first two and then using the standard recursion F(N+2)=F(N+1)+F(N):

\catcode`_ 11

\def\FibonacciSeq #1#2{%#1=starting index, #2>#1=ending index

\expandafter\Fibonacci_Seq\expandafter

{\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2-1}%

}%

\def\Fibonacci_Seq #1#2{%

\expandafter\Fibonacci_Seq_loop\expandafter

{\the\numexpr #1\expandafter}\romannumeral0\Fibonacci {#1}{#2}%

}%

\def\Fibonacci_Seq_loop #1#2#3#4{% standard Fibonacci recursion

{#3}\unless\ifnum #1<#4 \Fibonacci_Seq_end\fi

\expandafter\Fibonacci_Seq_loop\expandafter

{\the\numexpr #1+1\expandafter}\expandafter

{\romannumeral0\xintiiexpro #2+#3\relax}{#2}{#4}%

}%

\def\Fibonacci_Seq_end\fi\expandafter\Fibonacci_Seq_loop\expandafter

#1\expandafter #2#3#4{\fi {#3}}%

\catcode`_ 8

This \FibonacciSeq macro is completely expandable but it is not f-expandable.
This is not a problem in the next example which uses \xintFor* as the latter applies repeatedly

full expansion to what comes next each time it fetches an item from its list argument. Thus \xint-

For* still manages to generate the list via iterated full expansion.

\newcounter{myindex}% not "index", which would overwrite theindex environment!

% (many have probably been bitten by this trap)

\tabskip 1ex

\fdef\Fibxxx{\FibonacciN {30}}%

\setcounter{myindex}{30}%

\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

\xintFor* #1 in {\FibonacciSeq {30}{59}}\do

{\themyindex &\xintthe#1 &

\xintiiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{myindex}\cr }}%

}\vrule

\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

\xintFor* #1 in {\FibonacciSeq {60}{89}}\do

{\themyindex &\xintthe#1 &

\xintiiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{myindex}\cr }}%

}\vrule

\vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr

\xintFor* #1 in {\FibonacciSeq {90}{119}}\do

{\themyindex &\xintthe#1 &

77

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

30. 832040 0

31. 1346269 514229

32. 2178309 514229

33. 3524578 196418

34. 5702887 710647

35. 9227465 75025

36. 14930352 785672

37. 24157817 28657

38. 39088169 814329

39. 63245986 10946

40. 102334155 825275

41. 165580141 4181

42. 267914296 829456

43. 433494437 1597

44. 701408733 831053

45. 1134903170 610

46. 1836311903 831663

47. 2971215073 233

48. 4807526976 831896

49. 7778742049 89

50. 12586269025 831985

51. 20365011074 34

52. 32951280099 832019

53. 53316291173 13

54. 86267571272 832032

55. 139583862445 5

56. 225851433717 832037

57. 365435296162 2

58. 591286729879 832039

59. 956722026041 1

60. 1548008755920 0

61. 2504730781961 1

62. 4052739537881 1

63. 6557470319842 2

64. 10610209857723 3

65. 17167680177565 5

66. 27777890035288 8

67. 44945570212853 13

68. 72723460248141 21

69. 117669030460994 34

70. 190392490709135 55

71. 308061521170129 89

72. 498454011879264 144

73. 806515533049393 233

74. 1304969544928657 377

75. 2111485077978050 610

76. 3416454622906707 987

77. 5527939700884757 1597

78. 8944394323791464 2584

79. 14472334024676221 4181

80. 23416728348467685 6765

81. 37889062373143906 10946

82. 61305790721611591 17711

83. 99194853094755497 28657

84. 160500643816367088 46368

85. 259695496911122585 75025

86. 420196140727489673 121393

87. 679891637638612258 196418

88. 1100087778366101931 317811

89. 1779979416004714189 514229

90. 2880067194370816120 0

91. 4660046610375530309 514229

92. 7540113804746346429 514229

93. 12200160415121876738 196418

94. 19740274219868223167 710647

95. 31940434634990099905 75025

96. 51680708854858323072 785672

97. 83621143489848422977 28657

98. 135301852344706746049 814329

99. 218922995834555169026 10946

100. 354224848179261915075 825275

101. 573147844013817084101 4181

102. 927372692193078999176 829456

103. 1500520536206896083277 1597

104. 2427893228399975082453 831053

105. 3928413764606871165730 610

106. 6356306993006846248183 831663

107. 10284720757613717413913 233

108. 16641027750620563662096 831896

109. 26925748508234281076009 89

110. 43566776258854844738105 831985

111. 70492524767089125814114 34

112. 114059301025943970552219 832019

113. 184551825793033096366333 13

114. 298611126818977066918552 832032

115. 483162952612010163284885 5

116. 781774079430987230203437 832037

117. 1264937032042997393488322 2

118. 2046711111473984623691759 832039

119. 3311648143516982017180081 1

Some Fibonacci numbers together with their residues modulo F(30)=832040

\xintiiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{myindex}\cr }}%

}%

This produces the Fibonacci numbers from F(30) to F(119), and computes also all the congruence

classes modulo F(30). The output has been put in a float, which appears above. I leave to the

mathematically inclined readers the task to explain the visible patterns...;-).

3.19. When expandability is too much
Let's use the macros of subsection 3.18 related to Fibonacci numbers. Notice that the 47th Fi-

bonacci number is 2971215073 thus already too big for TEX and 𝜀-TEX.
The \FibonacciN macro found in subsection 3.18 is completely expandable, it is even f-

expandable. We need a wrapper with \xintthe prefix

\def\theFibonacciN{\xintthe\FibonacciN}

to print in the document or to use within \message (or LATEX typeout) to write to the log and terminal.

The \xintthe prefix also allows its use it as argument to the xint macros: for example if we

are interested in knowing how many digits F(1250) has, it suffices to issue \xintLen {\theFibon ⤸
acciN {1250}} (which expands to 261). Or if we want to check the formula gcd(F(1859), F(1573)) =

F(gcd(1859, 1573)) = F(143), we only need29

$\xintiiGCD{\theFibonacciN{1859}}{\theFibonacciN{1573}}=%

29 The \xintiiGCD macro is provided by both the xintgcd package (since 1.0) and by the xint package (since 1.3d).

78

TOC
TOC, Start here, xintexpr, xintexpr (old doc) , xinttrig, xintlog, xinttools, Examples, xint bundle

\theFibonacciN{\xintiiGCD{1859}{1573}}$

which produces:

343358302784187294870275058337 = 343358302784187294870275058337

The \theFibonacciN macro expanded its \xintiiGCD{1859}{1573} argument via the services of \num ⤸
expr: this step allows only things obeying the TEX bound, naturally! (but F(2147483648) would be

rather big anyhow...).

This is very convenient but of course it repeats the complete evaluation each time it is done.

In practice, it is often useful to store the result of such evaluations in macros. Any \edef will

break expandability, but if the goal is at some point to print something to the dvi or pdf output,

and not only to the log file, then expandability has to be broken one day or another!

Hence, in practice, if we want to print in the document some computation results, we can proceed

like this and avoid having to repeat identical evaluations:

\begingroup

\def\A {1859} \def\B {1573}

\edef\X {\theFibonacciN\A} \edef\Y {\theFibonacciN\B}

\edef\GCDAB {\xintiiGCD\A\B}\edef\Z {\theFibonacciN\GCDAB}

\edef\GCDXY{\xintiiGCD\X\Y}

The identity $\gcd(F(\A),F(\B))=F(\gcd(\A,\B))$ can be checked via evaluation

of both sides: $\gcd(F(\A),F(\B))=\gcd(\printnumber\X,\printnumber\Y)=

\printnumber{\GCDXY} = F(\gcd(\A,\B)) = F(\GCDAB) =\printnumber\Z$.\par

% some further computations involving \A, \B, \X, \Y

\endgroup % closing the group removes assignments to \A, \B, ...

% or choose longer names less susceptible to overwrite something.

% Note: there is no LaTeX \newecommand which would be to \edef like

% \newcommand is to \def

The identity gcd(F(1859), F(1573)) = F(gcd(1859, 1573)) can be checked via evaluation of both

sides: gcd(F(1859), F(1573)) = gcd(1440582791304425119877168915150404286991316149502348101422 ⤸
66863670108827259757549472248243775352961945979486922735762888221630935801826408085177531997 ⤸
42569560552943502886158524517372508867364222284929082289524558388949544219265576041299929025 ⤸
56597971133787610545221762349084152997981141319966008751768970341099752007999361070757601952 ⤸
0876324584695551467505894985013610208598628752325727241, 244384192519511857332827945977762619 ⤸
98539902481570619232605360900784013394036743212445223278959909515869581103189177976905803274 ⤸
15163259530761668666101372520086675409656988895101002288801683145934731013156651772159324934 ⤸
47986343994793711957587665447658279589092823900703131971355481220049386445313295248477472731 ⤸
66471511289078393) = 343358302784187294870275058337 = F(gcd(1859, 1573)) = F(143) = 343358302784 ⤸
187294870275058337.

One may legitimately ask the author: why expandability to such extremes, for things such as big

fractions or floating point numbers (even continued fractions...) which anyhow can not be used

directly within TEX's primitives such as \ifnum? Why insist on a concept which is foreign to the

vast majority of TEX users and even programmers?

I have no answer: it made definitely sense at the start of xint (see subsection 8.13) and once

started I could not stop.

3.20. Acknowledgements (2013/05/25)
I was greatly helped in my preparatory thinking, prior to producing such an expandable parser, by

the commented source of the l3fp package, specifically the l3fp-parse.dtx file (in the version

of April-May 2013; I think there was in particular a text called ``roadmap'' which was helpful).

Also the source of the calc package was instructive, despite the fact that here for \xintexpr the

principles are necessarily different due to the aim of achieving expandability.

79

https://ctan.org/pkg/l3kernel

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig , xintlog, xinttools, Examples, xint bundle

4. The xinttrig package

.1 \xintreloadxinttrig 80

.2 Constants . 80

.3 Functions . 81

.4 Important implementation notes 82

.5 Some example evaluations 82

This package provides trigonometric functions for use with xintexpr. The sole macro is \xint-

reloadxinttrig.

This package was first included in release 1.3e (2019/04/05) of xintexpr. It is automatically

loaded by xintexpr.

At 1.4e (2021/05/05) the accuracy was significantly increased: formerly the high-level user

interface used to define the functions had as consequences that intermediate steps of the compu-

tations could not operate with guard digits, and as a result the last two digits were most of the

time off (at least the last one). Now, computations are done internally in extended precision,

and the accuracy is high up to the last digits, with faithful rounding and high probability of

correct rounding. And the maximal number of digits was raised slightly to 62 digits.

At 8 digits a special, faster, mode is used, which is less accurate. But faster.

Acknowledgements: I finally decided to release some such functions under friendly pressure of

Jürgen Gilg and Thomas Söll, let them both be thanked here.

Jürgen passed away in 2022. I will miss our friendship which was born and grew from numerous and

regular exchanges on topics not limited to this package or even the TEX world. Let's now continue

to “take care and keep motivated”!

4.1.
source

\xintreloadxinttrig

The library is loaded automatically by xintexpr at start-up. It is then configured for 16 digits.

To work for example with 48 digits, execute \xintSetDigits*{48} or \xintDigits*:=48; (the end-

ing ; can be replaced by a \relax in case of problems due to it being active, e.g. with LATEX and some

languages).

With the non-starred variant \xintDigits:=48; it is needed to issue \xintreloadxinttrig to re-+
{

calibrate the functions provided by the library (and the exponential/logarithm functions will

only be updated if also \xintreloadxintlog is used).

4.2. Constants
Their values (with more digits) get incorporated into the trigonometrical functions at the time

of their definitions during loading or reloading of the package. They are left free to use, or

modified, or \xintunassignvar'd, as this will have no impact whatsoever on the functions.

twoPi what could that be?

threePiover2

Pi

Piover2

oneRadian this is one radian in degrees: 180/π

oneDegree this is one degree in radian: π/180

80

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig , xintlog, xinttools, Examples, xint bundle

4.3. Functions
4.3.1. Direct trigonometry

With the variable in radians:

sin(x) sine

cos(x) cosine

tan(x) tangent

cot(x) cotangent

sec(x) secant

csc(x) cosecant

With the variable in degrees:

sind(x) sine

cosd(x) cosine

tand(x) tangent

cotd(x) cotangent

secd(x) secant

cscd(x) cosecant

Only available with the variable in radians:

tg(x) tangent

cotg(x) cotangent

sinc(x) cardinal sine sinc(x) = sin(x)/x

4.3.2. Inverse trigonometry

With the value in radians:

asin(x) arcsine

acos(x) arccosine

atan(x) arctangent

Arg(x, y) the main branch of the argument of the complex number x+iy, from -π (excluded) to π
(included). As the output is rounded -Pi is a possible return value.

pArg(x, y) the branch of the argument of the complex number x+iy with values going from 0 (in-

cluded) to 2π (excluded). Inherent rounding makes twoPi a possible return value.

atan2(y, x) it is Arg(x, y). Note the reversal of the arguments, this seems to be the most fre-

quently encountered convention across languages.

With the value in degrees:

asind(x) arcsine

81

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig , xintlog, xinttools, Examples, xint bundle

acosd(x) arccosine

atand(x) arctangent

Argd(x, y) the main branch of the argument of the complex number x+iy, from -180 (excluded) to 180

(included). Inherent rounding of output can cause -180 to be returned.

pArgd(x, y) the branch of the argument of the complex number x+iy with values going from 0 (in-

cluded) to 360 (excluded). Inherent rounding of output can cause 360 to be returned.

atan2d(y, x) it is Argd(x, y). Note the reversal of the arguments, this seems to be the most fre-

quently encountered convention across languages.

4.3.3. Conversion functions (optional definitions left to user decision)

Python provides functions degrees() and radians(). But as most of the xinttrig functions are

already defined for the two units, I felt this was not really needed. It is a oneliner to add them:

\xintdeffloatfunc radians(x) := x * oneDegree;

\xintdeffloatfunc degrees(x) := x * oneRadian;

\xintdeffunc radians(x) := float_dgt(x * oneDegree);

\xintdeffunc degrees(x) := float_dgt(x * oneRadian);

The float_dgt() does a float rounding to \xinttheDigits precision (recall that * is mapped to

exact multiplication in \xintdeffunc).

4.4. Important implementation notes
• Currently, xint is lacking some dedicated internal representation of floats which means that

most operations re-parse the digit tokens of their arguments to count them... this does not

contribute to efficiency (you can load the module under \xintverbosetrue regime and see how

the nested macros look like and get an idea of how many times some rather silly re-counting of

mantissa lengths will get done!)

• One should not overwrite some function names which are employed as auxiliaries; refer to xint ⤸
source.pdf.

• Floats with large exponents are integers and are multiple of 1000; hence modulo 360 all such

``angles'' are multiple of 40 degrees. Needless to say that considering usage of the sind()

and cosd() functions with such large float numbers is meaningless.

• See xintsource.pdf for some comments on limitations of the range reduction implementation.

4.5. Some example evaluations

\xintDigits* := 48\relax

Digits at \xinttheDigits:\newline

$sind(17)\approx\xintfloateval{sind(17)}$\newline

$cosd(17)\approx\xintfloateval{cosd(17)}$\newline

$tand(17)\approx\xintfloateval{tand(17)}$\newline

$sind(43)\approx\xintfloateval{sind(43)}$\newline

$cosd(43)\approx\xintfloateval{cosd(43)}$\newline

$tand(43)\approx\xintfloateval{tand(43)}$\newline

$asind(0.3)\approx\xintfloateval{asind(0.3)}$\newline

$acosd(0.3)\approx\xintfloateval{acosd(0.3)}$\newline

$atand(3)\approx\xintfloateval{atand(3)}$\newline

82

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig , xintlog, xinttools, Examples, xint bundle

$tan(atan(7))\approx\xintfloateval{tan(atan(7))}$\newline

$asind(sind(25))\approx\xintfloateval{asind(sind(25))}$\par\medskip

\noindent\xintDigits* := 24\relax

Digits at \xinttheDigits:\newline

$sind(17)\approx\xintfloateval{sind(17)}$\newline

$cosd(17)\approx\xintfloateval{cosd(17)}$\newline

$tand(17)\approx\xintfloateval{tand(17)}$\newline

$sind(43)\approx\xintfloateval{sind(43)}$\newline

$cosd(43)\approx\xintfloateval{cosd(43)}$\newline

$tand(43)\approx\xintfloateval{tand(43)}$\newline

$asind(0.3)\approx\xintfloateval{asind(0.3)}$\newline

$acosd(0.3)\approx\xintfloateval{acosd(0.3)}$\newline

$atand(3)\approx\xintfloateval{atand(3)}$\newline

$tan(atan(7))\approx\xintfloateval{tan(atan(7))}$\newline

$asind(sind(25))\approx\xintfloateval{asind(sind(25))}$\par

\xintDigits* := 16\relax

Digits at 48:

sind(17) ≈ 0.292371704722736728097468695377143252664687186183

cosd(17) ≈ 0.956304755963035481338650816618418962009410343991

tand(17) ≈ 0.305730681458660355734541958996550716146250221387

sind(43) ≈ 0.681998360062498500442225784711125580340433802762

cosd(43) ≈ 0.731353701619170483287543608275622403378396544763

tand(43) ≈ 0.932515086137661705612185627426186654353537299494

asind(0.3) ≈ 17.4576031237220922902460457924449418216636440147

acosd(0.3) ≈ 72.5423968762779077097539542075550581783363559853

atand(3) ≈ 71.5650511770779893515721937204532946712042142996

tan(atan(7)) ≈ 7.005

asind(sind(25)) ≈ 25

Digits at 24:

sind(17) ≈ 0.292371704722736728097469

cosd(17) ≈ 0.956304755963035481338651

tand(17) ≈ 0.305730681458660355734542

sind(43) ≈ 0.681998360062498500442226

cosd(43) ≈ 0.731353701619170483287544

tand(43) ≈ 0.932515086137661705612186

asind(0.3) ≈ 17.4576031237220922902460

acosd(0.3) ≈ 72.5423968762779077097540

atand(3) ≈ 71.5650511770779893515722

tan(atan(7)) ≈ 7

asind(sind(25)) ≈ 25

83

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog , xinttools, Examples, xint bundle

5. The xintlog package

.1 \xintreloadxintlog . 84

.2 Functions . 84
.3 Some information on how powers are com-

puted . 84

This package provides logarithms, exponentials and fractional powers for use with xintexpr.

This package was first included in release 1.3e (2019/04/05) of xintexpr. It is automatically

loaded by xintexpr.

At release 1.4e (2021/05/05) it was substantially extended to cover usage with mantissas of up

to 62 digits.

At Digits set to 8 or less, the old faster but less accurate macros based on poormanlog are used.

These macros compute logarithms and exponentials with about 8 or 9 nine digits of fixed point
precision.

TEX-hackers note: There is thus, for Digits=8 or less a systematic loss of rounding precision in the floating

point sense for logarithms of inputs close to 1: e.g. log10(1.0011871) is produced as 5.15245e-4 which

stands for 0.000515145 having indeed 9 correct fractional digits, but only 6 correct digits in the floating

point sense. Situation is worse for log() as it applies a conversion factor and does not remove the trailing

junk digits, which we don't have for log10(). Check xintsource.pdf and poormanlog README for more info.

5.1.
source

\xintreloadxintlog

The library is loaded automatically by xintexpr at start-up. It is then configured for 16 digits.

To work for example with 48 digits, execute \xintSetDigits*{48} or \xintDigits*:=48; (the end-

ing ; can be replaced by a \relax in case of problems due to it being active, e.g. with LATEX and some

languages).

With the non-starred variant \xintDigits:=48; it is needed to issue \xintreloadxintlog to re-+
{

calibrate the functions provided by the library (and the trigonometric functions will only be

updated if also \xintreloadxinttrig is used).

5.2. Functions
log10(x) logarithm in base 10

pow10(x) fractional powers of 10

log(x) natural logarithm

exp(x) exponential function

pow(x, y) computes xy either via the formula pow10(y*log10(x)) (applied with some internally in-

creased accuracy), for y neither an integer nor an half-integer; or via the legacy \xint-

FloatPower and \xintFloatSqrt macros if the exponent is integer or half-integer. Integer

exponents trigger an exact evalution in \xinteval if the output will not exceed (or will only

slightly exceed) 10000 digits (separately for numerator and denominator), else the power is

computed in the floating point sense.

\xintfloateval{log(2), exp(1), 2^(1/3), 2^10000}

0.6931471805599453, 2.718281828459045, 1.259921049894873, 1.995063116880758e3010

5.3. Some information on how powers are computed
For powers a^b or a**b in \xintfloateval the following rules apply:

1. a check is made if exponent is integer or half-integer,

84

https://ctan.org/pkg/poormanlog
https://ctan.org/pkg/poormanlog

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog , xinttools, Examples, xint bundle

2. if this is the case legacy \xintFloatPower (combined with \xintFloatSqrt for half-integer

case) are used to evaluate the power (and a can be negative if exponent is integer),

3. else the power is computed as pow10(b*log10(a)) (but keeping some extra digits in intermediate

evaluations; in particular b is not float-rounded, but a is).

The reason is that the log/exp approach loses accuracy for very big exponents (say for exponents

of the order of 100000000 or more). Here is an example of a precise computation with a very large

exponent (184884258895036416):

$\xintTeXFromSci{\xintfloateval{1.00000001^\xintiiexpr 12^16\relax}}$\newline

\xintDigits:=48;%\xintreloadxintlog is not done as log10/pow10 will not be used

$\xintTeXFromSci{\xintfloateval{1.00000001^12^16}}$\newline

\xintDigits:=64;%\xintreloadxintlog is not done as log10/pow10 will not be used

$\xintTeXFromSci{\xintfloateval{1.00000001^12^16}}$\newline

\xintDigits:=80;%\xintreloadxintlog is not done as log10/pow10 will not be used

$\xintTeXFromSci{\xintfloateval{1.00000001^12^16}}$

\xintDigits:=16;%

1.879985676694948 · 10802942130
1.87998567669494838838184407480229599674641360997 · 10802942130
1.879985676694948388381844074802295996746413609968646474887080800 · 10802942130
1.8799856766949483883818440748022959967464136099686464748870808001110266973999979 ·10802942130

Notes:

• in the case with 16 digits precision, we ensured 12^16 got computed exactly with all its 18

digits and was not rounded to only 16 digits (and confirmation is that the result matches the

second one at 48 digits),

• the 1.4g right associativity of powers is taken into account to drop parentheses.

As the legacy \xintFloatPower and \xintFloatSqrt work in arbitrary precision, the result for

integer or half-integer exponents is produced with a full-size mantissa, even if Digits is more

than 62 (as is examplified above).

In the 10^(b*log10(a)) branch the mantissa size is limited to the minimum of Digits and of 64.

Its last digits will start being wrong if b becomes about (in absolute value) 100000000. If you

really need to compute powers with exponents that large or larger, it is recommended to decompose

the exponent as a sum of the nearest integer or half-integer and a fractional part and express the

power as a product. This is not done automatically as it would add some overhead in general for

some a priori very rare use cases.

In \xinteval, this is as in \xintfloateval but for one difference: integer exponents will trig-

ger an exact evaluation, as long as:

• the exponent absolute value is at most 9999,

• it is evaluated a priori, based on the length of the input, that the output will have at most

10000 digits (or only a bit more), separately for numerator and denominator.

The check for integralness of exponent is not on its mathematical value but on its internal rep-

resentation, for speed. So 6/3 is not recognized as being an integer exponent in \xinteval; but

in \xintfloateval, the 6/3 will have been computed and recognized as 2. Also 2.00 or 200e-2 is

recognized as an integer in both parsers. Similar remarks apply to half-integer case.

To compute exactly higher powers than 2^9999 or 9^9999 or 99^5000 or 999^3333, etc..., use \xint-

iieval. See \xintiiPow for related comments if you don't want to melt your CPU.

If Digits is at most 8, logarithms are computed faster but with less accuracy; internally, using

9 fixed point fractional digits. And powers a^b lose accuracy in last digits quickly as b rises.

Here is what was observed with some random tests:

• for b neither integer nor half-integer and 1<b<10, roughly 8 correct digits for between 80%

and 90% of cases and in the remaining cases only a 1ulp error.

85

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog , xinttools, Examples, xint bundle

• for b neither integer nor half-integer and 10^e<b<10^(e+1), roughly 8-e digits are correct for

about 90% of cases and there is a one unit error in the last of those digits in the remaining

cases.

To maintain higher accuracy, split the input as a^n a^h with n integer or half-integer nearest to

b. After having considered (and implemented) the method, decision was made to not incorporate it

as it would induce serious overhead generally speaking. The a^b with fractional exponent b such

that abs(b)<10 are currently computed with at most 1ulp error in the vast majority of cases it

seems, which is largely precise enough for plots, and then speed matters most. Larger exponents

can be handled (since 1.4f) via manually implementing the splitting trick, as described above.

The documentation of the legacy macro \xintFloatPower (which is used for powers with integer

and half-integer exponents) explains it has a guaranteed error bound of 0.52ulp, in arbitrary

precision. Generally speaking, the math functions added at 1.4e target even smaller errors (but

only up to 62 digits), something of the order of 0.505ulp, and in practice they seem to achieve even

better than 99% of correct rounding probability (at least in their natural ranges, and it varies

according to the value of Digits). Perhaps in future I will re-examine whether it is worthwile to

increase a bit the theoretical accuracy of \xintFloatPower, as I have not had the time to really

measure systematically its pratical accuracy, all anecdotical evidence showing it is good.

86

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

6. Macros of the xinttools package

.1 \xintRevWithBraces . 87

.2 \xintZapFirstSpaces, \xintZapLas-

tSpaces, \xintZapSpaces, \xintZapSpacesB 87
.3 \xintCSVtoList . 88
.4 \xintNthElt . 89
.5 \xintNthOnePy . 90
.6 \xintKeep . 90
.7 \xintKeepUnbraced . 91
.8 \xintTrim . 91
.9 \xintTrimUnbraced . 91
.10 \xintListWithSep . 92
.11 \xintApply . 92
.12 \xintApplyUnbraced . 93
.13 \xintSeq . 93
.14 \xintloop, \xintbreakloop, \xintbreak-

loopanddo, \xintloopskiptonext 93

.15 \xintiloop, \xintiloopindex, \xintouter-
iloopindex, \xintbreakiloop, \xint-

breakiloopanddo, \xintiloopskiptonext,
\xintiloopskipandredo 96

.16 \xintApplyInline . 99

.17 \xintFor, \xintFor* 100

.18 \xintifForFirst, \xintifForLast 102

.19 \xintBreakFor, \xintBreakForAndDo 103

.20 \xintintegers, \xintdimensions, \xin-
trationals . 103

.21 \xintForpair, \xintForthree, \xintFor-
four . 105

.22 \xintAssign . 105

.23 \xintAssignArray . 106

.24 \xintDigitsOf . 106

.25 \xintRelaxArray . 107

These utilities used to be provided within the xint package; since 1.09g (2013/11/22) they have

been moved to an independently usable package xinttools, which has none of the xint facilities

regarding big numbers. Whenever relevant release 1.09h has made the macros \long so they accept

\par tokens on input.

The completely expandable utilities (up to \xintiloop) are documented first, then the non ex-

pandable utilities.

section 7 gives additional (some quite dated) examples of use of macros of this package.

xinttools is automatically loaded by xintexpr.

6.1.
source

\xintRevWithBraces

\xintRevWithBraces{⟨list⟩} first does the f-expansion of its argument then it reverses the orderf ★
of the tokens, or braced material, it encounters, maintaining existing braces and adding a brace

pair around each naked token encountered. Space tokens (in-between top level braces or naked to-

kens) are gobbled. This macro is mainly thought out for use on a ⟨list⟩ of such braced material;

with such a list as argument the f-expansion will only hit against the first opening brace, hence

do nothing, and the braced stuff may thus be macros one does not want to expand.

\edef\x{\xintRevWithBraces{12345}}

\meaning\x:macro:->{5}{4}{3}{2}{1}

\edef\y{\xintRevWithBraces\x}

\meaning\y:macro:->{1}{2}{3}{4}{5}

The examples above could be defined with \edef's because the braced material did not contain

macros. Alternatively:

\expandafter\def\expandafter\w\expandafter

{\romannumeral0\xintrevwithbraces{{\A}{\B}{\C}{\D}{\E}}}

\meaning\w:macro:->{\E }{\D }{\C }{\B }{\A }

The macro \xintReverseWithBracesNoExpand does the same job without the initial expansion of itsn ★
argument.

6.2.
source

\xintZapFirstSpaces,
source

\xintZapLastSpaces,
source

\xintZapSpaces,
source

\xintZapSpacesB

\xintZapFirstSpaces{⟨stuff ⟩} does not do any expansion of its argument, nor brace removal of anyn ★
sort, nor does it alter ⟨stuff ⟩ in anyway apart from stripping away all leading spaces.

87

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

This macro will be mostly of interest to programmers who will know what I will now be talking

about. The essential points, naturally, are the complete expandability and the fact that no brace
removal nor any other alteration is done to the input.

TEX's input scanner already converts consecutive blanks into single space tokens, but \xintZapFirstSpaces

handles successfully also inputs with consecutive multiple space tokens. However, it is assumed

that ⟨stuff ⟩ does not contain (except inside braced sub-material) space tokens of character code

distinct from 32.

It expands in two steps, and if the goal is to apply it to the expansion text of \x to define \y,

then one can do: \odef\y{\romannumeral0\expandafter\xintzapfirstspaces\expandafter{\x}} (one

can also define a wrapper macro to \xintZapFirstSpaces in order to expand once the argument first,

but xinttools not being a programming layer, it provides no “Generate Variants” facilities).

Other use case: inside a macro which received a parameter #1, one can do \oodef\x{\xintZapFirs ⤸
tSpaces {#1}}, or, if #1, after leading spaces have been stripped can accept \edef expansion, one

can do \edef\x{\xintZapFirstSpaces{#1}}.

\xintZapFirstSpaces { \a { \X } { \b \Y } }->\a { \X } { \b \Y } +++

\xintZapLastSpaces{⟨stuff ⟩} does not do any expansion of its argument, nor brace removal of anyn ★
sort, nor does it alter ⟨stuff ⟩ in anyway apart from stripping away all ending spaces. The same

remarks as for \xintZapFirstSpaces apply.

\xintZapLastSpaces { \a { \X } { \b \Y } }-> \a { \X } { \b \Y }+++

\xintZapSpaces{⟨stuff ⟩} does not do any expansion of its argument, nor brace removal of any sort,n ★
nor does it alter ⟨stuff ⟩ in anyway apart from stripping away all leading and all ending spaces.

The same remarks as for \xintZapFirstSpaces apply.

\xintZapSpaces { \a { \X } { \b \Y } }->\a { \X } { \b \Y }+++

\xintZapSpacesB{⟨stuff ⟩} does not do any expansion of its argument, nor does it alter ⟨stuff ⟩n ★
in anyway apart from stripping away all leading and all ending spaces and possibly removing one

level of braces if ⟨stuff ⟩ had the shape <spaces>{braced}<spaces>. The same remarks as for \xint-

ZapFirstSpaces apply.

\xintZapSpacesB { \a { \X } { \b \Y } }->\a { \X } { \b \Y }+++

\xintZapSpacesB { { \a { \X } { \b \Y } } }-> \a { \X } { \b \Y } +++

The spaces here at the start and end of the output come from the braced material, and are not

removed (one would need a second application for that; recall though that the xint zapping macros

do not expand their argument).

6.3.
source

\xintCSVtoList

\xintCSVtoList{a,b,c...,z} returns {a}{b}{c}...{z}. A list is by convention in this manual sim-f ★
ply a succession of tokens, where each braced thing will count as one item (``items'' are defined

according to the rules of TEX for fetching undelimited parameters of a macro, which are exactly

the same rules as for LATEX and macro arguments [they are the same things]). The word `list' in

`comma separated list of items' has its usual linguistic meaning, and then an ``item'' is what is

delimited by commas.

So \xintCSVtoList takes on input a `comma separated list of items' and converts it into a `TEX

list of braced items'. The argument to \xintCSVtoList may be a macro: it will first be f-expanded.
Hence the item before the first comma, if it is itself a macro, will be expanded which may or may not

be a good thing. A space inserted at the start of the first item serves to stop that expansion (and

disappears). The macro \xintCSVtoListNoExpand does the same job without the initial expansion ofn ★
the list argument.

Apart from that no expansion of the items is done and the list items may thus be completely

arbitrary (and even contain perilous stuff such as unmatched \if and \fi tokens).

Contiguous spaces and tab characters, are collapsed by TEX into single spaces. All such spaces

88

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

around commas30 are removed , as well as the spaces at the start and the spaces at the end of the

list.31 The items may contain explicit \par's or empty lines (converted by the TEX input parsing

into \par tokens).

\xintCSVtoList { 1 ,{ 2 , 3 , 4 , 5 }, a , {b,T} U , { c , d } , { {x , y} } }

->{1}{2 , 3 , 4 , 5}{a}{{b,T} U}{ c , d }{ {x , y} }

One sees on this example how braces protect commas from sub-lists to be perceived as delimiters

of the top list. Braces around an entire item are removed, even when surrounded by spaces before

and/or after. Braces for sub-parts of an item are not removed.

We observe also that there is a slight difference regarding the brace stripping of an item: if

the braces were not surrounded by spaces, also the initial and final (but no other) spaces of the

enclosed material are removed. This is the only situation where spaces protected by braces are

nevertheless removed.

From the rules above: for an empty argument (only spaces, no braces, no comma) the output is {}

(a list with one empty item), for ``<opt. spaces>{}<opt. spaces>'' the output is {} (again a list

with one empty item, the braces were removed), for ``{ }'' the output is {} (again a list with one

empty item, the braces were removed and then the inner space was removed), for `` { }'' the output

is {} (again a list with one empty item, the initial space served only to stop the expansion, so

this was like ``{ }'' as input, the braces were removed and the inner space was stripped), for `` {

} '' the output is { } (this time the ending space of the first item meant that after brace removal

the inner spaces were kept; recall though that TEX collapses on input consecutive blanks into one

space token), for ``,'' the output consists of two consecutive empty items {}{}. Recall that on

output everything is braced, a {} is an ``empty'' item. Most of the above is mainly irrelevant for

every day use, apart perhaps from the fact to be noted that an empty input does not give an empty

output but a one-empty-item list (it is as if an ending comma was always added at the end of the

input).

\def\y{ \a,\b,\c,\d,\e} \xintCSVtoList\y->{\a }{\b }{\c }{\d }{\e }

\def\t {{\if},\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}

\xintCSVtoList\t->{\if }{\ifnum }{\ifx }{\ifdim }{\ifcat }{\ifmmode }

The results above were automatically displayed using TEX's primitive \meaning, which adds a

space after each control sequence name. These spaces are not in the actual braced items of the

produced lists. The first items \a and \if were either preceded by a space or braced to prevent

expansion. The macro \xintCSVtoListNoExpand would have done the same job without the initial

expansion of the list argument, hence no need for such protection but if \y is defined as \def\y{\ ⤸
a,\b,\c,\d,\e} we then must do:

\expandafter\xintCSVtoListNoExpand\expandafter {\y}

Else, we may have direct use:

\xintCSVtoListNoExpand {\if,\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}

->{\if }{\ifnum }{\ifx }{\ifdim }{\ifcat }{\ifmmode }

Again these spaces are an artefact from the use in the source of the document of \meaning (or rather

here, \detokenize) to display the result of using \xintCSVtoListNoExpand (which is done for real

in this document source).

For the similar conversion from comma separated list to braced items list, but without removal

of spaces around the commas, there is \xintCSVtoListNonStripped and \xintCSVtoListNonStripped-f ★
NoExpand.n ★

6.4.
source

\xintNthElt

\xintNthElt{x}{⟨list⟩} gets (expandably) the xth item of the ⟨list⟩. A braced item will lose one
num
x f ★

level of brace pairs. The token list is first f-expanded.

30 and multiple space tokens are not a problem; but those at the top level (not hidden inside braces) must be of character code
32. 31 let us recall that this is all done completely expandably... There is absolutely no alteration of any sort of the item apart
from the stripping of initial and final space tokens (of character code 32) and brace removal if and only if the item apart from
intial and final spaces (or more generally multiple char 32 space tokens) is braced.

89

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

Items are counted starting at one.

\xintNthElt {3}{{agh}\u{zzz}\v{Z}} is zzz

\xintNthElt {3}{{agh}\u{{zzz}}\v{Z}} is {zzz}

\xintNthElt {2}{{agh}\u{{zzz}}\v{Z}} is \u

\xintNthElt {37}{\xintiiFac {100}}=9 is the thirty-seventh digit of 100!.

\xintNthElt {10}{\xintFtoCv {566827/208524}}=1457/536

is the tenth convergent of 566827/208524 (uses xintcfrac package).

\xintNthElt {7}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}=7

\xintNthElt {0}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}=9

\xintNthElt {-3}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}=7

If x=0, the macro returns the length of the expanded list: this is not equivalent to \xint-

Length which does no pre-expansion. And it is different from \xintLen which is to be used only on

integers or fractions.

If x<0, the macro returns the |x|th element from the end of the list. Thus for example x=-1 will

fetch the last item of the list.

\xintNthElt {-5}{{{agh}}\u{zzz}\v{Z}} is {agh}

The macro \xintNthEltNoExpand does the same job but without first expanding the list argument:
num
x n ★

\xintNthEltNoExpand {-4}{\u\v\w T\x\y\z} is T.

If x is strictly larger (in absolute value) than the length of the list then \xintNthElt produces

empty contents.

6.5.
source

\xintNthOnePy

\xintNthOnePy{x}{⟨list⟩} gets (expandably) the xth item of the ⟨list⟩, adding a brace pair if there
num
x f ★

wasn't one.

Attention, items are counted starting at zero. For negative index, behaves as \xintNthElt.

If the index is out of range, the empty output is returned. If the input list was empty (had no

items) the empty output is returned.

6.6.
source

\xintKeep

\xintKeep{x}{⟨list⟩} expands the token list argument L and produces a new list, depending on the
num
x f ★

value of x:

• if x>0, the new list contains the first x items from L (counting starts at one.) Each such
item will be output within a brace pair. Use \xintKeepUnbraced if this is not desired. This

means that if the list item was braced to start with, there is no modification, but if it was a

token without braces, then it acquires them.

• if x>=length(L), the new list is the old one with all its items now braced.

• if x=0 the empty list is returned.

• if x<0 the last |x| elements compose the output in the same order as in the initial list; as the

macro proceeds by removing head items the kept items end up in output as they were in input:

no added braces.

• if x<=-length(L) the output is identical with the input.

\xintKeepNoExpand does the same without first f-expanding its list argument.

\fdef\test {\xintKeep {17}{\xintKeep {-69}{\xintSeq {1}{100}}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintKeep {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintKeep {-7}{123456789}}\meaning\test\par

macro:->{32}{33}{34}{35}{36}{37}{38}{39}{40}{41}{42}{43}{44}{45}{46}{47}{48}

macro:->{1}{2}{3}{4}{5}{6}{7}

macro:->{3}{4}{5}{6}{7}{8}{9}

macro:->{1}{2}{3}{4}{5}{6}{7}

90

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

macro:->3456789

6.7.
source

\xintKeepUnbraced

Same as \xintKeep but no brace pairs are added around the kept items from the head of the list

in the case x>0: each such item will lose one level of braces. Thus, to remove braces from all

items of the list, one can use \xintKeepUnbraced with its first argument larger than the length of

the list; the same is obtained from \xintListWithSep{}{⟨list⟩}. But the new list will then have

generally many more items than the original ones, corresponding to the unbraced original items.

For x<0 the macro is no different from \xintKeep. Hence the name is a bit misleading because

brace removal will happen only if x>0.

\xintKeepUnbracedNoExpand does the same without first f-expanding its list argument.

\fdef\test {\xintKeepUnbraced {10}{\xintSeq {1}{100}}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}%

\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}%

\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintKeepUnbraced {-7}{123456789}}\meaning\test\par

macro:->12345678910

macro:->1234567

macro:->{3}{4}{5}{6}{7}{8}{9}

macro:->1234567

macro:->3456789

6.8.
source

\xintTrim

\xintTrim{x}{⟨list⟩} expands the list argument and gobbles its first x elements.
num
x f ★

• if x>0, the first x items from L are gobbled. The remaining items are not modified.

• if x>=length(L), the returned list is empty.

• if x=0 the original list is returned (with no added braces.)

• if x<0 the last |x| items of the list are removed. The head items end up braced in the output.
Use \xintTrimUnbraced if this is not desired.

• if x<=-length(L) the output is empty.

\xintTrimNoExpand does the same without first f-expanding its list argument.

\fdef\test {\xintTrim {17}{\xintTrim {-69}{\xintSeq {1}{100}}}}\meaning\test\par

\noindent\fdef\test {\xintTrim {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintTrim {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}\meaning\test\par

\noindent\fdef\test {\xintTrim {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintTrim {-7}{123456789}}\meaning\test\par

macro:->{18}{19}{20}{21}{22}{23}{24}{25}{26}{27}{28}{29}{30}{31}

macro:->{8}{9}

macro:->{1}{2}

macro:->89

macro:->{1}{2}

6.9.
source

\xintTrimUnbraced

Same as \xintTrim but in case of a negative x (cutting items from the tail), the kept items from

the head are not enclosed in brace pairs. They will lose one level of braces. The name is a bit

misleading because when x>0 there is no brace-stripping done on the kept items, because the macro

works simply by gobbling the head ones.

\xintTrimUnbracedNoExpand does the same without first f-expanding its list argument.

91

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

\fdef\test {\xintTrimUnbraced {-90}{\xintSeq {1}{100}}}\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}%

\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {-7}{{1}{2}{3}{4}{5}{6}{7}{8}{9}}}%

\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {7}{123456789}}\meaning\test\par

\noindent\fdef\test {\xintTrimUnbraced {-7}{123456789}}\meaning\test\par

macro:->12345678910

macro:->{8}{9}

macro:->12

macro:->89

macro:->12

6.10.
source

\xintListWithSep

\xintListWithSep{⟨sep⟩}{⟨list⟩} inserts the separator ⟨sep⟩ in-between all items of the given listn f ★
of braced items (or individual tokens). The items are fetched as does TEX with undelimited macro

arguments, thus they end up unbraced in output. If the ⟨list⟩ is only one (or multiple) space

tokens, the output is empty.

The list argument ⟨list⟩ gets f-expanded first (thus if it is a macro whose contents are braced

items, the first opening brace stops the expansion, and it is as if the macro had been expanded

once.) The separator ⟨sep⟩ is not pre-expanded, it ends up as is in the output (if the ⟨list⟩
contained at least two items.)

The variant \xintListWithSepNoExpand does the same job without the initial expansion of then n ★
⟨list⟩ argument.
\edef\foo{\xintListWithSep{, }{123456789{10}{11}{12}}}\meaning\foo\newline

\edef\foo{\xintListWithSep{:}{\xintiiFac{20}}}\meaning\foo\newline

\oodef\FOO{\xintListWithSepNoExpand{\FOO}{\bat\baz\biz\buz}}\meaning\FOO\newline

% a braced item or a space stops the f-expansion:

\oodef\foo{\xintListWithSep{\FOO}{{\bat}\baz\biz\buz}}\meaning\foo\newline

\oodef\foo{\xintListWithSep{\FOO}{ \bat\baz\biz\buz}}\meaning\foo\par

macro:->1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

macro:->2:4:3:2:9:0:2:0:0:8:1:7:6:6:4:0:0:0:0

macro:->\bat \FOO \baz \FOO \biz \FOO \buz

macro:->\bat \FOO \baz \FOO \biz \FOO \buz

macro:->\bat \FOO \baz \FOO \biz \FOO \buz

6.11.
source

\xintApply

\xintApply{\macro}{⟨list⟩} expandably applies the one parameter macro \macro to each item in thef f ★
⟨list⟩ given as second argument and returns a new list with these outputs: each item is given one

after the other as parameter to \macro which is expanded at that time (as usual, i.e. fully for what

comes first), the results are braced and output together as a succession of braced items (if \mac ⤸
ro is defined to start with a space, the space will be gobbled and the \macro will not be expanded;

it is allowed to have its own arguments, the list items serve as last arguments to \macro). Hence

\xintApply{\macro}{{1}{2}{3}} returns {\macro{1}}{\macro{2}}{\macro{3}} where all instances of

\macro have been already f-expanded.
Being expandable, \xintApply is useful for example inside alignments where implicit groups make

standard loops constructs usually fail. In such situation it is often not wished that the new

list elements be braced, see \xintApplyUnbraced. The \macro does not have to be expandable:

\xintApply will try to expand it, the expansion may remain partial.

The ⟨list⟩ may itself be some macro expanding (in the previously described way) to the list of

tokens to which the macro \macro will be applied. For example, if the ⟨list⟩ expands to some

92

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

positive number, then each digit will be replaced by the result of applying \macro on it.

\def\macro #1{\the\numexpr 9-#1\relax}

\xintApply\macro{\xintiiFac {20}}=7567097991823359999

The macro \xintApplyNoExpand does the same job without the first initial expansion which gavef n ★
the ⟨list⟩ of braced tokens to which \macro is applied.

6.12.
source

\xintApplyUnbraced

\xintApplyUnbraced{\macro}{⟨list⟩} is like \xintApply. The difference is that after having ex-f f ★
panded its list argument, and applied \macro in turn to each item from the list, it reassembles

the outputs without enclosing them in braces. The net effect is the same as doing

\xintListWithSep {}{\xintApply {\macro}{⟨list⟩}}
This is useful for preparing a macro which will itself define some other macros or make assign-

ments, as the scope will not be limited by brace pairs.

\def\macro #1{\expandafter\def\csname myself#1\endcsname {#1}}

\xintApplyUnbraced\macro{{elta}{eltb}{eltc}}

\begin{enumerate}[nosep,label=(\arabic{*})]

\item \meaning\myselfelta

\item \meaning\myselfeltb

\item \meaning\myselfeltc

\end{enumerate}

(1) macro:->elta

(2) macro:->eltb

(3) macro:->eltc

The macro \xintApplyUnbracedNoExpand does the same job without the first initial expansionf n ★
which gave the ⟨list⟩ of braced tokens to which \macro is applied.

6.13.
source

\xintSeq

\xintSeq[d]{x}{y} generates expandably {x}{x+d}... up to and possibly including {y} if d>0 or down[
num
x]

num
x

num
x ★

to and including {y} if d<0. Naturally {y} is omitted if y-x is not a multiple of d. If d=0 the

macro returns {x}. If y-x and d have opposite signs, the macro returns nothing. If the optional

argument d is omitted it is taken to be the sign of y-x. Hence \xintSeq {1}{0} is not empty but

{1}{0}. But \xintSeq [1]{1}{0} is empty.

The arguments x and y are expanded inside a \numexpr so they may be count registers or a LATEX

\value{countername}, or arithmetic with such things.

\xintListWithSep{,\hskip2pt plus 1pt minus 1pt }{\xintSeq {12}{-25}}

12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15,

-16, -17, -18, -19, -20, -21, -22, -23, -24, -25

\xintiiSum{\xintSeq [3]{1}{1000}}

167167

When the macro is used without the optional argument d, it can only generate up to about 5000

numbers, the precise value depends upon some TEX memory parameter (input save stack).+
{

With the optional argument d the macro proceeds differently (but less efficiently) and does not

stress the input save stack.

6.14.
source

\xintloop,
source

\xintbreakloop,
source

\xintbreakloopanddo,
source

\xintloopskiptonext

\xintloop⟨stuff ⟩\if<test>...\repeat is an expandable loop compatible with nesting. However toI
break out of the loop one almost always need some un-expandable step. The cousin \xintiloop is

\xintloop with an embedded expandable mechanism allowing to exit from the loop. The iterated

macros may contain \par tokens or empty lines.

93

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

If a sub-loop is to be used all the material from the start of the main loop and up to the end of

the entire subloop should be braced; these braces will be removed and do not create a group. The

simplest to allow the nesting of one or more sub-loops is to brace everything between \xintloop

and \repeat, being careful not to leave a space between the closing brace and \repeat.

As this loop and \xintiloop will primarily be of interest to experienced TEX macro programmers,

my description will assume that the user is knowledgeable enough. Some examples in this document

will be perhaps more illustrative than my attemps at explanation of use.

One can abort the loop with \xintbreakloop; this should not be used inside the final test, and

one should expand the \fi from the corresponding test before. One has also \xintbreakloopanddo

whose first argument will be inserted in the token stream after the loop; one may need a macro

such as \xint_afterfi to move the whole thing after the \fi, as a simple \expandafter will not be

enough.

One will usually employ some count registers to manage the exit test from the loop; this breaks

expandability, see \xintiloop for an expandable integer indexed loop. Use in alignments will be

complicated by the fact that cells create groups, and also from the fact that any encountered un-

expandable material will cause the TEX input scanner to insert \endtemplate on each encountered &

or \cr; thus \xintbreakloop may not work as expected, but the situation can be resolved via \xint ⤸
_firstofone{&} or use of \TAB with \def\TAB{&}. It is thus simpler for alignments to use rather

than \xintloop either the expandable \xintApplyUnbraced or the non-expandable but alignment com-

patible \xintApplyInline, \xintFor or \xintFor*.

As an example, let us suppose we have two macros \A{⟨i⟩}{⟨j⟩} and \B{⟨i⟩}{⟨j⟩} behaving like

(small) integer valued matrix entries, and we want to define a macro \C{⟨i⟩}{⟨j⟩} giving the ma-

trix product (i and j may be count registers). We will assume that \A[I] expands to the number of

rows, \A[J] to the number of columns and want the produced \C to act in the same manner. The code

is very dispendious in use of \count registers, not optimized in any way, not made very robust (the

defined macro can not have the same name as the first two matrices for example), we just wanted to

quickly illustrate use of the nesting capabilities of \xintloop.32

\newcount\rowmax \newcount\colmax \newcount\summax

\newcount\rowindex \newcount\colindex \newcount\sumindex

\newcount\tmpcount

\makeatletter

\def\MatrixMultiplication #1#2#3{%

\rowmax #1[I]\relax

\colmax #2[J]\relax

\summax #1[J]\relax

\rowindex 1

\xintloop % loop over row index i

{\colindex 1

\xintloop % loop over col index k

{\tmpcount 0

\sumindex 1

\xintloop % loop over intermediate index j

\advance\tmpcount \numexpr #1\rowindex\sumindex*#2\sumindex\colindex\relax

\ifnum\sumindex<\summax

\advance\sumindex 1

\repeat }%

\expandafter\edef\csname\string#3{\the\rowindex.\the\colindex}\endcsname

{\the\tmpcount}%

\ifnum\colindex<\colmax

\advance\colindex 1

32 for a more sophisticated implementation of matrix multiplication, inclusive of determinants, inverses, and display utilities, with
entries big integers or decimal numbers or even fractions see some code online posted from November 11, 2013.

94

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

\repeat }%

\ifnum\rowindex<\rowmax

\advance\rowindex 1

\repeat

\expandafter\edef\csname\string#3{I}\endcsname{\the\rowmax}%

\expandafter\edef\csname\string#3{J}\endcsname{\the\colmax}%

\def #3##1{\ifx[##1\expandafter\Matrix@helper@size

\else\expandafter\Matrix@helper@entry\fi #3{##1}}%

}%

\def\Matrix@helper@size #1#2#3]{\csname\string#1{#3}\endcsname }%

\def\Matrix@helper@entry #1#2#3%

{\csname\string#1{\the\numexpr#2.\the\numexpr#3}\endcsname }%

\def\A #1{\ifx[#1\expandafter\A@size

\else\expandafter\A@entry\fi {#1}}%

\def\A@size #1#2]{\ifx I#23\else4\fi}% 3rows, 4columns

\def\A@entry #1#2{\the\numexpr #1+#2-1\relax}% not pre-computed...

\def\B #1{\ifx[#1\expandafter\B@size

\else\expandafter\B@entry\fi {#1}}%

\def\B@size #1#2]{\ifx I#24\else3\fi}% 4rows, 3columns

\def\B@entry #1#2{\the\numexpr #1-#2\relax}% not pre-computed...

\makeatother

\MatrixMultiplication\A\B\C \MatrixMultiplication\C\C\D

\MatrixMultiplication\C\D\E \MatrixMultiplication\C\E\F

\begin{multicols}2

\[\begin{pmatrix}

\A11&\A12&\A13&\A14\\

\A21&\A22&\A23&\A24\\

\A31&\A32&\A33&\A34

\end{pmatrix}

\times

\begin{pmatrix}

\B11&\B12&\B13\\

\B21&\B22&\B23\\

\B31&\B32&\B33\\

\B41&\B42&\B43

\end{pmatrix}

=

\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}\]

\[\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}^2 = \begin{pmatrix}

\D11&\D12&\D13\\

\D21&\D22&\D23\\

\D31&\D32&\D33

\end{pmatrix}\]

\[\begin{pmatrix}

95

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}^3 = \begin{pmatrix}

\E11&\E12&\E13\\

\E21&\E22&\E23\\

\E31&\E32&\E33

\end{pmatrix}\]

\[\begin{pmatrix}

\C11&\C12&\C13\\

\C21&\C22&\C23\\

\C31&\C32&\C33

\end{pmatrix}^4 = \begin{pmatrix}

\F11&\F12&\F13\\

\F21&\F22&\F23\\

\F31&\F32&\F33

\end{pmatrix}\]

\end{multicols}

©­«
1 2 3 4

2 3 4 5

3 4 5 6

ª®¬ ×
©­­­«
0 -1 -2

1 0 -1

2 1 0

3 2 1

ª®®®¬ =
©­«
20 10 0

26 12 -2

32 14 -4

ª®¬
©­«
20 10 0

26 12 -2

32 14 -4

ª®¬
2

=
©­«
660 320 -20

768 376 -16

876 432 -12

ª®¬

©­«
20 10 0

26 12 -2

32 14 -4

ª®¬
3

=
©­«
20880 10160 -560

24624 11968 -688

28368 13776 -816

ª®¬
©­«
20 10 0

26 12 -2

32 14 -4

ª®¬
4

=
©­«
663840 322880 -18080

781632 380224 -21184

899424 437568 -24288

ª®¬
6.15.

source
\xintiloop,

source
\xintiloopindex,

source
\xintouteriloopindex,

source
\xintbreakiloop,source

\xintbreakiloopanddo,
source

\xintiloopskiptonext,
source

\xintiloopskipandredo

\xintiloop[start+delta]⟨stuff ⟩\if<test> ... \repeat is a completely expandable nestable loop.I
complete expandability depends naturally on the actual iterated contents, and complete expansion

will not be achievable under a sole f-expansion, as is indicated by the hollow star in the margin;

thus the loop can be used inside an \edef but not inside arguments to the package macros. It can

be used inside an \xintexpr..\relax. The [start+delta] is mandatory, not optional.

This loop benefits via \xintiloopindex to (a limited access to) the integer index of the iter-

ation. The starting value start (which may be a \count) and increment delta (id.) are manda-

tory arguments. A space after the closing square bracket is not significant, it will be ignored.

Spaces inside the square brackets will also be ignored as the two arguments are first given to a

\numexpr...\relax. Empty lines and explicit \par tokens are accepted.

As with \xintloop, this tool will mostly be of interest to advanced users. For nesting, one

puts inside braces all the material from the start (immediately after [start+delta]) and up to and

inclusive of the inner loop, these braces will be removed and do not create a loop. In case of

nesting, \xintouteriloopindex gives access to the index of the outer loop. If needed one could

write on its model a macro giving access to the index of the outer outer loop (or even to the nth

outer loop).

The \xintiloopindex and \xintouteriloopindex can not be used inside braces, and generally

speaking this means they should be expanded first when given as argument to a macro, and that this

macro receives them as delimited arguments, not braced ones. Or, but naturally this will break

96

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

expandability, one can assign the value of \xintiloopindex to some \count. Both \xintiloopin-

dex and \xintouteriloopindex extend to the litteral representation of the index, thus in \ifnum

tests, if it comes last one has to correctly end the macro with a \space, or encapsulate it in a

\numexpr..\relax.

When the repeat-test of the loop is, for example, \ifnum\xintiloopindex<10 \repeat, this means

that the last iteration will be with \xintiloopindex=10 (assuming delta=1). There is also \ifnum ⤸
\xintiloopindex=10 \else\repeat to get the last iteration to be the one with \xintiloopindex=10.

One has \xintbreakiloop and \xintbreakiloopanddo to abort the loop. The syntax of \xintbreakiloopanddo

is a bit surprising, the sequence of tokens to be executed after breaking the loop is not within

braces but is delimited by a dot as in:

\xintbreakiloopanddo <afterloop>.etc.. etc... \repeat

The reason is that one may wish to use the then current value of \xintiloopindex in <afterloop ⤸
> but it can't be within braces at the time it is evaluated. However, it is not that easy as

\xintiloopindex must be expanded before, so one ends up with code like this:

\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.%

etc.. etc.. \repeat

As moreover the \fi from the test leading to the decision of breaking out of the loop must be cleared

out of the way, the above should be a branch of an expandable conditional test, else one needs some-

thing such as:

\xint_afterfi{\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.}%

\fi etc..etc.. \repeat

There is \xintiloopskiptonext to abort the current iteration and skip to the next, \xintiloopskip-

andredo to skip to the end of the current iteration and redo it with the same value of the index

(something else will have to change for this not to become an eternal loop...).

Inside alignments, if the looped-over text contains a & or a \cr, any un-expandable material

before a \xintiloopindex will make it fail because of \endtemplate; in such cases one can always

either replace & by a macro expanding to it or replace it by a suitable \firstofone{&}, and simi-

larly for \cr.

As an example, let us construct an \edef\z{...} which will define \z to be a list of prime num-

bers:

\begingroup

\edef\z

{\xintiloop [10001+2]

{\xintiloop [3+2]

\ifnum\xintouteriloopindex<\numexpr\xintiloopindex*\xintiloopindex\relax

\xintouteriloopindex,

\expandafter\xintbreakiloop

\fi

\ifnum\xintouteriloopindex=\numexpr

(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax

\else

\repeat

}% no space here

\ifnum \xintiloopindex < 10999 \repeat }%

\meaning\z\endgroup

macro:->10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103,

10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223, 10243,

10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337,

10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, 10463, 10477, 10487,

10499, 10501, 10513, 10529, 10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631,

10639, 10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, 10753,

10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891,

97

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

10903, 10909, 10937, 10939, 10949, 10957, 10973, 10979, 10987, 10993, and we should have taken

some steps to not have a trailing comma, but the point was to show that one can do that in an \edef !

See also subsection 7.3 which extracts from this code its way of testing primality.

Let us create an alignment where each row will contain all divisors of its first entry. Here is

the output, thus obtained without any count register:

\begin{multicols}2

\tabskip1ex \normalcolor

\halign{&\hfil#\hfil\cr

\xintiloop [1+1]

{\expandafter\bfseries\xintiloopindex &

\xintiloop [1+1]

\ifnum\xintouteriloopindex=\numexpr

(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax

\xintiloopindex&\fi

\ifnum\xintiloopindex<\xintouteriloopindex\space % CRUCIAL \space HERE

\repeat \cr }%

\ifnum\xintiloopindex<30

\repeat

}

\end{multicols}

1 1

2 1 2

3 1 3

4 1 2 4

5 1 5

6 1 2 3 6

7 1 7

8 1 2 4 8

9 1 3 9

10 1 2 5 10

11 1 11

12 1 2 3 4 6 12

13 1 13

14 1 2 7 14

15 1 3 5 15

16 1 2 4 8 16

17 1 17

18 1 2 3 6 9 18

19 1 19

20 1 2 4 5 10 20

21 1 3 7 21

22 1 2 11 22

23 1 23

24 1 2 3 4 6 8 12 24

25 1 5 25

26 1 2 13 26

27 1 3 9 27

28 1 2 4 7 14 28

29 1 29

30 1 2 3 5 6 10 15 30

We wanted this first entry in bold face, but \bfseries leads to unexpandable tokens, so the \exp ⤸
andafter was necessary for \xintiloopindex and \xintouteriloopindex not to be confronted with a

hard to digest \endtemplate. An alternative way of coding:

\tabskip1ex

\def\firstofone #1{#1}%

\halign{&\hfil#\hfil\cr

\xintiloop [1+1]

{\bfseries\xintiloopindex\firstofone{&}%

\xintiloop [1+1] \ifnum\xintouteriloopindex=\numexpr

(\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax

\xintiloopindex\firstofone{&}\fi

\ifnum\xintiloopindex<\xintouteriloopindex\space % \space is CRUCIAL

\repeat \firstofone{\cr}}%

\ifnum\xintiloopindex<30 \repeat }

98

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

The next utilities are not compatible with expansion-only context.

6.16.
source

\xintApplyInline

\xintApplyInline{\macro}{⟨list⟩} works non expandably. It applies the one-parameter \macro too *f
the first element of the expanded list (\macro may have itself some arguments, the list item will be

appended as last argument), and is then re-inserted in the input stream after the tokens resulting

from this first expansion of \macro. The next item is then handled.

This is to be used in situations where one needs to do some repetitive things. It is not expand-

able and can not be completely expanded inside a macro definition, to prepare material for later

execution, contrarily to what \xintApply or \xintApplyUnbraced achieve.

\def\Macro #1{\advance\cnta #1 , \the\cnta}

\cnta 0

0\xintApplyInline\Macro {3141592653}.

0, 3, 4, 8, 9, 14, 23, 25, 31, 36, 39. The first argument \macro does not have to be an expandable

macro.

\xintApplyInline submits its second, token list parameter to an f-expansion. Then, each un-
braced item will also be f-expanded. This provides an easy way to insert one list inside another.

Braced items are not expanded. Spaces in-between items are gobbled (as well as those at the start

or the end of the list), but not the spaces inside the braced items.

\xintApplyInline, despite being non-expandable, does survive to contexts where the executed \ ⤸
macro closes groups, as happens inside alignments with the tabulation character &. This tabular

provides an example:

\centerline{\normalcolor\begin{tabular}{ccc}

N & N^2 & N^3 \\ \hline

\def\Row #1{ #1 & \xintiiSqr {#1} & \xintiiPow {#1}{3} \\ \hline }%

\xintApplyInline \Row {\xintCSVtoList{17,28,39,50,61}}

\end{tabular}}\medskip

N N2 N3

17 289 4913

28 784 21952

39 1521 59319

50 2500 125000

61 3721 226981

We see that despite the fact that the first encountered tabulation character in the first row

close a group and thus erases \Row from TEX's memory, \xintApplyInline knows how to deal with this.

Using \xintApplyUnbraced is an alternative: the difference is that this would have prepared all

rows first and only put them back into the token stream once they are all assembled, whereas with

\xintApplyInline each row is constructed and immediately fed back into the token stream: when one

does things with numbers having hundreds of digits, one learns that keeping on hold and shuffling

around hundreds of tokens has an impact on TEX's speed (make this ``thousands of tokens'' for the

impact to be noticeable).

One may nest various \xintApplyInline's. For example (see the table on the next page):

\begin{figure*}[ht!]

\centering\phantomsection\label{float}

\def\Row #1{#1:\xintApplyInline {\Item {#1}}{0123456789}\\ }%

\def\Item #1#2{&\xintiiPow {#1}{#2}}%

\centeredline {\begin{tabular}{ccccccccccc} &0&1&2&3&4&5&6&7&8&9\\ \hline

\xintApplyInline \Row {0123456789}

\end{tabular}}

99

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

\end{figure*}

0 1 2 3 4 5 6 7 8 9

0: 1 0 0 0 0 0 0 0 0 0

1: 1 1 1 1 1 1 1 1 1 1

2: 1 2 4 8 16 32 64 128 256 512

3: 1 3 9 27 81 243 729 2187 6561 19683

4: 1 4 16 64 256 1024 4096 16384 65536 262144

5: 1 5 25 125 625 3125 15625 78125 390625 1953125

6: 1 6 36 216 1296 7776 46656 279936 1679616 10077696

7: 1 7 49 343 2401 16807 117649 823543 5764801 40353607

8: 1 8 64 512 4096 32768 262144 2097152 16777216 134217728

9: 1 9 81 729 6561 59049 531441 4782969 43046721 387420489

One could not move the definition of \Item inside the tabular, as it would get lost after the

first &. But this works:

\begin{tabular}{ccccccccccc}

&0&1&2&3&4&5&6&7&8&9\\ \hline

\def\Row #1{#1:\xintApplyInline {&\xintiiPow {#1}}{0123456789}\\ }%

\xintApplyInline \Row {0123456789}

\end{tabular}

A limitation is that, contrarily to what one may have expected, the \macro for an \xintApplyInline

can not be used to define the \macro for a nested sub-\xintApplyInline. For example, this does

not work:

\def\Row #1{#1:\def\Item ##1{&\xintiiPow {#1}{##1}}%

\xintApplyInline \Item {0123456789}\\ }%

\xintApplyInline \Row {0123456789} % does not work

But see \xintFor.

6.17.
source

\xintFor,
source

\xintFor*

\xintFor is a new kind of for loop.33 Rather than using macros for encapsulating list items, itso n
behaviour is like a macro with parameters: #1, #2, ..., #9 are used to represent the items for up

to nine levels of nested loops. Here is an example:

\xintFor #9 in {1,2,3} \do {%

\xintFor #1 in {4,5,6} \do {%

\xintFor #3 in {7,8,9} \do {%

\xintFor #2 in {10,11,12} \do {%

$$#9\times#1\times#3\times#2=\xintiiPrd{{#1}{#2}{#3}{#9}}$$}}}}

This example illustrates that one does not have to use #1 as the first one: the order is arbitrary.

But each level of nesting should have its specific macro parameter. Nine levels of nesting is

presumably overkill, but I did not know where it was reasonable to stop. \par tokens are accepted

in both the comma separated list and the replacement text.

TEXnical notes:

• The #1 is replaced in the iterated-over text exactly as in general TEX macros or LATEX com-

mands. This spares the user quite a few \expandafter's or other tricks needed with loops

which have the values encapsulated in macros, like LATEX's \@for and \@tfor.

33 first introduced with xint 1.09c of 2013/10/09.

100

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

• \xintFor (and \xintFor*) isn't purely expandable: one can not use it inside an \edef.

But it may be used, as will be shown in examples, in some contexts such as LATEX's tabular

which are usually hostile to non-expandable loops.

• \xintFor (and \xintFor*) does some assignments prior to executing each iteration of the

replacement text, but it acts purely expandably after the last iteration, hence if for

example the replacement text ends with a \\, the loop can be used insided a tabular and be

followed by a \hline without creating the dreaded ``Misplaced \noalign'' error.

• As stated in previous item the first iteration follows some non-expandable internal deal-

ings. This means for example that in LATEX, one can not inject a \multicolumn in the first

iteration. Sometimes one way work around this by injecting father &\multicolumn or \\ \ ⤸
multicolumn.

• It does not create groups.

• It makes no global assignments.

• The iterated replacement text may close a group which was opened even before the start of

the loop (typical example being with & in alignments).

\begin{tabular}{rccccc}

\hline

\xintFor #1 in {A, B, C} \do {%

#1:\xintFor #2 in {a, b, c, d, e} \do {&($ #2 \to #1 $)}\\ }%

\hline

\end{tabular}

A: (a → A) (b → A) (c → A) (d → A) (e → A)

B: (a → B) (b → B) (c → B) (d → B) (e → B)

C: (a → C) (b → C) (c → C) (d → C) (e → C)

• There is no facility provided which would give access to a count of the number of itera-

tions as it is technically not easy to do so it in a way working with nested loops while

maintaining the ``expandable after done'' property; something in the spirit of \xint-

iloopindex is possible but this approach would bring its own limitations and complica-

tions. Hence the user is invited to update her own count or LATEX counter or macro at each

iteration, if needed.

• A \macro whose definition uses internally an \xintFor loop may be used inside another

\xintFor loop even if the two loops both use the same macro parameter. The loop definition

inside \macro must use ## as is the general rule for definitions done inside macros.

• \xintFor is for comma separated values and \xintFor* for lists of braced items; their

respective expansion policies differ. They are described later.

Regarding \xintFor:

• the spaces between the various declarative elements are all optional,

• in the list of comma separated values, spaces around the commas or at the start and end are

ignored,

• if an item must contain itself its own commas, then it should be braced, and the braces will

be removed before feeding the iterated-over text,

• the list may be a macro, it is expanded only once,

• items are not pre-expanded. The first item should be braced or start with a space if the list

is explicit and the item should not be pre-expanded,

101

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

• empty items give empty #1's in the replacement text, they are not skipped,

• an empty list executes once the replacement text with an empty parameter value,

• the list, if not a macro, must be braced.

Regarding \xintFor*:*f n
• it handles lists of braced items (or naked tokens),

• it f-expands the list,

• and more generally it f-expands each naked token encountered before assigning the #1 values

(gobbling spaces in the process); this makes it easy to simulate concatenation of multiple

lists\x, \y: if \x expands to {1}{2}{3} and \y expands to {4}{5}{6} then {\x\y} as argument

to \xintFor* has the same effect as {{1}{2}{3}{4}{5}{6}}.

For a further illustration see the use of \xintFor* at the end of subsection 3.18.

• spaces at the start, end, or in-between items are gobbled (but naturally not the spaces inside

braced items),

• except if the list argument is a macro (with no parameters), it must be braced. ,

• an empty list leads to an empty result.

The macro \xintSeq which generates arithmetic sequences is to be used with \xintFor* as its

output consists of successive braced numbers (given as digit tokens).

\xintFor* #1 in {\xintSeq [+2]{-7}{+2}}\do {stuff

with #1\xintifForLast{\par}{\newline}}

stuff with -7

stuff with -5

stuff with -3

stuff with -1

stuff with 1

When nesting \xintFor* loops, using \xintSeq in the inner loops is inefficient, as the arith-

metic sequence will be re-created each time. A more efficient style is:

\edef\innersequence {\xintSeq[+2]{-50}{50}}%

\xintFor* #1 in {\xintSeq {13}{27}} \do

{\xintFor* #2 in \innersequence \do {stuff with #1 and #2}%

.. some other macros .. }

This is a general remark applying for any nesting of loops, one should avoid recreating the inner

lists of arguments at each iteration of the outer loop.

When the loop is defined inside a macro for later execution the # characters must be doubled.34

For example:

\def\T{\def\z {}%

\xintFor* ##1 in {{u}{v}{w}} \do {%

\xintFor ##2 in {x,y,z} \do {%

\expandafter\def\expandafter\z\expandafter {\z\sep (##1,##2)} }%

}%

}%

\T\def\sep {\def\sep{, }}\z

(u,x), (u,y), (u,z), (v,x), (v,y), (v,z), (w,x), (w,y), (w,z)

Similarly when the replacement text of \xintFor defines a macro with parameters, the macro char-

acter # must be doubled.

The iterated macros as well as the list items are allowed to contain explicit \par tokens.

6.18. \xintifForFirst, \xintifForLast
\xintifForFirst {YES branch}{NO branch} and \xintifForLast {YES branch}{NO branch} execute then n ★n n ★
YES or NO branch if the \xintFor or \xintFor* loop is currently in its first, respectively last,

iteration.

34 sometimes what seems to be a macro argument isn’t really; in \raisebox{1cm}{\xintFor #1 in {a,b,c}\do {#1}} no doubling
should be done.

102

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

Designed to work as expected under nesting (but see frame next.) Don't forget an empty brace

pair {} if a branch is to do nothing. May be used multiple times in the replacement text of the

loop.

Pay attention to these implementation features:

• if an inner \xintFor loop is positioned before the \xintifForFirst or \xintifForLast of
the outer loop it will contaminate their settings. This applies also naturally if the
inner loop arises from the expansion of some macro located before the outer conditionals.

One fix is to make sure that the outer conditionals are expanded before the inner loop

is executed, e.g. this will be the case if the inner loop is located inside one of the

branches of the conditional.

Another approach is to enclose, if feasible, the inner loop in a group of its own.

• if the replacement text closes a group (e.g. from a & inside an alignment), the condition-
als will lose their ascribed meanings and end up possibly undefined, depending whether
there is some outer loop whose execution started before the opening of the group.

The fix is to arrange things so that the conditionals are expanded before TEX encounters

the closing-group token.

6.19.
source

\xintBreakFor,
source

\xintBreakForAndDo

One may immediately terminate an \xintFor or \xintFor* loop with \xintBreakFor.

As it acts by clearing up all the rest of the replacement text when encountered, it will not

work from inside some \if...\fi without suitable \expandafter or swapping technique.

Also it can't be used from inside braces as from there it can't see the end of the replacement

text.

There is also \xintBreakForAndDo. Both are illustrated by various examples in the next section

which is devoted to ``forever'' loops.

6.20.
source

\xintintegers,
source

\xintdimensions,
source

\xintrationals

If the list argument to \xintFor (or \xintFor*, both are equivalent in this context) is \xint-

integers (equivalently \xintegers) or more generally \xintintegers[start+delta] (the whole
within braces!)35, then \xintFor does an infinite iteration where #1 (or #2, ..., #9) will run

through the arithmetic sequence of (short) integers with initial value start and increment delta

(default values: start=1, delta=1; if the optional argument is present it must contains both of

them, and they may be explicit integers, or macros or count registers). The #1 (or #2, ..., #9)

will stand for \numexpr <opt sign><digits>\relax, and the litteral representation as a string of

digits can thus be obtained as \the#1 or \number#1. Such a #1 can be used in an \ifnum test with

no need to be postfixed with a space or a \relax and one should not add them.

If the list argument is \xintdimensions or more generally \xintdimensions[start+delta] (within
braces!), then \xintFor does an infinite iteration where #1 (or #2, ..., #9) will run through

the arithmetic sequence of dimensions with initial value start and increment delta. Default val-

ues: start=0pt, delta=1pt; if the optional argument is present it must contain both of them, and

they may be explicit specifications, or macros, or dimen registers, or length macros in LATEX (the

stretch and shrink components will be discarded). The #1 will be \dimexpr <opt sign><digits>sp\ ⤸
relax, from which one can get the litteral (approximate) representation in points via \the#1. So

#1 can be used anywhere TEX expects a dimension (and there is no need in conditionals to insert a

35 the start+delta optional specification may have extra spaces around the plus sign of near the square brackets, such spaces are
removed. The same applies with \xintdimensions and \xintrationals.

103

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

\relax, and one should not do it), and to print its value one uses \the#1 . The chosen represen-

tation guarantees exact incrementation with no rounding errors accumulating from converting into

points at each step.

If the list argument to \xintFor (or \xintFor*) is \xintrationals or more generally \xint-

rationals[start+delta] (within braces!), then \xintFor does an infinite iteration where #1 (or

#2, ..., #9) will run through the arithmetic sequence of xintfrac fractions with initial value

start and increment delta (default values: start=1/1, delta=1/1). This loop works only with
xintfrac loaded. if the optional argument is present it must contain both of them, and they may

be given in any of the formats recognized by xintfrac (fractions, decimal numbers, numbers in sci-

entific notations, numerators and denominators in scientific notation, etc...) , or as macros

or count registers (if they are short integers). The #1 (or #2, ..., #9) will be an a/b fraction

(without a [n] part), where the denominator b is the product of the denominators of start and delta

(for reasons of speed #1 is not reduced to irreducible form, and for another reason explained later

start and delta are not put either into irreducible form; the input may use explicitely \xintIrr

to achieve that).

\begingroup\small

\noindent\parbox{\dimexpr\linewidth-3em}{\color[named]{OrangeRed}%

\xintFor #1 in {\xintrationals [10/21+1/21]} \do

{#1=\xintifInt {#1}

{\textcolor{blue}{\xintTrunc{10}{#1}}}

{\xintTrunc{10}{#1}}% display in blue if an integer

\xintifGt {#1}{1.123}{\xintBreakFor}{, }%

}}

\endgroup\smallskip
10/21=0.4761904761, 11/21=0.5238095238, 12/21=0.5714285714, 13/21=0.6190476190,

14/21=0.6666666666, 15/21=0.7142857142, 16/21=0.7619047619, 17/21=0.8095238095,

18/21=0.8571428571, 19/21=0.9047619047, 20/21=0.9523809523, 21/21=1.0000000000,

22/21=1.0476190476, 23/21=1.0952380952, 24/21=1.1428571428

The example above confirms that computations are done exactly, and illustrates that the two

initial (reduced) denominators are not multiplied when they are found to be equal. It is thus

recommended to input start and delta with a common smallest possible denominator, or as fixed

point numbers with the same numbers of digits after the decimal mark; and this is also the reason

why start and delta are not by default made irreducible. As internally the computations are done

with numerators and denominators completely expanded, one should be careful not to input numbers

in scientific notation with exponents in the hundreds, as they will get converted into as many

zeroes.

\noindent\parbox{\dimexpr.7\linewidth}{\raggedright

\xintFor #1 in {\xintrationals [0.000+0.125]} \do

{\edef\tmp{\xintTrunc{3}{#1}}%

\xintifInt {#1}

{\textcolor{blue}{\tmp}}

{\tmp}%

\xintifGt {#1}{2}{\xintBreakFor}{, }%

}}\smallskip
0, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.000, 1.125,

1.250, 1.375, 1.500, 1.625, 1.750, 1.875, 2.000, 2.125
We see here that \xintTrunc outputs (deliberately) zero as 0, not (here) 0.000, the idea being

not to lose the information that the truncated thing was truly zero. Perhaps this behaviour should

be changed? or made optional? Anyhow printing of fixed points numbers should be dealt with via

dedicated packages such as numprint or siunitx.

104

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

6.21.
source

\xintForpair,
source

\xintForthree,
source

\xintForfour

The syntax is illustrated in this example. The notation is the usual one for n-uples, with paren-o n
theses and commas. Spaces around commas and parentheses are ignored.

{\centering\begin{tabular}{cccc}

\xintForpair #1#2 in { (A , a) , (B , b) , (C , c) } \do {%

\xintForpair #3#4 in { (X , x) , (Y , y) , (Z , z) } \do {%

$\Biggl($\begin{tabular}{cc}

-#1- & -#3-\\

-#4- & -#2-\\

\end{tabular}$\Biggr)$&}\\\noalign{\vskip1\jot}}%

\end{tabular}\\} (
-A- -X-

-x- -a-

) (
-A- -Y-

-y- -a-

) (
-A- -Z-

-z- -a-

)
(
-B- -X-

-x- -b-

) (
-B- -Y-

-y- -b-

) (
-B- -Z-

-z- -b-

)
(
-C- -X-

-x- -c-

) (
-C- -Y-

-y- -c-

) (
-C- -Z-

-z- -c-

)
\xintForpair must be followed by either #1#2, #2#3, #3#4, ..., or #8#9 with #1 usable as an

alias for #1#2, #2 as alias for #2#3, etc ... and similarly for \xintForthree (using #1#2#3 or

simply #1, #2#3#4 or simply #2, ...) and \xintForfour (with #1#2#3#4 etc...).

Nesting works as long as the macro parameters are distinct among #1, #2, ..., #9. A macro which

expands to an \xintFor or a \xintFor(pair,three,four) can be used in another one with no constraint

about using distinct macro parameters.

\par tokens are accepted in both the comma separated list and the replacement text.

6.22.
source

\xintAssign

\xintAssign⟨braced things⟩\to⟨as many cs as they are things⟩ defines (without checking if some-

thing gets overwritten) the control sequences on the right of \to to expand to the successive

tokens or braced items located to the left of \to. \xintAssign is not an expandable macro.

f-expansion is first applied to the material in front of \xintAssign which is fetched as one

argument if it is braced. Then the expansion of this argument is examined and successive items

are assigned to the macros following \to. There must be exactly as many macros as items. No check

is done. The macro assignments are done with removal of one level of brace pairs from each item.

After the initial f-expansion, each assigned (brace-stripped) item will be expanded according

to the setting of the optional parameter.

For example \xintAssign [e]... means that all assignments are done using \edef. With [f] the

assignments will be made using \fdef. The default is simply to make the definitions with \def,

corresponding to an empty optional paramter []. Possibilities for the optional parameter are: [] ⤸
, [g], [e], [x], [o], [go], [oo], [goo], [f], [gf]. For example [oo] means a double expansion.

\xintAssign \xintiiDivision{1000000000000}{133333333}\to\Q\R

\meaning\Q\newline

\meaning\R\newline

\xintAssign {{\xintiiDivision{1000000000000}{133333333}}}\to\X

\meaning\X\newline

\xintAssign [oo]{{\xintiiDivision{1000000000000}{133333333}}}\to\X

\meaning\X\newline

\xintAssign \xintiiPow{7}{13}\to\SevenToThePowerThirteen

\meaning\SevenToThePowerThirteen\par

105

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

macro:->7500

macro:->2500

macro:->\xintiiDivision {1000000000000}{133333333}

macro:->{7500}{2500}

macro:->96889010407

Two special cases:

• if after this initial expansion no brace is found immediately after \xintAssign, it is assumed

that there is only one control sequence following \to, and this control sequence is then de-

fined via \def (or what is set-up by the optional parameter) to expand to the material between

\xintAssign and \to.

• if the material between \xintAssign and \to is enclosed in two brace pairs, the first brace

pair is removed, then the f-expansion is immediately stopped by the inner brace pair, hence

\xintAssign now finds a unique item and thus defines only a single macro to be this item, which

is now stripped of the second pair of braces.

Note: prior to release 1.09j, \xintAssign did an \edef by default for each item assignment but

it now does \def corresponding to no or empty optional parameter.

It is allowed for the successive braced items to be separated by spaces. They are removed during

the assignments. But if a single macro is defined (which happens if the argument after f-expansion
does not start with a brace), naturally the scooped up material has all intervening spaces, as it

is considered a single item. But an upfront initial space will have been absorbed by f-expansion.

\def\X{ {a} {b} {c} {d} }\def\Y { u {a} {b} {c} {d} }

\xintAssign\X\to\A\B\C\D

\xintAssign\Y\to\Z

\meaning\A, \meaning\B, \meaning\C, \meaning\D+++\newline

\meaning\Z+++\par

macro:->a, macro:->b, macro:->c, macro:->d+++

macro:->u {a} {b} {c} {d} +++

As usual successive space characters in input make for a single TEX space token.

6.23.
source

\xintAssignArray

\xintAssignArray⟨braced things⟩\to\myArray first expands fully what comes immediately after

\xintAssignArray and expects to find a list of braced things {A}{B}... (or tokens). It then de-

fines \myArray as a macro with one parameter, such that \myArray{x} expands to give the xth braced

thing of this original list (the argument {x} itself is fed to a \numexpr by \myArray, and \myArr ⤸
ay expands in two steps to its output). With 0 as parameter, \myArray{0} returns the number M of

elements of the array so that the successive elements are \myArray{1}, ..., \myArray{M}.

\xintAssignArray \xintBezout {1000}{113}\to\Bez

will set \Bez{0} to 3, \Bez{1} to -20, \Bez{2} to 177, and \Bez{3} to 1: -20 × 1000 + 177 × 113 = 1.

This macro is incompatible with expansion-only contexts.

\xintAssignArray admits an optional parameter, for example \xintAssignArray [e] means that the

definitions of the macros will be made with \edef. The empty optional parameter (default) means

that definitions are done with \def. Other possibilities: [], [o], [oo], [f]. Contrarily to

\xintAssign one can not use the g here to make the definitions global. For this, one should rather

do \xintAssignArray within a group starting with \globaldefs 1.

6.24.
source

\xintDigitsOf

This is a synonym for \xintAssignArray, to be used to define an array giving all the digits of af N
given (positive, else the minus sign will be treated as first item) number.

\xintDigitsOf\xintiiPow {7}{500}\to\digits

106

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools , Examples, xint bundle

7500 has \digits{0}=423 digits, and the 123rd among them (starting from the most significant) is

\digits{123}=3.

6.25. \xintRelaxArray
\xintRelaxArray\myArray (globally) sets to \relax all macros which were defined by the previous

\xintAssignArray with \myArray as array macro.

107

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

7. Additional (old) examples with xinttools or xintexpr or both

.1 More examples with dummy variables 108

.2 Completely expandable prime test 109

.3 Another completely expandable prime test 110

.4 Miller-Rabin Pseudo-Primality expandably 112

.5 A table of factorizations 115

.6 Another table of primes 116

.7 Factorizing again . 118

.8 The Quick Sort algorithm illustrated 119

Note: xintexpr.sty automatically loads xinttools.sty.

The examples given here start to feel dated and are currently in need of some rewrite to better

illustrate newer features of the package.

7.1. More examples with dummy variables
These examples were first added to this manual at the time of the 1.1 release (2014/10/29).

Prime numbers are always cool

\xinttheiiexpr seq((seq((subs((x/:m)?{(m*m>x)?{1}{0}}{-1},m=2n+1))

??{break(0)}{omit}{break(1)},n=1++))?{x}{omit},

x=10001..[2]..10200)\relax

Prime numbers are always cool 10007, 10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091,

10093, 10099, 10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193

The syntax in this last example may look a bit involved (... and it is so I admit). First x/: ⤸
m computes x modulo m (this is the modulo with respect to floored division). The (x)?{yes}{no}

construct checks if x (which must be within parentheses) is true or false, i.e. non zero or zero.

It then executes either the yes or the no branch, the non chosen branch is not evaluated. Thus if

m divides x we are in the second (``false'') branch. This gives a -1. This -1 is the argument to a

?? branch which is of the type (y)??{y<0}{y=0}{y>0}, thus here the y<0, i.e., break(0) is chosen.

This 0 is thus given to another ? which consequently chooses omit, hence the number is not kept in

the list. The numbers which survive are the prime numbers.

The first Fibonacci number beyond |2^64|, |2^64|, and the index are respectively

\xinttheiiexpr subs(iterr(0,1;(@1>N)?{break(@1,N,i)}{@1+@2},i=1++),N=2^64)\relax.

The first Fibonacci number beyond 2^64, 2^64, and the index are respectively 19740274219868223167,

18446744073709551616, 94.

One more recursion:

\def\syr #1{\xinttheiiexpr

rseq(#1; (@<=1)?{break(i)}{odd(@)?{3@+1}{@//2}},i=0++)\relax}

The 3x+1 problem: \syr{231}\par

The 3x+1 problem: 231, 694, 347, 1042, 521, 1564, 782, 391, 1174, 587, 1762, 881, 2644, 1322, 661,

1984, 992, 496, 248, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91,

274, 137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780,

890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958,

479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051,

6154, 3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61,

184, 92, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1, 127

OK, a final one:

\def\syrMax #1{\xintiiexpr iterr(#1,#1;even(i)?

{(@2<=1)?{break(@1,i//2)}

{odd(@2)?{3@2+1}{@2//2}}}

{(@1>@2)?{@1}{@2}},i=0++)\relax }

With initial value 1161, the maximal intermediate value and the number of steps

needed to reach 1 are respectively \syrMax{1161}.\par

With initial value 1161, the maximal intermediate value and the number of steps needed to reach 1

are respectively 190996, 181.

Look at the Brent-Salamin algorithm implementation for a more interesting recursion.

108

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

7.2. Completely expandable prime test
Let us now construct a completely expandable macro which returns 1 if its given input is prime and

0 if not:

\def\remainder #1#2{\the\numexpr #1-(#1/#2)*#2\relax }

\def\IsPrime #1%

{\xintANDof {\xintApply {\remainder {#1}}{\xintSeq {2}{\xintiiSqrt{#1}}}}}

This uses \xintiiSqrt and assumes its input is at least 5. Rather than xint's own \xintiiRem

we used a quicker \numexpr expression as we are dealing with short integers. Also we used \xint-

ANDof which will return 1 only if all the items are non-zero. The macro is a bit silly with an even

input, ok, let's enhance it to detect an even input:

\def\IsPrime #1%

{\xintiiifOdd {#1}

{\xintANDof % odd case

{\xintApply {\remainder {#1}}

{\xintSeq [2]{3}{\xintiiSqrt{#1}}}%

}%

}

{\xintifEq {#1}{2}{1}{0}}%

}

We used the xint expandable tests (on big integers or fractions) in order for \IsPrime to be

f-expandable.
Our integers are short, but without \expandafter's with \@firstoftwo, or some other related

techniques, direct use of \ifnum..\fi tests is dangerous. So to make the macro more efficient we

are going to use the expandable tests provided by the package etoolbox36. The macro becomes:

\def\IsPrime #1%

{\ifnumodd {#1}

{\xintANDof % odd case

{\xintApply {\remainder {#1}}{\xintSeq [2]{3}{\xintiiSqrt{#1}}}}}

{\ifnumequal {#1}{2}{1}{0}}}

In the odd case however we have to assume the integer is at least 7, as \xintSeq generates an

empty list if #1=3 or 5, and \xintANDof returns 1 when supplied an empty list. Let us ease up a bit

\xintANDof's work by letting it work on only 0's and 1's. We could use:

\def\IsNotDivisibleBy #1#2%

{\ifnum\numexpr #1-(#1/#2)*#2=0 \expandafter 0\else \expandafter1\fi}

where the \expandafter's are crucial for this macro to be f-expandable and hence work within the

applied \xintANDof. Anyhow, now that we have loaded etoolbox, we might as well use:

\newcommand{\IsNotDivisibleBy}[2]{\ifnumequal{#1-(#1/#2)*#2}{0}{0}{1}}

Let us enhance our prime macro to work also on the small primes:

\newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not

{\ifnumodd {#1}

{\ifnumless {#1}{8}

{\ifnumequal{#1}{1}{0}{1}}% 3,5,7 are primes

{\xintANDof

{\xintApply

{ \IsNotDivisibleBy {#1}}{\xintSeq [2]{3}{\xintiiSqrt{#1}}}}%

}}% END OF THE ODD BRANCH

{\ifnumequal {#1}{2}{1}{0}}% EVEN BRANCH

}

The input is still assumed positive. There is a deliberate blank before \IsNotDivisibleBy to

use this feature of \xintApply: a space stops the expansion of the applied macro (and disappears).

This expansion will be done by \xintANDof, which has been designed to skip everything as soon as

36 http://ctan.org/pkg/etoolbox

109

http://ctan.org/pkg/etoolbox
http://ctan.org/pkg/etoolbox
http://ctan.org/pkg/etoolbox

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

it finds a false (i.e. zero) input. This way, the efficiency is considerably improved.

We did generate via the \xintSeq too many potential divisors though. Later sections give two

variants: one with \xintiloop (subsection 7.3) which is still expandable and another one (sub-

section 7.6) which is a close variant of the \IsPrime code above but with the \xintFor loop, thus

breaking expandability. The xintiloop variant does not first evaluate the integer square root,

the xintFor variant still does. I did not compare their efficiencies.

Let us construct with this expandable primality test a table of the prime numbers up to 1000. We

need to count how many we have in order to know how many tab stops one shoud add in the last row.37

There is some subtlety for this last row. Turns out to be better to insert a \\ only when we know

for sure we are starting a new row; this is how we have designed the \OneCell macro. And for the

last row, there are many ways, we use again \xintApplyUnbraced but with a macro which gobbles its

argument and replaces it with a tabulation character. The \xintFor* macro would be more elegant

here.

\newcounter{primecount}

\newcounter{cellcount}

\newcommand{\NbOfColumns}{13}

\newcommand{\OneCell}[1]{%

\ifnumequal{\IsPrime{#1}}{1}

{\stepcounter{primecount}

\ifnumequal{\value{cellcount}}{\NbOfColumns}

{\\\setcounter{cellcount}{1}#1}

{&\stepcounter{cellcount}#1}%

} % was prime

{}% not a prime, nothing to do

}

\newcommand{\OneTab}[1]{&}

\begin{tabular}{|*{\NbOfColumns}{r}|}

\hline

2 \setcounter{cellcount}{1}\setcounter{primecount}{1}%

\xintApplyUnbraced \OneCell {\xintSeq [2]{3}{999}}%

\xintApplyUnbraced \OneTab

{\xintSeq [1]{1}{\the\numexpr\NbOfColumns-\value{cellcount}\relax}}%

\\

\hline

\end{tabular}

There are \arabic{primecount} prime numbers up to 1000.

The table has been put in float which appears on the following page. We had to be careful to use

in the last row \xintSeq with its optional argument [1] so as to not generate a decreasing sequence

from 1 to 0, but really an empty sequence in case the row turns out to already have all its cells

(which doesn't happen here but would with a number of columns dividing 168).

7.3. Another completely expandable prime test
The \IsPrime macro from subsection 7.2 checked expandably if a (short) integer was prime, here

is a partial rewrite using \xintiloop. We use the etoolbox expandable conditionals for conve-

nience, but not everywhere as \xintiloopindex can not be evaluated while being braced. This is

also the reason why \xintbreakiloopanddo is delimited, and the next macro \SmallestFactor which

returns the smallest prime factor examplifies that. One could write more efficient completely

expandable routines, the aim here was only to illustrate use of the general purpose \xintiloop. A

little table giving the first values of \SmallestFactor follows, its coding uses \xintFor, which

is described later; none of this uses count registers.

37 although a tabular row may have less tabs than in the preamble, there is a problem with the | vertical rule, if one does that.

110

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

2 3 5 7 11 13 17 19 23 29 31 37 41

43 47 53 59 61 67 71 73 79 83 89 97 101

103 107 109 113 127 131 137 139 149 151 157 163 167

173 179 181 191 193 197 199 211 223 227 229 233 239

241 251 257 263 269 271 277 281 283 293 307 311 313

317 331 337 347 349 353 359 367 373 379 383 389 397

401 409 419 421 431 433 439 443 449 457 461 463 467

479 487 491 499 503 509 521 523 541 547 557 563 569

571 577 587 593 599 601 607 613 617 619 631 641 643

647 653 659 661 673 677 683 691 701 709 719 727 733

739 743 751 757 761 769 773 787 797 809 811 821 823

827 829 839 853 857 859 863 877 881 883 887 907 911

919 929 937 941 947 953 967 971 977 983 991 997

There are 168 prime numbers up to 1000.

% clean up possible left-over mess from previous examples

\let\IsPrime\undefined \let\SmallestFactor\undefined

\newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not

{\ifnumodd {#1}

{\ifnumless {#1}{8}

{\ifnumequal{#1}{1}{0}{1}}% 3,5,7 are primes

{\if

\xintiloop [3+2]

\ifnum#1<\numexpr\xintiloopindex*\xintiloopindex\relax

\expandafter\xintbreakiloopanddo\expandafter1\expandafter.%

\fi

\ifnum#1=\numexpr (#1/\xintiloopindex)*\xintiloopindex\relax

\else

\repeat 00\expandafter0\else\expandafter1\fi

}%

}% END OF THE ODD BRANCH

{\ifnumequal {#1}{2}{1}{0}}% EVEN BRANCH

}%

\catcode`_ 11

\newcommand{\SmallestFactor}[1] % returns the smallest prime factor of #1>1

{\ifnumodd {#1}

{\ifnumless {#1}{8}

{#1}% 3,5,7 are primes

{\xintiloop [3+2]

\ifnum#1<\numexpr\xintiloopindex*\xintiloopindex\relax

\xint_afterfi{\xintbreakiloopanddo#1.}%

\fi

\ifnum#1=\numexpr (#1/\xintiloopindex)*\xintiloopindex\relax

\xint_afterfi{\expandafter\xintbreakiloopanddo\xintiloopindex.}%

\fi

\iftrue\repeat

}%

}% END OF THE ODD BRANCH

{2}% EVEN BRANCH

}%

\catcode`_ 8

{\centering

111

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

\begin{tabular}{|c|*{10}c|}

\hline

\xintFor #1 in {0,1,2,3,4,5,6,7,8,9}\do {&\bfseries #1}\\

\hline

\bfseries 0&--&--&2&3&2&5&2&7&2&3\\

\xintFor #1 in {1,2,3,4,5,6,7,8,9}\do

{\bfseries #1%

\xintFor #2 in {0,1,2,3,4,5,6,7,8,9}\do

{&\SmallestFactor{#1#2}}\\}%

\hline

\end{tabular}\par

}

0 1 2 3 4 5 6 7 8 9
0 -- -- 2 3 2 5 2 7 2 3

1 2 11 2 13 2 3 2 17 2 19

2 2 3 2 23 2 5 2 3 2 29

3 2 31 2 3 2 5 2 37 2 3

4 2 41 2 43 2 3 2 47 2 7

5 2 3 2 53 2 5 2 3 2 59

6 2 61 2 3 2 5 2 67 2 3

7 2 71 2 73 2 3 2 7 2 79

8 2 3 2 83 2 5 2 3 2 89

9 2 7 2 3 2 5 2 97 2 3

7.4. Miller-Rabin Pseudo-Primality expandably
The isPseudoPrime(n) is usable in \xintiiexpr-essions and establishes if its (positive) ar-

gument is a Miller-Rabin PseudoPrime to the bases 2, 3, 5, 7, 11, 13, 17. If this is true and

n < 341550071728321 (which has 15 digits) then n really is a prime number.

Similarly n = 3825123056546413051 (19 digits) is the smallest composite number which is a strong

pseudo prime for bases 2, 3, 5, 7, 11, 13, 17, 19 and 23. It is easy to extend the code below to in-

clude these additional tests (we could make the list of tested bases an argument too, now that I

think about it.)

For more information see

https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants_of_the_test

and

http://primes.utm.edu/prove/prove2_3.html

In particular, according to Jaeschke On strong pseudoprimes to several bases, Math. Comp., 61

(1993) 915-926, if n < 4, 759, 123, 141 it is enough to establish Rabin-Miller pseudo-primality

to bases a = 2, 7, 61 to prove that n is prime. This range is enough for TEX numbers and we could

then write a very fast expandable primality test for such numbers using only \numexpr. Left as an

exercise...

% I -------------------------------- Modular Exponentiation

% Computes x^m modulo n (with m non negative).

% We will always use it with 1 < x < n

%

% With xint 1.4 we should use ? and ?? (although in the case at hand ifsgn()

% and if() would be ok but I should not say that).

%

\xintdefiifunc powmod_a(x, m, n) :=

isone(m)?

% m=1, return x modulo n

{ x /: n }

112

https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants_of_the_test
http://primes.utm.edu/prove/prove2_3.html

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

% m > 1 test if odd or even and do recursive call

{ odd(m)? { x*sqr(powmod_a(x, m//2, n)) /: n }

{ sqr(powmod_a(x, m//2, n)) /: n }

}

;

\xintdefiifunc powmod(x, m, n) := (m)?{powmod_a(x, m, n)}{1};

%% Syntax used before xint 1.4:

% \xintdefiifunc powmod_a(x, m, n) :=

% ifone(m,

% % m=1, return x modulo n

% x /: n,

% % m > 1 test if odd or even and do recursive call

% if(odd(m), (x*sqr(powmod_a(x, m//2, n))) /: n,

% sqr(powmod_a(x, m//2, n)) /: n

%)

%);

% \xintdefiifunc powmod(x, m, n) := if(m, powmod_a(x, m, n), 1);

% II ------------------------------ Miller-Rabin compositeness witness

% n=2^k m + 1 with m odd and k at least 1

% Choose 1<x<n.

% compute y=x^m modulo n

% if equals 1 we can't say anything

% if equals n-1 we can't say anything

% else put j=1, and

% compute repeatedly the square, incrementing j by 1 each time,

% thus always we have y^{2^{j-1}}

% -> if at some point n-1 mod n found, we can't say anything and break out

% -> if however we never find n-1 mod n before reaching

% z=y^{2^{k-1}} with j=k

% we then have z^2=x^{n-1}.

% Suppose z is not -1 mod n. If z^2 is 1 mod n, then n can be prime only if

% z is 1 mod n, and we can go back up, until initial y, and we have already

% excluded y=1. Thus if z is not -1 mod n and z^2 is 1 then n is not prime.

% But if z^2 is not 1, then n is not prime by Fermat. Hence (z not -1 mod n)

% implies (n is composite). (Miller test)

% let's use again xintexpr indecipherable (except to author) syntax. Of course

% doing it with macros only would be faster.

% Here \xintdefiifunc is not usable because not compatible with iter, break, ...

% but \xintNewFunction comes to the rescue.

\xintNewFunction{isCompositeWitness}[4]{% x=#1, n=#2, m=#3, k=#4

subs((y==1)?{0}

{iter(y;(j==#4)?{break(!(@==#2-1))}

{(@==#2-1)?{break(0)}{sqr(@)/:#2}},j=1++)}

,y=powmod(#1,#3,#2))}

113

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

% added note (2018/03/07) it is possible in the above that m=#3 is never

% zero, so we should rather call powmod_a for a small gain, but I don't

% have time to re-read the code comments and settle this.

% III ------------------------------------- Strong Pseudo Primes

% cf

% http://oeis.org/A014233

% <http://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html>

% <http://mathworld.wolfram.com/StrongPseudoprime.html>

% check if positive integer <49 si a prime.

% 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

\def\IsVerySmallPrime #1%

{\ifnum#1=1 \xintdothis0\fi

\ifnum#1=2 \xintdothis1\fi

\ifnum#1=3 \xintdothis1\fi

\ifnum#1=5 \xintdothis1\fi

\ifnum#1=\numexpr (#1/2)*2\relax\xintdothis0\fi

\ifnum#1=\numexpr (#1/3)*3\relax\xintdothis0\fi

\ifnum#1=\numexpr (#1/5)*5\relax\xintdothis0\fi

\xintorthat 1}

\xintNewFunction{isPseudoPrime}[1]{% n = #1

(#1<49)?% use ? syntax to evaluate only what is needed

% prior to 1.4 we had \xintthe#1 here but the actual tokens represented

% by this #1 when isPseudoPrime() function expands have changed and

% the correct way is now \xintiieval{#1} to hand over explicit digits to

% the \IsVerySmallPrime macro.

{\IsVerySmallPrime{\xintiieval{#1}}}

{(even(#1))?

{0}

{subs(%

% L expands to two values m, k hence isCompositeWitness does get

% its four variables x, n, m, k

isCompositeWitness(2, #1, L)?

{0}%

{isCompositeWitness(3, #1, L)?

{0}%

{isCompositeWitness(5, #1, L)?

{0}%

{isCompositeWitness(7, #1, L)?

{0}%

% above enough for N<3215031751 hence all TeX numbers

{isCompositeWitness(11, #1, L)?

{0}%

% above enough for N<2152302898747, hence all 12-digits numbers

{isCompositeWitness(13, #1, L)?

{0}%

% above enough for N<3474749660383

{isCompositeWitness(17, #1, L)?

{0}%

114

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

% above enough for N<341550071728321

{1}%

}% not needed to comment-out end of lines spaces inside

}% \xintexpr but this is too much of a habit for me with TeX!

}% I left some after the ? characters.

}%

}%

}% this computes (m, k) such that n = 2^k m + 1, m odd, k>=1

, L=iter(#1//2;(even(@))?{@//2}{break(@,k)},k=1++))%

}%

}%

}

% if needed:

%\def\IsPseudoPrime #1{\xinttheiiexpr isPseudoPrime(#1)\relax}

\noindent The smallest prime number at least equal to 3141592653589 is

\xintiiexpr

seq(isPseudoPrime(3141592653589+n)?

{break(3141592653589+n)}{omit}, n=0++)\relax.

% we could not use 3141592653589++ syntax because it works only with TeX numbers

\par

The smallest prime number at least equal to 3141592653589 is 3141592653601.

7.5. A table of factorizations
As one more example with \xintiloop let us use an alignment to display the factorization of some

numbers. The loop will actually only play a minor rôle here, just handling the row index, the row

contents being almost entirely produced via a macro \factorize. The factorizing macro does not

use \xintiloop as it didn't appear to be the convenient tool. As \factorize will have to be used

on \xintiloopindex, it has been defined as a delimited macro.

To spare some fractions of a second in the compilation time of this document (which has many many

other things to do), 2147483629 and 2147483647, which turn out to be prime numbers, are not given

to factorize but just typeset directly; this illustrates use of \xintiloopskiptonext.

The code next generates a table which has been made into a float appearing on page 117. Here is

now the code for factorization; the conditionals use the package provided \xint_firstoftwo and \ ⤸
xint_secondoftwo, one could have employed rather LATEX's own \@firstoftwo and \@secondoftwo, or,

simpler still in LATEX context, the \ifnumequal, \ifnumless ..., utilities from the package eto ⤸
olbox which do exactly that under the hood. Only TEX acceptable numbers are treated here, but

it would be easy to make a translation and use the xint macros, thus extending the scope to big

numbers; naturally up to a cost in speed.

The reason for some strange looking expressions is to avoid arithmetic overflow.

\catcode`_ 11

\def\abortfactorize #1\xint_secondoftwo\fi #2#3{\fi}

\def\factorize #1.{\ifnum#1=1 \abortfactorize\fi

\ifnum\numexpr #1-2=\numexpr ((#1/2)-1)*2\relax

\expandafter\xint_firstoftwo

\else\expandafter\xint_secondoftwo

\fi

{2&\expandafter\factorize\the\numexpr#1/2.}%

{\factorize_b #1.3.}}%

115

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

\def\factorize_b #1.#2.{\ifnum#1=1 \abortfactorize\fi

\ifnum\numexpr #1-(#2-1)*#2<#2

#1\abortfactorize

\fi

\ifnum \numexpr #1-#2=\numexpr ((#1/#2)-1)*#2\relax

\expandafter\xint_firstoftwo

\else\expandafter\xint_secondoftwo

\fi

{#2&\expandafter\factorize_b\the\numexpr#1/#2.#2.}%

{\expandafter\factorize_b\the\numexpr #1\expandafter.%

\the\numexpr #2+2.}}%

\catcode`_ 8

\begin{figure*}[ht!]

\centering\phantomsection\label{floatfactorize}\normalcolor

\tabskip1ex

\centeredline{\vbox{\halign {\hfil\strut#\hfil&&\hfil#\hfil\cr\noalign{\hrule}

\xintiloop ["7FFFFFE0+1]

\expandafter\bfseries\xintiloopindex &

\ifnum\xintiloopindex="7FFFFFED

\number"7FFFFFED\cr\noalign{\hrule}

\expandafter\xintiloopskiptonext

\fi

\expandafter\factorize\xintiloopindex.\cr\noalign{\hrule}

\ifnum\xintiloopindex<"7FFFFFFE

\repeat

\bfseries \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule}

}}}

\centeredline{A table of factorizations}

\end{figure*}

7.6. Another table of primes
As a further example, let us dynamically generate a tabular with the first 50 prime numbers after

12345. First we need a macro to test if a (short) number is prime. Such a completely expand-

able macro was given in subsection 7.2, here we consider a variant which will be slightly more

efficient. This new \IsPrime has two parameters. The first one is a macro which it redefines to

expand to the result of the primality test applied to the second argument. For convenience we use

the etoolbox wrappers to various \ifnum tests, although here there isn't anymore the constraint

of complete expandability (but using explicit \if..\fi in tabulars has its quirks); equivalent

tests are provided by xint, but they have some overhead as they are able to deal with arbitrarily

big integers.

\def\IsPrime #1#2% #1=\Result, #2=tested number (assumed >0).

{\edef\TheNumber {\the\numexpr #2}% hence #2 may be a count or \numexpr.

\ifnumodd {\TheNumber}

{\ifnumgreater {\TheNumber}{1}

{\edef\ItsSquareRoot{\xintiiSqrt \TheNumber}%

\xintFor ##1 in {\xintintegers [3+2]}\do

{\ifnumgreater {##1}{\ItsSquareRoot} % ##1 is a \numexpr.

{\def#1{1}\xintBreakFor}

{}%

\ifnumequal {\TheNumber}{(\TheNumber/##1)*##1}

{\def#1{0}\xintBreakFor }

{}%

116

http://ctan.org/pkg/etoolbox

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

2147483616 2 2 2 2 2 3 2731 8191

2147483617 6733 318949

2147483618 2 7 367 417961

2147483619 3 3 23 353 29389

2147483620 2 2 5 4603 23327

2147483621 14741 145681

2147483622 2 3 17 467 45083

2147483623 79 967 28111

2147483624 2 2 2 11 13 1877171

2147483625 3 5 5 5 7 199 4111

2147483626 2 19 37 1527371

2147483627 47 53 862097

2147483628 2 2 3 3 59652323

2147483629 2147483629

2147483630 2 5 6553 32771

2147483631 3 137 263 19867

2147483632 2 2 2 2 7 73 262657

2147483633 5843 367531

2147483634 2 3 12097 29587

2147483635 5 11 337 115861

2147483636 2 2 536870909

2147483637 3 3 3 13 6118187

2147483638 2 2969 361651

2147483639 7 17 18046081

2147483640 2 2 2 3 5 29 43 113 127

2147483641 2699 795659

2147483642 2 23 46684427

2147483643 3 715827881

2147483644 2 2 233 1103 2089

2147483645 5 19 22605091

2147483646 2 3 3 7 11 31 151 331

2147483647 2147483647

A table of factorizations

}}

{\def#1{0}}}% 1 is not prime

{\ifnumequal {\TheNumber}{2}{\def#1{1}}{\def#1{0}}}%

}

As we used \xintFor inside a macro we had to double the # in its #1 parameter. Here is now the

code which creates the prime table (the table has been put in a float, which should be found on page

118):

\newcounter{primecount}

\newcounter{cellcount}

\begin{figure*}[ht!]

\centering

\begin{tabular}{|*{7}c|}

\hline

\setcounter{primecount}{0}\setcounter{cellcount}{0}%

\xintFor #1 in {\xintintegers [12345+2]} \do

% #1 is a \numexpr.

{\IsPrime\Result{#1}%

117

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

\ifnumgreater{\Result}{0}

{\stepcounter{primecount}%

\stepcounter{cellcount}%

\ifnumequal {\value{cellcount}}{7}

{\the#1 \\\setcounter{cellcount}{0}}

{\the#1 &}}

{}%

\ifnumequal {\value{primecount}}{50}

{\xintBreakForAndDo

{\multicolumn {6}{l|}{These are the first 50 primes after 12345.}\\}}

{}%

}\hline

\end{tabular}

\end{figure*}

12347 12373 12377 12379 12391 12401 12409

12413 12421 12433 12437 12451 12457 12473

12479 12487 12491 12497 12503 12511 12517

12527 12539 12541 12547 12553 12569 12577

12583 12589 12601 12611 12613 12619 12637

12641 12647 12653 12659 12671 12689 12697

12703 12713 12721 12739 12743 12757 12763

12781 These are the first 50 primes after 12345.

7.7. Factorizing again
Here is an f-expandable macro which computes the factors of an integer. It uses the xint macros

only.

\catcode`\@ 11

\let\factorize\relax

\newcommand\Factorize [1]

{\romannumeral0\expandafter\factorize\expandafter{\romannumeral-`0#1}}%

\newcommand\factorize [1]{\xintiiifOne{#1}{ 1}{\factors@a #1.{#1};}}%

\def\factors@a #1.{\xintiiifOdd{#1}

{\factors@c 3.#1.}%

{\expandafter\factors@b \expandafter1\expandafter.\romannumeral0\xinthalf{#1}.}}%

\def\factors@b #1.#2.{\xintiiifOne{#2}

{\factors@end {2, #1}}%

{\xintiiifOdd{#2}{\factors@c 3.#2.{2, #1}}%

{\expandafter\factors@b \the\numexpr #1+\@ne\expandafter.%

\romannumeral0\xinthalf{#2}.}}%

}%

\def\factors@c #1.#2.{%

\expandafter\factors@d\romannumeral0\xintiidivision {#2}{#1}{#1}{#2}%

}%

\def\factors@d #1#2#3#4{\xintiiifNotZero{#2}

{\xintiiifGt{#3}{#1}

{\factors@end {#4, 1}}% ultimate quotient is a prime with power 1

{\expandafter\factors@c\the\numexpr #3+\tw@.#4.}}%

{\factors@e 1.#3.#1.}%

}%

\def\factors@e #1.#2.#3.{\xintiiifOne{#3}

118

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

{\factors@end {#2, #1}}%

{\expandafter\factors@f\romannumeral0\xintiidivision {#3}{#2}{#1}{#2}{#3}}%

}%

\def\factors@f #1#2#3#4#5{\xintiiifNotZero{#2}

{\expandafter\factors@c\the\numexpr #4+\tw@.#5.{#4, #3}}%

{\expandafter\factors@e\the\numexpr #3+\@ne.#4.#1.}%

}%

\def\factors@end #1;{\xintlistwithsep{, }{\xintRevWithBraces {#1}}}%

\catcode`@ 12

The macro will be acceptably efficient only with numbers having somewhat small prime factors.

\Factorize{16246355912554185673266068721806243461403654781833}

16246355912554185673266068721806243461403654781833, 13, 5, 17, 8, 29, 5, 37, 6, 41, 4, 59, 6

It puts a little stress on the input save stack in order not be bothered with previously gathered

things.38

Its output is a comma separated list with the number first, then its prime factors with multi-

plicity. Let's produce something prettier:

\catcode`_ 11

\def\ShowFactors #1{\expandafter

\ShowFactors_a\romannumeral-`0\Factorize{#1},\relax,\relax,}

\def\ShowFactors_a #1,{#1=\ShowFactors_b}

\def\ShowFactors_b #1,#2,{\if\relax#1\else#1^{#2}\expandafter\ShowFactors_b\fi}

\catcode`_ 8

$$\ShowFactors{16246355912554185673266068721806243461403654781833}$$

16246355912554185673266068721806243461403654781833 = 135178295376414596

If we only considered small integers, we could write pure \numexpr methods which would be very

much faster (especially if we had a table of small primes prepared first) but still ridiculously

slow compared to any non expandable implementation, not to mention use of programming languages

directly accessing the CPU registers...

7.8. The Quick Sort algorithm illustrated
First a completely expandable macro which sorts a comma separated list of numbers.39

The \QSx macro expands its list argument, which may thus be a macro; its comma separated items

must expand to integers or decimal numbers or fractions or scientific notation as acceptable to

xintfrac, but if an item is itself some (expandable) macro, this macro will be expanded each time

the item is considered in a comparison test! This is actually good if the macro expands in one step

to the digits, and there are many many digits, but bad if the macro needs to do many computations.

Thus \QSx should be used with either explicit numbers or with items being macros expanding in one

step to the numbers (particularly if these numbers are very big).

If the interest is only in TEX integers, then one should replace the \xintifCmp macro with a

suitable conditional, possibly helped by tools such as \ifnumgreater, \ifnumequal and \ifnumles ⤸
s from etoolbox (LATEX only; I didn't see a direct equivalent to \xintifCmp.) Or, if we are dealing

with decimal numbers with at most four+four digits, then one should use suitable \ifdim tests.

Naturally this will boost consequently the speed, from having skipped all the overhead in parsing

fractions and scientific numbers as are acceptable by xintfrac macros, and subsequent treatment.

% THE QUICK SORT ALGORITHM EXPANDABLY

38 2015/11/18 I have not revisited this code for a long time, and perhaps I could improve it now with some new techniques.
39 The code in earlier versions of this manual handled inputs composed of braced items. I have switched to comma separated
inputs on the occasion of (link removed) The version here is like code 3 on (link removed) (which is about 3x faster than the
earlier code it replaced in this manual) with a modification to make it more efficient if the data has many repeated values. A faster
routine (for sorting hundreds of values) is provided as code 6 at the link mentioned in the footnote, it is based on Merge Sort,
but limited to inputs which one can handle as TEX dimensions.This code 6 could be extended to handle more general numbers,
as acceptable by xintfrac. I have also written a non expandable version, which is even faster, but this matters really only when
handling hundreds or rather thousands of values.

119

http://ctan.org/pkg/etoolbox

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

% \usepackage{xintfrac} in the preamble (latex)

\makeatletter

% use extra safe delimiters

\catcode`! 3 \catcode`? 3

\def\QSx {\romannumeral0\qsx }%

% first we check if empty list (else \qsx@finish will not find a comma)

\def\qsx #1{\expandafter\qsx@a\romannumeral-`0#1,!,?}%

\def\qsx@a #1{\ifx,#1\expandafter\qsx@abort\else

\expandafter\qsx@start\fi #1}%

\def\qsx@abort #1?{ }%

\def\qsx@start {\expandafter\qsx@finish\romannumeral0\qsx@b,}%

\def\qsx@finish ,#1{ #1}%

%

% we check if empty of single and if not pick up the first as Pivot:

\def\qsx@b ,#1#2,#3{\ifx?#3\xintdothis\qsx@empty\fi

\ifx!#3\xintdothis\qsx@single\fi

\xintorthat\qsx@separate {#1#2}{}{}{#1#2}#3}%

\def\qsx@empty #1#2#3#4#5{ }%

\def\qsx@single #1#2#3#4#5?{, #4}%

\def\qsx@separate #1#2#3#4#5#6,%

{%

\ifx!#5\expandafter\qsx@separate@done\fi

\xintifCmp {#5#6}{#4}%

\qsx@separate@appendtosmaller

\qsx@separate@appendtoequal

\qsx@separate@appendtogreater {#5#6}{#1}{#2}{#3}{#4}%

}%

%

\def\qsx@separate@appendtoequal #1#2{\qsx@separate {#2,#1}}%

\def\qsx@separate@appendtogreater #1#2#3{\qsx@separate {#2}{#3,#1}}%

\def\qsx@separate@appendtosmaller #1#2#3#4{\qsx@separate {#2}{#3}{#4,#1}}%

%

\def\qsx@separate@done\xintifCmp #1%

\qsx@separate@appendtosmaller

\qsx@separate@appendtoequal

\qsx@separate@appendtogreater #2#3#4#5#6#7?%

{%

\expandafter\qsx@f\expandafter {\romannumeral0\qsx@b #4,!,?}{\qsx@b #5,!,?}{#3}%

}%

%

\def\qsx@f #1#2#3{#2, #3#1}%

%

\catcode`! 12 \catcode`? 12

\makeatother

% EXAMPLE

\begingroup

\edef\z {\QSx {1.0, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}}

\meaning\z

\def\a {3.123456789123456789}\def\b {3.123456789123456788}

120

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

\def\c {3.123456789123456790}\def\d {3.123456789123456787}

\oodef\z {\QSx { \a, \b, \c, \d}}%

% The space before \a to let it not be expanded during the conversion from CSV

% values to List. The \oodef expands exactly twice (via a bunch of \expandafter's)

\meaning\z

\endgroup

macro:->0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,

1.8, 1.9, 2.0

macro:->\d , \b , \a , \c (the spaces after \d, etc... come from the use of the \meaning primi-

tive.)

The choice of pivot as first element is bad if the list is already almost sorted. Let's add a

variant which will pick up the pivot index randomly. The previous routine worked also internally

with comma separated lists, but for a change this one will use internally lists of braced items

(the initial conversion via \xintCSVtoList handles all potential spurious space problems).

% QuickSort expandably on comma separated values with random choice of pivots

% ====> Requires availability of \pdfuniformdeviate <====

% \usepackage{xintfrac, xinttools} in preamble

\makeatletter

\def\QSx {\romannumeral0\qsx }% This is a f-expandable macro.

% This converts from comma separated values on input and back on output.

% **** NOTE: these steps (and the other ones too, actually) are costly if input

% has thousands of items.

\def\qsx #1{\xintlistwithsep{, }%

{\expandafter\qsx@sort@a\expandafter{\romannumeral0\xintcsvtolist{#1}}}}%

%

% we check if empty or single or double and if not pick up the first as Pivot:

\def\qsx@sort@a #1%

{\expandafter\qsx@sort@b\expandafter{\romannumeral0\xintlength{#1}}{#1}}%

\def\qsx@sort@b #1{\ifcase #1

\expandafter\qsx@sort@empty

\or\expandafter\qsx@sort@single

\or\expandafter\qsx@sort@double

\else\expandafter\qsx@sort@c\fi {#1}}%

\def\qsx@sort@empty #1#2{ }%

\def\qsx@sort@single #1#2{#2}%

\catcode`_ 11

\def\qsx@sort@double #1#2{\xintifGt #2{\xint_exchangetwo_keepbraces}{}#2}%

\catcode`_ 8

\def\qsx@sort@c #1#2{%

\expandafter\qsx@sort@sep@a\expandafter

{\romannumeral0\xintnthelt{\pdfuniformdeviate #1+\@ne}{#2}}#2?}%

\def\qsx@sort@sep@a #1{\qsx@sort@sep@loop {}{}{}{#1}}%

\def\qsx@sort@sep@loop #1#2#3#4#5%

{%

\ifx?#5\expandafter\qsx@sort@sep@done\fi

\xintifCmp {#5}{#4}%

\qsx@sort@sep@appendtosmaller

\qsx@sort@sep@appendtoequal

\qsx@sort@sep@appendtogreater {#5}{#1}{#2}{#3}{#4}%

}%

%

\def\qsx@sort@sep@appendtoequal #1#2{\qsx@sort@sep@loop {#2{#1}}}%

121

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

\def\qsx@sort@sep@appendtogreater #1#2#3{\qsx@sort@sep@loop {#2}{#3{#1}}}%

\def\qsx@sort@sep@appendtosmaller #1#2#3#4{\qsx@sort@sep@loop {#2}{#3}{#4{#1}}}%

%

\def\qsx@sort@sep@done\xintifCmp #1%

\qsx@sort@sep@appendtosmaller

\qsx@sort@sep@appendtoequal

\qsx@sort@sep@appendtogreater #2#3#4#5#6%

{%

\expandafter\qsx@sort@recurse\expandafter

{\romannumeral0\qsx@sort@a {#4}}{\qsx@sort@a {#5}}{#3}%

}%

%

\def\qsx@sort@recurse #1#2#3{#2#3#1}%

%

\makeatother

% EXAMPLES

\begingroup

\edef\z {\QSx {1.0, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}}

\meaning\z

\def\a {3.123456789123456789}\def\b {3.123456789123456788}

\def\c {3.123456789123456790}\def\d {3.123456789123456787}

\oodef\z {\QSx { \a, \b, \c, \d}}%

% The space before \a to let it not be expanded during the conversion from CSV

% values to List. The \oodef expands exactly twice (via a bunch of \expandafter's)

\meaning\z

\def\somenumbers{%

3997.6421, 8809.9358, 1805.4976, 5673.6478, 3179.1328, 1425.4503, 4417.7691,

2166.9040, 9279.7159, 3797.6992, 8057.1926, 2971.9166, 9372.2699, 9128.4052,

1228.0931, 3859.5459, 8561.7670, 2949.6929, 3512.1873, 1698.3952, 5282.9359,

1055.2154, 8760.8428, 7543.6015, 4934.4302, 7526.2729, 6246.0052, 9512.4667,

7423.1124, 5601.8436, 4433.5361, 9970.4849, 1519.3302, 7944.4953, 4910.7662,

3679.1515, 8167.6824, 2644.4325, 8239.4799, 4595.1908, 1560.2458, 6098.9677,

3116.3850, 9130.5298, 3236.2895, 3177.6830, 5373.1193, 5118.4922, 2743.8513,

8008.5975, 4189.2614, 1883.2764, 9090.9641, 2625.5400, 2899.3257, 9157.1094,

8048.4216, 3875.6233, 5684.3375, 8399.4277, 4528.5308, 6926.7729, 6941.6278,

9745.4137, 1875.1205, 2755.0443, 9161.1524, 9491.1593, 8857.3519, 4290.0451,

2382.4218, 3678.2963, 5647.0379, 1528.7301, 2627.8957, 9007.9860, 1988.5417,

2405.1911, 5065.8063, 5856.2141, 8989.8105, 9349.7840, 9970.3013, 8105.4062,

3041.7779, 5058.0480, 8165.0721, 9637.7196, 1795.0894, 7275.3838, 5997.0429,

7562.6481, 8084.0163, 3481.6319, 8078.8512, 2983.7624, 3925.4026, 4931.5812,

1323.1517, 6253.0945}%

\oodef\z {\QSx \somenumbers}% produced as a comma+space separated list

% black magic as workaround to the shrinkability of spaces in last line...

\hsize 87\fontcharwd\font`0

\lccode`~=32

\lowercase{\def~}{\discretionary{}{}{\kern\fontcharwd\font`0}}\catcode32 13

\noindent\scantokens\expandafter{\meaning\z}\par

122

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

\endgroup

macro:->0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,

1.8, 1.9, 2.0

macro:->\d , \b , \a , \c

macro:->1055.2154, 1228.0931, 1323.1517, 1425.4503, 1519.3302, 1528.7301, 1560.2458, 1698.3952,

1795.0894, 1805.4976, 1875.1205, 1883.2764, 1988.5417, 2166.9040, 2382.4218, 2405.1911,

2625.5400, 2627.8957, 2644.4325, 2743.8513, 2755.0443, 2899.3257, 2949.6929, 2971.9166,

2983.7624, 3041.7779, 3116.3850, 3177.6830, 3179.1328, 3236.2895, 3481.6319, 3512.1873,

3678.2963, 3679.1515, 3797.6992, 3859.5459, 3875.6233, 3925.4026, 3997.6421, 4189.2614,

4290.0451, 4417.7691, 4433.5361, 4528.5308, 4595.1908, 4910.7662, 4931.5812, 4934.4302,

5058.0480, 5065.8063, 5118.4922, 5282.9359, 5373.1193, 5601.8436, 5647.0379, 5673.6478,

5684.3375, 5856.2141, 5997.0429, 6098.9677, 6246.0052, 6253.0945, 6926.7729, 6941.6278,

7275.3838, 7423.1124, 7526.2729, 7543.6015, 7562.6481, 7944.4953, 8008.5975, 8048.4216,

8057.1926, 8078.8512, 8084.0163, 8105.4062, 8165.0721, 8167.6824, 8239.4799, 8399.4277,

8561.7670, 8760.8428, 8809.9358, 8857.3519, 8989.8105, 9007.9860, 9090.9641, 9128.4052,

9130.5298, 9157.1094, 9161.1524, 9279.7159, 9349.7840, 9372.2699, 9491.1593, 9512.4667,

9637.7196, 9745.4137, 9970.3013, 9970.4849

All the previous examples were with numbers which could have been handled via \ifdim tests rather

than the \xintifCmp macro from xintfrac; using \ifdim tests would naturally be faster. Even

faster routine is code 6 at (link removed) which uses \pdfescapestring and a Merge Sort algorithm.

We then turn to a graphical illustration of the algorithm.40 For simplicity the pivot is always

chosen as the first list item. Then we also give a variant which picks up the last item as pivot.

% in LaTeX preamble:

% \usepackage{xintfrac, xinttools}

% \usepackage{color}

% or, when using Plain TeX:

% \input xintfrac.sty \input xinttools.sty

% \input color.tex

%

% Color definitions

\definecolor{LEFT}{RGB}{216,195,88}

\definecolor{RIGHT}{RGB}{208,231,153}

\definecolor{INERT}{RGB}{199,200,194}

\definecolor{INERTpiv}{RGB}{237,237,237}

\definecolor{PIVOT}{RGB}{109,8,57}

% Start of macro defintions

\makeatletter

% \catcode`? 3 % a bit too paranoid. Normal ? will do.

%

% argument will never be empty

\def\QS@cmp@a #1{\QS@cmp@b #1??}%

\def\QS@cmp@b #1{\noexpand\QS@sep@A\@ne{#1}\QS@cmp@d {#1}}%

\def\QS@cmp@d #1#2{\ifx ?#2\expandafter\QS@cmp@done\fi

\xintifCmp {#1}{#2}\tw@\@ne\z@{#2}\QS@cmp@d {#1}}%

\def\QS@cmp@done #1?{?}%

%

\def\QS@sep@A #1?{\QSLr\QS@sep@L #1\thr@@?#1\thr@@?#1\thr@@?}%

\def\QS@sep@L #1#2{\ifcase #1{#2}\or\or\else

\expandafter\QS@sep@I@start\fi \QS@sep@L}%

40 I have rewritten (2015/11/21) the routine to do only once (and not thrice) the needed calls to \xintifCmp, up to the price of
one additional \edef, although due to the context execution time on our side is not an issue and moreover is anyhow overwhelmed
by the TikZ’s activities. Simultaneously I have updated the code. The variant with the choice of pivot on the right has more
overhead: the reason is simply that we do not convert the data into an array, but maintain a list of tokens with self-reorganizing
delimiters.

123

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

\def\QS@sep@I@start\QS@sep@L {\noexpand\empty?\QSIr\QS@sep@I}%

\def\QS@sep@I #1#2{\ifcase#1\or{#2}\or\else\expandafter\QS@sep@R@start\fi\QS@sep@I}%

\def\QS@sep@R@start\QS@sep@I {\noexpand\empty?\QSRr\QS@sep@R}%

\def\QS@sep@R #1#2{\ifcase#1\or\or{#2}\else\expandafter\QS@sep@done\fi\QS@sep@R}%

\def\QS@sep@done\QS@sep@R {\noexpand\empty?}%

%

\def\QS@loop {%

\xintloop

% pivot phase

\def\QS@pivotcount{0}%

\let\QSLr\DecoLEFTwithPivot \let\QSIr \DecoINERT

\let\QSRr\DecoRIGHTwithPivot \let\QSIrr\DecoINERT

\centerline{\QS@list}%

% sorting phase

\ifnum\QS@pivotcount>\z@

\def\QSLr {\QS@cmp@a}\def\QSRr {\QS@cmp@a}%

\def\QSIr {\QSIrr}\let\QSIrr\relax

\edef\QS@list{\QS@list}% compare

\let\QSLr\relax\let\QSRr\relax\let\QSIr\relax

\edef\QS@list{\QS@list}% separate

\def\QSLr ##1##2?{\ifx\empty##1\else\noexpand \QSLr {{##1}##2}\fi}%

\def\QSIr ##1##2?{\ifx\empty##1\else\noexpand \QSIr {{##1}##2}\fi}%

\def\QSRr ##1##2?{\ifx\empty##1\else\noexpand \QSRr {{##1}##2}\fi}%

\edef\QS@list{\QS@list}% gather

\let\QSLr\DecoLEFT \let\QSRr\DecoRIGHT

\let\QSIr\DecoINERTwithPivot \let\QSIrr\DecoINERT

\centerline{\QS@list}%

\repeat }%

%

% \xintFor* loops handle gracefully empty lists.

\def\DecoLEFT #1{\xintFor* ##1 in {#1} \do {\colorbox{LEFT}{##1}}}%

\def\DecoINERT #1{\xintFor* ##1 in {#1} \do {\colorbox{INERT}{##1}}}%

\def\DecoRIGHT #1{\xintFor* ##1 in {#1} \do {\colorbox{RIGHT}{##1}}}%

\def\DecoPivot #1{\begingroup

\color{PIVOT}\advance\fboxsep-\fboxrule\fbox{#1}\endgroup}%

%

\def\DecoLEFTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForFirst {\DecoPivot {##1}}{\colorbox{LEFT}{##1}}}}%

\def\DecoINERTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForFirst {\colorbox{INERTpiv}{##1}}{\colorbox{INERT}{##1}}}}%

\def\DecoRIGHTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForFirst {\DecoPivot {##1}}{\colorbox{RIGHT}{##1}}}}%

%

\def\QuickSort #1{% warning: not compatible with empty #1.

% initialize, doing conversion from comma separated values

% to a list of braced items

\edef\QS@list{\noexpand\QSRr{\xintCSVtoList{#1}}}%

% may \edef's are to follow anyhow

% earlier I did a first drawing of the list, here with the color of RIGHT elements,

124

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

% but the color should have been for example white, anyway I drop this first line

%\let\QSRr\DecoRIGHT

%\par\centerline{\QS@list}%

%

% loop as many times as needed

\QS@loop }%

%

% \catcode`? 12 % in case we had used a funny ? as delimiter.

\makeatother

%% End of macro definitions.

%% Start of Example

\begingroup\offinterlineskip

\small

% \QuickSort {1.0, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

% 1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}

% \medskip

% with repeated values

\QuickSort {1.0, 0.5, 0.3, 0.8, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 0.3, 1.6, 0.6, 0.3, 0.8, 0.2, 0.8, 0.7, 1.2}

\endgroup

1.0 0.5 0.3 0.8 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 0.3 1.6 0.6 0.3 0.8 0.2 0.8 0.7 1.2

0.5 0.3 0.8 0.4 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.0 1.5 1.8 2.0 1.7 1.2 1.4 1.3 1.1 1.6 1.2

0.5 0.3 0.8 0.4 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.0 1.5 1.8 2.0 1.7 1.2 1.4 1.3 1.1 1.6 1.2

0.3 0.4 0.3 0.3 0.2 0.5 0.8 0.7 0.6 0.8 0.8 0.7 1.0 1.2 1.4 1.3 1.1 1.2 1.5 1.8 2.0 1.7 1.6

0.3 0.4 0.3 0.3 0.2 0.5 0.8 0.7 0.6 0.8 0.8 0.7 1.0 1.2 1.4 1.3 1.1 1.2 1.5 1.8 2.0 1.7 1.6

0.2 0.3 0.3 0.3 0.4 0.5 0.7 0.6 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.4 1.3 1.5 1.7 1.6 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.7 0.6 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.4 1.3 1.5 1.7 1.6 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

Here is the variant which always picks the pivot as the rightmost element.

\makeatletter

%

\def\QS@cmp@a #1{\noexpand\QS@sep@A\expandafter\QS@cmp@d\expandafter

{\romannumeral0\xintnthelt{-1}{#1}}#1??}%

%

\def\DecoLEFTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForLast {\DecoPivot {##1}}{\colorbox{LEFT}{##1}}}}

\def\DecoINERTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForLast {\colorbox{INERTpiv}{##1}}{\colorbox{INERT}{##1}}}}

\def\DecoRIGHTwithPivot #1{\xdef\QS@pivotcount{\the\numexpr\QS@pivotcount+\@ne}%

\xintFor* ##1 in {#1} \do

{\xintifForLast {\DecoPivot {##1}}{\colorbox{RIGHT}{##1}}}}

\def\QuickSort #1{%

% initialize, doing conversion from comma separated values

% to a list of braced items

\edef\QS@list{\noexpand\QSLr {\xintCSVtoList{#1}}}%

% many \edef's are to follow anyhow

%

% loop as many times as needed

125

TOC
TOC, Start here, xintexpr, xintexpr (old doc), xinttrig, xintlog, xinttools, Examples , xint bundle

\QS@loop }%

\makeatother

\begingroup\offinterlineskip

\small

% \QuickSort {1.0, 0.5, 0.3, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

% 1.3, 1.1, 0.7, 1.6, 0.6, 0.9, 0.8, 0.2, 0.1, 1.9}

% \medskip

% with repeated values

\QuickSort {1.0, 0.5, 0.3, 0.8, 1.5, 1.8, 2.0, 1.7, 0.4, 1.2, 1.4,

1.3, 1.1, 0.7, 0.3, 1.6, 0.6, 0.3, 0.8, 0.2, 0.8, 0.7, 1.2}

\endgroup

1.0 0.5 0.3 0.8 1.5 1.8 2.0 1.7 0.4 1.2 1.4 1.3 1.1 0.7 0.3 1.6 0.6 0.3 0.8 0.2 0.8 0.7 1.2

1.0 0.5 0.3 0.8 0.4 1.1 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.2 1.2 1.5 1.8 2.0 1.7 1.4 1.3 1.6

1.0 0.5 0.3 0.8 0.4 1.1 0.7 0.3 0.6 0.3 0.8 0.2 0.8 0.7 1.2 1.2 1.5 1.8 2.0 1.7 1.4 1.3 1.6

0.5 0.3 0.4 0.3 0.6 0.3 0.2 0.7 0.7 1.0 0.8 1.1 0.8 0.8 1.2 1.2 1.5 1.4 1.3 1.6 1.8 2.0 1.7

0.5 0.3 0.4 0.3 0.6 0.3 0.2 0.7 0.7 1.0 0.8 1.1 0.8 0.8 1.2 1.2 1.5 1.4 1.3 1.6 1.8 2.0 1.7

0.2 0.5 0.3 0.4 0.3 0.6 0.3 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.5 1.4 1.6 1.7 1.8 2.0

0.2 0.5 0.3 0.4 0.3 0.6 0.3 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.5 1.4 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.5 0.4 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

0.2 0.3 0.3 0.3 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.8 1.0 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.0

The choice of the first or last item as pivot is not a good one as nearly ordered lists will

take quadratic time. But for explaining the algorithm via a graphical interpretation, it is not

that bad. If one wanted to pick up the pivot randomly, the routine would have to be substantially

rewritten: in particular the \Deco..withPivot macros need to know where the pivot is, and cur-

rently this is implemented by using either \xintifForFirst or \xintifForLast.

126

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

Part II.
The macro layer for expandable
computations: xintcore, xint, xint-
frac, and some extras

WARNING !

The documentation is getting old, and is in need of rewrites for many sections, particularly

for examples.

We do try to keep updated the description of macros provided by the packages.

8 The xint bundle . 127

9 Macros of the xintkernel package . 142

10 Macros of the xintcore package . 146

11 Macros of the xint package . 151

12 Macros of the xintfrac package . 163

13 Macros of the xintbinhex package . 193

14 Macros of the xintgcd package . 198

15 Macros of the xintseries package . 200

16 Macros of the xintcfrac package . 216

8. The xint bundle

.1 Characteristics . 127

.2 Floating point evaluations 129

.3 Expansion matters . 130

.4 Input formats for macros. 132

.5 Output formats of macros 134

.6 Count registers and variables 134

.7 Dimension registers and variables 135

.8 \ifcase, \ifnum, ... constructs 136

.9 No variable declarations are needed 137

.10 Possible syntax errors to avoid 137

.11 Error messages . 138

.12 Package namespace, catcodes 139

.13 Origins of the package 140

8.1. Characteristics

The main characteristics are:

1. exact algebra on ``big numbers'', integers as well as fractions,

127

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

2. floating point variants with user-chosen precision,

3. the computational macros are compatible with expansion-only context,

4. the bundle comes with parsers (integer-only, or handling fractions, or doing floating

point computations) of infix operations implementing beyond infix operations extra fea-

tures such as dummy variables.

Since 1.2 ``big numbers'' must have less than about 19950 digits: the maximal number of

digits for addition is at 19968 digits, and it is 19959 for multiplication. The reasonable

range of use of the package is with numbers of up to a few hundred digits.41

TEX does not know off-hand how to print on the page such very long numbers, see subsection 1.6.

Integers with only 10 digits and starting with a 3 already exceed the TEX bound; and TEX does not have

a native processing of floating point numbers (multiplication by a decimal number of a dimension

register is allowed --- this is used for example by the pgf basic math engine.)

TEX elementary operations on numbers are done via the non-expandable \advance, \multiply, and

\divide assignments. This was changed with 𝜀-TEX's \numexpr which does expandable computations

using standard infix notations with TEX integers. But 𝜀-TEX did not modify the TEX bound on accept-

able integers, and did not add floating point support.

The bigintcalc package by Heiko Oberdiek provided expandable macros (using some of \numexpr

possibilities, when available) on arbitrarily big integers, beyond the TEX bound. It does not

provide an expression parser.42 xint did it again using more of \numexpr for higher speed, and

in a later evolution added handling of exact fractions, of scientific numbers, and an expression

parser. Arbitrary precision floating points operations were added as a derivative, and not part

of the initial design goal.

The concept of signed infinities, signed zeroes, NaN's, error traps...,43 have not been imple-

mented, only the notion of `scientific notation with a given number of significant figures'.44

The LATEX3 project has implemented expandably floating-point computations with 16 significant

figures (l3fp), including functions such as exp, log, sine and cosine.45

More directly related to the xint bundle there is the l3bigint package, also devoted to big

integers and in development a.t.t.o.w (2015/10/09, no division yet). It is part of the exper-

imental trunk of the LATEX3 Project and provides an expression parser for expandable arithmetic

with big integers. Its author Bruno Le Floch succeeded brilliantly into implementing expandably

the Karatsuba multiplication algorithm and he achieves sub-quadratic growth for the computation
time. This shows up very clearly with numbers having thousands of digits, up to the maximum which

a.t.t.o.w is at 8192 digits.

The l3bigint multiplication from late 2015 is observed to be roughly 3x--4x faster than the one

from \xintiiexpr in the range of 4000 to 5000 digits integers, and isn't far from being 9x faster

at 8000 digits. On the other hand \xintiiexpr's multiplication is found to be on average roughly

41 For example multiplication of integers having from 50 to 100 digits takes roughly of the order of the millisecond on a 2012
desktop computer. I compared this to using Python3: using timeit module on a wrapper defined as return w*z with random
integers of 100 digits, I observe on the same computer a computation time of roughly 4.10-7s per call. And with return str(w* ⤸
z) then this becomes more like 16.10-7s per call. And with return str(int(W)*int(Z)) where W and Z are strings, this becomes
about 26.10-7s (I am deliberately ignoring Python’s Decimal module here...) Anyway, my sentence from earlier version of this
documentation: this is, I guess, at least about 1000 times slower than what can be expected with any reasonable programming
language, is about right. I then added: nevertheless as compilation of a typical LATEX document already takes of the order of
seconds and even dozens of seconds for long ones, this leaves room for reasonably many computations via xintexpr or via direct
use of the macros of xint/xintfrac. 42 One can currently use package bnumexpr to associate the bigintcalc macros with an
expression parser. This may be unavailable in future if bnumexpr becomes more tightly associated with future evolutions or variants
of xintcore. EDIT: still possible as of bnumexpr 1.6 2025/09/01. 43 The latter exist as work-in-progress for some time in the
source code. 44 Multiplication of two floats with P=\xinttheDigits digits is first done exactly then rounded to P digits, rather
than using a specially tailored multiplication for floating point numbers which would be more efficient (it is a waste to evaluate
fully the multiplication result with 2P or 2P-1 digits.) 45 at the time of writing (2014/10/28) the l3fp (exactly represented)
floating point numbers have their exponents limited to ±9999.

128

http://mirrors.ctan.org/graphics/pgf/base
https://ctan.org/pkg/bigintcalc
https://ctan.org/pkg/l3kernel
https://github.com/latex3/latex3/tree/main/l3trial/l3bigint
http://latex-project.org
https://github.com/latex3/latex3/tree/main/l3trial/l3bigint
https://ctan.org/pkg/bnumexpr
https://ctan.org/pkg/bnumexpr
https://ctan.org/pkg/l3kernel

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

2.5x faster than l3bigint's for numbers up to 100 digits and the two packages achieve about the

same speed at 900 digits: but each such multiplication of numbers of 900 digits costs about one

or two tenths of a second on a 2012 desktop computer, whereas the order of magnitude is rather the

ms for numbers with 50--100 digits.46

Even with the superior l3bigint Karatsuba multiplication it takes about 3.5s on this 2012 desk-

top computer for a single multiplication of two 5000-digits numbers. Hence it is not possible

to do routinely such computations in a document. I have long been thinking that without the ex-

pandability constraint much higher speeds could be achieved, but perhaps I have not given enough

thought to sustain that optimistic stance.47

I remain of the opinion that if one really wants to do computations with thousands of digits,

one should drop the expandability requirement. Indeed, as clearly demonstrated long ago by the

pi computing file by D. Roegel one can program TEX to compute with many digits at a much higher

speed than what xint achieves: but, direct access to memory storage in one form or another seems

a necessity for this kind of speed and one has to renounce at the complete expandability.48

8.2. Floating point evaluations
Floating point macros are provided by package xintfrac to work with a given arbitrary precision P.

The default value is P = 16 meaning that the significands of the produced (non-zero) numbers have

16 decimal digits. The syntax to set the precision to P is

\xintDigits:=P\relax

The value is local to the group or environment (if using LATEX). To query the current value use

\xinttheDigits.

Most floating point macros accept an optional first argument [P] which then sets the target

precision and replaces the \xintDigits assigned value (the [P] must be repeated if the arguments

are themselves xintfrac macros with arguments of their own.) In this section P refers to the

prevailing \xinttheDigits float precision or to the target precision set in this way as an optional

argument.

\xintfloatexpr[Q]...\relax also admits an optional argument [Q] but it has an altogether dif-

ferent meaning: the computations are always done with the prevailing \xinttheDigits precision

and the optional argument Q is used for the final rounding. This makes sense only if Q<\xinttheDi ⤸
gits and is intended to clean up the result from dubious last digits (when Q<0 it indicates rather

by how many digits one should reduce the mantissa lengths via a final rounding).

The IEEE 75449 requirement of correct rounding for addition, subtraction, multiplication,

division and square root is achieved (in arbitrary precision) by the macros of xintfrac hence

also by the infix operators +, -, *, /.

This means that for operands given with at most P significant digits (and arbitrary expo-

nents) the output coincides exactly with the rounding of the exact theoretical result (barring

overflow or underflow).
Due to a typographical oversight, this documentation (up to 1.2j) adjoined ^ and ** to the above list of infix

operators. But as is explained in subsection 12.97, what is guaranteed regarding integer powers is an error of at
most 0.52ulp, not the correct rounding. Half-integer powers are computed as square roots of integer powers.

The rounding mode is ``round to nearest, ties away from zero''. It is not customizable.

Currently xintfrac has no notion of NaNs or signed infinities or signed zeroes, but this is

intended for the future.

46 I have tested this again on 2016/12/19, but the macros have not changed on the l3bigint side and barely on the xintcore
side, hence I got again the same results. . . 47 The apnum package implements (non-expandably) arbitrary precision fixed point
algebra and (v1.6) functions exp, log, sqrt, the trigonometrical direct and inverse functions. 48 The LuaTEX project possibly
makes endeavours such as xint appear even more insane that they are, in truth: xint is able to handle fast enough computations
involving numbers with less than one hundred digits and brings this to all engines.

129

https://github.com/latex3/latex3/tree/main/l3trial/l3bigint
https://github.com/latex3/latex3/tree/main/l3trial/l3bigint
https://ctan.org/pkg/pi
https://github.com/latex3/latex3/tree/main/l3trial/l3bigint
https://ctan.org/pkg/apnum

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

Since release 1.2f, square root extraction achieves correct rounding in arbitrary precision.

See xintlog for fractional powers and xinttrig for trigonometrical functions.

The maximal floating point decimal exponent is currently 2147483647 which is the maximal number

handled by TEX. The minimal exponent is its opposite. But this means that overflow or underflow

are detected only via low-level \numexpr arithmetic overflows which are basically un-recoverable.

Besides there are some border effects as the routines need to add or subtract lengths of numbers

from exponents, possibly triggering the low-level overflows. In the future not only the Precision

but also the maximal and minimal exponents Emin and Emax will be specifiable by the user.

Since 1.2f, the float macros round their inputs to the target precision P before further pro-

cessing. Formerly, the initial rounding was done to P+2 digits (and at least P+3 for the power

operation.)

The more ambitious model would be for the computing macros to obey the intrinsic precision of

their inputs, i.e. to compute the correct rounding to P digits of the exact mathematical result

corresponding to inputs allowed to have their own higher precision.50 This would be feasible by

xintfrac which after all knows how to compute exactly, but I have for the time being decided that

for reasons of efficiency, the chosen model is the one of rounding inputs to the target precision

first.

The float macros of xintfrac have to handle inputs which not only may have much more digits than

the target float precision, but may even be fractions: in a way this means infinite precision.

From releases 1.08a to 1.2j a fraction input AeM/BeN had its numerator and denominator A and

B truncated to Q+2 digits of precision, then the substituted fraction was correctly rounded to

Q digits of precision (usually with Q set to P+2) and then the operation was implemented on such

rounded inputs. But this meant that two fractions representing the same rational number could end

up being rounded differently (with a difference of one unit in the last place), if it had numerators

and denominators with at least Q+3 digits.

Starting with release 1.2k a fractional input AeM/BeN is handled intrinsically: the fraction,

independently of its representation AeM/BeN, is correctly rounded to P digits during the input

parsing. Hence the output depends only on its arguments as mathematical fractions and not on

their representatives as quotients.

Notice that in float expressions, the / is treated as operator, and is applied to arguments

which are generally already P-floats, hence the above discussion becomes relevant in this context

only for the special input form qfloat(A/B) or when using a sub-expression \xintexpr A/B\relax

embedded in the float expression with A or B having more digits than the prevailing float precision

P.

8.3. Expansion matters
8.3.1. Full expansion of the first token

The whole business of xint is to build upon \numexpr and handle arbitrarily large numbers. Each

basic operation is thus done via a macro: \xintiiAdd, \xintiiSub, \xintiiMul, \xintiiDivision.

In order to handle more complex operations, it must be possible to nest these macros. An expand-

able macro can not execute a \def or an \edef. But the macro must expand its arguments to find the

digits it is supposed to manipulate. TEX provides a tool to do the job of (expandable !) repeated

expansion of the first token found until hitting something non expandable, such as a digit, a \de ⤸
f token, a brace, a \count token, etc... is found. A space token also will stop the expansion (and

be swallowed, contrarily to the non-expandable tokens).

By convention in this manual f-expansion (``full expansion'' or ``full first expansion'') will

be this TEX process of expanding repeatedly the first token seen. For those familiar with LATEX3

49 The IEEE 754-1985 standard was for hardware implementations of binary floating-point arithmetic with a spe-
cific value for the precision (24 bits for single precision, 53 bits for double precision). The newer IEEE 754-2008
(https://en.wikipedia.org/wiki/IEEE_floating_point) normalizes five basic formats, three binaries and two decimals (16 and 34
decimal digits) and discusses extended formats with higher precision. These standards are only indirectly relevant to libraries like
xint dealing with arbitrary precision. 50 The MPFR library http://www.mpfr.org/ implements this but it does not know fractions!

130

https://en.wikipedia.org/wiki/IEEE_floating_point
http://www.mpfr.org/

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

(which is not used by xint) this is what is called in its documentation full expansion, whereas

expansion inside \edef would be described I think as ``exhaustive'' expansion and will be referred

too in this manual as x-expansion.
Most of the package macros, and all those dealing with computations51, are expandable in the

strong sense that they expand to their final result via this f-expansion. This will be signaled

in their descriptions via a star in the margin.★
These macros not only have this property of f-expandability, they all begin by first applying

f-expansion to their arguments. Again from LATEX3's conventions this will be signaled by a marginf
annotation next to the description of the arguments.

8.3.2. Summary of important expandability aspects

1. the macros f-expand their arguments, this means that they expand the first token seen (for

each argument), then expand, etc..., until something un-expandable such as a digit or a brace

is hit against. This example

\def\x{98765}\def\y{43210} \xintiiAdd {\x}{\x\y}

is not a legal construct, as the \y will remain untouched by expansion and not get converted

into the digits which are expected by the sub-routines of \xintiiAdd. It is a \numexpr which

will expand it and an arithmetic overflow will arise as 9876543210 exceeds the TEX bounds. The

same would hold for \xintAdd.

To the contrary \xinttheiiexpr and others have no issues with things such as \xinttheiiexpr ⤸
\x+\x\y\relax.

2. using \if...\fi constructs inside the package macro arguments requires suitably mastering

TEXniques (\expandafter's and/or swapping techniques) to ensure that the f-expansion will

indeed absorb the \else or closing \fi, else some error will arise in further processing.

Therefore it is highly recommended to use the package provided conditionals such as \xint-

ifEq, \xintifGt, \xintifSgn,... or, for LATEX users and when dealing with short integers the

etoolbox52 expandable conditionals (for small integers only) such as \ifnumequal, \ifnum-

greater, Use of non-expandable things such as \ifthenelse is impossible inside the

arguments of xint macros.

One can use naive \if..\fi things inside an \xinttheexpr-ession and cousins, as long as the
test is expandable, for example
\xinttheiexpr\ifnum3>2 143\else 33\fi 0^2\relax→2044900=1430^2

3. after the definition \def\x {12}, one can not use -\x as input to one of the package macros:

the f-expansion will act only on the minus sign, hence do nothing. The only way is to use the

\xintOpp macro (or \xintiiOpp which is integer only) which obtains the opposite of a given

number.

Again, this is otherwise inside an \xinttheexpr-ession or \xintthefloatexpr-ession. There,
the minus sign may prefix macros which will expand to numbers (or parentheses etc...)

4. With the definition

\def\AplusBC #1#2#3{\xintAdd {#1}{\xintMul {#2}{#3}}}

one obtains an expandable macro producing the expected result, not in two, but rather in three

steps: a first expansion is consumed by the macro expanding to its definition. As the package

macros expand their arguments until no more is possible (regarding what comes first), this

\AplusBC may be used inside them: \xintAdd {\AplusBC {1}{2}{3}}{4} does work and returns

11/1[0].

If, for some reason, it is important to create a macro expanding in two steps to its final

value, one may either do:

51 except \xintXTrunc. 52 https://ctan.org/pkg/etoolbox

131

https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/etoolbox

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

\def\AplusBC #1#2#3{\romannumeral-`0\xintAdd {#1}{\xintMul {#2}{#3}}}

or use the lowercase form of \xintAdd:

\def\AplusBC #1#2#3{\romannumeral0\xintadd {#1}{\xintMul {#2}{#3}}}

and then \AplusBC will share the same properties as do the other xint `primitive' macros.

5. The \romannumeral0 and \romannumeral-`0 things above look like an invitation to hacker's ter-

ritory; if it is not important that the macro expands in two steps only, there is no reason to

follow these guidelines. Just chain arbitrarily the package macros, and the new ones will be

completely expandable and usable one within the other.

Since release 1.07 the \xintNewExpr macro automatizes the creation of such expandable macros:

\xintNewExpr\AplusBC[3]{#1+#2*#3}

creates the \AplusBC macro doing the above and expanding in two expansion steps.

6. In the expression parsers of xintexpr such as \xintexpr..\relax, \xintfloatexpr..\relax the

contents are expanded completely from left to right until the ending \relax is found and swal-

lowed, and spaces and even (to some extent) catcodes do not matter.

7. For all variants, prefixing with \xintthe allows to print the result or use it in other con-

texts. Shortcuts \xinttheexpr, \xintthefloatexpr, \xinttheiiexpr, ... are available.

8.4. Input formats for macros
Macros can have different types of arguments (we do not consider here the \xintexpr-parsers but

only the macros of xintcore/xint/xintfrac). In a macro description, a margin annotation signals

what is the argument type.

1. TEX integers are handled inside a \numexpr..\relax hence may be count registers or variables.
num
x

Beware that -(1+1) is not legal and raises an error, but 0-(1+1) is. Also 2\cnta with \cnta

a \count isn't legal. Integers must be kept less than 2147483647 in absolute value, although

the scaling operation (a*b)/c computes the intermediate product with twice as many bits.

The slash / does a rounded division which is a fact of life of \numexpr which I have found very

annoying in at least nine cases out of ten, not to say ninety-nine cases out of one hundred.

Besides, it is at odds with TEX's \divide which does a truncated division (non-expandably).

But to follow-suit / also does rounded integer division in \xintiiexpr..\relax, and the oper-

ator // does there the truncated division.

2. the strict format applies to macros handling big integers but only f-expanding their argu-f
ments. After this f-expansion the input should be a string of digits, optionally preceded by

a unique minus sign. The first digit can be zero only if it is the only digit. A plus sign is

not accepted. -0 is not legal in the strict format. Macros of xint with a double ii require

this `strict' format for the inputs.

3. the extended integer format applies when the macro parses its arguments via \xintNum. The
Num
f

input may then have arbitrarily many leading minus and plus signs, followed by leading zeroes,

and further digits. With xintfrac loaded, \xintNum is extended to accept fractions and its

action is to truncate them to integers.

4. the fraction input format applies to the arguments of xintfrac macros handling genuine frac-
Frac
f

tions. It allows two types of inputs: general and restricted. The restricted type is parsed

faster, but... is restricted.

general: inputs of the shape A.BeC/D.EeF. Example:

\noindent\xintRaw{+--0367.8920280e17/-++278.289287e-15}\newline

\xintRaw{+--+1253.2782e++--3/---0087.123e---5}\par

132

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

-3678920280/278289287[31]

-12532782/87123[7]

The input parser does not reduce fractions to smallest terms. Here are the rules of this

general fraction format:

• everything is optional, absent numbers are treated as zero, here are some extreme cases:

\xintRaw{}, \xintRaw{.}, \xintRaw{./1.e}, \xintRaw{-.e}, \xintRaw{e/-1}

0/1[0], 0/1[0], 0/1[0], 0/1[0], 0/1[0]

• AB and DE may start with pluses and minuses, then leading zeroes, then digits.

• C and F will be given to \numexpr and can be anything recognized as such and not provok-

ing arithmetic overflow (the lengths of B and E will also intervene to build the final

exponent naturally which must obey the TEX bound).

• the /, . (numerator and/or denominator) and e (numerator and/or denominator) are all

optional components.

• each of A, B, C, D, E and F may arise from f-expansion of a macro.

• the whole thing may arise from f-expansion, however the /, ., and e should all come from

this initial expansion. The e of scientific notation is mandatorily lowercased.

restricted: inputs either of the shape A[N] or A/B[N], which represents the fraction A/B times

10^N. The whole thing or each of A, B, N (but then not / or [) may arise from f-expansion,
A (after expansion) must have a unique optional minus sign and no leading zeroes, B (after

expansion) if present must be a positive integer with no signs and no leading zeroes, [N ⤸
] if present will be given to \numexpr. Any deviation from the rules above will result in

errors.

Notice that *, + and - contrarily to the / (which is treated simply as a kind of delimiter)

are not acceptable within arguments of this type (see subsection 8.6 for some exceptions to
Frac
f

this.)

Generally speaking, there should be no spaces among the digits in the inputs (in arguments to

the package macros). Although most would be harmless in most macros, there are some cases where

spaces could break havoc.53 So the best is to avoid them entirely.

This is entirely otherwise inside an \xintexpr-ession, where spaces are ignored (except when

they occur inside arguments to some macros, thus escaping the \xintexpr parser). See the sec-

tion 2.

There are also some slighly more obscure expansion types: in particular, the \xintApplyInline

and \xintFor* macros from xinttools apply a special iterated f-expansion, which gobbles spaces,

to the non-braced items (braced items are submitted to no expansion because the opening brace stops

it) coming from their list argument; this is denoted by a special symbol in the margin. Some other*f
macros such as \xintSum from xintfrac first do an f-expansion, then treat each found (braced or

not) item (skipping spaces between such items) via the general fraction input parsing, this is

signaled as here in the margin where the signification of the * is thus a bit different from thef→ *
Frac
f

previous case.

53 The \xintNum macro does not remove spaces between digits beyond the first non zero ones; however this should not really
alter the subsequent functioning of the arithmetic macros, and besides, since xintcore 1.2 there is an initial parsing of the entire
number, during which spaces will be gobbled. However I have not done a complete review of the legacy code to be certain of
all possibilities after 1.2 release. One thing to be aware of is that \numexpr stops on spaces between digits (although it provokes
an expansion to see if an infix operator follows); the exponent for \xintiiPow or the argument of the factorial \xintiiFac are only
subjected to such a \numexpr (there are a few other macros with such input types in xint). If the input is given as, say 1 2\x
where \x is a macro, the macro \x will not be expanded by the \numexpr, and this will surely cause problems afterwards. Perhaps
a later xint will force \numexpr to expand beyond spaces, but I decided that was not really worth the effort. Another immediate
cause of problems is an input of the type \xintiiAdd {<space>\x }{\y }, because the space will stop the initial expansion; this
will most certainly cause an arithmetic overflow later when the \x will be expanded in a \numexpr. Thus in conclusion, damages
due to spaces are unlikely if only explicit digits are involved in the inputs, or arguments are single macros with no preceding space.

133

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

A few macros from xinttools do not expand, or expand only once their argument. This is alson , resp. o
signaled in the margin with notations à la LATEX3.

8.5. Output formats of macros
We do not consider here the \xintexpr-parsers but only the macros from xintcore, xint and xint-

frac. Macros of other components of the bundle may have their own output formats, for example for

continuous fractions with xintcfrac. There are mainly three types of outputs:

• arithmetic macros from xintcore/xint deliver integers in the strict format as described in

the previous section.

• arithmetic macros from xintfrac produce on output the strict fraction format A/B[N], which

stands for (A/B)×10^N, where A and B are integers, B is positive, and N is a ``short'' integer.

The output is not reduced to smallest terms. The A and B may end with zeroes (i.e, N does not

represent all powers of ten). The denominator B is always strictly positive. There is no +

sign. The - is always first if present (i.e. the denominator on output is always positive.)

The output will be expressed as such a fraction even if the inputs are both integers and the

mathematical result is an integer. The B=1 is not removed.54

• macros from xintfrac having Float in their names deliver a number in the scientific notation

as described in the documentation of \xintFloat.

The exception is \xintPFloat which does some customizable pretty printing of the result.

8.6. Count registers and variables
Inside \xintexpr..\relax and its variants, a count register or count control sequence is automat-

ically unpacked using \number, with tacit multiplication: 1.23\counta is like 1.23*\number\cou ⤸
nta. There is a subtle difference between count registers and count variables. In 1.23*\counta

the unpacked \counta variable defines a complete operand thus 1.23*\counta 7 is a syntax error.

But 1.23*\count0 just replaces \count0 by \number\count0 hence 1.23*\count0 7 is like 1.23*57 if

\count0 contains the integer value 5.

Regarding now the package macros, there is first the case of arguments having to be short inte-

gers: this means that they are fed to a \numexpr...\relax, hence submitted to a complete expansion
which must deliver an integer, and count registers and even algebraic expressions with them like

\mycountA+\mycountB*17-\mycountC/12+\mycountD are admissible arguments (the slash stands here

for the rounded integer division done by \numexpr). This applies in particular to the number of

digits to truncate or round with, to the indices of a series partial sum, ...

The macros allowing the extended format for long numbers or dealing with fractions will to some
extent allow the direct use of count registers and even infix algebra inside their arguments: a

count register \mycountA or \count 255 is admissible as numerator or also as denominator, with no

need to be prefixed by \the or \number. It is possible to have as argument an algebraic expression

as would be acceptable by a \numexpr...\relax, under this condition: each of the numerator and
denominator is expressed with at most nine tokens.55 56 Important: a slash for rounded division

in a \numexpr should be written with braces {/} to not be confused with the xintfrac delimiter

between numerator and denominator (braces will be removed internally and the slash will count for

one token). Example: \mycountA+\mycountB{/}17/1+\mycountA*\mycountB, or \count 0+\count 2{/} ⤸
17/1+\count 0*\count 2.

\cnta 10 \cntb 35 \xintRaw {\cnta+\cntb{/}17/1+\cnta*\cntb}->12/351[0]

For longer algebraic expressions using count registers, there are two possibilities:

54 refer to the documentation of \xintPRaw for an alternative. 55 The 1.2k and earlier versions manual claimed up to 8 tokens,
but low-level TeX error arose if the \numexpr ...\relax occupied exactly 8 tokens and evaluated to zero. With 1.2l and later,
up to 9 tokens are always safe and one may even drop the ending \relax. But well, all these explanations are somewhat silly
because prefixing by \the or \number is always working with arbitrarily many tokens. 56 Attention! in the LATEX context a
\value{countername} will behave ok only if it is first in the input, if not it will not get expanded, and braces around the name will
be removed and chaos will ensue inside a \numexpr. One should enclose the whole input in \the\numexpr...\relax in such cases.+

{

134

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

1. let the numerator and the denominator be presented as \the\numexpr...\relax,

2. or as \numexpr {...}\relax (the braces are removed during processing; they are not legal for

\numexpr...\relax syntax.)

\cnta 100 \cntb 10 \cntc 1

\xintPRaw {\numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc+

2*\cnta*\cntb+2*\cnta*\cntc+2*\cntb*\cntc}\relax/%

\numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc}\relax }

12321/10101

8.7. Dimension registers and variables
⟨dimen⟩ variables can be converted into (short) integers suitable for the xint macros by prefixing

them with \number. This transforms a dimension into an explicit short integer which is its value

in terms of the sp unit (1/65536 pt). When \number is applied to a ⟨glue⟩ variable, the stretch and

shrink components are lost.

For LATEX users: a length is a ⟨glue⟩ variable, prefixing a length macro defined by \newlength with

\number will thus discard the plus and minus glue components and return the dimension component

as described above, and usable in the xint bundle macros.

This conversion is done automatically inside an \xintexpr-essions, with tacit multiplication

implied if prefixed by some (integral or decimal) number.

One may thus compute areas or volumes with no limitations, in units of sp^2 respectively sp^3, do

arithmetic with them, compare them, etc..., and possibly express some final result back in another

unit, with the suitable conversion factor and a rounding to a given number of decimal places.

A table of dimensions illustrates that the internal values used by TEX do not correspond al-

ways to the closest rounding. For example a millimeter exact value in terms of sp units is

72.27/10/2.54*65536=186467.981... and TEX uses internally 186467sp (TEX truncates to get an in-

tegral multiple of the sp unit; see at the end of this section the exact rules applied internally

by TEX).

Unit definition Exact value in sp units
TEX's value

in sp units

Relative

error

cm 0.01 m 236814336/127 = 1864679.811... 1864679 -0.0000%

mm 0.001 m 118407168/635 = 186467.981... 186467 -0.0005%

in 2.54 cm 118407168/25 = 4736286.720... 4736286 -0.0000%

pc 12 pt 786432 = 786432.000... 786432 0%

pt 1/72.27 in 65536 = 65536.000... 65536 0%

bp 1/72 in 1644544/25 = 65781.760... 65781 -0.0012%

3bp 1/24 in 4933632/25 = 197345.280... 197345 -0.0001%

12bp 1/6 in 19734528/25 = 789381.120... 789381 -0.0000%

72bp 1 in 118407168/25 = 4736286.720... 4736286 -0.0000%

dd 1238/1157 pt 81133568/1157 = 70124.086... 70124 -0.0001%

11dd 11*1238/1157 pt 892469248/1157 = 771364.950... 771364 -0.0001%

12dd 12*1238/1157 pt 973602816/1157 = 841489.037... 841489 -0.0000%

sp 1/65536 pt 1 = 1.000... 1 0%

TEX dimensions

There is something quite amusing with the Didot point. According to the TEXBook, 1157 dd=1238 p ⤸
t. The actual internal value of 1 dd in TEX is 70124 sp. We can use xintcfrac to display the list

of centered convergents of the fraction 70124/65536:

\xintListWithSep{, }{\xintFtoCCv{70124/65536}}

1/1, 15/14, 61/57, 107/100, 1452/1357, 17531/16384, and we don't find 1238/1157 therein, but an-

other approximant 1452/1357!

135

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

And indeed multiplying 70124/65536 by 1157, and respectively 1357, we find the approximations

(wait for more, later):

``1157 dd''=1237.998474121093...pt

``1357 dd''=1451.999938964843...pt

and we seemingly discover that 1357 dd=1452 pt is far more accurate than the TEXBook formula 1157 d ⤸
d=1238 pt ! The formula to compute N dd was

\xinttheexpr trunc(N\dimexpr 1dd\relax/\dimexpr 1pt\relax,12)\relax}

What's the catch? The catch is that TEX does not compute 1157 dd like we just did:

1157 dd=\number\dimexpr 1157dd\relax/65536=1238.000000000000...pt

1357 dd=\number\dimexpr 1357dd\relax/65536=1452.001724243164...pt

We thus discover that TEX (or rather here, e-TEX, but one can check that this works the same in

TEX82), uses 1238/1157 as a conversion factor (and necessarily intermediate computations simulate

higher precision than a priori available with integers less than 231 or rather 230 for dimensions).

Hence the 1452/1357 ratio is irrelevant, an artefact of the rounding (or rather, as we see, trun-

cating) for one dd to be expressed as an integral number of sp's.

Let us now use \xintexpr to compute the value of the Didot point in millimeters, if the above

rule is exactly verified:

\xinttheexpr trunc(1238/1157*25.4/72.27,12)\relax=0.376065027442...mm

This fits very well with the possible values of the Didot point as listed in the Wikipedia Article.

The value 0.376065 mm is said to be the traditional value in European printers' offices. So the

1157 dd=1238 pt rule refers to this Didot point, or more precisely to the conversion factor to be

used between this Didot and TEX points.

The actual value in millimeters of exactly one Didot point as implemented in TEX is

\xinttheexpr trunc(\dimexpr 1dd\relax/65536/72.27*25.4,12)\relax

=0.376064563929...mm

The difference of circa 5Å is arguably tiny!

By the way the European printers' offices (dixit Wikipedia) Didot is thus exactly

\xinttheexpr reduce(.376065/(25.4/72.27))\relax=543564351/508000000 pt

and the centered convergents of this fraction are 1/1, 15/14, 61/57, 107/100, 1238/1157, 11249/1 ⤸
0513, 23736/22183, 296081/276709, 615898/575601, 11382245/10637527, 22148592/20699453, 1885709 ⤸
81/176233151, 543564351/508000000. We do recover the 1238/1157 therein!

Here is how TEX converts abc.xyz...<unit>. First the decimal is rounded to the nearest

integral multiple of 1/65536, say X/65536. The <unit> is associated to a ratio N/D, which

represents <unit>/pt. For the Didot point the ratio is indeed 1238/1157. TEX truncates the

fraction XN/D to an integer M. The dimension is represented by M sp.

8.8. \ifcase, \ifnum, ... constructs
When using things such as \ifcase \xintSgn{\A} one has to make sure to leave a space after the

closing brace for TEX to stop its scanning for a number: once TEX has finished expanding \xintSgn{ ⤸
\A} and has so far obtained either 1, 0, or -1, a space (or something `unexpandable') must stop it

looking for more digits. Using \ifcase\xintSgn\A without the braces is very dangerous, because

the blanks (including the end of line) following \A will be skipped and not serve to stop the number

which \ifcase is looking for.

\begin{enumerate}[nosep]\def\A{1}

\item \ifcase \xintSgn\A 0\or OK\else ERROR\fi

\item \ifcase \xintSgn\A\space 0\or OK\else ERROR\fi

\item \ifcase \xintSgn{\A} 0\or OK\else ERROR\fi

\end{enumerate}

1. ERROR

136

http://en.wikipedia.org/wiki/Point_%28typography%29#Didot

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

2. OK

3. OK

In order to use successfully \if...\fi constructions either as arguments to the xint bundle

expandable macros, or when building up a completely expandable macro of one's own, one needs some

TEXnical expertise (see also item 2 on page 131).

It is thus much to be recommended to use the expandable branching macros, provided by xintfrac

succh as \xintifSgn, \xintifZero, \xintifOne, \xintifNotZero, \xintifTrueAelseB, \xintifCmp,

\xintifGt, \xintifLt, \xintifEq, \xintifInt... See their respective documentations. All these

conditionals always have either two or three branches, and empty brace pairs {} for unused branches

should not be forgotten.

If these tests are to be applied to standard TEX short integers, it is more efficient to use

(under LATEX) the equivalent conditional tests from the etoolbox57 package.

8.9. No variable declarations are needed
There is no notion of a declaration of a variable.
To do a computation and assign its result to some macro \z, the user will employ the \def, \edef,

or \newcommand (in LATEX) as usual, keeping in mind that two expansion steps are needed, thus \edef

is initially the main tool:

\def\x{1729728} \def\y{352827927} \edef\z{\xintiiMul {\x}{\y}}

\meaning\z

macro:->610296344513856

As an alternative to \edef the package provides \oodef which expands exactly twice the replace-

ment text, and \fdef which applies f-expansion to the replacement text during the definition.

\def\x{1729728}\def\y{352827927}

\oodef\w {\xintiiMul\x\y} \fdef\z{\xintiiMul {\x}{\y}}

\meaning\w, \meaning\z

macro:->610296344513856, macro:->610296344513856

In practice \oodef is slower than \edef, except for computations ending in very big final re-

placement texts (thousands of digits). On the other hand \fdef appears to be slightly faster than+
{
\edef already in the case of expansions leading to only a few dozen digits.

xintexpr does provide an interface to declare and assign values to identifiers which can then

be used in expressions: subsection 2.9.

8.10. Possible syntax errors to avoid
Here is a list of imaginable input errors. Some will cause compilation errors, others are more

annoying as they may pass through unsignaled.

• using - to prefix some macro: -\xintiiSqr{35}/271.58

• using one pair of braces too many \xintIrr{{\xintiiPow {3}{13}}/243} (the computation goes

through with no error signaled, but the result is completely wrong).

• things like \xintiiAdd { \x}{\y} as the space will cause \x to be expanded later, most proba-

bly within a \numexpr thus provoking possibly an arithmetic overflow.

• using [] and decimal points at the same time 1.5/3.5[2], or with a sign in the denominator

3/-5[7]. The scientific notation has no such restriction, the two inputs 1.5/-3.5e-2 and -1. ⤸
5e2/3.5 are equivalent: \xintRaw{1.5/-3.5e-2}=-15/35[2], \xintRaw{-1.5e2/3.5}=-15/35[2].

57 https://ctan.org/pkg/etoolbox 58 to the contrary, this is allowed inside an \xintexpr-ession.

137

https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/etoolbox

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

• generally speaking, using in a context expecting an integer (possibly restricted to the TEX

bound) a macro or expression which returns a fraction: \xinttheexpr 4/2\relax outputs 4/2,

not 2. Use \xintNum {\xinttheexpr 4/2\relax} or \xinttheiexpr 4/2\relax (which rounds the

result to the nearest integer, here, the result is already an integer) or \xinttheiiexpr 4/2 ⤸
\relax. Or, divide in your head 4 by 2 and insert the result directly in the TEX source.

8.11. Error messages
In situations such as division by zero, the TEX run will be interrupted with some error message.

It conveys some short information on the cause of the problem,59 then an optimistic statement

about a possible recovery if the user (in interactive mode) simply hits the <return> key. In non-

interactive (nonstopmode) the TEX run goes on uninterrupted and the error data will be found in the

compilation log. Often, xint will fall-back to using a zero value. This is still an experimental

feature.60 61

The encouragements will be slightly better formatted if the run is with LATEX compared to Plain

𝜀-TEX: Plain by default does not set the \newlinechar which allows to issue linebreaks in messages

at chosen locations. In the examples here, xintsession is used, and it loads xint in a way activat-

ing the nicer \newlinechar formatted messages, even though it runs (a priori, but not necessarily)

under Plain 𝜀-TEX.
>>> 1/0;

Runaway argument?

! xint error: Division by zero: 1/0.

! Paragraph ended before \xint<...> is done, but will resume:

hit <return> at the ? prompt to try fixing the error above

which has been encountered before expansion was complete.

<to be read again>

\par

...

l.602 \xintsession

\endinput%^^M

?

@_1 0

>>> (-1)^3.2;

Runaway argument?

! xint error: Fractional power 32/1[-1] of negative -1[0].

! Paragraph ended before \xint<...> is done, but will resume:

hit <return> at the ? prompt to try fixing the error above

which has been encountered before expansion was complete.

<to be read again>

\par

...

l.602 \xintsession

\endinput%^^M

?

@_2 0

>>> cos 1);

Runaway argument?

! xint error: `cos1' unknown, say `Isome_var' or I use 0.

! Paragraph ended before \xint<...> is done, but will resume:

59 The wording of these messages has been last modified at 1.4m. 60 Customizable handlers, error traps, error flags are imple-Changed
at 1.4m! mented in embryonic form but without user interface since 1.2l release. This is not ready yet. 61 The 1.4g new formatting

implementation benefited from a May 2021 thread at the LATEX3 site where expandable error messages were discussed, with in
particular contributions of @blefloch and @Skillmon.

138

https://ctan.org/pkg/xintsession

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

hit <return> at the ? prompt to try fixing the error above

which has been encountered before expansion was complete.

<to be read again>

\par

...

l.602 \xintsession

\endinput%^^M

?

Runaway argument?

! xint error: Extra) removed. Hit <return>, fingers crossed.

! Paragraph ended before \xint<...> is done, but will resume:

hit <return> at the ? prompt to try fixing the error above

which has been encountered before expansion was complete.

<to be read again>

\par

...

l.602 \xintsession

\endinput%^^M

?

@_3 0

>>> 3=4;

Runaway argument?

! xint error: Expected an operator but got `='. Ignoring.

! Paragraph ended before \xint<...> is done, but will resume:

hit <return> at the ? prompt to try fixing the error above

which has been encountered before expansion was complete.

<to be read again>

\par

...

l.602 \xintsession

\endinput%^^M

?

@_4 12

>>> &bye

In the last example, tacit multiplication was applied as xintexpr was looking for an operator,

got some invalid input and then a number.

Some constructs in xintexpr-essions use delimited macros and there is thus possibility in case

of an ill-formed expression to end up beyond the \relax end-marker. Such a situation can also

occur from \relax being swallowed by a non-terminated \numexpr:

\xintexpr 3 + \numexpr 5+4\relax followed by some LaTeX code...

The correct input is

\xintexpr 3 + \numexpr 5+4\relax\relax

But people in their right mind will have done

\xintexpr 3 + 5 + 4\relax

A few will have done the computation in their heads.

In such cases low-level errors will arise and may lead to very cryptic messages; but nothing un-

usual or especially traumatizing for the daring experienced TEX/LATEX user, whose has seen zillions

of un-helpful error messages already in her daily practice of TEX/LATEX.

8.12. Package namespace, catcodes
This section reviews (probably with some omissions) important miscellany regarding control se-

quence names and catcode matters and is basically in its entirety a

139

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

TEX-hackers note:

• The bundle packages force the \space and \empty control sequences into having their default meanings as

in Plain TEX or LATEX2e formats.

• Private macros (or internally used \count registers, and one private \toks) have names starting with

\xint_ or \XINT_. Some, for legacy or technical reasons, have \xint or \XINT prefix with no underscore.

• All public macros have their names starting with \xint except for: the xintkernel provided \odef, \ood ⤸
ef, \fdef. If macros with these names already exist xinttools will not overwrite them. Their meanings

are also available under the names \xintodef, \xintoodef, etc...

• For the xintfrac macros to be able to parse their inputs, standard catcodes in the argument are assumed

for the digits (of course), the plus and minus signs, the dot, the letter e, the forward slash, the square

brackets. Spaces should be avoided although they may go unnoticed sometimes.

• For the xintexpr expressions there is more leeway: the digit tokens must have their standard catcodes,

the letters must have their standard catcodes for variable and function names to be recognized, but

other characters may mostly have unusual (but not extreme like catcode zero or one) catcodes. Active

characters will be expanded and should usually be prefixed with \string. But, if activated via BabelNew with
1.4n this is not needed.

A few syntax elements are implemented via delimited macros. So the comma, the equal sign and the closing

parenthesis must have their normal catcodes for these syntax elements to work. \string won't do.

Spaces are gobbled. The e of scientific notation may be E on input, xintfrac macros on the other hand

will not recognize the E.

• \xintdefvar and \xintdeffunc as they use automatically \xintexprSafeCatcodes and \xintexprRestoreCatcodes

to temporarily set catcodes to safe values.

• \xintexprSafeCatcodes and \xintexprRestoreCatcodes can be employed at user level too.

• At loading time the catcode configuration may be arbitrary as long as it satisfies the following re-

quirements:

– % has its normal category code,

– \ has its normal category code,

– Latin letters have their normal category code "letter",

– Digits have their normal category code "other".

Nothing more is assumed, for example { and } may have unusual catcodes at package loading time. This will

be admittedly unusual especially in LATEX as \usepackage{xintexpr} would then have had to be replaced by

something such as \usepackage<xintexpr>...

• Loading the packages causes no insertion of space tokens.

• The previous two items also apply to usage of \xintreloadxintlog and of \xintreloadxinttrig.

8.13. Origins of the package
2013/03/28. Package bigintcalc by Heiko Oberdiek already provides expandable arithmetic opera-

tions on “big integers”, i.e. integers beyond the TEX bound 231 - 1, so why another62 one?

I got started on this in early March 2013, via a thread on the c.t.tex usenet group, where Ulrich

D i e z used the previously cited package together with a macro (\ReverseOrder) which I had con-

tributed to another thread.63 What I had learned in this other thread thanks to interaction with

Ulrich D i e z and GL on expandable manipulations of tokens motivated me to try my hands at addition

and multiplication.

I wrote macros \bigMul and \bigAdd which I posted to the newsgroup; they appeared to work com-

paratively fast. These first versions did not use the 𝜀-TEX \numexpr primitive, they worked one

digit at a time, having previously stored carry-arithmetic in 1200 macros.

I noticed that the bigintcalc package used \numexpr if available, but (as far as I could tell)

not to do computations many digits at a time. Using \numexpr for one digit at a time for \bigAdd and

62 this section was written before the xintfrac package; the author is not aware of another package allowing expandable computa-
tions with arbitrarily big fractions. 63 the \ReverseOrder could be avoided in that circumstance, but it does play a crucial rôle
here.

140

TOC
TOC, xint bundle , xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

\bigMul slowed them a tiny bit but avoided cluttering TEX memory with the 1200 macros storing pre-

computed digit arithmetic. I wondered if some speed could be gained by using \numexpr to do four

digits at a time for elementary multiplications (as the maximal admissible number for \numexpr has

ten digits).

2013/04/14. This initial xint was followed by xintfrac which handled exactly fractions and dec-

imal numbers.

2013/05/25. Later came xintexpr and at the same time xintfrac got extended to handle floating

point numbers.

2013/11/22. Later, xinttools was detached.

2014/10/28. Release 1.1 significantly extended the xintexpr parsers.

2015/10/10. Release 1.2 rewrote the core integer routines which had remained essentially unmod-

ified, apart from a slight improvement of division early 2014.

This 1.2 release also got its impulse from a fast ``reversing'' macro, which I wrote after my

interest got awakened again as a result of correspondence with Bruno Le Floch during September

2015: this new reverse uses a TEXnique which requires the tokens to be digits. I wrote a routine

which works (expandably) in quasi-linear time, but a less fancy O(N^2) variant which I developed

concurrently proved to be faster all the way up to perhaps 7000 digits, thus I dropped the quasi-

linear one. The less fancy variant has the advantage that xint can handle numbers with more than

19900 digits (but not much more than 19950). This is with the current common values of the input

save stack and maximal expansion depth: 5000 and 10000 respectively.

141

TOC
TOC, xint bundle, xintkernel , xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

9. Macros of the xintkernel package

.1 \odef, \oodef, \fdef 142

.2 \xintReverseOrder . 142

.3 \xintLength . 142

.4 \xintFirstItem . 143

.5 \xintLastItem . 143

.6 \xintFirstOne . 143

.7 \xintLastOne . 143

.8 \xintReplicate, \xintreplicate 143

.9 \xintGobble, \xintgobble 144

.10 (WIP) \xintUniformDeviate 144

The xintkernel package contains mainly the common code base for handling the load-order of the

bundle packages, the management of catcodes at loading time, definition of common constants and

macro utilities which are used throughout the code etc ... it is automatically loaded by all pack-

ages of the bundle.

It provides a few macros possibly useful in other contexts.

9.1.
source
\odef,

source
\oodef,

source
\fdef

\oodef\controlsequence {<stuff>} does

\expandafter\expandafter\expandafter\def

\expandafter\expandafter\expandafter\controlsequence

\expandafter\expandafter\expandafter{<stuff>}

This works only for a single \controlsequence, with no parameter text, even without parameters.

An alternative would be:

\def\oodef #1#{\def\oodefparametertext{#1}%

\expandafter\expandafter\expandafter\expandafter

\expandafter\expandafter\expandafter\def

\expandafter\expandafter\expandafter\oodefparametertext

\expandafter\expandafter\expandafter }

but it does not allow \global as prefix, and, besides, would have anyhow its use (almost) limited

to parameter texts without macro parameter tokens (except if the expanded thing does not see them,

or is designed to deal with them).

There is a similar macro \odef with only one expansion of the replacement text <stuff>, and \fdef

which expands fully <stuff> using \romannumeral-`0.

They can be prefixed with \global. It appears than \fdef is generally a bit faster than \ede ⤸
f when expanding macros from the xint bundle, when the result has a few dozens of digits. \oodef

needs thousands of digits it seems to become competitive.

xintkernel will not define these macros if the control sequence names already exist. It provides

them always under the names \xintodef, \xintoodef and \xintfdef respectively.

9.2.
source

\xintReverseOrder

\xintReverseOrder{⟨list⟩} does not do any expansion of its argument and just reverses the order ofn ★
the tokens in the ⟨list⟩. Braces are removed once and the enclosed material, now unbraced, does

not get reversed. Unprotected spaces (of any character code) are gobbled.

\xintReverseOrder{\xintDigitsOf\xintiiPow {2}{100}\to\Stuff}

gives: \Stuff\to1002\xintiiPow\xintDigitsOf

xinttools provides a variant \xintRevWithBraces which keeps brace pairs in the output, and f-
expands its input first.

For inputs consisting only digit tokens, see \xintReverseDigits from xint.

9.3.
source

\xintLength

\xintLength{⟨list⟩} counts how many tokens (or braced items) there are (possibly none). It doesn ★
no expansion of its argument, so to use it to count things in the replacement text of a macro \x one

142

TOC
TOC, xint bundle, xintkernel , xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

should do \expandafter\xintLength\expandafter{\x}. Blanks between items are not counted. See

also \xintNthElt{0} (from xinttools) which first f-expands its argument and then applies the same

code.

\xintLength {\xintiiPow {2}{100}}=3

≠ \xintLen {\xintiiPow {2}{100}}=31

The maximal input size is limited by TEX main memory (it seems to be about half of the TEXLive m ⤸
ain_memory setting from file texmf.cnf. Because TEX main memory is also where the used format is

stored, as well as all additional defined macros, it will for example be higher if compiling with

etex (PDFTEX in dvi mode) than with pdftex. Testing expansion inside an \edef with etex the author

obtained with TEXLive 2025 a limit of 2492667 tokens with 1.4n.

9.4.
source

\xintFirstItem

\xintFirstItem{⟨list⟩} returns the first item of its argument, one pair of braces removed. If then ★
list has no items the output is empty.

It does no expansion. For this and the next similar ones, see xintsource.pdf for comments on

limitations.

9.5.
source

\xintLastItem

Added at 1.2i.

\xintLastItem{⟨list⟩} returns the last item of its argument, one pair of braces removed. If then ★
list has no items the output is empty.

It does no expansion, which should be obtained via suitable \expandafter's. See also \xint-

NthElt{-1} from xinttools which obtains the same result (but with another code) after having how-

ever f-expanded its argument first.

9.6.
source

\xintFirstOne

\xintFirstOne{⟨list⟩} returns the first item as a braced item. i.e. if it was braced the bracesn ★
are kept, else the braces are added. It looks like using \xintFirstItem within braces, but the

difference is when the input was empty. Then the output is empty.

It does no expansion, which should be obtained via suitable \expandafter's.

9.7.
source

\xintLastOne

\xintLastOne{⟨list⟩} returns the last item as a braced item. i.e. if it was braced the bracesn ★
are kept, else the braces are added. It looks like using \xintLastItem within braces, but the

difference is when the input was empty. Then the output is empty.

It does no expansion, which should be obtained via suitable \expandafter's.

9.8.
source

\xintReplicate,
source

\xintreplicate

\romannumeral\xintreplicate{x}{⟨stuff ⟩} is simply copied over from LATEX3's \prg_replicate:nn
num
x n ★

with some minor changes.64

And \xintReplicate{x} integrates the \romannumeral prefix.

It does not do any expansion of its second argument but inserts it in the upcoming token stream

precisely x times. Using it with a negative x raises no error and does nothing.65

64 I started with the code from Joseph Wright available on an online site. 65 This behaviour may change in future.

143

TOC
TOC, xint bundle, xintkernel , xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

9.9.
source

\xintGobble,
source

\xintgobble

\romannumeral\xintgobble{x} is a Gobbling macro written in the spirit of LATEX3's \prg_replicate:n ⤸
num
x ★

n (which I cloned as \xintreplicate.) It gobbles x tokens upstream, with x allowed to be as large

as 531440. Don't use it with x<0.

And \xintGobble{x} integrates the \romannumeral.

\xintgobble looks as if it must be related to \xintTrim from xinttools, but the latter uses

different code (using directly \xintgobble is not possible because one must make sure not to gobble

more than the number of available items; and counting available items first is an overhead which

\xintTrim avoids.) It is rather\xintKeep with a negative first argument which hands over to \xint-

gobble (because in that case it is needed to count anyhow beforehand the number of items, hence

\xintgobble can then be used safely.)

I wrote an \xintcount in the same spirit as \xintreplicate and \xintgobble. But it needs to be

counting hundreds of tokens to be worth its salt compared to \xintLength.

9.10. (WIP)
source

\xintUniformDeviate

\xintUniformDeviate{x} is based upon the engine \pdfuniformdeviate (PDFTEX) or \uniformdeviate
num
x ★

(XeTEX, LuaTEX).
66

The argument is expanded in \numexpr and the macro itself needs two expansion steps. It produces

like the engine primitive an integer (digit tokens) with minimal value 0 and maximal one x-1 if x

is positive, or minimal value x+1 and maximal value 0 if x is negative. For the discussion next,

x is supposed positive as this avoids having to insert absolute values in formulas.

The underlying engine primitive accesses a random number generator (RNG) originally embedded

into MetaPost and described in The Art of Computer Programming, Vol. 2. During discussions with

Bruno Le Floch in May 2018, when he was adding to LATEX3 interface for randomness, the author became

aware of some limitations, some of them surprising, in the randomness of the numbers produced by

this RNG. For example, the values produced by \pdfuniformdeviate 201326592 and reduction modulo

three are in the proportion 1:1:2, not 1:1:1.

Let's count how many 0's, 1's, and 2's we get from reducing modulo 3 the output of \pdfuniformde ⤸
viate 201326592:

\pdfsetrandomseed 87654321

\def\A{0}\def\B{0}\def\C{0}

\xintReplicate{504}{\ifcase\xinteval{(\pdfuniformdeviate 201326592)/:3}

\edef\A{\the\numexpr\A+1}\or

\edef\B{\the\numexpr\B+1}\or

\edef\C{\the\numexpr\C+1}\fi

}

We found \A{} 0's, \B{} 1's and \C{} 2's among 504 trials.

We found 124 0's, 147 1's and 233 2's among 504 trials.

In contrast, here is what happens if using \xintUniformDeviate:

\pdfsetrandomseed 87654321

\def\A{0}\def\B{0}\def\C{0}

\xintReplicate{504}{\ifcase\xinteval{\xintUniformDeviate{201326592}/:3}

\edef\A{\the\numexpr\A+1}\or

\edef\B{\the\numexpr\B+1}\or

\edef\C{\the\numexpr\C+1}\fi

}

We found \A{} 0's, \B{} 1's and \C{} 2's among 504 trials.

We found 161 0's, 174 1's and 169 2's among 504 trials.

TEX-hackers note: The RNG works with 28-bits integers. To output a supposedly uniform random integer in

a given range 0..x-1, it first produces a supposedly uniform integer in the range 0..228 - 1 (where 228 =

66 The \uniformdeviate primitive was added to XeTEX for the TEXLive 2019 release.

144

TOC
TOC, xint bundle, xintkernel , xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

268435456) then rescales (with rounding) to the target range. Note that with x = 229 this means in particular

that all produced ``random numbers'' in the 0..x-1 range will be even...

But even with x = 228 there are some more serious defects of the RNG: two seeds sharing the same low k

bits generate sequences of 28-bits integers which are identical one-to-one modulo 2^k! In particular after

setting the seed, there are only 2 distinct sequences for the parity bits for the integers generated by \pdf ⤸
uniformdeviate 268435456.

Let's define the non-uniformity of \pdfuniformdeviate x to be the maximum, taken over all y's from 0 to x- ⤸
1, of |x × Prob(\pdfuniformdeviate x = y) - 1|. For a general x, the engine primitive guarantees only a x/228

relative non-uniformity for the outputs of \pdfuniformdeviate x.

\xintUniformDeviate improves this by a factor of 2^{28}=268435456: the relative non-uniformity now is

guaranteed to be bounded above by x/256 . With such a small non-uniformity, modulo phenomena as mentioned

earlier are not observable in reasonable computing time.

The implementation of \xintUniformDeviate consumes exactly 5 calls to the engine primitive at each ex-

ecution; the improved x/2^{56} non-uniformity could be obtained with only 2 calls, but paranoïa about the

phenonemon of seeds with common bits has led me to accept the overhead of using the 7 high bits of 4 random

28-bits integers, rather than one single 28-bits integer, or two, or three.

Timings indicate that one \xintUniformDeviate has a time cost about 13 times the one for one call to the

engine primitive (and not only 5, as the extra arithmetic expressions add overhead which is more costly than

the primitive itself). Except if the code using the pseudo-random number is very short, this time penalty

will prove in practice much less severe (and this is one important reason why we opted for obtaining 28bits

via the 7 high bits of 4 successive pseudo random numbers from the engine primitive).

For example let's raise 100 times a random integer in the 0..99999999 range to the tenth power:67

\pdfsetrandomseed 12345678

\xintresettimer

\xintReplicate{100}{\edef\foo{\xintiiPow{\xintUniformDeviate{100000000}}{10}}}%

\xinttheseconds s (if using \string\xintUniformDeviate)\newline

\pdfsetrandomseed 12345678

\xintresettimer

\xintReplicate{100}{\edef\foo{\xintiiPow{\pdfuniformdeviate 100000000}{10}}}%

\xinttheseconds s (if using \string\pdfuniformdeviate)\par

0.01686s (if using \xintUniformDeviate)

0.01677s (if using \pdfuniformdeviate)

The macros \xintRandomDigits or \xintiiRandRange, and their variants, as well as the supporting macros

for random() generate random decimal digits eight by eight as if using \xintUniformDeviate{100000000}, but

via a direct optimized call made possibly by the range being a power of 10.

67 Timings done during dvi build on an Apple desktop with M4 Pro architecture.

145

TOC
TOC, xint bundle, xintkernel, xintcore , xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

10. Macros of the xintcore package

.1 \xintiNum . 146

.2 \xintDouble . 147

.3 \xintHalf . 147

.4 \xintInc . 147

.5 \xintDec . 147

.6 \xintDSL . 147

.7 \xintDSR . 147

.8 \xintDSRr . 147

.9 \xintFDg . 147

.10 \xintLDg . 147

.11 \xintiiSgn . 147

.12 \xintiiOpp . 148

.13 \xintiiAbs . 148

.14 \xintiiAdd . 148

.15 \xintiiCmp . 148

.16 \xintiiSub . 148

.17 \xintiiMul . 148

.18 \xintiiSqr . 148

.19 \xintiiPow . 148

.20 \xintiiFac . 148

.21 \xintiiDivision . 149

.22 \xintiiQuo . 149

.23 \xintiiRem . 149

.24 \xintiiDivRound . 149

.25 \xintiiDivTrunc . 149

.26 \xintiiDivFloor . 150

.27 \xintiiMod . 150

.28 \xintNum . 150

Package xintcore is automatically loaded by xint.

xintcore provides for big integers the four basic arithmetic operations (addition, subtraction,

multiplication, division), as well as powers and factorials.

In the descriptions of the macros {N} and {M} stand for (big) integers or macros f-expanding to

such big integers in strict format as described in subsection 8.4.

All macros require strict integer format on input and produce strict integer format on output,

except:+
{

• \xintiNum which converts to strict integer format an input in extended integer format, i.e.

admitting multiple leading plus or minus signs, then possibly leading zeroes, then digits,

• and \xintNum which is an alias for the former, which gets redefined by xintfrac to accept more

generally also decimal numbers or fractions as input and which truncates them to integers.

The ii in the names of the macros such as \xintiiAdd serves to stress that they accept only

strict integers as input (this is signaled by the margin annotation f), or macros f-expanding to

such strict format (big) integers and that they produce strict integers as output.

Other macros, such as \xintDouble, lack the ii, but this is only a legacy of the history of the

package and they have the same requirements for input and format of output as the ii-macros.

The letter x (with margin annotation
num
x) stands for an argument which will be handled embedded

in \numexpr..\relax. It will thus be completely expanded and must give an integer obeying the TEX

bounds. See also subsection 8.6. This is the case for the argument of \xintiiFac or the exponent

argument of \xintiiPow.

The ★'s in the margin are there to remind of the complete expandability, even f-expandability
of the macros, as discussed in subsubsection 8.3.1.

Table 3 summarizes the maximal allowed sizes for the four operations. The first column is the

tested macro (it is expanded in an \edef; if deeper nested, the maximal admissible input sizes may

actually prove lower than stated). The second column gives the maximal N such that the macro does

not raise an error on both inputs having N digits (for division, the used test divisors had N/4,

N/2 and 3N/4 digits).

These maximal N's depend on the values of TEX parameters such as input stack size and expansion

depth. The last column gives the TEX parameter cited in the error message when trying with N+1

digits.

The table was last updated in July 2025, using 1.4m 2022/06/10 and TeXLive 2025 default settings

which are: input stack size at 10000, expansion depth at 10000, parameter stack size at 20000.

10.1.
source

\xintiNum

\xintiNum{N} removes chains of plus or minus signs, followed by zeroes.f ★

146

TOC
TOC, xint bundle, xintkernel, xintcore , xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

Max length of inputs Limiting factor

\xintiiAdd 26648 expansion depth=10000

\xintiiSub 26632 expansion depth=10000

\xintiiMul 13320 expansion depth=10000

\xintiiDivision 26609 expansion depth=10000

Table 3: Maximal sizes of inputs (using TeXLive 2025) for core arithmetic

\xintiNum{+---++----+--000000000367941789479}

-367941789479

10.2.
source

\xintDouble

\xintDouble{N} computes 2N.f ★

10.3.
source

\xintHalf

\xintHalf{N} computes N/2 truncated towards zero.f ★

10.4.
source

\xintInc

\xintInc{N} evaluates N+1.f ★

10.5.
source

\xintDec

\xintDec{N} evaluates N-1.f ★

10.6.
source

\xintDSL

\xintDSL{N} is decimal shift left, i.e. multiplication by ten.f ★

10.7.
source

\xintDSR

\xintDSR{N} is truncated decimal shift right, i.e. it is the truncation of N/10 towards zero.f ★

10.8.
source

\xintDSRr

\xintDSRr{N} is rounded decimal shift right, i.e. it is the rounding of N/10 away from zero. Itf ★
is needed in xintcore for use by \xintiiDivRound.

10.9.
source

\xintFDg

\xintFDg{N} outputs the first digit (most significant) of the number.f ★

10.10.
source

\xintLDg

\xintLDg{N} outputs the least significant digit. When the number is positive, this is the same asf ★
the remainder in the Euclidean division by ten.

10.11.
source

\xintiiSgn

\xintiiSgn{N} returns 1 if the number is positive, 0 if it is zero and -1 if it is negative.f ★

147

TOC
TOC, xint bundle, xintkernel, xintcore , xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

10.12.
source

\xintiiOpp

\xintiiOpp{N} outputs the opposite -N of the number N.f ★
Important note: an input such as -\foo is not legal, generally speaking, as argument to the

macros of the xint bundle (except, naturally in \xintexpr-essions). The reason is that the minus

sign stops the f-expansion done during parsing of the inputs. One must use the syntax \xintiiOpp ⤸
{\foo} if one wants to pass -\foo as argument to other macros.

10.13.
source

\xintiiAbs

\xintiiAbs{N} outputs the absolute value of the number.f ★

10.14.
source

\xintiiAdd

\xintiiAdd{N}{M} computes the sum of the two (big) integers.f f ★

10.15.
source

\xintiiCmp

\xintiiCmp{N}{M} produces 1 if N>M, 0 if N=M, and -1 if N<M.f f ★
At 1.2l this macro was moved from package xint to xintcore.

10.16.
source

\xintiiSub

\xintiiSub{N}{M} computes the difference N-M.f f ★

10.17.
source

\xintiiMul

\xintiiMul{N}{M} computes the product of two (big) integers.f f ★

10.18.
source

\xintiiSqr

\xintiiSqr{N} produces the square.f ★

10.19.
source

\xintiiPow

\xintiiPow{N}{x} computes N^x. For x=0, this is 1. For N=0 and x<0, or if |N|>1 and x<0, an errorf
num
x ★

is raised. There will also be an error if x exceeds the maximal 𝜀-TEX number 2147483647, but the

real limit for exponents comes from either the computation time or the settings of some TEX memory

parameters.

Generally speaking the computation will end in an error if the output goes beyond what addition

could accept on input, i.e. (with TEXLive 2025 default settings) has more than about 26600 digits.

For example the maximal power of 2 which \xintiiPow is able to compute (with TEXLive 2025 default

memory parameters) is 288470 which has 26633 digits. I.e. \edef\z{\xintiiPow{2}{88470}} succeeds

(if you are patient enough to wait) but \edef\z{\xintiiPow{2}{88471}} fails.

10.20.
source

\xintiiFac

\xintiiFac{x} computes the factorial.
num
x ★

The (theoretically) allowable range is 0 ⩽ x ⩽ 10000.

However the maximal possible computation depends on the values of some memory parameters of

the 𝜀-TEX executable: with xintcore at 1.4m and using TEXLive 2025, the maximal (within an \edef)

computable one is 7712! which has 26631 decimal digits. With the input stack size set at 10000,

the limiting factor here is the expansion depth at 10000.

The factorial() function, or equivalently !() as post-fix operator is available in the three

parsers:

148

TOC
TOC, xint bundle, xintkernel, xintcore , xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

\xinttheiiexpr factorial(30)\relax\par

\printnumber{\xinteval{200!}}\par

265252859812191058636308480000000

788657867364790503552363213932185062295135977687173263294742533244359449963403342920304284 ⤸
01198462390417721213891963883025764279024263710506192662495282993111346285727076331723739698 ⤸
89439224456214516642402540332918641312274282948532775242424075739032403212574055795686602260 ⤸
319041703240623517008587961789222227896237038973747200 ⤸
000000000

Within \xintfloateval, the macro \xintFloatFac from package xintfrac is used.

\xintfloateval{200!}\par

7.886578673647905e374

\xintfloateval{2000!}\par

3.316275092450633e5735

See its documentation for more.

10.21.
source

\xintiiDivision

\xintiiDivision{M}{N} produces {quotient}{remainder}, in the sense of (mathematical) Euclideanf f ★
division: M = QN + R, 0 ≤ R < |N|. So the remainder is always non-negative and the formula M = ⤸
QN + R always holds independently of the signs of N or M. Division by zero is an error (even if M

vanishes) and returns {0}{0}.

10.22.
source

\xintiiQuo

\xintiiQuo{M}{N} computes the quotient from the Euclidean division.f f ★

10.23.
source

\xintiiRem

\xintiiRem{M}{N} computes the remainder from the Euclidean division.f f ★

10.24.
source

\xintiiDivRound

\xintiiDivRound{M}{N} returns the rounded value of the algebraic quotient M/N of two big integers.f f ★
The rounding is ``away from zero.''

\xintiiDivRound {100}{3}, \xintiiDivRound {101}{3}

33, 34

10.25.
source

\xintiiDivTrunc

\xintiiDivTrunc{M}{N} computes trunc(M/N). For positive arguments M, N > 0 it is the same as thef f ★
Euclidean quotient \xintiiQuo.

\xintiiQuo{1000}{57} (Euclidean), \xintiiDivTrunc{1000}{57} (truncated),

\xintiiDivRound{1000}{57} (rounded)\newline

\xintiiQuo{-1000}{57}, \xintiiDivTrunc{-1000}{57} (t), \xintiiDivRound{-1000}{57} (r)

\newline

\xintiiQuo{1000}{-57}, \xintiiDivTrunc{1000}{-57} (t), \xintiiDivRound{1000}{-57} (r)

\newline

\xintiiQuo{-1000}{-57}, \xintiiDivTrunc{-1000}{-57} (t), \xintiiDivRound{-1000}{-57} (r)

\par

17 (Euclidean), 17 (truncated), 18 (rounded)

-18, -17 (t), -18 (r)

-17, -17 (t), -18 (r)

18, 17 (t), 18 (r)

149

TOC
TOC, xint bundle, xintkernel, xintcore , xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

10.26.
source

\xintiiDivFloor

\xintiiDivFloor{M}{N} computes floor(M/N). For positive divisor N > 0 and arbitrary dividend Mf f ★
it is the same as the Euclidean quotient \xintiiQuo.

\xintiiQuo{1000}{57} (Euclidean), \xintiiDivFloor{1000}{57} (floored)\newline

\xintiiQuo{-1000}{57}, \xintiiDivFloor{-1000}{57}\newline

\xintiiQuo{1000}{-57}, \xintiiDivFloor{1000}{-57}\newline

\xintiiQuo{-1000}{-57}, \xintiiDivFloor{-1000}{-57}\par

17 (Euclidean), 17 (floored)

-18, -18

-17, -18

18, 17

10.27.
source

\xintiiMod

\xintiiMod{M}{N} computes M - N ∗ floor(M/N). For positive divisor N > 0 and arbitrary dividend Mf f ★
it is the same as the Euclidean remainder \xintiiRem.

Formerly, this macro computed M - N ∗ trunc(M/N). The former meaning is retained as \xintiiMod-

Trunc.

\xintiiRem {1000}{57} (Euclidean), \xintiiMod {1000}{57} (floored),

\xintiiModTrunc {1000}{57} (truncated)\newline

\xintiiRem {-1000}{57}, \xintiiMod {-1000}{57}, \xintiiModTrunc {-1000}{57}\newline

\xintiiRem {1000}{-57}, \xintiiMod {1000}{-57}, \xintiiModTrunc {1000}{-57}\newline

\xintiiRem {-1000}{-57}, \xintiiMod {-1000}{-57}, \xintiiModTrunc {-1000}{-57}\par

31 (Euclidean), 31 (floored), 31 (truncated)

26, 26, -31

31, -26, 31

26, -31, -31

10.28.
source

\xintNum

\xintNum is originally an alias for \xintiNum. But with xintfrac loaded its meaning is modifiedf ★
to accept more general inputs. It then becomes an alias to \xintTTrunc which truncates the general

input to an integer in strict format.

150

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

11. Macros of the xint package

.1 \xintiLen . 152

.2 \xintReverseDigits . 152

.3 \xintDecSplit . 152

.4 \xintDecSplitL, \xintDecSplitR 153

.5 \xintiiE . 153

.6 \xintDSH . 153

.7 \xintDSHr, \xintDSx 153

.8 \xintiiEq . 153

.9 \xintiiNotEq . 153

.10 \xintiiGeq . 153

.11 \xintiiGt . 153

.12 \xintiiLt . 154

.13 \xintiiGtorEq . 154

.14 \xintiiLtorEq . 154

.15 \xintiiIsZero . 154

.16 \xintiiIsNotZero . 154

.17 \xintiiIsOne . 154

.18 \xintiiOdd . 154

.19 \xintiiEven . 154

.20 \xintiiMON . 154

.21 \xintiiMMON . 154

.22 \xintiiifSgn . 154

.23 \xintiiifZero . 154

.24 \xintiiifNotZero . 155

.25 \xintiiifOne . 155

.26 \xintiiifCmp . 155

.27 \xintiiifEq . 155

.28 \xintiiifGt . 155

.29 \xintiiifLt . 155

.30 \xintiiifOdd . 155

.31 \xintiiSum . 155

.32 \xintiiPrd . 156

.33 \xintiiSquareRoot . 156

.34 \xintiiSqrt, \xintiiSqrtR 156

.35 \xintiiBinomial . 156

.36 \xintiiPFactorial . 157

.37 \xintiiMax . 158

.38 \xintiiMin . 158

.39 \xintiiMaxof . 158

.40 \xintiiMinof . 158

.41 \xintifTrueAelseB . 158

.42 \xintifFalseAelseB . 158

.43 \xintNOT . 158

.44 \xintAND . 158

.45 \xintOR . 159

.46 \xintXOR . 159

.47 \xintANDof . 159

.48 \xintORof . 159

.49 \xintXORof . 159

.50 \xintiiGCD . 159

.51 \xintiiLCM . 159

.52 \xintiiGCDof . 159

.53 \xintiiLCMof . 160

.54 \xintLen . 160

.55 (WIP) \xintRandomDigits 160

.56 (WIP) \xintXRandomDigits 160

.57 (WIP) \xintiiRandRange 161

.58 (WIP) \xintiiRandRangeAtoB 161

This package loads automatically xintcore (and xintkernel) hence all macros described in sec-

tion 10 are still available.

This is 1.4o of 2025/09/06.

Version 1.0 was released 2013/03/28. Since 1.1 2014/10/28 the core arithmetic macros have been

moved to a separate package xintcore, which is automatically loaded by xint. Only the \xintiiSum,

\xintiiPrd, \xintiiSquareRoot, \xintiiSqrt, \xintiiSqrtR, \xintiiPFactorial, \xintiiBinomial

genuinely add to the arithmetic macros from xintcore. (\xintiiFac which computes factorials is

already in xintcore.)

With the exception of \xintLen, of the “Boolean logic macros” (see next paragraphs) all macros

require inputs being integers in strict format, see subsection 8.4.68 The ii in the macro names is

here as a reminder of that fact. The output is an integer in strict format, or a pair of two braced

such integers for \xintiiSquareRoot, with the exception of \xintiiE which may produce strings of

zero's if its first argument is zero.

Macros \xintDecSplit and \xintReverseDigits are non-arithmetic and have their own specific

rules.

For all macros described here for which it makes sense, package xintfrac defines a similar one

without ii in its name. This will handle more general inputs: decimal, scientific numbers, frac-

tions. The ii macros provided here by xint can be nested inside macros of xintfrac but the opposite

does not apply, because the output format of the xintfrac macros, even for representing integers,

68 of course for conditionals such as \xintiiifCmp this constraint applies only to the first two arguments.

151

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

is not understood by the ii macros. The “Boolean macros” \xintAND etc... are exceptions though,

they work fine if served as inputs some xintfrac output, despite doing only f-expansion. Prior to

1.2o, these macros did apply the \xintNum or the more general xintfrac general parsing, but this

overhead was deemed superfluous as it serves only to handle hand-written input and is not needed

if the input is obtained as a nested chain of xintfrac macros for example.

Prior to release 1.2o, xint defined additional macros which applied \xintNum to their input

arguments. All these macros were deprecated at 1.2o and have been removed at 1.3.

At 1.3d macros \xintiiGCD and \xintiiLCM from package xintgcd are also available from loading

xint only. They are support macros for the (multi-arguments) functions gcd() and lcm() in \xint-

iiexpr.

See subsubsection 8.3.1 for the significance of the
Num
f , f,

num
x and ★ margin annotations.

11.1.
source

\xintiLen

\xintiLen{N} returns the length of the number, after its parsing via \xintiNum. The count does
Num
f ★

not include the sign.

\xintiLen{-12345678901234567890123456789}

29

Prior to 1.2o, the package defined only \xintLen, which is extended by xintfrac to fractions or

decimal numbers, hence acquires a bit more overhead then.

11.2.
source

\xintReverseDigits

3.60004pt, 8.39996pt, 12.0pt

\xintReverseDigits{N} will reverse the order of the digits of the number. \xintRev is the for-f ★
mer denomination and is kept as an alias. Leading zeroes resulting from the operation are not

removed. Contrarily to \xintReverseOrder this macro f-expands its argument; it is only usable

with digit tokens. It does not apply \xintNum to its argument (so this must be done explicitely

if the argument is an integer produced from some xintfrac macros). It does accept a leading minus

sign which will be left upfront in the output.

\oodef\x{\xintReverseDigits

{98765432109876543210987654321098765432109876543210}}\meaning\x\par

\noindent\oodef\x{\xintReverseDigits {\xintReverseDigits

{98765432109876543210987654321098765432109876543210}}}\meaning\x\par

macro:->01234567890123456789012345678901234567890123456789

macro:->98765432109876543210987654321098765432109876543210

11.3.
source

\xintDecSplit

\xintDecSplit{x}{N} cuts the N (a list of digits) into two pieces L and R: it outputs {L}{R} where
num
x f ★

the original N is the concatenation LR. These two pieces are decided according to x:

• for x>0, R coincides with the x least significant digits. If x equals or exceeds the length

of N the first piece L will thus be empty,
• for x=0, R is empty, and L is all of N,

• for x<0, the first piece L consists of the |x| most significant digits and the second piece R

gets the remaining ones. If x equals or exceeds the length of N the second piece R will thus

be empty.
This macro provides public interface to some functionality which is primarily of internal in-

terest. It operates only (after f-expansion) on ``strings'' of digits tokens: leading zeroes

are allowed but a leading sign (even a minus sign) will provoke an error.

Breaking change with 1.2i: formerly N<0 was replaced by its absolute value. Now, a sign (posi-

tive or negative) will create an error.

152

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

11.4.
source

\xintDecSplitL,
source

\xintDecSplitR

\xintDecSplitL{x}{N} returns the first piece (unbraced) from the \xintDecSplit output.
num
x f ★

\xintDecSplitR{x}{N} returns the second piece (unbraced) from the \xintDecSplit output.
num
x f ★

11.5.
source

\xintiiE

\xintiiE{N}{x} serves to extend N with x zeroes. The parameter x must be non-negative. The samef
num
x ★

output would be obtained via \xintDSH{-x}{N}, except for N=0, as \xintDSH{-x}{N} multiplies N by

10^x hence produces 0 if N=0 whereas \xintiiE{0}{x} produces x+1 zeros.

\xintiiE {0}{91}\par

00

11.6.
source

\xintDSH

\xintDSH{x}{N} is parametrized decimal shift. When x is negative, it is like iterating \xintDSL
num
x f ★

|x| times (i.e. multiplication by 10-x). When x positive, it is like iterating \xintDSR x times

(and is more efficient), and for a non-negative N this is thus the same as the quotient from the

Euclidean division by 10^x.

11.7.
source

\xintDSHr,
source

\xintDSx

\xintDSHr{x}{N} expects x to be zero or positive and it returns then a value R which is correlated
num
x f ★

to the value Q returned by \xintDSH{x}{N} in the following manner:

• if N is positive or zero, Q and R are the quotient and remainder in the Euclidean division by

10^x (obtained in a more efficient manner than using \xintiiDivision),

• if N is negative let Q1 and R1 be the quotient and remainder in the Euclidean division by 10^x

of the absolute value of N. If Q1 does not vanish, then Q=-Q1 and R=R1. If Q1 vanishes, then

Q=0 and R=-R1.

• for x=0, Q=N and R=0.

So one has N = 10^x Q + R if Q turns out to be zero or positive, and N = 10^x Q - R if Q turns out

to be negative, which is exactly the case when N is at most -10^x.

\xintDSx{x}{N} for x negative is exactly as \xintDSH{x}{N}, i.e. multiplication by 10-x. For x
num
x f ★

zero or positive it returns the two numbers {Q}{R} described above, each one within braces. So Q

is \xintDSH{x}{N}, and R is \xintDSHr{x}{N}, but computed simultaneously.

11.8.
source

\xintiiEq

\xintiiEq{N}{M} returns 1 if N=M, 0 otherwise.f f ★

11.9.
source

\xintiiNotEq

\xintiiNotEq{N}{M} returns 0 if N=M, 1 otherwise.f f ★

11.10.
source

\xintiiGeq

\xintiiGeq{N}{M} returns 1 if the absolute value of the first number is at least equal to thef f ★
absolute value of the second number. If |N|<|M| it returns 0.

Important: the macro compares absolute values.

11.11.
source

\xintiiGt

\xintiiGt{N}{M} returns 1 if N>M, 0 otherwise.f f ★

153

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

11.12.
source

\xintiiLt

\xintiiLt{N}{M} returns 1 if N<M, 0 otherwise.f f ★

11.13.
source

\xintiiGtorEq

\xintiiGtorEq{N}{M} returns 1 if N⩾M, 0 otherwise. Extended by xintfrac to fractions.f f ★

11.14.
source

\xintiiLtorEq

\xintiiLtorEq{N}{M} returns 1 if N⩽M, 0 otherwise.f f ★

11.15.
source

\xintiiIsZero

\xintiiIsZero{N} returns 1 if N=0, 0 otherwise.f ★

11.16.
source

\xintiiIsNotZero

\xintiiIsNotZero{N} returns 1 if N!=0, 0 otherwise.f ★

11.17.
source

\xintiiIsOne

\xintiiIsOne{N} returns 1 if N=1, 0 otherwise.f ★

11.18.
source

\xintiiOdd

\xintiiOdd{N} is 1 if the number is odd and 0 otherwise.f ★

11.19.
source

\xintiiEven

\xintiiEven{N} is 1 if the number is even and 0 otherwise.f ★

11.20.
source

\xintiiMON

\xintiiMON{N} computes (-1)^N.f ★
\xintiiMON {-280914019374101929}

-1

11.21.
source

\xintiiMMON

\xintiiMMON{N} computes (-1)^{N-1}.f ★
\xintiiMMON {280914019374101929}

1

11.22.
source

\xintiiifSgn
source

\xintiiifSgn{⟨N⟩}{⟨A⟩}{⟨B⟩}{⟨C⟩} executes either the ⟨A⟩, ⟨B⟩ or ⟨C⟩ code, depending on its firstf n n n ★
argument being respectively negative, zero, or positive.

11.23.
source

\xintiiifZero

\xintiiifZero{⟨N⟩}{⟨IsZero⟩}{⟨IsNotZero⟩} expandably checks if the first mandatory argument N (af n n ★
number, possibly a fraction if xintfrac is loaded, or a macro expanding to one such) is zero or

not. It then either executes the first or the second branch.

Beware that both branches must be present.

154

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

11.24.
source

\xintiiifNotZero

\xintiiifNotZero{⟨N⟩}{⟨IsNotZero⟩}{⟨IsZero⟩} expandably checks if the first mandatory argument Nf n n ★
is not zero or is zero. It then either executes the first or the second branch.

Beware that both branches must be present.

11.25.
source

\xintiiifOne

\xintiiifOne{⟨N⟩}{⟨IsOne⟩}{⟨IsNotOne⟩} expandably checks if the first mandatory argument N is onef n n ★
or not one. It then either executes the first or the second branch. Beware that both branches

must be present.

11.26.
source

\xintiiifCmp

\xintiiifCmp{⟨A⟩}{⟨B⟩}{⟨A<B⟩}{⟨A=B⟩}{⟨A>B⟩} compares its first two arguments and chooses accord-f f n n n ★
ingly the correct branch.

11.27.
source

\xintiiifEq

\xintiiifEq{⟨A⟩}{⟨B⟩}{⟨A=B⟩}{⟨not(A=B)⟩} checks equality of its two first arguments and executesf f n n ★
the corresponding branch.

11.28.
source

\xintiiifGt

\xintiiifGt{⟨A⟩}{⟨B⟩}{⟨A>B⟩}{⟨not(A>B)⟩} checks if A > B and executes the corresponding branch.f f n n ★

11.29.
source

\xintiiifLt

\xintiiifLt{⟨A⟩}{⟨B⟩}{⟨A<B⟩}{⟨not(A<B)⟩} checks if A < B and executes the corresponding branch.f f n n ★

11.30.
source

\xintiiifOdd

\xintiiifOdd{⟨A⟩}{⟨A odd⟩}{⟨A even⟩} checks if A is and odd integer and executes the correspondingf n n ★
branch.

11.31.
source

\xintiiSum

\xintiiSum{⟨braced things⟩} after expanding its argument expects to find a sequence of tokens (or*f ★
braced material). Each is f-expanded, and the sum of all these numbers is returned.

\xintiiSum{{123}{-98763450}{\xintiiFac{7}}{\xintiiMul{3347}{591}}}\newline

\xintiiSum{1234567890}\newline

\xintiiSum{1234}\newline

\xintiiSum{}

-96780210

45

10

0

A sum with only one term returns that number: \xintiiSum {{-1234}}=-1234. Attention that \xi ⤸
ntiiSum {-1234} is not legal input and would make the TEX run fail.

155

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

11.32.
source

\xintiiPrd

\xintiiPrd{⟨braced things⟩} after expanding its argument expects to find a sequence of (of braced*f ★
items or unbraced single tokens). Each is expanded (with the usual meaning), and the product of

all these numbers is returned.

\xintiiPrd{{-9876}{\xintiiFac{7}}{\xintiiMul{3347}{591}}}\newline

\xintiiPrd{123456789123456789}\newline

\xintiiPrd {1234}\newline

\xintiiPrd{}

-98458861798080

131681894400

24

1

Attention that \xintiiPrd {-1234} is not legal input and would make the TEX compilation fail.

$2^{200}3^{100}7^{100}=\printnumber

{\xintiiPrd {{\xintiiPow {2}{200}}{\xintiiPow {3}{100}}{\xintiiPow {7}{100}}}}$

220031007100 = 2678727931661577575766279517007548402324740266374015348974459614815426412965499 ⤸
49000044400724076572713000016531207640654562118014357199401590334353924402821243896682224892 ⤸
7862988084382716133376

With xintexpr, the syntax is the natural one:

$2^{200}3^{100}7^{100}=\printnumber{\xinttheiiexpr 2^200 * 3^100 * 7^100\relax}$

220031007100 = 2678727931661577575766279517007548402324740266374015348974459614815426412965499 ⤸
49000044400724076572713000016531207640654562118014357199401590334353924402821243896682224892 ⤸
7862988084382716133376

11.33.
source

\xintiiSquareRoot

\xintiiSquareRoot{N} returns two braced integers {M}{d} which satisfy d>0 and M^2-d=N with M thef ★
smallest (hence if N=k^2 is a perfect square then M=k+1, d=2k+1).

\xintAssign\xintiiSquareRoot {17000000000000000000000000}\to\A\B

\xintiiSub{\xintiiSqr\A}\B=\A\string^2-\B

17000000000000000000000000=4123105625618^2-2799177881924

A rational approximation to
√
N is M - d

2M which is a majorant and the error is at most 1/2M (if N

is a perfect square k^2 this gives k+1/(2k+2), not k.)

Package xintfrac has \xintFloatSqrt for square roots of floating point numbers.

11.34.
source

\xintiiSqrt,
source

\xintiiSqrtR

\xintiiSqrt{N} computes the largest integer whose square is at most equal to N. \xintiiSqrtR pro-f ★
duces the rounded, not truncated, square root.f ★

\begin{itemize}[nosep]

\item \xintiiSqrt {3000000000000000000000000000000000000}

\item \xintiiSqrtR {3000000000000000000000000000000000000}

\item \xintiiSqrt {\xintiiE {3}{100}}

\end{itemize}

• 1732050807568877293

• 1732050807568877294

• 173205080756887729352744634150587236694280525381038

11.35.
source

\xintiiBinomial

\xintiiBinomial{x}{y} computes binomial coefficients.
num
x

num
x ★

If x<0 an out-of-range error is raised. Else, if y<0 or if x<y the macro evaluates to 0.

156

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

The allowable range is 0 ⩽ x ⩽ 99999999. But this theoretical range includes binomial coeffi-

cients with more than the roughly 19950 digits that the arithmetics of xint can handle. In such

cases, the computation will end up in a low-level TEX error after a long time.

It turns out that
(65000
32500

)
has 19565 digits and

(64000
32000

)
has 19264 digits. The latter can be evaluated

(this takes a long long time) but presumably not the former (I didn't try). Reasonable feasible

evaluations are with binomial coefficients not exceeding about one thousand digits.

The binomial function is available in the xintexpr parsers.

\xinttheiiexpr seq(binomial(100,i), i=47..53)\relax

84413487283064039501507937600, 93206558875049876949581681100, 98913082887808032681188722800,

100891344545564193334812497256, 98913082887808032681188722800, 93206558875049876949581681100,

84413487283064039501507937600

See \xintFloatBinomial from package xintfrac for the float variant, used in \xintfloatexpr.

In order to evaluate binomial coefficients
(x
y

)
with x > 99999999, or even x ⩾ 231, but y is not

too large, one may use an ad hoc function definition such as:

\xintdeffunc mybigbinomial(x,y):=`*`(x-y+1..[1]..x)//y!;%

% without [1], x would have been limited to < 2^31

\printnumber{\xinttheexpr mybigbinomial(98765432109876543210,10)\relax}

24338098741940755592729533173058146177070669479669793038510211146784065843698581878582323710 ⤸
27360575372715482389633359878460739973726786576925067784100587971261422326652270975592667517 ⤸
4871960261

To get this functionality in macro form, one can do:

\xintNewIIExpr\MyBigBinomial [2]{`*`(#1-#2+1..[1]..#1)//#2!}

\printnumber{\MyBigBinomial {98765432109876543210}{10}}

24338098741940755592729533173058146177070669479669793038510211146784065843698581878582323710 ⤸
27360575372715482389633359878460739973726786576925067784100587971261422326652270975592667517 ⤸
4871960261

As we used \xintNewIIExpr, this macro will only accept strict integers. Had we used \xintNewExpr

the \MyBigBinomial would have accepted general fractions or decimal numbers, and computed the

product at the numerator without truncating them to integers; but the factorial at the denominator

would truncate its argument.

11.36.
source

\xintiiPFactorial

\xintiiPFactorial{a}{b} computes the partial factorial (a+1)(a+2)...b. For a=b the product is
num
x

num
x ★

considered empty hence returns 1.

The allowed range is -100000000 ⩽ a, b ⩽ 99999999. The rule is to interpret the formula as the

product of the j's such that a < j ⩽ b, hence in particular if a ⩾ b the product is empty and the

macro evaluates to 1.

Only for 0 ⩽ a ⩽ b is the behaviour to be considered stable. For a > b or negative arguments, the

definitive rules have not yet been fixed.

\xintiiPFactorial {100}{130}

69293021885203871012298422845822803287591970060789350400000000

This theoretical range allows computations whose result values would have more than the roughly

19950 digits that the arithmetics of xint can handle. In such cases, the computation will end up

in a low-level TEX error after a long time.

The pfactorial function is available in the xintexpr parsers.

\xinttheiiexpr pfactorial(100,130)\relax

69293021885203871012298422845822803287591970060789350400000000

See \xintFloatPFactorial from package xintfrac for the float variant, used in \xintfloatexpr.

In case values are needed with b > 99999999, or even b ⩾ 231, but b - a is not too large, one may

use an ad hoc function definition such as:

\xintdeffunc mybigpfac(a,b):=`*`(a+1..[1]..b);%

% without [1], b would have been limited to < 2^31

157

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

\printnumber{\xinttheexpr mybigpfac(98765432100,98765432120)\relax}

78000855017567528067298107313023778438653002029049647467208196028116499434050587656870489322 ⤸
99630604482236853566403912561449912587404607844104078121472675461815442734098676283450069933 ⤸
322948600573016997034009566576640000

11.37.
source

\xintiiMax

\xintiiMax{N}{M} returns the largest of the two in the sense of the order structure on the relativef f ★
integers (i.e. the right-most number if they are put on a line with positive numbers on the right):

\xintiiMax {-5}{-6}=-5.

11.38.
source

\xintiiMin

\xintiiMin{N}{M} returns the smallest of the two in the sense of the order structure on the rel-f f ★
ative integers (i.e. the left-most number if they are put on a line with positive numbers on the

right): \xintiiMin {-5}{-6}=-6.

11.39.
source

\xintiiMaxof

\xintiiMaxof{{a}{b}{c}...} returns the maximum. The list argument may be a macro, it is f-f→ * f ★
expanded first.

11.40.
source

\xintiiMinof

\xintiiMinof{{a}{b}{c}...} returns the minimum. The list argument may be a macro, it is f-f→ * f ★
expanded first.

11.41.
source

\xintifTrueAelseB

\xintifTrueAelseB{⟨f ⟩}{⟨true branch⟩}{⟨false branch⟩} is a synonym for \xintiiifNotZero.f n n ★
\xintiiifnotzero is lowercase companion macro.

Note 1: as it does only f-expansion on its argument it fails with inputs such as --0. But with

xintfrac loaded, it does work fine if nested with other xintfrac macros, because the output format

of such macros is fine as input to \xintiiifNotZero. This remark applies to all other “Boolean
logic” macros next.

Note 2: prior to 1.2o this macro was using \xintifNotZero which applies \xintNum to its argument

(or gets redefined by xintfrac to handle general decimal numbers or fractions). Hence it would

have worked with input such as --0. But it was decided at 1.2o that the overhead was not worth it.

The same remark applies to the other “Boolean logic” type macros next.

11.42.
source

\xintifFalseAelseB

\xintifFalseAelseB{⟨f ⟩}{⟨false branch⟩}{⟨true branch⟩} is a synonym for \xintiiifZero.f n n ★
\xintiiifzero is lowercase companion macro.

11.43.
source

\xintNOT

\xintNOT is a synonym for \xintiiIsZero.f ★
\xintiiiszero serves as lowercase companion macro.

11.44.
source

\xintAND

\xintAND{f}{g} returns 1 if f!=0 and g!=0 and 0 otherwise.f f ★

158

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

11.45.
source
\xintOR

\xintOR{f}{g} returns 1 if f!=0 or g!=0 and 0 otherwise.f f ★

11.46.
source

\xintXOR

\xintXOR{f}{g} returns 1 if exactly one of f or g is true (i.e. non-zero), else 0.f f ★

11.47.
source

\xintANDof

\xintANDof{{a}{b}{c}...} returns 1 if all are true (i.e. non zero) and 0 otherwise. The listf→ * f ★
argument may be a macro, it (or rather its first token) is f-expanded first to deliver its items.

11.48.
source

\xintORof

\xintORof{{a}{b}{c}...} returns 1 if at least one is true (i.e. does not vanish), else it producesf→ * f ★
0. The list argument may be a macro, it is f-expanded first.

11.49.
source

\xintXORof

\xintXORof{{a}{b}{c}...} returns 1 if an odd number of them are true (i.e. do not vanish), else itf→ * f ★
produces 0. The list argument may be a macro, it is f-expanded first.

11.50.
source

\xintiiGCD

\xintiiGCD{N}{M} computes the greatest common divisor. It is positive, except when both N and Mf f ★
vanish, in which case the macro returns zero.

\xintiiGCD{10000}{1113}=1

\xintiiGCD{123456789012345}{9876543210321}=3

At 1.3d, this macro (which is used by the gcd() function in \xintiiexpr) was copied over to xint,

thus removing a partial dependency of xintexpr on xintgcd.

At 1.4 xintgcd requires xint and the latter is thus the one providing the macro.

11.51.
source

\xintiiLCM

\xintiiLCM{N}{M} computes the least common multiple. It is positive, except if one of N or Mf f ★
vanish, in which case the macro returns zero.

\xintiiLCM{10000}{1113}=11130000

\xintiiLCM{123456789012345}{9876543210321}=406442103762636081733470915

At 1.3d, this macro (which is used by the lcm() function in \xintiiexpr) was copied over to xint,

thus removing a partial dependency of xintexpr on xintgcd.

At 1.4 xintgcd requires xint and the latter is thus the one providing the macro.

11.52.
source

\xintiiGCDof

\xintiiGCDof{{a}{b}{c}...} computes the greatest common divisor of the integers a, b, Itf→ *f ★
is a support macro for the gcd() function of the \xintiiexpr parser.

It replaces the \xintGCDof which was formerly provided by xintgcd and is now available via xint-

frac in a version handling also fractions.

159

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

11.53.
source

\xintiiLCMof

\xintiiLCMof{{a}{b}{c}...} computes the least common multiple of the integers a, b, It isf→ *f ★
a support macro for the lcm() function of the \xintiiexpr parser.

It replaces the \xintLCMof which was formerly provided by xintgcd and is now available via xint-

frac in a version handling also fractions.

11.54.
source

\xintLen

\xintLen is originally an alias for \xintiLen. But with xintfrac loaded its meaning is modified
Num
f ★

to accept more general inputs.

11.55. (WIP)
source

\xintRandomDigits

All randomness related macros are Work-In-Progress: implementation and user interface may

change. They work only if the TEX engine provides the \uniformdeviate or \pdfuniformdeviate

primitive. See \xintUniformDeviate for additional information.

\xintRandomDigits{N} expands in two steps to N random decimal digits. The argument must be non-
num
x ★

negative and is limited by TEX memory parameters. On TEXLive 2018 with input save stack size at

5000 the maximal allowed N is at most 19984 (tested within a \write to an auxiliary file, the macro

context may cause a reduced maximum).

\pdfsetrandomseed 271828182

\xintRandomDigits{92}

60033782389146151207277993539344280578090871919638745398735577686436165769394958639376355806

TEX-hackers note: the digits are produced eight by eight by the same method which would result from \xint-

UniformDeviate{100000000} but with less overhead.

11.56. (WIP)
source

\xintXRandomDigits

\xintXRandomDigits{N} expands under exhaustive expansion (\edef, \write, \csname ...) to N ran-
num
x I

dom decimal digits. The argument must be non-negative. For example:

\newwrite\out

\immediate\openout\out=\jobname-out.txt

\immediate\write\out{\xintXRandomDigits{4500000}}

\immediate\closeout\out

creates a 4500001 bytes file (it ends with a line feed character). Trying with 5000000 raises this

error:

Runaway text?

588875947168511582764514135070217555354479805240439407753451354223283\ETC.

! TeX capacity exceeded, sorry [main memory size=5000000].

<inserted text> 666515098

l.15 ...ate\write\out{\xintXRandomDigits{5000000}}

No pages of output.

Transcript written on temp.log.

This can be lifted by increasing the TEX memory settings (installation dependent).

TEX-hackers note: the digits are produced eight by eight by the same method which would result from \xint-

UniformDeviate{100000000} but with less overhead.

160

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

11.57. (WIP)
source

\xintiiRandRange

\xintiiRandRange{A} expands to a random (big) integer N such that 0<=N<A. It is a supporting macrof ★
for randrange(). As with Python's function of the same name, it is an error if A<=0.

\pdfsetrandomseed 271828314

xx\newline

\xintiiRandRange{\xintNum{1e40}}\newline

\pdfsetrandomseed 271828314

\xinttheiiexpr randrange(num(1e40))\relax\newline

% bare 1e40 not understood by \xintiiexpr

\pdfsetrandomseed 271828314

\xinttheexpr randrange(1e40)\relax

xx

1408107837990425263001878034077495278697

1408107837990425263001878034077495278697

1408107837990425263001878034077495278697

Of course, keeping in mind that the set of seeds is of cardinality 2^{28}, randomness is a bit

illusory here say with A=10^N, N>8, if we proceed immediately after having set the seed. If we add

some entropy in any way, then it is slightly more credible; but I think that for each seed the period

is something like 2^{27}(2^{55}-1)55,69 so we expect at most about 2^{110}55 ``points in time'',

and this is already small compared to the 10^40 from example above. Thus already we are very far

from being intrinsically able to generate all numbers with forty digits as random numbers, and

this makes the previous section about usage of \xintXRandomDigits to generate millions of digits

a bit comical...

TEX-hackers note: the digits are produced eight by eight by the same method which would result from \xint-

UniformDeviate{100000000} but with less overhead.

11.58. (WIP)
source

\xintiiRandRangeAtoB

\xintiiRandRangeAtoB{A}{B} expands to a random (big) integer N such that A<=N<B. It is a support-f f ★
ing macro for randrange(). As with Python's function of the same name, it is an error if B<=A.

\pdfsetrandomseed 271828314

12345678911111111111111111111\newline

\xintiiRandRangeAtoB{12345678911111111111111111111}{12345678922222222222222222222}%

\newline

\pdfsetrandomseed 271828314

\def\test{%

\xinttheiiexpr

randrange(12345678911111111111111111111,12345678922222222222222222222)

\relax}%

\romannumeral\xintreplicate{10}{\test\newline}%

12345678922222222222222222222

12345678911111111111111111111

12345678916037426188606389808

12345678916037426188606389808

12345678916060337223949101536

12345678912190033095886250034

12345678917323740152668511995

12345678915424847208552293485

12345678921595726610650510660

69 Compare the result of exercise 3.2.2-30 in TAOCP, vol II.

161

TOC
TOC, xint bundle, xintkernel, xintcore, xint , xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

12345678911673261982088192858

12345678911339325803675947159

12345678917791540296982027151

12345678913602899909728811895

12345678922222222222222222222

TEX-hackers note: the digits are produced eight by eight by the same method which would result from \xint-

UniformDeviate{100000000} but with less overhead.

162

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

12. Macros of the xintfrac package

.1 \xintTeXFromSci . 164

.2 \xintTeXFrac . 165

.3 \xintTeXsignedFrac . 165

.4 \xintTeXOver . 165

.5 \xintTeXsignedOver . 166

.6 \xintLen . 166

.7 \xintNum . 166

.8 \xintRaw . 166

.9 \xintRawBraced . 166

.10 \xintNumerator . 167

.11 \xintDenominator . 167

.12 \xintRawWithZeros . 167

.13 \xintREZ . 167

.14 \xintIrr . 167

.15 \xintPIrr . 168

.16 \xintJrr . 168

.17 \xintPRaw . 168

.18 \xintDecToStringREZ 168

.19 \xintDecToString . 169

.20 \xintFracToSci . 170

.21 \xintFracToDecimal . 170

.22 \xintTrunc . 171

.23 \xintXTrunc . 172

.24 \xintTFrac . 174

.25 \xintRound . 174

.26 \xintFloor . 175

.27 \xintCeil . 175

.28 \xintiTrunc . 175

.29 \xintTTrunc . 176

.30 \xintiRound . 176

.31 \xintiFloor . 176

.32 \xintiCeil . 176

.33 \xintE . 176

.34 \xintCmp . 177

.35 \xintEq . 177

.36 \xintNotEq . 177

.37 \xintGeq . 177

.38 \xintGt . 177

.39 \xintLt . 177

.40 \xintGtorEq . 177

.41 \xintLtorEq . 177

.42 \xintIsZero . 177

.43 \xintIsNotZero . 177

.44 \xintIsOne . 177

.45 \xintOdd . 177

.46 \xintEven . 177

.47 \xintifSgn . 178

.48 \xintifZero . 178

.49 \xintifNotZero . 178

.50 \xintifOne . 178

.51 \xintifOdd . 178

.52 \xintifCmp . 178

.53 \xintifEq . 178

.54 \xintifGt . 178

.55 \xintifLt . 178

.56 \xintifInt . 178

.57 \xintSgn . 179

.58 \xintSignBit . 179

.59 \xintOpp . 179

.60 \xintAbs . 179

.61 \xintAdd . 179

.62 \xintSub . 179

.63 \xintMul . 179

.64 \xintDiv . 179

.65 \xintDivFloor . 179

.66 \xintMod . 179

.67 \xintDivMod . 180

.68 \xintDivTrunc . 180

.69 \xintModTrunc . 180

.70 \xintDivRound . 180

.71 \xintSqr . 180

.72 \xintPow . 180

.73 \xintFac . 181

.74 \xintBinomial . 181

.75 \xintPFactorial . 181

.76 \xintMax . 181

.77 \xintMin . 181

.78 \xintMaxof . 181

.79 \xintMinof . 181

.80 \xintSum . 182

.81 \xintPrd . 182

.82 \xintGCD . 182

.83 \xintLCM . 182

.84 \xintGCDof . 182

.85 \xintLCMof . 182

.86 \xintDigits, \xinttheDigits 183

.87 \xintSetDigits . 183

.88 \xintFloat . 183

.89 \xintFloatBraced . 185

.90 \xintFloatToDecimal 185

.91 \xintPFloat . 186

.92 \xintFloatAdd . 189

.93 \xintFloatSub . 190

.94 \xintFloatMul . 190

.95 \xintFloatDiv . 190

.96 \xintFloatPow . 190

.97 \xintFloatPower . 190

.98 \xintFloatSqrt . 191

.99 \xintFloatFac . 191

.100 \xintFloatBinomial . 192

.101 \xintFloatPFactorial 192

163

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

First version of this package was in release 1.03 (2013/04/14) of the xint bundle.

At release 1.3 (2018/02/28) the behaviour of \xintAdd (and of \xintSub) was modified: when

adding a/b and c/d they will use always the least common multiple of the denominators. This helps

limit the build-up of denominators, but the author still hesitates if the fraction should be re-

duced to smallest terms. The current method allows (for example when multiplying two polynomials)

to keep a well-predictable denominator among various terms, even though some may be reducible.

xintfrac loads automatically xintcore and xint and inherits their macro definitions. Only these

two are redefined: \xintNum and \xintLen. As explained in subsection 8.4 and subsection 8.5 the

interchange format for the xintfrac macros, i.e. A/B[N], is not understood by the ii-named macros

of xintcore/xint which expect the so-called strict integer format. Hence, to use such an ii-macro

with an output from an xintfrac macro, an extra \xintNum wrapper is required. But macros already

defined by xintfrac cover most use cases hence this should be a rarely needed.

In the macro descriptions, the variable f and the margin indicator stand for the xintfrac input
Frac
f

format for integers, scientific numbers, and fractions as described in subsection 8.4.

As in the xint.sty documentation, x stands for something which internally will be handled in a
num
x

\numexpr. It may thus be an expression as understood by \numexpr but its evaluation and interme-

diate steps must obey the TEX bound.

The output format for most macros is the A/B[N] format but naturally the float macros use the

scientific notation on output. And some macros are special, for example \xintTrunc produces dec-

imal numbers, \xintIrr produces an A/B with no [N], \xintiTrunc and \xintiRound produce integers

without trailing [N] either, etc...

At 1.4g, old legacy typesetting macros \xintFrac, \xintSignedFrac, \xintFwOver and \xintSign ⤸
edFwOver were renamed into \xintTeXFrac, \xintTeXsignedFrac, \xintTeXOver, \xintTeXsignedOver.

The old names will raise errors and will be removed completely soon.Changed
at 1.4m!

12.1.
source

\xintTeXFromSci

Experimental. This typesetting math-mode-only macro expects an input which is already in, orI
will expand to, decimal or scientific notation. A trailing /B is accepted and will be handled

differently according to whether it follows some scientific exponent eN part or not.

It was formerly \xintTeXfromSci. Old name deprecated at 1.4l. Also it used to be f-expandable
but is now only x-expandable. Use \expanded if needed.

This macro can be used as a typesetting wrapper for \xinteval or \xintfloateval output: it

expects its input (after expansion) to have been already “prettified” for example via the removal

of trailing zeros, usage of fixed point notation if scientific exponent is small, etc... It simply

transforms the e<exponent> part, if actually present, into \cdot 10^{exponent}. A fractional

part /B if found in the expansion of the input must be last and will be tranformed into \cdot B^{- ⤸
1} if there was a scientific part, else the output will be using \frac{A}{B} (or the TEX equivalent

in place of \frac) with A the numerator.

TEX-hackers note:

• I am hesitating whether the \frac{A}{B} branch choice should require A to be an integer, or will also,

as currently, be done with A being a number in decimal notation. Please advise.

• The package does:

\ifdefined\frac

\protected\def\xintTeXFromScifracmacro#1#2{\frac{#2}{#1}}%

\else

\protected\def\xintTeXFromScifracmacro#1#2{{#2\over#1}}%

\fi

Customize as desired. Notice the interversion of arguments.

Example:

$\xintTeXFromSci{\xintfloateval{1.1^10000/5}}$,

$\xintTeXFromSci{\xinteval{1.1^10000/5}}$\par

164

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

1.689980050240070 · 10413, 8.449900251200348 · 10413 · 5-1
The above examples are in the case of a single numerical value. To handle more complex out-

puts from \xinteval or \xintfloateval one will need to proceed via a redefinition of \xint-

floatexprPrintOne and/or \xintexprPrintOne like this:

\[\def\xintfloatexprPrintOne[#1]#2{\xintTeXFromSci{\xintPFloat[#1]{#2}}}

\xintfloateval[10]{2^100, 3^100, 13^100}\]

1.267650600 · 1030, 5.153775207 · 1047, 2.479335111 · 10111

\[\def\xintexprPrintOne#1{\xintTeXFromSci{\xintFracToSci{#1}}}

\xinteval{sqrt(2^101,60), 355/113, 6.02e23/1000}\]

1.59226291813144314115595358963043315049844681269444074447413 · 1015, 355

113
, 6.02 · 1023 · 1000-1

This will however make then impossible, due to the added TEX mark-up in the output, the nesting of

\xintfloateval/\xinteval inside one another. The core \xintexpr...\relax syntax remains usable

and is anyhow the recommended way for such nesting as it is more efficient.

Some similar effect is also possible without \xintTeXFromSci, simply by a customization of

\xintPFloatE like this:

\begingroup

\def\xintPFloatE#1.{\cdot10^{#1}.}%

$\xintfloateval{1.1^10000/5}$, $\xinteval{1.1^10000/5}$

\endgroup\newline

1.689980050240070 · 10413, 8.449900251200348 · 10413/5
This method is simpler-minded but will leave the trailing /B's “as is”, even if the numerator has

no scientific exponent part. The presence of extra TEX mark-up in the output has the consequences

on nesting which were mentioned above.

12.2.
source

\xintTeXFrac

This is a typesetting LATEX only macro, math mode only as it expands to \frac{A}{B}10^n for an input
Frac
f ★

which ends up parsed into raw format A/B[n].

If the denominator B is 1, the output is A\cdot 10^n. If the exponent n is 0, the [\cdot]10^n

part is omitted.

$\xintTeXFrac {178.000/25600000}$, $\xintTeXFrac {178.000/1}$,

$\xintTeXFrac {3.5/5.7}$\newline
178000
2560000010

-3, 178000 · 10-3, 35
57

The input, if in a fraction form, is not simplified in any way, except for transforming numerator

and denominator into integers, separating a power of ten part. Macros such as \xintIrr, \xint-

PIrr, \xintREZ can be inserted to wrap the input and help simplify it. The minus sign ends up in

the numerator.

It is the new name since 1.4g of \xintFrac. The old name now raises a TEX error.Changed
at 1.4m!

12.3.
source

\xintTeXsignedFrac

This is as \xintTeXFrac except that a negative fraction has the sign ending up in front, not in the
Frac
f ★

numerator.

$\xintTeXFrac {-355/113}=\xintTeXsignedFrac {-355/113}$\newline
-355
113 = - 355113
It is the new name since 1.4g of \xintSignedFrac. The old name now raises a TEX error.Changed

at 1.4m!
12.4.

source
\xintTeXOver

This does the same as \xintTeXFrac except that the \over primitive is used for the fraction (in
Frac
f ★

case the denominator is not one; and a pair of braces contains the A\over B part).

165

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

$\xintTeXOver {178.000/25600000}$, $\xintTeXOver {178.000/1}$,

$\xintTeXOver {3.5/5.7}$\newline
178000
2560000010

-3, 178000 · 10-3, 35
57

It is the new name since 1.4g of \xintFwOver. The old name now raises a TEX error.Changed
at 1.4m!

12.5.
source

\xintTeXsignedOver

This is as \xintTeXOver except that a negative fraction has the sign put in front, not in the
Frac
f ★

numerator.

$\xintTeXOver{-355/113}=\xintTeXsignedOver{-355/113}$\newline
-355
113 = - 355113
It is the new name since 1.4g of \xintSignedFwOver. The old name now raises a TEX error.Changed

at 1.4m!
12.6.

source
\xintLen

The \xintLen macro from xint is extended to accept a fraction on input: the length of A/B[n] is
Frac
f ★

the length of A plus the length of B plus the absolute value of n and minus one (an integer input as

N is internally represented in a form equivalent to N/1[0] so the minus one means that the extended

\xintLen behaves the same as the original for integers).

\xintLen{201710/298219}=\xintLen{201710}+\xintLen{298219}-1\newline

\xintLen{1234/1}=\xintLen{1234}=\xintLen{1234[0]}=\xintiLen{1234}\newline

\xintLen{-1e3/5.425} (\xintRaw {-1e3/5.425})\par

11=6+6-1

4=4=4=4

10 (-1/5425[6])

The length is computed on the A/B[n] which would have been returned by \xintRaw, as illustrated

by the last example above.

\xintLen is only for use with such (scientific) numbers or fractions. See also \xintNthElt from

xinttools. See also \xintLength (which however does not expand its argument) from xintkernel for

counting more general tokens (or rather braced items).

12.7.
source

\xintNum

The \xintNum from xint is transformed into a synonym to \xintTTrunc.
Frac
f ★

Attention that for example \xintNum{1e100000} expands to the needed 100001 digits...

The original \xintNum from xintcore which does not understand the fraction slash or the scien-

tific notation is still available under the name \xintiNum.

12.8.
source

\xintRaw

This macro `prints' the fraction f as it is received by the package after its parsing and expansion,
Frac
f ★

in a form A/B[N] equivalent to the internal representation: the denominator B is always strictly

positive and is printed even if it has value 1.

\xintRaw{\the\numexpr 571*987\relax.123e-10/\the\numexpr-201+59\relax e-7}

-563577123/142[-6]

No simplification is done, not even of common zeroes between numerator and denominator:

\xintRaw {178000/25600000}

178000/25600000[0]

12.9.
source

\xintRawBraced

This macro expands and parses its input f as all xintfrac macros and produces as output {N}{A}{B}
Frac
f ★

(with TEX braces) where \xintRaw would have returned A/B[N].

166

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

12.10.
source

\xintNumerator

The input data is parsed as if by \xintRaw into A/B[N] and then A is returned if N<=0, or A extended
Frac
f ★

by N zeroes if N>0.

\xintNumerator {178000/25600000[17]}\newline

\xintNumerator {312.289001/20198.27}\newline

\xintNumerator {178000e-3/256e5}\newline

\xintNumerator {178.000/25600000}

17800000000000000000000

312289001

178000

178000

12.11.
source

\xintDenominator

The input data is parsed as if by \xintRaw into A/B[N] and then B is returned if N>0, or B extended
Frac
f ★

by |N| zeroes if N<=0.

\xintDenominator {178000/25600000[17]}\newline

\xintDenominator {312.289001/20198.27}\newline

\xintDenominator {178000e-3/256e5}\newline

\xintDenominator {178.000/25600000}

25600000

20198270000

25600000000

25600000000

12.12.
source

\xintRawWithZeros

This macro parses the input and outputs A'/B', with A' as would be returned by \xintNumerator{f}
Frac
f ★

and B' as would be returned by \xintDenominator{f}.

\xintRawWithZeros{178000/25600000[17]}\newline

\xintRawWithZeros{312.289001/20198.27}\newline

\xintRawWithZeros{178000e-3/256e5}\newline

\xintRawWithZeros{178.000/25600000}\newline

\xintRawWithZeros{\the\numexpr 571*987\relax.123e-10/\the\numexpr-201+59\relax e-7}

17800000000000000000000/25600000

312289001/20198270000

178000/25600000000

178000/25600000000

-563577123/142000000

12.13.
source

\xintREZ

The input is first parsed into A/B[N] as by \xintRaw, then trailing zeroes of A and B are suppressed
Frac
f ★

and N is accordingly adjusted.

\xintREZ {178000/25600000[17]}

178/256[15]

12.14.
source

\xintIrr

This puts the fraction into its unique irreducible form:
Frac
f ★

\xintIrr {178.256/256.1780}, \xintIrr {178000/25600000[17]}

167

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

6856/9853, 695312500000000/1

The current implementation does not cleverly first factor powers of 2 and 5, and \xintIrr {2/3 ⤸
[100]} will execute the Euclidean division of 2.10^{100} by 3, which is a bit stupid as it could

have known that the 100 trailing zeros can not bring any divisibility by 3.

Starting with release 1.08, \xintIrr does not remove the trailing /1 when the output is an in-

teger. This was deemed better for various (questionable?) reasons, anyway the output format is

since always A/B with B>0, even in cases where it turns out that B=1. Use \xintPRaw on top of

\xintIrr if it is needed to get rid of such a trailing /1.

12.15.
source

\xintPIrr

This puts the fraction into irreducible form, keeping as is the decimal part [N] from raw internal
Frac
f ★

A/B[N] format. (P stands here for Partial)
\xintPIrr {178.256/256.1780}, \xintPIrr {178000/25600000[17]}

3428/49265[1], 89/12800[17]

Notice that the output always has the ending [N], which is exactly the opposite of \xintIrr's

behaviour. The interest of this macro is mainly in handling fractions which somehow acquired a

big [N] (perhaps from input in scientific notation) and for which the reduced fraction would have a

very large number of digits. This large number of digits can considerably slow-down computations

done afterwards.

For example package polexpr uses \xintPIrr when differentiating a polynomial, or in setting up

a Sturm chain for localization of the real roots of a polynomial. This is relevant to polynomials

whose coefficients were input in decimal notation, as this automatically creates internally some

[N]. Keeping and combining those [N]'s during computations significantly increases their speed.

12.16.
source

\xintJrr

This also puts the fraction into its unique irreducible form:
Frac
f ★

\xintJrr {178.256/256.178}

6856/9853

This is (supposedly, not tested for ages) faster than \xintIrr for fractions having some big

common factor in the numerator and the denominator.

\xintJrr {\xintiiPow{\xintiiFac {15}}{3}/%

\xintiiPrd{{\xintiiFac{10}}{\xintiiFac{30}}{\xintiiFac{5}}}}

1001/51705840

But to notice the difference one would need computations with much bigger numbers than in this

example. As \xintIrr, \xintJrr does not remove the trailing /1 from a fraction reduced to an

integer.

12.17.
source

\xintPRaw

PRaw stands for ``pretty raw''. It does like \xintRaw apart from removing the [N] part if N=0 and
Frac
f ★

removing the B if B=1.

\xintPRaw {123e10/321e10}, \xintPRaw {123e9/321e10}, \xintPRaw {\xintIrr{861/123}}

123/321, 123/321[-1], 7

12.18.
source

\xintDecToStringREZ

\xintDecToStringREZ uses fixed point (decimal) notation for the output. The REZ means that it
Frac
f ★

trims (REmoves) trailing Zeros. The name is a bit strange, because it its not limited to decimal
numbers but accepts the same kind of inputs as most other xintfrac macros. The parsing of this

input transforms it first into an internal format having a numerator A, a denominator B and a

168

http://ctan.org/pkg/polexpr

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

power of ten exponent N, standing for the fraction A/B times 10 to the power N. Then the following

recipe applies:

• the zero value is printed as 0 (no decimal point).

• trailing zeros of A and B are removed and N is adjusted,

• if the new B is not 1, it will appear in the output as /B,

• fixed point decimal notation is used for AeN:

– if N is non-negative, the output is an integer with N trailing zeros (and no decimal mark)

– if N is negative a decimal point is used, and if AeN is less than one in absolute value,

output will start with 0. (i.e. a decimal mark).

The following should be noted:

1. the fraction AeN/B or even A/B is not pre-reduced into lowest terms,

2. the macro does not check if B contains only powers of 2 and 5, so 1/2 is printed as 1/2, not as

0.5.

The definitive behaviour remains to be decided regarding these last two points.

\xintDecToStringREZ{0}, \xintDecToStringREZ{1/2}, \xintDecToStringREZ{0.5000}\newline

\xintDecToStringREZ{1.23456789e5}, \xintDecToStringREZ {1.23456789e-3}\newline

\xintDecToStringREZ{12345e-1}, \xintDecToStringREZ {12345e-2},

\xintDecToStringREZ{12345e-3}\newline

\xintDecToStringREZ{12345e-4}, \xintDecToStringREZ {12345e-5},

\xintDecToStringREZ{12345e-6}\newline

\xintDecToStringREZ{1.234567890000e12}, \xintDecToStringREZ{1.23456000e-5/10}\newline

\xintDecToStringREZ{70/14} % is not reduced to lowest terms

0, 1/2, 0.5

123456.789, 0.00123456789

1234.5, 123.45, 12.345

1.2345, 0.12345, 0.012345

1234567890000, 0.00000123456

70/14

See \xintFloatToDecimal for a variant which first rounds the input to some given number of sig-

nificant digits.

12.19.
source

\xintDecToString

\xintDecToString uses fixed point notation for the output. Is behaviour remains somewhat unde-
Frac
f ★

cided in so far as whether it should identify inputs which correspond to decimal numbers (i.e.

fractions with only powers of two and five in their denominator, once reduced to lowest terms).

As with \xintDecToStringREZ, the name is a bit strange as inputs are in no way limited to decimal

numbers but are of the most general type accepted by the xintfrac macros.

It is the same macro as \xintDecToStringREZ except that it does not remove trailing zeros, in

fact \xintDecToStringREZ{f} is defined as \xintDecToString{\xintREZ{f}}.

\xintDecToString{0}, \xintDecToString{1/2}, \xintDecToString{0.5000}\newline

\xintDecToString{1.23456789e5}, \xintDecToString {1.23456789e-3}\newline

\xintDecToString{12345e-1}, \xintDecToString {12345e-2}, \xintDecToString{12345e-3}%

\newline

\xintDecToString{12345e-4}, \xintDecToString {12345e-5}, \xintDecToString{12345e-6}%

\newline

\xintDecToString{1.234567890000e12}, \xintDecToString{1.23456000e-5/10}\newline

\xintDecToString{70/14}

0, 1/2, 0.5000

123456.789, 0.00123456789

169

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

1234.5, 123.45, 12.345

1.2345, 0.12345, 0.012345

1234567890000, 0.0000123456000/10

70/14

Since 1.4e, \xintDecToString is the default for \xintiexprPrintOne, which governs the \xint-

ieval output format: in this use case there is never a /B fractional part and the output is always

either an integer (if \xintieval was used without optional argument) or a decimal string

\def\xintiexprPrintOne{\xintDecToString}

Any replacement of \xintDecToString as the expansion of \xintiexprPrintOne should obey the fol-

lowing blueprint:

• to be expandable, but not necessarily f-expandable,I
• to accept on input A or A[N].

12.20.
source

\xintFracToSci

\xintFracToSci was initially at 1.4 a private macro which served as default customization of
Frac
f ★

\xintexprPrintOne and, despite being documented in the user manual, was not supposed to be used at

user level (not being f-expandable it could not be nested within macros of xintfrac, and besides

accepted a limited range of inputs).

It has been upgraded at 1.4l to behave like all other xintfrac macros.

Here is what it does:

• it first parses the input like any other xintfrac macro and convert it into the ``raw'' A/B[N]

format,

• it then produces this output: A/B if N=0 (and /B is omitted if not 1), and for N not zero, the

output numerator will be AeN written in scientific notation exactly like it would by \xint-

PFloat but without of course prior rounding to a given number of digits; the trailing zeros in

the significand will be removed always (the \xintPFloatMinTrimmed configuration is ignored).

Then this value in scientific notation (or in decimal fixed point notation if the scientific

exponent is in the \xintPFloatNoSciEmin to \xintPFloatNoSciEmax range) will be attached to a

trailing denominator /B (omitted if it is /1).

Please note:

• there is no reduction of the fraction A/B to lowest terms,

• trailing zeros in the integer denominator B are not moved and incorporated into the final

scientific exponent,

• no attempt is made to check if B is a product of only 2's and 5's and thus could be integrated

into some pure decimal notation for the numerator or at least its significand.

Changes of \xintPFloat at 1.4k have an impact here. In particular the zero value will give 0

whether the input was some 0, 0e-5, 0/3, 0.00, etc..., whereas at 1.4e it would have been 0.0 for

cases triggering some \xintPFloat subroutine.

The general blueprint is still to be considered unstable.
The output routine of \xinteval is customizable via redefining \xintexprPrintOne whose current

default is (equivalent to):

\def\xintexprPrintOne{\xintFracToSci}

12.21.
source

\xintFracToDecimal

\xintFracToDecimal is a variant of \xintFracToSci which differs from it in so far as it outputs
Frac
f ★

a numerator using decimal notation, i.e. with as many zeros as are needed (and no more) and no

scientific exponent. The denominator goes through ``as is'' except if it is 1, then it is omitted.

170

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

In other terms its behaviour is currently intermediate between \xintDecToString and \xint-

DecToStringREZ, as it does not remove trailing zeros of the denominator. Consider its behaviour

as unstable.
It can be used to customize \xintexprPrintOne:

\def\xintexprPrintOne{\xintFracToDecimal}

It was initially at 1.4k a private macro which served as an alternative to \xintFracToSci de-

fault customization of \xintexprPrintOne and, despite being documented in the user manual, was

not supposed to be used at user level (not being f-expandable it could not be nested within macros

of xintfrac, and besides accepted a limited range of inputs).

It has been upgraded at 1.4l to behave like all other xintfrac macros.

12.22.
source

\xintTrunc

\xintTrunc{x}{f} returns the start of the decimal expansion of the fraction f, truncated to:
num
x

Frac
f ★

• if x>0, x digits after the decimal mark,

• if x=0, an integer,

• if x<0, an integer multiple of 10^{-x} (in scientific notation).

The output is the sole digit token 0 if and only if the input was exactly zero; else it contains

always either a decimal mark (even if x=0) or a scientific part and it conserves the sign of f (even

if the truncated value represents the zero value).

Truncation is done towards zero.

\begin{multicols}{2}

\noindent\xintFor* #1 in {\xintSeq[-1]{7}{-14}}:{\xintTrunc{#1}{-11e12/7}\newline}%

\xintTrunc{10}{1e-11}\newline \xintTrunc{10}{1/65536}\par

\end{multicols}

-1571428571428.5714285

-1571428571428.571428

-1571428571428.57142

-1571428571428.5714

-1571428571428.571

-1571428571428.57

-1571428571428.5

-1571428571428.

-157142857142e1

-15714285714e2

-1571428571e3

-157142857e4

-15714285e5

-1571428e6

-157142e7

-15714e8

-1571e9

-157e10

-15e11

-1e12

-0e13

-0e14

0.0000000000

0.0000152587

Warning: it is not yet decided is the current behaviour is definitive.
Currently xintfrac has no notion of a positive zero or a negative zero. Hence transitivity

of \xintTrunc is broken for the case where the first truncation gives on output 0.00...0 or -

0.00...0: a second truncation to less digits will then output 0, whereas if it had been applied

directly to the initial input it would have produced 0.00...0 or respectively -0.00...0 (with

less zeros after decimal mark).

If xintfrac distinguished zero, positive zero, and negative zero then it would be possible

to maintain transitivity.

171

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

The problem would also be fixed, even without distinguishing a negative zero on input, if

\xintTrunc always produced 0.00...0 (with no sign) when the mathematical result is zero, dis-

carding the information on original input being positive, zero, or negative.

I have multiple times hesitated about what to do and must postpone again final decision.

12.23.
source

\xintXTrunc

\xintXTrunc{x}{f} is similar to \xintTrunc with the following important differences:
num
x

Frac
f I

• it is completely expandable but not f-expandable, as is indicated by the hollow star in the

margin,

• hence it can not be used as argument to the other package macros, but as it f-expands its {f}

argument, it accepts arguments expressed with other xintfrac macros,

• it requires x>0,

• contrarily to \xintTrunc the number of digits on output is not limited to about 19950 and may

go well beyond 100000 (this is mainly useful for outputting a decimal expansion to a file),

• when the mathematical result is zero, it always prints it as 0.00...0 or -0.00...0 with x zeros

after the decimal mark.

Warning: transitivity is broken too (see discussion of \xintTrunc), due to the sign in the last

item. Hence the definitive policy is yet to be fixed.
Transitivity is here in the sense of using a first \edef and then a second one, because it is

not possible to nest \xintXTrunc directly as argument to itself. Besides, although the number of

digits on output isn't limited, nevertheless x should be less than about 19970 when the number of

digits of the input (assuming it is expressed as a decimal number) is even bigger: \xintXTrunc{ ⤸
30000}{\Z} after \edef\Z{\xintXTrunc{60000}{1/66049} raises an error in contrast with a direct

\xintXTrunc{30000}{1/66049}. But \xintXTrunc{30000}{123.456789} works, because here the number

of digits originally present is smaller than what is asked for, thus the routine only has to add

trailing zeros, and this has no limitation (apart from TEX main memory).

\xintXTrunc will expand fully in an \edef or a \write (\message, \wlog, ...) or in an \xint-

expr-ession, or as list argument to \xintFor*.

Here is an example session where the user checks that the decimal expansion of 1/66049 = 1/2572

has the maximal period length 257 ∗ 256 = 65792 (this period length must be a divisor of ϕ(66049)
and to check it is the maximal one it is enough to show that neither 32896 nor 256 are periods.)

$ rlwrap etex -jobname worksheet-66049

This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016) (preloaded format=etex)

restricted \write18 enabled.

**xintfrac.sty

entering extended mode

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xintfrac.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xint.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xintcore.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xintkernel.sty))))

*% we load xinttools for \xintKeep, etc... \xintXTrunc itself has no more

*% any dependency on xinttools.sty since 1.2i

*\input xinttools.sty

(/usr/local/texlive/2016/texmf-dist/tex/generic/xint/xinttools.sty)

*\def\m#1;{\message{#1}}

*\m \the\numexpr 257*257\relax;

66049

*\m \the\numexpr 257*256\relax;

65792

172

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

*% Thus 1/66049 will have a period length dividing 65792.

*% Let us first check it is indeed periodical.

*\edef\Z{\xintXTrunc{66000}{1/66049}}

*% Let's display the first decimal digits.

*\m \xintXTrunc{208}{\Z};

0.00001514027464458205271843631243470756559523989765174340262532362337052794137

6856576178291874214598252812306015231116292449545034746930309315810988811337037

6538630410755651107511090251177156353616254598858423

*% let's now fetch the trailing digits

*\m \xintKeep{65792-66000}{\Z};% 208 trailing digits

0000151402746445820527184363124347075655952398976517434026253236233705279413768

5657617829187421459825281230601523111629244954503474693030931581098881133703765

38630410755651107511090251177156353616254598858423

*% yes they match! we now check that 65792/2 and 65792/257=256 aren't periods.

*\m \xintXTrunc{256}{\Z};

0.00001514027464458205271843631243470756559523989765174340262532362337052794137

6856576178291874214598252812306015231116292449545034746930309315810988811337037

6538630410755651107511090251177156353616254598858423291798513225029902042423049

554118911717058547442

*\m \xintXTrunc{256+256}{\Z};

0.00001514027464458205271843631243470756559523989765174340262532362337052794137

6856576178291874214598252812306015231116292449545034746930309315810988811337037

6538630410755651107511090251177156353616254598858423291798513225029902042423049

5541189117170585474420505987978621932201850141561567926842192917379521264515738

3154930430438008145467758785144362518736089872670290239064936637950612424109373

3440324607488379839210283274538600130206361943405653378552286938485064119063119

8049932625777831609865402958409665551333

*% now with 65792/2=32896. Problem: we can't do \xintXTrunc{32896+100}{\Z}

*% but only direct \xintXTrunc{32896+100}{1/66049}. Anyway we want to nest it

*% hence let's do it all with (slower) \xintKeep, \xintKeepUnbraced.

*\m \xintKeep {-100}{\xintKeepUnbraced{2+65792/2+100}{\Z}};

9999848597253554179472815636875652924344047601023482565973746763766294720586231

434238217081257854017

*% This confirms 32896 isn't a period length.

*% To conclude let's write the 66000 digits to the log.

*\wlog{\Z}

*% We want always more digits:

*\wlog{\xintXTrunc{150000}{1/66049}}

173

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

*\bye

The acute observer will have noticed that there is something funny when one compares the first

digits with those after the middle-period:

0000151402746445820527184363124347075655952398976517434026253236233705279413768...

9999848597253554179472815636875652924344047601023482565973746763766294720586231...

Mathematical exercise: can you explain why the two indeed add to 9999...9999?

You can try your hands at this simpler one:

1/49=\xintTrunc{42+5}{1/49}...\newline

\xintTrim{2}{\xintTrunc{21}{1/49}}\newline

\xintKeep{-21}{\xintTrunc{42}{1/49}}

1/49=0.02040816326530612244897959183673469387755102040...

020408163265306122448

979591836734693877551

This was again an example of the type 1/N with N the square of a prime. One can also find counter-

examples within this class: 1/31^2 and 1/37^2 have an odd period length (465 and respectively 111)

hence they can not exhibit the symmetry.

Mathematical challenge: prove generally that if the period length of the decimal expansion

of 1/p^r (with p a prime distinct from 2 and 5 and r a positive exponent) is even, then the

previously observed symmetry about the two halves of the period adding to a string of nine's

applies.

12.24.
source

\xintTFrac

\xintTFrac{f} returns the fractional part, f=trunc(f)+frac(f). Thus if f<0, then -1<frac(f)<=0
Frac
f ★

and if f>0 one has 0<= frac(f)<1. The T stands for `Trunc', and there should exist also similar

macros associated respectively with `Round', `Floor', and `Ceil', each type of rounding to an

integer deserving arguably to be associated with a fractional ``modulo''. By sheer laziness,

the package currently implements only the ``modulo'' associated with `Truncation'. Other types

of modulo may be obtained more cumbersomely via a combination of the rounding with a subsequent

subtraction from f.

Notice that the result is filtered through \xintREZ, and will thus be of the form A/B[N], where

neither A nor B has trailing zeros. But the output fraction is not reduced to smallest terms.

The function call in expressions (\xintexpr, \xintfloatexpr) is frac. Inside \xintexpr..\rela ⤸
x, the function frac is mapped to \xintTFrac. Inside \xintfloatexpr..\relax, frac first applies

\xintTFrac to its argument (which may be an exact fraction with more digits than the floating

point precision) and only in a second stage makes the conversion to a floating point number with

the precision as set by \xintDigits (default is 16).

\xintTFrac {1235/97}, \xintTFrac {-1235/97}\newline

\xintTFrac {1235.973}, \xintTFrac {-1235.973}\newline

\xintTFrac {1.122435727e5}\par

71/97[0], -71/97[0]

973/1[-3], -973/1[-3]

5727/1[-4]

12.25.
source

\xintRound

\xintRound{x}{f} returns the start of the decimal expansion of the fraction f, rounded to:
num
x

Frac
f ★

• if x>0, x digits after the decimal mark,

• if x=0, an integer,

174

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

• if x<0, an integer multiple of 10^{-x} (in scientific notation).

The output is the sole digit token 0 if and only if the input was exactly zero; else it contains

always either a decimal mark (even if x=0) or a scientific part and it conserves the sign of f (even

if the rounded value represents the zero value).

\begin{multicols}{2}

\noindent\xintFor* #1 in {\xintSeq[-1]{7}{-14}}:{\xintRound{#1}{-11e12/7}\newline}%

\xintRound{10}{1e-11}\newline \xintRound{10}{1/65536}\newline

\end{multicols}

-1571428571428.5714286

-1571428571428.571429

-1571428571428.57143

-1571428571428.5714

-1571428571428.571

-1571428571428.57

-1571428571428.6

-1571428571429.

-157142857143e1

-15714285714e2

-1571428571e3

-157142857e4

-15714286e5

-1571429e6

-157143e7

-15714e8

-1571e9

-157e10

-16e11

-2e12

-0e13

-0e14

0.0000000000

0.0000152588

Rounding is done with half-way numbers going towards infinity of the same sign.

12.26.
source

\xintFloor

\xintFloor {f} returns the largest relative integer N with N ⩽ f.
Frac
f ★

\xintFloor {-2.13}, \xintFloor {-2}, \xintFloor {2.13}

-3/1[0], -2/1[0], 2/1[0] Note the trailing [0], see \xintiFloor if it is not desired.

12.27.
source

\xintCeil

\xintCeil {f} returns the smallest relative integer N with N > f.
Frac
f ★

\xintCeil {-2.13}, \xintCeil {-2}, \xintCeil {2.13}

-2/1[0], -2/1[0], 3/1[0]

12.28.
source

\xintiTrunc

\xintiTrunc{x}{f} returns the integer equal to 10^x times what \xintTrunc{x}{f} would produce.
num
x

Frac
f ★

Attention that leading zeros are automatically removed: the output is in strict integer format.

\begin{multicols}{2}

\noindent\xintFor* #1 in {\xintSeq[-1]{7}{-14}}:{\xintiTrunc{#1}{-11e12/7}\newline}%

\xintiTrunc{10}{1e-11}\newline \xintiTrunc{10}{1/65536}\par

\end{multicols}

-15714285714285714285

-1571428571428571428

-157142857142857142

-15714285714285714

-1571428571428571

-157142857142857

-15714285714285

-1571428571428

-157142857142

-15714285714

-1571428571

-157142857

175

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

-15714285

-1571428

-157142

-15714

-1571

-157

-15

-1

0

0

0

152587

12.29.
source

\xintTTrunc

\xintTTrunc{f} truncates to an integer (truncation towards zero). This is the same as \xintiTru ⤸
Frac
f ★

nc {0}{f} and also the same as \xintNum.

12.30.
source

\xintiRound

\xintiRound{x}{f} returns the integer equal to 10^x times what \xintRound{x}{f} would return.
num
x

Frac
f ★

The output has no leading zeroes, it is always in strict integer format.

\begin{multicols}{2}

\noindent\xintFor* #1 in {\xintSeq[-1]{7}{-14}}:{\xintiRound{#1}{-11e12/7}\newline}%

\xintiRound{10}{1e-11}\newline \xintiRound{10}{1/65536}\par

\end{multicols}

-15714285714285714286

-1571428571428571429

-157142857142857143

-15714285714285714

-1571428571428571

-157142857142857

-15714285714286

-1571428571429

-157142857143

-15714285714

-1571428571

-157142857

-15714286

-1571429

-157143

-15714

-1571

-157

-16

-2

0

0

0

152588

12.31.
source

\xintiFloor

\xintiFloor {f} does the same as \xintFloor but without the trailing /1[0].
Frac
f ★

\xintiFloor {-2.13}, \xintiFloor {-2}, \xintiFloor {2.13}

-3, -2, 2

12.32.
source

\xintiCeil

\xintiCeil {f} does the same as \xintCeil but its output is without the /1[0].
Frac
f ★

\xintiCeil {-2.13}, \xintiCeil {-2}, \xintiCeil {2.13}

-2, -2, 3

12.33.
source
\xintE

\xintE {f}{x} multiplies the fraction f by 10x. The second argument x must obey the TEX bounds.
Frac
f

num
x ★

Example:

\count 255 123456789 \xintE {10}{\count 255}

10/1[123456789] Don't feed this example to \xintNum!

176

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

12.34.
source

\xintCmp

This compares two fractions F and G and produces -1, 0, or 1 according to F<G, F=G, F>G.
Frac
f

Frac
f ★

For choosing branches according to the result of comparing f and g, see \xintifCmp.

12.35.
source
\xintEq

\xintEq{f}{g} returns 1 if f=g, 0 otherwise.
Frac
f

Frac
f ★

12.36.
source

\xintNotEq

\xintNotEq{f}{g} returns 0 if f=g, 1 otherwise.
Frac
f

Frac
f ★

12.37.
source

\xintGeq

This compares the absolute values of two fractions. \xintGeq{f}{g} outputs 1 if |f| ⩾ |g| and 0
Frac
f

Frac
f ★

if not.

Important: the macro compares absolute values.

12.38.
source
\xintGt

\xintGt{f}{g} returns 1 if f>g, 0 otherwise.
Frac
f

Frac
f ★

12.39.
source
\xintLt

\xintLt{f}{g} returns 1 if f<g, 0 otherwise.
Frac
f

Frac
f ★

12.40.
source

\xintGtorEq

\xintGtorEq{f}{g} returns 1 if f⩾g, 0 otherwise. Extended by xintfrac to fractions.
Frac
f

Frac
f ★

12.41.
source

\xintLtorEq

\xintLtorEq{f}{g} returns 1 if f⩽g, 0 otherwise.
Frac
f

Frac
f ★

12.42.
source

\xintIsZero

\xintIsZero{f} returns 1 if f=0, 0 otherwise.f ★

12.43.
source

\xintIsNotZero

\xintIsNotZero{f} returns 1 if f!=0, 0 otherwise.f ★

12.44.
source

\xintIsOne

\xintIsOne{f} returns 1 if f=1, 0 otherwise.f ★

12.45.
source

\xintOdd

\xintOdd{f} returns 1 if the integer obtained by truncation is odd, and 0 otherwise.f ★

12.46.
source

\xintEven

\xintEven{f} returns 1 if the integer obtained by truncation is even, and 0 otherwise.f ★

177

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

12.47.
source

\xintifSgn
source

\xintifSgn{⟨f ⟩}{⟨A⟩}{⟨B⟩}{⟨C⟩} executes either the ⟨A⟩, ⟨B⟩ or ⟨C⟩ code, depending on its first
Frac
f n n n ★

argument being respectively negative, zero, or positive.

12.48.
source

\xintifZero

\xintifZero{⟨f ⟩}{⟨IsZero⟩}{⟨IsNotZero⟩} expandably checks if the first mandatory argument N (a
Frac
f n n ★

number, possibly a fraction if xintfrac is loaded, or a macro expanding to one such) is zero or

not. It then either executes the first or the second branch.

Beware that both branches must be present.

12.49.
source

\xintifNotZero

\xintifNotZero{⟨N⟩}{⟨IsNotZero⟩}{⟨IsZero⟩} expandably checks if the first mandatory argument f
Frac
f n n ★

is not zero or is zero. It then either executes the first or the second branch.

Beware that both branches must be present.

12.50.
source

\xintifOne

\xintifOne{⟨N⟩}{⟨IsOne⟩}{⟨IsNotOne⟩} expandably checks if the first mandatory argument f is one
Frac
f n n ★

or not one. It then either executes the first or the second branch. Beware that both branches

must be present.

12.51.
source

\xintifOdd

\xintifOdd{⟨N⟩}{⟨odd⟩}{⟨not odd⟩} expandably checks if the first mandatory argument f, after
Frac
f n n ★

truncation to an integer, is odd or even. It then executes accordingly the first or the second

branch. Beware that both branches must be present.

12.52.
source

\xintifCmp

\xintifCmp{⟨f ⟩}{⟨g⟩}{⟨if f<g⟩}{⟨if f=g⟩}{⟨if f>g⟩} compares its first two arguments and chooses
Frac
f

Frac
f n n n ★

accordingly the correct branch.

12.53.
source

\xintifEq

\xintifEq{⟨f ⟩}{⟨g⟩}{⟨YES⟩}{⟨NO⟩} checks equality of its two first arguments and executes accord-
Frac
f

Frac
f n n ★

ingly the YES or the NO branch.

12.54.
source

\xintifGt

\xintifGt{⟨f ⟩}{⟨g⟩}{⟨YES⟩}{⟨NO⟩} checks if f > g and in that case executes the YES branch.
Frac
f

Frac
f n n ★

12.55.
source

\xintifLt

\xintifLt{⟨f ⟩}{⟨g⟩}{⟨YES⟩}{⟨NO⟩} checks if f < g and in that case executes the YES branch.
Frac
f

Frac
f n n ★

12.56.
source

\xintifInt

\xintifInt{f}{YES branch}{NO branch} expandably chooses the YES branch if f reveals itself after
Frac
f n n ★

expansion and simplification to be an integer.

178

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

12.57.
source

\xintSgn

The sign of a fraction.
Frac
f ★

12.58.
source

\xintSignBit

Expands to 1 for negative input, to 0 else.
Frac
f ★

Added at 1.4l.

12.59.
source

\xintOpp

The opposite of a fraction. Note that \xintOpp {3} produces -3/1[0] whereas \xintiiOpp {3} pro-
Frac
f ★

duces -3.

12.60.
source

\xintAbs

The absolute value. Note that \xintAbs {-2}=2/1[0] where \xintiiAbs {-2} outputs =2.
Frac
f ★

12.61.
source

\xintAdd

Computes the addition of two fractions.
Frac
f

Frac
f ★

Since 1.3 always uses the least common multiple of the denominators.

12.62.
source

\xintSub

Computes the difference of two fractions (\xintSub{F}{G} computes F-G).
Frac
f

Frac
f ★

Since 1.3 always uses the least common multiple of the denominators.

12.63.
source

\xintMul

Computes the product of two fractions.
Frac
f

Frac
f ★

Output is not reduced to smallest terms.

12.64.
source

\xintDiv

Computes the quotient of two fractions. (\xintDiv{F}{G} computes F/G).
Frac
f

Frac
f ★

Output is not reduced to smallest terms.

12.65.
source

\xintDivFloor

Computes the quotient of two arguments then apply floor function to get an integer (in strict
Frac
f

Frac
f ★

format). This macro was defined at 1.1 (but was left not documented until 1.3a...) and changed

at 1.2p, formerly it appended /1[0] to output.

\xintDivFloor{-170/3}{23/2}

-5

12.66.
source

\xintMod

Computes the remainder associated to the floored division \xintDivFloor. Prior to 1.2p the mean-
Frac
f

Frac
f ★

ing was the one of \xintModTrunc. Was left undocumented until 1.3a.

\xintMod{-170/3}{23/2}

5/6[0]

Modified at 1.3 to use a l.c.m. for the denominator of the result.

179

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

12.67.
source

\xintDivMod

Computes both the floored division and the remainder \xintDivFloor. New at 1.2p and documented
Frac
f

Frac
f ★

at 1.3a.

\oodef\foo{\xintDivMod{-170/3}{23/2}}\meaning\foo

macro:->{-5}{5/6[0]}

12.68.
source

\xintDivTrunc

Computes the quotient of two arguments then truncates to an integer (in strict format).
Frac
f

Frac
f ★

\xintDivTrunc{-170/3}{23/2}

-4

12.69.
source

\xintModTrunc

Computes the remainder associated with the truncated division of two arguments. Prior to 1.2p it
Frac
f

Frac
f ★

was named \xintMod, but the latter then got associated with floored division.

\xintModTrunc{-170/3}{23/2}

-64/6[0]

Modified at 1.3 to use a l.c.m. for the denominator of the result.

12.70.
source

\xintDivRound

Computes the quotient of the two arguments then rounds to an integer (in strict format).
Frac
f

Frac
f ★

\xintDivRound{-170/3}{23/2}

-5

12.71.
source

\xintSqr

Computes the square of one fraction.
Frac
f ★

12.72.
source

\xintPow

\xintPow{f}{x}: computes f^x with f a fraction and the exponent x possibly also, but if only xint-
Frac
f

Num
f ★

frac is loaded it will be truncated to an integer.

At 1.4e the behaviour of the macro is enhanced if xintexpr is loaded, at it then becomes the

support macro for powers a^b, a**b (and the pow() function) in \xinteval: it now handles also non-

integer exponents. Also, if the exponent is an integer, it checks a priori if an exact evaluation

would produce more than about 10000 digits and then does in its place a floating point evaluation.

The check whether the exponent is integer is not on the mathematical value but on the format (for

reasons of efficiency). So 4/2 will not be recognized as integer and it will thus trigger usage

of the floating point evaluations; however 2.0 will be recognized as an integer, as of course 2.

If the exponent is considered an integer it is then checked if it is less than 10000 (in absolute

value) and if the output would contain less than 10000 digits (separately for numerator and de-

nominator) and only then is the power computed exactly. Else it is computed as by \xintFloatPower

(but the output uses raw A[N] format not scientific notation). Use \xintiiPow (on integers only,

not fractions) for exact powers with larger exponents.

Also, a check is done whether the exponent is half-integer. Again this check is not on the value

but on the format, so 2.5 is an half integer, as is 25e-1, or 2.50 but 5/2 is not considered an

half-integer (for reasons of internal efficiency). If the exponent is half-integer the power is

computed by combining suitably \xintFloatPower with \xintFloatSqrt (but the output uses raw A[N]

format not scientific notation).

If the exponent is neither an integer nor an half-integer, the power is computed using loga-

rithm and exponential based approach (and uses raw A[N] output format). If Digits is at most 8

180

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

(which triggers poormanlog usage, for very fast logarithms but only with about 8 or 9 accurate

fractional digits) this will start being inaccurate in the last digit already with fractional ex-

ponents x > 10. It is recommended to split then the exponent into an integer or half-integer part

and a fractional part. Powers with integer or half-integer exponents, even very big, are always

computed accurately, for any value of Digits.

Within an \xintiiexpr..\relax the infix operators ^ and ** are mapped to \xintiiPow and powers

are always computed exactly even if they would produce more than 10000 digits and melt your CPU;

within an \xintexpr-ession ^ and ** are mapped to \xintPow as described here.

12.73.
source

\xintFac

This is a convenience variant of \xintiiFac which applies \xintNum to its argument. Notice however
Num
f ★

that the output will have a trailing [0] according to the xintfrac format for integers.

12.74.
source

\xintBinomial

This is a convenience variant of \xintiiBinomial which applies \xintNum to its arguments. Notice
Num
f

Num
f ★

however that the output will have a trailing [0] according to the xintfrac format for integers.

12.75.
source

\xintPFactorial

This is a convenience variant of \xintiiPFactorial which applies \xintNum to its arguments. No-
Num
f

Num
f ★

tice however that the output will have a trailing [0] according to the xintfrac format for inte-

gers.

12.76.
source

\xintMax

The maximum of two fractions. Beware that \xintMax {2}{3} produces 3/1[0]. The original, for use
Frac
f

Frac
f ★

with integers only with no need of normalization, is available as \xintiiMax: \xintiiMax {2}{3} ⤸
=3.f f ★

\xintMax {2.5}{7.2}

72/1[-1]

12.77.
source

\xintMin

The minimum of two fractions. Beware that \xintMin {2}{3} produces 2/1[0]. The original, for use
Frac
f

Frac
f ★

with integers only with no need of normalization, is available as \xintiiMin: \xintiiMin {2}{3} ⤸
=2.f f ★

\xintMin {2.5}{7.2}

25/1[-1]

12.78.
source

\xintMaxof

The maximum of any number of fractions, each within braces, and the whole thing within braces.f→ *
Frac
f ★

\xintMaxof {{1.23}{1.2299}{1.2301}} and \xintMaxof {{-1.23}{-1.2299}{-1.2301}}

12301/1[-4] and -12299/1[-4]

12.79.
source

\xintMinof

The minimum of any number of fractions, each within braces, and the whole thing within braces.f→ *
Frac
f ★

\xintMinof {{1.23}{1.2299}{1.2301}} and \xintMinof {{-1.23}{-1.2299}{-1.2301}}

12299/1[-4] and -12301/1[-4]

181

https://ctan.org/pkg/poormanlog

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

12.80.
source

\xintSum

This computes the sum of fractions. The output will now always be in the form A/B[n]. The origi-f→ *
Frac
f ★

nal, for big integers only (in strict format), is available as \xintiiSum.

\xintSum {{1282/2196921}{-281710/291927}{4028/28612}}

-5037928302100692/6116678670072468[0]

No simplification attempted.

12.81.
source

\xintPrd

TThis computes the product of fractions. The output will now always be in the form A/B[n]. Thef→ *
Frac
f ★

original, for big integers only (in strict format), is available as \xintiiPrd.

\xintPrd {{1282/2196921}{-281710/291927}{4028/28612}}

-1454721142160/18350036010217404[0]

No simplification attempted.

$\xintIsOne {21921379213/21921379213}\neq

\xintIsOne {1.00000000000000000000000000000001}$

1 ≠ 0

12.82.
source

\xintGCD

The greatest common divisor of its two arguments, which are possibly fractions.
Frac
f

Frac
f ★

Prior to 1.4 a macro of the same name existed in xintgcd. But it truncated its two arguments to

integers via \xintNum.

See \xintiiGCD for the integer only variant.

12.83.
source

\xintLCM

The least common multiple of its two arguments, which are possibly fractions.
Frac
f

Frac
f ★

Prior to 1.4 a macro of the same name existed in xintgcd. But it truncated its two arguments to

integers via \xintNum.

See \xintiiLCM for the integer only variant.

12.84.
source

\xintGCDof

\xintGCDof{{a}{b}{c}...} computes the greatest common divisor of a, b, The arguments aref→ *
Frac
f ★

allowed to be fractions: the macro produces the non-negative generator of the fractional ideal

they generate. The list argument may be a macro as it is f-expanded first. If all arguments

vanish, then also the output.

Prior to 1.4 a macro of the same name existed in xintgcd. But it truncated all its arguments to

integers via \xintNum and then proceeded with integer only computations.

See \xintiiGCDof for the integer only variant.

12.85.
source

\xintLCMof

\xintLCMof{{a}{b}{c}...} computes the least common multiple of a, b, The arguments aref→ *
Frac
f ★

allowed to be fractions: the macro produces the non-negative generator of the intersection of

the corresponding fractional ideals. The list argument may be a macro, it is f-expanded first.

If one of the item vanishes, then also the output.

Prior to 1.4 a macro of the same name existed in xintgcd. But it truncated all its arguments to

integers via \xintNum.

See \xintiiLCMof for the integer only variant.

182

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

12.86.
source

\xintDigits, \xinttheDigits
The syntax \xintDigits := N; or (recommended) \xintDigits := N\relax assigns the value of N to

the number of digits to be used by floating point operations (this uses internally a \mathchardef

assignement, and N stands for (or expands to) a legal TEX number). The default is 16. The maximal

value is 32767.

Accepted syntax includes also \xintDigits = N; or \xintDigits = N\relax, i.e. the colon before

the equality sign is optional.

xintexpr adds the variant \xintDigits* which executes \xintreloadxinttrig and \xint-+
{

reloadxintlog.

A priori, you want \xintDigits*:=N\relax. Use \xintDigits:=N\relax only if not needing

trigonometric or logarithm/exponential functions and wanting to avoid the overhead of reload-

ing their librairies. Perhaps for a local temporary configuration.

Spaces do not matter as long as they do not occur in-between digits:

\xintDigits := 24\relax\xinttheDigits, %

\xintDigits:=36 \relax\xinttheDigits, %

\xintDigits:= 16 \relax and \xinttheDigits.

24, 36, and 16. As shown above \xinttheDigits expands to the stored value.★
An ending active semi-colon ; is not compatible: it can and will cause low-level TEX errors.

This is why the alternative syntax

\xintDigits:= N\relax

is recommended (with or without the semi-colon). This is hopefully the syntax now in use in most

examples from the documentation.

Actually, any non-expanding token can be used in place of the \relax. This non-expanding ending

token (for example a full stop) will get removed from the token stream.

\xintDigits = 24\def\xinttheDigits, % only for showing it works! don't do that!

\xintDigits := 36.\xinttheDigits, % one can use a dot in place of semi-colon

\xintDigits = 16\relax and \xinttheDigits.\par % with \relax, even better

24, 36, and 16.

12.87.
source

\xintSetDigits

To be used as \xintSetDigits{⟨expression⟩} where the expression will be fed to \numexpr. It is a
num
x

shortcut for doing \xintDigits := \numexpr⟨expression⟩\relax \relax.

\xintSetDigits{1+2+3+4+5}The value is now \xinttheDigits.

\xintSetDigits{2*8}The value is now \xinttheDigits.\par

The value is now 15. The value is now 16.

The xintexpr-added variant \xintSetDigits* is the preferred usage as it does the extra work

to update the math functions from xinttrig and xintlog.

12.88.
source

\xintFloat

The macro \xintFloat [P]{f} has an optional argument P which replaces the current value of[
num
x]

Frac
f ★

\xinttheDigits. The fraction f is then printed in scientific notation with a rounding to P digits.

That is, on output: the first digit is from 1 to 9, it is possibly prefixed by a minus sign and

is followed by a dot and P-1 digits, then a lower case e and an exponent N. The trailing zeroes are

not trimmed.

183

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

There is one exception to the general description: the zero value, which gets output as

0.0e0. This was changed at 1.4k, until then it was using 0.e0 as output. Customize viasource
\xintFloatZero whose default definition is:

\def\xintFloatZero{0.0e0}

Starting with 1.2k, when the input is a fraction AeN/BeM the output always is the correct round-
ing to P digits. Formerly, this was guaranteed only when A and B had at most P+2 digits, or when

B was 1 and A was arbitrary, but in other cases it was only guaranteed that the difference between

the original fraction and the rounding was at most 0.6 unit in the last place (of the output), hence

the output could differ in the last digit (and earlier ones in case of chains of zeros or nines)

from the correct rounding.

Also: for releases 1.2j and earlier, in the special case when A/B ended up being rounded up to

the next power of ten, the output was with a mantissa of the shape 10.0...0eN. However, this worked

only for B=1 or when both A and B had at most P+2 digits, because the detection of the rounding-

up to next power of ten was done not on original A/B but on an approximation A'/B', and it could

happen that A'/B' was itself being rounded down to a power of ten which however was a rounding up
of original A/B. With the 1.2j refactoring which achieves correct rounding in all cases, it was

decided not to add to the code the extra overhead of detecting with 100% fiability the rounding up

to next power of ten (such overhead would necessitate alterations of the algorithm and as a result

we would end up with a slightly less efficient one; it would make sense in a model where inputs

have their intrinsic precisions which is obeyed by the implementation of the basic operations,

but currently the design decision for the floating point macros is that when the target precision

is P the inputs are rounded first to P digits before further processing.)

{\def\x{99999999999999994999999999999999/99999999999999999999999999999999}%

\xintFor #1 in {13, 14, 15, 16, 17, 18, 19, 47, 48, 49, 50, 79, 80, 81}

\do{#1: \xintFloat[#1]{\x}\xintifForLast{\par}{\newline}}}%

13: 1.000000000000e0

14: 1.0000000000000e0

15: 1.00000000000000e0

16: 9.999999999999999e-1

17: 9.9999999999999995e-1

18: 9.99999999999999950e-1

19: 9.999999999999999500e-1

47: 9.9999999999999995000000000000000000000000000000e-1

48: 9.99999999999999949999999999999999999999999999999e-1

49: 9.999999999999999499999999999999999999999999999995e-1

50: 9.9999999999999994999999999999999999999999999999950e-1

79: 9.999999999999999499999999999999999999999999999995000000000000000000000000000000e-1

80: 9.9999999999999994999999999999999999999999999999949999999999999999999999999999999e-1

81: 9.99999999999999949999999999999999999999999999999499999999999999999999999999999995e-1

As an aside, which is illustrated by the above, rounding is not transitive in the number of kept

digits.

{\def\x{137893789173289739179317/13890138013801398}%

\xintFor* #1 in {\xintSeq{4}{20}}

\do{#1: \xintFloat[#1]{\x}\newline}}%

\xintFloat{5/9999999999999999}\newline

\xintFloat[32]{5/9999999999999999}\newline

\xintFloat[48]{5/9999999999999999}\par

4: 9.927e6

5: 9.9275e6

6: 9.92746e6

184

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

7: 9.927460e6

8: 9.9274600e6

9: 9.92745997e6

10: 9.927459975e6

11: 9.9274599746e6

12: 9.92745997457e6

13: 9.927459974572e6

14: 9.9274599745717e6

15: 9.92745997457166e6

16: 9.927459974571665e6

17: 9.9274599745716647e6

18: 9.92745997457166465e6

19: 9.927459974571664655e6

20: 9.9274599745716646545e6

5.000000000000001e-16

5.0000000000000005000000000000001e-16

5.00000000000000050000000000000005000000000000001e-16

12.89.
source

\xintFloatBraced

The experimental macro \xintFloatBraced[P]{f} does like \xintFloat but its output consists of[
num
x]

Frac
f ★

three TEX-braced groups

{⟨sign bit⟩}{⟨scientific exponent⟩}{⟨full width mantissa with decimal point⟩}
It is provided for users knowing how to pick one or the other of these constituents from usage of

auxiliary macros. Or one can use \xintAssign:

\begingroup

\xintAssign\xintFloatBraced[7]{-3.1234e-14}\to\A\B\C

\string\A\ has meaning \meaning\A\newline

\string\B\ has meaning \meaning\B\newline

\string\C\ has meaning \meaning\C\par

\endgroup

\A has meaning macro:->1

\B has meaning macro:->-14

\C has meaning macro:->3.123400

Some aspects are undecided:

• should the first item be rather -1, 0, or 1? or -, nothing, nothing?

• in case of zero value the output ignores \xintFloatZero, it uses a zero exponent and full width

fractional mantissa 0.000000000000000 (here no [P] and \xinttheDigits has value 16), should

it be otherwise?

• should the mantissa be without the decimal separator ? should it incorporate the sign ?

• in case the mantissa is without separator, should the exponent be biased to match it?

12.90.
source

\xintFloatToDecimal

\xintFloatToDecimal [P]{f} does float rounding on input like \xintFloat then outputs the number[
num
x]

Frac
f ★

using decimal notation, i.e. with as many zeros as are needed (and no more) and no scientific

exponent.

In other terms it behaves (and is essentially defined) as:

\xintDecToStringREZ{\xintFloat[optional P]{<input>}}

Examples:

\xintFloatToDecimal{6.02e23}\newline

\xintFloatToDecimal{6.02000000000000e23}\newline

185

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

\xintFloatToDecimal[20]{1/7e10}\newline

\xintFloatToDecimal[30]{1/7e10}

602000000000000000000000

602000000000000000000000

0.000000000014285714285714285714

0.0000000000142857142857142857142857142857

See \xintDecToString.

12.91.
source

\xintPFloat

\xintPFloat [P]{f} is like \xintFloat but ``pretty-prints'' the output.[
num
x]

Frac
f ★

This macro was initially added at 1.1 as a (very primitive) "prettifying printer" for floating

point number, and was then somewhat influenced by Maple, for example the zero value was printed

as "0.". Then at 1.4e there was breaking change and the rules became somewhat similar to observed

Python behaviour: mantissas trimmed of trailing zeros (whether or not scientific notation was

used in the output) and integers printed with a trailing ".0", in particular the zero value was

printed as "0.0".

1.4k brought some breaking changes, which are reversible via customizing macros:

• Integers (when scientific notation is dropped according to criteria mentioned next) without

a ".0" suffix.

• Same for the zero value, now "0".

• Significands are trimmed of trailing zeros only if that removes at least 4 zeros. The ratio-

nale is that automatic removal of trailing zeros (which was influenced at 1.4e from practice

with Python in interactive mode) proves annoying visually with aligned values in tables, as

this creates voids, so we want to do this only when really the presence of trailing zeros is

not some kind of numerical fluke.

These changes impact the \xintfloateval output as \xintfloatexprPrintOne defaults to using \xint-

PFloat.

In this documentation ``trailing zeros'' refers not to how the input looked like, but to the+
{

corresponding mantissa of width P or \xinttheDigits.

The default rules are thus now:

1. The input is float-rounded to either Digits or the optional argument.

2. zero is printed as 0.

3. x.yz...eN is printed in decimal fixed point if -4 ≤ N ≤ +5 else it is printed in scientific

notation.

4. Trailing zeros of the mantissa are trimmed if, and only if there are at least 4 of them.

5. In case of fixed point output format, and the value is an integer, the integer is printed with

no decimal mark.

6. In case of scientific notation output format, and the mantissa has only one digit, no decimal

mark is used.

\xintDigits at 16

• 0 → 0

• 1.2340000e-7 → 1.234e-7

• 1.2340000e-6 → 1.234e-6

• 1.2340000e-5 → 1.234e-5

• 1.2340000e-4 → 0.0001234

• 1.2340000e-3 → 0.001234

• 1.2340000e-2 → 0.01234

• 1.2340000e-1 → 0.1234

• 1.2340000e0 → 1.234

• 1.2340000e1 → 12.34

• 1.2340000e2 → 123.4

186

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

• 1.2340000e3 → 1234

• 1.2340000e4 → 12340

• 1.2340000e5 → 123400

• 1.2340000e6 → 1.234e6

• 1.2340000e7 → 1.234e7

• 1e-7/7 → 1.428571428571429e-8

• 1e-6/7 → 1.428571428571429e-7

• 1e-5/7 → 1.428571428571429e-6

• 1e-4/7 → 1.428571428571429e-5

• 1e-3/7 → 0.0001428571428571429

• 1e-2/7 → 0.001428571428571429

• 1e-1/7 → 0.01428571428571429

• 1e0/7 → 0.1428571428571429

• 1e1/7 → 1.428571428571429

• 1e2/7 → 14.28571428571429

• 1e3/7 → 142.8571428571429

• 1e4/7 → 1428.571428571429

• 1e5/7 → 14285.71428571429

• 1e6/7 → 142857.1428571429

• 1e7/7 → 1.428571428571429e6

12.91.1. Customizing macros of
source

\xintPFloat

A number of macros allow to customize the behaviour of \xintPFloat:

• \xintPFloatE allows to modify the separator of the scientific notation. Here is its default:
70

\def\xintPFloatE{e}

• \xintPFloatZero says how to print the zero value. The default:

\def\xintPFloatZero{0}

• \xintPFloatIntSuffix is postfixed to integer values (when scientific notation is not used).

Its default at 1.4k is to add nothing. It replaces the formerly hard-coded ".0" from 1.4e

(prior to that trailing zeros from the full significand of P or \xinttheDigits digits were not

trimmed).

\def\xintPFloatIntSuffix{}

• \xintPFloatLengthOneSuffix is postfixed to trimmed mantissas having only one digit, when sci-

entific notation is used. Its default at 1.4k is to add nothing. It replaces formerly hard-

coded ".0".

\def\xintPFloatLengthOneSuffix{}

• \xintPFloatNoSciEmax is the maximal scientific exponent which will trigger use of decimal

fixed point notation and \xintPFloatNoSciEmin is the minimal one. Their defaults at 1.4k are

the same as the formerly hard-coded behaviour from 1.4e:

\def\xintPFloatNoSciEmax{5}

\def\xintPFloatNoSciEmin{-4}

For example (with the package default width of 16 digits for mantissas of floating point num-

bers):

\begingroup

\def\xintPFloatNoSciEmin{-20}

\xintPFloat{1e-19/7}\newline

\xintPFloat{1e-20/7}\par

\def\xintPFloatNoSciEmax{19}

\xintPFloat{1e20/7}\newline

\xintPFloat{1e21/7}\par

70 For TEXperts: it is allowed to define \xintPFloatE as a macro which grabs the exponent as an argument delimited by a dot,
and produces f -expandably an output also delimited by a dot (it will removed via further internal processing).

187

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

\endgroup

0.00000000000000000001428571428571429

1.428571428571429e-21

14285714285714290000

1.428571428571429e20

• \xintPFloatMinTrimmed is the minimal number of trailing zeros which have to be present to

activate actual trimming. The default definition is:

\def\xintPFloatMinTrimmed{4}

Defining it to expand to -1 or 0 will enable the trimming of trailing zeros always, and setting

it to a value at least equal to P (or \xinttheDigits if no [P]) will prevent it altogether.

This setting is ignored for the case of an integer value, if the criteria for using fixed point

notation are met, and for the case of a one-digit mantissa in scientific notation.

To mimick approximately the Python behaviour in interactive sessions, one can use the following

configuration:

\def\xintPFloatZero{0.0}%

\def\xintPFloatIntSuffix{.0}%

\def\xintPFloatLengthOneSuffix{.0}%

\def\xintPFloatNoSciEmax{15}%

\def\xintPFloatNoSciEmin{-4}%

\def\xintPFloatMinTrimmed{-1}%

0. → 0.0

1234. → 1234.0

6e100 → 6.0e100

1234567812345678.12345678 → 1234567812345678.0

12345678123456781.2345678 → 1.234567812345678e16

12345678.12340 → 12345678.1234

12345678.123400 → 12345678.1234

0.1234567812345678 → 0.1234567812345678

0.00012345678123456785 → 0.0001234567812345679

0.000012345678123456785 → 1.234567812345679e-5

The above using the default \xintDigits setting of 16 digits. This can not naturally match exactly

CPython which uses internally radix 2 not 10, and has (by default) mantissas with 53=1+52 bits.

Same, but playing with xintsession in its &fp mode:

>>> &fp

fp mode (16 digits)

>>> \\def\xintPFloatZero{0.0}

(executing \\def\xintPFloatZero {0.0} in background)

)

Runaway argument?

def\xintPFloatZero {0.0}\message {

}\xs_fetch_aa \endinput

! File ended while scanning use of \\.

<inserted text>

\par

<*> xintsession^^M

? S

OK, entering \scrollmode...

188

https://ctan.org/pkg/xintsession

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

*\xintsession

You are back to the xintexpr interactive session!

(current mode: fp (Digits=16), with Digits=16)

">>> " means central computing is waiting for input

"... " means that multi-line input continues. Use `;' to terminate it.

Say `&bye' at any time to terminate the session and the TeX run.

>>> \def\xintPFloatZero{0.0}

(executing \def \xintPFloatZero {0.0} in background)

>>> \def\xintPFloatIntSuffix{.0}\def\xintPFloatLengthOneSuffix{.0}

(executing \def \xintPFloatIntSuffix {.0}\def \xintPFloatLengthOneSuffix {.0} i

n background)

>>> \def\xintPFloatNoSciEmax{15}\def\xintPFloatNoSciEmin{-4}

(executing \def \xintPFloatNoSciEmax {15}\def \xintPFloatNoSciEmin {-4} in back

ground)

>>> \def\xintPFloatMinTrimmed{-1}

(executing \def \xintPFloatMinTrimmed {-1} in background)

>>> 0., 1234., 6e100;

@_1 0.0, 1234.0, 6.0e100

>>> 1234567812345678.12345678;

@_2 1234567812345678.0

>>> 12345678123456781.2345678;

@_3 1.234567812345678e16

>>> 12345678.12340;

@_4 12345678.1234

>>> 12345678.123400;

@_5 12345678.1234

>>> 0.1234567812345678;

@_6 0.1234567812345678

>>> 0.00012345678123456785;

@_7 0.0001234567812345679

>>> 0.000012345678123456785;

@_8 1.234567812345679e-5

>>> &bye

This is with version 0.4alpha (2021-11-01) of xintsession. Probably some ``magic'' shortcuts

will be added in future to its interface for this kind of tasks, in place of the \def.

12.92.
source

\xintFloatAdd

\xintFloatAdd [P]{f}{g} first replaces f and g with their float approximations f' and g' to P[
num
x]

Frac
f

Frac
f ★

significant places or to the precision from \xintDigits. It then produces the sum f'+g', correctly

rounded to nearest with the same number of significant places.

189

https://ctan.org/pkg/xintsession

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

12.93.
source

\xintFloatSub

\xintFloatSub [P]{f}{g} first replaces f and g with their float approximations f' and g' to P[
num
x]

Frac
f

Frac
f ★

significant places or to the precision from \xintDigits. It then produces the difference f'-g'

correctly rounded to nearest P-float.

12.94.
source

\xintFloatMul

\xintFloatMul [P]{f}{g} first replaces f and g with their float approximations f' and g' to P[
num
x]

Frac
f

Frac
f ★

(or \xinttheDigits) significant places. It then correctly rounds the product f'*g' to nearest

P-float.

See subsection 8.2 for more.

It is obviously much needed that the author improves its algorithms to avoid going through

the exact 2P or 2P-1 digits before throwing to the waste-bin half of those digits !

12.95.
source

\xintFloatDiv

\xintFloatDiv [P]{f}{g} first replaces f and g with their float approximations f' and g' to P[
num
x]

Frac
f

Frac
f ★

(or \xinttheDigits) significant places. It then correctly rounds the fraction f'/g' to nearest

P-float.

See subsection 8.2 for more.

Notice in the special situation with f and g integers that \xintFloatDiv [P]{f}{g} will not
necessarily give the correct rounding of the exact fraction f/g. Indeed the macro arguments are

each first individually rounded to P digits of precision. The correct syntax to get the correctly

rounded integer fraction f/g is \xintFloat[P]{f/g}.

12.96.
source

\xintFloatPow

\xintFloatPow [P]{f}{x} uses either the optional argument P or in its absence the value of[
num
x]

Frac
f

num
x ★

\xinttheDigits. It computes a floating approximation to f^x.

The exponent x will be handed over to a \numexpr, hence count registers are accepted on input

for this x. And the absolute value |x| must obey the TEX bound.

The argument f is first rounded to P significant places to give f'. The output Z is such that

the exact f'^x differs from Z by an absolute error less than 0.52 ulp(Z).

\xintFloatPow [8]{3.1415}{1234567890}

1.6122066e613749456

12.97.
source

\xintFloatPower

\xintFloatPower[P]{f}{g} computes a floating point value f^g where the exponent g is not con-[
num
x]

Frac
f

Num
f ★

strained to be at most the TEX bound 2147483647. It may even be a fraction A/B but will be truncated

to an integer. The exponent of the output however must at any rate obey the TEX bound.

The argument f is first rounded to P significant places to give f'. The output Z is then such

that the exact f'^g differs from Z by an absolute error less than 0.52 ulp(Z).

For integer exponents this is the support macro which is used for the ^ (or **) infix operators

in \xintfloateval, or also in \xinteval for very big integer exponents. It is also used in \xint-

floateval and \xinteval for half-integer exponents, via a combination with the \xintFloatSqrt

square-root extraction.

The macro itself was NOT modified at 1.4e: when used directly it still starts by truncating the

exponent to an integer... As for other user-level floating-point macros, its output is handled

by \xintFloat, i.e. it uses scientific notation.

190

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

The 0.52 ulp(Z) guaranteed error bound applies also to the \xintfloateval evaluations for the

half-integer exponent case. It is valid only when f already had a mantissa of at most P digits and

was not modified by the initial rounding done by the macro to reduce f to P digits.

The integer exponent g may have more than P (or Digits) digits, it is handled exactly. And as

said above its absolute value may exceed the TEX bound.

12.98.
source

\xintFloatSqrt

\xintFloatSqrt[P]{f} computes a floating point approximation of
√
f, either using the optional[

num
x]

Frac
f ★

precision P or the value of \xinttheDigits.

More precisely since 1.2f the macro achieves so-called correct rounding: the produced value is+
{
the rounding to P significant places of the abstract exact value, if the input has itself at most
P digits (and an arbitrary exponent).

\xintFloatSqrt [89]{10}\newline

\xintFloatSqrt [89]{100}\newline

\xintFloatSqrt [89]{123456789}\par

3.1622776601683793319988935444327185337195551393252168268575048527925944386392382213442481e0

1.00e1

1.1111111060555555440541666143353469245878409860134351071458570675251471479496366736579136e4

And now some tests to check that correct rounding applies correctly (sic):

The argument has 16 digits, hence escapes initial rounding:\newline

\xintFloatSqrt {5625000075000001}\newline

This one gets rounded hence same value is computed:\newline

\xintFloatSqrt {5625000075000001.4}\newline

but actual value is more like:\newline

\xintFloatSqrt [24]{5625000075000001.4}\newline

\xintFloatSqrt [32]{5625000075000001.4}\newline

The argument has 48 digits, hence escapes initial rounding:\newline

\xintFloatSqrt [48]{562500000000000000000000750000000000000000000001}\newline

\xintFloatSqrt [64]{562500000000000000000000750000000000000000000001}\newline

\xintFloatSqrt [80]{562500000000000000000000750000000000000000000001}\newline

The argument has 16 digits, hence escapes initial rounding:

7.500000050000000e7

This one gets rounded hence same value is computed:

7.500000050000000e7

but actual value is more like:

7.50000005000000076666666e7

7.5000000500000007666666615555556e7

The argument has 48 digits, hence escapes initial rounding:

7.50000000000000000000000500000000000000000000000e23

7.500000000000000000000005000000000000000000000005000000000000000e23

7.5000000000000000000000050000000000000000000000049999999999999999999999966666667e23

(we observe in passing illustrations that rounding to nearest is not transitive.)

12.99.
source

\xintFloatFac

\xintFloatFac[P]{f} returns the factorial with either \xinttheDigits or P digits of precision.[
num
x]

Num
f ★

The exact theoretical value differs from the calculated one Y by an absolute error strictly less

than 0.6 ulp(Y).

$1000!\approx{}$\xintFloatFac [30]{1000}

1000! ≈ 4.02387260077093773543702433923e2567 The computation proceeds via doing explicitely the

191

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac , xintbinhex, xintgcd, xintseries, xintcfrac

product.71

The maximal allowed argument is 99999999, but already 100000! currently takes, for 16 digits of

precision, a few seconds on my laptop (it returns 2.824229407960348e456573).

The factorial function is available in \xintfloatexpr:

\xintthefloatexpr factorial(1000)\relax % same as 1000!

4.023872600770938e2567

12.100.
source

\xintFloatBinomial

\xintFloatBinomial[P]{x}{y} computes binomial coefficients with either \xinttheDigits or P dig-[
num
x]

Num
f

Num
f ★

its of precision.

When x<0 an out-of-range error is raised. Else if y<0 or if x<y the macro evaluates to 0.0e0.

The exact theoretical value differs from the calculated one Y by an absolute error strictly less

than 0.6 ulp(Y).

${3000\choose 1500}\approx{}$\xintFloatBinomial [24]{3000}{1500}(3000
1500

)
≈ 1.79196793754756005073269e901

The associated function in \xintfloatexpr is binomial():

\xintthefloatexpr binomial(3000,1500)\relax

1.791967937547560e901

The computation is based on the formula (x-y+1)...x/y! (here one arranges y<=x-y naturally).

12.101.
source

\xintFloatPFactorial

\xintFloatPFactorial[P]{x}{y} computes the product (x+1)...y.[
num
x]

Num
f

Num
f ★

The arguments must be integers (they are expanded inside \numexpr) and the allowed range is

-100000000 ⩽ x, y ⩽ 99999999. If x ⩾ y the product is considered empty hence returns one (as a

floating point value). See also \xintiiPFactorial.

The exact theoretical value differs from the calculated one Y by an absolute error strictly less

than 0.6 ulp(Y).

The associated function in \xintfloatexpr is pfactorial():

\xintthefloatexpr pfactorial(2500,5000)\relax

2.595989917947957e8914

71 An approach based upon the Stirling formula could not be done at time of implementation because of lack of exponential and
logarithm. This is now supported via package xintlog. So perhaps at some point in future Gamma function will be implemented.

192

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex , xintgcd, xintseries, xintcfrac

13. Macros of the xintbinhex package

.1 xintexpr-essions . 193

.2 \xintHexToDec . 194

.3 \xintHexToOct . 194

.4 \xintHexToBin . 194

.5 \xintCHexToBin . 194

.6 \xintDecToHex . 195

.7 \xintDecToOct . 195

.8 \xintDecToBin . 195

.9 \xintOctToHex . 195

.10 \xintOctToDec . 195

.11 \xintOctToBin . 196

.12 \xintCOctToBin . 196

.13 \xintBinToHex . 196

.14 \xintBinToDec . 196

.15 \xintBinToOct . 196

.16 Maximal sizes of inputs 197

This package provides expandable conversions of (big) integers between the hexadecimal, deci-

mal, octal (since 1.4n) and binary bases.

First version of this package was in the 1.08 (2013/06/07) release of xint. Its routines

remained unmodified until their complete rewrite at release 1.2m (2017/07/31). Macros became

faster, but the inputs got limited to a few thousand digits, whereas the 1.08 versions could han-

dle (slowly...) tens of thousands of digits. At 1.4n some internals were refactored to use the

\expanded primitive (which was not available in 2017). The maximal sizes got increased, see sub-New with
1.4n section 13.16. More significant probably, the octal radix was added to the ones covered.

For each provided conversion macro, its argument is first f-expanded. This expansion is

supposed to give a sequence of digits, with perhaps a (unique) leading minus sign, which gets

prepended to output (note that \xintDecToHex{-0} thus expands to -0).

Let's insist that inputs can not start (after expansion) with a 0b, 0o, 0x, #x, ", ', or similar

prefix notation: they must consist only of digits as fitting to the binary, octal, decimal, or

hexadecimal radix. Situation is different if using xintexpr-essions, see subsection 13.1 next.

Low-level unrecoverable errors will occur if for example an octal input contains the decimal

digit 8 (more instructive errors are raised if inside an xintexpr-ession).

Hexadecimal digits in input must be uppercased. Category codes for them may be indifferently

letter or other. In output they are of category letter (and uppercased).

Leading zeroes in the input are allowed, and depending on the macro may show up or not in the

output. Note in particular:

• Inputs with no leading zeros give outputs with no leading zeros.

• All rules have (deliberate) exceptions, check the docs of \xintCHexToBin and \xintCOctToBin

which are variants of \xintHexToBin and \xintOctToBin.

• Outputs (if non vanishing) from \xintDecToHex or \xintDecToOct have no leading zeros whether

or not the inputs had some.

• \xintBinToHex and \xintBinToOct always use the minimal number of hexadecimal resp. octal dig-

its as needed to represent the original binary digits, inclusive of their leading zeroes. For

example \xintBinToHex{0000001} outputs 01 and \xintBinToOct{0000001} outputs 001.

13.1. xintexpr-essions
Inside xintexpr-essions, hexadecimal can be input using either " or 0x prefixes, octal using ei-New with

1.4n ther ' or 0o, and binary using 0b. Prior to 1.4n only " was implemented and it was needed to load

xintbinhex additionally to xintexpr. This is now done automatically.

Hexadecimal letters must be uppercased. In both of \xinteval and \xintfloateval a ``fractional

part'' after the full stop as separator is allowed for all three bases. Here is an example using

the three non-decimal bases:

\xinteval{subsm({x, y, x==y}, x="FF.FF * '777.777 * 0b11111.11111;

y=(16^2-16^-2)(8^3-8^-3)(2^5-2^-5);)}

4.1901280783689022064208984375e6, 17574670959615/4194304, 1

193

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex , xintgcd, xintseries, xintcfrac

The p postfix notation from some programming languages, which stands for an extra power of two,

is however not implemented so far.

With \xintiieval, which handles only integers, there is an optional parameter [h], [o], or [⤸New with
1.4n b] for automatic conversion of the output (this works also with comma separated inputs and even

nested bracketed inputs). Here is an example illustrating the new more condensed syntax:

\xintiieval[b]{0b1011100101001110 * 0b111100011}

1010111011001111000101010

Compare with how one would have had to input it prior to 1.4n:

\xintDecToBin{\xintiieval{\xintBinToDec{1011100101001110}*\xintBinToDec{111100011}}}

1010111011001111000101010

13.2.
source

\xintHexToDec

Converts from hexadecimal to decimal.f ★
\xintHexToDec{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C603 ⤸

2936BF37DAC918814C63}

->271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217 ⤸
8525166427427466391932003

13.3.
source

\xintHexToOct

Converts from hexadecimal to octal.f ★
\xintHexToOct{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C603 ⤸New with

1.4n 2936BF37DAC918814C63}

->432447137063224465134050767641240274424707602613704066107044272736255273013547064471364333 ⤸
4710661401451155374676654443040246143

13.4.
source

\xintHexToBin

Converts from hexadecimal to binary. Up to three leading zeroes of the binary output are trimmed.f ★
\xintHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C603 ⤸

2936BF37DAC918814C63}

->100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001 ⤸
01010000001011110010001010011100011111000001011000101111100010000011011000100011100010010001 ⤸
01110101110111100101011010101110110000010111011001110001101001001110010111101000110110111001 ⤸
11001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010 ⤸
100110001100011

13.5.
source

\xintCHexToBin

Converts from hexadecimal to binary. Same as \xintHexToBin, but an input with N hexadecimal digitsf ★
will give an output with exactly 4N binary digits, leading zeroes are not trimmed.

\xintCHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C60 ⤸
32936BF37DAC918814C63}

->000100011010100100111001011111000110011010010100100110101001011100000101000111110111110100 ⤸
00101010000001011110010001010011100011111000001011000101111100010000011011000100011100010010 ⤸
00101110101110111100101011010101110110000010111011001110001101001001110010111101000110110111 ⤸
00111001000110110001100000001100101001001101101011111100110111110110101100100100011000100000 ⤸
010100110001100011

This can be combined with \xintBinToHex for round-trips preserving leading zeroes for 4N binary

digits numbers, whereas using \xintHexToBin gives reproducing round-trips only for 4N binary num-

bers numbers not starting with 0000.

\xintBinToHex{0001111}\par

194

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex , xintgcd, xintseries, xintcfrac

0F

Chaining, we end up with 4N-3 digits, as three binary zeroes are trimmed:

\xintHexToBin{\xintBinToHex{0001111}}\par

01111

But the next will always reproduce the initial input zero-filled to length 4N:

\xintCHexToBin{\xintBinToHex{0001111}}\par

00001111

Another example (visible space characters manually inserted):

000000001111101001010001
\xintBinToHex−−−−−−−−−−−−→ 00FA51

\xintHexToBin−−−−−−−−−−−−−→ ␣␣␣000001111101001010001

000000001111101001010001
\xintBinToHex−−−−−−−−−−−−→ 00FA51

\xintCHexToBin−−−−−−−−−−−−−→ 000000001111101001010001

13.6.
source

\xintDecToHex

Converts from decimal to hexadecimal.f ★
\xintDecToHex{2718281828459045235360287471352662497757247093699959574966967627724076630353 ⤸

547594571382178525166427427466391932003}

->11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918 ⤸
814C63

13.7.
source

\xintDecToOct

Converts from decimal to octal.f ★
\xintDecToOct{2718281828459045235360287471352662497757247093699959574966967627724076630353 ⤸New with

1.4n 547594571382178525166427427466391932003}

->432447137063224465134050767641240274424707602613704066107044272736255273013547064471364333 ⤸
4710661401451155374676654443040246143

13.8.
source

\xintDecToBin

Converts from decimal to binary.f ★
\xintDecToBin{2718281828459045235360287471352662497757247093699959574966967627724076630353 ⤸

547594571382178525166427427466391932003}

->100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001 ⤸
01010000001011110010001010011100011111000001011000101111100010000011011000100011100010010001 ⤸
01110101110111100101011010101110110000010111011001110001101001001110010111101000110110111001 ⤸
11001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010 ⤸
100110001100011

13.9.
source

\xintOctToHex

Converts from octal to hexadecimal.f ★
\xintOctToHex{4324471370632244651340507676412402744247076026137040661070442727362552730135 ⤸New with

1.4n 470644713643334710661401451155374676654443040246143}

->11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918 ⤸
814C63

13.10.
source

\xintOctToDec

Converts from octal to decimal.f ★
\xintOctToDec{4324471370632244651340507676412402744247076026137040661070442727362552730135 ⤸New with

1.4n 470644713643334710661401451155374676654443040246143}

->271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217 ⤸
8525166427427466391932003

195

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex , xintgcd, xintseries, xintcfrac

13.11.
source

\xintOctToBin

Converts from octal to binary. Up to two leading zeroes of the binary output are trimmed.f ★
\xintOctToBin{1432447137063224465134050767641240274424707602613704066107044272736255273013 ⤸New with

1.4n 5470644713643334710661401451155374676654443040246143}

->110001101010010011100101111100011001101001010010011010100101110000010100011111011111010000 ⤸
10101000000101111001000101001110001111100000101100010111110001000001101100010001110001001000 ⤸
10111010111011110010101101010111011000001011101100111000110100100111001011110100011011011100 ⤸
11100100011011000110000000110010100100110110101111110011011111011010110010010001100010000001 ⤸
0100110001100011

13.12.
source

\xintCOctToBin

Converts from octal to binary.f ★
Same as \xintOctToBin, except that an input with N octal digits will give an output with exactly

3N binary digits, leading zeroes are not trimmed.

\xintCOctToBin{143244713706322446513405076764124027442470760261370406610704427273625527301 ⤸New with
1.4n 35470644713643334710661401451155374676654443040246143}

->001100011010100100111001011111000110011010010100100110101001011100000101000111110111110100 ⤸
00101010000001011110010001010011100011111000001011000101111100010000011011000100011100010010 ⤸
00101110101110111100101011010101110110000010111011001110001101001001110010111101000110110111 ⤸
00111001000110110001100000001100101001001101101011111100110111110110101100100100011000100000 ⤸
010100110001100011

13.13.
source

\xintBinToHex

Converts from binary to hexadecimal.f ★
The input is first extended if need-be by leading zeros in order to have 4N binary digits, then

the output will have N hexadecimal digits (thus, if the input did not have a leading zero, the

output will not either).

\xintBinToHex{1000110101001001110010111110001100110100101001001101010010111000001010001111 ⤸
10111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000 ⤸
11100010010001011101011101111001010110101011101100000101110110011100011010010011100101111010 ⤸
00110110111001110010001101100011000000011001010010011011010111111001101111101101011001001000 ⤸
11000100000010100110001100011}

->11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918 ⤸
814C63

13.14.
source

\xintBinToDec

Converts from binary to decimal.f ★
\xintBinToDec{1000110101001001110010111110001100110100101001001101010010111000001010001111 ⤸

10111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000 ⤸
11100010010001011101011101111001010110101011101100000101110110011100011010010011100101111010 ⤸
00110110111001110010001101100011000000011001010010011011010111111001101111101101011001001000 ⤸
11000100000010100110001100011}

->271828182845904523536028747135266249775724709369995957496696762772407663035354759457138217 ⤸
8525166427427466391932003

13.15.
source

\xintBinToOct

Converts from binary to octal.f ★

196

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex , xintgcd, xintseries, xintcfrac

The input is first extended if need-be by leading zeros in order to have 3N binary digits, then

the output will have N octal digits (thus, if the input did not have a leading zero, the output

will not either).

\xintBinToOct{1000110101001001110010111110001100110100101001001101010010111000001010001111 ⤸New with
1.4n 10111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000 ⤸

11100010010001011101011101111001010110101011101100000101110110011100011010010011100101111010 ⤸
00110110111001110010001101100011000000011001010010011011010111111001101111101101011001001000 ⤸
11000100000010100110001100011}

->432447137063224465134050767641240274424707602613704066107044272736255273013547064471364333 ⤸
4710661401451155374676654443040246143

13.16. Maximal sizes of inputs
Table 4 recapitulates the maximal allowed sizes, as found out with the TEX installation of the

author. The tests are done putting the macro inside an \edef and compiling with the etex binary.

The value in the second column is the maximal N such that the macro does not raise an error on

an input with N digits (if nested in another macro, the maximal input size may become lower than

stated). The third column gives the corresponding maximal size of the output.

These maximal sizes depend on TEX parameters such as input stack size, expansion depth, and pa-

rameter stack size. The fourth column gives the TEX parameter cited in the error message when

trying with N+1 digits. When the limiting parameter is the main memory size, the upper limits de-

pend on external factors such as how many macros are loaded in TEX memory (for example they would

be lower in a LATEX document or if xintexpr is loaded), so they are here given simply as indications.

They are so large anyhow that basically in practice, this means no real limitation.

Regarding the conversions to and from decimal radix, they allow a more limited range, but are

still able to handle inputs with ten thousand digits, one can thus consider in practice that their

size limitations are also only of theoretical interest.

Max length of input -> length of output Limiting factor

\xintDecToHex 16042 13323 expansion depth=10000

\xintDecToOct 15040 16654 expansion depth=10000

\xintDecToBin 16042 53291 expansion depth=10000

\xintHexToDec 11072 13333 expansion depth=10000

\xintOctToDec 14763 13333 expansion depth=10000

\xintBinToDec 44290 13333 expansion depth=10000

\xintHexToOct 553514 738019 main memory size=5000000

\xintHexToBin 553514 2214056 main memory size=5000000

\xintOctToHex 711660 533745 main memory size=5000000

\xintOctToBin 711660 2134980 main memory size=5000000

\xintBinToHex 1992650 498163 main memory size=5000000

\xintBinToOct 1868109 622703 main memory size=5000000

Table 4: Maximal sizes for xintbinhex 1.4n macros with TeXLive 2025

197

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd , xintseries, xintcfrac

14. Macros of the xintgcd package

.1 \xintBezout . 198

.2 \xintEuclideAlgorithm 198

.3 \xintBezoutAlgorithm 198

.4 \xintTypesetEuclideAlgorithm 199

.5 \xintTypesetBezoutAlgorithm 199

This package was included in the original release 1.0 (2013/03/28) of the xint bundle.

At 1.3d macros \xintiiGCD and \xintiiLCM are copied over to xint, hence gcd() and lcm() functions

in \xintiiexpr were available simply from loading only xintexpr, and the xintgcd dependency got

removed.

From 1.1 to 1.3f the package loaded only xintcore, not xint and neither xinttools.

But at 1.4 it loads automatically both xint and xinttools (the latter being a requirement

since 1.09h of the \xintTypesetEuclideAlgorithm and \xintTypesetBezoutAlgorithm macros).

The macros \xintiiGCD and \xintiiLCM got relocated into xint. The macros \xintGCD, \xint-+
{

LCM, \xintGCDof, and \xintLCMof are removed: xintfrac provides under these names more power-

ful macros handling general fractions and not only integers.

14.1.
source

\xintBezout

\xintBezout{N}{M} returns three numbers U, V, D within braces where D is the (non-negative) GCD,
Num
f

Num
f ★

and UN + VM = D.

\oodef\X{\xintBezout {10000}{1113}}\meaning\X\par

\xintAssign {\xintBezout {10000}{1113}}\to\U\V\D

U: \meaning\U, V: \meaning\V, D: \meaning\D\par

AU+BV: \xinttheiiexpr 10000*\U+1113*\V\relax\par

\noindent\oodef\X{\xintBezout {123456789012345}{9876543210321}}\meaning\X\par

\xintAssign \X\to\U\V\D

U: \meaning\U, V: \meaning\V, D: \meaning\D\par

AU+BV: \xinttheiiexpr 123456789012345*\U+9876543210321*\V\relax

macro:->{-131}{1177}{1}

U: macro:->-131, V: macro:->1177, D: macro:->1

AU+BV: 1

macro:->{256654313730}{-3208178892607}{3}

U: macro:->256654313730, V: macro:->-3208178892607, D: macro:->3

AU+BV: 3

14.2.
source

\xintEuclideAlgorithm

\xintEuclideAlgorithm{N}{M} applies the Euclide algorithm and keeps a copy of all quotients and
Num
f

Num
f ★

remainders.

\edef\X{\xintEuclideAlgorithm {10000}{1113}}\meaning\X

macro:->{5}{10000}{1}{1113}{8}{1096}{1}{17}{64}{8}{2}{1}{8}{0}

The first item is the number of steps, the second is N, the third is the GCD, the fourth is M then

the first quotient and remainder, the second quotient and remainder, ...until the final quotient

and last (zero) remainder.

14.3.
source

\xintBezoutAlgorithm

\xintBezoutAlgorithm{N}{M} applies the Euclide algorithm and keeps a copy of all quotients and
Num
f

Num
f ★

remainders. Furthermore it computes the entries of the successive products of the 2 by 2 matrices(
q 1

1 0

)
formed from the quotients arising in the algorithm.

198

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd , xintseries, xintcfrac

\edef\X{\xintBezoutAlgorithm {10000}{1113}}\printnumber{\meaning\X}

macro:->{5}{10000}{0}{1}{1}{1113}{1}{0}{8}{1096}{8}{1}{1}{17}{9}{1}{64}{8}{584}{65}{2}{1}{11 ⤸
77}{131}{8}{0}{10000}{1113}

The first item is the number of steps, the second is N, then 0, 1, the GCD, M, 1, 0, the first

quotient, the first remainder, the top left entry of the first matrix, the bottom left entry, and

then these four things at each step until the end.

14.4.
source

\xintTypesetEuclideAlgorithm

This macro is just an example of how to organize the data returned by \xintEuclideAlgorithm. Copy
Num
f

Num
f

the source code to a new macro and modify it to what is needed.

\xintTypesetEuclideAlgorithm {123456789012345}{9876543210321}

123456789012345 = 12 × 9876543210321 + 4938270488493

9876543210321 = 2 × 4938270488493 + 2233335

4938270488493 = 2211164 × 2233335 + 536553

2233335 = 4 × 536553 + 87123

536553 = 6 × 87123 + 13815

87123 = 6 × 13815 + 4233

13815 = 3 × 4233 + 1116

4233 = 3 × 1116 + 885

1116 = 1 × 885 + 231

885 = 3 × 231 + 192

231 = 1 × 192 + 39

192 = 4 × 39 + 36

39 = 1 × 36 + 3

36 = 12 × 3 + 0

14.5.
source

\xintTypesetBezoutAlgorithm

This macro is just an example of how to organize the data returned by \xintBezoutAlgorithm. Copy
Num
f

Num
f

the source code to a new macro and modify it to what is needed.

\xintTypesetBezoutAlgorithm {10000}{1113}

10000 = 8 × 1113 + 1096

8 = 8 × 1 + 0

1 = 8 × 0 + 1

1113 = 1 × 1096 + 17

9 = 1 × 8 + 1

1 = 1 × 1 + 0

1096 = 64 × 17 + 8

584 = 64 × 9 + 8

65 = 64 × 1 + 1

17 = 2 × 8 + 1

1177 = 2 × 584 + 9

131 = 2 × 65 + 1

8 = 8 × 1 + 0

10000 = 8 × 1177 + 584

1113 = 8 × 131 + 65

131 × 10000 - 1177 × 1113 = -1

199

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

15. Macros of the xintseries package

.1 \xintSeries . 200

.2 \xintiSeries . 201

.3 \xintRationalSeries 202

.4 \xintRationalSeriesX 205

.5 \xintPowerSeries . 207

.6 \xintPowerSeriesX . 208

.7 \xintFxPtPowerSeries 209

.8 \xintFxPtPowerSeriesX 209

.9 \xintFloatPowerSeries 211

.10 \xintFloatPowerSeriesX 211

.11 Computing log 2 and π 211

This package was first released with version 1.03 (2013/04/14) of the xint bundle.

The
Frac
f expansion type of various macro arguments is only a

Num
f if only xint but not xintfrac is

loaded. The macro \xintiSeries is special and expects summing big integers obeying the strict

format, even if xintfrac is loaded.

The arguments serving as indices are of the
num
x expansion type.

In some cases one or two of the macro arguments are only expanded at a later stage not immedi-

ately.

Since 1.3, \xintAdd and \xintSub use systematically the least common multiple of the denom-

inators. Some of the comments in this chapter refer to the earlier situation where often the

denominators were simply multiplied together. They have yet to be updated to reflect the new
situation brought by the 1.3 release. Some of these comments may now be off-synced from the

actual computation results and thus may be wrong.

15.1.
source

\xintSeries

\xintSeries{A}{B}{\coeff} computes
∑n=B

n=A\coeff{n}. The initial and final indices must obey the \n ⤸
num
x

num
x

Frac
f ★

umexpr constraint of expanding to numbers at most 2^31-1. The \coeff macro must be a one-parameter

f-expandable macro, taking on input an explicit number n and producing some number or fraction \c ⤸
oeff{n}; it is expanded at the time it is needed.

\def\coeff #1{\xintiiMON{#1}/#1.5} % (-1)^n/(n+1/2)

\fdef\w {\xintSeries {0}{50}{\coeff}} % we want to re-use it

\fdef\z {\xintJrr {\w}[0]} % the [0] for a microsecond gain.

% \xintJrr preferred to \xintIrr: a big common factor is suspected.

% But numbers much bigger would be needed to show the greater efficiency.

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} = \xintTeXFrac\z \]
n=50∑
n=0

(-1)n

n + 1
2

=
173909338287370940432112792101626602278714

110027467159390003025279917226039729050575

The definition of \coeff as \xintiiMON{#1}/#1.5 is quite suboptimal. It allows #1 to be a big

integer, but anyhow only small integers are accepted as initial and final indices (they are of the
num
x type). Second, when the xintfrac parser sees the #1.5 it will remove the dot hence create a

denominator with one digit more. For example 1/3.5 turns internally into 10/35 whereas it would

be more efficient to have 2/7. For info here is the non-reduced \w:

86954669143685470216056396050813301139357

550137335796950015126399586130198645252875
101

It would have been bigger still in releases earlier than 1.1: now, the xintfrac \xintAdd rou-

tine does not multiply blindly denominators anymore, it checks if one is a multiple of the other.

However it does not practice systematic reduction to lowest terms.

A more efficient way to code \coeff is illustrated next.

\def\coeff #1{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}%

200

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

% The [0] in \coeff is a tiny optimization: in its presence the \xintfracname parser

% sees something which is already in internal format.

\fdef\w {\xintSeries {0}{50}{\coeff}}

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12}=\xintTeXFrac\w\]
n=50∑
n=0

(-1)n

n + 1
2

=
173909338287370940432112792101626602278714

110027467159390003025279917226039729050575

The reduced form \z as displayed above only differs from this one by a factor of 1.

\def\coeffleibnitz #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}

\cnta 1

\loop

% in this loop we recompute from scratch each partial sum!

% we can afford that, as \xintSeries is fast enough.

\noindent\hbox to 2em{\hfil\texttt{\the\cnta.} }%

\xintTrunc {12}{\xintSeries {1}{\cnta}{\coeffleibnitz}}\dots

\endgraf

\ifnum\cnta < 30 \advance\cnta 1 \repeat

1. 1.000000000000...

2. 0.500000000000...

3. 0.833333333333...

4. 0.583333333333...

5. 0.783333333333...

6. 0.616666666666...

7. 0.759523809523...

8. 0.634523809523...

9. 0.745634920634...

10. 0.645634920634...

11. 0.736544011544...

12. 0.653210678210...

13. 0.730133755133...

14. 0.658705183705...

15. 0.725371850371...

16. 0.662871850371...

17. 0.721695379783...

18. 0.666139824228...

19. 0.718771403175...

20. 0.668771403175...

21. 0.716390450794...

22. 0.670935905339...

23. 0.714414166209...

24. 0.672747499542...

25. 0.712747499542...

26. 0.674285961081...

27. 0.711322998118...

28. 0.675608712404...

29. 0.710091471024...

30. 0.676758137691...

15.2.
source

\xintiSeries

\xintiSeries{A}{B}{\coeff} computes
∑n=B

n=A\coeff{n} where \coeff{n} must f-expand to a (possibly
num
x

num
x f ★

long) integer in the strict format.

\def\coeff #1{\xintiTrunc {40}{\xintiiMON{#1}/#1.5}}%

% better:

\def\coeff #1{\xintiTrunc {40}

{\the\numexpr 2*\xintiiMON{#1}\relax/\the\numexpr 2*#1+1\relax [0]}}%

% better still:

\def\coeff #1{\xintiTrunc {40}

{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}%

% (-1)^n/(n+1/2) times 10^40, truncated to an integer.

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx

\xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\dots\]

n=50∑
n=0

(-1)n

n + 1
2

≈ 1.5805993064935250412367895069567264144810

We should have cut out at least the last two digits: truncating errors originating with the

first coefficients of the sum will never go away, and each truncation introduces an uncertainty in

the last digit, so as we have 40 terms, we should trash the last two digits, or at least round at 38

digits. It is interesting to compare with the computation where rounding rather than truncation

is used, and with the decimal expansion of the exactly computed partial sum of the series:

\def\coeff #1{\xintiRound {40} % rounding at 40

201

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}%

% (-1)^n/(n+1/2) times 10^40, rounded to an integer.

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx

\xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\]

\def\exactcoeff #1%

{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}%

\[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12}

= \xintTrunc {50}{\xintSeries {0}{50}{\exactcoeff}}\dots\]

n=50∑
n=0

(-1)n

n + 1
2

≈ 1.5805993064935250412367895069567264144804

n=50∑
n=0

(-1)n

n + 1
2

= 1.58059930649352504123678950695672641448068680288367 . . .

This shows indeed that our sum of truncated terms estimated wrongly the 39th and 40th digits of the

exact result72 and that the sum of rounded terms fared a bit better.

15.3.
source

\xintRationalSeries

\xintRationalSeries{A}{B}{f}{\ratio} evaluates
∑n=B

n=AF(n), where F(n) is specified indirectly via
num
x

num
x

Frac
f

Frac
f ★

the data of f=F(A) and the one-parameter macro \ratio which must be such that \macro{n} expands to

F(n)/F(n-1). The name indicates that \xintRationalSeries was designed to be useful in the cases

where F(n)/F(n-1) is a rational function of n but it may be anything expanding to a fraction. The

macro \ratio must be an expandable-only compatible macro and expand to its value after iterated

full expansion of its first item. A and B are fed to a \numexpr hence may be count registers or

arithmetic expressions built with such; they must obey the TEX bound. The initial term f may be a

macro \f, it will be expanded to its value representing F(A).

\def\ratio #1{2/#1[0]}% 2/n, to compute exp(2)

\cnta 0 % previously declared count

\begin{quote}

\loop \fdef\z {\xintRationalSeries {0}{\cnta}{1}{\ratio }}%

\noindent$\sum_{n=0}^{\the\cnta} \frac{2^n}{n!}=

\xintTrunc{12}\z\dots=

\xintTeXFrac\z=\xintTeXFrac{\xintIrr\z}$\vtop to 5pt{}\par

\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{quote}∑0
n=0

2n

n! = 1.000000000000 · · · = 1 = 1∑1
n=0

2n

n! = 3.000000000000 · · · = 3 = 3∑2
n=0

2n

n! = 5.000000000000 · · · = 10
2 = 5∑3

n=0
2n

n! = 6.333333333333 · · · = 38
6 = 19

3∑4
n=0

2n

n! = 7.000000000000 · · · = 168
24 = 7∑5

n=0
2n

n! = 7.266666666666 · · · = 872
120 = 109

15∑6
n=0

2n

n! = 7.355555555555 · · · = 5296
720 = 331

45∑7
n=0

2n

n! = 7.380952380952 · · · = 37200
5040 = 155

21∑8
n=0

2n

n! = 7.387301587301 · · · = 297856
40320 = 2327

315

72 as the series is alternating, we can roughly expect an error of
√
40 and the last two digits are off by 4 units, which is not

contradictory to our expectations.

202

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac∑9
n=0

2n

n! = 7.388712522045 · · · = 2681216
362880 = 20947

2835∑10
n=0

2n

n! = 7.388994708994 · · · = 26813184
3628800 = 34913

4725∑11
n=0

2n

n! = 7.389046015712 · · · = 294947072
39916800 = 164591

22275∑12
n=0

2n

n! = 7.389054566832 · · · = 3539368960
479001600 = 691283

93555∑13
n=0

2n

n! = 7.389055882389 · · · = 46011804672
6227020800 = 14977801

2027025∑14
n=0

2n

n! = 7.389056070325 · · · = 644165281792
87178291200 = 314533829

42567525∑15
n=0

2n

n! = 7.389056095384 · · · = 9662479259648
1307674368000 = 4718007451

638512875∑16
n=0

2n

n! = 7.389056098516 · · · = 154599668219904
20922789888000 = 1572669151

212837625∑17
n=0

2n

n! = 7.389056098884 · · · = 2628194359869440
355687428096000 = 16041225341

2170943775∑18
n=0

2n

n! = 7.389056098925 · · · = 47307498477912064
6402373705728000 = 103122162907

13956067125∑19
n=0

2n

n! = 7.389056098930 · · · = 898842471080853504
121645100408832000 = 4571749222213

618718975875∑20
n=0

2n

n! = 7.389056098930 · · · = 17976849421618118656
2432902008176640000 = 68576238333199

9280784638125

\def\ratio #1{-1/#1[0]}% -1/n, comes from the series of exp(-1)

\cnta 0 % previously declared count

\begin{quote}

\loop

\fdef\z {\xintRationalSeries {0}{\cnta}{1}{\ratio }}%

\noindent$\sum_{n=0}^{\the\cnta} \frac{(-1)^n}{n!}=

\xintTrunc{20}\z\dots=\xintTeXFrac{\z}=\xintTeXFrac{\xintIrr\z}$%

\vtop to 5pt{}\par

\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{quote}∑0
n=0

(-1)n

n! = 1.00000000000000000000 · · · = 1 = 1∑1
n=0

(-1)n

n! = 0 · · · = 0 = 0∑2
n=0

(-1)n

n! = 0.50000000000000000000 · · · = 1
2 = 1

2∑3
n=0

(-1)n

n! = 0.33333333333333333333 · · · = 2
6 = 1

3∑4
n=0

(-1)n

n! = 0.37500000000000000000 · · · = 9
24 = 3

8∑5
n=0

(-1)n

n! = 0.36666666666666666666 · · · = 44
120 = 11

30∑6
n=0

(-1)n

n! = 0.36805555555555555555 · · · = 265
720 = 53

144∑7
n=0

(-1)n

n! = 0.36785714285714285714 · · · = 1854
5040 = 103

280∑8
n=0

(-1)n

n! = 0.36788194444444444444 · · · = 14833
40320 = 2119

5760∑9
n=0

(-1)n

n! = 0.36787918871252204585 · · · = 133496
362880 = 16687

45360∑10
n=0

(-1)n

n! = 0.36787946428571428571 · · · = 1334961
3628800 = 16481

44800∑11
n=0

(-1)n

n! = 0.36787943923360590027 · · · = 14684570
39916800 = 1468457

3991680∑12
n=0

(-1)n

n! = 0.36787944132128159905 · · · = 176214841
479001600 = 16019531

43545600∑13
n=0

(-1)n

n! = 0.36787944116069116069 · · · = 2290792932
6227020800 = 63633137

172972800

203

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac∑14
n=0

(-1)n

n! = 0.36787944117216190628 · · · = 32071101049
87178291200 = 2467007773

6706022400∑15
n=0

(-1)n

n! = 0.36787944117139718991 · · · = 481066515734
1307674368000 = 34361893981

93405312000∑16
n=0

(-1)n

n! = 0.36787944117144498468 · · · = 7697064251745
20922789888000 = 15549624751

42268262400∑17
n=0

(-1)n

n! = 0.36787944117144217323 · · · = 130850092279664
355687428096000 = 8178130767479

22230464256000∑18
n=0

(-1)n

n! = 0.36787944117144232942 · · · = 2355301661033953
6402373705728000 = 138547156531409

376610217984000∑19
n=0

(-1)n

n! = 0.36787944117144232120 · · · = 44750731559645106
121645100408832000 = 92079694567171

250298560512000∑20
n=0

(-1)n

n! = 0.36787944117144232161 · · · = 895014631192902121
2432902008176640000 = 4282366656425369

11640679464960000

We can incorporate an indeterminate if we define \ratio to be a macro with two parameters: \def ⤸
\ratioexp #1#2{\xintDiv{#1}{#2}}% x/n: x=#1, n=#2. Then, if \x expands to some fraction x, the

macro

\xintRationalSeries {0}{b}{1}{\ratioexp{\x}}

will compute
∑n=b

n=0 x
n/n!:

\cnta 0

\def\ratioexp #1#2{\xintDiv{#1}{#2}}% #1/#2

\loop

\noindent

$\sum_{n=0}^{\the\cnta} (.57)^n/n! = \xintTrunc {50}

{\xintRationalSeries {0}{\cnta}{1}{\ratioexp{.57}}}\dots$

\vtop to 5pt {}\endgraf

\ifnum\cnta<50 \advance\cnta 10 \repeat∑0
n=0(.57)

n/n! = 1.00 . . .∑10
n=0(.57)

n/n! = 1.76826705137947002480668058035714285714285714285714 . . .∑20
n=0(.57)

n/n! = 1.76826705143373515162089324271187082272833005529082 . . .∑30
n=0(.57)

n/n! = 1.76826705143373515162089339282382144915484884979430 . . .∑40
n=0(.57)

n/n! = 1.76826705143373515162089339282382144915485219867776 . . .∑50
n=0(.57)

n/n! = 1.76826705143373515162089339282382144915485219867776 . . .
Observe that in this last example the x was directly inserted; if it had been a more complicated

explicit fraction it would have been worthwile to use \ratioexp\x with \x defined to expand to its

value. In the further situation where this fraction x is not explicit but itself defined via a

complicated, and time-costly, formula, it should be noted that \xintRationalSeries will do again

the evaluation of \x for each term of the partial sum. The easiest is thus when x can be defined

as an \edef. If however, you are in an expandable-only context and cannot store in a macro like \x

the value to be used, a variant of \xintRationalSeries is needed which will first evaluate this \x

and then use this result without recomputing it. This is \xintRationalSeriesX, documented next.

Here is a slightly more complicated evaluation:

\cnta 1

\begin{multicols}{2}

\loop \fdef\z {\xintRationalSeries

{\cnta}

{2*\cnta-1}

{\xintiiPow {\the\cnta}{\cnta}/\xintiiFac{\cnta}}

{\ratioexp{\the\cnta}}}%

\fdef\w {\xintRationalSeries {0}{2*\cnta-1}{1}{\ratioexp{\the\cnta}}}%

\noindent

$\sum_{n=\the\cnta}^{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta^n}{n!}/%

\sum_{n=0}^{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta^n}{n!} =

204

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

\xintTrunc{8}{\xintDiv\z\w}\dots$ \vtop to 5pt{}\endgraf

\ifnum\cnta<20 \advance\cnta 1 \repeat

\end{multicols}∑1
n=1

1n

n!/
∑1

n=0
1n

n! = 0.50000000 . . .∑3
n=2

2n

n!/
∑3

n=0
2n

n! = 0.52631578 . . .∑5
n=3

3n

n!/
∑5

n=0
3n

n! = 0.53804347 . . .∑7
n=4

4n

n!/
∑7

n=0
4n

n! = 0.54317053 . . .∑9
n=5

5n

n!/
∑9

n=0
5n

n! = 0.54502576 . . .∑11
n=6

6n

n!/
∑11

n=0
6n

n! = 0.54518217 . . .∑13
n=7

7n

n!/
∑13

n=0
7n

n! = 0.54445274 . . .∑15
n=8

8n

n!/
∑15

n=0
8n

n! = 0.54327992 . . .∑17
n=9

9n

n!/
∑17

n=0
9n

n! = 0.54191055 . . .∑19
n=10

10n

n! /
∑19

n=0
10n

n! = 0.54048295 . . .

∑21
n=11

11n

n! /
∑21

n=0
11n

n! = 0.53907332 . . .∑23
n=12

12n

n! /
∑23

n=0
12n

n! = 0.53772178 . . .∑25
n=13

13n

n! /
∑25

n=0
13n

n! = 0.53644744 . . .∑27
n=14

14n

n! /
∑27

n=0
14n

n! = 0.53525726 . . .∑29
n=15

15n

n! /
∑29

n=0
15n

n! = 0.53415135 . . .∑31
n=16

16n

n! /
∑31

n=0
16n

n! = 0.53312615 . . .∑33
n=17

17n

n! /
∑33

n=0
17n

n! = 0.53217628 . . .∑35
n=18

18n

n! /
∑35

n=0
18n

n! = 0.53129566 . . .∑37
n=19

19n

n! /
∑37

n=0
19n

n! = 0.53047810 . . .∑39
n=20

20n

n! /
∑39

n=0
20n

n! = 0.52971771 . . .

15.4.
source

\xintRationalSeriesX

\xintRationalSeriesX{A}{B}{\first}{\ratio}{\g} is a parametrized version of \xintRationalSeries
num
x

num
x

Frac
f

Frac
f f ★

where \first is now a one-parameter macro such that \first{\g} gives the initial term and \ratio

is a two-parameter macro such that \ratio{n}{\g} represents the ratio of one term to the previous

one. The parameter \g is evaluated only once at the beginning of the computation, and can thus

itself be the yet unevaluated result of a previous computation.

Let \ratio be such a two-parameter macro; note the subtle differences between

\xintRationalSeries {A}{B}{\first}{\ratio{\g}}

and \xintRationalSeriesX {A}{B}{\first}{\ratio}{\g}.

First the location of braces differ... then, in the former case \first is a no-parameter macro

expanding to a fractional number, and in the latter, it is a one-parameter macro which will use \ ⤸
g. Furthermore the X variant will expand \g at the very beginning whereas the former non-X former

variant will evaluate it each time it needs it (which is bad if this evaluation is time-costly,

but good if \g is a big explicit fraction encapsulated in a macro).

The example will use the macro \xintPowerSeries which computes efficiently exact partial sums

of power series, and is discussed in the next section.

\def\firstterm #1{1[0]}% first term of the exponential series

% although it is the constant 1, here it must be defined as a

% one-parameter macro. Next comes the ratio function for exp:

\def\ratioexp #1#2{\xintDiv {#1}{#2}}% x/n

% These are the (-1)^{n-1}/n of the log(1+h) series:

\def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}%

% Let L(h) be the first 10 terms of the log(1+h) series and

% let E(t) be the first 10 terms of the exp(t) series.

% The following computes E(L(a/10)) for a=1,...,12.

\begin{multicols}{3}\raggedcolumns

\cnta 0

\loop

\noindent\xintTrunc {18}{%

\xintRationalSeriesX {0}{9}{\firstterm}{\ratioexp}

{\xintPowerSeries{1}{10}{\coefflog}{\the\cnta[-1]}}}\dots

\endgraf

\ifnum\cnta < 12 \advance \cnta 1 \repeat

205

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

\end{multicols}

1.000000000000000000...

1.099999999999083906...

1.199999998111624029...

1.299999835744121464...

1.399996091955359088...

1.499954310225476533...

1.599659266069210466...

1.698137473697423757...

1.791898112718884531...

1.870485649686617459...

1.907197560339468199...

1.845117565491393752...

1.593831932293536053...

These completely exact operations rapidly create numbers with many digits. Let us print in full

the raw fractions created by the operation illustrated above:

E(L(1[-1]))=163591443693117889303431088806087634148250735791023497657261314014159107395739 ⤸
0639913787199465741057336677116573252341295218688/1487194942665946638644674560000000000[-90]

(length of numerator: 127)

E(L(12[-2]))=16656583357757234467643895619026874191327320993157183247568125775059356018362 ⤸
23193439604540053754226444871502834816644808336288211299845887246066795041160882231219805166 ⤸
927273729660728412213074817261522841754729971712/1487194942665946638644674560000000000[-180]

(length of numerator: 217)

E(L(123[-3]))=1670119920600555026998663239069002278266215966968669508145191626887938734862 ⤸
73269986546078658803979014003116903378025935148900448814698936627633558066738151958530603167 ⤸
40612785673175692992742863679398303407413205084692383474722719804622771982161117197045873620 ⤸
25769049115687215712723182386527055033735053312/1487194942665946638644674560000000000[-270] (length

of numerator: 307)

We see that the denominators here remain the same, as our input only had various powers of ten as

denominators, and xintfrac efficiently assemble (some only, as we can see) powers of ten. Notice

that 1 more digit in an input denominator seems to mean 90 more in the raw output. We can check

that with some other test cases:

E(L(1/7))=48228203862750885848048032297655163193719083498752126622944863683478921463537652 ⤸
0421966954177876452794933/421996783816227187824437252776031227863306380633210580813174165609 ⤸
500569367213288120561612881920000000000[0] (length of numerator: 105; length of denominator:

105)

E(L(1/71))=6190039670785350346406550995159476540272948182884398462882888922997238323197498 ⤸
85971940015218249059435720836832839237391067287499316324605873244670430502854291696282116287 ⤸
58603878135499973539887212860467/61040668975799982582643863990035761895246771100033570420271 ⤸
67109220333298498184289107451083577982695694446256675834390041749715017225626389830761170775 ⤸
7919998778523559418340083473473151235522560000000000[0] (length of numerator: 203; length of

denominator: 203)

E(L(1/712))=300356435377840602055967040841188592538909311419930838799656013626071029784174 ⤸
49681929088495804136203813242174405561415315426829241317287053037273453329055814153891517325 ⤸
75694112320026364569495366534918031439051104610487529796192058205725999641657806615904929048 ⤸
98946463533146662233869249/29993517810522090976696848959176310536177550755703969736435921535 ⤸
22460410892328532539738041911202121412424715881734049254716640082470987340985151932504281494 ⤸
24064596788874441470533147848207863549778847000617103264666638782677019019130113930837421531 ⤸
810478062025966102914017525760000000000[0] (length of numerator: 288; length of denominator:

288)

Thus decimal numbers such as 0.123 (equivalently 123[-3]) give less computing intensive tasks

than fractions such as 1/712: in the case of decimal numbers the (raw) denominators originate

in the coefficients of the series themselves, powers of ten of the input within brackets being

treated separately. And even then the numerators will grow with the size of the input in a sort

of linear way, the coefficient being given by the order of series: here 10 from the log and 9 from

the exp, so 90. One more digit in the input means 90 more digits in the numerator of the output:

obviously we can not go on composing such partial sums of series and hope that xint will joyfully

do all at the speed of light!

206

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

Hence, truncating the output (or better, rounding) is the only way to go if one needs a gen-

eral calculus of special functions. This is why the package xintseries provides, besides \xint-

Series, \xintRationalSeries, or \xintPowerSeries which compute exact sums, \xintFxPtPowerSeries

for fixed-point computations and a (tentative naive) \xintFloatPowerSeries.

15.5.
source

\xintPowerSeries

\xintPowerSeries{A}{B}{\coeff}{f} evaluates the sum
∑n=B

n=A\coeff{n} · fn. The initial and final
num
x

num
x

Frac
f

Frac
f ★

indices are given to a \numexpr expression. The \coeff macro (which, as argument to \xintPow-

erSeries is expanded only at the time \coeff{n} is needed) should be defined as a one-parameter

expandable macro, its input will be an explicit number.

The f can be either a fraction directly input or a macro \f expanding to such a fraction. It

is actually more efficient to encapsulate an explicit fraction f in such a macro, if it has big

numerators and denominators (`big' means hundreds of digits) as it will then take less space in

the processing until being (repeatedly) used.

This macro computes the exact result (one can use it also for polynomial evaluation), using a

Horner scheme which helps avoiding a denominator build-up (this problem however, even if using a

naive additive approach, is much less acute since release 1.1 and its new policy regarding \xint-

Add).

\def\geom #1{1[0]} % the geometric series

\def\f {5/17[0]}

\[\sum_{n=0}^{n=20} \Bigl(\frac 5{17}\Bigr)^n

=\xintTeXFrac{\xintIrr{\xintPowerSeries {0}{20}{\geom}{\f}}}

=\xintTeXFrac{\xinttheexpr (17^21-5^21)/12/17^20\relax}\]
n=20∑
n=0

(5
17

)n
=
5757661159377657976885341

4064231406647572522401601
=
69091933912531895722624092

48770776879770870268819212

\def\coefflog #1{1/#1[0]}% 1/n

\def\f {1/2[0]}%

\[\log 2 \approx \sum_{n=1}^{20} \frac1{n\cdot 2^n}

= \xintTeXFrac {\xintIrr {\xintPowerSeries {1}{20}{\coefflog}{\f}}}\]

\[\log 2 \approx \sum_{n=1}^{50} \frac1{n\cdot 2^n}

= \xintTeXFrac {\xintIrr {\xintPowerSeries {1}{50}{\coefflog}{\f}}}\]

log 2 ≈
20∑
n=1

1

n · 2n =
42299423848079

61025172848640

log 2 ≈
50∑
n=1

1

n · 2n =
60463469751752265663579884559739219

87230347965792839223946208178339840

\setlength{\columnsep}{0pt}

\begin{multicols}{3}

\cnta 1 % previously declared count

\loop % in this loop we recompute from scratch each partial sum!

% we can afford that, as \xintPowerSeries is fast enough.

\noindent\hbox to 2em{\hfil\texttt{\the\cnta.} }%

\xintTrunc {12}

{\xintPowerSeries {1}{\cnta}{\coefflog}{\f}}\dots

\endgraf

\ifnum \cnta < 30 \advance\cnta 1 \repeat

\end{multicols}

207

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

1. 0.500000000000...

2. 0.625000000000...

3. 0.666666666666...

4. 0.682291666666...

5. 0.688541666666...

6. 0.691145833333...

7. 0.692261904761...

8. 0.692750186011...

9. 0.692967199900...

10. 0.693064856150...

11. 0.693109245355...

12. 0.693129590407...

13. 0.693138980431...

14. 0.693143340085...

15. 0.693145374590...

16. 0.693146328265...

17. 0.693146777052...

18. 0.693146988980...

19. 0.693147089367...

20. 0.693147137051...

21. 0.693147159757...

22. 0.693147170594...

23. 0.693147175777...

24. 0.693147178261...

25. 0.693147179453...

26. 0.693147180026...

27. 0.693147180302...

28. 0.693147180435...

29. 0.693147180499...

30. 0.693147180530...

\def\coeffarctg #1{1/\the\numexpr\ifodd #1 -2*#1-1\else2*#1+1\fi\relax }%

% the above gives (-1)^n/(2n+1). The sign being in the denominator,

% **** no [0] should be added ****,

% else nothing is guaranteed to work (even if it could by sheer luck)

% Notice in passing this aspect of \numexpr:

% **** \numexpr -(1)\relax is ilegal !!! ****
\def\f {1/25[0]}% 1/5^2

\[\mathrm{Arctg}(\frac15)\approx \frac15\sum_{n=0}^{15} \frac{(-1)^n}{(2n+1)25^n}

= \xintTeXFrac{\xintIrr {\xintDiv {\xintPowerSeries {0}{15}{\coeffarctg}{\f}}{5}}}\]

Arctg(
1

5
) ≈ 1

5

15∑
n=0

(-1)n

(2n + 1)25n
=
165918726519122955895391793269168

840539304153062403202056884765625

15.6.
source

\xintPowerSeriesX

This is the same as \xintPowerSeries apart from the fact that the last parameter f is expanded once
num
x

num
x

Frac
f

Frac
f

and for all before being then used repeatedly. If the f parameter is to be an explicit big fraction

with many (dozens) digits, rather than using it directly it is slightly better to have some macro

\g defined to expand to the explicit fraction and then use \xintPowerSeries with \g; but if f has

not yet been evaluated and will be the output of a complicated expansion of some \f, and if, due to

an expanding only context, doing \edef\g{\f} is no option, then \xintPowerSeriesX should be used

with \f as last parameter.

\def\ratioexp #1#2{\xintDiv {#1}{#2}}% x/n

% These are the (-1)^{n-1}/n of the log(1+h) series:

\def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}%

% Let L(h) be the first 10 terms of the log(1+h) series and

% let E(t) be the first 10 terms of the exp(t) series.

% The following computes L(E(a/10)-1) for a=1,..., 12.

\begin{multicols}{3}\raggedcolumns

\cnta 1

\loop

\noindent\xintTrunc {18}{%

\xintPowerSeriesX {1}{10}{\coefflog}

{\xintSub

{\xintRationalSeries {0}{9}{1[0]}{\ratioexp{\the\cnta[-1]}}}

{1}}}\dots

\endgraf

\ifnum\cnta < 12 \advance \cnta 1 \repeat

\end{multicols}

208

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

0.099999999998556159...

0.199999995263443554...

0.299999338075041781...

0.399974460740121112...

0.499511320760604148...

0.593980619762352217...

0.645144282733914916...

0.398118280111436442...

-1.597091692317639401...

-12.648937932093322763...

-66.259639046914679687...

-304.768437445462801227...

15.7.
source

\xintFxPtPowerSeries

\xintFxPtPowerSeries{A}{B}{\coeff}{f}{D} computes
∑n=B

n=A\coeff{n} ·f n with each term of the series
num
x

num
x ★

truncated to D digits after the decimal point. As usual, A and B are completely expanded through
Frac
f

Frac
f

num
x ★

their inclusion in a \numexpr expression. Regarding D it will be similarly be expanded each time

it is used inside an \xintTrunc. The one-parameter macro \coeff is similarly expanded at the time

it is used inside the computations. Idem for f. If f itself is some complicated macro it is thus

better to use the variant \xintFxPtPowerSeriesX which expands it first and then uses the result

of that expansion.

The current (1.04) implementation is: the first power f^A is computed exactly, then truncated.
Then each successive power is obtained from the previous one by multiplication by the exact value

of f, and truncated. And \coeff{n}.f^n is obtained from that by multiplying by \coeff{n} (untrun-

cated) and then truncating. Finally the sum is computed exactly. Apart from that \xintFxPtPow-

erSeries (where FxPt means `fixed-point') is like \xintPowerSeries.

There should be a variant for things of the type
∑
cn

fn

n! to avoid having to compute the factorial

from scratch at each coefficient, the same way \xintFxPtPowerSeries does not compute f^n from

scratch at each n. Perhaps in the next package release.

e-
1
2 ≈

1.00000000000000000000

0.50000000000000000000

0.62500000000000000000

0.60416666666666666667

0.60677083333333333333

0.60651041666666666667

0.60653211805555555555

0.60653056795634920635

0.60653066483754960317

0.60653065945526069224

0.60653065972437513778

0.60653065971214266299

0.60653065971265234943

0.60653065971263274611

0.60653065971263344622

0.60653065971263342289

0.60653065971263342361

0.60653065971263342359

0.60653065971263342359

0.60653065971263342359

\def\coeffexp #1{1/\xintiiFac {#1}[0]}% 1/n!

\def\f {-1/2[0]}% [0] for faster input parsing

\cnta 0 % previously declared \count register

\noindent\loop

$\xintFxPtPowerSeries {0}{\cnta}{\coeffexp}{\f}{20}$\\

\ifnum\cnta<19 \advance\cnta 1 \repeat\par

\xintFxPtPowerSeries {0}{19}{\coeffexp}{\f}{25}= 0.6065306597126334236037992

It is no difficulty for xintfrac to compute exactly, with the help of \xintPowerSeries, the

nineteenth partial sum, and to then give (the start of) its exact decimal expansion:

\xintPowerSeries {0}{19}{\coeffexp}{\f} =
38682746160036397317757

63777066403145711616000

= 0.606530659712633423603799152126 . . .
Thus, one should always estimate a priori how many ending digits are not reliable: if there are N

terms and N has k digits, then digits up to but excluding the last k may usually be trusted. If we

are optimistic and the series is alternating we may even replace N with
√
N to get the number k of

digits possibly of dubious significance.

15.8.
source

\xintFxPtPowerSeriesX

\xintFxPtPowerSeriesX{A}{B}{\coeff}{\f}{D} computes, exactly as \xintFxPtPowerSeries, the sum
num
x

num
x

of \coeff{n}.\f^n from n=A to n=B with each term of the series being truncated to D digits after
Frac
f

Frac
f

num
x ★

209

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

the decimal point. The sole difference is that \f is first expanded and it is the result of this

which is used in the computations.

Let us illustrate this on the numerical exploration of the identity

log(1+x) = -log(1/(1+x))

Let L(h)=log(1+h), and D(h)=L(h)+L(-h/(1+h)). Theoretically thus, D(h)=0 but we shall evaluate

L(h) and -h/(1+h) keeping only 10 terms of their respective series. We will assume h < 0.5. With

only ten terms kept in the power series we do not have quite 3 digits precision as 210 = 1024. So it

wouldn't make sense to evaluate things more precisely than, say circa 5 digits after the decimal

points.

\cnta 0

\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}% (-1)^{n-1}/n

\def\coeffalt #1{\the\numexpr\ifodd#1 -1\else1\fi\relax [0]}% (-1)^n

\begin{multicols}2

\loop

\noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }}%

\xintAdd {\xintFxPtPowerSeriesX {1}{10}{\coefflog}{\the\cnta [-2]}{5}}

{\xintFxPtPowerSeriesX {1}{10}{\coefflog}

{\xintFxPtPowerSeriesX {1}{10}{\coeffalt}{\the\cnta [-2]}{5}}

{5}}\endgraf

\ifnum\cnta < 49 \advance\cnta 7 \repeat

\end{multicols}

D(0/100): 0/1[0]

D(7/100): 2/1[-5]

D(14/100): 2/1[-5]

D(21/100): 3/1[-5]

D(28/100): 4/1[-5]

D(35/100): 4/1[-5]

D(42/100): 9/1[-5]

D(49/100): 42/1[-5]

Let's say we evaluate functions on [-1/2,+1/2] with values more or less also in [-1/2,+1/2] and

we want to keep 4 digits of precision. So, roughly we need at least 14 terms in series like the

geometric or log series. Let's make this 15. Then it doesn't make sense to compute intermediate

summands with more than 6 digits precision. So we compute with 6 digits precision but return only

4 digits (rounded) after the decimal point. This result with 4 post-decimal points precision is

then used as input to the next evaluation.

\begin{multicols}2

\loop

\noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }}%

\dtt{\xintRound{4}

{\xintAdd {\xintFxPtPowerSeriesX {1}{15}{\coefflog}{\the\cnta [-2]}{6}}

{\xintFxPtPowerSeriesX {1}{15}{\coefflog}

{\xintRound {4}{\xintFxPtPowerSeriesX {1}{15}{\coeffalt}

{\the\cnta [-2]}{6}}}

{6}}%

}}\endgraf

\ifnum\cnta < 49 \advance\cnta 7 \repeat

\end{multicols}

D(0/100): 0

D(7/100): 0.0000

D(14/100): 0.0000

D(21/100): -0.0001

D(28/100): -0.0001

D(35/100): -0.0001

D(42/100): -0.0000

D(49/100): -0.0001

Not bad... I have cheated a bit: the `four-digits precise' numeric evaluations were left un-

rounded in the final addition. However the inner rounding to four digits worked fine and made the

210

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

next step faster than it would have been with longer inputs. The morale is that one should not use

the raw results of \xintFxPtPowerSeriesX with the D digits with which it was computed, as the last

are to be considered garbage. Rather, one should keep from the output only some smaller number of

digits. This will make further computations faster and not less precise. I guess there should

be some macro to do this final truncating, or better, rounding, at a given number D'<D of digits.

Maybe for the next release.

15.9.
source

\xintFloatPowerSeries

\xintFloatPowerSeries[P]{A}{B}{\coeff}{f} computes
∑n=B

n=A\coeff{n} · f n with a floating point pre-[
num
x]

num
x

num
x

cision given by the optional parameter P or by the current setting of \xintDigits.
Frac
f

Frac
f ★

In the current, preliminary, version, no attempt has been made to try to guarantee to the final

result the precision P. Rather, P is used for all intermediate floating point evaluations. So

rounding errors will make some of the last printed digits invalid. The operations done are first

the evaluation of f^A using \xintFloatPow, then each successive power is obtained from this first

one by multiplication by f using \xintFloatMul, then again with \xintFloatMul this is multiplied

with \coeff{n}, and the sum is done adding one term at a time with \xintFloatAdd. To sum up, this

is just the naive transformation of \xintFxPtPowerSeries from fixed point to floating point.

\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}%

\xintFloatPowerSeries [8]{1}{30}{\coefflog}{-1/2[0]}

-6.9314718e-1

15.10.
source

\xintFloatPowerSeriesX

\xintFloatPowerSeriesX[P]{A}{B}{\coeff}{f} is like \xintFloatPowerSeries with the difference[
num
x]

num
x

num
x

that f is expanded once and for all at the start of the computation, thus allowing efficient chain-
Frac
f

Frac
f ★

ing of such series evaluations.

\def\coeffexp #1{1/\xintiiFac {#1}[0]}% 1/n! (exact, not float)

\def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}%

\xintFloatPowerSeriesX [8]{0}{30}{\coeffexp}

{\xintFloatPowerSeries [8]{1}{30}{\coefflog}{-1/2[0]}}

5.0000001e-1

15.11. Computing log 2 and π
In this final section, the use of \xintFxPtPowerSeries (and \xintPowerSeries) will be illustrated

on the (expandable... why make things simple when it is so easy to make them difficult!) computa-

tions of the first digits of the decimal expansion of the familiar constants log 2 and π.
Let us start with log 2. We will get it from this formula (which is left as an exercise):

log(2)=-2 log(1-13/256)-5 log(1-1/9)

The number of terms to be kept in the log series, for a desired precision of 10^{-D} was roughly

estimated without much theoretical analysis. Computing exactly the partial sums with \xintPow-

erSeries and then printing the truncated values, from D=0 up to D=100 showed that it worked in

terms of quality of the approximation. Because of possible strings of zeroes or nines in the ex-

act decimal expansion (in the present case of log 2, strings of zeroes around the fourtieth and the

sixtieth decimals), this does not mean though that all digits printed were always exact. In the

end one always end up having to compute at some higher level of desired precision to validate the

earlier result.

Then we tried with \xintFxPtPowerSeries: this is worthwile only for D's at least 50, as the

exact evaluations are faster (with these short-length f's) for a lower number of digits. And as

expected the degradation in the quality of approximation was in this range of the order of two or

three digits. This meant roughly that the 3+1=4 ending digits were wrong. Again, we ended up

having to compute with five more digits and compare with the earlier value to validate it. We

211

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

use truncation rather than rounding because our goal is not to obtain the correct rounded decimal

expansion but the correct exact truncated one.

\def\coefflog #1{1/#1[0]}% 1/n

\def\xa {13/256[0]}% we will compute log(1-13/256)

\def\xb {1/9[0]}% we will compute log(1-1/9)

\def\LogTwo #1{%

% get log(2)=-2log(1-13/256)- 5log(1-1/9)

\romannumeral0\expandafter\logtwo

% number of terms for 1/9:

\the\numexpr #1*150/143\expandafter.%

% number of Terms for 13/256:

\the\numexpr #1*100/129\expandafter.%

% We print #1 digits, but we know the ending ones are garbage

% Use \numexpr to allow a \count as #1

\the\numexpr #1.%

}%

\def\logtwo #1.#2.#3.{%

% #1=nb of terms for 1/9,

% #2=nb of terms for 13/256,

% #3=nb of digits for computations, also used for printing

\xinttrunc {#3}% will terminate the \romannumeral0

{\xintAdd

{\xintMul {2}{\xintFxPtPowerSeries {1}{#2}{\coefflog}{\xa}{#3}}}

{\xintMul {5}{\xintFxPtPowerSeries {1}{#1}{\coefflog}{\xb}{#3}}}%

}%

}%

\noindent $\log 2 \approx \LogTwo {60}\dots$\endgraf

\noindent${}\approx{}$\printnumber{\LogTwo {65}}\dots\endgraf

\noindent${}\approx{}$\printnumber{\LogTwo {70}}\dots\endgraf

log 2 ≈ 0.693147180559945309417232121458176568075500134360255254120484 . . .
≈ 0.69314718055994530941723212145817656807550013436025525412068000711...

≈ 0.6931471805599453094172321214581765680755001343602552541206800094933723...

Here is the code doing an exact evaluation of the partial sums. We have added a +1 to the number

of digits for estimating the number of terms to keep from the log series: we experimented that

this gets exactly the first D digits, for all values from D=0 to D=100, except in one case (D=40)

where the last digit is wrong. For values of D higher than 100 it is more efficient to use the code

using \xintFxPtPowerSeries.

\def\coefflog #1{1/#1[0]}% 1/n

\def\xa {13/256[0]}% we will compute log(1-13/256)

\def\xb {1/9[0]}% we will compute log(1-1/9)

\def\LogTwo #1{% get log(2)=-2log(1-13/256)- 5log(1-1/9)

\romannumeral0\expandafter\logtwo

\the\numexpr (#1+1)*150/143\expandafter.%

\the\numexpr (#1+1)*100/129\expandafter.%

\the\numexpr #1.%

}%

\def\logtwo #1.#2.#3.{% #3=nb of digits for truncating an EXACT partial sum

\xinttrunc {#3}% will terminate the \romannumeral0

{\xintAdd

{\xintMul {2}{\xintPowerSeries {1}{#2}{\coefflog}{\xa}}}

{\xintMul {5}{\xintPowerSeries {1}{#1}{\coefflog}{\xb}}}%

}%

212

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

}%

Let us turn now to Pi, computed with the Machin formula (but see also the approach via the Brent-

Salamin algorithm with \xintfloatexpr) Again the numbers of terms to keep in the two arctg series

were roughly estimated, and some experimentations showed that removing the last three digits was

enough (at least for D=0-100 range). And the algorithm does print the correct digits when used

with D=1000 (to be convinced of that one needs to run it for D=1000 and again, say for D=1010.)

A theoretical analysis could help confirm that this algorithm always gets better than 10^{-D}

precision, but again, strings of zeroes or nines encountered in the decimal expansion may falsify

the ending digits, nines may be zeroes (and the last non-nine one should be increased) and zeroes

may be nine (and the last non-zero one should be decreased).

\def\coeffarctg #1{\the\numexpr\ifodd#1 -1\else1\fi\relax

/\the\numexpr 2*#1+1\relax [0]}%

%\def\coeffarctg #1{\romannumeral0\xintmon{#1}/\the\numexpr 2*#1+1\relax }%

\def\xa {1/25[0]}% 1/5^2, the [0] for faster parsing

\def\xb {1/57121[0]}% 1/239^2, the [0] for faster parsing

\def\Machin #1{% #1 may be a count register

\romannumeral0\expandafter\machin

% number of terms for arctg(1/5):

\the\numexpr (#1+3)*5/7\expandafter.%

% number of terms for arctg(1/239):

\the\numexpr (#1+3)*10/45\expandafter.%

% do the computations with 3 additional digits:

\the\numexpr #1+3\expandafter.%

% allow #1 to be a count register:

\the\numexpr #1.%

}%

\def\machin #1.#2.#3.#4.{%

\xinttrunc {#4}% will terminate the \romannumeral0

{\xintSub

{\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}}

{\xintMul{4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}%

}%

}%

\begin{framed}

\[\pi = \Machin{60}\dots \]

\end{framed}

π = 3.141592653589793238462643383279502884197169399375105820974944 . . .

Here is a variant\MachinBis, which evaluates the partial sums exactly using \xintPowerSeries,

before their final truncation. No need for a ``+3'' then.

\def\MachinBis #1{% #1 may be a count register,

% the final result will be truncated to #1 digits post decimal point

\romannumeral0\expandafter\machinbis

% number of terms for arctg(1/5):

\the\numexpr #1*5/7\expandafter.%

% number of terms for arctg(1/239):

\the\numexpr #1*10/45\expandafter.%

% allow #1 to be a count register:

\the\numexpr #1.%

}%

213

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

\def\machinbis #1.#2.#3.{%

\xinttrunc {#3}% will terminate the \romannumeral0

{\xintSub

{\xintMul {16/5}{\xintPowerSeries {0}{#1}{\coeffarctg}{\xa}}}

{\xintMul{4/239}{\xintPowerSeries {0}{#2}{\coeffarctg}{\xb}}}%

}%

}%

Let us use this variant for a loop showing the build-up of digits:

\begin{multicols}{2}

\cnta 0 % previously declared \count register

\loop \noindent

\centeredline{\dtt{\MachinBis{\cnta}}}%

\ifnum\cnta < 30

\advance\cnta 1 \repeat

\end{multicols}

3.

3.1

3.14

3.141

3.1415

3.14159

3.141592

3.1415926

3.14159265

3.141592653

3.1415926535

3.14159265358

3.141592653589

3.1415926535897

3.14159265358979

3.141592653589793

3.1415926535897932

3.14159265358979323

3.141592653589793238

3.1415926535897932384

3.14159265358979323846

3.141592653589793238462

3.1415926535897932384626

3.14159265358979323846264

3.141592653589793238462643

3.1415926535897932384626433

3.14159265358979323846264338

3.141592653589793238462643383

3.1415926535897932384626433832

3.14159265358979323846264338327

3.141592653589793238462643383279

You want more digits and have some time? Save the following to a file, it is the \Machin code.

Compile with etex (or pdftex or xetex or luatex):

% Compile with e-TeX extensions enabled (etex, pdftex, ...)

\input xintfrac.sty

\input xintseries.sty

% pi = 16 Arctg(1/5) - 4 Arctg(1/239) (John Machin's formula)

\def\coeffarctg #1{\the\numexpr\ifodd#1 -1\else1\fi\relax

/\the\numexpr 2*#1+1\relax [0]}%

\def\xa {1/25[0]}%

\def\xb {1/57121[0]}%

\def\Machin #1{%

\romannumeral0\expandafter\machin

\the\numexpr (#1+3)*5/7\expandafter.%

\the\numexpr (#1+3)*10/45\expandafter.%

\the\numexpr #1+3\expandafter.%

\the\numexpr #1.%

}%

\def\machin #1.#2.#3.#4.{%

\xinttrunc {#4}% will terminate the \romannumeral0

{\xintSub

214

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries , xintcfrac

{\xintMul {16/5}{\xintFxPtPowerSeries {0}{#1}{\coeffarctg}{\xa}{#3}}}

{\xintMul{4/239}{\xintFxPtPowerSeries {0}{#2}{\coeffarctg}{\xb}{#3}}}%

}%

}%

\xintresettimer

\edef\Z {\Machin {1000}}

\edef\W {\xinttheseconds}

\immediate\write128{1000 places of pi via Machin formula (took \W s):}

\immediate\write128{\Z}

\bye

This will log the first 1000 digits of π after the decimal point. On my laptop (a 2012 model)

this took about 5.05 seconds last time I tried.73 74

As mentioned in the introduction, the file pi.tex by D. Roegel shows that orders of magnitude

faster computations are possible within TEX, but recall our constraints of complete expandability

and be merciful, please.

Why truncating rather than rounding? One of our main competitors on the market of scientific

computing, a canadian product (not encumbered with expandability constraints, and having barely

ever heard of TEX ;-), prints numbers rounded in the last digit. Why didn't we follow suit in

the macros \xintFxPtPowerSeries and \xintFxPtPowerSeriesX? To round at D digits, and excluding a

rewrite or cloning of the division algorithm which anyhow would add to it some overhead in its final

steps, xintfrac needs to truncate at D+1, then round. And rounding loses information! So, with

more time spent, we obtain a worst result than the one truncated at D+1 (one could imagine that

additions and so on, done with only D digits, cost less; true, but this is a negligeable effect

per summand compared to the additional cost for this term of having been truncated at D+1 then

rounded). Rounding is the way to go when setting up algorithms to evaluate functions destined to

be composed one after the other: exact algebraic operations with many summands and an f variable

which is a fraction are costly and create an even bigger fraction; replacing f with a reasonable

rounding, and rounding the result, is necessary to allow arbitrary chaining.

But, for the computation of a single constant, we are really interested in the exact decimal

expansion, so we truncate and compute more terms until the earlier result gets validated. Finally

if we do want the rounding we can always do it on a value computed with D+1 truncation.

73 With 1.09i and earlier xint, this used to be 42 seconds; starting with 1.09j, and prior to 1.2, it was 16 seconds (this was
probably due to a more efficient division with denominators at most 9999). The 1.2 xintcore achieved a further gain at 5.6 seconds.
74 With \xintDigits :=1001\relax, the non-optimized implementation with the iter of xintexpr fame using the Brent-Salamin
algorithm, took, last time I tried (1.2i), about 7 seconds on my laptop (the last two digits were wrong, which is ok as they serve
as guard digits), and for obtaining about 500 digits, it was about 1.7s. This is not bad, taking into account that the syntax is
almost free rolling speech, contrarily to the code above for the Machin formula computation; we would like to use the quadratically
convergent Brent-Salamin algorithm for more digits, but with such computations with numbers of one thousand digits we are
beyond the border of the reasonable range for xint. Innocent people not knowing what it means to compute with TEX, and with
the extra constraint of expandability will wonder why this is at least thousands of times slower than with any other language (with
a little Python program using the Decimal library, I timed the Brent-Salamin algorithm to 4.4ms for about 1000 digits and 1.14ms
for 500 digits.) I will just say that for example digits are represented and manipulated via their ascii-code ! all computations must
convert from ascii-code to cpu words; furthermore nothing can be stored away. And there is no memory storage with O(1) time
access... if expandability is to be verified.

215

https://ctan.org/pkg/pi

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

16. Macros of the xintcfrac package

.1 Package overview . 216

.2 \xintCFrac . 221

.3 \xintGCFrac . 221

.4 \xintGGCFrac . 221

.5 \xintGCtoGCx . 222

.6 \xintFtoC . 222

.7 \xintFtoCs . 222

.8 \xintFtoCx . 222

.9 \xintFtoGC . 223

.10 \xintFGtoC . 223

.11 \xintFtoCC . 223

.12 \xintCstoF . 224

.13 \xintCtoF . 224

.14 \xintGCtoF . 225

.15 \xintCstoCv . 225

.16 \xintCtoCv . 226

.17 \xintGCtoCv . 226

.18 \xintFtoCv . 226

.19 \xintFtoCCv . 226

.20 \xintCntoF . 226

.21 \xintGCntoF . 227

.22 \xintCntoCs . 227

.23 \xintCntoGC . 227

.24 \xintGCntoGC . 228

.25 \xintCstoGC . 228

.26 \xintiCstoF, \xintiGCtoF, \xintiCstoCv,
\xintiGCtoCv . 228

.27 \xintGCtoGC . 228

.28 Euler’s number e . 229

First version of this package was included in release 1.04 (2013/04/25) of the xint bundle.

It was kept almost unchanged until 1.09m of 2014/02/26 which brought some new macros: \xint-

FtoC, \xintCtoF, \xintCtoCv, dealing with sequences of braced partial quotients rather than comma

separated ones, \xintFGtoC which is to produce ``guaranteed'' coefficients of some real number

known approximately, and \xintGGCFrac for displaying arbitrary material as a continued fraction;

also, some changes to existing macros: \xintFtoCs and \xintCntoCs insert spaces after the commas,

\xintCstoF and \xintCstoCv authorize spaces in the input also before the commas.

\xintCstoF and \xintCstoCv create a partial dependency on xinttools as they use its \xint-

CSVtoList. Starting at 1.4n the loading of xinttools is done automatically, formerly it was up to

user to do it.

16.1. Package overview
The package computes partial quotients and convergents of a fraction, or conversely start from co-

efficients and obtain the corresponding fraction; three macros \xintCFrac, \xintGCFrac and \xint-

GGCFrac are for typesetting, the others can be nested (if applicable) or see their outputs further

processed by other macros from the xint bundle, particularly the macros of xinttools dealing with

sequences of braced items or comma separated lists.

A simple continued fraction has coefficients [c0,c1,...,cN] (usually called partial quotients,

but I dislike this entrenched terminology), where c0 is a positive or negative integer and the

others are positive integers.

Typesetting is usually done via the amsmath macro \cfrac:

\[c_0 + \cfrac{1}{c_1+\cfrac1{c_2+\cfrac1{c_3+\cfrac1{\ddots}}}}\]

c0 +
1

c1 +
1

c2 +
1

c3 +
1

...

Here is a concrete example:

\[\xintTeXFrac {208341/66317}=\xintCFrac {208341/66317}\]%

216

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

208341

66317
= 3 +

1

7 +
1

15 +
1

1 +
1

292 +
1

2

But it is the macro \xintCFrac which did all the work of computing the continued fraction and
using \cfrac from amsmath to typeset it.

A generalized continued fraction has the same structure but the numerators are not restricted

to be 1, and numbers used in the continued fraction may be arbitrary, also fractions, irrationals,

complex, indeterminates.75 The centered continued fraction is an example:

\[\xintTeXFrac {915286/188421}=\xintGCFrac {5+-1/7+1/39+-1/53+-1/13}

=\xintCFrac {915286/188421}\]

915286

188421
= 5 -

1

7 +
1

39 -
1

53 -
1

13

= 4 +
1

1 +
1

6 +
1

38 +
1

1 +
1

51 +
1

1 +
1

12

The macro \xintGCFrac, contrarily to \xintCFrac, does not compute anything, it just typesets

starting from a generalized continued fraction in inline format, which in this example was input

literally. We also used \xintCFrac for comparison of the two types of continued fractions.

To let TEX compute the centered continued fraction of f there is \xintFtoCC:

\[\xintTeXFrac {915286/188421}\to\xintFtoCC {915286/188421}\]
915286

188421
→ 5 + -1/7 + 1/39 + -1/53 + -1/13

The package macros are expandable and may be nested (naturally \xintCFrac and \xintGCFrac must

be at the top level, as they deal with typesetting).

\[\xintGCFrac {\xintFtoCC{915286/188421}}\]

5 -
1

7 +
1

39 -
1

53 -
1

13

The `inline' format expected on input by \xintGCFrac is

a0 + b0/a1 + b1/a2 + b2/a3 + · · · + bn-2/an-1 + bn-1/an
Fractions among the coefficients are allowed but they must be enclosed within braces. Signed

integers may be left without braces (but the + signs are mandatory). No spaces are allowed around

the plus and fraction symbols. The coefficients may themselves be macros, as long as these macros

are f-expandable.
\[\xintTeXFrac{\xintGCtoF {1+-1/57+\xintPow {-3}{7}/\xintiiQuo {132}{25}}}

= \xintGCFrac {1+-1/57+\xintPow {-3}{7}/\xintiiQuo {132}{25}}\]

75 xintcfrac may be used with indeterminates, for basic conversions from one inline format to another, but not for actual compu-
tations. See \xintGGCFrac.

217

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

1907

1902
= 1 -

1

57 -
2187

5

To compute the actual fraction one has \xintGCtoF:

\[\xintTeXFrac{\xintGCtoF {1+-1/57+\xintPow {-3}{7}/\xintiiQuo {132}{25}}}\]
1907

1902

For non-numeric input there is \xintGGCFrac.

\[\xintGGCFrac {a_0+b_0/a_1+b_1/a_2+b_2/\ddots+\ddots/a_{n-1}+b_{n-1}/a_n}\]

a0 +
b0

a1 +
b1

a2 +
b2

... +

...

an-1 +
bn-1

an

For regular continued fractions, there is a simpler comma separated format:

\[-7,6,19,1,33\to\xintTeXFrac{\xintCstoF{-7,6,19,1,33}}=

\xintCFrac{\xintCstoF{-7,6,19,1,33}}\]

-7, 6, 19, 1, 33 → -28077

4108
= -7 +

1

6 +
1

19 +
1

1 +
1

33

The macro \xintFtoCs produces from a fraction f the comma separated list of its coefficients.

\[\xintTeXFrac{1084483/398959}=[\xintFtoCs{1084483/398959}]\]
1084483

398959
= [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 2]

If one prefers other separators, one can use the two arguments macros \xintFtoCx whose first

argument is the separator (which may consist of more than one token) which is to be used.

\[\xintTeXFrac{2721/1001}=\xintFtoCx {+1/(}{2721/1001})\cdots)\]
2721

1001
= 2 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + 1/(4 + 1/(1 + 1/(1 + 1/(6 + 1/(2) · · ·)

This allows under Plain TEX with amstex to obtain the same effect as with LATEX+\amsmath+\xintCFrac:

$$\xintTeXOver{2721/1001}=\xintFtoCx {+\cfrac1\\ }{2721/1001}\endcfrac$$

As a shortcut to \xintFtoCx with separator 1+/, there is \xintFtoGC:

2721/1001=\xintFtoGC {2721/1001}

2721/1001=2+1/1+1/2+1/1+1/1+1/4+1/1+1/1+1/6+1/2 Let us compare in that case with the output of

\xintFtoCC:

2721/1001=\xintFtoCC {2721/1001}

2721/1001=3+-1/4+-1/2+1/5+-1/2+1/7+-1/2 To obtain the coefficients as a sequence of braced num-

bers, there is \xintFtoC (this is a shortcut for \xintFtoCx {}). This list (sequence) may then

be manipulated using the various macros of xinttools such as the non-expandable macro \xint-

AssignArray or the expandable \xintApply and \xintListWithSep.

Conversely to go from such a sequence of braced coefficients to the corresponding fraction there

is \xintCtoF.

The `\printnumber' (subsection 1.6) macro which we use in this document to print long numbers

can also be useful on long continued fractions.

\printnumber{\xintFtoCC {35037018906350720204351049/244241737886197404558180}}

218

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

143+1/2+1/5+-1/4+-1/4+-1/4+-1/3+1/2+1/2+1/6+-1/22+1/2+1/10+-1/5+-1/11+-1/3+1/4+-1/2+1/2+1/4+ ⤸
-1/2+1/23+1/3+1/8+-1/6+-1/9 If we apply \xintGCtoF to this generalized continued fraction, we

discover that the original fraction was reducible:

\xintGCtoF {143+1/2+...+-1/9}=2897319801297630107/20197107104701740

When a generalized continued fraction is built with integers, and numerators are only 1's or - ⤸
1's, the produced fraction is irreducible. And if we compute it again with the last sub-fraction

omitted we get another irreducible fraction related to the bigger one by a Bézout identity. Doing

this here we get:

\xintGCtoF {143+1/2+...+-1/6}=328124887710626729/2287346221788023

and indeed: ����2897319801297630107 328124887710626729

20197107104701740 2287346221788023

���� = 1

The various fractions obtained from the truncation of a continued fraction to its initial terms

are called the convergents. The macros of xintcfrac such as \xintFtoCv, \xintFtoCCv, and others

which compute such convergents, return them as a list of braced items, with no separator (as does

\xintFtoC for the partial quotients). Here is an example:

\[\xintTeXFrac{915286/188421}\to

\xintListWithSep{,}{\xintApply\xintTeXFrac{\xintFtoCv{915286/188421}}}\]
915286

188421
→ 4, 5,

34

7
,
1297

267
,
1331

274
,
69178

14241
,
70509

14515
,
915286

188421

\[\xintTeXFrac{915286/188421}\to

\xintListWithSep{,}{\xintApply\xintTeXFrac{\xintFtoCCv{915286/188421}}}\]
915286

188421
→ 5,

34

7
,
1331

274
,
70509

14515
,
915286

188421

We thus see that the `centered convergents' obtained with \xintFtoCCv are among the fuller list

of convergents as returned by \xintFtoCv.

Here is a more complicated use of \xintApply and \xintListWithSep. We first define a macro which

will be applied to each convergent:

\newcommand{\mymacro}[1]{$\xintTeXFrac{#1}=[\xintFtoCs{#1}]$\vtop to 6pt{}}

Next, we use the following code:

$\xintTeXFrac{49171/18089}\to{}$

\xintListWithSep {, }{\xintApply{\mymacro}{\xintFtoCv{49171/18089}}}

It produces:
49171
18089 → 2 = [2], 3 = [3], 8

3 = [2, 1, 2], 11
4 = [2, 1, 3], 19

7 = [2, 1, 2, 2], 87
32 = [2, 1, 2, 1, 1, 4], 106

39 =

[2, 1, 2, 1, 1, 5], 193
71 = [2, 1, 2, 1, 1, 4, 2], 1264

465 = [2, 1, 2, 1, 1, 4, 1, 1, 6], 1457
536 = [2, 1, 2, 1, 1, 4, 1, 1, 7],

2721
1001 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 2], 23225

8544 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8], 49171
18089 = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 2].

The macro \xintCntoF allows to specify the coefficients as a function given by a one-parameter

macro. The produced values do not have to be integers.

\def\cn #1{\xintiiPow {2}{#1}}% 2^n

\[\xintTeXFrac{\xintCntoF {6}{\cn}}=\xintCFrac [l]{\xintCntoF {6}{\cn}}\]

3541373

2449193
= 1 +

1

2 +
1

4 +
1

8 +
1

16 +
1

32 +
1

64

Notice the use of the optional argument [l] to \xintCFrac. Other possibilities are [r] and

(default) [c].

219

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

\def\cn #1{\xintPow {2}{-#1}}%

\[\xintTeXFrac{\xintCntoF {6}{\cn}}=\xintGCFrac [r]{\xintCntoGC {6}{\cn}}=

[\xintFtoCs {\xintCntoF {6}{\cn}}]\]

3159019

2465449
= 1 +

1

1
2 +

1

1
4 +

1

1
8 +

1

1
16 +

1

1
32 +

1

1
64

= [1, 3, 1, 1, 4, 14, 1, 1, 1, 1, 79, 2, 1, 1, 2]

We used \xintCntoGC as we wanted to display also the continued fraction and not only the fraction

returned by \xintCntoF.

There are also \xintGCntoF and \xintGCntoGC which allow the same for generalized fractions. An

initial portion of a generalized continued fraction for π is obtained like this

\def\an #1{\the\numexpr 2*#1+1\relax }%

\def\bn #1{\the\numexpr (#1+1)*(#1+1)\relax }%

\[\xintTeXFrac{\xintDiv {4}{\xintGCntoF {5}{\an}{\bn}}} =

\cfrac{4}{\xintGCFrac{\xintGCntoGC {5}{\an}{\bn}}} =

\xintTrunc {10}{\xintDiv {4}{\xintGCntoF {5}{\an}{\bn}}}\dots\]

92736

29520
=

4

1 +
1

3 +
4

5 +
9

7 +
16

9 +
25

11

= 3.1414634146 . . .

We see that the quality of approximation is not fantastic compared to the simple continued frac-

tion of π with about as many terms:

\[\xintTeXFrac{\xintCstoF{3,7,15,1,292,1,1}}=

\xintGCFrac{3+1/7+1/15+1/1+1/292+1/1+1/1}=

\xintTrunc{10}{\xintCstoF{3,7,15,1,292,1,1}}\dots\]

208341

66317
= 3 +

1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

1

= 3.1415926534 . . .

When studying the continued fraction of some real number, there is always some doubt about how

many terms are valid, when computed starting from some approximation. If f ⩽ x ⩽ g and f, g both

have the same first K partial quotients, then x also has the same first K quotients and convergents.

The macro \xintFGtoC outputs as a sequence of braced items the common partial quotients of its

two arguments. We can thus use it to produce a sure list of valid convergents of π for example,

starting from some proven lower and upper bound:

$$\pi\to [\xintListWithSep{,}

220

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

{\xintFGtoC {3.14159265358979323}{3.14159265358979324}}, \dots]$$

\noindent$\pi\to\xintListWithSep{,\allowbreak\;}

{\xintApply{\xintTeXFrac}

{\xintCtoCv{\xintFGtoC {3.14159265358979323}{3.14159265358979324}}}}, \dots$

π→ [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, . . .]

π → 3, 22
7 ,

333
106,

355
113,

103993
33102 ,

104348
33215 ,

208341
66317 ,

312689
99532 ,

833719
265381,

1146408
364913 ,

4272943
1360120,

5419351
1725033,

80143857
25510582,

165707065
52746197 ,

245850922
78256779 ,

411557987
131002976, . . .

16.2.
source

\xintCFrac

\xintCFrac{f} is a math-mode only, LATEX with amsmath only, macro which first computes then displays
Frac
f

with the help of \cfrac the simple continued fraction corresponding to the given fraction. It

admits an optional argument which may be [l], [r] or (the default) [c] to specify the location of

the one's in the numerators of the sub-fractions. This macro is f-expandable in the sense that

it prepares expandably the whole expression with the multiple \cfrac's, but it is not completely

expandable naturally as \cfrac isn't.

16.3.
source

\xintGCFrac

\xintGCFrac{a+b/c+d/e+f/g+h/...+x/y} uses similarly \cfrac to prepare the typesetting with the a ⤸f
msmath \cfrac (LATEX) of a generalized continued fraction given in inline format (or as macro which

will f-expand to it). It admits the same optional argument as \xintCFrac. Plain TEX with amstex

users, see \xintGCtoGCx.

\[\xintGCFrac {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}}\]

1 +
3375 · 10-3

1
7 -

3
5

720

This is mostly a typesetting macro, although it does trigger the expansion of the coefficients.

See \xintGCtoF if you are impatient to see this specific fraction computed.

It admits an optional argument within square brackets which may be either [l], [c] or [r]. De-

fault is [c] (numerators are centered).

Numerators and denominators are made arguments to the \xintTeXFrac macro. This allows them

to be themselves fractions or anything f-expandable giving numbers or fractions, but also means

however that they can not be arbitrary material, they can not contain color changing macros for

example. One of the reasons is that \xintGCFrac tries to determine the signs of the numerators

and chooses accordingly to use + or -.

16.4.
source

\xintGGCFrac

\xintGGCFrac{a+b/c+d/e+f/g+h/...+x/y} is a clone of \xintGCFrac, hence again LATEX specific withf
package amsmath. It does not assume the coefficients to be numbers as understood by xintfrac. The

macro can be used for displaying arbitrary content as a continued fraction with \cfrac, using only

plus signs though. Note though that it will first f-expand its argument, which may be thus be one

of the xintcfrac macros producing a (general) continued fraction in inline format, see \xintFtoCx

for an example. If this expansion is not wished, it is enough to start the argument with a space.

\[\xintGGCFrac {1+q/1+q^2/1+q^3/1+q^4/1+q^5/\ddots}\]

221

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

1 +
q

1 +
q2

1 +
q3

1 +
q4

1 +
q5

...

16.5.
source

\xintGCtoGCx

\xintGCtoGCx{sepa}{sepb}{a+b/c+d/e+f/...+x/y} returns the list of the coefficients of the gen-n n f ★
eralized continued fraction of f, each one within a pair of braces, and separated with the help of

sepa and sepb. Thus

\xintGCtoGCx :;{1+2/3+4/5+6/7} gives 1:2;3:4;5:6;7

The following can be used byt Plain TEX+amstex users to obtain an output similar as the ones pro-

duced by \xintGCFrac and \xintGGCFrac:

$$\xintGCtoGCx {+\cfrac}{\\}{a+b/...}\endcfrac$$

$$\xintGCtoGCx {+\cfrac\xintTeXOver}{\\\xintTeXOver}{a+b/...}\endcfrac$$

16.6.
source

\xintFtoC

\xintFtoC{f} computes the coefficients of the simple continued fraction of f and returns them as
Frac
f ★

a list (sequence) of braced items.

\fdef\test{\xintFtoC{-5262046/89233}}\texttt{\meaning\test}

macro:->{-59}{33}{27}{100}

16.7.
source

\xintFtoCs

\xintFtoCs{f} returns the comma separated list of the coefficients of the simple continued frac-
Frac
f ★

tion of f. Notice that starting with 1.09m a space follows each comma (mainly for usage in text

mode, as in math mode spaces are produced in the typeset output by TEX itself).

\[\xintTeXsignedFrac{-5262046/89233} \to [\xintFtoCs{-5262046/89233}]\]

-
5262046

89233
→ [-59, 33, 27, 100]

16.8.
source

\xintFtoCx

\xintFtoCx{sep}{f} returns the list of the coefficients of the simple continued fraction of fn
Frac
f ★

separated with the help of sep, which may be anything (and is kept unexpanded). For example, with

Plain TEX and amstex,

$$\xintFtoCx {+\cfrac1\\ }{-5262046/89233}\endcfrac$$

will display the continued fraction using \cfrac. Each coefficient is inside a brace pair { },

allowing a macro to end the separator and fetch it as argument, for example, again with Plain TEX

and amstex:

\def\highlight #1{\ifnum #1>200 \textcolor{red}{#1}\else #1\fi}

$$\xintFtoCx {+\cfrac1\\ \highlight}{104348/33215}\endcfrac$$

Due to the different and extremely cumbersome syntax of \cfrac under LATEX it proves a bit tortuous

to obtain there the same effect. Actually, it is partly for this purpose that 1.09m added \xint-

GGCFrac. We thus use \xintFtoCx with a suitable separator, and then the whole thing as argument

to \xintGGCFrac:

222

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

\def\highlight #1{\ifnum #1>200 \fcolorbox{blue}{white}{\boldmath\color{red}$#1$}%

\else #1\fi}

\[\xintGGCFrac {\xintFtoCx {+1/\highlight}{208341/66317}}\]

3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

2

16.9.
source

\xintFtoGC

\xintFtoGC{f} does the same as \xintFtoCx{+1/}{f}. Its output may thus be used in the package
Frac
f ★

macros expecting such an `inline format'.

566827/208524=\xintFtoGC {566827/208524}

566827/208524=2+1/1+1/2+1/1+1/1+1/4+1/1+1/1+1/6+1/1+1/1+1/8+1/1+1/1+1/11

16.10.
source

\xintFGtoC

\xintFGtoC{f}{g} computes the common initial coefficients to two given fractions f and g. Notice
Frac
f

Frac
f ★

that any real number f<x<g or f>x>g will then necessarily share with f and g these common initial

coefficients for its regular continued fraction. The coefficients are output as a sequence of

braced numbers. This list can then be manipulated via macros from xinttools, or other macros of

xintcfrac.

\fdef\test{\xintFGtoC{-5262046/89233}{-5314647/90125}}\texttt{\meaning\test}

macro:->{-59}{33}{27}

\fdef\test{\xintFGtoC{3.141592653}{3.141592654}}\texttt{\meaning\test}

macro:->{3}{7}{15}{1}

\fdef\test{\xintFGtoC{3.1415926535897932384}{3.1415926535897932385}}\meaning\test

macro:->{3}{7}{15}{1}{292}{1}{1}{1}{2}{1}{3}{1}{14}{2}{1}{1}{2}{2}{2}

\xintRound {30}{\xintCstoF{\xintListWithSep{,}{\test}}}

3.141592653589793238386377506390

\xintRound {30}{\xintCtoF{\test}}

3.141592653589793238386377506390

\fdef\test{\xintFGtoC{1.41421356237309}{1.4142135623731}}\meaning\test

macro:->{1}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}{2}

16.11.
source

\xintFtoCC

\xintFtoCC{f} returns the `centered' continued fraction of f, in `inline format'.
Frac
f ★

566827/208524=\xintFtoCC {566827/208524}

566827/208524=3+-1/4+-1/2+1/5+-1/2+1/7+-1/2+1/9+-1/2+1/11

\[\xintTeXFrac{566827/208524} = \xintGCFrac{\xintFtoCC{566827/208524}}\]

223

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

566827

208524
= 3 -

1

4 -
1

2 +
1

5 -
1

2 +
1

7 -
1

2 +
1

9 -
1

2 +
1

11

16.12.
source

\xintCstoF

\xintCstoF{a,b,c,d,...,z} computes the fraction corresponding to the coefficients, which may bef ★
fractions or even macros expanding to such fractions. The final fraction may then be highly re-

ducible.

Starting with release 1.09m spaces before commas are allowed and trimmed automatically (spaces

after commas were already silently handled in earlier releases).

\[\xintGCFrac {-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}=

\xintTeXsignedFrac{\xintCstoF {-1,3,-5,7,-9,11,-13}}=\xintTeXsignedFrac{\xintGCtoF

{-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}}\]

-1 +
1

3 +
1

-5 +
1

7 +
1

-9 +
1

11 +
1

-13

= -
75887

118187
= -

75887

118187

\[\xintGCFrac{{1/2}+1/{1/3}+1/{1/4}+1/{1/5}}=

\xintTeXFrac{\xintCstoF {1/2,1/3,1/4,1/5}}\]

1

2
+

1

1
3 +

1

1
4 +

1

1
5

=
159

66

A generalized continued fraction may produce a reducible fraction (\xintCstoF tries its best not

to accumulate in a silly way superfluous factors but will not do simplifications which would be

obvious to a human, like simplification by 3 in the result above).

16.13.
source

\xintCtoF

\xintCtoF{{a}{b}{c}...{z}} computes the fraction corresponding to the coefficients, which may bef ★
fractions or even macros.

\xintCtoF {\xintApply {\xintiiPow 3}{\xintSeq {1}{5}}}

14946960/4805083

\[\xintTeXFrac{14946960/4805083}=\xintCFrac {14946960/4805083}\]

224

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

14946960

4805083
= 3 +

1

9 +
1

27 +
1

81 +
1

243

In the example above the power of 3 was already pre-computed via the expansion done by \xintApply,

but if we try with \xintApply { \xintiiPow 3} where the space will stop this expansion, we can

check that \xintCtoF will itself provoke the needed coefficient expansion.

16.14.
source

\xintGCtoF

\xintGCtoF{a+b/c+d/e+f/g+......+v/w+x/y} computes the fraction defined by the inline general-f ★
ized continued fraction. Coefficients may be fractions but must then be put within braces. They

can be macros. The plus signs are mandatory.

\[\xintGCFrac {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}} =

\xintTeXFrac{\xintGCtoF {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}}} =

\xintTeXFrac{\xintIrr{\xintGCtoF

{1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintiiFac {6}}}}\]

1 +
3375 · 10-3

1
7 -

3
5

720

=
88629000

3579000
=
29543

1193

\[\xintGCFrac{{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}} =

\xintTeXFrac{\xintGCtoF {{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}}} \]

1

2
+

2
3

4
5 +

1
2

1
5 +

3
2
5
3

=
4270

4140

The macro tries its best not to accumulate superfluous factor in the denominators, but doesn't

reduce the fraction to irreducible form before returning it and does not do simplifications which

would be obvious to a human.

16.15.
source

\xintCstoCv

\xintCstoCv{a,b,c,d,...,z} returns the sequence of the corresponding convergents, each onef ★
within braces.

It is allowed to use fractions as coefficients (the computed convergents have then no reason to

be the real convergents of the final fraction). When the coefficients are integers, the conver-

gents are irreducible fractions, but otherwise it is not necessarily the case.

\xintListWithSep:{\xintCstoCv{1,2,3,4,5,6}}

1/1:3/2:10/7:43/30:225/157:1393/972

\xintListWithSep:{\xintCstoCv{1,1/2,1/3,1/4,1/5,1/6}}

1/1:3/1:9/7:45/19:225/159:1575/729

\[\xintListWithSep{\to}{\xintApply\xintTeXFrac{\xintCstoCv {\xintPow

{-.3}{-5},7.3/4.57,\xintCstoF{3/4,9,-1/3}}}}\]
-100000

243
→ -72888949

177390
→ -2700356878

6567804

225

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

16.16.
source

\xintCtoCv

\xintCtoCv{{a}{b}{c}...{z}} returns the sequence of the corresponding convergents, each onef ★
within braces.

\fdef\test{\xintCtoCv {11111111111}}\texttt{\meaning\test}

macro:->{1/1}{2/1}{3/2}{5/3}{8/5}{13/8}{21/13}{34/21}{55/34}{89/55}{144/89}

16.17.
source

\xintGCtoCv

\xintGCtoCv{a+b/c+d/e+f/g+......+v/w+x/y} returns the list of the corresponding convergents.f ★
The coefficients may be fractions, but must then be inside braces. Or they may be macros, too.

The convergents will in the general case be reducible. To put them into irreducible form, one

needs one more step, for example it can be done with \xintApply\xintIrr.

\[\xintListWithSep{,}{\xintApply\xintTeXFrac

{\xintGCtoCv{3+{-2}/{7/2}+{3/4}/12+{-56}/3}}}\]

\[\xintListWithSep{,}{\xintApply\xintTeXFrac{\xintApply\xintIrr

{\xintGCtoCv{3+{-2}/{7/2}+{3/4}/12+{-56}/3}}}}\]

3,
17

7
,
834

342
,
1306

542

3,
17

7
,
139

57
,
653

271

16.18.
source

\xintFtoCv

\xintFtoCv{f} returns the list of the (braced) convergents of f, with no separator. To be treated
Frac
f ★

with \xintAssignArray or \xintListWithSep.

\[\xintListWithSep{\to}{\xintApply\xintTeXFrac{\xintFtoCv{5211/3748}}}\]

1 → 3

2
→ 4

3
→ 7

5
→ 25

18
→ 32

23
→ 57

41
→ 317

228
→ 374

269
→ 691

497
→ 5211

3748

16.19.
source

\xintFtoCCv

\xintFtoCCv{f} returns the list of the (braced) centered convergents of f, with no separator. To
Frac
f ★

be treated with \xintAssignArray or \xintListWithSep.

\[\xintListWithSep{\to}{\xintApply\xintTeXFrac{\xintFtoCCv{5211/3748}}}\]

1 → 4

3
→ 7

5
→ 32

23
→ 57

41
→ 374

269
→ 691

497
→ 5211

3748

16.20.
source

\xintCntoF

\xintCntoF{N}{\macro} computes the fraction f having coefficients c(j)=\macro{j} for j=0,1,..., ⤸
num
x f ★

N. The N parameter is given to a \numexpr. The values of the coefficients, as returned by \macro

do not have to be positive, nor integers, and it is thus not necessarily the case that the original

c(j) are the true coefficients of the final f.

\def\macro #1{\the\numexpr 1+#1*#1\relax} \xintCntoF {5}{\macro}

72625/49902[0]

This example shows that the fraction is output with a trailing number in square brackets (rep-

resenting a power of ten), this is for consistency with what do most macros of xintfrac, and does

not have to be always this annoying [0] as the coefficients may for example be numbers in sci-

entific notation. To avoid these trailing square brackets, for example if the coefficients are

226

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

known to be integers, there is always the possibility to filter the output via \xintPRaw, or \xint-

Irr (the latter is overkill in the case of integer coefficients, as the fraction is guaranteed to

be irreducible then).

16.21.
source

\xintGCntoF

\xintGCntoF{N}{\macroA}{\macroB} returns the fraction f corresponding to the inline general-
num
x f f ★

ized continued fraction a0+b0/a1+b1/a2+....+b(N-1)/aN, with a(j)=\macroA{j} and b(j)=\macroB{ ⤸
j}. The N parameter is given to a \numexpr.

\def\coeffA #1{\the\numexpr #1+4-3*((#1+2)/3)\relax }%

\def\coeffB #1{\the\numexpr \ifodd #1 -\fi 1\relax }% (-1)^n

\[\xintGCFrac{\xintGCntoGC {6}{\coeffA}{\coeffB}} =

\xintTeXFrac{\xintGCntoF {6}{\coeffA}{\coeffB}}\]

1 +
1

2 -
1

3 +
1

1 -
1

2 +
1

3 -
1

1

=
39

25

There is also \xintGCntoGC to get the `inline format' continued fraction.

16.22.
source

\xintCntoCs

\xintCntoCs{N}{\macro} produces the comma separated list of the corresponding coefficients, from
num
x f ★

n=0 to n=N. The N is given to a \numexpr.

\xintCntoCs {5}{\macro}

1, 2, 5, 10, 17, 26

\[\xintTeXFrac{\xintCntoF{5}{\macro}}=\xintCFrac{\xintCntoF {5}{\macro}}\]

72625

49902
= 1 +

1

2 +
1

5 +
1

10 +
1

17 +
1

26

16.23.
source

\xintCntoGC

\xintCntoGC{N}{\macro} evaluates the c(j)=\macro{j} from j=0 to j=N and returns a continued frac-
num
x f ★

tion written in inline format: {c(0)}+1/{c(1)}+1/...+1/{c(N)}. The parameter N is given to a \ ⤸
numexpr. The coefficients, after expansion, are, as shown, being enclosed in an added pair of

braces, they may thus be fractions.

\def\macro #1{\the\numexpr\ifodd#1 -1-#1\else1+#1\fi\relax/\the\numexpr 1+#1*#1\relax}

\fdef\x{\xintCntoGC {5}{\macro}}\meaning\x

\[\xintGCFrac{\xintCntoGC {5}{\macro}}\]

macro:->{1/\the \numexpr 1+0*0\relax }+1/{-2/\the \numexpr 1+1*1\relax }+1/{3/\the \numexpr

1+2*2\relax }+1/{-4/\the \numexpr 1+3*3\relax }+1/{5/\the \numexpr 1+4*4\relax }+1/{-6/\the

227

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

\numexpr 1+5*5\relax }

1 +
1

-2
2 +

1

3
5 +

1

-4
10 +

1

5
17 +

1

-6
26

16.24.
source

\xintGCntoGC

\xintGCntoGC{N}{\macroA}{\macroB} evaluates the coefficients and then returns the corresponding
num
x f f ★

{a0}+{b0}/{a1}+{b1}/{a2}+...+{b(N-1)}/{aN} inline generalized fraction. N is givent to a \nume ⤸
xpr. The coefficients are enclosed into pairs of braces, and may thus be fractions, the fraction

slash will not be confused in further processing by the continued fraction slashes.

\def\an #1{\the\numexpr #1*#1*#1+1\relax}%

\def\bn #1{\the\numexpr \ifodd#1 -\fi 1*(#1+1)\relax}%

$\xintGCntoGC {5}{\an}{\bn}=\xintGCFrac {\xintGCntoGC {5}{\an}{\bn}} =

\displaystyle\xintTeXFrac {\xintGCntoF {5}{\an}{\bn}}$\par

1 + 1/2 + -2/9 + 3/28 + -4/65 + 5/126 = 1 +
1

2 -
2

9 +
3

28 -
4

65 +
5

126

=
5797655

3712466

16.25.
source

\xintCstoGC

\xintCstoGC{a,b,..,z} transforms a comma separated list (or something expanding to such a list)f ★
into an `inline format' continued fraction {a}+1/{b}+1/...+1/{z}. The coefficients are just

copied and put within braces, without expansion. The output can then be used in \xintGCFrac for

example.

\[\xintGCFrac {\xintCstoGC {-1,1/2,-1/3,1/4,-1/5}}=\xintTeXsignedFrac{\xintCstoF {-1,1/2,-

1/3,1/4,-1/5}}\]

-1 +
1

1
2 +

1

-1
3 +

1

1
4 +

1

-1
5

= -
145

83

16.26.
source

\xintiCstoF,
source

\xintiGCtoF,
source

\xintiCstoCv,
source

\xintiGCtoCv

Essentially the same as the corresponding macros without the `i', but for integer-only input.f ★
Infinitesimally faster, mainly for internal use by the package.

16.27.
source

\xintGCtoGC

\xintGCtoGC{a+b/c+d/e+f/g+......+v/w+x/y} expands (with the usual meaning) each one of the co-f ★

228

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

efficients and returns an inline continued fraction of the same type, each expanded coefficient

being enclosed within braces.

\fdef\x {\xintGCtoGC {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/%

\xintiiFac {6}+\xintCstoF {2,-7,-5}/16}} \meaning\x

macro:->{1}+{3375/1[-3]}/{1/7}+{-3/5}/{720}+{67/36}/{16}

To be honest I have forgotten for which purpose I wrote this macro in the first place.

16.28. Euler’s number e

Let us explore the convergents of Euler's number e. The volume of computation is kept minimal by

the following steps:

• a comma separated list of the first 36 coefficients is produced by \xintCntoCs,

• this is then given to \xintiCstoCv which produces the list of the convergents (there is also

\xintCstoCv, but our coefficients being integers we used the infinitesimally faster \xint-

iCstoCv),

• then the whole list was converted into a sequence of one-line paragraphs, each convergent

becomes the argument to a macro printing it together with its decimal expansion with 30 digits

after the decimal point.

• A count register \cnta was used to give a line count serving as a visual aid: we could also

have done that in an expandable way, but well, let's relax from time to time...

\def\cn #1{\the\numexpr\ifcase \numexpr #1+3-3*((#1+2)/3)\relax

1\or1\or2*(#1/3)\fi\relax }

% produces the pattern 1,1,2,1,1,4,1,1,6,1,1,8,... which are the

% coefficients of the simple continued fraction of e-1.

\cnta 0

\def\mymacro #1{\advance\cnta by 1

\noindent

\hbox to 3em {\hfil\small\dtt{\the\cnta.} }%

$\xintTrunc {30}{\xintAdd {1[0]}{#1}}\dots=

\xintTeXFrac{\xintAdd {1[0]}{#1}}$}%

\xintListWithSep{\vtop to 6pt{}\vbox to 12pt{}\par}

{\xintApply\mymacro{\xintiCstoCv{\xintCntoCs {35}{\cn}}}}

1. 2.000000000000000000000000000000 · · · = 2

2. 3.000000000000000000000000000000 · · · = 3

3. 2.666666666666666666666666666666 · · · = 8
3

4. 2.750000000000000000000000000000 · · · = 11
4

5. 2.714285714285714285714285714285 · · · = 19
7

6. 2.718750000000000000000000000000 · · · = 87
32

7. 2.717948717948717948717948717948 · · · = 106
39

8. 2.718309859154929577464788732394 · · · = 193
71

9. 2.718279569892473118279569892473 · · · = 1264
465

10. 2.718283582089552238805970149253 · · · = 1457
536

11. 2.718281718281718281718281718281 · · · = 2721
1001

229

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

12. 2.718281835205992509363295880149 · · · = 23225
8544

13. 2.718281822943949711891042430591 · · · = 25946
9545

14. 2.718281828735695726684725523798 · · · = 49171
18089

15. 2.718281828445401318035025074172 · · · = 517656
190435

16. 2.718281828470583721777828930962 · · · = 566827
208524

17. 2.718281828458563411277850606202 · · · = 1084483
398959

18. 2.718281828459065114074529546648 · · · = 13580623
4996032

19. 2.718281828459028013207065591026 · · · = 14665106
5394991

20. 2.718281828459045851404621084949 · · · = 28245729
10391023

21. 2.718281828459045213521983758221 · · · = 410105312
150869313

22. 2.718281828459045254624795027092 · · · = 438351041
161260336

23. 2.718281828459045234757560631479 · · · = 848456353
312129649

24. 2.718281828459045235379013372772 · · · = 14013652689
5155334720

25. 2.718281828459045235343535532787 · · · = 14862109042
5467464369

26. 2.718281828459045235360753230188 · · · = 28875761731
10622799089

27. 2.718281828459045235360274593941 · · · = 534625820200
196677847971

28. 2.718281828459045235360299120911 · · · = 563501581931
207300647060

29. 2.718281828459045235360287179900 · · · = 1098127402131
403978495031

30. 2.718281828459045235360287478611 · · · = 22526049624551
8286870547680

31. 2.718281828459045235360287464726 · · · = 23624177026682
8690849042711

32. 2.718281828459045235360287471503 · · · = 46150226651233
16977719590391

33. 2.718281828459045235360287471349 · · · = 1038929163353808
382200680031313

34. 2.718281828459045235360287471355 · · · = 1085079390005041
399178399621704

35. 2.718281828459045235360287471352 · · · = 2124008553358849
781379079653017

36. 2.718281828459045235360287471352 · · · = 52061284670617417
19152276311294112

One can with no problem compute much bigger convergents. Let's get the 200th convergent. It

turns out to have the same first 268 digits after the decimal point as e-1. Higher convergents get

more and more digits in proportion to their index: the 500th convergent already gets 799 digits

correct! To allow speedy compilation of the source of this document when the need arises, I limit

here to the 200th convergent.

\fdef\z {\xintCntoF {199}{\cn}}%

\begingroup\parindent 0pt \leftskip 2.5cm

\indent\llap {Numerator = }\printnumber{\xintNumerator\z}\par

\indent\llap {Denominator = }\printnumber{\xintDenominator\z}\par

\indent\llap {Expansion = }\printnumber{\xintTrunc{268}\z}\dots\par\endgroup

Numerator = 568964038871896267597523892315807875293889017667917446057232024547192296961118 ⤸
23017524386017499531081773136701241708609749634329382906

Denominator = 331123817669737619306256360816356753365468823729314438156205615463246659728581 ⤸

230

TOC
TOC, xint bundle, xintkernel, xintcore, xint, xintfrac, xintbinhex, xintgcd, xintseries, xintcfrac

86546133769206314891601955061457059255337661142645217223

Expansion = 1.7182818284590452353602874713526624977572470936999595749669676277240766303535 ⤸
475945713821785251664274274663919320030599218174135966290435729003342952605956 ⤸
307381323286279434907632338298807531952510190115738341879307021540891499348841 ⤸
675092447614606680822648001684774118...

One can also use a centered continued fraction: we get more digits but there are also more

computations as the numerators may be either 1 or -1.

231

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Part III.
The xintexpr and allied packages
source code

17 An introduction and a brief timeline . 233

18 Package xintkernel implementation . 236

19 Package xinttools implementation . 259

20 Package xintcore implementation . 302

21 Package xint implementation . 359

22 Package xintbinhex implementation . 400

23 Package xintgcd implementation . 420

24 Package xintfrac implementation . 430

25 Package xintseries implementation . 525

26 Package xintcfrac implementation . 534

27 Package xintexpr implementation . 557

28 Package xinttrig implementation . 689

29 Package xintlog implementation . 712

30 Cumulative line and macro count . 750

232

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

17. An introduction and a brief timeline
This is 1.4o of 2025/09/06.

The xintchanges.md file, included in the CTAN upload, contains the complete list of changes

relevant to user level since the initial release of the package:

texdoc xintchanges.md

It exists in HTML format at the package web page:

https://jfbu.github.io/xint/CHANGES.html

At 1.4m I added hyperlinks to the macro code.

Each instance of a macro in the code is linked with

target the location of its definition (via \def or

\let or variants). This has been done via a heist

on doc (v2 version) automated indexing which has

been transformed here into automated hyperlinking.

Furthermore the codeline where the macro is defined

will link to its description in the user manual part

of xint.pdf. In (optional build) xintsource.pdf

the link is more modestly targeting the sectioning

heading referencing the macro name, if available.

In xint.pdf the macros documented in the user man-

ual are marked with a source link on top of them,

targeting their source code.

The sad truth however is that my code is poorly

documented. The comments

• are often too scarce,

• have occasional excessive verbosity,

• and are generally inadequate or irrelevant.

The macro comments have had a distinct tendency to

record the changes across releases or even those

occurring during pre-release development phase,

rather than explaining the interface, or perhaps an

algorithm. As I am aware of that, I have a mechanism

of “private comments” which are removed by the dtx

build script. But then I sometimes use it en masse

as it would be too much work to clean-up the exist-

ing comments, and as a result the code is not com-

mented at all anymore... A typical example is with

\xintiiSquareRoot which is amply documented in the

private sources but only 10% of it could be of any

value to any other reader than myself and it would

be simply the description of what #1, #2, ... stand

for. As a result I converted at some point every-

thing into private comments. Extracting the useful

parts describing the macro parameters and checking

they are actually still valid would be very time-

consuming. The real problem here is that the actual

underlying algorithms are rarely if ever described.

• Release 1.4n of 2025/09/05 is mainly a maintenance release, after a few years in a dormant

state. The long expected overhaul of floating point is again postponed.

– xintbinhex handles the octal base, and can manage (much) larger inputs,

– 0x, 0o, and 0b prefixes, and ' added to the \xinteval syntax,

– [h], [o], [b] optional parameter of \xintiieval,

– Babel active characters are auto-tamed in \xinteval (hotfix at 1.4o 2025/09/06 as the fea-

ture was only true with \xintiieval),

– Compatibility with OpTEX,

– Compatibility with ConTEXt (only mkxl).

The extensive hyperlinking added in 2022 to the docs is better shown to user because xint.pdf

now (again) contains both the user manual and the commented source code. The packaging was

trimmed.

• Release 1.4m of 2022/06/09 is mainly a documentation upgrade, which added hyperlinks inside

the commented macro code, as well as from the user manual to the source code (in xint-all.pdf,

which is an optional build). It adds compatibility with miniltx. It also inaugurates usage

of the engine string comparison primitive.

• Release 1.4i of 2021/06/11: extension of the «simultaneous assignments» concept (backwards

compatible).

• Release 1.4g of 2021/05/25: powers are now parsed in a right associative way. Removal of

the single-character operators &, |, and = (deprecated at 1.1). Reformatted expandable error

messages.

233

https://ctan.org/pkg/xint
https://jfbu.github.io/xint/CHANGES.html
https://ctan.org/pkg/doc
https://ctan.org/pkg/miniltx

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

• Release 1.4e of 2021/05/05: logarithms and exponentials up to 62 digits, trigonometry still

mainly done at high level but with guard digits so all digits up to the last one included can

be trusted for faithful rounding and high probability of correct rounding.

• Release 1.4 of 2020/01/31: xintexpr overhaul to use \expanded based expansion control. Many

new features, in particular support for input and output of nested structures. Breaking

changes, main ones being the (provisory) drop of x*[a, b,...], x+[a, b,...] et al.syntax and

the requirement of \expanded primitive (currently required only by xintexpr).

• Release 1.3e of 2019/04/05: packages xinttrig, xintlog; \xintdefefunc ``non-protected''

variant of \xintdeffunc (at 1.4 the two got merged and \xintdefefunc became a deprecated alias

for \xintdeffunc). Indices removed from xintsource.pdf.

• Release 1.3d of 2019/01/06: fix of 1.2p bug for division with a zero dividend and a one-digit

divisor, \xinteval et al. wrappers, gcd() and lcm() work with fractions.

• Release 1.3c of 2018/06/17: documentation better hyperlinked, indices added to xintsource.p ⤸
df. Colon in := now optional for \xintdefvar and \xintdeffunc.

• Release 1.3b of 2018/05/18: randomness related additions (still WIP).

• Release 1.3a of 2018/03/07: efficiency fix of the mechanism for recursive functions.

• Release 1.3 of 2018/03/01: addition and subtraction use systematically least common multi-

ple of denominators. Extensive under-the-hood refactoring of \xintNewExpr and \xintdeffunc

which now allow recursive definitions. Removal of 1.2o deprecated macros.

• Release 1.2q of 2018/02/06: fix of 1.2l subtraction bug in special situation; tacit multi-

plication extended to cases such as 10!20!30!.

• Release 1.2p of 2017/12/05: maps // and /: to the floored, not truncated, division. Simul-

taneous assignments possible with \xintdefvar. Efficiency improvements in xinttools.

• Release 1.2o of 2017/08/29: massive deprecations of those macros from xintcore and xint which

filtered their arguments via \xintNum.

• Release 1.2n of 2017/08/06: improvements of xintbinhex.

• Release 1.2m of 2017/07/31: rewrite of xintbinhex in the style of the 1.2 techniques.

• Release 1.2l of 2017/07/26: under the hood efficiency improvements in the style of the 1. ⤸
2 techniques; subtraction refactored. Compatibility of most xintfrac macros with arguments

using non-delimited \the\numexpr or \the\mathcode etc...

• Release 1.2i of 2016/12/13: under the hood efficiency improvements in the style of the 1.2

techniques.

• Release 1.2 of 2015/10/10: complete refactoring of the core arithmetic macros and faster

\xintexpr parser.

• Release 1.1 of 2014/10/28: extensive changes in xintexpr. Addition and subtraction do not

multiply denominators blindly but sometimes produce smaller ones. Also with that release,

packages xintkernel and xintcore got extracted from xinttools and xint.

• Release 1.09g of 2013/11/22: the xinttools package is extracted from xint; addition of \xint-

loop and \xintiloop.

• Release 1.09c of 2013/10/09: \xintFor, \xintNewNumExpr (ancestor of \xintNewExpr/\xint-

deffunc mechanism).

234

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

• Release 1.09a of 2013/09/24: support for functions by xintexpr.

• Release 1.08 of 2013/06/07: the xintbinhex package.

• Release 1.07 of 2013/05/25: support for floating point numbers added to xintfrac and first

release of the xintexpr package (provided \xintexpr and \xintfloatexpr).

• Release 1.04 of 2013/04/25: the xintcfrac package.

• Release 1.03 of 2013/04/14: the xintfrac and xintseries packages.

• Release 1.0 of 2013/03/28: initial release of the xint and xintgcd packages.

235

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

18. Package xintkernel implementation

.1 Catcodes, 𝜀-TEX and reload detection . . 236

.1.1 \XINTrestorecatcodes, \XINTsetcatcodes,
\XINTrestorecatcodesendinput 237

.2 Package identification 239

.3 Constants 240

.4 Token management utilities 241

.5 “gob til” macros and UD style fork . . . 242

.6 \xint_afterfi 243

.7 \xint_bye, \xint_Bye 243

.8 \xintdothis, \xintorthat 243

.9 \xint_zapspaces 243

.10 \odef, \oodef, \fdef 244

.11 \xintMessage, \ifxintverbose 244

.12 \ifxintglobaldefs, \XINT_global . . . 244

.13 (WIP) Expandable error message 245

.14 \xint_noxpd (for contex-mkxl compatibility)247

.15 \xintstrcmp 248

.16 \xintresettimer, \xintelapsedtime,
\xinttheseconds 248

.17 \xintReverseOrder 249

.18 \xintLength 250

.19 \xintLastItem 250

.20 \xintFirstItem 251

.21 \xintLastOne 251

.22 \xintFirstOne 252

.23 \xintLengthUpTo 252

.24 \xintreplicate, \xintReplicate . . . 253

.25 \xintgobble, \xintGobble 254

.26 Random number generation 256

.26.1 \xint_texuniformdeviate 257

.26.2 \xint_texuniformdeviate_dgts 257

.26.3 \xintUniformDeviate 258

This package provides the common minimal code base for loading management and catcode control

and also a few programming utilities. With 1.2 a few more helper macros and all \chardef's have

been moved here. The package is loaded by both xintcore.sty and xinttools.sty hence by all other

packages.

Modified at 1.1 (2014/10/28). Separated package.

Modified at 1.2i (2016/12/13). \xintreplicate, \xintgobble, \xintLengthUpTo and \xintLastItem,

and faster \xintLength.

Modified at 1.3b (2018/05/18). \xintUniformDeviate.

Modified at 1.4 (2020/01/31). \xintReplicate, \xintGobble, \xintLastOne, \xintFirstOne.

Modified at 1.4l (2022/05/29). Fix the 1.4 added bug that \XINTrestorecatcodes forgot to restore

the catcode of ^^A which is set to 3 by \XINTsetcatcodes.

Modified at 1.4m (2022/06/10). Fix incompatibility under 𝜀-TEX with miniltx, if latter was loaded

before xintexpr. The fix happens here because it relates to matters of \ProvidesPackage.

18.1. Catcodes, 𝜺-TEX and reload detection
The code for reload detection was initially copied from Heiko Oberdiek's packages, then modified.

The method for catcodes was also initially directly inspired by these packages.

1.4l replaces Info level user messages issued in case of problems such as \numexpr not being

available with Warning level messages (in the LaTeX terminolgy). Should arguably be Error level

in that case.

xintkernel.sty was the only xint package emitting such an Info, now Warning in case of being

loaded twice (via \input in non-LaTeX). This was probably a left-over from initial development

stage of the loading architecture for debugging. Starting with 1.4l, it will abort input silently

in such case.

Also at 1.4l I refactored a bit the loading code in the xint*sty files for no real reason other

than losing time.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

236

https://ctan.org/pkg/miniltx

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

6 \catcode44=12 % ,

7 \catcode46=12 % .

8 \catcode58=12 % :

9 \catcode94=7 % ^

10 \def\space{ }\newlinechar10

11 \let\z\relax

12 \expandafter\ifx\csname numexpr\endcsname\relax

13 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

14 \immediate\write128{^^JPackage xintkernel Warning:^^J%

15 \space\space\space\space

16 \numexpr not available, aborting input.^^J}%

17 \else

18 \PackageWarningNoLine{xintkernel}{\numexpr not available, aborting input}%

19 \fi

20 \def\z{\endgroup\endinput}%

21 \else

22 \expandafter\ifx\csname XINTsetupcatcodes\endcsname\relax

23 \else

24 \def\z{\endgroup\endinput}%

25 \fi

26 \fi

27 \ifx\z\relax\else\expandafter\z\fi%

18.1.1. \XINTrestorecatcodes, \XINTsetcatcodes, \XINTrestorecatcodesendinput

Modified at 1.4e (2021/05/05). Renamed \XINT{set,restore}catcodes to be without underscores, to

facilitate the reloading process for xintlog.sty and xinttrig.sty in uncontrolled contexts.

Modified at 1.4l (2022/05/29). Fix the 1.4 bug of omission of \catcode1 restore.

Reordered all catcodes assignements for easier maintenance and dropped most disparate indica-

tions of which packages make use of which settings.

The \XINTrestorecatcodes is somewhat misnamed as it is more a template to be used in an \edef to

help define actual catcode restoring macros.

However \edef needs usually { and } so there is a potential difficulty with telling people to do

\edef\myrestore{\XINTrestorecatcodes}, and I almost added at 1.4l some \XINTsettorestore:#1->\e ⤸
def#1{\XINTrestorecatcodes} but well, this is not public interface anyhow. The reloading method

of xintlog.sty and xinttrig.sty does protect itself though against such irreal usage possibility

with non standard { or }.

Removed at 1.4l the \XINT_setcatcodes and \XINT_restorecatcodes not used anywhere now. Used by

old version of xintsession.tex, but not anymore since a while.

Modified at 1.4n (2025/09/05). Compatibility with OpTEX. It has a cactode 11 letter, but \abc ⤸
_ or \abc_d will be interpreted un expectedly (but not \abc_de). So we must make sure this is

deactivated during the whole duration of loading the xint modules (perhaps it is mainly xint-

tools which uses \XINT_x, \XINT_y, which is problematic).

We need catcode letter _ for tokenization of \PrepareCatcodes to let it define \XINTrestorecatcodes

conveniently for its usage in an \edef to query at that time the _ status in OpTEX.

28 \catcode95=11 % _

29 \def\PrepareCatcodes

30 {%

31 \endgroup

32 \def\XINTrestorecatcodes
33 {% prepared for use in \edef

34 \catcode0=\the\catcode0 % ^^@

237

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

35 \catcode1=\the\catcode1 % ^^A

36 \catcode13=\the\catcode13 % ^^M

37 \catcode32=\the\catcode32 % <space>

38 \catcode33=\the\catcode33 % !

39 \catcode34=\the\catcode34 % "

40 \catcode35=\the\catcode35 % #

41 \catcode36=\the\catcode36 % $

42 \catcode38=\the\catcode38 % &

43 \catcode39=\the\catcode39 % '

44 \catcode40=\the\catcode40 % (

45 \catcode41=\the\catcode41 %)

46 \catcode42=\the\catcode42 % *
47 \catcode43=\the\catcode43 % +

48 \catcode44=\the\catcode44 % ,

49 \catcode45=\the\catcode45 % -

50 \catcode46=\the\catcode46 % .

51 \catcode47=\the\catcode47 % /

52 \catcode58=\the\catcode58 % :

53 \catcode59=\the\catcode59 % ;

54 \catcode60=\the\catcode60 % <

55 \catcode61=\the\catcode61 % =

56 \catcode62=\the\catcode62 % >

57 \catcode63=\the\catcode63 % ?

58 \catcode64=\the\catcode64 % @

59 \catcode91=\the\catcode91 % [

60 \catcode93=\the\catcode93 %]

61 \catcode94=\the\catcode94 % ^

62 \catcode95=\the\catcode95 % _

63 \catcode96=\the\catcode96 % `

64 \catcode123=\the\catcode123 % {

65 \catcode124=\the\catcode124 % |

66 \catcode125=\the\catcode125 % }

67 \catcode126=\the\catcode126 % ~

68 \endlinechar=\the\endlinechar\relax

69 \ifdefined_ifmathsb_ifmathsb\noexpand_mathsbon_fi\fi %

70 }%

The \noexpand here before \endinput is required. This feels to me a bit surprising, but is a

fact, and the source of this must be in the \edef implementation but I have not checked it out at

this time.

Modified at 1.4n (2025/09/05). Compatibility with OpTEX.

71 \edef\XINTrestorecatcodesendinput
72 {%

73 \XINTrestorecatcodes\noexpand\endinput %

74 }%

75 \def\XINTsetcatcodes
76 {% standard settings with a few xint*sty specific ones

77 \catcode0=12 % for \romannumeral`&&@

78 \catcode1=3 % for safe separator &&A

79 \catcode13=5 % ^^M

80 \catcode32=10 % <space>

81 \catcode33=12 % ! but used as LETTER inside xintexpr.sty

82 \catcode34=12 % "

238

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

83 \catcode35=6 % #

84 \catcode36=3 % $

85 \catcode38=7 % & SUPERSCRIPT for && as replacement of ^^

86 \catcode39=12 % '

87 \catcode40=12 % (

88 \catcode41=12 %)

89 \catcode42=12 % *
90 \catcode43=12 % +

91 \catcode44=12 % ,

92 \catcode45=12 % -

93 \catcode46=12 % .

94 \catcode47=12 % /

95 \catcode58=11 % : LETTER

96 \catcode59=12 % ;

97 \catcode60=12 % <

98 \catcode61=12 % =

99 \catcode62=12 % >

100 \catcode63=11 % ? LETTER

101 \catcode64=11 % @ LETTER

102 \catcode91=12 % [

103 \catcode93=12 %]

104 \catcode94=11 % ^ LETTER

105 \catcode95=11 % _ LETTER

106 \catcode96=12 % `

107 \catcode123=1 % {

108 \catcode124=12 % |

109 \catcode125=2 % }

110 \catcode126=3 % ~ MATH SHIFT

111 \endlinechar=13 %

112 \ifdefined_mathsboff_mathsboff\fi % Compatibility with OpTeX

113 }%

114 \XINTsetcatcodes

115 }%

116 \PrepareCatcodes

Other modules could possibly be loaded under a different catcode regime. (or with a different

status of _ under OpTEX).

117 \def\XINTsetupcatcodes {% for use by other modules

118 \edef\XINTrestorecatcodesendinput

119 {%

120 \XINTrestorecatcodes\noexpand\endinput %

121 }%

122 \XINTsetcatcodes

123 }%

18.2. Package identification
Inspired from Heiko Oberdiek's packages.

Modified at 1.09b (2013/10/03). Re-usability in the other modules. Also I assume now that if \Pro ⤸
videsPackage exists it then does define \ver@<pkgname>.sty, code of HO for some reason escaping

me (compatibility with LaTeX 2.09 or other things ??) seems to set extra precautions. [nine

years later I understood my mistake, see below].

Modified at 1.09c (2013/10/09). Usage of 𝜀-TEX \ifdefined.

239

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Modified at 1.4m (2022/06/10). Nine years too late, I understand that the HO “extra precautions”
were there for some respectable reasons including etex+miniltx and surely other things I can not

imagine. So let's now make sure \ver@xintkernel.sty and friends get defined on load, even if \ ⤸
ProvidesPackage exists! However I remain careless in using \ifdefined which could be fooled if

some previous macro file ended up testing for \ProvidesPackage in a way letting it to \relax. I

do not test for that. If I fixed that carelessness here I would have to fix it in other places

where I use similarly \ifdefined\RequirePackage or \ifdefined\PackageWarning or whatever.

124 \ifdefined\ProvidesPackage

125 \def\XINT_providespackage\ProvidesPackage#1[#2]{%

126 \ProvidesPackage{#1}[{#2}]%

127 \expandafter\ifx\csname ver@#1.sty\endcsname\relax

128 \expandafter\xdef\csname ver@#1.sty\endcsname{#2}%

129 \fi

130 }%

131 \else

132 \def\XINT_providespackage\ProvidesPackage#1[#2]{%

133 \immediate\write-1{Package: #1 #2}%

134 \expandafter\xdef\csname ver@#1.sty\endcsname{#2}%

135 }%

136 \fi

137 \XINT_providespackage

138 \ProvidesPackage {xintkernel}%

139 [2025/09/06 v1.4o Paraphernalia for the xint packages (JFB)]%

18.3. Constants
140 \chardef\xint_c_ 0

141 \chardef\xint_c_i 1

142 \chardef\xint_c_ii 2

143 \chardef\xint_c_iii 3

144 \chardef\xint_c_iv 4

145 \chardef\xint_c_v 5

146 \chardef\xint_c_vi 6

147 \chardef\xint_c_vii 7

148 \chardef\xint_c_viii 8

149 \chardef\xint_c_ix 9

150 \chardef\xint_c_x 10

151 \chardef\xint_c_xii 12

152 \chardef\xint_c_xiv 14

153 \chardef\xint_c_xvi 16

154 \chardef\xint_c_xvii 17

155 \chardef\xint_c_xviii 18

156 \chardef\xint_c_xx 20

157 \chardef\xint_c_xxii 22

158 \chardef\xint_c_ii^v 32

159 \chardef\xint_c_ii^vi 64

160 \chardef\xint_c_ii^vii 128

161 \mathchardef\xint_c_ii^viii 256

162 \mathchardef\xint_c_ii^ix 512

163 \mathchardef\xint_c_ii^xii 4096

Some of these usages of \newcount were in xintcore or in xint or in xintbinhex possibly condi-

tionally on whether (pdf)\uniformdeviate is available. At 1.4n, let's not bother with outdated

240

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

restrictions of TEX.

164 \ifdefined\m@ne\let\xint_c_mone\m@ne

165 \else\csname newcount\endcsname\xint_c_mone \xint_c_mone -1 %

166 \fi

167 \mathchardef\xint_c_x^iv 10000

168 \newcount\xint_c_x^v \xint_c_x^v 100000

169 \newcount\xint_c_x^viii \xint_c_x^viii 100000000

170 \newcount\xint_c_x^ix \xint_c_x^ix 1000000000

171 \newcount\xint_c_x^viii_mone \xint_c_x^viii_mone 99999999

172 \newcount\xint_c_nine_x^viii \xint_c_nine_x^viii 900000000

173 \newcount\xint_c_xi_e_viii_mone \xint_c_xi_e_viii_mone 1099999999

174 \newcount\xint_c_xii_e_viii \xint_c_xii_e_viii 1200000000

Modified at 1.4n (2025/09/05). For some reason this next one used to be defined by \newcount but

\mathchardef is ok.

175 \mathchardef\xint_c_ii^xiv 16384 % "4000, 2**14

176 \newcount\xint_c_ii^xv \xint_c_ii^xv 32768 % 2**15

177 \newcount\xint_c_ii^xvi \xint_c_ii^xvi 65536 % 2**16

178 \newcount\xint_c_ii^xxi \xint_c_ii^xxi 2097152 % "200000, 2**21

18.4. Token management utilities

Added at 1.2 (2015/10/10). Check if \empty and \space have their standard meanings and raise a

warning if not.

Modified at 1.4 (2020/01/31). Warn user if needed, and force then \empty and \space to have their

standard meanings. This will be triggered even if the sole difference is that they are \long.

Modified at 1.4n (2025/09/05). The Warning used to be emitted only to the log file, make it go to

console output as well. But why do I spend time on such silly things.

179 \def\XINT_tmpa { }%

180 \ifx\XINT_tmpa\space\else

181 \immediate\write128{Package xintkernel Warning:}%

182 \immediate\write128{The \string\space\XINT_tmpa macro does not have its

183 meaning as in Plain or LaTeX, but is:}%

184 \immediate\write128{\XINT_tmpa\XINT_tmpa\XINT_tmpa\XINT_tmpa\meaning\space.}%

185 \let\space\XINT_tmpa

186 \immediate\write128{Forcing it to be the usual one. Fingers crossed.}%

187 \fi

188 \def\XINT_tmpa {}%

189 \ifx\XINT_tmpa\empty\else

190 \immediate\write128{Package xintkernel Warning:}%

191 \immediate\write128{The \string\empty\space macro does not have its

192 meaning as in Plain or LaTeX, but is:}%

193 \immediate\write128{\space\space\space\space\meaning\empty.}%

194 \let\empty\XINT_tmpa

195 \immediate\write128{Forcing it to be the usual one. Fingers crossed.}%

196 \fi

197 \let\XINT_tmpa\relax

198 \let\xint_gobble_\empty

199 \long\def\xint_gobble_i #1{}%

200 \long\def\xint_gobble_ii #1#2{}%

201 \long\def\xint_gobble_iii #1#2#3{}%

202 \long\def\xint_gobble_iv #1#2#3#4{}%

241

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

203 \long\def\xint_gobble_v #1#2#3#4#5{}%

204 \long\def\xint_gobble_vi #1#2#3#4#5#6{}%

205 \long\def\xint_gobble_vii #1#2#3#4#5#6#7{}%

206 \long\def\xint_gobble_viii #1#2#3#4#5#6#7#8{}%

Modified at 1.3b (2018/05/18). Moved here \xint_gobandstop_... macros because this is handy for

\xintRandomDigits.

For legacy reasons most top level macros use \romannumeral0 trigger. This is stopped by a space

token. Later in the history of the package \romanumeral`&&@ was used with & of catcode 7. Also

there are a few instances of \romannumeral ended by \z@. But \romannumeral0 remains the publicly

documented one, with CamelCase macros using it as prefix to lowercased macros.

207 \let\xint_gob_andstop_\space

208 \long\def\xint_gob_andstop_i #1{ }%

209 \long\def\xint_gob_andstop_ii #1#2{ }%

210 \long\def\xint_gob_andstop_iii #1#2#3{ }%

211 \long\def\xint_gob_andstop_iv #1#2#3#4{ }%

212 \long\def\xint_gob_andstop_v #1#2#3#4#5{ }%

213 \long\def\xint_gob_andstop_vi #1#2#3#4#5#6{ }%

214 \long\def\xint_gob_andstop_vii #1#2#3#4#5#6#7{ }%

215 \long\def\xint_gob_andstop_viii #1#2#3#4#5#6#7#8{ }%

216 \let\xint_stop_aftergobble\xint_gob_andstop_i

217 \long\def\xint_firstofone #1{#1}%

218 \long\def\xint_firstoftwo #1#2{#1}%

219 \long\def\xint_secondoftwo #1#2{#2}%

220 \long\def\xint_stop_atfirstofone #1{ #1}%

221 \long\def\xint_stop_atfirstoftwo #1#2{ #1}%

222 \long\def\xint_stop_atsecondoftwo #1#2{ #2}%

223 \long\def\xint_exchangetwo_keepbraces #1#2{{#2}{#1}}%

Moved here from xint at 1.4n.

224 \long\def\xint_firstofthree #1#2#3{#1}%

225 \long\def\xint_secondofthree #1#2#3{#2}%

226 \long\def\xint_thirdofthree #1#2#3{#3}%

227 \long\def\xint_stop_atfirstofthree #1#2#3{ #1}%

228 \long\def\xint_stop_atsecondofthree #1#2#3{ #2}%

229 \long\def\xint_stop_atthirdofthree #1#2#3{ #3}%

18.5. “gob til” macros and UD style fork
230 \long\def\xint_gob_til_R #1\R {}%

231 \long\def\xint_gob_til_W #1\W {}%

232 \long\def\xint_gob_til_Z #1\Z {}%

233 \long\def\xint_gob_til_zero #10{}%

234 \long\def\xint_gob_til_one #11{}%

235 \long\def\xint_gob_til_zeros_iii #1000{}%

236 \long\def\xint_gob_til_zeros_iv #10000{}%

237 \long\def\xint_gob_til_eightzeroes #100000000{}%

238 \long\def\xint_gob_til_dot #1.{}%

239 \long\def\xint_gob_til_G #1G{}%

240 \long\def\xint_gob_til_minus #1-{}%

241 \long\def\xint_UDzerominusfork #10-#2#3\krof {#2}%

242 \long\def\xint_UDzerofork #10#2#3\krof {#2}%

243 \long\def\xint_UDsignfork #1-#2#3\krof {#2}%

244 \long\def\xint_UDwfork #1\W#2#3\krof {#2}%

242

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

245 \long\def\xint_UDXINTWfork #1\XINT_W#2#3\krof {#2}%

246 \long\def\xint_UDzerosfork #100#2#3\krof {#2}%

247 \long\def\xint_UDonezerofork #110#2#3\krof {#2}%

248 \long\def\xint_UDsignsfork #1--#2#3\krof {#2}%

249 \let\xint:\char

250 \long\def\xint_gob_til_xint:#1\xint:{}%

251 \long\def\xint_gob_til_^#1^{}%

252 \def\xint_bracedstopper{\xint:}%

253 \long\def\xint_gob_til_exclam #1!{}% This ! has catcode 12

254 \long\def\xint_gob_til_sc #1;{}%

18.6. \xint_afterfi
255 \long\def\xint_afterfi #1#2\fi {\fi #1}%

18.7. \xint_bye, \xint_Bye

Modified at 1.09 (2013/09/23). \xint_bye

Modified at 1.2i (2016/12/13). \xint_Bye for \xintDSRr and \xintRound. Also \xint_stop_after ⤸
bye.

256 \long\def\xint_bye #1\xint_bye {}%

257 \long\def\xint_Bye #1\xint_bye {}%

258 \long\def\xint_stop_afterbye #1\xint_bye { }%

18.8. \xintdothis, \xintorthat

Modified at 1.1 (2014/10/28).

Modified at 1.2 (2015/10/10). Names without underscores.

To be used this way:

\if..\xint_dothis{..}\fi

\if..\xint_dothis{..}\fi

\if..\xint_dothis{..}\fi

...more such...

\xint_orthat{...}

Ancient testing indicated it is more efficient to list first the more improbable clauses.

259 \long\def\xint_dothis #1#2\xint_orthat #3{\fi #1}% 1.1

260 \let\xint_orthat \xint_firstofone

261 \long\def\xintdothis #1#2\xintorthat #3{\fi #1}%

262 \let\xintorthat \xint_firstofone

18.9. \xint_zapspaces

Modified at 1.1 (2014/10/28). This little (quite fragile in the normal sense i.e. non robust in

the normal sense of programming lingua) utility zaps leading, intermediate, trailing, spaces

in completely expanding context (\edef, \csname...\endcsname).

Usage: \xint_zapspaces foo<space>\xint_gobble_i

Explanation: if there are leading spaces, then the first #1 will be empty, and the first #2

being undelimited will be stripped from all the remaining leading spaces, if there was more than

one to start with. Of course brace-stripping may occur. And this iterates: each time a #2 is

removed, either we then have spaces and next #1 will be empty, or we have no spaces and #1 will end

at the first space. Ultimately #2 will be \xint_gobble_i.

243

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

The \zap@spaces of LaTeX2e handles unexpectedly things such as

\zap@spaces 1 {22} 3 4 \@empty

(spaces are not all removed). This does not happen with \xint_zapspaces.

But for example \foo{aa} {bb} {cc} where \foo is a macro with three non-delimited arguments

breaks expansion, as expansion of \foo will happen with \xint_zapspaces still around, and even if

it wasn't it would have stripped the braces around {bb}, certainly breaking other things.

Despite such obvious shortcomings it is enough for our purposes. It is currently used by xint-

expr at various locations e.g. cleaning up optional argument of \xintiexpr and \xintfloatexpr;

maybe in future internal usage will drop this in favour of a more robust utility.

Modified at 1.2e (2015/11/22). \xint_zapspaces_o.

Modified at 1.2i (2016/12/13). Made \long.

ATTENTION THAT xinttools HAS AN \xintzapspaces WHICH SHOULD NOT GET CONFUSED WITH THIS ONE.

263 \long\def\xint_zapspaces #1 #2{#1#2\xint_zapspaces }% 1.1

264 \long\def\xint_zapspaces_o #1{\expandafter\xint_zapspaces#1 \xint_gobble_i}%

18.10. \odef, \oodef, \fdef
May be prefixed with \global. No parameter text.

265 \def\xintodef #1{\expandafter\def\expandafter#1\expandafter }%

266 \def\xintoodef #1{\expandafter\expandafter\expandafter\def

267 \expandafter\expandafter\expandafter#1%

268 \expandafter\expandafter\expandafter }%

269 \def\xintfdef #1#2%

270 {\expandafter\def\expandafter#1\expandafter{\romannumeral`&&@#2}}%

271 \ifdefined\odef\else\let\odef\xintodef\fi
272 \ifdefined\oodef\else\let\oodef\xintoodef\fi
273 \ifdefined\fdef\else\let\fdef\xintfdef\fi

18.11. \xintMessage, \ifxintverbose

Modified at 1.2c (2015/11/16). For use by \xintdefvar and \xintdeffunc of xintexpr.

Modified at 1.2e (2015/11/22). Uses \write128 rather than \write16 for compatibility with future

extended range of output streams, in LuaTEX in particular.

Modified at 1.3e (2019/04/05). Set the \newlinechar.

274 \edef\XINT_fourspaces{\space\space\space\space}%

275 \def\xintMessage #1#2#3{%

276 \edef\XINT_newlinechar{\the\newlinechar}%

277 \newlinechar10

278 \immediate\write128{Package #1 #2: (on line \the\inputlineno)}%

279 \immediate\write128{\XINT_fourspaces#3}%

280 \newlinechar\XINT_newlinechar\space

281 }%

282 \newif\ifxintverbose

18.12. \ifxintglobaldefs, \XINT_global

Modified at 1.3c (2018/06/17).

283 \newif\ifxintglobaldefs

284 \def\XINT_global{\ifxintglobaldefs\global\fi}%

244

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

18.13. (WIP) Expandable error message

Modified at 1.2l (2017/07/26). But really belongs to next major release beyond 1.3. Basically

copied over from l3kernel code. Using \ ! / control sequence, which must be left undefined.

\xintError: would be 6 letters more.

Modified at 1.4 (2020/01/31). Finally rather than \ ! / I use \xint/.

Modified at 1.4g (2021/05/25). Rewrote to use not an undefined control sequence but trigger "Use

of \xint/ doesn't match its definition." message.

Modified at 1.4g (2021/05/25). Things evolve fast and I switch to a third method which will ex-

ploit "Paragraph ended before \foo was complete" style error. See

https://github.com/latex3/latex3/issues/931#issuecomment-845367201

However I can not fully exploit this because xint may be used with Plain etex which does not set

\newlinechar. I can only use a poorman version with no usage of ^^J. Also xintsession could use

the ^^J, maybe I will integrate it there.

I. Explanations on 2021/05/19 and 2021/05/20 before final change

First I tried out things with undefined control sequence such as

\ an error was reported by xint ...

whose output produces a nice symmetrical display with no \, and with ... both on left and right

but this reduces drastically the available space for the actual error context. No go. But see

2021/05/20 update below!

Having replaced \xint/ by "\xint ", I next opted provisorily for "\Hit RET at ?" control se-

quence, despite it being quite longer. And then I thought about using "\ xint error", possibly

with an included ^^J in the name, or in the context.

I experimented with ^^J in the context. But the context size is much constrained, and when \e ⤸
rrorcontextlines is at its default value of 5 for etex, not -1 as done by LaTeX, having the info

shifted to the right makes it actually more visible. (however I have now updated xintsession to

0.2b which sets \errorcontextlines to 0)

So I was finally back here to square one, apart from having replaced "\xint/" by the more longish

"\ xint error", hesitating with "\xinterrupt"...

Then I had the idea to replace the undefined control sequence method by a method with a macro \fo ⤸
o defined as \def\foo.{} but used as \foo<space> for example. This gives something like this (the

first line will be otherwise if engine is run with -file-line-error):

! Use of \xint/ doesn't match its definition.

<argument> \xint/

Ooops, looks like we are missing a] (hit RET)

\xint/<space> (where the space is the unexpected token, the definition expecting rather a full

stop) makes for 7 characters to compare to \ xint error which had 12, so I gained back 5.

Back to ^^J: I had overlooked that TeX in the first part of the error message will display \mac ⤸
ro fully, so inserting ^^J in its name allows arbitrarily long expandable error messages... as

pointed out by BLF in latex3/issues#931 as I read on the morning of 2021/05/20. This is very nice

but requires to predefine control sequences for each message, and also the actual arguments #1,

#2, ... values can appear only in the context.

And the situation with ^^J is somewhat complicated:

xintsession sets the \newlinechar to 10, but this is not the case with bare usage of xintexpr

with etex. And this matters. To discuss ^^J we have to separate two locations:

- it appears in the control sequence name,

- or in the context (which itself has two parts)

1) When in the context, what happens with ^^J is independent of the setting of \newlinechar, and

with TeXLive pdflatex the ^^J will induce a linebreak, but with xelatex it must be used with option

-8bit.

2) When in the control sequence name the behaviour in log/terminal of ^^J is influenced by the

setting of \newlinechar. Although with pdflatex it will always induce a linebreak, the actual

245

https://github.com/latex3/latex3/issues/931#issuecomment-845367201
https://ctan.org/pkg/xintsession
https://ctan.org/pkg/xintsession
https://ctan.org/pkg/xintsession

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

count of characters where TeX will forcefully break is influenced by whether ^^J is or not \newlin ⤸
echar. And with xelatex if it is \newlinechar, it does not depend then if -8bit or not, but if not

\newlinechar then it does and TeX forceful breaks also change as for pdflatex.

So, the control sequence name trick can be used to obtain arbitrarily long messages, but the

\newlinechar must be set.

And in the context, we can try to insert some ^^J but this would need with xetex the -8bit option,

and anyhow the context size is limited, and there is apparently no trick to get it larger.

So, in view of all the above I decided not to use ^^J (rather &&J here) at all, whether here in

the control sequence or the context or inserted in \XINT_signalcondition in the context!

I also have a problem with usage from bnumexpr or polexpr for example, they would need their own

to avoid perhaps displaying \xint/ or analogous.

II. Finally I modified again the method (completely, and no more need for funny catcode 7 space

as delimiter) as this allows a longer context message, starting at start of line, and which obeys

^^J if \newlinechar is set to it. It also allows to incorporate non-limited generic explanations

as a postfix, with linebreaks if \newlinechar is known.

But as xintexpr can be used with Plain+etex which does not set the \newlinechar, I can't use ^^J

out of thee box. I can in xintsession. What I decided finally is to make a conditional definition

here.

In both cases I include the "hit RET" (how rather "hit <return>") in the control sequence name

serving to both provide extra information and trigger the error from being defined short and find-

ing a \par.

The maximal size was increased from 48 characters (method with \xint/ being badly delimited), to

now 55 characters (using "! xint error:<^^J or space>" as prefix to the message). Longer messages

are truncated at 56 characters with an appended "\ETC.".

As it is late on this 2021/05/20, and in order to not have to change all usages, I keep \XINT_ ⤸
signalcondition (in xintcore) as a one argument macro for time being, so will not include a more

specific module name.

The \par token has a special role here, and can't be (I)nserted without damage, but who would

want to insert it in an expandable computation anyhow... and I don't need it in my custom error

messages for sure.

On 2021/05/21 I add a test about \newlinechar at time of package loading, and make two distinct

definitions: one using ^^J in the control sequence, the other not using it.

The -file-line-error toggle makes it impossible to control if the line-break on first line will

match next lines. In the ^^J branch I insert "| " (no, finally " " with two spaces) at start

of continuation lines. Also I preferred to ensure a good-looking first line break for the case

it starts with a "! Paragraph ended ..." because a priori error messages will be read if -file-

line-error was emitted only a fortiori (this toggle suggests some IDE launched TeX and probably

-interaction=nonstopmode).

I will perhaps make another definition in xintsession (it currently loads xintexpr prior to

having set the \newlinechar, so the no ^^J definition will be used, if nothing else is modified

there).

With some hesitation I do not insert a ^^J after "! xint error:", as Emacs/AucTeX will display

only the first line prominently and then the rest (which is in file:line:error mode) in one block

under "--- TeX said ---". I use the ^^J only in the generic helper message embedded in the control

sequence. The cases with or without \newlinechar being 10 diverge a bit, as in the latter case

I had to ensure acceptable linebreaks at 79 chars, and I did that first and then had spent enough

time on the matter not to add more to backport the latest ^^J style message.

Modified at 1.4m (2022/06/10). Shorten the error message. I am always too verbose initially.

Modified at 1.4n (2025/09/05). Let not use explicit \par token as delimiter, but implicit one

from empty line. This is for compatibility with OpTEX. Indeed, I observed that with OpTEX, {\fo ⤸
o\par} wuth \foo being short reports an extra } rather than saying ``Paragraph ended before \foo

was complete.''.

246

https://ctan.org/pkg/xintsession
https://ctan.org/pkg/xintsession

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

285 \ifnum\newlinechar=10

286 \expandafter\def\csname

287 xint<...> is done, but will resume:&&J \space

288 hit <return> at the ? prompt to try fixing the error above&&J \space

289 which has been encountered before expansion\endcsname

290 #1\xint:{}%

291 \def\XINT_expandableerror#1{%

292 \def\XINT_expandableerror##1{%

293 \expandafter

294 \XINT_expandableerrorcontinue

295 #1! xint error: ##1%

296

297 }}\expandafter\XINT_expandableerror\csname

298 xint<...> is done, but will resume:&&J \space

299 hit <return> at the ? prompt to try fixing the error above&&J \space

300 which has been encountered before expansion\endcsname

301 \else

302 \expandafter\def\csname

303 xint<...> is done, but will resume: hit <return> at \space

304 the ? prompt to try fixing the error encountered before expansion\endcsname

305 #1\xint:{}%

306 \def\XINT_expandableerror#1{%

307 \def\XINT_expandableerror##1{%

308 \expandafter

309 \XINT_expandableerrorcontinue

310 #1! xint error: ##1%

311

312 }}\expandafter\XINT_expandableerror\csname

313 xint<...> is done, but will resume: hit <return> at \space

314 the ? prompt to try fixing the error encountered before expansion\endcsname

315 \fi

316 \def\XINT_expandableerrorcontinue#1%

317

318 {#1}%

18.14. \xint_noxpd (for contex-mkxl compatibility)

Added at 1.4n (2025/09/05).
The LATEX3 code (in l3names.dtx) uses ConTEXt's \normalunexpanded and \normalexpanded which ap-

pear to be available both in Mark II and Mark IV. But I will not do any testing with earlier context,

so here I shall assume the \expanded behaves as expected and I can use \notexpanded for \unexpand ⤸
ed. This is abstracted into an alias \xint_noxpd.

I don't know if there is mode of running context where the \errhelp tokens will be shown (trying c ⤸
ontext --mkII was not conclusive; by the way \errmessage in e-TEX adds a full stop which is missing

with context).

About the \let primitive I am not sure it behaves fully as in other engines.

Note that this uses \xintMessage in case of old ConTEXt so we had to have it defined first.

319 \let\xint_noxpd\unexpanded
320 \ifdefined\contextversion

321 \let\xint_noxpd\notexpanded

322 \ifdefined\notexpanded

323 \else

247

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

324 \xintMessage{xintkernel}{Error}{This ConTeXt appears to be too old.}

325 \errhelp{xint only supports the ConTeXt-LMTX as of 2025/09/05.}%

326 \errmessage{The \noexpand\notexpanded primitive does not exist.}%

327 \fi

328 \fi

18.15. \xintstrcmp

Added at 1.4m (2022/06/10) [on 2022/06/05]. For the LuaTEX engine the code is copied over from l3 ⤸
names.dtx. I also looked at Heiko Oberdiek's pdftexcmds.sty and pdftexcmds.lua, but I removed

\luaescapestring and used token.scan_string() as seen in l3names.dtx (and I did try to inform

myself about this in the LuaTEX manual, with limited success). I am not sure about the syntax

below with the local's. Should I use \directlua0? Testing was minimal. Memo: even with pdfte ⤸
x's \pdfstrcmp, braces around the arguments are mandatory.

329 \ifdefined\strcmp\let\xintstrcmp\strcmp
330 \else\ifdefined\pdfstrcmp\let\xintstrcmp\pdfstrcmp

331 \else\ifdefined\directlua\directlua{%

332 xintkernel = xintkernel or {}

333 local minus_tok = token.new(string.byte'-', 12)

334 local zero_tok = token.new(string.byte'0', 12)

335 local one_tok = token.new(string.byte'1', 12)

336 function xintkernel.strcmp()

337 local A = token.scan_string()

338 local B = token.scan_string()

339 if A < B then

340 tex.write(minus_tok, one_tok)

341 else

342 tex.write(A == B and zero_tok or one_tok)

343 end

344 end

345 }\def\xintstrcmp{%

346 \directlua{xintkernel.strcmp()}%

347 }%

348 \else

349 \xintMessage{xintkernel}{Error}{Could not set-up \string\xintstrcmp.}%

350 \errhelp{What kind of format are you using? Perhaps write the author? Bye now}%

351 \errmessage{Sorry, could not find or define string comparison primitive}\fi\fi\fi

18.16. \xintresettimer, \xintelapsedtime, \xinttheseconds

Added at 1.4n (2025/09/05). If \resettimer is defined, the code assumes \elapsedtime is, too.

I completely forgot at release time to document these engine-agnostic utilities in the manual.

They were originally in the xint.dtx preamble, to allow building the documentation also with the

Unicode engines. They are used only once there, for the example with \xintUniformDeviate. Also

in the preamble is the needed aliasing of \pdfsetrandomseed into \setrandomseed for the Unicode

engines, but I completely forgot to transfer this too here and provide \xintsetrandomseed, which

actually was more important because the package provides already utilities related with random-

ness.

Perhaps I should for LuaTEX copy the l3kernel code (here the code was picked from some tex.sx

answer and was in my files for years) but I am not Lua-proficient enough to do this confidently...

probably their // 1 and math.tointeger() is more efficient than the math.floor() and there must

be a reason why they use gettimeofday(), while os.clock() is only used to set the ``epoch''.

248

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

I have been using for years the underlying syntax trick here for \xinttheseconds, and I usually

never bother actually removing the catcode 12 pt, but well let's do it here.

I hesitate whether with LuaTEX I should avoid the scaled seconds intermediate in favor of the

raw os.clock()-basetime data but I would have to waste time seeing what happens with tex.write()

then. And it would not help really in comparing with PDFTEX or XeTEX.

Modified at 1.4o (2025/09/06).
xinttimer replaces in the Lua code xintelapsedtimer, which was silly name used when I adopted

in a haste at 1.4n while improving the user manual on \xintUniformDeviate.

352 \ifdefined\resettimer

353 \let\xintresettimer\resettimer \let\xintelapsedtime\elapsedtime
354 \else

355 \ifdefined\pdfresettimer

356 \let\xintresettimer\pdfresettimer\let\xintelapsedtime\pdfelapsedtime

357 \else

358 \ifdefined\directlua

359 \directlua{xinttimer_basetime=0}%

360 \def\xintresettimer{\directlua{xinttimer_basetime = os.clock()}}%

361 \def\xintelapsedtime{\numexpr

362 \directlua{tex.print(math.floor((os.clock()-xinttimer_basetime)*65536+0.5))}%

363 \relax}%

364 \fi\fi\fi

365 \def\xintstrippt{\expandafter\XINT_strippt\the}%

366 \expanded{\xint_noxpd{\def\XINT_strippt#1}\detokenize{pt}}{#1}%

367 \def\xinttheseconds{\xintstrippt\dimexpr\xintelapsedtime sp\relax}%

18.17. \xintReverseOrder

Modified at 1.0 (2013/03/28). Does not expand its argument. The whole of xint codebase now con-

tains only two calls to \XINT_rord_main (in xintgcd).

Attention: removes brace pairs (and swallows spaces).

For digit tokens a faster reverse macro is provided by (1.2) \xintReverseDigits in xint.

For comma separated items, 1.2g has \xintCSVReverse in xinttools.

368 \def\xintReverseOrder {\romannumeral0\xintreverseorder }%

369 \long\def\xintreverseorder #1%

370 {%

371 \XINT_rord_main {}#1%

372 \xint:

373 \xint_bye\xint_bye\xint_bye\xint_bye

374 \xint_bye\xint_bye\xint_bye\xint_bye

375 \xint:

376 }%

377 \long\def\XINT_rord_main #1#2#3#4#5#6#7#8#9%

378 {%

379 \xint_bye #9\XINT_rord_cleanup\xint_bye

380 \XINT_rord_main {#9#8#7#6#5#4#3#2#1}%

381 }%

382 \def\XINT_rord_cleanup #1{%

383 \long\def\XINT_rord_cleanup\xint_bye\XINT_rord_main ##1##2\xint:

384 {%

385 \expandafter#1\xint_gob_til_xint: ##1%

386 }}\XINT_rord_cleanup { }%

249

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

18.18. \xintLength

Modified at 1.0 (2013/03/28). Does not expand its argument. See \xintNthElt{0} from xinttools

which f-expands its argument.

Modified at 1.2g (2016/03/19). Added \xintCSVLength to xinttools.

Modified at 1.2i (2016/12/13). Rewrote this venerable macro. New code about 40% faster across

all lengths. Syntax with \romannumeral0 adds some slight (negligible) overhead; it is done to

fit some general principles of structure of the xint package macros but maybe at some point I

should drop it. And in fact it is often called directly via the \numexpr access point. (bad

coding...)

Remark: the argument may contain \par tokens. But generally speaking most other macros of the

xint bundle are not declared \long. As \xintLength produces a numeric quantity it is conceivable

that it could serve in the input of some of the xint macros. For example something such as \xinte ⤸
val{\xintLength{\par\par}^3} or \xintiiMul{\xintLength{\par\par\par}}{17}. They both fail. I

have known this issue for many years. It is only needed to make long those macros which grab the

argument and f-expand it. After expansion, of course no \par tokens is admissible as numerical

input. Still this is quite some work due to size of the codebase. Waiting for a real-life bug

report... (LATEX3 people have fixed that on their side by making all declarations \long per default,

and this may also perhaps increase slightly the efficiency, not checked).

387 \def\xintLength {\romannumeral0\xintlength }%

388 \def\xintlength #1{%

389 \long\def\xintlength ##1%

390 {%

391 \expandafter#1\the\numexpr\XINT_length_loop

392 ##1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

393 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

394 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

395 \relax

396 }}\xintlength{ }%

397 \long\def\XINT_length_loop #1#2#3#4#5#6#7#8#9%

398 {%

399 \xint_gob_til_xint: #9\XINT_length_finish_a\xint:

400 \xint_c_ix+\XINT_length_loop

401 }%

402 \def\XINT_length_finish_a\xint:\xint_c_ix+\XINT_length_loop

403 #1#2#3#4#5#6#7#8#9%

404 {%

405 #9\xint_bye

406 }%

18.19. \xintLastItem

Modified at 1.2i (2016/12/13). One level of braces removed in output. Output empty if input

empty. Attention! This means that an empty input or an input ending with a empty brace pair

both give same output.

The \xint: token must not be among items. \xintFirstItem added at 1.4 for usage in xintexpr. It

must contain neither \xint: nor \xint_bye in its first item.

407 \def\xintLastItem {\romannumeral0\xintlastitem }%

408 \long\def\xintlastitem #1%

409 {%

410 \XINT_last_loop {}.#1%

411 {\xint:\XINT_last_loop_enda}{\xint:\XINT_last_loop_endb}%

250

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

412 {\xint:\XINT_last_loop_endc}{\xint:\XINT_last_loop_endd}%

413 {\xint:\XINT_last_loop_ende}{\xint:\XINT_last_loop_endf}%

414 {\xint:\XINT_last_loop_endg}{\xint:\XINT_last_loop_endh}\xint_bye

415 }%

416 \long\def\XINT_last_loop #1.#2#3#4#5#6#7#8#9%

417 {%

418 \xint_gob_til_xint: #9%

419 {#8}{#7}{#6}{#5}{#4}{#3}{#2}{#1}\xint:

420 \XINT_last_loop {#9}.%

421 }%

422 \long\def\XINT_last_loop_enda #1#2\xint_bye{ #1}%

423 \long\def\XINT_last_loop_endb #1#2#3\xint_bye{ #2}%

424 \long\def\XINT_last_loop_endc #1#2#3#4\xint_bye{ #3}%

425 \long\def\XINT_last_loop_endd #1#2#3#4#5\xint_bye{ #4}%

426 \long\def\XINT_last_loop_ende #1#2#3#4#5#6\xint_bye{ #5}%

427 \long\def\XINT_last_loop_endf #1#2#3#4#5#6#7\xint_bye{ #6}%

428 \long\def\XINT_last_loop_endg #1#2#3#4#5#6#7#8\xint_bye{ #7}%

429 \long\def\XINT_last_loop_endh #1#2#3#4#5#6#7#8#9\xint_bye{ #8}%

18.20. \xintFirstItem

1.4. There must be neither \xint: nor \xint_bye in its first item.

430 \def\xintFirstItem {\romannumeral0\xintfirstitem }%

431 \long\def\xintfirstitem #1{\XINT_firstitem #1{\xint:\XINT_firstitem_end}\xint_bye}%

432 \long\def\XINT_firstitem #1#2\xint_bye{\xint_gob_til_xint: #1\xint:\space #1}%

433 \def\XINT_firstitem_end\xint:{ }%

18.21. \xintLastOne

As xintexpr 1.4 uses {c1}{c2}....{cN} storage when gathering comma separated values we need to not

handle identically an empty list and a list with an empty item (as the above allows hierarchical

structures). But \xintLastItem removed one level of brace pair so it is anadequate for the last()

function.

By the way it is logical to interpret «item» as meaning {cj} inclusive of the braces; but legacy

xint user manual was not written in this spirit. And thus \xintLastItem did brace stripping, thus

we need another name for maintaining backwards compatibility (although the cardinality of users

is small).

The \xint: token must not be found (visible) among the item contents.

434 \def\xintLastOne {\romannumeral0\xintlastone }%

435 \long\def\xintlastone #1%

436 {%

437 \XINT_lastone_loop {}.#1%

438 {\xint:\XINT_lastone_loop_enda}{\xint:\XINT_lastone_loop_endb}%

439 {\xint:\XINT_lastone_loop_endc}{\xint:\XINT_lastone_loop_endd}%

440 {\xint:\XINT_lastone_loop_ende}{\xint:\XINT_lastone_loop_endf}%

441 {\xint:\XINT_lastone_loop_endg}{\xint:\XINT_lastone_loop_endh}\xint_bye

442 }%

443 \long\def\XINT_lastone_loop #1.#2#3#4#5#6#7#8#9%

444 {%

445 \xint_gob_til_xint: #9%

446 {#8}{#7}{#6}{#5}{#4}{#3}{#2}{#1}\xint:

447 \XINT_lastone_loop {{#9}}.%

251

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

448 }%

449 \long\def\XINT_lastone_loop_enda #1#2\xint_bye{{#1}}%

450 \long\def\XINT_lastone_loop_endb #1#2#3\xint_bye{{#2}}%

451 \long\def\XINT_lastone_loop_endc #1#2#3#4\xint_bye{{#3}}%

452 \long\def\XINT_lastone_loop_endd #1#2#3#4#5\xint_bye{{#4}}%

453 \long\def\XINT_lastone_loop_ende #1#2#3#4#5#6\xint_bye{{#5}}%

454 \long\def\XINT_lastone_loop_endf #1#2#3#4#5#6#7\xint_bye{{#6}}%

455 \long\def\XINT_lastone_loop_endg #1#2#3#4#5#6#7#8\xint_bye{{#7}}%

456 \long\def\XINT_lastone_loop_endh #1#2#3#4#5#6#7#8#9\xint_bye{ #8}%

18.22. \xintFirstOne

For xintexpr 1.4 too. Jan 3, 2020.

This is an experimental macro, don't use it. If input is nil (empty set) it expands to nil, if

not it fetches first item and braces it. Fetching will have stripped one brace pair if item was

braced to start with, which is the case in non-symbolic xintexpr data objects.

I have not given much thought to this (make it shorter, allow all tokens, (we could first test

if empty via combination with \detokenize), etc...) as I need to get xint 1.4 out soon. So in

particular attention that the macro assumes the \xint: token is absent from first item of input.

457 \def\xintFirstOne {\romannumeral0\xintfirstone }%

458 \long\def\xintfirstone #1{\XINT_firstone #1{\xint:\XINT_firstone_empty}\xint:}%

459 \long\def\XINT_firstone #1#2\xint:{\xint_gob_til_xint: #1\xint:{#1}}%

460 \def\XINT_firstone_empty\xint:#1{ }%

18.23. \xintLengthUpTo

Modified at 1.2i (2016/12/13). For use by \xintKeep and \xintTrim (xinttools). The argument N

must be non-negative.

\xintLengthUpTo{N}{List} produces -0 if length(List)>N, else it returns N-length(List). Hence

subtracting it from N always computes min(N,length(List)).

Modified at 1.2j (2016/12/22). Changed ending and interface to core loop.

461 \def\xintLengthUpTo {\romannumeral0\xintlengthupto}%

462 \long\def\xintlengthupto #1#2%

463 {%

464 \expandafter\XINT_lengthupto_loop

465 \the\numexpr#1.#2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

466 \xint_c_vii\xint_c_vi\xint_c_v\xint_c_iv

467 \xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye.%

468 }%

469 \def\XINT_lengthupto_loop_a #1%

470 {%

471 \xint_UDsignfork

472 #1\XINT_lengthupto_gt

473 -\XINT_lengthupto_loop

474 \krof #1%

475 }%

476 \long\def\XINT_lengthupto_gt #1\xint_bye.{-0}%

477 \long\def\XINT_lengthupto_loop #1.#2#3#4#5#6#7#8#9%

478 {%

479 \xint_gob_til_xint: #9\XINT_lengthupto_finish_a\xint:%

480 \expandafter\XINT_lengthupto_loop_a\the\numexpr #1-\xint_c_viii.%

481 }%

252

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

482 \def\XINT_lengthupto_finish_a\xint:\expandafter\XINT_lengthupto_loop_a

483 \the\numexpr #1-\xint_c_viii.#2#3#4#5#6#7#8#9%

484 {%

485 \expandafter\XINT_lengthupto_finish_b\the\numexpr #1-#9\xint_bye

486 }%

487 \def\XINT_lengthupto_finish_b #1#2.%

488 {%

489 \xint_UDsignfork

490 #1{-0}%

491 -{ #1#2}%

492 \krof

493 }%

18.24. \xintreplicate, \xintReplicate

Modified at 1.2i (2016/12/13). This is cloned from LaTeX3's \prg_replicate:nn, see Joseph's post

at

http://tex.stackexchange.com/questions/16189/repeat-command-n-times

I posted there an alternative not using the chained \csname's but it is a bit less efficient (ex-

cept perhaps for thousands of repetitions). The code in Joseph's post does abs(#1) replications

when input #1 is negative and then activates an error triggering macro; here we simply do noth-

ing when #1 is negative.

Usage: \romannumeral\xintreplicate{N}{stuff}

When N is already explicit digits (even N=0, but non-negative) one can call the macro as

\romannumeral\XINT_rep N\endcsname {foo}

to skip the \numexpr.

Modified at 1.4 (2020/01/31). Added \xintReplicate ! The reason I did not before is that the

prevailing habits in xint source code was to trigger with \romannumeral0 not \romannumeral which

is the lowercased named macros. Thus adding the camelcase one creates a couple \xintReplicate ⤸
/\xintreplicate not obeying the general mold.

494 \def\xintReplicate{\romannumeral\xintreplicate}%
495 \def\xintreplicate#1%
496 {\expandafter\XINT_replicate\the\numexpr#1\endcsname}%

497 \def\XINT_replicate #1{\xint_UDsignfork

498 #1\XINT_rep_neg

499 -\XINT_rep

500 \krof #1}%

501 \long\def\XINT_rep_neg #1\endcsname #2{\xint_c_}%

502 \def\XINT_rep #1{\csname XINT_rep_f#1\XINT_rep_a}%

503 \def\XINT_rep_a #1{\csname XINT_rep_#1\XINT_rep_a}%

504 \def\XINT_rep_\XINT_rep_a{\endcsname}%

505 \long\expandafter\def\csname XINT_rep_0\endcsname #1%

506 {\endcsname{#1#1#1#1#1#1#1#1#1#1}}%

507 \long\expandafter\def\csname XINT_rep_1\endcsname #1%

508 {\endcsname{#1#1#1#1#1#1#1#1#1#1}#1}%

509 \long\expandafter\def\csname XINT_rep_2\endcsname #1%

510 {\endcsname{#1#1#1#1#1#1#1#1#1#1}#1#1}%

511 \long\expandafter\def\csname XINT_rep_3\endcsname #1%

512 {\endcsname{#1#1#1#1#1#1#1#1#1#1}#1#1#1}%

513 \long\expandafter\def\csname XINT_rep_4\endcsname #1%

514 {\endcsname{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1}%

515 \long\expandafter\def\csname XINT_rep_5\endcsname #1%

253

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

516 {\endcsname{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1}%

517 \long\expandafter\def\csname XINT_rep_6\endcsname #1%

518 {\endcsname{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1}%

519 \long\expandafter\def\csname XINT_rep_7\endcsname #1%

520 {\endcsname{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1#1}%

521 \long\expandafter\def\csname XINT_rep_8\endcsname #1%

522 {\endcsname{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1#1#1}%

523 \long\expandafter\def\csname XINT_rep_9\endcsname #1%

524 {\endcsname{#1#1#1#1#1#1#1#1#1#1}#1#1#1#1#1#1#1#1#1}%

525 \long\expandafter\def\csname XINT_rep_f0\endcsname #1%

526 {\xint_c_}%

527 \long\expandafter\def\csname XINT_rep_f1\endcsname #1%

528 {\xint_c_ #1}%

529 \long\expandafter\def\csname XINT_rep_f2\endcsname #1%

530 {\xint_c_ #1#1}%

531 \long\expandafter\def\csname XINT_rep_f3\endcsname #1%

532 {\xint_c_ #1#1#1}%

533 \long\expandafter\def\csname XINT_rep_f4\endcsname #1%

534 {\xint_c_ #1#1#1#1}%

535 \long\expandafter\def\csname XINT_rep_f5\endcsname #1%

536 {\xint_c_ #1#1#1#1#1}%

537 \long\expandafter\def\csname XINT_rep_f6\endcsname #1%

538 {\xint_c_ #1#1#1#1#1#1}%

539 \long\expandafter\def\csname XINT_rep_f7\endcsname #1%

540 {\xint_c_ #1#1#1#1#1#1#1}%

541 \long\expandafter\def\csname XINT_rep_f8\endcsname #1%

542 {\xint_c_ #1#1#1#1#1#1#1#1}%

543 \long\expandafter\def\csname XINT_rep_f9\endcsname #1%

544 {\xint_c_ #1#1#1#1#1#1#1#1#1}%

18.25. \xintgobble, \xintGobble

Modified at 1.2i (2016/12/13). I hesitated about allowing as many as 9^6-1=531440 tokens to gob-

ble, but 9^5-1=59058 is too low for playing with long decimal expansions.

Usage: \romannumeral\xintgobble{N}...

Modified at 1.4 (2020/01/31). Added \xintGobble.

545 \def\xintGobble{\romannumeral\xintgobble}%
546 \def\xintgobble #1%

547 {\csname xint_c_\expandafter\XINT_gobble_a\the\numexpr#1.0}%

548 \def\XINT_gobble #1.{\csname xint_c_\XINT_gobble_a #1.0}%

549 \def\XINT_gobble_a #1{\xint_gob_til_zero#1\XINT_gobble_d0\XINT_gobble_b#1}%

550 \def\XINT_gobble_b #1.#2%

551 {\expandafter\XINT_gobble_c

552 \the\numexpr (#1+\xint_c_v)/\xint_c_ix-\xint_c_i\expandafter.%

553 \the\numexpr #2+\xint_c_i.#1.}%

554 \def\XINT_gobble_c #1.#2.#3.%

555 {\csname XINT_g#2\the\numexpr#3-\xint_c_ix*#1\relax\XINT_gobble_a #1.#2}%

556 \def\XINT_gobble_d0\XINT_gobble_b0.#1{\endcsname}%

557 \expandafter\let\csname XINT_g10\endcsname\endcsname

558 \long\expandafter\def\csname XINT_g11\endcsname#1{\endcsname}%

559 \long\expandafter\def\csname XINT_g12\endcsname#1#2{\endcsname}%

560 \long\expandafter\def\csname XINT_g13\endcsname#1#2#3{\endcsname}%

254

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

561 \long\expandafter\def\csname XINT_g14\endcsname#1#2#3#4{\endcsname}%

562 \long\expandafter\def\csname XINT_g15\endcsname#1#2#3#4#5{\endcsname}%

563 \long\expandafter\def\csname XINT_g16\endcsname#1#2#3#4#5#6{\endcsname}%

564 \long\expandafter\def\csname XINT_g17\endcsname#1#2#3#4#5#6#7{\endcsname}%

565 \long\expandafter\def\csname XINT_g18\endcsname#1#2#3#4#5#6#7#8{\endcsname}%

566 \expandafter\let\csname XINT_g20\endcsname\endcsname

567 \long\expandafter\def\csname XINT_g21\endcsname #1#2#3#4#5#6#7#8#9%

568 {\endcsname}%

569 \long\expandafter\edef\csname XINT_g22\endcsname #1#2#3#4#5#6#7#8#9%

570 {\expandafter\noexpand\csname XINT_g21\endcsname}%

571 \long\expandafter\edef\csname XINT_g23\endcsname #1#2#3#4#5#6#7#8#9%

572 {\expandafter\noexpand\csname XINT_g22\endcsname}%

573 \long\expandafter\edef\csname XINT_g24\endcsname #1#2#3#4#5#6#7#8#9%

574 {\expandafter\noexpand\csname XINT_g23\endcsname}%

575 \long\expandafter\edef\csname XINT_g25\endcsname #1#2#3#4#5#6#7#8#9%

576 {\expandafter\noexpand\csname XINT_g24\endcsname}%

577 \long\expandafter\edef\csname XINT_g26\endcsname #1#2#3#4#5#6#7#8#9%

578 {\expandafter\noexpand\csname XINT_g25\endcsname}%

579 \long\expandafter\edef\csname XINT_g27\endcsname #1#2#3#4#5#6#7#8#9%

580 {\expandafter\noexpand\csname XINT_g26\endcsname}%

581 \long\expandafter\edef\csname XINT_g28\endcsname #1#2#3#4#5#6#7#8#9%

582 {\expandafter\noexpand\csname XINT_g27\endcsname}%

583 \expandafter\let\csname XINT_g30\endcsname\endcsname

584 \long\expandafter\edef\csname XINT_g31\endcsname #1#2#3#4#5#6#7#8#9%

585 {\expandafter\noexpand\csname XINT_g28\endcsname}%

586 \long\expandafter\edef\csname XINT_g32\endcsname #1#2#3#4#5#6#7#8#9%

587 {\noexpand\csname XINT_g31\expandafter\noexpand\csname XINT_g28\endcsname}%

588 \long\expandafter\edef\csname XINT_g33\endcsname #1#2#3#4#5#6#7#8#9%

589 {\noexpand\csname XINT_g32\expandafter\noexpand\csname XINT_g28\endcsname}%

590 \long\expandafter\edef\csname XINT_g34\endcsname #1#2#3#4#5#6#7#8#9%

591 {\noexpand\csname XINT_g33\expandafter\noexpand\csname XINT_g28\endcsname}%

592 \long\expandafter\edef\csname XINT_g35\endcsname #1#2#3#4#5#6#7#8#9%

593 {\noexpand\csname XINT_g34\expandafter\noexpand\csname XINT_g28\endcsname}%

594 \long\expandafter\edef\csname XINT_g36\endcsname #1#2#3#4#5#6#7#8#9%

595 {\noexpand\csname XINT_g35\expandafter\noexpand\csname XINT_g28\endcsname}%

596 \long\expandafter\edef\csname XINT_g37\endcsname #1#2#3#4#5#6#7#8#9%

597 {\noexpand\csname XINT_g36\expandafter\noexpand\csname XINT_g28\endcsname}%

598 \long\expandafter\edef\csname XINT_g38\endcsname #1#2#3#4#5#6#7#8#9%

599 {\noexpand\csname XINT_g37\expandafter\noexpand\csname XINT_g28\endcsname}%

600 \expandafter\let\csname XINT_g40\endcsname\endcsname

601 \expandafter\edef\csname XINT_g41\endcsname

602 {\noexpand\csname XINT_g38\expandafter\noexpand\csname XINT_g31\endcsname}%

603 \expandafter\edef\csname XINT_g42\endcsname

604 {\noexpand\csname XINT_g41\expandafter\noexpand\csname XINT_g41\endcsname}%

605 \expandafter\edef\csname XINT_g43\endcsname

606 {\noexpand\csname XINT_g42\expandafter\noexpand\csname XINT_g41\endcsname}%

607 \expandafter\edef\csname XINT_g44\endcsname

608 {\noexpand\csname XINT_g43\expandafter\noexpand\csname XINT_g41\endcsname}%

609 \expandafter\edef\csname XINT_g45\endcsname

610 {\noexpand\csname XINT_g44\expandafter\noexpand\csname XINT_g41\endcsname}%

611 \expandafter\edef\csname XINT_g46\endcsname

612 {\noexpand\csname XINT_g45\expandafter\noexpand\csname XINT_g41\endcsname}%

255

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

613 \expandafter\edef\csname XINT_g47\endcsname

614 {\noexpand\csname XINT_g46\expandafter\noexpand\csname XINT_g41\endcsname}%

615 \expandafter\edef\csname XINT_g48\endcsname

616 {\noexpand\csname XINT_g47\expandafter\noexpand\csname XINT_g41\endcsname}%

617 \expandafter\let\csname XINT_g50\endcsname\endcsname

618 \expandafter\edef\csname XINT_g51\endcsname

619 {\noexpand\csname XINT_g48\expandafter\noexpand\csname XINT_g41\endcsname}%

620 \expandafter\edef\csname XINT_g52\endcsname

621 {\noexpand\csname XINT_g51\expandafter\noexpand\csname XINT_g51\endcsname}%

622 \expandafter\edef\csname XINT_g53\endcsname

623 {\noexpand\csname XINT_g52\expandafter\noexpand\csname XINT_g51\endcsname}%

624 \expandafter\edef\csname XINT_g54\endcsname

625 {\noexpand\csname XINT_g53\expandafter\noexpand\csname XINT_g51\endcsname}%

626 \expandafter\edef\csname XINT_g55\endcsname

627 {\noexpand\csname XINT_g54\expandafter\noexpand\csname XINT_g51\endcsname}%

628 \expandafter\edef\csname XINT_g56\endcsname

629 {\noexpand\csname XINT_g55\expandafter\noexpand\csname XINT_g51\endcsname}%

630 \expandafter\edef\csname XINT_g57\endcsname

631 {\noexpand\csname XINT_g56\expandafter\noexpand\csname XINT_g51\endcsname}%

632 \expandafter\edef\csname XINT_g58\endcsname

633 {\noexpand\csname XINT_g57\expandafter\noexpand\csname XINT_g51\endcsname}%

634 \expandafter\let\csname XINT_g60\endcsname\endcsname

635 \expandafter\edef\csname XINT_g61\endcsname

636 {\noexpand\csname XINT_g58\expandafter\noexpand\csname XINT_g51\endcsname}%

637 \expandafter\edef\csname XINT_g62\endcsname

638 {\noexpand\csname XINT_g61\expandafter\noexpand\csname XINT_g61\endcsname}%

639 \expandafter\edef\csname XINT_g63\endcsname

640 {\noexpand\csname XINT_g62\expandafter\noexpand\csname XINT_g61\endcsname}%

641 \expandafter\edef\csname XINT_g64\endcsname

642 {\noexpand\csname XINT_g63\expandafter\noexpand\csname XINT_g61\endcsname}%

643 \expandafter\edef\csname XINT_g65\endcsname

644 {\noexpand\csname XINT_g64\expandafter\noexpand\csname XINT_g61\endcsname}%

645 \expandafter\edef\csname XINT_g66\endcsname

646 {\noexpand\csname XINT_g65\expandafter\noexpand\csname XINT_g61\endcsname}%

647 \expandafter\edef\csname XINT_g67\endcsname

648 {\noexpand\csname XINT_g66\expandafter\noexpand\csname XINT_g61\endcsname}%

649 \expandafter\edef\csname XINT_g68\endcsname

650 {\noexpand\csname XINT_g67\expandafter\noexpand\csname XINT_g61\endcsname}%

18.26. Random number generation

Added at 1.3b (2018/05/18).
We provide a more random version of the (PDF)TEX \pdfuniformdeviate. I discusses the worries

with the engine primitive with Bruno Le Floch in May 2018. Regarding \pdfuniformdeviate x:

1. with x=2^{29} or x=2^{30} the engine primitive produces only even numbers,

2. with x=3*2^{26} the integers produced by the RNG when taken modulo three obey the proportion

1:1:2, not 1:1:1,

3. with x=3*2^{14} there is analogous although weaker non-uniformity of the random integers when

taken modulo 3,

256

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

4. generally speaking pure powers of two should generate uniform random integers, but when the

range is divisible by large powers of two, the non-uniformity may be amplified in surprising

ways by modulo operations.

Moreover, two seeds sharing the same low k bits generate sequences of 28-bits integers which are

one-to-one identical modulo 2^k!

In order to mitigate the issues commented upon in the user manual, \xintUniformDeviate currently

only uses the seven high bits from the underlying random stream, using multiple calls to \pdfunif ⤸
ormdeviate 128. From the Birthday Effect, after about 2^{11} seeds one will likely pick a new one

sharing its 22 low bits with an earlier one.

1. but as the final random integer is obtained by additional operations involving the range x

(currently a modulo operation), for odd ranges it is more difficult for bit correlations to

be seen,

2. anyway as they are only 2^{28} seeds in total, after only 2^{14} seeds it is likely to encounter

one already explored, and then random integers are identical, however complicated the RNG's

raw output is malaxed, and whatever the target range x. And 2^{14} is only eight times as

large as 2^{11}.

It would be nice if the engine provided some user interface for letting its RNG execute a given

number of iterations without the overhead of replicated executions of \pdfuniformdeviate. This

could help gain entropy and would reduce correlations across series from distinct seeds.

Modified at 1.4n (2025/09/05). Print a warning immediately if no uniformdeviate is available.

18.26.1. \xint_texuniformdeviate

651 \ifdefined\pdfuniformdeviate \let\xint_texuniformdeviate\pdfuniformdeviate\fi
652 \ifdefined\uniformdeviate \let\xint_texuniformdeviate\uniformdeviate \fi

653 \ifx\xint_texuniformdeviate\relax\let\xint_texuniformdeviate\xint_undefined\fi

18.26.2. \xint_texuniformdeviate_dgts

Added at 1.4n (2025/09/05). Needed for compatibility with ConTEXt.

One finds a macro \randomnumber (/usr/local/texlive/2025/texmf-dist/tex/context/base/mkxl/s ⤸
upp-ran.mkxl), which takes two arguments. Fortunately it seems that throughout the xint code

base, we use \xint_texuniformdeviate always with a chardef or count argument with one sole excep-

tion where it is followed with digits terminated by \xint:. In order not to change anything to

current code and to support ConTEXt-LMTX we make here a suitable definition compatible with these

use cases.

Warning: I have no idea and will not check now if the RNG has the same issues for the less sig-

nificant decimal digits as in PDFTeX, thus I don't know if the overhead in the definition below of

\xintUniformeDeviate has any rationale in the LMTX context.

MEMO: In the code below, I have not checked yet and do not remember (at time of preparing 1.4n)

if it is possible that the #1 fetched by \xint_texuniformdeviate_dgts has some chance to be zero

(as I don't remember the details of the construction). Attention that \randomnumber{0}{-1} may

output -1.

Modified at 1.4o (2025/09/06). Remove the test whether some uniformdeviate already exists with

ConTEXt and use unconditionally \randomnumber without checking if it exists.

654 \ifdefined\contextversion

655 \def\xint_texuniformdeviate#1{\randomnumber{0}{#1-1}}%

656 \def\xint_texuniformdeviate_dgts#1\xint:{\randomnumber{0}{#1-1}\xint:}%
657 \else

658 \let\xint_texuniformdeviate_dgts\xint_texuniformdeviate

659 \fi

257

TOC
TOC, xintkernel , xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

18.26.3. \xintUniformDeviate

For negative #1 the output (as per the doc I wrote in the user manual some years ago and that I

trust) ranges from #1+1 to zero inclusive. This is same behaviour as original primitive and the

input must be within the TEX bounds. Note that \the\numexpr-0\relax gives 0.

We make 5 calls to the primitive and the user doc says that when I tested the cost was about 13

times the one of the primitive.

660 \ifdefined\xint_texuniformdeviate

661 \expandafter\xint_firstoftwo

662 \else\expandafter\xint_secondoftwo

663 \fi

664 {%

665 \def\xintUniformDeviate#1%
666 {\the\numexpr\expandafter\XINT_uniformdeviate_sgnfork\the\numexpr#1\xint:}%

667 \def\XINT_uniformdeviate_sgnfork#1%

668 {%

669 \if-#1\XINT_uniformdeviate_neg\fi \XINT_uniformdeviate{}#1%

670 }%

671 \def\XINT_uniformdeviate_neg\fi\XINT_uniformdeviate#1-%

672 {%

673 \fi-\numexpr\XINT_uniformdeviate\relax

674 }%

675 \def\XINT_uniformdeviate#1#2\xint:

676 {%(

677 \expandafter\XINT_uniformdeviate_a\the\numexpr%

678 -\xint_texuniformdeviate\xint_c_ii^vii%

679 -\xint_c_ii^vii*\xint_texuniformdeviate\xint_c_ii^vii%

680 -\xint_c_ii^xiv*\xint_texuniformdeviate\xint_c_ii^vii%

681 -\xint_c_ii^xxi*\xint_texuniformdeviate\xint_c_ii^vii%

682 +\xint_texuniformdeviate_dgts#2\xint:/#2)*#2\xint:+#2\fi\relax#1%

683 }%

684 \def\XINT_uniformdeviate_a #1\xint:

685 {%

686 \expandafter\XINT_uniformdeviate_b\the\numexpr#1-(#1%

687 }%

688 \def\XINT_uniformdeviate_b#1#2\xint:{#1#2\if-#1}%

689 }%

690 {%

691 \xintMessage{xintkernel}{Warning}%

692 {No \string\uniformdeviate like primitive identified, macros producing^^J%

693 \XINT_fourspaces "random numbers" will raise (expandable) errors.}%

694 \def\xintUniformDeviate#1%

695 {%

696 \the\numexpr

697 \XINT_expandableerror{(xintkernel) No uniformdeviate primitive!}%

698 0\relax

699 }%

700 }%

701 \XINTrestorecatcodesendinput%

258

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

19. Package xinttools implementation

.1 Catcodes, 𝜀-TEX and reload detection . . 259

.2 Package identification 260

.3 \xintgodef, \xintgoodef, \xintgfdef . 260

.4 \xintRevWithBraces 260

.5 \xintZapFirstSpaces 261

.6 \xintZapLastSpaces 262

.7 \xintZapSpaces 262

.8 \xintZapSpacesB 263

.9 \xintCSVtoList, \xintCSVtoListNon-

Stripped 263
.10 \xintListWithSep 265
.11 \xintNthElt 266
.12 \xintNthOnePy 267
.13 \xintKeep 268
.14 \xintKeepUnbraced 269
.15 \xintTrim 270
.16 \xintTrimUnbraced 272
.17 \xintApply 273
.18 \xintApply:x (WIP, commented-out) . . 273
.19 \xintApplyUnbraced 274
.20 \xintApplyUnbraced:x (WIP, commented-

out) 275
.21 \xintZip (WIP, not public) 276
.22 \xintSeq 278
.23 \xintloop, \xintbreakloop, \xintbreak-

loopanddo, \xintloopskiptonext . . . 281
.24 \xintiloop, \xintiloopindex, \xint-

bracediloopindex, \xintouteriloopindex,

\xintbracedouteriloopindex, \xintbreak-
iloop, \xintbreakiloopanddo, \xintiloop-
skiptonext, \xintiloopskipandredo . . 281

.25 \XINT_xflet 282

.26 \xintApplyInline 282

.27 \xintFor, \xintFor*, \xintBreakFor,
\xintBreakForAndDo 283

.28 \XINT_forever, \xintintegers, \xintdi-
mensions, \xintrationals 285

.29 \xintForpair, \xintForthree, \xintFor-
four 287

.30 \xintAssign, \xintAssignArray, \xint-
DigitsOf 289

.31 CSV (non user documented) variants of
Length, Keep, Trim, NthElt, Reverse . . 292

.31.1 \xintLength:f:csv 292

.31.2 \xintLengthUpTo:f:csv 293

.31.3 \xintKeep:f:csv 294

.31.4 \xintTrim:f:csv 296

.31.5 \xintNthEltPy:f:csv 298

.31.6 \xintReverse:f:csv 299

.31.7 \xintFirstItem:f:csv 299

.31.8 \xintLastItem:f:csv 299

.31.9 \xintKeep:x:csv 300

.31.10 Public names for the undocumented csv macros:
\xintCSVLength, \xintCSVKeep, \xintCSVKeepx,
\xintCSVTrim, \xintCSVNthEltPy, \xintCSVRe-
verse, \xintCSVFirstItem, \xintCSVLastItem301

Added at 1.09g (2013/11/22). Splits off xinttools from xint.

Modified at 1.1 (2014/10/28). xinttools ceases being loaded automatically by xint.

19.1. Catcodes, 𝜺-TEX and reload detection
The code for reload detection was initially copied from Heiko Oberdiek's packages, then modified.

The method for catcodes was also initially directly inspired by these packages.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode44=12 % ,

8 \catcode46=12 % .

9 \catcode58=12 % :

10 \catcode94=7 % ^

11 \def\empty{}\def\space{ }\newlinechar10

12 \def\z{\endgroup}%

13 \expandafter\let\expandafter\x\csname ver@xinttools.sty\endcsname

14 \expandafter\let\expandafter\w\csname ver@xintkernel.sty\endcsname

259

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

15 \expandafter\ifx\csname numexpr\endcsname\relax

16 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

17 \immediate\write128{^^JPackage xinttools Warning:^^J%

18 \space\space\space\space

19 \numexpr not available, aborting input.^^J}%

20 \else

21 \PackageWarningNoLine{xinttools}{\numexpr not available, aborting input}%

22 \fi

23 \def\z{\endgroup\endinput}%

24 \else

25 \ifx\x\relax % plain-TeX, first loading of xinttools.sty

26 \ifx\w\relax % but xintkernel.sty not yet loaded.

27 \def\z{\endgroup\input xintkernel.sty\relax}%

28 \fi

29 \else

30 \ifx\x\empty % LaTeX, first loading,

31 % variable is initialized, but \ProvidesPackage not yet seen

32 \ifx\w\relax % xintkernel.sty not yet loaded.

33 \def\z{\endgroup\RequirePackage{xintkernel}}%

34 \fi

35 \else

36 \def\z{\endgroup\endinput}% xinttools already loaded.

37 \fi

38 \fi

39 \fi

40 \z%

41 \XINTsetupcatcodes% defined in xintkernel.sty

19.2. Package identification
42 \XINT_providespackage

43 \ProvidesPackage{xinttools}%

44 [2025/09/06 v1.4o Expandable and non-expandable utilities (JFB)]%

\XINT_toks is used in macros such as \xintFor. It is not used elsewhere in the xint bundle.

45 \newtoks\XINT_toks

46 \xint_firstofone{\let\XINT_sptoken= } %<- space here!

19.3. \xintgodef, \xintgoodef, \xintgfdef

Added at 1.09i (2013/12/18). For use in \xintAssign.

47 \def\xintgodef {\global\xintodef }%

48 \def\xintgoodef {\global\xintoodef }%

49 \def\xintgfdef {\global\xintfdef }%

19.4. \xintRevWithBraces

Added at 1.06 (2013/05/07). Makes the expansion of its argument and then reverses the resulting

tokens or braced tokens, adding a pair of braces to each (thus, maintaining it when it was already

there.) The reason for \xint:, here and in other locations, is in case #1 expands to nothing,

the \romannumeral-`0 must be stopped.

50 \def\xintRevWithBraces {\romannumeral0\xintrevwithbraces }%

260

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

51 \def\xintRevWithBracesNoExpand {\romannumeral0\xintrevwithbracesnoexpand }%

52 \long\def\xintrevwithbraces #1%

53 {%

54 \expandafter\XINT_revwbr_loop\expandafter{\expandafter}%

55 \romannumeral`&&@#1\xint:\xint:\xint:\xint:%

56 \xint:\xint:\xint:\xint:\xint_bye

57 }%

58 \long\def\xintrevwithbracesnoexpand #1%

59 {%

60 \XINT_revwbr_loop {}%

61 #1\xint:\xint:\xint:\xint:%

62 \xint:\xint:\xint:\xint:\xint_bye

63 }%

64 \long\def\XINT_revwbr_loop #1#2#3#4#5#6#7#8#9%

65 {%

66 \xint_gob_til_xint: #9\XINT_revwbr_finish_a\xint:%

67 \XINT_revwbr_loop {{#9}{#8}{#7}{#6}{#5}{#4}{#3}{#2}#1}%

68 }%

69 \long\def\XINT_revwbr_finish_a\xint:\XINT_revwbr_loop #1#2\xint_bye

70 {%

71 \XINT_revwbr_finish_b #2\R\R\R\R\R\R\R\Z #1%

72 }%

73 \def\XINT_revwbr_finish_b #1#2#3#4#5#6#7#8\Z

74 {%

75 \xint_gob_til_R

76 #1\XINT_revwbr_finish_c \xint_gobble_viii

77 #2\XINT_revwbr_finish_c \xint_gobble_vii

78 #3\XINT_revwbr_finish_c \xint_gobble_vi

79 #4\XINT_revwbr_finish_c \xint_gobble_v

80 #5\XINT_revwbr_finish_c \xint_gobble_iv

81 #6\XINT_revwbr_finish_c \xint_gobble_iii

82 #7\XINT_revwbr_finish_c \xint_gobble_ii

83 \R\XINT_revwbr_finish_c \xint_gobble_i\Z

84 }%

1.1c revisited this old code and improved upon the earlier endings.

85 \def\XINT_revwbr_finish_c#1{%

86 \def\XINT_revwbr_finish_c##1##2\Z{\expandafter#1##1}%

87 }\XINT_revwbr_finish_c{ }%

19.5. \xintZapFirstSpaces

Added at 1.09f (2013/11/04) [on 2013/11/01].

Modified at 1.1 (2014/10/28). To correct the bug in case of an empty argument, or argument con-

taining only spaces, which had been forgotten in first version. New version is simpler than the

initial one. This macro does NOT expand its argument.

88 \def\xintZapFirstSpaces {\romannumeral0\xintzapfirstspaces }%

89 \def\xintzapfirstspaces#1{\long

90 \def\xintzapfirstspaces ##1{\XINT_zapbsp_a #1##1\xint:#1#1\xint:}%

91 }\xintzapfirstspaces{ }%

If the original #1 started with a space, the grabbed #1 is empty. Thus _again? will see

#1=\xint_bye, and hand over control to _again which will loop back into \XINT_zapbsp_a, with one

261

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

initial space less. If the original #1 did not start with a space, or was empty, then the #1 be-

low will be a <sptoken>, then an extract of the original #1, not empty and not starting with a

space, which contains what was up to the first <sp><sp> present in original #1, or, if none pre-

existed, <sptoken> and all of #1 (possibly empty) plus an ending \xint:. The added initial space

will stop later the \romannumeral0. No brace stripping is possible. Control is handed over to

\XINT_zapbsp_b which strips out the ending \xint:<sp><sp>\xint:

92 \def\XINT_zapbsp_a#1{\long\def\XINT_zapbsp_a ##1#1#1{%

93 \XINT_zapbsp_again?##1\xint_bye\XINT_zapbsp_b ##1#1#1}%

94 }\XINT_zapbsp_a{ }%

95 \long\def\XINT_zapbsp_again? #1{\xint_bye #1\XINT_zapbsp_again }%

96 \xint_firstofone{\def\XINT_zapbsp_again\XINT_zapbsp_b} {\XINT_zapbsp_a }%

97 \long\def\XINT_zapbsp_b #1\xint:#2\xint:{#1}%

19.6. \xintZapLastSpaces

Added at 1.09f (2013/11/04) [on 2013/11/01].

98 \def\xintZapLastSpaces {\romannumeral0\xintzaplastspaces }%

99 \def\xintzaplastspaces#1{\long

100 \def\xintzaplastspaces ##1{\XINT_zapesp_a {}\empty##1#1#1\xint_bye\xint:}%

101 }\xintzaplastspaces{ }%

The \empty from \xintzaplastspaces is to prevent brace removal in the #2 below. The \expandafter

chain removes it.

102 \xint_firstofone {\long\def\XINT_zapesp_a #1#2 } %<- second space here

103 {\expandafter\XINT_zapesp_b\expandafter{#2}{#1}}%

Notice again an \empty added here. This is in preparation for possibly looping back to \XINT_zape ⤸
sp_a. If the initial #1 had no <sp><sp>, the stuff however will not loop, because #3 will already

be <some spaces>\xint_bye. Notice that this macro fetches all way to the ending \xint:. This

looks not very efficient, but how often do we have to strip ending spaces from something which

also has inner stretches of _multiple_ space tokens ?;-).

104 \long\def\XINT_zapesp_b #1#2#3\xint:%

105 {\XINT_zapesp_end? #3\XINT_zapesp_e {#2#1}\empty #3\xint:}%

When we have been over all possible <sp><sp> things, we reach the ending space tokens, and #3 will

be a bunch of spaces (possibly none) followed by \xint_bye. So the #1 in _end? will be \xint_bye.

In all other cases #1 can not be \xint_bye (assuming naturally this token does nor arise in original

input), hence control falls back to \XINT_zapesp_e which will loop back to \XINT_zapesp_a.

106 \long\def\XINT_zapesp_end? #1{\xint_bye #1\XINT_zapesp_end }%

We are done. The #1 here has accumulated all the previous material, and is stripped of its ending

spaces, if any.

107 \long\def\XINT_zapesp_end\XINT_zapesp_e #1#2\xint:{ #1}%

We haven't yet reached the end, so we need to re-inject two space tokens after what we have gotten

so far. Then we loop.

108 \def\XINT_zapesp_e#1{%

109 \long\def\XINT_zapesp_e ##1{\XINT_zapesp_a {##1#1#1}}%

110 }\XINT_zapesp_e{ }%

19.7. \xintZapSpaces

Added at 1.09f (2013/11/04) [on 2013/11/01].

262

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Modified at 1.1 (2014/10/28). It had the same bug as \xintZapFirstSpaces. We in effect do first

\xintZapFirstSpaces, then \xintZapLastSpaces.

111 \def\xintZapSpaces {\romannumeral0\xintzapspaces }%

112 \def\xintzapspaces#1{%

113 \long\def\xintzapspaces ##1% like \xintZapFirstSpaces.

114 {\XINT_zapsp_a #1##1\xint:#1#1\xint:}%

115 }\xintzapspaces{ }%

116 \def\XINT_zapsp_a#1{%

117 \long\def\XINT_zapsp_a ##1#1#1%

118 {\XINT_zapsp_again?##1\xint_bye\XINT_zapsp_b##1#1#1}%

119 }\XINT_zapsp_a{ }%

120 \long\def\XINT_zapsp_again? #1{\xint_bye #1\XINT_zapsp_again }%

121 \xint_firstofone{\def\XINT_zapsp_again\XINT_zapsp_b} {\XINT_zapsp_a }%

122 \xint_firstofone{\def\XINT_zapsp_b} {\XINT_zapsp_c }%

123 \def\XINT_zapsp_c#1{%

124 \long\def\XINT_zapsp_c ##1\xint:##2\xint:%

125 {\XINT_zapesp_a{}\empty ##1#1#1\xint_bye\xint:}%

126 }\XINT_zapsp_c{ }%

19.8. \xintZapSpacesB

Added at 1.09f (2013/11/04) [on 2013/11/01]. Strips up to one pair of braces (but then does not

strip spaces inside).

127 \def\xintZapSpacesB {\romannumeral0\xintzapspacesb }%

128 \long\def\xintzapspacesb #1{\XINT_zapspb_one? #1\xint:\xint:%

129 \xint_bye\xintzapspaces {#1}}%

130 \long\def\XINT_zapspb_one? #1#2%

131 {\xint_gob_til_xint: #1\XINT_zapspb_onlyspaces\xint:%

132 \xint_gob_til_xint: #2\XINT_zapspb_bracedorone\xint:%

133 \xint_bye {#1}}%

134 \def\XINT_zapspb_onlyspaces\xint:%

135 \xint_gob_til_xint:\xint:\XINT_zapspb_bracedorone\xint:%

136 \xint_bye #1\xint_bye\xintzapspaces #2{ }%

137 \long\def\XINT_zapspb_bracedorone\xint:%

138 \xint_bye #1\xint:\xint_bye\xintzapspaces #2{ #1}%

19.9. \xintCSVtoList, \xintCSVtoListNonStripped

Added at 1.06 (2013/05/07). \xintCSVtoList transforms a,b,..,z into {a}{b}...{z}. The comma

separated list may be a macro which is first f-expanded. Here, use of \Z (and \R) perfectly

safe.

Modified at 1.09f (2013/11/04). Automatically filters items with \xintZapSpacesB to strip away

all spaces around commas, and spaces at the start and end of the list. The original is kept as

\xintCSVtoListNonStripped, and is faster. But ... it doesn't strip spaces.

ATTENTION: if the input is empty the output contains one item (empty, of course). This means an

\xintFor loop always executes at least once the iteration, contrarily to \xintFor*.

139 \def\xintCSVtoList {\romannumeral0\xintcsvtolist }%

140 \long\def\xintcsvtolist #1{\expandafter\xintApply

141 \expandafter\xintzapspacesb

142 \expandafter{\romannumeral0\xintcsvtolistnonstripped{#1}}}%

143 \def\xintCSVtoListNoExpand {\romannumeral0\xintcsvtolistnoexpand }%

263

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

144 \long\def\xintcsvtolistnoexpand #1{\expandafter\xintApply

145 \expandafter\xintzapspacesb

146 \expandafter{\romannumeral0\xintcsvtolistnonstrippednoexpand{#1}}}%

147 \def\xintCSVtoListNonStripped {\romannumeral0\xintcsvtolistnonstripped }%

148 \def\xintCSVtoListNonStrippedNoExpand

149 {\romannumeral0\xintcsvtolistnonstrippednoexpand }%

150 \long\def\xintcsvtolistnonstripped #1%

151 {%

152 \expandafter\XINT_csvtol_loop_a\expandafter

153 {\expandafter}\romannumeral`&&@#1%

154 ,\xint_bye,\xint_bye,\xint_bye,\xint_bye

155 ,\xint_bye,\xint_bye,\xint_bye,\xint_bye,\Z

156 }%

157 \long\def\xintcsvtolistnonstrippednoexpand #1%

158 {%

159 \XINT_csvtol_loop_a

160 {}#1,\xint_bye,\xint_bye,\xint_bye,\xint_bye

161 ,\xint_bye,\xint_bye,\xint_bye,\xint_bye,\Z

162 }%

163 \long\def\XINT_csvtol_loop_a #1#2,#3,#4,#5,#6,#7,#8,#9,%

164 {%

165 \xint_bye #9\XINT_csvtol_finish_a\xint_bye

166 \XINT_csvtol_loop_b {#1}{{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}}%

167 }%

168 \long\def\XINT_csvtol_loop_b #1#2{\XINT_csvtol_loop_a {#1#2}}%

169 \long\def\XINT_csvtol_finish_a\xint_bye\XINT_csvtol_loop_b #1#2#3\Z

170 {%

171 \XINT_csvtol_finish_b #3\R,\R,\R,\R,\R,\R,\R,\Z #2{#1}%

172 }%

1.1c revisits this old code and improves upon the earlier endings. But as the _d.. macros have

already nine parameters, I needed the \expandafter and \xint_gob_til_Z in finish_b (compare \XIN ⤸
T_keep_endb, or also \XINT_RQ_end_b).

173 \def\XINT_csvtol_finish_b #1,#2,#3,#4,#5,#6,#7,#8\Z

174 {%

175 \xint_gob_til_R

176 #1\expandafter\XINT_csvtol_finish_dviii\xint_gob_til_Z

177 #2\expandafter\XINT_csvtol_finish_dvii \xint_gob_til_Z

178 #3\expandafter\XINT_csvtol_finish_dvi \xint_gob_til_Z

179 #4\expandafter\XINT_csvtol_finish_dv \xint_gob_til_Z

180 #5\expandafter\XINT_csvtol_finish_div \xint_gob_til_Z

181 #6\expandafter\XINT_csvtol_finish_diii \xint_gob_til_Z

182 #7\expandafter\XINT_csvtol_finish_dii \xint_gob_til_Z

183 \R\XINT_csvtol_finish_di \Z

184 }%

185 \long\def\XINT_csvtol_finish_dviii #1#2#3#4#5#6#7#8#9{ #9}%

186 \long\def\XINT_csvtol_finish_dvii #1#2#3#4#5#6#7#8#9{ #9{#1}}%

187 \long\def\XINT_csvtol_finish_dvi #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}}%

188 \long\def\XINT_csvtol_finish_dv #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}}%

189 \long\def\XINT_csvtol_finish_div #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}}%

190 \long\def\XINT_csvtol_finish_diii #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}{#5}}%

191 \long\def\XINT_csvtol_finish_dii #1#2#3#4#5#6#7#8#9%

192 { #9{#1}{#2}{#3}{#4}{#5}{#6}}%

264

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

193 \long\def\XINT_csvtol_finish_di\Z #1#2#3#4#5#6#7#8#9%

194 { #9{#1}{#2}{#3}{#4}{#5}{#6}{#7}}%

19.10. \xintListWithSep

Added at 1.04 (2013/04/25). \xintListWithSep {\sep}{{a}{b}...{z}} returns a \sep b \sep\s ⤸
ep z. It f-expands its second argument. The 'sep' may be \par's: the macro \xintlistwithsep

etc... are all declared long. 'sep' does not have to be a single token. It is not expanded.

The "list" argument may be empty.

\xintListWithSepNoExpand does not f-expand its second argument.

Modified at 1.2p (2017/12/05). This venerable macro from 1.04 remained unchanged for a long time

and was finally refactored at 1.2p for increased speed. Tests done with a list of identical {\x}

items and a sep of \z demonstrated a speed increase of about:

- 3x for 30 items,

- 4.5x for 100 items,

- 7.5x--8x for 1000 items.

195 \def\xintListWithSep {\romannumeral0\xintlistwithsep }%

196 \def\xintListWithSepNoExpand {\romannumeral0\xintlistwithsepnoexpand }%

197 \long\def\xintlistwithsep #1#2%

198 {\expandafter\XINT_lws\expandafter {\romannumeral`&&@#2}{#1}}%

199 \long\def\xintlistwithsepnoexpand #1#2%

200 {%

201 \XINT_lws_loop_a {#1}#2{\xint_bye\XINT_lws_e_vi}%

202 {\xint_bye\XINT_lws_e_v}{\xint_bye\XINT_lws_e_iv}%

203 {\xint_bye\XINT_lws_e_iii}{\xint_bye\XINT_lws_e_ii}%

204 {\xint_bye\XINT_lws_e_i}{\xint_bye\XINT_lws_e}%

205 {\xint_bye\expandafter\space}\xint_bye

206 }%

207 \long\def\XINT_lws #1#2%

208 {%

209 \XINT_lws_loop_a {#2}#1{\xint_bye\XINT_lws_e_vi}%

210 {\xint_bye\XINT_lws_e_v}{\xint_bye\XINT_lws_e_iv}%

211 {\xint_bye\XINT_lws_e_iii}{\xint_bye\XINT_lws_e_ii}%

212 {\xint_bye\XINT_lws_e_i}{\xint_bye\XINT_lws_e}%

213 {\xint_bye\expandafter\space}\xint_bye

214 }%

215 \long\def\XINT_lws_loop_a #1#2#3#4#5#6#7#8#9%

216 {%

217 \xint_bye #9\xint_bye

218 \XINT_lws_loop_b {#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}%

219 }%

220 \long\def\XINT_lws_loop_b #1#2#3#4#5#6#7#8#9%

221 {%

222 \XINT_lws_loop_a {#1}{#2#1#3#1#4#1#5#1#6#1#7#1#8#1#9}%

223 }%

224 \long\def\XINT_lws_e_vi\xint_bye\XINT_lws_loop_b #1#2#3#4#5#6#7#8#9\xint_bye

225 { #2#1#3#1#4#1#5#1#6#1#7#1#8}%

226 \long\def\XINT_lws_e_v\xint_bye\XINT_lws_loop_b #1#2#3#4#5#6#7#8\xint_bye

227 { #2#1#3#1#4#1#5#1#6#1#7}%

228 \long\def\XINT_lws_e_iv\xint_bye\XINT_lws_loop_b #1#2#3#4#5#6#7\xint_bye

229 { #2#1#3#1#4#1#5#1#6}%

230 \long\def\XINT_lws_e_iii\xint_bye\XINT_lws_loop_b #1#2#3#4#5#6\xint_bye

265

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

231 { #2#1#3#1#4#1#5}%

232 \long\def\XINT_lws_e_ii\xint_bye\XINT_lws_loop_b #1#2#3#4#5\xint_bye

233 { #2#1#3#1#4}%

234 \long\def\XINT_lws_e_i\xint_bye\XINT_lws_loop_b #1#2#3#4\xint_bye

235 { #2#1#3}%

236 \long\def\XINT_lws_e\xint_bye\XINT_lws_loop_b #1#2#3\xint_bye

237 { #2}%

19.11. \xintNthElt

Added at 1.06 (2013/05/07).

Modified at 1.2j (2016/12/22). Last refactored in 1.2j.

\xintNthElt {i}{List} returns the i th item from List (one pair of braces removed). The list

is first f-expanded. The \xintNthEltNoExpand does no expansion of its second argument. Both

variants expand i inside \numexpr.

With i = 0, the number of items is returned using \xintLength but with the List argument f-

expanded first.

Negative values return the |i|th element from the end.

When i is out of range, an empty value is returned.

238 \def\xintNthElt {\romannumeral0\xintnthelt }%

239 \def\xintNthEltNoExpand {\romannumeral0\xintntheltnoexpand }%

240 \long\def\xintnthelt #1#2{\expandafter\XINT_nthelt_a\the\numexpr #1\expandafter.%

241 \expandafter{\romannumeral`&&@#2}}%

242 \def\xintntheltnoexpand #1{\expandafter\XINT_nthelt_a\the\numexpr #1.}%

243 \def\XINT_nthelt_a #1%

244 {%

245 \xint_UDzerominusfork

246 #1-\XINT_nthelt_zero

247 0#1\XINT_nthelt_neg

248 0-{\XINT_nthelt_pos #1}%

249 \krof

250 }%

251 \def\XINT_nthelt_zero #1.{\xintlength }%

252 \long\def\XINT_nthelt_neg #1.#2%

253 {%

254 \expandafter\XINT_nthelt_neg_a\the\numexpr\xint_c_i+\XINT_length_loop

255 #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

256 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

257 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

258 -#1.#2\xint_bye

259 }%

260 \def\XINT_nthelt_neg_a #1%

261 {%

262 \xint_UDzerominusfork

263 #1-\xint_stop_afterbye

264 0#1\xint_stop_afterbye

265 0-{}%

266 \krof

267 \expandafter\XINT_nthelt_neg_b

268 \romannumeral\expandafter\XINT_gobble\the\numexpr-\xint_c_i+#1%

269 }%

270 \long\def\XINT_nthelt_neg_b #1#2\xint_bye{ #1}%

266

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

271 \long\def\XINT_nthelt_pos #1.#2%

272 {%

273 \expandafter\XINT_nthelt_pos_done

274 \romannumeral0\expandafter\XINT_trim_loop\the\numexpr#1-\xint_c_x.%

275 #2\xint:\xint:\xint:\xint:\xint:%

276 \xint:\xint:\xint:\xint:\xint:%

277 \xint_bye

278 }%

279 \def\XINT_nthelt_pos_done #1{%

280 \long\def\XINT_nthelt_pos_done ##1##2\xint_bye{%

281 \xint_gob_til_xint:##1\expandafter#1\xint_gobble_ii\xint:#1##1}%

282 }\XINT_nthelt_pos_done{ }%

19.12. \xintNthOnePy

Added at 1.4 (2020/01/31). See relevant code comments in xintexpr.

283 \def\xintNthOnePy {\romannumeral0\xintnthonepy }%

284 \def\xintNthOnePyNoExpand {\romannumeral0\xintnthonepynoexpand }%

285 \long\def\xintnthonepy #1#2{\expandafter\XINT_nthonepy_a\the\numexpr #1\expandafter.%

286 \expandafter{\romannumeral`&&@#2}}%

287 \def\xintnthonepynoexpand #1{\expandafter\XINT_nthonepy_a\the\numexpr #1.}%

288 \def\XINT_nthonepy_a #1%

289 {%

290 \xint_UDsignfork

291 #1\XINT_nthonepy_neg

292 -{\XINT_nthonepy_nonneg #1}%

293 \krof

294 }%

295 \long\def\XINT_nthonepy_neg #1.#2%

296 {%

297 \expandafter\XINT_nthonepy_neg_a\the\numexpr\xint_c_i+\XINT_length_loop

298 #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

299 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

300 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

301 -#1.#2\xint_bye

302 }%

303 \def\XINT_nthonepy_neg_a #1%

304 {%

305 \xint_UDzerominusfork

306 #1-\xint_stop_afterbye

307 0#1\xint_stop_afterbye

308 0-{}%

309 \krof

310 \expandafter\XINT_nthonepy_neg_b

311 \romannumeral\expandafter\XINT_gobble\the\numexpr-\xint_c_i+#1%

312 }%

313 \long\def\XINT_nthonepy_neg_b #1#2\xint_bye{{#1}}%

314 \long\def\XINT_nthonepy_nonneg #1.#2%

315 {%

316 \expandafter\XINT_nthonepy_nonneg_done

317 \romannumeral0\expandafter\XINT_trim_loop\the\numexpr#1-\xint_c_ix.%

318 #2\xint:\xint:\xint:\xint:\xint:%

267

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

319 \xint:\xint:\xint:\xint:\xint:%

320 \xint_bye

321 }%

322 \def\XINT_nthonepy_nonneg_done #1{%

323 \long\def\XINT_nthonepy_nonneg_done ##1##2\xint_bye{%

324 \xint_gob_til_xint:##1\expandafter#1\xint_gobble_ii\xint:{##1}}%

325 }\XINT_nthonepy_nonneg_done{ }%

19.13. \xintKeep

Added at 1.09m (2014/02/26). \xintKeep{i}{L} f-expands its second argument L. It then grabs the

first i items from L and discards the rest.

ATTENTION: **each such kept item is returned inside a brace pair** Use \xintKeepUnbraced to

avoid that.

For i equal or larger to the number N of items in (expanded) L, the full L is returned (with braced

items). For i=0, the macro returns an empty output. For i<0, the macro discards the first N-|i|

items. No brace pairs added to the remaining items. For i is less or equal to -N, the full L is

returned (with no braces added.)

\xintKeepNoExpand does not expand the L argument.

Modified at 1.2i (2016/12/13). Prior to 1.2i the code proceeded along a loop with no pre-

computation of the length of L, for the i>0 case. The faster 1.2i version takes advantage of

novel \xintLengthUpTo from xintkernel.sty.

326 \def\xintKeep {\romannumeral0\xintkeep }%

327 \def\xintKeepNoExpand {\romannumeral0\xintkeepnoexpand }%

328 \long\def\xintkeep #1#2{\expandafter\XINT_keep_a\the\numexpr #1\expandafter.%

329 \expandafter{\romannumeral`&&@#2}}%

330 \def\xintkeepnoexpand #1{\expandafter\XINT_keep_a\the\numexpr #1.}%

331 \def\XINT_keep_a #1%

332 {%

333 \xint_UDzerominusfork

334 #1-\XINT_keep_keepnone

335 0#1\XINT_keep_neg

336 0-{\XINT_keep_pos #1}%

337 \krof

338 }%

339 \long\def\XINT_keep_keepnone .#1{ }%

340 \long\def\XINT_keep_neg #1.#2%

341 {%

342 \expandafter\XINT_keep_neg_a\the\numexpr

343 #1-\numexpr\XINT_length_loop

344 #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

345 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

346 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye.#2%

347 }%

348 \def\XINT_keep_neg_a #1%

349 {%

350 \xint_UDsignfork

351 #1{\expandafter\space\romannumeral\XINT_gobble}%

352 -\XINT_keep_keepall

353 \krof

354 }%

355 \def\XINT_keep_keepall #1.{ }%

268

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

356 \long\def\XINT_keep_pos #1.#2%

357 {%

358 \expandafter\XINT_keep_loop

359 \the\numexpr#1-\XINT_lengthupto_loop

360 #1.#2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

361 \xint_c_vii\xint_c_vi\xint_c_v\xint_c_iv

362 \xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye.%

363 -\xint_c_viii.{}#2\xint_bye%

364 }%

365 \def\XINT_keep_loop #1#2.%

366 {%

367 \xint_gob_til_minus#1\XINT_keep_loop_end-%

368 \expandafter\XINT_keep_loop

369 \the\numexpr#1#2-\xint_c_viii\expandafter.\XINT_keep_loop_pickeight

370 }%

371 \long\def\XINT_keep_loop_pickeight

372 #1#2#3#4#5#6#7#8#9{{#1{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}}}%

373 \def\XINT_keep_loop_end-\expandafter\XINT_keep_loop

374 \the\numexpr-#1-\xint_c_viii\expandafter.\XINT_keep_loop_pickeight

375 {\csname XINT_keep_end#1\endcsname}%

376 \long\expandafter\def\csname XINT_keep_end1\endcsname

377 #1#2#3#4#5#6#7#8#9\xint_bye { #1{#2}{#3}{#4}{#5}{#6}{#7}{#8}}%

378 \long\expandafter\def\csname XINT_keep_end2\endcsname

379 #1#2#3#4#5#6#7#8\xint_bye { #1{#2}{#3}{#4}{#5}{#6}{#7}}%

380 \long\expandafter\def\csname XINT_keep_end3\endcsname

381 #1#2#3#4#5#6#7\xint_bye { #1{#2}{#3}{#4}{#5}{#6}}%

382 \long\expandafter\def\csname XINT_keep_end4\endcsname

383 #1#2#3#4#5#6\xint_bye { #1{#2}{#3}{#4}{#5}}%

384 \long\expandafter\def\csname XINT_keep_end5\endcsname

385 #1#2#3#4#5\xint_bye { #1{#2}{#3}{#4}}%

386 \long\expandafter\def\csname XINT_keep_end6\endcsname

387 #1#2#3#4\xint_bye { #1{#2}{#3}}%

388 \long\expandafter\def\csname XINT_keep_end7\endcsname

389 #1#2#3\xint_bye { #1{#2}}%

390 \long\expandafter\def\csname XINT_keep_end8\endcsname

391 #1#2\xint_bye { #1}%

19.14. \xintKeepUnbraced

Added at 1.2a (2015/10/19). Same as \xintKeep but will *not* add (or maintain) brace pairs around

the kept items when length(L)>i>0.

The name may cause a mis-understanding: for i<0, (i.e. keeping only trailing items), there is

no brace removal at all happening.

Modified at 1.2i (2016/12/13). As \xintKeep.

392 \def\xintKeepUnbraced {\romannumeral0\xintkeepunbraced }%

393 \def\xintKeepUnbracedNoExpand {\romannumeral0\xintkeepunbracednoexpand }%

394 \long\def\xintkeepunbraced #1#2%

395 {\expandafter\XINT_keepunbr_a\the\numexpr #1\expandafter.%

396 \expandafter{\romannumeral`&&@#2}}%

397 \def\xintkeepunbracednoexpand #1%

398 {\expandafter\XINT_keepunbr_a\the\numexpr #1.}%

399 \def\XINT_keepunbr_a #1%

269

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

400 {%

401 \xint_UDzerominusfork

402 #1-\XINT_keep_keepnone

403 0#1\XINT_keep_neg

404 0-{\XINT_keepunbr_pos #1}%

405 \krof

406 }%

407 \long\def\XINT_keepunbr_pos #1.#2%

408 {%

409 \expandafter\XINT_keepunbr_loop

410 \the\numexpr#1-\XINT_lengthupto_loop

411 #1.#2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

412 \xint_c_vii\xint_c_vi\xint_c_v\xint_c_iv

413 \xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye.%

414 -\xint_c_viii.{}#2\xint_bye%

415 }%

416 \def\XINT_keepunbr_loop #1#2.%

417 {%

418 \xint_gob_til_minus#1\XINT_keepunbr_loop_end-%

419 \expandafter\XINT_keepunbr_loop

420 \the\numexpr#1#2-\xint_c_viii\expandafter.\XINT_keepunbr_loop_pickeight

421 }%

422 \long\def\XINT_keepunbr_loop_pickeight

423 #1#2#3#4#5#6#7#8#9{{#1#2#3#4#5#6#7#8#9}}%

424 \def\XINT_keepunbr_loop_end-\expandafter\XINT_keepunbr_loop

425 \the\numexpr-#1-\xint_c_viii\expandafter.\XINT_keepunbr_loop_pickeight

426 {\csname XINT_keepunbr_end#1\endcsname}%

427 \long\expandafter\def\csname XINT_keepunbr_end1\endcsname

428 #1#2#3#4#5#6#7#8#9\xint_bye { #1#2#3#4#5#6#7#8}%

429 \long\expandafter\def\csname XINT_keepunbr_end2\endcsname

430 #1#2#3#4#5#6#7#8\xint_bye { #1#2#3#4#5#6#7}%

431 \long\expandafter\def\csname XINT_keepunbr_end3\endcsname

432 #1#2#3#4#5#6#7\xint_bye { #1#2#3#4#5#6}%

433 \long\expandafter\def\csname XINT_keepunbr_end4\endcsname

434 #1#2#3#4#5#6\xint_bye { #1#2#3#4#5}%

435 \long\expandafter\def\csname XINT_keepunbr_end5\endcsname

436 #1#2#3#4#5\xint_bye { #1#2#3#4}%

437 \long\expandafter\def\csname XINT_keepunbr_end6\endcsname

438 #1#2#3#4\xint_bye { #1#2#3}%

439 \long\expandafter\def\csname XINT_keepunbr_end7\endcsname

440 #1#2#3\xint_bye { #1#2}%

441 \long\expandafter\def\csname XINT_keepunbr_end8\endcsname

442 #1#2\xint_bye { #1}%

19.15. \xintTrim

Added at 1.09m (2014/02/26). \xintTrim{i}{L} f-expands its second argument L. It then removes

the first i items from L and keeps the rest. For i equal or larger to the number N of items in

(expanded) L, the macro returns an empty output. For i=0, the original (expanded) L is returned.

For i<0, the macro proceeds from the tail. It thus removes the last |i| items, i.e. it keeps

the first N-|i| items. For |i|>= N, the empty list is returned.

\xintTrimNoExpand does not expand the L argument.

270

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Modified at 1.2i (2016/12/13). Speed improvements for i<0 branch (which hands over to \xintKeep).

Speed improvements with 1.2j for i>0 branch which gobbles items nine by nine despite not knowing

in advance if it will go too far.

443 \def\xintTrim {\romannumeral0\xinttrim }%

444 \def\xintTrimNoExpand {\romannumeral0\xinttrimnoexpand }%

445 \long\def\xinttrim #1#2{\expandafter\XINT_trim_a\the\numexpr #1\expandafter.%

446 \expandafter{\romannumeral`&&@#2}}%

447 \def\xinttrimnoexpand #1{\expandafter\XINT_trim_a\the\numexpr #1.}%

448 \def\XINT_trim_a #1%

449 {%

450 \xint_UDzerominusfork

451 #1-\XINT_trim_trimnone

452 0#1\XINT_trim_neg

453 0-{\XINT_trim_pos #1}%

454 \krof

455 }%

456 \long\def\XINT_trim_trimnone .#1{ #1}%

457 \long\def\XINT_trim_neg #1.#2%

458 {%

459 \expandafter\XINT_trim_neg_a\the\numexpr

460 #1-\numexpr\XINT_length_loop

461 #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

462 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

463 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

464 .{}#2\xint_bye

465 }%

466 \def\XINT_trim_neg_a #1%

467 {%

468 \xint_UDsignfork

469 #1{\expandafter\XINT_keep_loop\the\numexpr-\xint_c_viii+}%

470 -\XINT_trim_trimall

471 \krof

472 }%

473 \def\XINT_trim_trimall#1{%

474 \def\XINT_trim_trimall {\expandafter#1\xint_bye}%

475 }\XINT_trim_trimall{ }%

This branch doesn't pre-evaluate the length of the list argument. Redone again for 1.2j, manages

to trim nine by nine. Some non optimal looking aspect of the code is for allowing sharing with

\xintNthElt.

476 \long\def\XINT_trim_pos #1.#2%

477 {%

478 \expandafter\XINT_trim_pos_done\expandafter\space

479 \romannumeral0\expandafter\XINT_trim_loop\the\numexpr#1-\xint_c_ix.%

480 #2\xint:\xint:\xint:\xint:\xint:%

481 \xint:\xint:\xint:\xint:\xint:%

482 \xint_bye

483 }%

484 \def\XINT_trim_loop #1#2.%

485 {%

486 \xint_gob_til_minus#1\XINT_trim_finish-%

487 \expandafter\XINT_trim_loop\the\numexpr#1#2\XINT_trim_loop_trimnine

488 }%

271

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

489 \long\def\XINT_trim_loop_trimnine #1#2#3#4#5#6#7#8#9%

490 {%

491 \xint_gob_til_xint: #9\XINT_trim_toofew\xint:-\xint_c_ix.%

492 }%

493 \def\XINT_trim_toofew\xint:{*\xint_c_}%

494 \def\XINT_trim_finish#1{%

495 \def\XINT_trim_finish-%

496 \expandafter\XINT_trim_loop\the\numexpr-##1\XINT_trim_loop_trimnine

497 {%

498 \expandafter\expandafter\expandafter#1%

499 \csname xint_gobble_\romannumeral\numexpr\xint_c_ix-##1\endcsname

500 }}\XINT_trim_finish{ }%

501 \long\def\XINT_trim_pos_done #1\xint:#2\xint_bye {#1}%

19.16. \xintTrimUnbraced

Added at 1.2a (2015/10/19).

Modified at 1.2i (2016/12/13). As \xintTrim.

502 \def\xintTrimUnbraced {\romannumeral0\xinttrimunbraced }%

503 \def\xintTrimUnbracedNoExpand {\romannumeral0\xinttrimunbracednoexpand }%

504 \long\def\xinttrimunbraced #1#2%

505 {\expandafter\XINT_trimunbr_a\the\numexpr #1\expandafter.%

506 \expandafter{\romannumeral`&&@#2}}%

507 \def\xinttrimunbracednoexpand #1%

508 {\expandafter\XINT_trimunbr_a\the\numexpr #1.}%

509 \def\XINT_trimunbr_a #1%

510 {%

511 \xint_UDzerominusfork

512 #1-\XINT_trim_trimnone

513 0#1\XINT_trimunbr_neg

514 0-{\XINT_trim_pos #1}%

515 \krof

516 }%

517 \long\def\XINT_trimunbr_neg #1.#2%

518 {%

519 \expandafter\XINT_trimunbr_neg_a\the\numexpr

520 #1-\numexpr\XINT_length_loop

521 #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

522 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

523 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

524 .{}#2\xint_bye

525 }%

526 \def\XINT_trimunbr_neg_a #1%

527 {%

528 \xint_UDsignfork

529 #1{\expandafter\XINT_keepunbr_loop\the\numexpr-\xint_c_viii+}%

530 -\XINT_trim_trimall

531 \krof

532 }%

272

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

19.17. \xintApply

Added at 1.04 (2013/04/25). \xintApply {\macro}{{a}{b}...{z}} returns {\macro{a}}...{\macr ⤸
o{b}} where each instance of \macro is f-expanded. The list itself is first f-expanded and

may thus be a macro.

533 \def\xintApply {\romannumeral0\xintapply }%

534 \def\xintApplyNoExpand {\romannumeral0\xintapplynoexpand }%

535 \long\def\xintapply #1#2%

536 {%

537 \expandafter\XINT_apply\expandafter {\romannumeral`&&@#2}%

538 {#1}%

539 }%

540 \long\def\XINT_apply #1#2{\XINT_apply_loop_a {}{#2}#1\xint_bye }%

541 \long\def\xintapplynoexpand #1#2{\XINT_apply_loop_a {}{#1}#2\xint_bye }%

542 \long\def\XINT_apply_loop_a #1#2#3%

543 {%

544 \xint_bye #3\XINT_apply_end\xint_bye

545 \expandafter

546 \XINT_apply_loop_b

547 \expandafter {\romannumeral`&&@#2{#3}}{#1}{#2}%

548 }%

549 \long\def\XINT_apply_loop_b #1#2{\XINT_apply_loop_a {#2{#1}}}%

550 \long\def\XINT_apply_end\xint_bye\expandafter\XINT_apply_loop_b

551 \expandafter #1#2#3{ #2}%

19.18. \xintApply:x (WIP, commented-out)

Added at 1.4 (2020/01/31) [on 2020/01/27]. For usage in the NumPy-like slicing routines. Well,

actually, in the end I sticked with old-fashioned (quadratic cost) \xintApply for 1.4 2020/01/31

release. See comments there.

(Comments mainly from 2020/01/27, but on 2020/02/24 I comment out the code and add an alterna-

tive)

To expand in \expanded context, and does not need to do any expansion of its second argument.

This uses techniques I had developed for 1.2i/1.2j Keep, Trim, Length, LastItem like macros,

and I should revamp venerable \xintApply probably too. But the latter f-expandability (if it does

not have \expanded at disposal) complicates significantly matters as it has to store material and

release at very end.

Here it is simpler and I am doing it quickly as I really want to release 1.4. The \xint: token

should not be located in looped over items. I could use something more exotic like the null char

with catcode 3...

\long\def\xintApply:x #1#2%

{%

\XINT_apply:x_loop {#1}#2%

{\xint:\XINT_apply:x_loop_enda}{\xint:\XINT_apply:x_loop_endb}%

{\xint:\XINT_apply:x_loop_endc}{\xint:\XINT_apply:x_loop_endd}%

{\xint:\XINT_apply:x_loop_ende}{\xint:\XINT_apply:x_loop_endf}%

{\xint:\XINT_apply:x_loop_endg}{\xint:\XINT_apply:x_loop_endh}\xint_bye

}%

\long\def\XINT_apply:x_loop #1#2#3#4#5#6#7#8#9%

{%

\xint_gob_til_xint: #9\xint:

{#1{#2}}{#1{#3}}{#1{#4}}{#1{#5}}{#1{#6}}{#1{#7}}{#1{#8}}{#1{#9}}%

273

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

\XINT_apply:x_loop {#1}%

}%

\long\def\XINT_apply:x_loop_endh\xint: #1\xint_bye{}%

\long\def\XINT_apply:x_loop_endg\xint: #1#2\xint_bye{{#1}}%

\long\def\XINT_apply:x_loop_endf\xint: #1#2#3\xint_bye{{#1}{#2}}%

\long\def\XINT_apply:x_loop_ende\xint: #1#2#3#4\xint_bye{{#1}{#2}{#3}}%

\long\def\XINT_apply:x_loop_endd\xint: #1#2#3#4#5\xint_bye{{#1}{#2}{#3}{#4}}%

\long\def\XINT_apply:x_loop_endc\xint: #1#2#3#4#5#6\xint_bye{{#1}{#2}{#3}{#4}{#5}}%

\long\def\XINT_apply:x_loop_endb\xint: #1#2#3#4#5#6#7\xint_bye{{#1}{#2}{#3}{#4}{#5}{#6}}%

\long\def\XINT_apply:x_loop_enda\xint: #1#2#3#4#5#6#7#8\xint_bye{{#1}{#2}{#3}{#4}{#5}{#6}{#7}}%

For small number of items gain with respect to \xintApply is little if any (might even be a loss).

Picking one by one is possibly better for small number of items. Like this for example, the

natural simple minded thing:

\long\def\xintApply:x #1#2%

{%

\XINT_apply:x_loop {#1}#2\xint_bye\xint_bye

}%

\long\def\XINT_apply:x_loop #1#2%

{%

\xint_bye #2\xint_bye {#1{#2}}%

\XINT_apply:x_loop {#1}%

}%

Some variant on 2020/02/24

\long\def\xint_Bbye#1\xint_Bye{}%

\long\def\xintApply:x #1#2%

{%

\XINT_apply:x_loop {#1}#2%

{\xint_bye}{\xint_bye}{\xint_bye}{\xint_bye}%

{\xint_bye}{\xint_bye}{\xint_bye}{\xint_bye}\xint_bye

}%

\long\def\XINT_apply:x_loop #1#2#3#4#5#6#7#8#9%

{%

\xint_Bye #2\xint_bye {#1{#2}}%

\xint_Bye #3\xint_bye {#1{#3}}%

\xint_Bye #4\xint_bye {#1{#4}}%

\xint_Bye #5\xint_bye {#1{#5}}%

\xint_Bye #6\xint_bye {#1{#6}}%

\xint_Bye #7\xint_bye {#1{#7}}%

\xint_Bye #8\xint_bye {#1{#8}}%

\xint_Bye #9\xint_bye {#1{#9}}%

\XINT_apply:x_loop {#1}%

}%

19.19. \xintApplyUnbraced

Added at 1.06b (2013/05/14). \xintApplyUnbraced {\macro}{{a}{b}...{z}} returns \macro{a}...\ma ⤸
cro{z} where each instance of \macro is f-expanded using \romannumeral-`0. The second argument

may be a macro as it is itself also f-expanded. No braces are added: this allows for example a

non-expandable \def in \macro, without having to do \gdef.

552 \def\xintApplyUnbraced {\romannumeral0\xintapplyunbraced }%

553 \def\xintApplyUnbracedNoExpand {\romannumeral0\xintapplyunbracednoexpand }%

554 \long\def\xintapplyunbraced #1#2%

274

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

555 {%

556 \expandafter\XINT_applyunbr\expandafter {\romannumeral`&&@#2}%

557 {#1}%

558 }%

559 \long\def\XINT_applyunbr #1#2{\XINT_applyunbr_loop_a {}{#2}#1\xint_bye }%

560 \long\def\xintapplyunbracednoexpand #1#2%

561 {\XINT_applyunbr_loop_a {}{#1}#2\xint_bye }%

562 \long\def\XINT_applyunbr_loop_a #1#2#3%

563 {%

564 \xint_bye #3\XINT_applyunbr_end\xint_bye

565 \expandafter\XINT_applyunbr_loop_b

566 \expandafter {\romannumeral`&&@#2{#3}}{#1}{#2}%

567 }%

568 \long\def\XINT_applyunbr_loop_b #1#2{\XINT_applyunbr_loop_a {#2#1}}%

569 \long\def\XINT_applyunbr_end\xint_bye\expandafter\XINT_applyunbr_loop_b

570 \expandafter #1#2#3{ #2}%

19.20. \xintApplyUnbraced:x (WIP, commented-out)

Added at 1.4 (2020/01/31) [on 2020/01/27]. For usage in the NumPy-like slicing routines.

The items should not contain \xint: and the applied macro should not contain \empty.

Finally, xintexpr.sty 1.4 code did not use this macro but the f-expandable one \xintApplyUnbraced.

Modified at 1.4b (2020/02/25). For 1.4b I prefer to keep the \xintApplyUnbraced:x code commented

out, and classify it as WIP.

\long\def\xintApplyUnbraced:x #1#2%

{%

\XINT_applyunbraced:x_loop {#1}#2%

{\xint:\XINT_applyunbraced:x_loop_enda}{\xint:\XINT_applyunbraced:x_loop_endb}%

{\xint:\XINT_applyunbraced:x_loop_endc}{\xint:\XINT_applyunbraced:x_loop_endd}%

{\xint:\XINT_applyunbraced:x_loop_ende}{\xint:\XINT_applyunbraced:x_loop_endf}%

{\xint:\XINT_applyunbraced:x_loop_endg}{\xint:\XINT_applyunbraced:x_loop_endh}\xint_bye

}%

\long\def\XINT_applyunbraced:x_loop #1#2#3#4#5#6#7#8#9%

{%

\xint_gob_til_xint: #9\xint:

#1{#2}%

\empty#1{#3}%

\empty#1{#4}%

\empty#1{#5}%

\empty#1{#6}%

\empty#1{#7}%

\empty#1{#8}%

\empty#1{#9}%

\XINT_applyunbraced:x_loop {#1}%

}%

\long\def\XINT_applyunbraced:x_loop_endh\xint: #1\xint_bye{}%

\long\def\XINT_applyunbraced:x_loop_endg\xint: #1\empty#2\xint_bye{#1}%

\long\def\XINT_applyunbraced:x_loop_endf\xint: #1\empty

#2\empty#3\xint_bye{#1#2}%

\long\def\XINT_applyunbraced:x_loop_ende\xint: #1\empty

#2\empty

#3\empty#4\xint_bye{#1#2#3}%

275

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

\long\def\XINT_applyunbraced:x_loop_endd\xint: #1\empty

#2\empty

#3\empty

#4\empty#5\xint_bye{#1#2#3#4}%

\long\def\XINT_applyunbraced:x_loop_endc\xint: #1\empty

#2\empty

#3\empty

#4\empty

#5\empty#6\xint_bye{#1#2#3#4#5}%

\long\def\XINT_applyunbraced:x_loop_endb\xint: #1\empty

#2\empty

#3\empty

#4\empty

#5\empty

#6\empty#7\xint_bye{#1#2#3#4#5#6}%

\long\def\XINT_applyunbraced:x_loop_enda\xint: #1\empty

#2\empty

#3\empty

#4\empty

#5\empty

#6\empty

#7\empty#8\xint_bye{#1#2#3#4#5#6#7}%

19.21. \xintZip (WIP, not public)

Added at 1.4b (2020/02/25) [on 2020/02/25]. Support for zip(). Requires \expanded.

The implementation here thus considers the argument is already completely expanded and is a

sequence of nut-ples. I will come back at later date for more generic macros.

Consider even the name of the function zip() as WIP.

As per what this does, it imitates the zip() function. See xint-manual.pdf.

I use lame terminators. Will think again later on this. I have to be careful with the used

terminators, in particular with the NE context in mind.

Generally speaking I will think another day about efficiency else I will never start this.

OK, done. More compact than I initially thought. Various things should be commented upon here.

Well, actually not so compact in the end as I basically had to double the whole thing simply to avoid

the overhead of having to grab the final result delimited by some \xint_bye\xint_bye\xint_bye\xint_bye\ ⤸
empty terminator. Now actually rather \xint_bye\xint_bye\xint_bye\xint_bye\xint:

571 \def\xintZip #1{\expanded\XINT_zip_A#1\xint_bye\xint_bye}%

572 \def\XINT_zip_A#1%

573 {%

574 \xint_bye#1{\expandafter}\xint_bye

575 \expanded{\xint_noxpd{\XINT_ziptwo_A

576 #1\xint_bye\xint_bye\xint_bye\xint_bye\xint:}\expandafter}%

577 \expanded\XINT_zip_a

578 }%

579 \def\XINT_zip_a#1%

580 {%

581 \xint_bye#1\XINT_zip_terminator\xint_bye

582 \expanded{\xint_noxpd{\XINT_ziptwo_a

583 #1\xint_bye\xint_bye\xint_bye\xint_bye\xint:}\expandafter}%

584 \expanded\XINT_zip_a

585 }%

276

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

586 \def\XINT_zip_terminator\xint_bye#1\xint_bye{{}\empty\empty\empty\empty\xint:}%

587 \def\XINT_ziptwo_a #1#2#3#4#5\xint:#6#7#8#9%

588 {%

589 \bgroup

590 \xint_bye #1\XINT_ziptwo_e \xint_bye

591 \xint_bye #6\XINT_ziptwo_e \xint_bye {{#1}#6}%

592 \xint_bye #2\XINT_ziptwo_e \xint_bye

593 \xint_bye #7\XINT_ziptwo_e \xint_bye {{#2}#7}%

594 \xint_bye #3\XINT_ziptwo_e \xint_bye

595 \xint_bye #8\XINT_ziptwo_e \xint_bye {{#3}#8}%

596 \xint_bye #4\XINT_ziptwo_e \xint_bye

597 \xint_bye #9\XINT_ziptwo_e \xint_bye {{#4}#9}%

Attention here that #6 can very well deliver no tokens at all. But the \ifx will then do the

expected thing. Only mentioning!

By the way, the \xint_bye method means TeX needs to look into tokens but skipping braced groups.

A conditional based method lets TeX look only at the start but then it has to find \else or \fi so

here also it must looks at tokens, and actually goes into braced groups. But (written 2020/02/26)

I never did serious testing comparing the two, and in xint I have usually preferred \xint_bye/\xi ⤸
nt_gob_til_foo types of methods (they proved superior than \ifnum to check for 0000 in numerical

core context for example, at the early days when xint used blocks of 4 digits, not 8), or usage of

\if/\ifx only on single tokens, combined with some \xint_dothis/\xint_orthat syntax.

598 \ifx \empty#6\expandafter\XINT_zipone_a\fi

599 \XINT_ziptwo_b #5\xint:

600 }%

601 \def\XINT_zipone_a\XINT_ziptwo_b{\XINT_zipone_b}%

602 \def\XINT_ziptwo_b #1#2#3#4#5\xint:#6#7#8#9%

603 {%

604 \xint_bye #1\XINT_ziptwo_e \xint_bye

605 \xint_bye #6\XINT_ziptwo_e \xint_bye {{#1}#6}%

606 \xint_bye #2\XINT_ziptwo_e \xint_bye

607 \xint_bye #7\XINT_ziptwo_e \xint_bye {{#2}#7}%

608 \xint_bye #3\XINT_ziptwo_e \xint_bye

609 \xint_bye #8\XINT_ziptwo_e \xint_bye {{#3}#8}%

610 \xint_bye #4\XINT_ziptwo_e \xint_bye

611 \xint_bye #9\XINT_ziptwo_e \xint_bye {{#4}#9}%

612 \XINT_ziptwo_b #5\xint:

613 }%

614 \def\XINT_ziptwo_e #1\XINT_ziptwo_b #2\xint:#3\xint:

615 {\iffalse{\fi}\xint_bye\xint_bye\xint_bye\xint_bye\xint:}%

616 \def\XINT_zipone_b #1#2#3#4%

617 {%

618 \xint_bye #1\XINT_zipone_e \xint_bye {{#1}}%

619 \xint_bye #2\XINT_zipone_e \xint_bye {{#2}}%

620 \xint_bye #3\XINT_zipone_e \xint_bye {{#3}}%

621 \xint_bye #4\XINT_zipone_e \xint_bye {{#4}}%

622 \XINT_zipone_b

623 }%

624 \def\XINT_zipone_e #1\XINT_zipone_b #2\xint:

625 {\iffalse{\fi}\xint_bye\xint_bye\xint_bye\xint_bye\empty}%

626 \def\XINT_ziptwo_A #1#2#3#4#5\xint:#6#7#8#9%

627 {%

628 \bgroup

277

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

629 \xint_bye #1\XINT_ziptwo_end \xint_bye

630 \xint_bye #6\XINT_ziptwo_end \xint_bye {{#1}#6}%

631 \xint_bye #2\XINT_ziptwo_end \xint_bye

632 \xint_bye #7\XINT_ziptwo_end \xint_bye {{#2}#7}%

633 \xint_bye #3\XINT_ziptwo_end \xint_bye

634 \xint_bye #8\XINT_ziptwo_end \xint_bye {{#3}#8}%

635 \xint_bye #4\XINT_ziptwo_end \xint_bye

636 \xint_bye #9\XINT_ziptwo_end \xint_bye {{#4}#9}%

637 \ifx \empty#6\expandafter\XINT_zipone_A\fi

638 \XINT_ziptwo_B #5\xint:

639 }%

640 \def\XINT_zipone_A\XINT_ziptwo_B{\XINT_zipone_B}%

641 \def\XINT_ziptwo_B #1#2#3#4#5\xint:#6#7#8#9%

642 {%

643 \xint_bye #1\XINT_ziptwo_end \xint_bye

644 \xint_bye #6\XINT_ziptwo_end \xint_bye {{#1}#6}%

645 \xint_bye #2\XINT_ziptwo_end \xint_bye

646 \xint_bye #7\XINT_ziptwo_end \xint_bye {{#2}#7}%

647 \xint_bye #3\XINT_ziptwo_end \xint_bye

648 \xint_bye #8\XINT_ziptwo_end \xint_bye {{#3}#8}%

649 \xint_bye #4\XINT_ziptwo_end \xint_bye

650 \xint_bye #9\XINT_ziptwo_end \xint_bye {{#4}#9}%

651 \XINT_ziptwo_B #5\xint:

652 }%

653 \def\XINT_ziptwo_end #1\XINT_ziptwo_B #2\xint:#3\xint:{\iffalse{\fi}}%

654 \def\XINT_zipone_B #1#2#3#4%

655 {%

656 \xint_bye #1\XINT_zipone_end \xint_bye {{#1}}%

657 \xint_bye #2\XINT_zipone_end \xint_bye {{#2}}%

658 \xint_bye #3\XINT_zipone_end \xint_bye {{#3}}%

659 \xint_bye #4\XINT_zipone_end \xint_bye {{#4}}%

660 \XINT_zipone_B

661 }%

662 \def\XINT_zipone_end #1\XINT_zipone_B #2\xint:#3\xint:{\iffalse{\fi}}%

19.22. \xintSeq

Added at 1.09c (2013/10/09). Without the optional argument puts stress on the input stack, should

not be used to generated thousands of terms then.

Modified at 1.4j (2021/07/13). This venerable macro had a brace removal bug in case it produced

a single number: \xintSeq{10}{10} expanded to 10 not {10}. When I looked at the code the bug

looked almost deliberate to me, but reading the documentation (which I have not modified), the

behaviour is really unexpected. And the variant with step parameter \xintSeq[1]{10}{10} did

produce {10}, so yes, definitely it was a bug!

I take this occasion to do some style (and perhaps efficiency) refactoring in the coding. I

feel there is room for improvement, no time this time. And I don't touch the variant with step

parameter.

Memo: xintexpr has some variants, a priori on ultra quick look they do not look like having

similar bug as this one had.

663 \def\xintSeq {\romannumeral0\xintseq }%

664 \def\xintseq #1{\XINT_seq_chkopt #1\xint_bye }%

665 \def\XINT_seq_chkopt #1%

278

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

666 {%

667 \ifx [#1\expandafter\XINT_seq_opt

668 \else\expandafter\XINT_seq_noopt

669 \fi #1%

670 }%

671 \def\XINT_seq_noopt #1\xint_bye #2%

672 {%

673 \expandafter\XINT_seq

674 \the\numexpr#1\expandafter.\the\numexpr #2.%

675 }%

676 \def\XINT_seq #1.#2.%

677 {%

678 \ifnum #1=#2 \xint_dothis\XINT_seq_e\fi

679 \ifnum #2>#1 \xint_dothis\XINT_seq_pa\fi

680 \xint_orthat\XINT_seq_na

681 #2.{#1}{#2}%

682 }%

683 \def\XINT_seq_e#1.#2{}%

684 \def\XINT_seq_pa {\expandafter\XINT_seq_p\the\numexpr-\xint_c_i+}%

685 \def\XINT_seq_na {\expandafter\XINT_seq_n\the\numexpr\xint_c_i+}%

686 \def\XINT_seq_p #1.#2%

687 {%

688 \ifnum #1>#2

689 \expandafter\XINT_seq_p\the

690 \else

691 \expandafter\XINT_seq_e

692 \fi

693 \numexpr #1-\xint_c_i.{#2}{#1}%

694 }%

695 \def\XINT_seq_n #1.#2%

696 {%

697 \ifnum #1<#2

698 \expandafter\XINT_seq_n\the

699 \else

700 \expandafter\XINT_seq_e

701 \fi

702 \numexpr #1+\xint_c_i.{#2}{#1}%

703 }%

Note at time of the 1.4j bug fix : I definitely should improve this branch and diminish the number

of expandafter's but no time this time.

704 \def\XINT_seq_opt [\xint_bye #1]#2#3%

705 {%

706 \expandafter\XINT_seqo\expandafter

707 {\the\numexpr #2\expandafter}\expandafter

708 {\the\numexpr #3\expandafter}\expandafter

709 {\the\numexpr #1}%

710 }%

711 \def\XINT_seqo #1#2%

712 {%

713 \ifcase\ifnum #1=#2 0\else\ifnum #2>#1 1\else -1\fi\fi\space

714 \expandafter\XINT_seqo_a

715 \or

279

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

716 \expandafter\XINT_seqo_pa

717 \else

718 \expandafter\XINT_seqo_na

719 \fi

720 {#1}{#2}%

721 }%

722 \def\XINT_seqo_a #1#2#3{ {#1}}%

723 \def\XINT_seqo_o #1#2#3#4{ #4}%

724 \def\XINT_seqo_pa #1#2#3%

725 {%

726 \ifcase\ifnum #3=\xint_c_ 0\else\ifnum #3>\xint_c_ 1\else -1\fi\fi\space

727 \expandafter\XINT_seqo_o

728 \or

729 \expandafter\XINT_seqo_pb

730 \else

731 \xint_afterfi{\expandafter\space\xint_gobble_iv}%

732 \fi

733 {#1}{#2}{#3}{{#1}}%

734 }%

735 \def\XINT_seqo_pb #1#2#3%

736 {%

737 \expandafter\XINT_seqo_pc\expandafter{\the\numexpr #1+#3}{#2}{#3}%

738 }%

739 \def\XINT_seqo_pc #1#2%

740 {%

741 \ifnum #1>#2

742 \expandafter\XINT_seqo_o

743 \else

744 \expandafter\XINT_seqo_pd

745 \fi

746 {#1}{#2}%

747 }%

748 \def\XINT_seqo_pd #1#2#3#4{\XINT_seqo_pb {#1}{#2}{#3}{#4{#1}}}%

749 \def\XINT_seqo_na #1#2#3%

750 {%

751 \ifcase\ifnum #3=\xint_c_ 0\else\ifnum #3>\xint_c_ 1\else -1\fi\fi\space

752 \expandafter\XINT_seqo_o

753 \or

754 \xint_afterfi{\expandafter\space\xint_gobble_iv}%

755 \else

756 \expandafter\XINT_seqo_nb

757 \fi

758 {#1}{#2}{#3}{{#1}}%

759 }%

760 \def\XINT_seqo_nb #1#2#3%

761 {%

762 \expandafter\XINT_seqo_nc\expandafter{\the\numexpr #1+#3}{#2}{#3}%

763 }%

764 \def\XINT_seqo_nc #1#2%

765 {%

766 \ifnum #1<#2

767 \expandafter\XINT_seqo_o

280

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

768 \else

769 \expandafter\XINT_seqo_nd

770 \fi

771 {#1}{#2}%

772 }%

773 \def\XINT_seqo_nd #1#2#3#4{\XINT_seqo_nb {#1}{#2}{#3}{#4{#1}}}%

19.23. \xintloop, \xintbreakloop, \xintbreakloopanddo, \xintloopskiptonext

Added at 1.09g (2013/11/22) [on 2013/11/22].

Modified at 1.09h (2013/11/28). Made \long.

774 \long\def\xintloop #1#2\repeat {#1#2\xintloop_again\fi\xint_gobble_i {#1#2}}%

775 \long\def\xintloop_again\fi\xint_gobble_i #1{\fi

776 #1\xintloop_again\fi\xint_gobble_i {#1}}%

777 \long\def\xintbreakloop #1\xintloop_again\fi\xint_gobble_i #2{}%

778 \long\def\xintbreakloopanddo #1#2\xintloop_again\fi\xint_gobble_i #3{#1}%

779 \long\def\xintloopskiptonext #1\xintloop_again\fi\xint_gobble_i #2{%

780 #2\xintloop_again\fi\xint_gobble_i {#2}}%

19.24. \xintiloop, \xintiloopindex, \xintbracediloopindex,
\xintouteriloopindex, \xintbracedouteriloopindex, \xintbreakiloop,
\xintbreakiloopanddo, \xintiloopskiptonext, \xintiloopskipandredo

Added at 1.09g (2013/11/22) [on 2013/11/22].

Modified at 1.09h (2013/11/28). Made \long.

Added at 1.3b (2018/05/18) [on 2018/04/24]. “braced” variants.

781 \def\xintiloop [#1+#2]{%

782 \expandafter\xintiloop_a\the\numexpr #1\expandafter.\the\numexpr #2.}%

783 \long\def\xintiloop_a #1.#2.#3#4\repeat{%

784 #3#4\xintiloop_again\fi\xint_gobble_iii {#1}{#2}{#3#4}}%

785 \def\xintiloop_again\fi\xint_gobble_iii #1#2{%

786 \fi\expandafter\xintiloop_again_b\the\numexpr#1+#2.#2.}%

787 \long\def\xintiloop_again_b #1.#2.#3{%

788 #3\xintiloop_again\fi\xint_gobble_iii {#1}{#2}{#3}}%

789 \long\def\xintbreakiloop #1\xintiloop_again\fi\xint_gobble_iii #2#3#4{}%

790 \long\def\xintbreakiloopanddo
791 #1.#2\xintiloop_again\fi\xint_gobble_iii #3#4#5{#1}%

792 \long\def\xintiloopindex #1\xintiloop_again\fi\xint_gobble_iii #2%

793 {#2#1\xintiloop_again\fi\xint_gobble_iii {#2}}%

794 \long\def\xintbracediloopindex #1\xintiloop_again\fi\xint_gobble_iii #2%

795 {{#2}#1\xintiloop_again\fi\xint_gobble_iii {#2}}%

796 \long\def\xintouteriloopindex #1\xintiloop_again

797 #2\xintiloop_again\fi\xint_gobble_iii #3%

798 {#3#1\xintiloop_again #2\xintiloop_again\fi\xint_gobble_iii {#3}}%

799 \long\def\xintbracedouteriloopindex #1\xintiloop_again

800 #2\xintiloop_again\fi\xint_gobble_iii #3%

801 {{#3}#1\xintiloop_again #2\xintiloop_again\fi\xint_gobble_iii {#3}}%

802 \long\def\xintiloopskiptonext #1\xintiloop_again\fi\xint_gobble_iii #2#3{%

803 \expandafter\xintiloop_again_b \the\numexpr#2+#3.#3.}%

804 \long\def\xintiloopskipandredo #1\xintiloop_again\fi\xint_gobble_iii #2#3#4{%

805 #4\xintiloop_again\fi\xint_gobble_iii {#2}{#3}{#4}}%

281

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

19.25. \XINT_xflet

Added at 1.09e (2013/10/29) [on 2013/10/29]. We f-expand unbraced tokens and swallow arising

space tokens until the dust settles.

806 \def\XINT_xflet #1%

807 {%

808 \def\XINT_xflet_macro {#1}\XINT_xflet_zapsp

809 }%

810 \def\XINT_xflet_zapsp

811 {%

812 \expandafter\futurelet\expandafter\XINT_token

813 \expandafter\XINT_xflet_sp?\romannumeral`&&@%

814 }%

815 \def\XINT_xflet_sp?

816 {%

817 \ifx\XINT_token\XINT_sptoken

818 \expandafter\XINT_xflet_zapsp

819 \else\expandafter\XINT_xflet_zapspB

820 \fi

821 }%

822 \def\XINT_xflet_zapspB

823 {%

824 \expandafter\futurelet\expandafter\XINT_tokenB

825 \expandafter\XINT_xflet_spB?\romannumeral`&&@%

826 }%

827 \def\XINT_xflet_spB?

828 {%

829 \ifx\XINT_tokenB\XINT_sptoken

830 \expandafter\XINT_xflet_zapspB

831 \else\expandafter\XINT_xflet_eq?

832 \fi

833 }%

834 \def\XINT_xflet_eq?

835 {%

836 \ifx\XINT_token\XINT_tokenB

837 \expandafter\XINT_xflet_macro

838 \else\expandafter\XINT_xflet_zapsp

839 \fi

840 }%

19.26. \xintApplyInline

Added at 1.09a (2013/09/24). \xintApplyInline\macro{{a}{b}...{z}} has the same effect as ex-

ecuting \macro{a} and then applying again \xintApplyInline to the shortened list {{b}...{z}}

until nothing is left. This is a non-expandable command which will result in quicker code than

using \xintApplyUnbraced. It f-expands its second (list) argument first, which may thus be

encapsulated in a macro.

Modified at 1.09c (2013/10/09). Rewritten. Nota bene: uses catcode 3 Z as privated list termi-

nator.

841 \catcode`Z 3

842 \long\def\xintApplyInline #1#2%

843 {%

282

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

844 \long\expandafter\def\expandafter\XINT_inline_macro

845 \expandafter ##\expandafter 1\expandafter {#1{##1}}%

846 \XINT_xflet\XINT_inline_b #2Z% this Z has catcode 3

847 }%

848 \def\XINT_inline_b

849 {%

850 \ifx\XINT_token Z\expandafter\xint_gobble_i

851 \else\expandafter\XINT_inline_d\fi

852 }%

853 \long\def\XINT_inline_d #1%

854 {%

855 \long\def\XINT_item{{#1}}\XINT_xflet\XINT_inline_e

856 }%

857 \def\XINT_inline_e

858 {%

859 \ifx\XINT_token Z\expandafter\XINT_inline_w

860 \else\expandafter\XINT_inline_f\fi

861 }%

862 \def\XINT_inline_f

863 {%

864 \expandafter\XINT_inline_g\expandafter{\XINT_inline_macro {##1}}%

865 }%

866 \long\def\XINT_inline_g #1%

867 {%

868 \expandafter\XINT_inline_macro\XINT_item

869 \long\def\XINT_inline_macro ##1{#1}\XINT_inline_d

870 }%

871 \def\XINT_inline_w #1%

872 {%

873 \expandafter\XINT_inline_macro\XINT_item

874 }%

19.27. \xintFor, \xintFor*, \xintBreakFor, \xintBreakForAndDo

Added at 1.09c (2013/10/09) [on 2013/10/09]. A new kind of loop which uses macro parameters #1,

#2, #3, #4 rather than macros; while not expandable it survives executing code closing groups,

like what happens in an alignment with the & character. When inserted in a macro for later use,

the # character must be doubled.

The non-star variant works on a csv list, which it expands once, the star variant works on a

token list, which it (repeatedly) f-expands.

Modified at 1.09e (2013/10/29). Adds \XINT_forever with \xintintegers, \xintdimensions, \xintrationals

and \xintBreakFor, \xintBreakForAndDo, \xintifForFirst, \xintifForLast. On this occasion \xi ⤸
nt_firstoftwo and \xint_secondoftwo are made long.

Modified at 1.09f (2013/11/04). Rewrites large parts of \xintFor code in order to filter the comma

separated list via \xintCSVtoList which gets rid of spaces. The #1 in \XINT_for_forever? has

an initial space token which serves two purposes: preventing brace stripping, and stopping the

expansion made by \xintcsvtolist. If the \XINT_forever branch is taken, the added space will

not be a problem there.

Now allows all macro parameters from #1 to #9 in \xintFor, \xintFor*, and \XINT_forever.

Modified at 1.2i (2016/12/13). Slightly more robust \xintifForFirst/Last in case of nesting.

875 \def\XINT_tmpa #1#2{\ifnum #2<#1 \xint_afterfi {{#########2}}\fi}%

876 \def\XINT_tmpb #1#2{\ifnum #1<#2 \xint_afterfi {{#########2}}\fi}%

283

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

877 \def\XINT_tmpc #1%

878 {%

879 \expandafter\edef \csname XINT_for_left#1\endcsname

880 {\xintApplyUnbraced {\XINT_tmpa #1}{123456789}}%

881 \expandafter\edef \csname XINT_for_right#1\endcsname

882 {\xintApplyUnbraced {\XINT_tmpb #1}{123456789}}%

883 }%

884 \xintApplyInline \XINT_tmpc {123456789}%

885 \long\def\xintBreakFor #1Z{}%

886 \long\def\xintBreakForAndDo #1#2Z{#1}%

887 \def\xintFor {\let\xintifForFirst\xint_firstoftwo
888 \let\xintifForLast\xint_secondoftwo
889 \futurelet\XINT_token\XINT_for_ifstar }%

890 \def\XINT_for_ifstar {\ifx\XINT_token*\expandafter\XINT_forx

891 \else\expandafter\XINT_for \fi }%

892 \catcode`U 3 % with numexpr

893 \catcode`V 3 % with xintfrac.sty (xint.sty not enough)

894 \catcode`D 3 % with dimexpr

895 \def\XINT_flet_zapsp

896 {%

897 \futurelet\XINT_token\XINT_flet_sp?

898 }%

899 \def\XINT_flet_sp?

900 {%

901 \ifx\XINT_token\XINT_sptoken

902 \xint_afterfi{\expandafter\XINT_flet_zapsp\romannumeral0}%

903 \else\expandafter\XINT_flet_macro

904 \fi

905 }%

906 \long\def\XINT_for #1#2in#3#4#5%

907 {%

908 \expandafter\XINT_toks\expandafter

909 {\expandafter\XINT_for_d\the\numexpr #2\relax {#5}}%

910 \def\XINT_flet_macro {\expandafter\XINT_for_forever?\space}%

911 \expandafter\XINT_flet_zapsp #3Z%

912 }%

913 \def\XINT_for_forever? #1Z%

914 {%

915 \ifx\XINT_token U\XINT_to_forever\fi

916 \ifx\XINT_token V\XINT_to_forever\fi

917 \ifx\XINT_token D\XINT_to_forever\fi

918 \expandafter\the\expandafter\XINT_toks\romannumeral0\xintcsvtolist {#1}Z%

919 }%

920 \def\XINT_to_forever\fi #1\xintcsvtolist #2{\fi \XINT_forever #2}%

921 \long\def\XINT_forx *#1#2in#3#4#5%

922 {%

923 \expandafter\XINT_toks\expandafter

924 {\expandafter\XINT_forx_d\the\numexpr #2\relax {#5}}%

925 \XINT_xflet\XINT_forx_forever? #3Z%

926 }%

927 \def\XINT_forx_forever?

928 {%

284

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

929 \ifx\XINT_token U\XINT_to_forxever\fi

930 \ifx\XINT_token V\XINT_to_forxever\fi

931 \ifx\XINT_token D\XINT_to_forxever\fi

932 \XINT_forx_empty?

933 }%

934 \def\XINT_to_forxever\fi #1\XINT_forx_empty? {\fi \XINT_forever }%

935 \catcode`U 11

936 \catcode`D 11

937 \catcode`V 11

938 \def\XINT_forx_empty?

939 {%

940 \ifx\XINT_token Z\expandafter\xintBreakFor\fi

941 \the\XINT_toks

942 }%

943 \long\def\XINT_for_d #1#2#3%

944 {%

945 \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}%

946 \XINT_toks {{#3}}%

947 \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname

948 \the\XINT_toks \csname XINT_for_right#1\endcsname }%

949 \XINT_toks {\XINT_x\let\xintifForFirst\xint_secondoftwo

950 \let\xintifForLast\xint_secondoftwo\XINT_for_d #1{#2}}%

951 \futurelet\XINT_token\XINT_for_last?

952 }%

953 \long\def\XINT_forx_d #1#2#3%

954 {%

955 \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}%

956 \XINT_toks {{#3}}%

957 \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname

958 \the\XINT_toks \csname XINT_for_right#1\endcsname }%

959 \XINT_toks {\XINT_x\let\xintifForFirst\xint_secondoftwo

960 \let\xintifForLast\xint_secondoftwo\XINT_forx_d #1{#2}}%

961 \XINT_xflet\XINT_for_last?

962 }%

963 \def\XINT_for_last?

964 {%

965 \ifx\XINT_token Z\expandafter\XINT_for_last?yes\fi

966 \the\XINT_toks

967 }%

968 \def\XINT_for_last?yes

969 {%

970 \let\xintifForLast\xint_firstoftwo

971 \xintBreakForAndDo{\XINT_x\xint_gobble_i Z}%

972 }%

19.28. \XINT_forever, \xintintegers, \xintdimensions, \xintrationals

Added at 1.09e (2013/10/29). But this used inadvertently \xintiadd/\xintimul which have the un-

necessary \xintnum overhead.

Modified at 1.09f (2013/11/04). Use \xintiiadd/\xintiimul which do not have this overhead.

Also 1.09f uses \xintZapSpacesB for the \xintrationals case to get rid of leading and ending

spaces in the #4 and #5 delimited parameters of \XINT_forever_opt_a (for \xintintegers and

285

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

\xintdimensions this is not necessary, due to the use of \numexpr resp. \dimexpr in \XINT_? ⤸
expr_Ua, resp.\XINT_?expr_Da).

973 \catcode`U 3

974 \catcode`D 3

975 \catcode`V 3

976 \let\xintegers U%

977 \let\xintintegers U%

978 \let\xintdimensions D%

979 \let\xintrationals V%

980 \def\XINT_forever #1%

981 {%

982 \expandafter\XINT_forever_a

983 \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi a\expandafter\endcsname

984 \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi i\expandafter\endcsname

985 \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi \endcsname

986 }%

987 \catcode`U 11

988 \catcode`D 11

989 \catcode`V 11

990 \def\XINT_?expr_Ua #1#2%

991 {\expandafter{\expandafter\numexpr\the\numexpr #1\expandafter\relax

992 \expandafter\relax\expandafter}%

993 \expandafter{\the\numexpr #2}}%

994 \def\XINT_?expr_Da #1#2%

995 {\expandafter{\expandafter\dimexpr\number\dimexpr #1\expandafter\relax

996 \expandafter s\expandafter p\expandafter\relax\expandafter}%

997 \expandafter{\number\dimexpr #2}}%

998 \catcode`Z 11

999 \def\XINT_?expr_Va #1#2%

1000 {%

1001 \expandafter\XINT_?expr_Vb\expandafter

1002 {\romannumeral`&&@\xintrawwithzeros{\xintZapSpacesB{#2}}}%

1003 {\romannumeral`&&@\xintrawwithzeros{\xintZapSpacesB{#1}}}%

1004 }%

1005 \catcode`Z 3

1006 \def\XINT_?expr_Vb #1#2{\expandafter\XINT_?expr_Vc #2.#1.}%

1007 \def\XINT_?expr_Vc #1/#2.#3/#4.%

1008 {%

1009 \xintifEq {#2}{#4}%

1010 {\XINT_?expr_Vf {#3}{#1}{#2}}%

1011 {\expandafter\XINT_?expr_Vd\expandafter

1012 {\romannumeral0\xintiimul {#2}{#4}}%

1013 {\romannumeral0\xintiimul {#1}{#4}}%

1014 {\romannumeral0\xintiimul {#2}{#3}}%

1015 }%

1016 }%

1017 \def\XINT_?expr_Vd #1#2#3{\expandafter\XINT_?expr_Ve\expandafter {#2}{#3}{#1}}%

1018 \def\XINT_?expr_Ve #1#2{\expandafter\XINT_?expr_Vf\expandafter {#2}{#1}}%

1019 \def\XINT_?expr_Vf #1#2#3{{#2/#3}{{0}{#1}{#2}{#3}}}%

1020 \def\XINT_?expr_Ui {{\numexpr 1\relax}{1}}%

1021 \def\XINT_?expr_Di {{\dimexpr 0pt\relax}{65536}}%

1022 \def\XINT_?expr_Vi {{1/1}{0111}}%

286

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1023 \def\XINT_?expr_U #1#2%

1024 {\expandafter{\expandafter\numexpr\the\numexpr #1+#2\relax\relax}{#2}}%

1025 \def\XINT_?expr_D #1#2%

1026 {\expandafter{\expandafter\dimexpr\the\numexpr #1+#2\relax sp\relax}{#2}}%

1027 \def\XINT_?expr_V #1#2{\XINT_?expr_Vx #2}%

1028 \def\XINT_?expr_Vx #1#2%

1029 {%

1030 \expandafter\XINT_?expr_Vy\expandafter

1031 {\romannumeral0\xintiiadd {#1}{#2}}{#2}%

1032 }%

1033 \def\XINT_?expr_Vy #1#2#3#4%

1034 {%

1035 \expandafter{\romannumeral0\xintiiadd {#3}{#1}/#4}{{#1}{#2}{#3}{#4}}%

1036 }%

1037 \def\XINT_forever_a #1#2#3#4%

1038 {%

1039 \ifx #4[\expandafter\XINT_forever_opt_a

1040 \else\expandafter\XINT_forever_b

1041 \fi #1#2#3#4%

1042 }%

1043 \def\XINT_forever_b #1#2#3Z{\expandafter\XINT_forever_c\the\XINT_toks #2#3}%

1044 \long\def\XINT_forever_c #1#2#3#4#5%

1045 {\expandafter\XINT_forever_d\expandafter #2#4#5{#3}Z}%

1046 \def\XINT_forever_opt_a #1#2#3[#4+#5]#6Z%

1047 {%

1048 \expandafter\expandafter\expandafter

1049 \XINT_forever_opt_c\expandafter\the\expandafter\XINT_toks

1050 \romannumeral`&&@#1{#4}{#5}#3%

1051 }%

1052 \long\def\XINT_forever_opt_c #1#2#3#4#5#6{\XINT_forever_d #2{#4}{#5}#6{#3}Z}%

1053 \long\def\XINT_forever_d #1#2#3#4#5%

1054 {%

1055 \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#5}%

1056 \XINT_toks {{#2}}%

1057 \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname

1058 \the\XINT_toks \csname XINT_for_right#1\endcsname }%

1059 \XINT_x

1060 \let\xintifForFirst\xint_secondoftwo

1061 \let\xintifForLast\xint_secondoftwo

1062 \expandafter\XINT_forever_d\expandafter #1\romannumeral`&&@#4{#2}{#3}#4{#5}%

1063 }%

19.29. \xintForpair, \xintForthree, \xintForfour

Added at 1.09c (2013/10/09).

Modified at 1.09f (2013/11/04). \xintForpair delegate to \xintCSVtoList and its \xintZapSpacesB

the handling of spaces. Does not share code with \xintFor anymore.

\xintForpair extended to accept #1#2, #2#3 etc... up to #8#9, \xintForthree, #1#2#3 up to

#7#8#9, \xintForfour id.

Modified at 1.2i (2016/12/13). Slightly more robust \xintifForFirst/\xintifForLast in case of

nesting.

Modified at 1.4n (2025/09/05). Allow one final extraneous comma (formerly, such input caused a

287

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

crash). This goes via testing an extra token #6, which should be an opening parenthesis. The

potential brace removal changes behavior for illegal inputs. Successive commas in the input

list are still not allowed.

1064 \catcode`j 3

1065 \long\def\xintForpair #1#2#3in#4#5#6%

1066 {%

1067 \let\xintifForFirst\xint_firstoftwo

1068 \let\xintifForLast\xint_secondoftwo

1069 \XINT_toks {\XINT_forpair_d #2{#6}}%

1070 \expandafter\the\expandafter\XINT_toks #4jZ%

1071 }%

1072 \long\def\XINT_forpair_d #1#2#3(#4)#5#6%

1073 {%

1074 \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}%

1075 \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}%

1076 \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname

1077 \the\XINT_toks \csname XINT_for_right\the\numexpr#1+\xint_c_i\endcsname}%

1078 \if1\ifx #5j1\else\ifx#6j1\else0\fi\fi\expandafter\XINT_for_last?yes\fi

1079 \XINT_x

1080 \let\xintifForFirst\xint_secondoftwo

1081 \let\xintifForLast\xint_secondoftwo

1082 \XINT_forpair_d #1{#2}#6%

1083 }%

1084 \long\def\xintForthree #1#2#3in#4#5#6%

1085 {%

1086 \let\xintifForFirst\xint_firstoftwo

1087 \let\xintifForLast\xint_secondoftwo

1088 \XINT_toks {\XINT_forthree_d #2{#6}}%

1089 \expandafter\the\expandafter\XINT_toks #4jZ%

1090 }%

1091 \long\def\XINT_forthree_d #1#2#3(#4)#5#6%

1092 {%

1093 \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}%

1094 \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}%

1095 \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname

1096 \the\XINT_toks \csname XINT_for_right\the\numexpr#1+\xint_c_ii\endcsname}%

1097 \if1\ifx #5j1\else\ifx#6j1\else0\fi\fi\expandafter\XINT_for_last?yes\fi

1098 \XINT_x

1099 \let\xintifForFirst\xint_secondoftwo

1100 \let\xintifForLast\xint_secondoftwo

1101 \XINT_forthree_d #1{#2}#6%

1102 }%

1103 \long\def\xintForfour #1#2#3in#4#5#6%

1104 {%

1105 \let\xintifForFirst\xint_firstoftwo

1106 \let\xintifForLast\xint_secondoftwo

1107 \XINT_toks {\XINT_forfour_d #2{#6}}%

1108 \expandafter\the\expandafter\XINT_toks #4jZ%

1109 }%

1110 \long\def\XINT_forfour_d #1#2#3(#4)#5#6%

1111 {%

1112 \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}%

288

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1113 \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}%

1114 \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname

1115 \the\XINT_toks \csname XINT_for_right\the\numexpr#1+\xint_c_iii\endcsname}%

1116 \if1\ifx #5j1\else\ifx#6j1\else0\fi\fi\expandafter\XINT_for_last?yes\fi

1117 \XINT_x

1118 \let\xintifForFirst\xint_secondoftwo

1119 \let\xintifForLast\xint_secondoftwo

1120 \XINT_forfour_d #1{#2}#6%

1121 }%

1122 \catcode`Z 11

1123 \catcode`j 11

19.30. \xintAssign, \xintAssignArray, \xintDigitsOf
\xintAssign {a}{b}..{z}\to\A\B...\Z resp. \xintAssignArray {a}{b}..{z}\to\U.

\xintDigitsOf=\xintAssignArray.

Modified at 1.1c (2015/09/12). Belatedly corrects some "features" of \xintAssign which didn't

like the case of a space right before the "\to", or the case with the first token not an opening

brace and the subsequent material containing brace groups. The new code handles gracefully

these situations.

1124 \def\xintAssign{\def\XINT_flet_macro {\XINT_assign_fork}\XINT_flet_zapsp }%

1125 \def\XINT_assign_fork

1126 {%

1127 \let\XINT_assign_def\def

1128 \ifx\XINT_token[\expandafter\XINT_assign_opt

1129 \else\expandafter\XINT_assign_a

1130 \fi

1131 }%

1132 \def\XINT_assign_opt [#1]%

1133 {%

1134 \ifcsname #1def\endcsname

1135 \expandafter\let\expandafter\XINT_assign_def \csname #1def\endcsname

1136 \else

1137 \expandafter\let\expandafter\XINT_assign_def \csname xint#1def\endcsname

1138 \fi

1139 \XINT_assign_a

1140 }%

1141 \long\def\XINT_assign_a #1\to

1142 {%

1143 \def\XINT_flet_macro{\XINT_assign_b}%

1144 \expandafter\XINT_flet_zapsp\romannumeral`&&@#1\xint:\to

1145 }%

1146 \long\def\XINT_assign_b

1147 {%

1148 \ifx\XINT_token\bgroup

1149 \expandafter\XINT_assign_c

1150 \else\expandafter\XINT_assign_f

1151 \fi

1152 }%

1153 \long\def\XINT_assign_f #1\xint:\to #2%

1154 {%

1155 \XINT_assign_def #2{#1}%

289

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1156 }%

1157 \long\def\XINT_assign_c #1%

1158 {%

1159 \def\XINT_assign_tmp {#1}%

1160 \ifx\XINT_assign_tmp\xint_bracedstopper

1161 \expandafter\XINT_assign_e

1162 \else

1163 \expandafter\XINT_assign_d

1164 \fi

1165 }%

1166 \long\def\XINT_assign_d #1\to #2%

1167 {%

1168 \expandafter\XINT_assign_def\expandafter #2\expandafter{\XINT_assign_tmp}%

1169 \XINT_assign_c #1\to

1170 }%

1171 \def\XINT_assign_e #1\to {}%

1172 \def\xintRelaxArray #1%

1173 {%

1174 \edef\XINT_restoreescapechar {\escapechar\the\escapechar\relax}%

1175 \escapechar -1

1176 \expandafter\def\expandafter\xint_arrayname\expandafter {\string #1}%

1177 \XINT_restoreescapechar

1178 \xintiloop [\csname\xint_arrayname 0\endcsname+-1]

1179 \global

1180 \expandafter\let\csname\xint_arrayname\xintiloopindex\endcsname\relax

1181 \ifnum \xintiloopindex > \xint_c_

1182 \repeat

1183 \global\expandafter\let\csname\xint_arrayname 00\endcsname\relax

1184 \global\let #1\relax

1185 }%

1186 \def\xintAssignArray{\def\XINT_flet_macro {\XINT_assignarray_fork}%

1187 \XINT_flet_zapsp }%

1188 \def\XINT_assignarray_fork

1189 {%

1190 \let\XINT_assignarray_def\def

1191 \ifx\XINT_token[\expandafter\XINT_assignarray_opt

1192 \else\expandafter\XINT_assignarray

1193 \fi

1194 }%

1195 \def\XINT_assignarray_opt [#1]%

1196 {%

1197 \ifcsname #1def\endcsname

1198 \expandafter\let\expandafter\XINT_assignarray_def \csname #1def\endcsname

1199 \else

1200 \expandafter\let\expandafter\XINT_assignarray_def

1201 \csname xint#1def\endcsname

1202 \fi

1203 \XINT_assignarray

1204 }%

1205 \long\def\XINT_assignarray #1\to #2%

1206 {%

1207 \edef\XINT_restoreescapechar {\escapechar\the\escapechar\relax }%

290

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1208 \escapechar -1

1209 \expandafter\def\expandafter\xint_arrayname\expandafter {\string #2}%

1210 \XINT_restoreescapechar

1211 \def\xint_itemcount {0}%

1212 \expandafter\XINT_assignarray_loop \romannumeral`&&@#1\xint:

1213 \csname\xint_arrayname 00\expandafter\endcsname

1214 \csname\xint_arrayname 0\expandafter\endcsname

1215 \expandafter {\xint_arrayname}#2%

1216 }%

1217 \long\def\XINT_assignarray_loop #1%

1218 {%

1219 \def\XINT_assign_tmp {#1}%

1220 \ifx\XINT_assign_tmp\xint_bracedstopper

1221 \expandafter\def\csname\xint_arrayname 0\expandafter\endcsname

1222 \expandafter{\the\numexpr\xint_itemcount}%

1223 \expandafter\expandafter\expandafter\XINT_assignarray_end

1224 \else

1225 \expandafter\def\expandafter\xint_itemcount\expandafter

1226 {\the\numexpr\xint_itemcount+\xint_c_i}%

1227 \expandafter\XINT_assignarray_def

1228 \csname\xint_arrayname\xint_itemcount\expandafter\endcsname

1229 \expandafter{\XINT_assign_tmp }%

1230 \expandafter\XINT_assignarray_loop

1231 \fi

1232 }%

1233 \def\XINT_assignarray_end #1#2#3#4%

1234 {%

1235 \def #4##1%

1236 {%

1237 \romannumeral0\expandafter #1\expandafter{\the\numexpr ##1}%

1238 }%

1239 \def #1##1%

1240 {%

1241 \ifnum ##1<\xint_c_

1242 \xint_afterfi{\XINT_expandableerror{Array index is negative: ##1.} }%

1243 \else

1244 \xint_afterfi {%

1245 \ifnum ##1>#2

1246 \xint_afterfi

1247 {\XINT_expandableerror{Array index is beyond range: ##1 > #2.} }%

1248 \else\xint_afterfi

1249 {\expandafter\expandafter\expandafter\space\csname #3##1\endcsname}%

1250 \fi}%

1251 \fi

1252 }%

1253 }%

1254 \let\xintDigitsOf\xintAssignArray

291

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

19.31. CSV (non user documented) variants of Length, Keep, Trim, NthElt,
Reverse

Modified at 1.2j (2016/12/22). These routines are for use by \xintListSel:x:csv and \xintListSel ⤸
:f:csv from xintexpr, and also for the reversed and len functions. Refactored for 1.2j release,

following 1.2i updates to \xintKeep, \xintTrim, ...

These macros will remain undocumented in the user manual:

-- they exist primarily for internal use by the xintexpr parsers, hence don't have to be gen-

eral purpose; for example, they a priori need to handle only catcode 12 tokens (not true in

\xintNewExpr, though) hence they are not really worried about controlling brace stripping (nev-

ertheless 1.2j has paid some secondary attention to it, see below.) They are not worried about

normalizing leading spaces either, because none will be encountered when the macros are used as

auxiliaries to the expression parsers.

-- crucial design elements may change in future:

1. whether the handled lists must have or not have a final comma. Currently, the model is

the one of comma separated lists with **no** final comma. But this means that there can not be

a distinction of principle between a truly empty list and a list which contains one item which

turns out to be empty. More importantly it makes the coding more complicated as it is needed to

distinguish the empty list from the single-item list, both lacking commas.

For the internal use of xintexpr, it would be ok to require all list items to be terminated by

a comma, and this would bring quite some simplications here, but as initially I started with non-

terminated lists, I have left it this way in the 1.2j refactoring.

2. the way to represent the empty list. I was tempted for matter of optimization and synchro-

nization with xintexpr context to require the empty list to be always represented by a space token

and to not let the macros admit a completely empty input. But there were complications so for the

time being 1.2j does accept truly empty output (it is not distinguished from an input equal to a

space token) and produces empty output for empty list. This means that the status of the «nil» ob-

ject for the xintexpr parsers is not completely clarified (currently it is represented by a space

token).

The original Python slicing code in xintexpr 1.1 used \xintCSVtoList and \xintListWithSep{,}

to convert back and forth to token lists and apply \xintKeep/\xintTrim. Release 1.2g switched

to devoted f-expandable macros added to xinttools. Release 1.2j refactored all these macros as a

follow-up to 1.2i improvements to \xintKeep/\xintTrim. They were made \long on this occasion and

auxiliary \xintLengthUpTo:f:csv was added.

Leading spaces in items are currently maintained as is by the 1.2j macros, even by \xintNthEltPy:f:csv,

with the exception of the first item, as the list is f-expanded. Perhaps \xintNthEltPy:f:csv

should remove a leading space if present in the picked item; anyway, there are no spaces for the

lists handled internally by the Python slicer of xintexpr, except the «nil» object currently rep-

resented by exactly one space.

Kept items (with no leading spaces; but first item special as it will have lost a leading space

due to f-expansion) will lose a brace pair under \xintKeep:f:csv if the first argument was positive

and strictly less than the length of the list. This differs of course from \xintKeep (which always

braces items it outputs when used with positive first argument) and also from \xintKeepUnbraced

in the case when the whole list is kept. Actually the case of singleton list is special, and brace

removal will happen then.

This behaviour was otherwise for releases earlier than 1.2j and may change again.

Directly usable names are provided, but these macros (and the behaviour as described above) are

to be considered unstable for the time being.

19.31.1. \xintLength:f:csv

Added at 1.2g (2016/03/19).

292

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Modified at 1.2j (2016/12/22). Contrarily to \xintLength from xintkernel this one expands its

argument.

1255 \def\xintLength:f:csv {\romannumeral0\xintlength:f:csv}%

1256 \def\xintlength:f:csv #1%

1257 {\long\def\xintlength:f:csv ##1{%

1258 \expandafter#1\the\numexpr\expandafter\XINT_length:f:csv_a

1259 \romannumeral`&&@##1\xint:,\xint:,\xint:,\xint:,%

1260 \xint:,\xint:,\xint:,\xint:,\xint:,%

1261 \xint_c_ix,\xint_c_viii,\xint_c_vii,\xint_c_vi,%

1262 \xint_c_v,\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye

1263 \relax

1264 }}\xintlength:f:csv { }%

Must first check if empty list.

1265 \long\def\XINT_length:f:csv_a #1%

1266 {%

1267 \xint_gob_til_xint: #1\xint_c_\xint_bye\xint:%

1268 \XINT_length:f:csv_loop #1%

1269 }%

1270 \long\def\XINT_length:f:csv_loop #1,#2,#3,#4,#5,#6,#7,#8,#9,%

1271 {%

1272 \xint_gob_til_xint: #9\XINT_length:f:csv_finish\xint:%

1273 \xint_c_ix+\XINT_length:f:csv_loop

1274 }%

1275 \def\XINT_length:f:csv_finish\xint:\xint_c_ix+\XINT_length:f:csv_loop

1276 #1,#2,#3,#4,#5,#6,#7,#8,#9,{#9\xint_bye}%

19.31.2. \xintLengthUpTo:f:csv

Added at 1.2j (2016/12/22). \added{1.2j}\xintLengthUpTo:f:csv{N}{comma-list}. No ending

comma. Returns -0 if length>N, else returns difference N-length. **N must be non-negative!!**
Attention to the dot after \xint_bye for the loop interface.

1277 \def\xintLengthUpTo:f:csv {\romannumeral0\xintlengthupto:f:csv}%

1278 \long\def\xintlengthupto:f:csv #1#2%

1279 {%

1280 \expandafter\XINT_lengthupto:f:csv_a

1281 \the\numexpr#1\expandafter.%

1282 \romannumeral`&&@#2\xint:,\xint:,\xint:,\xint:,%

1283 \xint:,\xint:,\xint:,\xint:,%

1284 \xint_c_viii,\xint_c_vii,\xint_c_vi,\xint_c_v,%

1285 \xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye.%

1286 }%

Must first recognize if empty list. If this is the case, return N.

1287 \long\def\XINT_lengthupto:f:csv_a #1.#2%

1288 {%

1289 \xint_gob_til_xint: #2\XINT_lengthupto:f:csv_empty\xint:%

1290 \XINT_lengthupto:f:csv_loop_b #1.#2%

1291 }%

1292 \def\XINT_lengthupto:f:csv_empty\xint:%

1293 \XINT_lengthupto:f:csv_loop_b #1.#2\xint_bye.{ #1}%

1294 \def\XINT_lengthupto:f:csv_loop_a #1%

1295 {%

293

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1296 \xint_UDsignfork

1297 #1\XINT_lengthupto:f:csv_gt

1298 -\XINT_lengthupto:f:csv_loop_b

1299 \krof #1%

1300 }%

1301 \long\def\XINT_lengthupto:f:csv_gt #1\xint_bye.{-0}%

1302 \long\def\XINT_lengthupto:f:csv_loop_b #1.#2,#3,#4,#5,#6,#7,#8,#9,%

1303 {%

1304 \xint_gob_til_xint: #9\XINT_lengthupto:f:csv_finish_a\xint:%

1305 \expandafter\XINT_lengthupto:f:csv_loop_a\the\numexpr #1-\xint_c_viii.%

1306 }%

1307 \def\XINT_lengthupto:f:csv_finish_a\xint:

1308 \expandafter\XINT_lengthupto:f:csv_loop_a

1309 \the\numexpr #1-\xint_c_viii.#2,#3,#4,#5,#6,#7,#8,#9,%

1310 {%

1311 \expandafter\XINT_lengthupto:f:csv_finish_b\the\numexpr #1-#9\xint_bye

1312 }%

1313 \def\XINT_lengthupto:f:csv_finish_b #1#2.%

1314 {%

1315 \xint_UDsignfork

1316 #1{-0}%

1317 -{ #1#2}%

1318 \krof

1319 }%

19.31.3. \xintKeep:f:csv

Added at 1.2g (2016/03/19) [on 2016/03/17].

Modified at 1.2j (2016/12/22). Redone with use of \xintLengthUpTo:f:csv. Same code skeleton

as \xintKeep but handling comma separated but non terminated lists has complications. The

\xintKeep in case of a negative #1 uses \xintgobble, we don't have that for comma delimited

items, hence we do a special loop here (this style of loop is surely competitive with xintgobble

for a few dozens items and even more). The loop knows before starting that it will not go too

far.

1320 \def\xintKeep:f:csv {\romannumeral0\xintkeep:f:csv }%

1321 \long\def\xintkeep:f:csv #1#2%

1322 {%

1323 \expandafter\xint_stop_aftergobble

1324 \romannumeral0\expandafter\XINT_keep:f:csv_a

1325 \the\numexpr #1\expandafter.\expandafter{\romannumeral`&&@#2}%

1326 }%

1327 \def\XINT_keep:f:csv_a #1%

1328 {%

1329 \xint_UDzerominusfork

1330 #1-\XINT_keep:f:csv_keepnone

1331 0#1\XINT_keep:f:csv_neg

1332 0-{\XINT_keep:f:csv_pos #1}%

1333 \krof

1334 }%

1335 \long\def\XINT_keep:f:csv_keepnone .#1{,}%

1336 \long\def\XINT_keep:f:csv_neg #1.#2%

1337 {%

294

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1338 \expandafter\XINT_keep:f:csv_neg_done\expandafter,%

1339 \romannumeral0%

1340 \expandafter\XINT_keep:f:csv_neg_a\the\numexpr

1341 #1-\numexpr\XINT_length:f:csv_a

1342 #2\xint:,\xint:,\xint:,\xint:,%

1343 \xint:,\xint:,\xint:,\xint:,\xint:,%

1344 \xint_c_ix,\xint_c_viii,\xint_c_vii,\xint_c_vi,%

1345 \xint_c_v,\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye

1346 .#2\xint_bye

1347 }%

1348 \def\XINT_keep:f:csv_neg_a #1%

1349 {%

1350 \xint_UDsignfork

1351 #1{\expandafter\XINT_keep:f:csv_trimloop\the\numexpr-\xint_c_ix+}%

1352 -\XINT_keep:f:csv_keepall

1353 \krof

1354 }%

1355 \def\XINT_keep:f:csv_keepall #1.{ }%

1356 \long\def\XINT_keep:f:csv_neg_done #1\xint_bye{#1}%

1357 \def\XINT_keep:f:csv_trimloop #1#2.%

1358 {%

1359 \xint_gob_til_minus#1\XINT_keep:f:csv_trimloop_finish-%

1360 \expandafter\XINT_keep:f:csv_trimloop

1361 \the\numexpr#1#2-\xint_c_ix\expandafter.\XINT_keep:f:csv_trimloop_trimnine

1362 }%

1363 \long\def\XINT_keep:f:csv_trimloop_trimnine #1,#2,#3,#4,#5,#6,#7,#8,#9,{}%

1364 \def\XINT_keep:f:csv_trimloop_finish-%

1365 \expandafter\XINT_keep:f:csv_trimloop

1366 \the\numexpr-#1-\xint_c_ix\expandafter.\XINT_keep:f:csv_trimloop_trimnine

1367 {\csname XINT_trim:f:csv_finish#1\endcsname}%

1368 \long\def\XINT_keep:f:csv_pos #1.#2%

1369 {%

1370 \expandafter\XINT_keep:f:csv_pos_fork

1371 \romannumeral0\XINT_lengthupto:f:csv_a

1372 #1.#2\xint:,\xint:,\xint:,\xint:,%

1373 \xint:,\xint:,\xint:,\xint:,%

1374 \xint_c_viii,\xint_c_vii,\xint_c_vi,\xint_c_v,%

1375 \xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye.%

1376 .#1.{}#2\xint_bye%

1377 }%

1378 \def\XINT_keep:f:csv_pos_fork #1#2.%

1379 {%

1380 \xint_UDsignfork

1381 #1{\expandafter\XINT_keep:f:csv_loop\the\numexpr-\xint_c_viii+}%

1382 -\XINT_keep:f:csv_pos_keepall

1383 \krof

1384 }%

1385 \long\def\XINT_keep:f:csv_pos_keepall #1.#2#3\xint_bye{,#3}%

1386 \def\XINT_keep:f:csv_loop #1#2.%

1387 {%

1388 \xint_gob_til_minus#1\XINT_keep:f:csv_loop_end-%

1389 \expandafter\XINT_keep:f:csv_loop

295

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1390 \the\numexpr#1#2-\xint_c_viii\expandafter.\XINT_keep:f:csv_loop_pickeight

1391 }%

1392 \long\def\XINT_keep:f:csv_loop_pickeight

1393 #1#2,#3,#4,#5,#6,#7,#8,#9,{{#1,#2,#3,#4,#5,#6,#7,#8,#9}}%

1394 \def\XINT_keep:f:csv_loop_end-\expandafter\XINT_keep:f:csv_loop

1395 \the\numexpr-#1-\xint_c_viii\expandafter.\XINT_keep:f:csv_loop_pickeight

1396 {\csname XINT_keep:f:csv_end#1\endcsname}%

1397 \long\expandafter\def\csname XINT_keep:f:csv_end1\endcsname

1398 #1#2,#3,#4,#5,#6,#7,#8,#9\xint_bye {#1,#2,#3,#4,#5,#6,#7,#8}%

1399 \long\expandafter\def\csname XINT_keep:f:csv_end2\endcsname

1400 #1#2,#3,#4,#5,#6,#7,#8\xint_bye {#1,#2,#3,#4,#5,#6,#7}%

1401 \long\expandafter\def\csname XINT_keep:f:csv_end3\endcsname

1402 #1#2,#3,#4,#5,#6,#7\xint_bye {#1,#2,#3,#4,#5,#6}%

1403 \long\expandafter\def\csname XINT_keep:f:csv_end4\endcsname

1404 #1#2,#3,#4,#5,#6\xint_bye {#1,#2,#3,#4,#5}%

1405 \long\expandafter\def\csname XINT_keep:f:csv_end5\endcsname

1406 #1#2,#3,#4,#5\xint_bye {#1,#2,#3,#4}%

1407 \long\expandafter\def\csname XINT_keep:f:csv_end6\endcsname

1408 #1#2,#3,#4\xint_bye {#1,#2,#3}%

1409 \long\expandafter\def\csname XINT_keep:f:csv_end7\endcsname

1410 #1#2,#3\xint_bye {#1,#2}%

1411 \long\expandafter\def\csname XINT_keep:f:csv_end8\endcsname

1412 #1#2\xint_bye {#1}%

19.31.4. \xintTrim:f:csv

Added at 1.2g (2016/03/19) [on 2016/03/17].

Modified at 1.2j (2016/12/22). Redone on the basis of new \xintTrim.

1413 \def\xintTrim:f:csv {\romannumeral0\xinttrim:f:csv }%

1414 \long\def\xinttrim:f:csv #1#2%

1415 {%

1416 \expandafter\xint_stop_aftergobble

1417 \romannumeral0\expandafter\XINT_trim:f:csv_a

1418 \the\numexpr #1\expandafter.\expandafter{\romannumeral`&&@#2}%

1419 }%

1420 \def\XINT_trim:f:csv_a #1%

1421 {%

1422 \xint_UDzerominusfork

1423 #1-\XINT_trim:f:csv_trimnone

1424 0#1\XINT_trim:f:csv_neg

1425 0-{\XINT_trim:f:csv_pos #1}%

1426 \krof

1427 }%

1428 \long\def\XINT_trim:f:csv_trimnone .#1{,#1}%

1429 \long\def\XINT_trim:f:csv_neg #1.#2%

1430 {%

1431 \expandafter\XINT_trim:f:csv_neg_a\the\numexpr

1432 #1-\numexpr\XINT_length:f:csv_a

1433 #2\xint:,\xint:,\xint:,\xint:,%

1434 \xint:,\xint:,\xint:,\xint:,\xint:,%

1435 \xint_c_ix,\xint_c_viii,\xint_c_vii,\xint_c_vi,%

1436 \xint_c_v,\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye

296

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1437 .{}#2\xint_bye

1438 }%

1439 \def\XINT_trim:f:csv_neg_a #1%

1440 {%

1441 \xint_UDsignfork

1442 #1{\expandafter\XINT_keep:f:csv_loop\the\numexpr-\xint_c_viii+}%

1443 -\XINT_trim:f:csv_trimall

1444 \krof

1445 }%

1446 \def\XINT_trim:f:csv_trimall {\expandafter,\xint_bye}%

1447 \long\def\XINT_trim:f:csv_pos #1.#2%

1448 {%

1449 \expandafter\XINT_trim:f:csv_pos_done\expandafter,%

1450 \romannumeral0%

1451 \expandafter\XINT_trim:f:csv_loop\the\numexpr#1-\xint_c_ix.%

1452 #2\xint:,\xint:,\xint:,\xint:,\xint:,%

1453 \xint:,\xint:,\xint:,\xint:,\xint:\xint_bye

1454 }%

1455 \def\XINT_trim:f:csv_loop #1#2.%

1456 {%

1457 \xint_gob_til_minus#1\XINT_trim:f:csv_finish-%

1458 \expandafter\XINT_trim:f:csv_loop\the\numexpr#1#2\XINT_trim:f:csv_loop_trimnine

1459 }%

1460 \long\def\XINT_trim:f:csv_loop_trimnine #1,#2,#3,#4,#5,#6,#7,#8,#9,%

1461 {%

1462 \xint_gob_til_xint: #9\XINT_trim:f:csv_toofew\xint:-\xint_c_ix.%

1463 }%

1464 \def\XINT_trim:f:csv_toofew\xint:{*\xint_c_}%

1465 \def\XINT_trim:f:csv_finish-%

1466 \expandafter\XINT_trim:f:csv_loop\the\numexpr-#1\XINT_trim:f:csv_loop_trimnine

1467 {%

1468 \csname XINT_trim:f:csv_finish#1\endcsname

1469 }%

1470 \long\expandafter\def\csname XINT_trim:f:csv_finish1\endcsname

1471 #1,#2,#3,#4,#5,#6,#7,#8,{ }%

1472 \long\expandafter\def\csname XINT_trim:f:csv_finish2\endcsname

1473 #1,#2,#3,#4,#5,#6,#7,{ }%

1474 \long\expandafter\def\csname XINT_trim:f:csv_finish3\endcsname

1475 #1,#2,#3,#4,#5,#6,{ }%

1476 \long\expandafter\def\csname XINT_trim:f:csv_finish4\endcsname

1477 #1,#2,#3,#4,#5,{ }%

1478 \long\expandafter\def\csname XINT_trim:f:csv_finish5\endcsname

1479 #1,#2,#3,#4,{ }%

1480 \long\expandafter\def\csname XINT_trim:f:csv_finish6\endcsname

1481 #1,#2,#3,{ }%

1482 \long\expandafter\def\csname XINT_trim:f:csv_finish7\endcsname

1483 #1,#2,{ }%

1484 \long\expandafter\def\csname XINT_trim:f:csv_finish8\endcsname

1485 #1,{ }%

1486 \expandafter\let\csname XINT_trim:f:csv_finish9\endcsname\space

1487 \long\def\XINT_trim:f:csv_pos_done #1\xint:#2\xint_bye{#1}%

297

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

19.31.5. \xintNthEltPy:f:csv

Counts like Python starting at zero. Last refactored with 1.2j. Attention, makes currently no

effort at removing leading spaces in the picked item.

1488 \def\xintNthEltPy:f:csv {\romannumeral0\xintntheltpy:f:csv }%

1489 \long\def\xintntheltpy:f:csv #1#2%

1490 {%

1491 \expandafter\XINT_nthelt:f:csv_a

1492 \the\numexpr #1\expandafter.\expandafter{\romannumeral`&&@#2}%

1493 }%

1494 \def\XINT_nthelt:f:csv_a #1%

1495 {%

1496 \xint_UDsignfork

1497 #1\XINT_nthelt:f:csv_neg

1498 -\XINT_nthelt:f:csv_pos

1499 \krof #1%

1500 }%

1501 \long\def\XINT_nthelt:f:csv_neg -#1.#2%

1502 {%

1503 \expandafter\XINT_nthelt:f:csv_neg_fork

1504 \the\numexpr\XINT_length:f:csv_a

1505 #2\xint:,\xint:,\xint:,\xint:,%

1506 \xint:,\xint:,\xint:,\xint:,\xint:,%

1507 \xint_c_ix,\xint_c_viii,\xint_c_vii,\xint_c_vi,%

1508 \xint_c_v,\xint_c_iv,\xint_c_iii,\xint_c_ii,\xint_c_i,\xint_bye

1509 -#1.#2,\xint_bye

1510 }%

1511 \def\XINT_nthelt:f:csv_neg_fork #1%

1512 {%

1513 \if#1-\expandafter\xint_stop_afterbye\fi

1514 \expandafter\XINT_nthelt:f:csv_neg_done

1515 \romannumeral0%

1516 \expandafter\XINT_keep:f:csv_trimloop\the\numexpr-\xint_c_ix+#1%

1517 }%

1518 \long\def\XINT_nthelt:f:csv_neg_done#1,#2\xint_bye{ #1}%

1519 \long\def\XINT_nthelt:f:csv_pos #1.#2%

1520 {%

1521 \expandafter\XINT_nthelt:f:csv_pos_done

1522 \romannumeral0%

1523 \expandafter\XINT_trim:f:csv_loop\the\numexpr#1-\xint_c_ix.%

1524 #2\xint:,\xint:,\xint:,\xint:,\xint:,%

1525 \xint:,\xint:,\xint:,\xint:,\xint:,\xint_bye

1526 }%

1527 \def\XINT_nthelt:f:csv_pos_done #1{%

1528 \long\def\XINT_nthelt:f:csv_pos_done ##1,##2\xint_bye{%

1529 \xint_gob_til_xint:##1\XINT_nthelt:f:csv_pos_cleanup\xint:#1##1}%

1530 }\XINT_nthelt:f:csv_pos_done{ }%

This strange thing is in case the picked item was the last one, hence there was an ending \xint:

(we could not put a comma earlier for matters of not confusing empty list with a singleton list),

and we do this here to activate brace-stripping of item as all other items may be brace-stripped

if picked. This is done for coherence. Of course, in the context of the xintexpr.sty parsers,

there are no braces in list items...

298

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1531 \xint_firstofone{\long\def\XINT_nthelt:f:csv_pos_cleanup\xint:} %

1532 #1\xint:{ #1}%

19.31.6. \xintReverse:f:csv

Added at 1.2g (2016/03/19) [on 2016/03/17]. Contrarily to \xintReverseOrder from xintkernel.sty,

this one expands its argument. Handles empty list too. .

Modified at 1.2j (2016/12/22). Made \long.

1533 \def\xintReverse:f:csv {\romannumeral0\xintreverse:f:csv }%

1534 \long\def\xintreverse:f:csv #1%

1535 {%

1536 \expandafter\XINT_reverse:f:csv_loop

1537 \expandafter{\expandafter}\romannumeral`&&@#1,%

1538 \xint:,%

1539 \xint_bye,\xint_bye,\xint_bye,\xint_bye,%

1540 \xint_bye,\xint_bye,\xint_bye,\xint_bye,%

1541 \xint:

1542 }%

1543 \long\def\XINT_reverse:f:csv_loop #1#2,#3,#4,#5,#6,#7,#8,#9,%

1544 {%

1545 \xint_bye #9\XINT_reverse:f:csv_cleanup\xint_bye

1546 \XINT_reverse:f:csv_loop {,#9,#8,#7,#6,#5,#4,#3,#2#1}%

1547 }%

1548 \long\def\XINT_reverse:f:csv_cleanup\xint_bye\XINT_reverse:f:csv_loop #1#2\xint:

1549 {%

1550 \XINT_reverse:f:csv_finish #1%

1551 }%

1552 \long\def\XINT_reverse:f:csv_finish #1\xint:,{ }%

19.31.7. \xintFirstItem:f:csv

Added at 1.2k (2017/01/06). For use by first() in \xintexpr-essions, and some amount of compati-

bility with \xintNewExpr.

1553 \def\xintFirstItem:f:csv {\romannumeral0\xintfirstitem:f:csv}%

1554 \long\def\xintfirstitem:f:csv #1%

1555 {%

1556 \expandafter\XINT_first:f:csv_a\romannumeral`&&@#1,\xint_bye

1557 }%

1558 \long\def\XINT_first:f:csv_a #1,#2\xint_bye{ #1}%

19.31.8. \xintLastItem:f:csv

Added at 1.2k (2017/01/06). Based on and sharing code with xintkernel's \xintLastItem from 1.2i.

Output empty if input empty. f-expands its argument (hence first item, if not protected.) For

use by last() in \xintexpr-essions with to some extent \xintNewExpr compatibility.

1559 \def\xintLastItem:f:csv {\romannumeral0\xintlastitem:f:csv}%

1560 \long\def\xintlastitem:f:csv #1%

1561 {%

1562 \expandafter\XINT_last:f:csv_loop\expandafter{\expandafter}\expandafter.%

1563 \romannumeral`&&@#1,%

1564 \xint:\XINT_last_loop_enda,\xint:\XINT_last_loop_endb,%

1565 \xint:\XINT_last_loop_endc,\xint:\XINT_last_loop_endd,%

299

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1566 \xint:\XINT_last_loop_ende,\xint:\XINT_last_loop_endf,%

1567 \xint:\XINT_last_loop_endg,\xint:\XINT_last_loop_endh,\xint_bye

1568 }%

1569 \long\def\XINT_last:f:csv_loop #1.#2,#3,#4,#5,#6,#7,#8,#9,%

1570 {%

1571 \xint_gob_til_xint: #9%

1572 {#8}{#7}{#6}{#5}{#4}{#3}{#2}{#1}\xint:

1573 \XINT_last:f:csv_loop {#9}.%

1574 }%

19.31.9. \xintKeep:x:csv

Added at 1.2j (2016/12/22). To xintexpr. Moved here at 1.4. Not part of publicly supported

macros, may be removed at any time.

1575 \def\xintKeep:x:csv #1#2%

1576 {%

1577 \expandafter\xint_gobble_i

1578 \romannumeral0\expandafter\XINT_keep:x:csv_pos

1579 \the\numexpr #1\expandafter.\expandafter{\romannumeral`&&@#2}%

1580 }%

1581 \def\XINT_keep:x:csv_pos #1.#2%

1582 {%

1583 \expandafter\XINT_keep:x:csv_loop\the\numexpr#1-\xint_c_viii.%

1584 #2\xint_Bye,\xint_Bye,\xint_Bye,\xint_Bye,%

1585 \xint_Bye,\xint_Bye,\xint_Bye,\xint_Bye,\xint_bye

1586 }%

1587 \def\XINT_keep:x:csv_loop #1%

1588 {%

1589 \xint_gob_til_minus#1\XINT_keep:x:csv_finish-%

1590 \XINT_keep:x:csv_loop_pickeight #1%

1591 }%

1592 \def\XINT_keep:x:csv_loop_pickeight #1.#2,#3,#4,#5,#6,#7,#8,#9,%

1593 {%

1594 ,#2,#3,#4,#5,#6,#7,#8,#9%

1595 \expandafter\XINT_keep:x:csv_loop\the\numexpr#1-\xint_c_viii.%

1596 }%

1597 \def\XINT_keep:x:csv_finish-\XINT_keep:x:csv_loop_pickeight -#1.%

1598 {%

1599 \csname XINT_keep:x:csv_finish#1\endcsname

1600 }%

1601 \expandafter\def\csname XINT_keep:x:csv_finish1\endcsname

1602 #1,#2,#3,#4,#5,#6,#7,{,#1,#2,#3,#4,#5,#6,#7\xint_Bye}%

1603 \expandafter\def\csname XINT_keep:x:csv_finish2\endcsname

1604 #1,#2,#3,#4,#5,#6,{,#1,#2,#3,#4,#5,#6\xint_Bye}%

1605 \expandafter\def\csname XINT_keep:x:csv_finish3\endcsname

1606 #1,#2,#3,#4,#5,{,#1,#2,#3,#4,#5\xint_Bye}%

1607 \expandafter\def\csname XINT_keep:x:csv_finish4\endcsname

1608 #1,#2,#3,#4,{,#1,#2,#3,#4\xint_Bye}%

1609 \expandafter\def\csname XINT_keep:x:csv_finish5\endcsname

1610 #1,#2,#3,{,#1,#2,#3\xint_Bye}%

1611 \expandafter\def\csname XINT_keep:x:csv_finish6\endcsname

1612 #1,#2,{,#1,#2\xint_Bye}%

300

TOC
TOC, xintkernel, xinttools , xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1613 \expandafter\def\csname XINT_keep:x:csv_finish7\endcsname

1614 #1,{,#1\xint_Bye}%

1615 \expandafter\let\csname XINT_keep:x:csv_finish8\endcsname\xint_Bye

19.31.10. Public names for the undocumented csv macros: \xintCSVLength, \xintCSVKeep,
\xintCSVKeepx, \xintCSVTrim, \xintCSVNthEltPy, \xintCSVReverse, \xintCSVFirstItem,
\xintCSVLastItem

Completely unstable macros: currently they expand the list argument and want no final comma.

But for matters of xintexpr.sty I could as well decide to require a final comma, and then I could

simplify implementation but of course this would break the macros if used with current function-

alities.

1616 \let\xintCSVLength \xintLength:f:csv

1617 \let\xintCSVKeep \xintKeep:f:csv

1618 \let\xintCSVKeepx \xintKeep:x:csv

1619 \let\xintCSVTrim \xintTrim:f:csv

1620 \let\xintCSVNthEltPy \xintNthEltPy:f:csv

1621 \let\xintCSVReverse \xintReverse:f:csv

1622 \let\xintCSVFirstItem\xintFirstItem:f:csv
1623 \let\xintCSVLastItem \xintLastItem:f:csv

1624 \let\XINT_tmpa\relax \let\XINT_tmpb\relax \let\XINT_tmpc\relax

1625 \XINTrestorecatcodesendinput%

301

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

20. Package xintcore implementation

.1 Catcodes, 𝜀-TEX and reload detection . . 302

.2 Package identification 303

.3 (WIP!) Error conditions and exceptions . 303
Routines handling integers as lists of token digits 306
.4 \XINT_cuz_small 306
.5 \xintNum, \xintiNum 306
.6 \xintiiSgn 307
.7 \xintiiOpp 308
.8 \xintiiAbs 308
.9 \xintFDg 308
.10 \xintLDg 309
.11 \xintDouble 309
.12 \xintHalf 310
.13 \xintInc 310
.14 \xintDec 311
.15 \xintDSL 311
.16 \xintDSR 312
.17 \xintDSRr 312
Blocks of eight digits 313
.18 \XINT_cuz 313
.19 \XINT_cuz_byviii 313
.20 \XINT_unsep_loop 313
.21 \XINT_unsep_cuzsmall 314
.22 \XINT_div_unsepQ 314
.23 \XINT_div_unsepR 315
.24 \XINT_zeroes_forviii 315

.25 \XINT_sepbyviii_Z 315

.26 \XINT_sepbyviii_andcount 316

.27 \XINT_rsepbyviii 316

.28 \XINT_sepandrev 317

.29 \XINT_sepandrev_andcount 317

.30 \XINT_rev_nounsep 318

.31 \XINT_unrevbyviii 318
Core arithmetic 319
.32 \xintiiAdd 319
.33 \xintiiCmp 322
.34 \xintiiSub 324
.35 \xintiiMul 330
.36 \xintiiDivision 333
Derived arithmetic 348
.37 \xintiiQuo, \xintiiRem 348
.38 \xintiiDivRound 348
.39 \xintiiDivTrunc 349
.40 \xintiiModTrunc 349
.41 \xintiiDivMod 350
.42 \xintiiDivFloor 351
.43 \xintiiMod 351
.44 \xintiiSqr 351
.45 \xintiiPow 352
.46 \xintiiFac 355
.47 \XINT_useiimessage 358

Got split off from xint with release 1.1.

The core arithmetic routines have been entirely rewritten for release 1.2. The 1.2i and 1.2l

brought again some improvements.

The commenting continues (2025/09/06) to be very sparse: actually it got worse than ever with

release 1.2. I will possibly add comments at a later date, but for the time being the new routines

are not commented at all.

1.3 removes all macros which were deprecated at 1.2o.

20.1. Catcodes, 𝜺-TEX and reload detection
The code for reload detection was initially copied from Heiko Oberdiek's packages, then modified.

The method for catcodes was also initially directly inspired by these packages.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode44=12 % ,

8 \catcode46=12 % .

9 \catcode58=12 % :

10 \catcode94=7 % ^

11 \def\empty{}\def\space{ }\newlinechar10

302

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

12 \def\z{\endgroup}%

13 \expandafter\let\expandafter\x\csname ver@xintcore.sty\endcsname

14 \expandafter\let\expandafter\w\csname ver@xintkernel.sty\endcsname

15 \expandafter\ifx\csname numexpr\endcsname\relax

16 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

17 \immediate\write128{^^JPackage xintcore Warning:^^J%

18 \space\space\space\space

19 \numexpr not available, aborting input.^^J}%

20 \else

21 \PackageWarningNoLine{xintcore}{\numexpr not available, aborting input}%

22 \fi

23 \def\z{\endgroup\endinput}%

24 \else

25 \ifx\x\relax % plain-TeX, first loading of xintcore.sty

26 \ifx\w\relax % but xintkernel.sty not yet loaded.

27 \def\z{\endgroup\input xintkernel.sty\relax}%

28 \fi

29 \else

30 \ifx\x\empty % LaTeX, first loading,

31 % variable is initialized, but \ProvidesPackage not yet seen

32 \ifx\w\relax % xintkernel.sty not yet loaded.

33 \def\z{\endgroup\RequirePackage{xintkernel}}%

34 \fi

35 \else

36 \def\z{\endgroup\endinput}% xintkernel already loaded.

37 \fi

38 \fi

39 \fi

40 \z%

41 \XINTsetupcatcodes% defined in xintkernel.sty

20.2. Package identification
42 \XINT_providespackage

43 \ProvidesPackage{xintcore}%

44 [2025/09/06 v1.4o Expandable arithmetic on big integers (JFB)]%

20.3. (WIP!) Error conditions and exceptions
As per the Mike Cowlishaw/IBM's General Decimal Arithmetic Specification

http://speleotrove.com/decimal/decarith.html

and the Python3 implementation in its Decimal module.

Clamped, ConversionSyntax, DivisionByZero, DivisionImpossible, DivisionUndefined, Inexact,

InsufficientStorage, InvalidContext, InvalidOperation, Overflow, Inexact, Rounded, Subnormal,

Underflow.

X3.274 rajoute LostDigits

Python rajoute FloatOperation (et n'inclut pas InsufficientStorage)

quote de decarith.pdf: The Clamped, Inexact, Rounded, and Subnormal conditions can coincide

with each other or with other conditions. In these cases then any trap enabled for another condi-

tion takes precedence over (is handled before) all of these, any Subnormal trap takes precedence

over Inexact, any Inexact trap takes precedence over Rounded, and any Rounded trap takes prece-

dence over Clamped.

WORK IN PROGRESS ! (1.2l, 2017/07/26)

303

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

I follow the Python terminology: a trapped signal means it raises an exception which for us

means an expandable error message with some possible user interaction. In this WIP state, the

interaction is commented out. A non-trapped signal or condition would activate a (presumably

silent) handler.

Here, no signal-raising condition is "ignored" and all are "trapped" which means that error

handlers are never activated, thus left in garbage state in the code.

Various conditions can raise the same signal.

Only signals, not conditions, raise Flags.

If a signal is ignored it does not raise a Flag, but it activates the signal handler (by default

now no signal is ignored.)

If a signal is not ignored it raises a Flag and then if it is not trapped it activates the handler

of the _condition_.

If trapped (which is default now) an «exception» is raised, which means an expandable error

message (I copied over the LaTeX3 code for expandable error messages, basically) interrupts the

TeX run. In future, user input could be solicited, but currently this is commented out.

For now macros to reset flags are done but without public interface nor documentation.

Only four conditions are currently possibly encountered:

- InvalidOperation

- DivisionByZero

- DivisionUndefined (which signals InvalidOperation)

- Underflow

I did it quickly, anyhow this will become more palpable when some of the Decimal Specification is

actually implemented. The plan is to first do the X3.274 norm, then more complete implementation

will follow... perhaps...

45 \csname XINT_Clamped_istrapped\endcsname

46 \csname XINT_ConversionSyntax_istrapped\endcsname

47 \csname XINT_DivisionByZero_istrapped\endcsname

48 \csname XINT_DivisionImpossible_istrapped\endcsname

49 \csname XINT_DivisionUndefined_istrapped\endcsname

50 \csname XINT_InvalidOperation_istrapped\endcsname

51 \csname XINT_Overflow_istrapped\endcsname

52 \csname XINT_Underflow_istrapped\endcsname

53 \catcode`- 11

54 \def\XINT_ConversionSyntax-signal {{InvalidOperation}}%

55 \let\XINT_DivisionImpossible-signal\XINT_ConversionSyntax-signal

56 \let\XINT_DivisionUndefined-signal \XINT_ConversionSyntax-signal

57 \let\XINT_InvalidContext-signal \XINT_ConversionSyntax-signal

58 \catcode`- 12

59 \def\XINT_signalcondition #1{\expandafter\XINT_signalcondition_a

60 \romannumeral0\ifcsname XINT_#1-signal\endcsname

61 \xint_dothis{\csname XINT_#1-signal\endcsname}%

62 \fi\xint_orthat{{#1}}{#1}}%

63 \def\XINT_signalcondition_a #1#2#3#4#5{% copied over from Python Decimal module

#1=signal, #2=condition, #3=explanation for user, #4=context for error handlers, #5=used.

64 \ifcsname XINT_#1_isignoredflag\endcsname

65 \xint_dothis{\csname XINT_#1.handler\endcsname {#4}}%

66 \fi

67 \expandafter\xint_gobble_i\csname XINT_#1Flag_ON\endcsname

68 \unless\ifcsname XINT_#1_istrapped\endcsname

69 \xint_dothis{\csname XINT_#2.handler\endcsname {#4}}%

70 \fi

71 \xint_orthat{%

304

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

72 % the flag raised is named after the signal #1, but we show condition

73 % #2

On 2021/05/19, 1.4g, I re-examined \XINT_expandableerror experimenting at first with an added ^^J

to shift to next line the actual message.

Previously I was calling it thrice (condition #2, user context #3, next tokens #5) here but it

seems more reasonable to use it only once. As total size is so limited, I decided to only display

#3 (information for user) and drop the #2 (condition, first argument of \XINT_signalcondition)

and the display of the #5 (next tokens, fourth argument of \XINT_signalcondition).

Besides, why was I doing here \xint_stop_atfirstofone{#5}, which adds limitations to usage?

Now inserting #5 directly so callers will have to insert a \romannumeral0 stopping space token

if needed. I thus have to update all usages across (mainly, I think) xintfrac. Done, but using

here \xint_firstofone{#5}. This looks silly, but allows some hypothetical future usage by user

of I\xintUse{stuff} usage where \xintUse would be \xint_firstofthree.

The problem is that this would have to be explained to user in the error context but space there

is so extremely limited...

After having reviewed existing usage of \XINT_signalcondition, I noticed there was free space

in most cases and added here " (hit RET)" after #3.

I experimented with ^^J here too (its effect in the "context" is independent of the \newlinechar

setting, but it depends on the engine: works with TeXLive pdftex, requires -8bit with xetex)

However, due to \errorcontextlines being 5 by default in etex (but xintsession 0.2b sets it to

0), I finally decided to not insert a ^^J (&&J) at all to separate the " (hit RET)" hint.

On 2021/05/20 evening I found another completely different method for \XINT_expandableerror,

which has some advantages. In particular it allows me to not use here "#3 (hit RET)" but simply

"#3" as such information can be integrated in a non size limited generic message.

The maximal size of #3 here was increased from 48 characters (method with \xint/ being badly de-

limited), to now 55 characters, longer messages being truncated at 56 characters with an appended

"\ETC.".

74 \XINT_expandableerror{#3}%

75 % not for X3.274

76 % \XINT_expandableerror{<RET>, or I\xintUse{...}<RET>, or I\xintCTRLC<RET>}%

77 \xint_firstofone{#5}%

78 }%

79 }%

80 %% \def\xintUse{\xint_firstofthree} % defined in xint.sty

81 \def\XINT_ifFlagRaised #1{%

82 \ifcsname XINT_#1Flag_ON\endcsname

83 \expandafter\xint_firstoftwo

84 \else

85 \expandafter\xint_secondoftwo

86 \fi}%

87 \def\XINT_resetFlag #1%

88 {\expandafter\let\csname XINT_#1Flag_ON\endcsname\XINT_undefined}%

89 \def\XINT_resetFlags {% WIP

90 \XINT_resetFlag{InvalidOperation}% also from DivisionUndefined

91 \XINT_resetFlag{DivisionByZero}%

92 \XINT_resetFlag{Underflow}% (\xintiiPow with negative exponent)

93 \XINT_resetFlag{Overflow}% not encountered so far in xint code 1.2l

94 % .. others ..

95 }%

96 \def\XINT_RaiseFlag #1{\expandafter\xint_gobble_i\csname XINT_#1Flag_ON\endcsname}%

NOT IMPLEMENTED! WORK IN PROGRESS! (ALL SIGNALS TRAPPED, NO HANDLERS USED)

97 \catcode`. 11

305

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

98 \let\XINT_Clamped.handler\xint_firstofone % WIP

99 \def\XINT_InvalidOperation.handler#1{_NaN}% WIP

100 \def\XINT_ConversionSyntax.handler#1{_NaN}% WIP

101 \def\XINT_DivisionByZero.handler#1{_SignedInfinity(#1)}% WIP

102 \def\XINT_DivisionImpossible.handler#1{_NaN}% WIP

103 \def\XINT_DivisionUndefined.handler#1{_NaN}% WIP

104 \let\XINT_Inexact.handler\xint_firstofone % WIP

105 \def\XINT_InvalidContext.handler#1{_NaN}% WIP

106 \let\XINT_Rounded.handler\xint_firstofone % WIP

107 \let\XINT_Subnormal.handler\xint_firstofone% WIP

108 \def\XINT_Overflow.handler#1{_NaN}% WIP

109 \def\XINT_Underflow.handler#1{_NaN}% WIP

110 \catcode`. 12

Routines handling integers as lists of token digits
Routines handling big integers which are lists of digit tokens with no special additional struc-

ture.

Some routines do not accept non properly terminated inputs like "\the\numexpr1", or "\the\math ⤸
code`\-", others do.

These routines or their sub-routines are mainly for internal usage.

20.4. \XINT_cuz_small
\XINT_cuz_small removes leading zeroes from the first eight digits. Expands following \romannum ⤸
eral0. At least one digit is produced.

111 \def\XINT_cuz_small#1{%
112 \def\XINT_cuz_small ##1##2##3##4##5##6##7##8%

113 {%

114 \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8\relax

115 }}\XINT_cuz_small{ }%

20.5. \xintNum, \xintiNum
For example \xintNum {----+-+++---+----000000000000003}

Very old routine got completely rewritten at 1.2l.

New code uses \numexpr governed expansion and fixes some issues of former version particularly

regarding inputs of the \numexpr...\relax type without \the or \number prefix, and/or possibly no

terminating \relax.

\xintiNum{\numexpr 1}\foo in earlier versions caused premature expansion of \foo.

\xintiNum{\the\numexpr 1} was ok, but a bit luckily so.

Also, up to 1.2k inclusive, the macro fetched tokens eight by eight, and not nine by nine as is

done now. I have no idea why.

116 \def\xintiNum {\romannumeral0\xintinum }%

117 \def\xintinum #1%

118 {%

119 \expandafter\XINT_num_cleanup\the\numexpr\expandafter\XINT_num_loop

120 \romannumeral`&&@#1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z

121 }%

122 \def\xintNum {\romannumeral0\xintnum }%

123 \let\xintnum\xintinum

306

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Attention \xintnum (hence \xintNum) gets redefined by xintfrac. Click on names to see the redef-

inition there.

124 \def\XINT_num #1%

125 {%

126 \expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop

127 #1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z

128 }%

129 \def\XINT_num_loop #1#2#3#4#5#6#7#8#9%

130 {%

131 \xint_gob_til_xint: #9\XINT_num_end\xint:

132 #1#2#3#4#5#6#7#8#9%

133 \ifnum \numexpr #1#2#3#4#5#6#7#8#9+\xint_c_ = \xint_c_

means that so far only signs encountered, (if syntax is legal) then possibly zeroes or a terminated

or not terminated \numexpr evaluating to zero In that latter case a correct zero will be produced

in the end.

134 \expandafter\XINT_num_loop

135 \else

non terminated \numexpr (with nine tokens total) are safe as after \fi, there is then \xint:

136 \expandafter\relax

137 \fi

138 }%

139 \def\XINT_num_end\xint:#1\xint:{#1+\xint_c_\xint:}% empty input ok

140 \def\XINT_num_cleanup #1\xint:#2\Z { #1}%

20.6. \xintiiSgn
1.2l made \xintiiSgn robust against non terminated input.

1.2o deprecates here \xintSgn (it requires xintfrac.sty).

141 \def\xintiiSgn {\romannumeral0\xintiisgn }%

142 \def\xintiisgn #1%

143 {%

144 \expandafter\XINT_sgn \romannumeral`&&@#1\xint:

145 }%

146 \def\XINT_sgn #1#2\xint:

147 {%

148 \xint_UDzerominusfork

149 #1-{ 0}%

150 0#1{-1}%

151 0-{ 1}%

152 \krof

153 }%

154 \def\XINT_Sgn #1#2\xint:

155 {%

156 \xint_UDzerominusfork

157 #1-{0}%

158 0#1{-1}%

159 0-{1}%

160 \krof

161 }%

162 \def\XINT_cntSgn #1#2\xint:

163 {%

307

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

164 \xint_UDzerominusfork

165 #1-\xint_c_

166 0#1\xint_c_mone

167 0-\xint_c_i

168 \krof

169 }%

20.7. \xintiiOpp
Attention, \xintiiOpp non robust against non terminated inputs. Reason is I don't want to have to

grab a delimiter at the end, as everything happens "upfront".

170 \def\xintiiOpp {\romannumeral0\xintiiopp }%

171 \def\xintiiopp #1%

172 {%

173 \expandafter\XINT_opp \romannumeral`&&@#1%

174 }%

175 \def\XINT_Opp #1{\romannumeral0\XINT_opp #1}%

176 \def\XINT_opp #1%

177 {%

178 \xint_UDzerominusfork

179 #1-{ 0}% zero

180 0#1{ }% negative

181 0-{ -#1}% positive

182 \krof

183 }%

20.8. \xintiiAbs
Attention \xintiiAbs non robust against non terminated input.

184 \def\xintiiAbs {\romannumeral0\xintiiabs }%

185 \def\xintiiabs #1%

186 {%

187 \expandafter\XINT_abs \romannumeral`&&@#1%

188 }%

189 \def\XINT_abs #1%

190 {%

191 \xint_UDsignfork

192 #1{ }%

193 -{ #1}%

194 \krof

195 }%

196 \def\XINT_Abs #1%

197 {%

198 \xint_UDsignfork

199 #1{}%

200 -{#1}%

201 \krof

202 }%

20.9. \xintFDg
FIRST DIGIT.

308

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1.2l: \xintiiFDg made robust against non terminated input.

1.2o deprecates \xintiiFDg, gives to \xintFDg former meaning of \xintiiFDg.

203 \def\xintFDg {\romannumeral0\xintfdg }%

204 \def\xintfdg #1{\expandafter\XINT_fdg \romannumeral`&&@#1\xint:\Z}%

205 \def\XINT_FDg #1%

206 {\romannumeral0\expandafter\XINT_fdg\romannumeral`&&@\xintnum{#1}\xint:\Z }%

207 \def\XINT_fdg #1#2#3\Z

208 {%

209 \xint_UDzerominusfork

210 #1-{ 0}% zero

211 0#1{ #2}% negative

212 0-{ #1}% positive

213 \krof

214 }%

20.10. \xintLDg
LAST DIGIT.

Rewritten for 1.2i (2016/12/10). Surprisingly perhaps, it is faster than \xintLastItem from

xintkernel.sty despite the \numexpr operations.

1.2o deprecates \xintiiLDg, gives to \xintLDg former meaning of \xintiiLDg.

Attention \xintLDg non robust against non terminated input.

215 \def\xintLDg {\romannumeral0\xintldg }%

216 \def\xintldg #1{\expandafter\XINT_ldg_fork\romannumeral`&&@#1%

217 \XINT_ldg_c{}{}{}{}{}{}{}{}\xint_bye\relax}%

218 \def\XINT_ldg_fork #1%

219 {%

220 \xint_UDsignfork

221 #1\XINT_ldg

222 -{\XINT_ldg#1}%

223 \krof

224 }%

225 \def\XINT_ldg #1{%

226 \def\XINT_ldg ##1##2##3##4##5##6##7##8##9%

227 {\expandafter#1%

228 \the\numexpr##9##8##7##6##5##4##3##2##1*\xint_c_+\XINT_ldg_a##9}%

229 }\XINT_ldg{ }%

230 \def\XINT_ldg_a#1#2{\XINT_ldg_cbye#2\XINT_ldg_d#1\XINT_ldg_c\XINT_ldg_b#2}%

231 \def\XINT_ldg_b#1#2#3#4#5#6#7#8#9{#9#8#7#6#5#4#3#2#1*\xint_c_+\XINT_ldg_a#9}%

232 \def\XINT_ldg_c #1#2\xint_bye{#1}%

233 \def\XINT_ldg_cbye #1\XINT_ldg_c{}%

234 \def\XINT_ldg_d#1#2\xint_bye{#1}%

20.11. \xintDouble
Attention \xintDouble non robust against non terminated input.

235 \def\xintDouble {\romannumeral0\xintdouble}%

236 \def\xintdouble #1{\expandafter\XINT_dbl_fork\romannumeral`&&@#1%

237 \xint_bye2345678\xint_bye*\xint_c_ii\relax}%

238 \def\XINT_dbl_fork #1%

239 {%

240 \xint_UDsignfork

309

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

241 #1\XINT_dbl_neg

242 -\XINT_dbl

243 \krof #1%

244 }%

245 \def\XINT_dbl_neg-{\expandafter-\romannumeral0\XINT_dbl}%

246 \def\XINT_dbl #1{%

247 \def\XINT_dbl ##1##2##3##4##5##6##7##8%

248 {\expandafter#1\the\numexpr##1##2##3##4##5##6##7##8\XINT_dbl_a}%

249 }\XINT_dbl{ }%

250 \def\XINT_dbl_a #1#2#3#4#5#6#7#8%

251 {\expandafter\XINT_dbl_e\the\numexpr 1#1#2#3#4#5#6#7#8\XINT_dbl_a}%

252 \def\XINT_dbl_e#1{*\xint_c_ii\if#13+\xint_c_i\fi\relax}%

20.12. \xintHalf
Attention \xintHalf non robust against non terminated input.

253 \def\xintHalf {\romannumeral0\xinthalf}%

254 \def\xinthalf #1{\expandafter\XINT_half_fork\romannumeral`&&@#1%

255 \xint_bye\xint_Bye345678\xint_bye

256 *\xint_c_v+\xint_c_v)/\xint_c_x-\xint_c_i\relax}%

257 \def\XINT_half_fork #1%

258 {%

259 \xint_UDsignfork

260 #1\XINT_half_neg

261 -\XINT_half

262 \krof #1%

263 }%

264 \def\XINT_half_neg-{\xintiiopp\XINT_half}%

265 \def\XINT_half #1{%

266 \def\XINT_half ##1##2##3##4##5##6##7##8%

267 {\expandafter#1\the\numexpr(##1##2##3##4##5##6##7##8\XINT_half_a}%

268 }\XINT_half{ }%

269 \def\XINT_half_a#1{\xint_Bye#1\xint_bye\XINT_half_b#1}%

270 \def\XINT_half_b #1#2#3#4#5#6#7#8%

271 {\expandafter\XINT_half_e\the\numexpr(1#1#2#3#4#5#6#7#8\XINT_half_a}%

272 \def\XINT_half_e#1{*\xint_c_v+#1-\xint_c_v)\relax}%

20.13. \xintInc
1.2i much delayed complete rewrite in 1.2 style.

As we take 9 by 9 with the input save stack at 5000 this allows a bit less than 9 times 2500 =

22500 digits on input.

Attention \xintInc non robust against non terminated input.

273 \def\xintInc {\romannumeral0\xintinc}%

274 \def\xintinc #1{\expandafter\XINT_inc_fork\romannumeral`&&@#1%

275 \xint_bye23456789\xint_bye+\xint_c_i\relax}%

276 \def\XINT_inc_fork #1%

277 {%

278 \xint_UDsignfork

279 #1\XINT_inc_neg

280 -\XINT_inc

281 \krof #1%

310

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

282 }%

283 \def\XINT_inc_neg-#1\xint_bye#2\relax

284 {\xintiiopp\XINT_dec #1\XINT_dec_bye234567890\xint_bye}%

285 \def\XINT_inc #1{%

286 \def\XINT_inc ##1##2##3##4##5##6##7##8##9%

287 {\expandafter#1\the\numexpr##1##2##3##4##5##6##7##8##9\XINT_inc_a}%

288 }\XINT_inc{ }%

289 \def\XINT_inc_a #1#2#3#4#5#6#7#8#9%

290 {\expandafter\XINT_inc_e\the\numexpr 1#1#2#3#4#5#6#7#8#9\XINT_inc_a}%

291 \def\XINT_inc_e#1{\if#12+\xint_c_i\fi\relax}%

20.14. \xintDec
1.2i much delayed complete rewrite in the 1.2 style. Things are a bit more complicated than

\xintInc because 2999999999 is too big for TeX.

Attention \xintDec non robust against non terminated input.

292 \def\xintDec {\romannumeral0\xintdec}%

293 \def\xintdec #1{\expandafter\XINT_dec_fork\romannumeral`&&@#1%

294 \XINT_dec_bye234567890\xint_bye}%

295 \def\XINT_dec_fork #1%

296 {%

297 \xint_UDsignfork

298 #1\XINT_dec_neg

299 -\XINT_dec

300 \krof #1%

301 }%

302 \def\XINT_dec_neg-#1\XINT_dec_bye#2\xint_bye

303 {\expandafter-%

304 \romannumeral0\XINT_inc #1\xint_bye23456789\xint_bye+\xint_c_i\relax}%

305 \def\XINT_dec #1{%

306 \def\XINT_dec ##1##2##3##4##5##6##7##8##9%

307 {\expandafter#1\the\numexpr##1##2##3##4##5##6##7##8##9\XINT_dec_a}%

308 }\XINT_dec{ }%

309 \def\XINT_dec_a #1#2#3#4#5#6#7#8#9%

310 {\expandafter\XINT_dec_e\the\numexpr 1#1#2#3#4#5#6#7#8#9\XINT_dec_a}%

311 \def\XINT_dec_bye #1\XINT_dec_a#2#3\xint_bye

312 {\if#20-\xint_c_ii\relax+\else-\fi\xint_c_i\relax}%

313 \def\XINT_dec_e#1{\unless\if#11\xint_dothis{-\xint_c_i#1}\fi\xint_orthat\relax}%

20.15. \xintDSL
DECIMAL SHIFT LEFT (=MULTIPLICATION PAR 10). Rewritten for 1.2i. This was very old code... I

never came back to it, but I should have rewritten it long time ago.

Attention \xintDSL non robust against non terminated input.

314 \def\xintDSL {\romannumeral0\xintdsl }%

315 \def\xintdsl #1{\expandafter\XINT_dsl\romannumeral`&&@#10}%

316 \def\XINT_dsl#1{%

317 \def\XINT_dsl ##1{\xint_gob_til_zero ##1\xint_dsl_zero 0#1##1}%

318 }\XINT_dsl{ }%

319 \def\xint_dsl_zero 0 0{ }%

311

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

20.16. \xintDSR
Decimal shift right, truncates towards zero. Rewritten for 1.2i. Limited to 22483 digits on

input.

Attention \xintDSR non robust against non terminated input.

320 \def\xintDSR{\romannumeral0\xintdsr}%
321 \def\xintdsr #1{\expandafter\XINT_dsr_fork\romannumeral`&&@#1%

322 \xint_bye\xint_Bye3456789\xint_bye+\xint_c_v)/\xint_c_x-\xint_c_i\relax}%

323 \def\XINT_dsr_fork #1%

324 {%

325 \xint_UDsignfork

326 #1\XINT_dsr_neg

327 -\XINT_dsr

328 \krof #1%

329 }%

330 \def\XINT_dsr_neg-{\xintiiopp\XINT_dsr}%

331 \def\XINT_dsr #1{%

332 \def\XINT_dsr ##1##2##3##4##5##6##7##8##9%

333 {\expandafter#1\the\numexpr(##1##2##3##4##5##6##7##8##9\XINT_dsr_a}%

334 }\XINT_dsr{ }%

335 \def\XINT_dsr_a#1{\xint_Bye#1\xint_bye\XINT_dsr_b#1}%

336 \def\XINT_dsr_b #1#2#3#4#5#6#7#8#9%

337 {\expandafter\XINT_dsr_e\the\numexpr(1#1#2#3#4#5#6#7#8#9\XINT_dsr_a}%

338 \def\XINT_dsr_e #1{)\relax}%

20.17. \xintDSRr
New with 1.2i. Decimal shift right, rounds away from zero; done in the 1.2 spirit (with much delay,

sorry). Used by \xintRound, \xintDivRound.

This is about the first time I am happy that the division in \numexpr rounds!

Attention \xintDSRr non robust against non terminated input.

339 \def\xintDSRr{\romannumeral0\xintdsrr}%
340 \def\xintdsrr #1{\expandafter\XINT_dsrr_fork\romannumeral`&&@#1%

341 \xint_bye\xint_Bye3456789\xint_bye/\xint_c_x\relax}%

342 \def\XINT_dsrr_fork #1%

343 {%

344 \xint_UDsignfork

345 #1\XINT_dsrr_neg

346 -\XINT_dsrr

347 \krof #1%

348 }%

349 \def\XINT_dsrr_neg-{\xintiiopp\XINT_dsrr}%

350 \def\XINT_dsrr #1{%

351 \def\XINT_dsrr ##1##2##3##4##5##6##7##8##9%

352 {\expandafter#1\the\numexpr##1##2##3##4##5##6##7##8##9\XINT_dsrr_a}%

353 }\XINT_dsrr{ }%

354 \def\XINT_dsrr_a#1{\xint_Bye#1\xint_bye\XINT_dsrr_b#1}%

355 \def\XINT_dsrr_b #1#2#3#4#5#6#7#8#9%

356 {\expandafter\XINT_dsrr_e\the\numexpr1#1#2#3#4#5#6#7#8#9\XINT_dsrr_a}%

357 \let\XINT_dsrr_e\XINT_inc_e

312

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Blocks of eight digits
The lingua of release 1.2.

20.18. \XINT_cuz
This (launched by \romannumeral0) iterately removes all leading zeroes from a sequence of 8N dig-

its ended by \R.

Rewritten for 1.2l, now uses \numexpr governed expansion and \ifnum test rather than delimited

gobbling macros.

Note 2015/11/28: with only four digits the gob_til_fourzeroes had proved in some old testing

faster than \ifnum test. But with eight digits, the execution times are much closer, as I tested

back then.

358 \def\XINT_cuz #1{%

359 \def\XINT_cuz {\expandafter#1\the\numexpr\XINT_cuz_loop}%

360 }\XINT_cuz{ }%

361 \def\XINT_cuz_loop #1#2#3#4#5#6#7#8#9%

362 {%

363 #1#2#3#4#5#6#7#8%

364 \xint_gob_til_R #9\XINT_cuz_hitend\R

365 \ifnum #1#2#3#4#5#6#7#8>\xint_c_

366 \expandafter\XINT_cuz_cleantoend

367 \else\expandafter\XINT_cuz_loop

368 \fi #9%

369 }%

370 \def\XINT_cuz_hitend\R #1\R{\relax}%

371 \def\XINT_cuz_cleantoend #1\R{\relax #1}%

20.19. \XINT_cuz_byviii
This removes eight by eight leading zeroes from a sequence of 8N digits ended by \R. Thus, we still

have 8N digits on output. Expansion started by \romannumeral0

372 \def\XINT_cuz_byviii #1#2#3#4#5#6#7#8#9%

373 {%

374 \xint_gob_til_R #9\XINT_cuz_byviii_e \R

375 \xint_gob_til_eightzeroes #1#2#3#4#5#6#7#8\XINT_cuz_byviii_z 00000000%

376 \XINT_cuz_byviii_done #1#2#3#4#5#6#7#8#9%

377 }%

378 \def\XINT_cuz_byviii_z 00000000\XINT_cuz_byviii_done 00000000{\XINT_cuz_byviii}%

379 \def\XINT_cuz_byviii_done #1\R { #1}%

380 \def\XINT_cuz_byviii_e\R #1\XINT_cuz_byviii_done #2\R{ #2}%

20.20. \XINT_unsep_loop
This is used as

\the\numexpr0\XINT_unsep_loop (blocks of 1<8digits>!)

\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax

It removes the 1's and !'s, and outputs the 8N digits with a 0 token as as prefix which will have

to be cleaned out by caller.

Actually it does not matter whether the blocks contain really 8 digits, all that matters is that

they have 1 as first digit (and at most 9 digits after that to obey the TeX-\numexpr bound).

Done at 1.2l for usage by other macros. The similar code in earlier releases was strangely in

O(N^2) style, apparently to avoid some memory constraints. But these memory constraints related

313

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

to \numexpr chaining seems to be in many places in xint code base. The 1.2l version is written in

the 1.2i style of \xintInc etc... and is compatible with some 1! block without digits among the

treated blocks, they will disappear.

381 \def\XINT_unsep_loop #1!#2!#3!#4!#5!#6!#7!#8!#9!%

382 {%

383 \expandafter\XINT_unsep_clean

384 \the\numexpr #1\expandafter\XINT_unsep_clean

385 \the\numexpr #2\expandafter\XINT_unsep_clean

386 \the\numexpr #3\expandafter\XINT_unsep_clean

387 \the\numexpr #4\expandafter\XINT_unsep_clean

388 \the\numexpr #5\expandafter\XINT_unsep_clean

389 \the\numexpr #6\expandafter\XINT_unsep_clean

390 \the\numexpr #7\expandafter\XINT_unsep_clean

391 \the\numexpr #8\expandafter\XINT_unsep_clean

392 \the\numexpr #9\XINT_unsep_loop

393 }%

394 \def\XINT_unsep_clean 1{\relax}%

20.21. \XINT_unsep_cuzsmall
This is used as

\romannumeral0\XINT_unsep_cuzsmall (blocks of 1<8d>!)

\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax

It removes the 1's and !'s, and removes the leading zeroes *of the first block*.

Redone for 1.2l: the 1.2 variant was strangely in O(N^2) style.

395 \def\XINT_unsep_cuzsmall
396 {%

397 \expandafter\XINT_unsep_cuzsmall_x\the\numexpr0\XINT_unsep_loop

398 }%

399 \def\XINT_unsep_cuzsmall_x #1{%

400 \def\XINT_unsep_cuzsmall_x 0##1##2##3##4##5##6##7##8%

401 {%

402 \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8\relax

403 }}\XINT_unsep_cuzsmall_x{ }%

20.22. \XINT_div_unsepQ
This is used by division to remove separators from the produced quotient. The quotient is produced

in the correct order. The routine will also remove leading zeroes. An extra initial block of 8

zeroes is possible and thus if present must be removed. Then the next eight digits must be cleaned

of leading zeroes. Attention that there might be a single block of 8 zeroes. Expansion launched

by \romannumeral0.

Rewritten for 1.2l in 1.2i style.

404 \def\XINT_div_unsepQ_delim {\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax\Z}%

405 \def\XINT_div_unsepQ
406 {%

407 \expandafter\XINT_div_unsepQ_x\the\numexpr0\XINT_unsep_loop

408 }%

409 \def\XINT_div_unsepQ_x #1{%

410 \def\XINT_div_unsepQ_x 0##1##2##3##4##5##6##7##8##9%

411 {%

412 \xint_gob_til_Z ##9\XINT_div_unsepQ_one\Z

314

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

413 \xint_gob_til_eightzeroes ##1##2##3##4##5##6##7##8\XINT_div_unsepQ_y 00000000%

414 \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8\relax ##9%

415 }}\XINT_div_unsepQ_x{ }%

416 \def\XINT_div_unsepQ_y #1{%

417 \def\XINT_div_unsepQ_y ##1\relax ##2##3##4##5##6##7##8##9%

418 {%

419 \expandafter#1\the\numexpr ##2##3##4##5##6##7##8##9\relax

420 }}\XINT_div_unsepQ_y{ }%

421 \def\XINT_div_unsepQ_one#1\expandafter{\expandafter}%

20.23. \XINT_div_unsepR
This is used by division to remove separators from the produced remainder. The remainder is here

in correct order. It must be cleaned of leading zeroes, possibly all the way.

Also rewritten for 1.2l, the 1.2 version was O(N^2) style.

Terminator \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax\R

We have a need for something like \R because it is not guaranteed the thing is not actually zero.

422 \def\XINT_div_unsepR
423 {%

424 \expandafter\XINT_div_unsepR_x\the\numexpr0\XINT_unsep_loop

425 }%

426 \def\XINT_div_unsepR_x#1{%

427 \def\XINT_div_unsepR_x 0{\expandafter#1\the\numexpr\XINT_cuz_loop}%

428 }\XINT_div_unsepR_x{ }%

20.24. \XINT_zeroes_forviii
\romannumeral0\XINT_zeroes_forviii #1\R\R\R\R\R\R\R\R{10}0000001\W

produces a string of k 0's such that k+length(#1) is smallest bigger multiple of eight.

429 \def\XINT_zeroes_forviii #1#2#3#4#5#6#7#8%

430 {%

431 \xint_gob_til_R #8\XINT_zeroes_forviii_end\R\XINT_zeroes_forviii

432 }%

433 \def\XINT_zeroes_forviii_end#1{%

434 \def\XINT_zeroes_forviii_end\R\XINT_zeroes_forviii ##1##2##3##4##5##6##7##8##9\W

435 {%

436 \expandafter#1\xint_gob_til_one ##2##3##4##5##6##7##8%

437 }}\XINT_zeroes_forviii_end{ }%

20.25. \XINT_sepbyviii_Z
This is used as

\the\numexpr\XINT_sepbyviii_Z <8Ndigits>\XINT_sepbyviii_Z_end 2345678\relax

It produces 1<8d>!...1<8d>!1;!

Prior to 1.2l it used \Z as terminator (hence the name). At 1.2l a switch to ; was done. This

was at a time I thought perhaps I would use an internal format maintaining such 8 digits blocks,

and this had to be compatible with the \csname...\endcsname encapsulation in \xintexpr parsers.

That rationale is obsolete since 1.4 usage of \expanded in xintexpr, but if an internal format is

one day used it would be nice to be able to externalize it easily, so catcode 12 tokens are the most

convenient.

As the expansion is done via successive \numexpr, it is convenient to use something such as ;

which terminates it and stays there. The ! itself would do. But it proved convenient to have

unique ending pattern. I could use two ! perhaps.

315

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Modified at 1.4n (2025/09/05). Unfortunately LuaMetaTeX has given to ; and : a meaning as op-

erators inside its \numexpr. Let's hope ! does not acquire meaning too there. Anyway here I

only need to use \relax;! in \XINT_sepbyviii_Z_end. First step in a tedious check of the entire

codebase...

438 \def\XINT_sepbyviii_Z #1#2#3#4#5#6#7#8%

439 {%

440 1#1#2#3#4#5#6#7#8\expandafter!\the\numexpr\XINT_sepbyviii_Z

441 }%

442 \def\XINT_sepbyviii_Z_end #1\relax {\relax;!}%

20.26. \XINT_sepbyviii_andcount
This is used as

\the\numexpr\XINT_sepbyviii_andcount <8Ndigits>%

\XINT_sepbyviii_end 2345678\relax

\xint_c_vii!\xint_c_vi!\xint_c_v!\xint_c_iv!%

\xint_c_iii!\xint_c_ii!\xint_c_i!\xint_c_\W

It will produce

1<8d>!1<8d>!....1<8d>!1\xint:<count of blocks>\xint:

Used by \XINT_div_prepare_g for \XINT_div_prepare_h, and also by \xintiiCmp.

443 \def\XINT_sepbyviii_andcount
444 {%

445 \expandafter\XINT_sepbyviii_andcount_a\the\numexpr\XINT_sepbyviii

446 }%

447 \def\XINT_sepbyviii #1#2#3#4#5#6#7#8%

448 {%

449 1#1#2#3#4#5#6#7#8\expandafter!\the\numexpr\XINT_sepbyviii

450 }%

451 \def\XINT_sepbyviii_end #1\relax {\relax\XINT_sepbyviii_andcount_end!}%

452 \def\XINT_sepbyviii_andcount_a {\XINT_sepbyviii_andcount_b \xint_c_\xint:}%

453 \def\XINT_sepbyviii_andcount_b #1\xint:#2!#3!#4!#5!#6!#7!#8!#9!%

454 {%

455 #2\expandafter!\the\numexpr#3\expandafter!\the\numexpr#4\expandafter

456 !\the\numexpr#5\expandafter!\the\numexpr#6\expandafter!\the\numexpr

457 #7\expandafter!\the\numexpr#8\expandafter!\the\numexpr#9\expandafter!\the\numexpr

458 \expandafter\XINT_sepbyviii_andcount_b\the\numexpr #1+\xint_c_viii\xint:%

459 }%

460 \def\XINT_sepbyviii_andcount_end #1\XINT_sepbyviii_andcount_b\the\numexpr

461 #2+\xint_c_viii\xint:#3#4\W {\expandafter\xint:\the\numexpr #2+#3\xint:}%

20.27. \XINT_rsepbyviii
This is used as

\the\numexpr1\XINT_rsepbyviii <8Ndigits>%

\XINT_rsepbyviii_end_A 2345678%

\XINT_rsepbyviii_end_B 2345678\relax UV%

and will produce

1<8digits>!1<8digits>\xint:1<8digits>!...

where the original digits are organized by eight, and the order inside successive pairs of blocks

separated by \xint: has been reversed. Output ends either in 1<8d>!1<8d>\xint:1U\xint: (even) or

1<8d>!1<8d>\xint:1V!1<8d>\xint: (odd)

316

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

The U an V should be \numexpr1 stoppers (or will expand and be ended by !). This macro is cur-

rently (1.2..1.2l) exclusively used in combination with \XINT_sepandrev_andcount or \XINT_sepandrev.

462 \def\XINT_rsepbyviii #1#2#3#4#5#6#7#8%

463 {%

464 \XINT_rsepbyviii_b {#1#2#3#4#5#6#7#8}%

465 }%

466 \def\XINT_rsepbyviii_b #1#2#3#4#5#6#7#8#9%

467 {%

468 #2#3#4#5#6#7#8#9\expandafter!\the\numexpr

469 1#1\expandafter\xint:\the\numexpr 1\XINT_rsepbyviii

470 }%

471 \def\XINT_rsepbyviii_end_B #1\relax #2#3{#2\xint:}%

472 \def\XINT_rsepbyviii_end_A #11#2\expandafter #3\relax #4#5{#5!1#2\xint:}%

20.28. \XINT_sepandrev
This is used typically as

\romannumeral0\XINT_sepandrev <8Ndigits>%

\XINT_rsepbyviii_end_A 2345678%

\XINT_rsepbyviii_end_B 2345678\relax UV%

\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\W

and will produce

1<8digits>!1<8digits>!1<8digits>!...

where the blocks have been globally reversed. The UV here are only place holders (must be \numexp ⤸
r1 stoppers) to share same syntax as \XINT_sepandrev_andcount, they are gobbled (#2 in \XINT_sep ⤸
andrev_done).

473 \def\XINT_sepandrev
474 {%

475 \expandafter\XINT_sepandrev_a\the\numexpr 1\XINT_rsepbyviii

476 }%

477 \def\XINT_sepandrev_a {\XINT_sepandrev_b {}}%

478 \def\XINT_sepandrev_b #1#2\xint:#3\xint:#4\xint:#5\xint:#6\xint:#7\xint:#8\xint:#9\xint:%

479 {%

480 \xint_gob_til_R #9\XINT_sepandrev_end\R

481 \XINT_sepandrev_b {#9!#8!#7!#6!#5!#4!#3!#2!#1}%

482 }%

483 \def\XINT_sepandrev_end\R\XINT_sepandrev_b #1#2\W {\XINT_sepandrev_done #1}%

484 \def\XINT_sepandrev_done #11#2!{ }%

20.29. \XINT_sepandrev_andcount
This is used typically as

\romannumeral0\XINT_sepandrev_andcount <8Ndigits>%

\XINT_rsepbyviii_end_A 2345678%

\XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

\R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_ ⤸
vi

\R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

and will produce

<length>.1<8digits>!1<8digits>!1<8digits>!...

where the blocks have been globally reversed and <length> is the number of blocks.

485 \def\XINT_sepandrev_andcount

317

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

486 {%

487 \expandafter\XINT_sepandrev_andcount_a\the\numexpr 1\XINT_rsepbyviii

488 }%

489 \def\XINT_sepandrev_andcount_a {\XINT_sepandrev_andcount_b 0!{}}%

490 \def\XINT_sepandrev_andcount_b #1!#2#3\xint:#4\xint:#5\xint:#6\xint:#7\xint:#8\xint:#9\xint:%

491 {%

492 \xint_gob_til_R #9\XINT_sepandrev_andcount_end\R

493 \expandafter\XINT_sepandrev_andcount_b \the\numexpr #1+\xint_c_i!%

494 {#9!#8!#7!#6!#5!#4!#3!#2}%

495 }%

496 \def\XINT_sepandrev_andcount_end\R

497 \expandafter\XINT_sepandrev_andcount_b\the\numexpr #1+\xint_c_i!#2#3#4\W

498 {\expandafter\XINT_sepandrev_andcount_done\the\numexpr #3+\xint_c_xiv*#1!#2}%

499 \def\XINT_sepandrev_andcount_done#1{%

500 \def\XINT_sepandrev_andcount_done##1!##21##3!{\expandafter#1\the\numexpr##1-##3\xint:}%

501 }\XINT_sepandrev_andcount_done{ }%

20.30. \XINT_rev_nounsep
This is used as

\romannumeral0\XINT_rev_nounsep {}<blocks 1<8d>!>\R!\R!\R!\R!\R!\R!\R!\R!\W

It reverses the blocks, keeping the 1's and ! separators. Used multiple times in the division

algorithm. The inserted {} here is not optional.

502 \def\XINT_rev_nounsep #1#2!#3!#4!#5!#6!#7!#8!#9!%

503 {%

504 \xint_gob_til_R #9\XINT_rev_nounsep_end\R

505 \XINT_rev_nounsep {#9!#8!#7!#6!#5!#4!#3!#2!#1}%

506 }%

507 \def\XINT_rev_nounsep_end\R\XINT_rev_nounsep #1#2\W {\XINT_rev_nounsep_done #1}%

508 \def\XINT_rev_nounsep_done #11{ 1}%

20.31. \XINT_unrevbyviii
Used as \romannumeral0\XINT_unrevbyviii 1<8d>!....1<8d>! terminated by

1;!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

The \romannumeral in unrevbyviii_a is for special effects (expand some token which was put as

1<token>! at the end of the original blocks). This mechanism is used by 1.2 subtraction (still

true for 1.2l).

509 \def\XINT_unrevbyviii #11#2!1#3!1#4!1#5!1#6!1#7!1#8!1#9!%

510 {%

511 \xint_gob_til_R #9\XINT_unrevbyviii_a\R

512 \XINT_unrevbyviii {#9#8#7#6#5#4#3#2#1}%

513 }%

514 \def\XINT_unrevbyviii_a#1{%

515 \def\XINT_unrevbyviii_a\R\XINT_unrevbyviii ##1##2\W

516 {\expandafter#1\romannumeral`&&@\xint_gob_til_sc ##1}%

517 }\XINT_unrevbyviii_a{ }%

Can work with shorter ending pattern: 1;!1\R!1\R!1\R!1\R!1\R!1\R!\W but the longer one of un-

revbyviii is ok here too. Used currently (1.2) only by addition, now (1.2c) with long ending

pattern. Does the final clean up of leading zeroes contrarily to general \XINT_unrevbyviii.

518 \def\XINT_smallunrevbyviii 1#1!1#2!1#3!1#4!1#5!1#6!1#7!1#8!#9\W%

519 {%

318

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

520 \expandafter\XINT_cuz_small\xint_gob_til_sc #8#7#6#5#4#3#2#1%

521 }%

Core arithmetic
The four operations have been rewritten entirely for release 1.2. The new routines works with sep-

arated blocks of eight digits. They all measure first the lengths of the arguments, even addition

and subtraction (this was not the case with xintcore 1.1 or earlier.)

The technique of chaining \the\numexpr induces a limitation on the maximal size depending on the

size of the input save stack and the maximum expansion depth.

Side remark: I tested that \the\numexpr was more efficient than \number. But it reduced the

allowable numbers for addition from 19976 digits to 19968 digits.

2025 update: both with 1.2 and 1.4m, using TeXLive 2025 (input stack size and expansion depth

both at 10000) the maximal input size for addition is observed to be at 26648 (it was at 19968

with input stack size at 5000 still in 2021 with 1.4d) and the one for multiplication (or rather

squaring) is 13320, i.e. about half which sounds logical. In both cases, the expansion depth is

the limiting factor. The macro expansion is tested within an \edef.

During the ten years after 1.2 release it seems we indicated here a wrong value for the maximal

input size for multiplication, perhaps a confusion between input and output size was made at that

time. Sorry (but nobody reads this anyhow).

20.32. \xintiiAdd
1.2l: \xintiiAdd made robust against non terminated input.

522 \def\xintiiAdd {\romannumeral0\xintiiadd }%

523 \def\xintiiadd #1{\expandafter\XINT_iiadd\romannumeral`&&@#1\xint:}%

524 \def\XINT_iiadd #1#2\xint:#3%

525 {%

526 \expandafter\XINT_add_nfork\expandafter#1\romannumeral`&&@#3\xint:#2\xint:

527 }%

528 \def\XINT_add_fork #1#2\xint:#3\xint:{\XINT_add_nfork #1#3\xint:#2\xint:}%

529 \def\XINT_add_nfork #1#2%

530 {%

531 \xint_UDzerofork

532 #1\XINT_add_firstiszero

533 #2\XINT_add_secondiszero

534 0{}%

535 \krof

536 \xint_UDsignsfork

537 #1#2\XINT_add_minusminus

538 #1-\XINT_add_minusplus

539 #2-\XINT_add_plusminus

540 --\XINT_add_plusplus

541 \krof #1#2%

542 }%

543 \def\XINT_add_firstiszero #1\krof 0#2#3\xint:#4\xint:{ #2#3}%

544 \def\XINT_add_secondiszero #1\krof #20#3\xint:#4\xint:{ #2#4}%

545 \def\XINT_add_minusminus #1#2%

546 {\expandafter-\romannumeral0\XINT_add_pp_a {}{}}%

547 \def\XINT_add_minusplus #1#2{\XINT_sub_mm_a {}#2}%

548 \def\XINT_add_plusminus #1#2%

549 {\expandafter\XINT_opp\romannumeral0\XINT_sub_mm_a #1{}}%

550 \def\XINT_add_pp_a #1#2#3\xint:

319

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

551 {%

552 \expandafter\XINT_add_pp_b

553 \romannumeral0\expandafter\XINT_sepandrev_andcount

554 \romannumeral0\XINT_zeroes_forviii #2#3\R\R\R\R\R\R\R\R{10}0000001\W

555 #2#3\XINT_rsepbyviii_end_A 2345678%

556 \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

557 \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi

558 \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

559 \X #1%

560 }%

561 \let\XINT_add_plusplus \XINT_add_pp_a

562 \def\XINT_add_pp_b #1\xint:#2\X #3\xint:

563 {%

564 \expandafter\XINT_add_checklengths

565 \the\numexpr #1\expandafter\xint:%

566 \romannumeral0\expandafter\XINT_sepandrev_andcount

567 \romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W

568 #3\XINT_rsepbyviii_end_A 2345678%

569 \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

570 \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi

571 \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

572 1;!1;!1;!1;!\W #21;!1;!1;!1;!\W

573 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

574 }%

I keep #1.#2. to check if at most 6 + 6 base 10^8 digits which can be treated faster for final

reverse. But is this overhead at all useful ?

575 \def\XINT_add_checklengths #1\xint:#2\xint:%

576 {%

577 \ifnum #2>#1

578 \expandafter\XINT_add_exchange

579 \else

580 \expandafter\XINT_add_A

581 \fi

582 #1\xint:#2\xint:%

583 }%

584 \def\XINT_add_exchange #1\xint:#2\xint:#3\W #4\W

585 {%

586 \XINT_add_A #2\xint:#1\xint:#4\W #3\W

587 }%

588 \def\XINT_add_A #1\xint:#2\xint:%

589 {%

590 \ifnum #1>\xint_c_vi

591 \expandafter\XINT_add_aa

592 \else \expandafter\XINT_add_aa_small

593 \fi

594 }%

595 \def\XINT_add_aa {\expandafter\XINT_add_out\the\numexpr\XINT_add_a \xint_c_ii}%

596 \def\XINT_add_out{\expandafter\XINT_cuz_small\romannumeral0\XINT_unrevbyviii {}}%

597 \def\XINT_add_aa_small

598 {\expandafter\XINT_smallunrevbyviii\the\numexpr\XINT_add_a \xint_c_ii}%

2 as first token of #1 stands for "no carry", 3 will mean a carry (we are adding 1<8digits> to

1<8digits>.) Version 1.2c has terminators of the shape 1;!, replacing the \Z! used in 1.2.

320

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Call: \the\numexpr\XINT_add_a 2#11;!1;!1;!1;!\W #21;!1;!1;!1;!\W where #1 and #2 are blocks

of 1<8d>!, and #1 is at most as long as #2. This last requirement is a bit annoying (if one wants

to do recursive algorithms but not have to check lengths), and I will probably remove it at some

point.

Output: blocks of 1<8d>! representing the addition, (least significant first), and a final

1;!. In recursive algorithm this 1;! terminator can thus conveniently be reused as part of input

terminator (up to the length problem).

599 \def\XINT_add_a #1!#2!#3!#4!#5\W

600 #6!#7!#8!#9!%

601 {%

602 \XINT_add_b

603 #1!#6!#2!#7!#3!#8!#4!#9!%

604 #5\W

605 }%

606 \def\XINT_add_b #11#2#3!#4!%

607 {%

608 \xint_gob_til_sc #2\XINT_add_bi ;%

609 \expandafter\XINT_add_c\the\numexpr#1+1#2#3+#4-\xint_c_ii\xint:%

610 }%

611 \def\XINT_add_bi;\expandafter\XINT_add_c

612 \the\numexpr#1+#2+#3-\xint_c_ii\xint:#4!#5!#6!#7!#8!#9!\W

613 {%

614 \XINT_add_k #1#3!#5!#7!#9!%

615 }%

616 \def\XINT_add_c #1#2\xint:%

617 {%

618 1#2\expandafter!\the\numexpr\XINT_add_d #1%

619 }%

620 \def\XINT_add_d #11#2#3!#4!%

621 {%

622 \xint_gob_til_sc #2\XINT_add_di ;%

623 \expandafter\XINT_add_e\the\numexpr#1+1#2#3+#4-\xint_c_ii\xint:%

624 }%

625 \def\XINT_add_di;\expandafter\XINT_add_e

626 \the\numexpr#1+#2+#3-\xint_c_ii\xint:#4!#5!#6!#7!#8\W

627 {%

628 \XINT_add_k #1#3!#5!#7!%

629 }%

630 \def\XINT_add_e #1#2\xint:%

631 {%

632 1#2\expandafter!\the\numexpr\XINT_add_f #1%

633 }%

634 \def\XINT_add_f #11#2#3!#4!%

635 {%

636 \xint_gob_til_sc #2\XINT_add_fi ;%

637 \expandafter\XINT_add_g\the\numexpr#1+1#2#3+#4-\xint_c_ii\xint:%

638 }%

639 \def\XINT_add_fi;\expandafter\XINT_add_g

640 \the\numexpr#1+#2+#3-\xint_c_ii\xint:#4!#5!#6\W

641 {%

642 \XINT_add_k #1#3!#5!%

643 }%

321

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

644 \def\XINT_add_g #1#2\xint:%

645 {%

646 1#2\expandafter!\the\numexpr\XINT_add_h #1%

647 }%

648 \def\XINT_add_h #11#2#3!#4!%

649 {%

650 \xint_gob_til_sc #2\XINT_add_hi ;%

651 \expandafter\XINT_add_i\the\numexpr#1+1#2#3+#4-\xint_c_ii\xint:%

652 }%

653 \def\XINT_add_hi;%

654 \expandafter\XINT_add_i\the\numexpr#1+#2+#3-\xint_c_ii\xint:#4\W

655 {%

656 \XINT_add_k #1#3!%

657 }%

658 \def\XINT_add_i #1#2\xint:%

659 {%

660 1#2\expandafter!\the\numexpr\XINT_add_a #1%

661 }%

662 \def\XINT_add_k #1{\if #12\expandafter\XINT_add_ke\else\expandafter\XINT_add_l \fi}%

663 \def\XINT_add_ke #11;#2\W {\XINT_add_kf #11;!}%

664 \def\XINT_add_kf 1{1\relax }%

665 \def\XINT_add_l 1#1#2{\xint_gob_til_sc #1\XINT_add_lf ;\XINT_add_m 1#1#2}%

666 \def\XINT_add_lf #1\W {1\relax 00000001!1;!}%

667 \def\XINT_add_m #1!{\expandafter\XINT_add_n\the\numexpr\xint_c_i+#1\xint:}%

668 \def\XINT_add_n #1#2\xint:{1#2\expandafter!\the\numexpr\XINT_add_o #1}%

Here 2 stands for "carry", and 1 for "no carry" (we have been adding 1 to 1<8digits>.)

669 \def\XINT_add_o #1{\if #12\expandafter\XINT_add_l\else\expandafter\XINT_add_ke \fi}%

20.33. \xintiiCmp

Modified at 1.4m (2022/06/10). Now uses the \xintstrcmp engine primitive.

670 \def\xintiiCmp {\romannumeral0\xintiicmp }%

671 \def\xintiicmp #1{\expandafter\XINT_iicmp\romannumeral`&&@#1\xint:}%

672 \def\XINT_iicmp #1#2\xint:#3%

673 {%

674 \expandafter\XINT_cmp_nfork\expandafter #1\romannumeral`&&@#3\xint:#2\xint:

675 }%

676 \def\XINT_cmp_nfork #1#2%

677 {%

678 \xint_UDzerofork

679 #1\XINT_cmp_firstiszero

680 #2\XINT_cmp_secondiszero

681 0{}%

682 \krof

683 \xint_UDsignsfork

684 #1#2\XINT_cmp_minusminus

685 #1-\XINT_cmp_minusplus

686 #2-\XINT_cmp_plusminus

687 --\XINT_cmp_plusplus

688 \krof #1#2%

689 }%

690 \def\XINT_cmp_firstiszero #1\krof 0#2#3\xint:#4\xint:

322

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

691 {%

692 \xint_UDzerominusfork

693 #2-{ 0}%

694 0#2{ 1}%

695 0-{ -1}%

696 \krof

697 }%

698 \def\XINT_cmp_secondiszero #1\krof #20#3\xint:#4\xint:

699 {%

700 \xint_UDzerominusfork

701 #2-{ 0}%

702 0#2{ -1}%

703 0-{ 1}%

704 \krof

705 }%

706 \def\XINT_cmp_plusminus #1\xint:#2\xint:{ 1}%

707 \def\XINT_cmp_minusplus #1\xint:#2\xint:{ -1}%

708 \def\XINT_cmp_minusminus

709 --{\expandafter\XINT_opp\romannumeral0\XINT_cmp_plusplus {}{}}%

The \romannumeral0 trigger induces some complications here to terminate nicely without grabbing

too many tokens in the stream or deteriorating expansion quality of the non-equal-length branches.

\expanded simplifies things.

710 \def\XINT_cmp_plusplus #1#2#3\xint:#4\xint:{\expanded{ %

711 \ifcase\expandafter\XINT_cntSgn\the\numexpr\xintLength{#1#4}-\xintLength{#2#3}\xint:

712 \xintstrcmp{#1#4}{#2#3}\or1\else-1\fi

713 }%

714 }%

Prior to 1.4m the «strcmp» primitive was not used by xintcore. Here is the old implementation:

\def\XINT_cmp_plusplus #1#2#3\xint:

{%

\expandafter\XINT_cmp_pp

\the\numexpr\expandafter\XINT_sepbyviii_andcount

\romannumeral0\XINT_zeroes_forviii #2#3\R\R\R\R\R\R\R\R{10}0000001\W

#2#3\XINT_sepbyviii_end 2345678\relax

\xint_c_vii!\xint_c_vi!\xint_c_v!\xint_c_iv!%

\xint_c_iii!\xint_c_ii!\xint_c_i!\xint_c_\W

#1%

}%

\def\XINT_cmp_pp #1\xint:#2\xint:#3\xint:

{%

\expandafter\XINT_cmp_checklengths

\the\numexpr #2\expandafter\xint:%

\the\numexpr\expandafter\XINT_sepbyviii_andcount

\romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W

#3\XINT_sepbyviii_end 2345678\relax

\xint_c_vii!\xint_c_vi!\xint_c_v!\xint_c_iv!%

\xint_c_iii!\xint_c_ii!\xint_c_i!\xint_c_\W

#1;!1;!1;!1;!\W

}%

\def\XINT_cmp_checklengths #1\xint:#2\xint:#3\xint:

{%

\ifnum #1=#3

323

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

\expandafter\xint_firstoftwo

\else

\expandafter\xint_secondoftwo

\fi

\XINT_cmp_a {\XINT_cmp_distinctlengths {#1}{#3}}#2;!1;!1;!1;!\W

}%

\def\XINT_cmp_distinctlengths #1#2#3\W #4\W

{%

\ifnum #1>#2

\expandafter\xint_firstoftwo

\else

\expandafter\xint_secondoftwo

\fi

{ -1}{ 1}%

}%

\def\XINT_cmp_a 1#1!1#2!1#3!1#4!#5\W 1#6!1#7!1#8!1#9!%

{%

\xint_gob_til_sc #1\XINT_cmp_equal ;%

\ifnum #1>#6 \XINT_cmp_gt\fi

\ifnum #1<#6 \XINT_cmp_lt\fi

\xint_gob_til_sc #2\XINT_cmp_equal ;%

\ifnum #2>#7 \XINT_cmp_gt\fi

\ifnum #2<#7 \XINT_cmp_lt\fi

\xint_gob_til_sc #3\XINT_cmp_equal ;%

\ifnum #3>#8 \XINT_cmp_gt\fi

\ifnum #3<#8 \XINT_cmp_lt\fi

\xint_gob_til_sc #4\XINT_cmp_equal ;%

\ifnum #4>#9 \XINT_cmp_gt\fi

\ifnum #4<#9 \XINT_cmp_lt\fi

\XINT_cmp_a #5\W

}%

\def\XINT_cmp_lt#1{\def\XINT_cmp_lt\fi ##1\W ##2\W {\fi#1-1}}\XINT_cmp_lt{ }%

\def\XINT_cmp_gt#1{\def\XINT_cmp_gt\fi ##1\W ##2\W {\fi#11}}\XINT_cmp_gt{ }%

\def\XINT_cmp_equal #1\W #2\W { 0}%

20.34. \xintiiSub
Entirely rewritten for 1.2.

Refactored at 1.2l. I was initially aiming at clinching some internal format of the type

1<8digits>!....1<8digits>! for chaining the arithmetic operations (as a preliminary step to de-

ciding upon some internal format for xintfrac macros), thus I wanted to uniformize delimiters in

particular and have some core macros inputting and outputting such formats. But the way division

is implemented makes it currently very hard to obtain a satisfactory solution. For subtraction

I got there almost, but there was added overhead and, as the core sub-routine still assumed the

shorter number will be positioned first, one would need to record the length also in the basic

internal format, or add the overhead to not make assumption on which one is shorter. I thus but

back-tracked my steps but in passing I improved the efficiency (probably) in the worst case branch.

Sadly this 1.2l refactoring left an extra ! in macro \XINT_sub_l_Ida. This bug shows only in

rare circumstances which escaped out test suite :(Fixed at 1.2q.

The other reason for backtracking was in relation with the decimal numbers. Having a core format

in base 10^8 but ultimately the radix is actually 10 leads to complications. I could use radix 10^8

for \xintiiexpr only, but then I need to make it compatible with sub-\xintiiexpr in \xintexpr,

etc... there are many issues of this type.

324

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

I considered also an approach like in the 1.2l \xintiiCmp, but decided to stick with the method

here for now.

715 \def\xintiiSub {\romannumeral0\xintiisub }%

716 \def\xintiisub #1{\expandafter\XINT_iisub\romannumeral`&&@#1\xint:}%

717 \def\XINT_iisub #1#2\xint:#3%

718 {%

719 \expandafter\XINT_sub_nfork\expandafter

720 #1\romannumeral`&&@#3\xint:#2\xint:

721 }%

722 \def\XINT_sub_nfork #1#2%

723 {%

724 \xint_UDzerofork

725 #1\XINT_sub_firstiszero

726 #2\XINT_sub_secondiszero

727 0{}%

728 \krof

729 \xint_UDsignsfork

730 #1#2\XINT_sub_minusminus

731 #1-\XINT_sub_minusplus

732 #2-\XINT_sub_plusminus

733 --\XINT_sub_plusplus

734 \krof #1#2%

735 }%

736 \def\XINT_sub_firstiszero #1\krof 0#2#3\xint:#4\xint:{\XINT_opp #2#3}%

737 \def\XINT_sub_secondiszero #1\krof #20#3\xint:#4\xint:{ #2#4}%

738 \def\XINT_sub_plusminus #1#2{\XINT_add_pp_a #1{}}%

739 \def\XINT_sub_plusplus #1#2%

740 {\expandafter\XINT_opp\romannumeral0\XINT_sub_mm_a #1#2}%

741 \def\XINT_sub_minusplus #1#2%

742 {\expandafter-\romannumeral0\XINT_add_pp_a {}#2}%

743 \def\XINT_sub_minusminus #1#2{\XINT_sub_mm_a {}{}}%

744 \def\XINT_sub_mm_a #1#2#3\xint:

745 {%

746 \expandafter\XINT_sub_mm_b

747 \romannumeral0\expandafter\XINT_sepandrev_andcount

748 \romannumeral0\XINT_zeroes_forviii #2#3\R\R\R\R\R\R\R\R{10}0000001\W

749 #2#3\XINT_rsepbyviii_end_A 2345678%

750 \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

751 \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi

752 \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

753 \X #1%

754 }%

755 \def\XINT_sub_mm_b #1\xint:#2\X #3\xint:

756 {%

757 \expandafter\XINT_sub_checklengths

758 \the\numexpr #1\expandafter\xint:%

759 \romannumeral0\expandafter\XINT_sepandrev_andcount

760 \romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W

761 #3\XINT_rsepbyviii_end_A 2345678%

762 \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

763 \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi

764 \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

325

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

765 1;!1;!1;!1;!\W

766 #21;!1;!1;!1;!\W

767 1;!1\R!1\R!1\R!1\R!%

768 1\R!1\R!1\R!1\R!\W

769 }%

770 \def\XINT_sub_checklengths #1\xint:#2\xint:%

771 {%

772 \ifnum #2>#1

773 \expandafter\XINT_sub_exchange

774 \else

775 \expandafter\XINT_sub_aa

776 \fi

777 }%

778 \def\XINT_sub_exchange #1\W #2\W

779 {%

780 \expandafter\XINT_opp\romannumeral0\XINT_sub_aa #2\W #1\W

781 }%

782 \def\XINT_sub_aa

783 {%

784 \expandafter\XINT_sub_out\the\numexpr\XINT_sub_a\xint_c_i

785 }%

The post-processing (clean-up of zeros, or rescue of situation with A-B where actually B turns out

bigger than A) will be done by a macro which depends on circumstances and will be initially last

token before the reversion done by \XINT_unrevbyviii.

786 \def\XINT_sub_out {\XINT_unrevbyviii{}}%

1 as first token of #1 stands for "no carry", 0 will mean a carry.

Call: \the\numexpr

\XINT_sub_a 1#11;!1;!1;!1;!\W

#21;!1;!1;!1;!\W

where #1 and #2 are blocks of 1<8d>!, #1 (=B) *must* be at most as long as #2 (=A), (in radix 10^8)

and the routine wants to compute #2-#1 = A - B

1.2l uses 1;! delimiters to match those of addition (and multiplication). But in the end I

reverted the code branch which made it possible to chain such operations keeping internal format

in 8 digits blocks throughout.

\numexpr governed expansion stops with various possibilities:

- Type Ia: #1 shorter than #2, no final carry

- Type Ib: #1 shorter than #2, a final carry but next block of #2 > 1

- Type Ica: #1 shorter than #2, a final carry, next block of #2 is final and = 1

- Type Icb: as Ica except that 00000001 block from #2 was not final

- Type Id: #1 shorter than #2, a final carry, next block of #2 = 0

- Type IIa: #1 same length as #2, turns out it was <= #2.

- Type IIb: #1 same length as #2, but turned out > #2.

Various type of post actions are then needed:

- Ia: clean up of zeros in most significant block of 8 digits

- Ib: as Ia

- Ic: there may be significant blocks of 8 zeros to clean up from result. Only case Ica may have

arbitrarily many of them, case Icb has only one such block.

- Id: blocks of 99999999 may propagate and there might a be final zero block created which has

to be cleaned up.

- IIa: arbitrarily many zeros might have to be removed.

- IIb: We wanted #2-#1 = - (#1-#2), but we got 10^{8N}+#2 -#1 = 10^{8N}-(#1-#2). We need to do

the correction then we are as in IIa situation, except that final result can not be zero.

326

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

The 1.2l method for this correction is (presumably, testing takes lots of time, which I do not

have) more efficient than in 1.2 release.

787 \def\XINT_sub_a #1!#2!#3!#4!#5\W #6!#7!#8!#9!%

788 {%

789 \XINT_sub_b

790 #1!#6!#2!#7!#3!#8!#4!#9!%

791 #5\W

792 }%

As 1.2l code uses 1<8digits>! blocks one has to be careful with the carry digit 1 or 0: A #11#2#3

pattern would result into an empty #1 if the carry digit which is upfront is 1, rather than setting

#1=1.

793 \def\XINT_sub_b #1#2#3#4!#5!%

794 {%

795 \xint_gob_til_sc #3\XINT_sub_bi ;%

796 \expandafter\XINT_sub_c\the\numexpr#1+1#5-#3#4-\xint_c_i\xint:%

797 }%

798 \def\XINT_sub_c 1#1#2\xint:%

799 {%

800 1#2\expandafter!\the\numexpr\XINT_sub_d #1%

801 }%

802 \def\XINT_sub_d #1#2#3#4!#5!%

803 {%

804 \xint_gob_til_sc #3\XINT_sub_di ;%

805 \expandafter\XINT_sub_e\the\numexpr#1+1#5-#3#4-\xint_c_i\xint:

806 }%

807 \def\XINT_sub_e 1#1#2\xint:%

808 {%

809 1#2\expandafter!\the\numexpr\XINT_sub_f #1%

810 }%

811 \def\XINT_sub_f #1#2#3#4!#5!%

812 {%

813 \xint_gob_til_sc #3\XINT_sub_fi ;%

814 \expandafter\XINT_sub_g\the\numexpr#1+1#5-#3#4-\xint_c_i\xint:

815 }%

816 \def\XINT_sub_g 1#1#2\xint:%

817 {%

818 1#2\expandafter!\the\numexpr\XINT_sub_h #1%

819 }%

820 \def\XINT_sub_h #1#2#3#4!#5!%

821 {%

822 \xint_gob_til_sc #3\XINT_sub_hi ;%

823 \expandafter\XINT_sub_i\the\numexpr#1+1#5-#3#4-\xint_c_i\xint:

824 }%

825 \def\XINT_sub_i 1#1#2\xint:%

826 {%

827 1#2\expandafter!\the\numexpr\XINT_sub_a #1%

828 }%

829 \def\XINT_sub_bi;%

830 \expandafter\XINT_sub_c\the\numexpr#1+1#2-#3\xint:

831 #4!#5!#6!#7!#8!#9!\W

832 {%

833 \XINT_sub_k #1#2!#5!#7!#9!%

327

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

834 }%

835 \def\XINT_sub_di;%

836 \expandafter\XINT_sub_e\the\numexpr#1+1#2-#3\xint:

837 #4!#5!#6!#7!#8\W

838 {%

839 \XINT_sub_k #1#2!#5!#7!%

840 }%

841 \def\XINT_sub_fi;%

842 \expandafter\XINT_sub_g\the\numexpr#1+1#2-#3\xint:

843 #4!#5!#6\W

844 {%

845 \XINT_sub_k #1#2!#5!%

846 }%

847 \def\XINT_sub_hi;%

848 \expandafter\XINT_sub_i\the\numexpr#1+1#2-#3\xint:

849 #4\W

850 {%

851 \XINT_sub_k #1#2!%

852 }%

B terminated. Have we reached the end of A (necessarily at least as long as B) ? (we are computing

A-B, digits of B come first).

If not, then we are certain that even if there is carry it will not propagate beyond the end of

A. But it may propagate far transforming chains of 00000000 into 99999999, and if it does go to the

final block which possibly is just 1<00000001>!, we will have those eight zeros to clean up.

If A and B have the same length (in base 10^8) then arbitrarily many zeros might have to be cleaned

up, and if A<B, the whole result will have to be complemented first.

853 \def\XINT_sub_k #1#2#3%

854 {%

855 \xint_gob_til_sc #3\XINT_sub_p;\XINT_sub_l #1#2#3%

856 }%

857 \def\XINT_sub_l #1%

858 {\xint_UDzerofork #1\XINT_sub_l_carry 0\XINT_sub_l_Ia\krof}%

859 \def\XINT_sub_l_Ia 1#1;!#2\W{1\relax#1;!1\XINT_sub_fix_none!}%

860 \def\XINT_sub_l_carry 1#1!{\ifcase #1

861 \expandafter \XINT_sub_l_Id

862 \or \expandafter \XINT_sub_l_Ic

863 \else\expandafter \XINT_sub_l_Ib\fi 1#1!}%

No \cs{relax} here at 1.4n before the ; for LuaMetaTeX's \cs{numexpr}. The #1 will bring own

delimiter. AM I CERTAIN OF THAT?

864 \def\XINT_sub_l_Ib #1;#2\W {-\xint_c_i+#1;!1\XINT_sub_fix_none!}%

865 \def\XINT_sub_l_Ic 1#1!1#2#3!#4;#5\W

866 {%

867 \xint_gob_til_sc #2\XINT_sub_l_Ica;%

868 1\relax 00000000!1#2#3!#4;!1\XINT_sub_fix_none!%

869 }%

We need to add some extra delimiters at the end for post-action by \XINT_num, so we first grab the

material up to \W

Modified at 1.4n (2025/09/05). A \relax added for LuaMetaTEX compatibility.

870 \def\XINT_sub_l_Ica#1\W

871 {%

872 1\relax;!1\XINT_sub_fix_cuz!%

328

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

873 1;!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

874 \xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z

875 }%

876 \def\XINT_sub_l_Id 1#1!%

877 {199999999\expandafter!\the\numexpr \XINT_sub_l_Id_a}%

878 \def\XINT_sub_l_Id_a 1#1!{\ifcase #1

879 \expandafter \XINT_sub_l_Id

880 \or \expandafter \XINT_sub_l_Id_b

881 \else\expandafter \XINT_sub_l_Ib\fi 1#1!}%

882 \def\XINT_sub_l_Id_b 1#1!1#2#3!#4;#5\W

883 {%

884 \xint_gob_til_sc #2\XINT_sub_l_Ida;%

885 1\relax 00000000!1#2#3!#4;!1\XINT_sub_fix_none!%

886 }%

Modified at 1.4n (2025/09/05). LuaMetaTeX

887 \def\XINT_sub_l_Ida#1\XINT_sub_fix_none{1\relax;!1\XINT_sub_fix_none}%

This is the case where both operands have same 10^8-base length.

We were handling A-B but perhaps B>A. The situation with A=B is also annoying because we then

have to clean up all zeros but don't know where to stop (if A>B the first non-zero 8 digits block

would tell use when).

Here again we need to grab #3\W to position the actually used terminating delimiters.

Modified at 1.4n (2025/09/05). \relax for LuaMetaTeX \numexpr

888 \def\XINT_sub_p;\XINT_sub_l #1#2\W #3\W

889 {%

890 \xint_UDzerofork

891 #1{1\relax;!1\XINT_sub_fix_neg!%

892 1;!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

893 \xint_bye2345678\xint_bye1099999988\relax}% A - B, B > A

894 0{1\relax;!1\XINT_sub_fix_cuz!%

895 1;!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W}%

896 \krof

897 \xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z

898 }%

Routines for post-processing after reversal, and removal of separators. It is a matter of cleaning

up zeros, and possibly in the bad case to take a complement before that.

899 \def\XINT_sub_fix_none;{\XINT_cuz_small}%

900 \def\XINT_sub_fix_cuz ;{\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop}%

Case with A and B same number of digits in base 10^8 and B>A.

1.2l subtle chaining on the model of the 1.2i rewrite of \xintInc and similar routines. After

taking complement, leading zeroes need to be cleaned up as in B<=A branch.

901 \def\XINT_sub_fix_neg;%

902 {%

903 \expandafter-\romannumeral0\expandafter

904 \XINT_sub_comp_finish\the\numexpr\XINT_sub_comp_loop

905 }%

906 \def\XINT_sub_comp_finish 0{\XINT_sub_fix_cuz;}%

907 \def\XINT_sub_comp_loop #1#2#3#4#5#6#7#8%

908 {%

909 \expandafter\XINT_sub_comp_clean

910 \the\numexpr \xint_c_xi_e_viii_mone-#1#2#3#4#5#6#7#8\XINT_sub_comp_loop

911 }%

329

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

#1 = 0 signifie une retenue, #1 = 1 pas de retenue, ce qui ne peut arriver que tant qu'il n'y a que

des zéros du côté non significatif. Lorsqu'on est revenu au début on a forcément une retenue.

912 \def\XINT_sub_comp_clean 1#1{+#1\relax}%

20.35. \xintiiMul
Completely rewritten for 1.2.

1.2l: \xintiiMul made robust against non terminated input.

913 \def\xintiiMul {\romannumeral0\xintiimul }%

914 \def\xintiimul #1%

915 {%

916 \expandafter\XINT_iimul\romannumeral`&&@#1\xint:

917 }%

918 \def\XINT_iimul #1#2\xint:#3%

919 {%

920 \expandafter\XINT_mul_nfork\expandafter #1\romannumeral`&&@#3\xint:#2\xint:

921 }%

1.2 I have changed the fork, and it complicates matters elsewhere.

ATTENTION for example that 1.4 \xintiiPrd uses \XINT_mul_nfork now.

922 \def\XINT_mul_fork #1#2\xint:#3\xint:{\XINT_mul_nfork #1#3\xint:#2\xint:}%

923 \def\XINT_mul_nfork #1#2%

924 {%

925 \xint_UDzerofork

926 #1\XINT_mul_zero

927 #2\XINT_mul_zero

928 0{}%

929 \krof

930 \xint_UDsignsfork

931 #1#2\XINT_mul_minusminus

932 #1-\XINT_mul_minusplus

933 #2-\XINT_mul_plusminus

934 --\XINT_mul_plusplus

935 \krof #1#2%

936 }%

937 \def\XINT_mul_zero #1\krof #2#3\xint:#4\xint:{ 0}%

938 \def\XINT_mul_minusminus #1#2{\XINT_mul_plusplus {}{}}%

939 \def\XINT_mul_minusplus #1#2%

940 {\expandafter-\romannumeral0\XINT_mul_plusplus {}#2}%

941 \def\XINT_mul_plusminus #1#2%

942 {\expandafter-\romannumeral0\XINT_mul_plusplus #1{}}%

943 \def\XINT_mul_plusplus #1#2#3\xint:

944 {%

945 \expandafter\XINT_mul_pre_b

946 \romannumeral0\expandafter\XINT_sepandrev_andcount

947 \romannumeral0\XINT_zeroes_forviii #2#3\R\R\R\R\R\R\R\R{10}0000001\W

948 #2#3\XINT_rsepbyviii_end_A 2345678%

949 \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

950 \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi

951 \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

952 \W #1%

953 }%

954 \def\XINT_mul_pre_b #1\xint:#2\W #3\xint:

330

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

955 {%

956 \expandafter\XINT_mul_checklengths

957 \the\numexpr #1\expandafter\xint:%

958 \romannumeral0\expandafter\XINT_sepandrev_andcount

959 \romannumeral0\XINT_zeroes_forviii #3\R\R\R\R\R\R\R\R{10}0000001\W

960 #3\XINT_rsepbyviii_end_A 2345678%

961 \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

962 \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi

963 \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

964 1;!\W #21;!%

965 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

966 }%

Cooking recipe, 2015/10/05.

967 \def\XINT_mul_checklengths #1\xint:#2\xint:%

968 {%

969 \ifnum #2=\xint_c_i\expandafter\XINT_mul_smallbyfirst\fi

970 \ifnum #1=\xint_c_i\expandafter\XINT_mul_smallbysecond\fi

971 \ifnum #2<#1

972 \ifnum \numexpr (#2-\xint_c_i)*(#1-#2)<383

973 \XINT_mul_exchange

974 \fi

975 \else

976 \ifnum \numexpr (#1-\xint_c_i)*(#2-#1)>383

977 \XINT_mul_exchange

978 \fi

979 \fi

980 \XINT_mul_start

981 }%

982 \def\XINT_mul_smallbyfirst #1\XINT_mul_start 1#2!1;!\W

983 {%

984 \ifnum#2=\xint_c_i\expandafter\XINT_mul_oneisone\fi

985 \ifnum#2<\xint_c_xxii\expandafter\XINT_mul_verysmall\fi

986 \expandafter\XINT_mul_out\the\numexpr\XINT_smallmul 1#2!%

987 }%

988 \def\XINT_mul_smallbysecond #1\XINT_mul_start #2\W 1#3!1;!%

989 {%

990 \ifnum#3=\xint_c_i\expandafter\XINT_mul_oneisone\fi

991 \ifnum#3<\xint_c_xxii\expandafter\XINT_mul_verysmall\fi

992 \expandafter\XINT_mul_out\the\numexpr\XINT_smallmul 1#3!#2%

993 }%

994 \def\XINT_mul_oneisone #1!{\XINT_mul_out }%

995 \def\XINT_mul_verysmall\expandafter\XINT_mul_out

996 \the\numexpr\XINT_smallmul 1#1!%

997 {\expandafter\XINT_mul_out\the\numexpr\XINT_verysmallmul 0\xint:#1!}%

998 \def\XINT_mul_exchange #1\XINT_mul_start #2\W #31;!%

999 {\fi\fi\XINT_mul_start #31;!\W #2}%

1000 \def\XINT_mul_start

1001 {\expandafter\XINT_mul_out\the\numexpr\XINT_mul_loop 100000000!1;!\W}%

1002 \def\XINT_mul_out

1003 {\expandafter\XINT_cuz_small\romannumeral0\XINT_unrevbyviii {}}%

Call:

\the\numexpr \XINT_mul_loop 100000000!1;!\W #11;!\W #21;!

331

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

where #1 and #2 are (globally reversed) blocks 1<8d>!. Its is generally more efficient if #1 is

the shorter one, but a better recipe is implemented in \XINT_mul_checklengths. One may call \XIN ⤸
T_mul_loop directly (but multiplication by zero will produce many 100000000! blocks on output).

Ends after having produced: 1<8d>!....1<8d>!1;!. The last 8-digits block is significant one.

It can not be 100000000! except if the loop was called with a zero operand.

Thus \XINT_mul_loop can be conveniently called directly in recursive routines, as the output

terminator can serve as input terminator, we can arrange to not have to grab the whole thing again.

1004 \def\XINT_mul_loop #1\W #2\W 1#3!%

1005 {%

1006 \xint_gob_til_sc #3\XINT_mul_e ;%

1007 \expandafter\XINT_mul_a\the\numexpr \XINT_smallmul 1#3!#2\W

1008 #1\W #2\W

1009 }%

Each of #1 and #2 brings its 1;! for \XINT_add_a.

1010 \def\XINT_mul_a #1\W #2\W

1011 {%

1012 \expandafter\XINT_mul_b\the\numexpr

1013 \XINT_add_a \xint_c_ii #21;!1;!1;!\W #11;!1;!1;!\W\W

1014 }%

1015 \def\XINT_mul_b 1#1!{1#1\expandafter!\the\numexpr\XINT_mul_loop }%

1016 \def\XINT_mul_e;#1\W 1#2\W #3\W {1\relax #2}%

1.2 small and mini multiplication in base 10^8 with carry. Used by the main multiplication rou-

tines. But division, float factorial, etc.. have their own variants as they need output with

specific constraints.

The minimulwc has 1<8digits carry>.<4 high digits>.<4 low digits!<8digits>.

It produces a block 1<8d>! and then jump back into \XINT_smallmul_a with the new 8digits carry

as argument. The \XINT_smallmul_a fetches a new 1<8d>! block to multiply, and calls back \XINT_ ⤸
minimul_wc having stored the multiplicand for re-use later. When the loop terminates, the final

carry is checked for being nul, and in all cases the output is terminated by a 1;!

Multiplication by zero will produce blocks of zeros.

1017 \def\XINT_minimulwc_a 1#1\xint:#2\xint:#3!#4#5#6#7#8\xint:%

1018 {%

1019 \expandafter\XINT_minimulwc_b

1020 \the\numexpr \xint_c_x^ix+#1+#3*#8\xint:

1021 #3*#4#5#6#7+#2*#8\xint:

1022 #2*#4#5#6#7\xint:%

1023 }%

1024 \def\XINT_minimulwc_b 1#1#2#3#4#5#6\xint:#7\xint:%

1025 {%

1026 \expandafter\XINT_minimulwc_c

1027 \the\numexpr \xint_c_x^ix+#1#2#3#4#5+#7\xint:#6\xint:%

1028 }%

1029 \def\XINT_minimulwc_c 1#1#2#3#4#5#6\xint:#7\xint:#8\xint:%

1030 {%

1031 1#6#7\expandafter!%

1032 \the\numexpr\expandafter\XINT_smallmul_a

1033 \the\numexpr \xint_c_x^viii+#1#2#3#4#5+#8\xint:%

1034 }%

1035 \def\XINT_smallmul 1#1#2#3#4#5!{\XINT_smallmul_a 100000000\xint:#1#2#3#4\xint:#5!}%

1036 \def\XINT_smallmul_a #1\xint:#2\xint:#3!1#4!%

1037 {%

332

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1038 \xint_gob_til_sc #4\XINT_smallmul_e;%

1039 \XINT_minimulwc_a #1\xint:#2\xint:#3!#4\xint:#2\xint:#3!%

1040 }%

1041 \def\XINT_smallmul_e;\XINT_minimulwc_a 1#1\xint:#2;#3!%

1042 {\xint_gob_til_eightzeroes #1\XINT_smallmul_f 000000001\relax #1!1;!}%

1043 \def\XINT_smallmul_f 000000001\relax 00000000!1{1\relax}%

1044 \def\XINT_verysmallmul #1\xint:#2!1#3!%

1045 {%

1046 \xint_gob_til_sc #3\XINT_verysmallmul_e;%

1047 \expandafter\XINT_verysmallmul_a

1048 \the\numexpr #2*#3+#1\xint:#2!%

1049 }%

1050 \def\XINT_verysmallmul_e;\expandafter\XINT_verysmallmul_a\the\numexpr

1051 #1+#2#3\xint:#4!%

1052 {\xint_gob_til_zero #2\XINT_verysmallmul_f 0\xint_c_x^viii+#2#3!1;!}%

1053 \def\XINT_verysmallmul_f #1!1{1\relax}%

1054 \def\XINT_verysmallmul_a #1#2\xint:%

1055 {%

1056 \unless\ifnum #1#2<\xint_c_x^ix

1057 \expandafter\XINT_verysmallmul_bi\else

1058 \expandafter\XINT_verysmallmul_bj\fi

1059 \the\numexpr \xint_c_x^ix+#1#2\xint:%

1060 }%

1061 \def\XINT_verysmallmul_bj{\expandafter\XINT_verysmallmul_cj }%

1062 \def\XINT_verysmallmul_cj 1#1#2\xint:%

1063 {1#2\expandafter!\the\numexpr\XINT_verysmallmul #1\xint:}%

1064 \def\XINT_verysmallmul_bi\the\numexpr\xint_c_x^ix+#1#2#3\xint:%

1065 {1#3\expandafter!\the\numexpr\XINT_verysmallmul #1#2\xint:}%

Used by division and by squaring, not by multiplication itself.

This routine does not loop, it only does one mini multiplication with input format <4 high dig-

its>.<4 low digits>!<8 digits>!, and on output 1<8d>!1<8d>!, with least significant block first.

1066 \def\XINT_minimul_a #1\xint:#2!#3#4#5#6#7!%

1067 {%

1068 \expandafter\XINT_minimul_b

1069 \the\numexpr \xint_c_x^viii+#2*#7\xint:#2*#3#4#5#6+#1*#7\xint:#1*#3#4#5#6\xint:%

1070 }%

1071 \def\XINT_minimul_b 1#1#2#3#4#5\xint:#6\xint:%

1072 {%

1073 \expandafter\XINT_minimul_c

1074 \the\numexpr \xint_c_x^ix+#1#2#3#4+#6\xint:#5\xint:%

1075 }%

1076 \def\XINT_minimul_c 1#1#2#3#4#5#6\xint:#7\xint:#8\xint:%

1077 {%

1078 1#6#7\expandafter!\the\numexpr \xint_c_x^viii+#1#2#3#4#5+#8!%

1079 }%

20.36. \xintiiDivision
Completely rewritten for 1.2.

WARNING: some comments below try to describe the flow of tokens but they date back to xint 1.09j

and I updated them on the fly while doing the 1.2 version. As the routine now works in base 10^8,

not 10^4 and "drops" the quotient digits,rather than store them upfront as the earlier code, I may

333

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

well have not correctly converted all such comments. At the last minute some previously #1 became

stuff like #1#2#3#4, then of course the old comments describing what the macro parameters stand

for are necessarily wrong.

Side remark: the way tokens are grouped was not essentially modified in 1.2, although the sit-

uation has changed. It was fine-tuned in xint 1.0/1.1 but the context has changed, and perhaps I

should revisit this. As a corollary to the fact that quotient digits are now left behind thanks

to the chains of \numexpr, some macros which in 1.0/1.1 fetched up to 9 parameters now need handle

less such parameters. Thus, some rationale for the way the code was structured has disappeared.

1.2l: \xintiiDivision et al. made robust against non terminated input.

#1 = A, #2 = B. On calcule le quotient et le reste dans la division euclidienne de A par B: A=BQ+R,

0<= R < |B|.

1080 \def\xintiiDivision {\romannumeral0\xintiidivision }%

1081 \def\xintiidivision #1{\expandafter\XINT_iidivision \romannumeral`&&@#1\xint:}%

1082 \def\XINT_iidivision #1#2\xint:#3{\expandafter\XINT_iidivision_a\expandafter #1%

1083 \romannumeral`&&@#3\xint:#2\xint:}%

On regarde les signes de A et de B.

1084 \def\XINT_iidivision_a #1#2% #1 de A, #2 de B.

1085 {%

1086 \if0#2\xint_dothis{\XINT_iidivision_divbyzero #1#2}\fi

1087 \if0#1\xint_dothis\XINT_iidivision_aiszero\fi

1088 \if-#2\xint_dothis{\expandafter\XINT_iidivision_bneg

1089 \romannumeral0\XINT_iidivision_bpos #1}\fi

1090 \xint_orthat{\XINT_iidivision_bpos #1#2}%

1091 }%

1092 \def\XINT_iidivision_divbyzero#1#2#3\xint:#4\xint:

1093 {\if0#1\xint_dothis{\XINT_signalcondition{DivisionUndefined}}\fi

1094 \xint_orthat{\XINT_signalcondition{DivisionByZero}}%

1095 {Division by zero: #1#4/#2#3.}{}{{0}{0}}}%

1096 \def\XINT_iidivision_aiszero #1\xint:#2\xint:{{0}{0}}%

1097 \def\XINT_iidivision_bneg #1% q->-q, r unchanged

1098 {\expandafter{\romannumeral0\XINT_opp #1}}%

1099 \def\XINT_iidivision_bpos #1%

1100 {%

1101 \xint_UDsignfork

1102 #1\XINT_iidivision_aneg

1103 -{\XINT_iidivision_apos #1}%

1104 \krof

1105 }%

Donc attention malgré son nom \XINT_div_prepare va jusqu'au bout. C'est donc en fait l'entrée

principale (pour B>0, A>0) mais elle va regarder si B est < 10^8 et s'il vaut alors 1 ou 2, et si A

< 10^8. Dans tous les cas le résultat est produit sous la forme {Q}{R}, avec Q et R sous leur forme

final. On doit ensuite ajuster si le B ou le A initial était négatif. Je n'ai pas fait beaucoup

d'efforts pour être un minimum efficace si A ou B n'est pas positif.

1106 \def\XINT_iidivision_apos #1#2\xint:#3\xint:{\XINT_div_prepare {#2}{#1#3}}%

1107 \def\XINT_iidivision_aneg #1\xint:#2\xint:

1108 {\expandafter

1109 \XINT_iidivision_aneg_b\romannumeral0\XINT_div_prepare {#1}{#2}{#1}}%

1110 \def\XINT_iidivision_aneg_b #1#2{\if0\XINT_Sgn #2\xint:

1111 \expandafter\XINT_iidivision_aneg_rzero

1112 \else

1113 \expandafter\XINT_iidivision_aneg_rpos

334

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1114 \fi {#1}{#2}}%

1115 \def\XINT_iidivision_aneg_rzero #1#2#3{{-#1}{0}}% necessarily q was >0

1116 \def\XINT_iidivision_aneg_rpos #1%

1117 {%

1118 \expandafter\XINT_iidivision_aneg_end\expandafter

1119 {\expandafter-\romannumeral0\xintinc {#1}}% q-> -(1+q)

1120 }%

1121 \def\XINT_iidivision_aneg_end #1#2#3%

1122 {%

1123 \expandafter\xint_exchangetwo_keepbraces

1124 \expandafter{\romannumeral0\XINT_sub_mm_a {}{}#3\xint:#2\xint:}{#1}% r-> b-r

1125 }%

Le diviseur B va être étendu par des zéros pour que sa longueur soit multiple de huit. Les zéros

seront mis du côté non significatif.

1126 \def\XINT_div_prepare #1%

1127 {%

1128 \XINT_div_prepare_a #1\R\R\R\R\R\R\R\R {10}0000001\W !{#1}%

1129 }%

1130 \def\XINT_div_prepare_a #1#2#3#4#5#6#7#8#9%

1131 {%

1132 \xint_gob_til_R #9\XINT_div_prepare_small\R

1133 \XINT_div_prepare_b #9%

1134 }%

B a au plus huit chiffres. On se débarrasse des trucs superflus. Si B>0 n'est ni 1 ni 2, le point

d'entrée est \XINT_div_small_a {B}{A} (avec un A positif).

1135 \def\XINT_div_prepare_small\R #1!#2%

1136 {%

1137 \ifcase #2

1138 \or\expandafter\XINT_div_BisOne

1139 \or\expandafter\XINT_div_BisTwo

1140 \else\expandafter\XINT_div_small_a

1141 \fi {#2}%

1142 }%

1143 \def\XINT_div_BisOne #1#2{{#2}{0}}%

1144 \def\XINT_div_BisTwo #1#2%

1145 {%

1146 \expandafter\expandafter\expandafter\XINT_div_BisTwo_a

1147 \ifodd\xintLDg{#2} \expandafter1\else \expandafter0\fi {#2}%

1148 }%

1149 \def\XINT_div_BisTwo_a #1#2%

1150 {%

1151 \expandafter{\romannumeral0\XINT_half

1152 #2\xint_bye\xint_Bye345678\xint_bye

1153 *\xint_c_v+\xint_c_v)/\xint_c_x-\xint_c_i\relax}{#1}%

1154 }%

B a au plus huit chiffres et est au moins 3. On va l'utiliser directement, sans d'abord le multi-

plier par une puissance de 10 pour qu'il ait 8 chiffres.

1155 \def\XINT_div_small_a #1#2%

1156 {%

1157 \expandafter\XINT_div_small_b

1158 \the\numexpr #1/\xint_c_ii\expandafter

335

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1159 \xint:\the\numexpr \xint_c_x^viii+#1\expandafter!%

1160 \romannumeral0%

1161 \XINT_div_small_ba #2\R\R\R\R\R\R\R\R{10}0000001\W

1162 #2\XINT_sepbyviii_Z_end 2345678\relax

1163 }%

Le #2 poursuivra l'expansion par \XINT_div_dosmallsmall ou par \XINT_smalldivx_a suivi de \XINT_ ⤸
sdiv_out.

1164 \def\XINT_div_small_b #1!#2{#2#1!}%

On ajoute des zéros avant A, puis on le prépare sous la forme de blocs 1<8d>! Au passage on repère

le cas d'un A<10^8.

1165 \def\XINT_div_small_ba #1#2#3#4#5#6#7#8#9%

1166 {%

1167 \xint_gob_til_R #9\XINT_div_smallsmall\R

1168 \expandafter\XINT_div_dosmalldiv

1169 \the\numexpr\expandafter\XINT_sepbyviii_Z

1170 \romannumeral0\XINT_zeroes_forviii

1171 #1#2#3#4#5#6#7#8#9%

1172 }%

Si A<10^8, on va poursuivre par \XINT_div_dosmallsmall round(B/2).10^8+B!{A}. On fait la divi-

sion directe par \numexpr. Le résultat est produit sous la forme {Q}{R}.

1173 \def\XINT_div_smallsmall\R

1174 \expandafter\XINT_div_dosmalldiv

1175 \the\numexpr\expandafter\XINT_sepbyviii_Z

1176 \romannumeral0\XINT_zeroes_forviii #1\R #2\relax

1177 {{\XINT_div_dosmallsmall}{#1}}%

1178 \def\XINT_div_dosmallsmall #1\xint:1#2!#3%

1179 {%

1180 \expandafter\XINT_div_smallsmallend

1181 \the\numexpr (#3+#1)/#2-\xint_c_i\xint:#2\xint:#3\xint:%

1182 }%

1183 \def\XINT_div_smallsmallend #1\xint:#2\xint:#3\xint:{\expandafter

1184 {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #3-#1*#2}}%

Si A>=10^8, il est maintenant sous la forme 1<8d>!...1<8d>!1;! avec plus significatifs en pre-

mier. Donc on poursuit par

\expandafter\XINT_sdiv_out\the\numexpr\XINT_smalldivx_a x.1B!1<8d>!...1<8d>!1;! avec x =round(B/2),

1B=10^8+B.

1185 \def\XINT_div_dosmalldiv

1186 {{\expandafter\XINT_sdiv_out\the\numexpr\XINT_smalldivx_a}}%

Ici B est au moins 10^8, on détermine combien de zéros lui adjoindre pour qu'il soit de longueur

8N.

1187 \def\XINT_div_prepare_b

1188 {\expandafter\XINT_div_prepare_c\romannumeral0\XINT_zeroes_forviii }%

1189 \def\XINT_div_prepare_c #1!%

1190 {%

1191 \XINT_div_prepare_d #1.00000000!{#1}%

1192 }%

1193 \def\XINT_div_prepare_d #1#2#3#4#5#6#7#8#9%

1194 {%

1195 \expandafter\XINT_div_prepare_e\xint_gob_til_dot #1#2#3#4#5#6#7#8#9!%

1196 }%

336

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1197 \def\XINT_div_prepare_e #1!#2!#3#4%

1198 {%

1199 \XINT_div_prepare_f #4#3\X {#1}{#3}%

1200 }%

attention qu'on calcule ici x'=x+1 (x = huit premiers chiffres du diviseur) et que si x=99999999,

x' aura donc 9 chiffres, pas compatible avec div_mini (avant 1.2, x avait 4 chiffres, et on faisait

la division avec x' dans un \numexpr). Bon, facile à dire après avoir laissé passer ce bug dans

1.2. C'est le problème lorsqu'au lieu de tout refaire à partir de zéro on recycle d'anciennes

routines qui avaient un contexte différent.

1201 \def\XINT_div_prepare_f #1#2#3#4#5#6#7#8#9\X

1202 {%

1203 \expandafter\XINT_div_prepare_g

1204 \the\numexpr #1#2#3#4#5#6#7#8+\xint_c_i\expandafter

1205 \xint:\the\numexpr (#1#2#3#4#5#6#7#8+\xint_c_i)/\xint_c_ii\expandafter

1206 \xint:\the\numexpr #1#2#3#4#5#6#7#8\expandafter

1207 \xint:\romannumeral0\XINT_sepandrev_andcount

1208 #1#2#3#4#5#6#7#8#9\XINT_rsepbyviii_end_A 2345678%

1209 \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

1210 \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi

1211 \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

1212 \X

1213 }%

1214 \def\XINT_div_prepare_g #1\xint:#2\xint:#3\xint:#4\xint:#5\X #6#7#8%

1215 {%

1216 \expandafter\XINT_div_prepare_h

1217 \the\numexpr\expandafter\XINT_sepbyviii_andcount

1218 \romannumeral0\XINT_zeroes_forviii #8#7\R\R\R\R\R\R\R\R{10}0000001\W

1219 #8#7\XINT_sepbyviii_end 2345678\relax

1220 \xint_c_vii!\xint_c_vi!\xint_c_v!\xint_c_iv!%

1221 \xint_c_iii!\xint_c_ii!\xint_c_i!\xint_c_\W

1222 {#1}{#2}{#3}{#4}{#5}{#6}%

1223 }%

1224 \def\XINT_div_prepare_h #11\xint:#2\xint:#3#4#5#6%#7#8%

1225 {%

1226 \XINT_div_start_a {#2}{#6}{#1}{#3}{#4}{#5}%{#7}{#8}%

1227 }%

L, K, A, x',y,x, B, «c». Attention que K est diminué de 1 plus loin. Comme xint 1.2 a déjà repéré

K=1, on a ici au minimum K=2. Attention B est à l'envers, A est à l'endroit et les deux avec

séparateurs. Attention que ce n'est pas ici qu'on boucle mais en \XINT_div_I_a.

1228 \def\XINT_div_start_a #1#2%

1229 {%

1230 \ifnum #1 < #2

1231 \expandafter\XINT_div_zeroQ

1232 \else

1233 \expandafter\XINT_div_start_b

1234 \fi

1235 {#1}{#2}%

1236 }%

1237 \def\XINT_div_zeroQ #1#2#3#4#5#6#7%

1238 {%

1239 \expandafter\XINT_div_zeroQ_end

1240 \romannumeral0\XINT_unsep_cuzsmall

337

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1241 #3\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax\xint:

1242 }%

1243 \def\XINT_div_zeroQ_end #1\xint:#2%

1244 {\expandafter{\expandafter0\expandafter}\XINT_div_cleanR #1#2\xint:}%

L, K, A, x',y,x, B, «c»->K.A.x{LK{x'y}x}B«c»

1245 \def\XINT_div_start_b #1#2#3#4#5#6%

1246 {%

1247 \expandafter\XINT_div_finish\the\numexpr

1248 \XINT_div_start_c {#2}\xint:#3\xint:{#6}{{#1}{#2}{{#4}{#5}}{#6}}%

1249 }%

1250 \def\XINT_div_finish

1251 {%

1252 \expandafter\XINT_div_finish_a \romannumeral`&&@\XINT_div_unsepQ

1253 }%

1254 \def\XINT_div_finish_a #1\Z #2\xint:{\XINT_div_finish_b #2\xint:{#1}}%

Ici ce sont routines de fin. Le reste déjà nettoyé. R.Q«c».

1255 \def\XINT_div_finish_b #1%

1256 {%

1257 \if0#1%

1258 \expandafter\XINT_div_finish_bRzero

1259 \else

1260 \expandafter\XINT_div_finish_bRpos

1261 \fi

1262 #1%

1263 }%

1264 \def\XINT_div_finish_bRzero 0\xint:#1#2{{#1}{0}}%

1265 \def\XINT_div_finish_bRpos #1\xint:#2#3%

1266 {%

1267 \expandafter\xint_exchangetwo_keepbraces\XINT_div_cleanR #1#3\xint:{#2}%

1268 }%

1269 \def\XINT_div_cleanR #100000000\xint:{{#1}}%

Kalpha.A.x{LK{x'y}x}, B, «c», au début #2=alpha est vide. On fait une boucle pour prendre K unités

de A (on a au moins L égal à K) et les mettre dans alpha.

1270 \def\XINT_div_start_c #1%

1271 {%

1272 \ifnum #1>\xint_c_vi

1273 \expandafter\XINT_div_start_ca

1274 \else

1275 \expandafter\XINT_div_start_cb

1276 \fi {#1}%

1277 }%

1278 \def\XINT_div_start_ca #1#2\xint:#3!#4!#5!#6!#7!#8!#9!%

1279 {%

1280 \expandafter\XINT_div_start_c\expandafter

1281 {\the\numexpr #1-\xint_c_vii}#2#3!#4!#5!#6!#7!#8!#9!\xint:%

1282 }%

1283 \def\XINT_div_start_cb #1%

1284 {\csname XINT_div_start_c_\romannumeral\numexpr#1\endcsname}%

1285 \def\XINT_div_start_c_i #1\xint:#2!%

1286 {\XINT_div_start_c_ #1#2!\xint:}%

1287 \def\XINT_div_start_c_ii #1\xint:#2!#3!%

338

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1288 {\XINT_div_start_c_ #1#2!#3!\xint:}%

1289 \def\XINT_div_start_c_iii #1\xint:#2!#3!#4!%

1290 {\XINT_div_start_c_ #1#2!#3!#4!\xint:}%

1291 \def\XINT_div_start_c_iv #1\xint:#2!#3!#4!#5!%

1292 {\XINT_div_start_c_ #1#2!#3!#4!#5!\xint:}%

1293 \def\XINT_div_start_c_v #1\xint:#2!#3!#4!#5!#6!%

1294 {\XINT_div_start_c_ #1#2!#3!#4!#5!#6!\xint:}%

1295 \def\XINT_div_start_c_vi #1\xint:#2!#3!#4!#5!#6!#7!%

1296 {\XINT_div_start_c_ #1#2!#3!#4!#5!#6!#7!\xint:}%

#1=a, #2=alpha (de longueur K, à l'endroit).#3=reste de A.#4=x, #5={LK{x'y}x},#6=B,«c» -> a, x,

alpha, B, {00000000}, L, K, {x'y},x, alpha'=reste de A, B«c».

1297 \def\XINT_div_start_c_ 1#1!#2\xint:#3\xint:#4#5#6%

1298 {%

1299 \XINT_div_I_a {#1}{#4}{1#1!#2}{#6}{00000000}#5{#3}{#6}%

1300 }%

Ceci est le point de retour de la boucle principale. a, x, alpha, B, q0, L, K, {x'y}, x, alpha',

B«c»

1301 \def\XINT_div_I_a #1#2%

1302 {%

1303 \expandafter\XINT_div_I_b\the\numexpr #1/#2\xint:{#1}{#2}%

1304 }%

1305 \def\XINT_div_I_b #1%

1306 {%

1307 \xint_gob_til_zero #1\XINT_div_I_czero 0\XINT_div_I_c #1%

1308 }%

On intercepte petit quotient nul: #1=a, x, alpha, B, #5=q0, L, K, {x'y}, x, alpha', B«c» -> on

lâche un q puis {alpha} L, K, {x'y}, x, alpha', B«c».

1309 \def\XINT_div_I_czero 0\XINT_div_I_c 0\xint:#1#2#3#4#5{1#5\XINT_div_I_g {#3}}%

1310 \def\XINT_div_I_c #1\xint:#2#3%

1311 {%

1312 \expandafter\XINT_div_I_da\the\numexpr #2-#1*#3\xint:#1\xint:{#2}{#3}%

1313 }%

r.q.alpha, B, q0, L, K, {x'y}, x, alpha', B«c»

1314 \def\XINT_div_I_da #1\xint:%

1315 {%

1316 \ifnum #1>\xint_c_ix

1317 \expandafter\XINT_div_I_dP

1318 \else

1319 \ifnum #1<\xint_c_

1320 \expandafter\expandafter\expandafter\XINT_div_I_dN

1321 \else

1322 \expandafter\expandafter\expandafter\XINT_div_I_db

1323 \fi

1324 \fi

1325 }%

attention très mauvaises notations avec _b et _db.

1326 \def\XINT_div_I_dN #1\xint:%

1327 {%

1328 \expandafter\XINT_div_I_b\the\numexpr #1-\xint_c_i\xint:%

1329 }%

339

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1330 \def\XINT_div_I_db #1\xint:#2#3#4#5%

1331 {%

1332 \expandafter\XINT_div_I_dc\expandafter #1%

1333 \romannumeral0\expandafter\XINT_div_sub\expandafter

1334 {\romannumeral0\XINT_rev_nounsep {}#4\R!\R!\R!\R!\R!\R!\R!\R!\W}%

1335 {\the\numexpr\XINT_div_verysmallmul #1!#51;!}%

1336 \Z {#4}{#5}%

1337 }%

La soustraction spéciale renvoie simplement - si le chiffre q est trop grand. On invoque dans ce

cas I_dP.

1338 \def\XINT_div_I_dc #1#2%

1339 {%

1340 \if-#2\expandafter\XINT_div_I_dd\else\expandafter\XINT_div_I_de\fi

1341 #1#2%

1342 }%

1343 \def\XINT_div_I_dd #1-\Z

1344 {%

1345 \if #11\expandafter\XINT_div_I_dz\fi

1346 \expandafter\XINT_div_I_dP\the\numexpr #1-\xint_c_i\xint: XX%

1347 }%

1348 \def\XINT_div_I_dz #1XX#2#3#4%

1349 {%

1350 1#4\XINT_div_I_g {#2}%

1351 }%

1352 \def\XINT_div_I_de #1#2\Z #3#4#5{1#5+#1\XINT_div_I_g {#2}}%

q.alpha, B, q0, L, K, {x'y},x, alpha'B«c» (q=0 has been intercepted) -> 1nouveauq.nouvel alpha,

L, K, {x'y}, x, alpha',B«c»

1353 \def\XINT_div_I_dP #1\xint:#2#3#4#5#6%

1354 {%

1355 1#6+#1\expandafter\XINT_div_I_g\expandafter

1356 {\romannumeral0\expandafter\XINT_div_sub\expandafter

1357 {\romannumeral0\XINT_rev_nounsep {}#4\R!\R!\R!\R!\R!\R!\R!\R!\W}%

1358 {\the\numexpr\XINT_div_verysmallmul #1!#51;!}%

1359 }%

1360 }%

1#1=nouveau q. nouvel alpha, L, K, {x'y},x,alpha', BQ«c»

#1=q,#2=nouvel alpha,#3=L, #4=K, #5={x'y}, #6=x, #7= alpha',#8=B, «c» -> on laisse q puis

{x'y}alpha.alpha'.{{x'y}xKL}B«c»

1361 \def\XINT_div_I_g #1#2#3#4#5#6#7%

1362 {%

1363 \expandafter !\the\numexpr

1364 \ifnum#2=#3

1365 \expandafter\XINT_div_exittofinish

1366 \else

1367 \expandafter\XINT_div_I_h

1368 \fi

1369 {#4}#1\xint:#6\xint:{{#4}{#5}{#3}{#2}}{#7}%

1370 }%

{x'y}alpha.alpha'.{{x'y}xKL}B«c» -> Attention retour à l'envoyeur ici par terminaison des \the\ ⤸
numexpr. On doit reprendre le Q déjà sorti, qui n'a plus de séparateurs, ni de leading 1. Ensuite

R sans leading zeros.«c»

340

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1371 \def\XINT_div_exittofinish #1#2\xint:#3\xint:#4#5%

1372 {%

1373 1\expandafter\expandafter\expandafter!\expandafter\XINT_div_unsepQ_delim

1374 \romannumeral0\XINT_div_unsepR #2#3%

1375 \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax\R\xint:

1376 }%

ATTENTION DESCRIPTION OBSOLÈTE. #1={x'y}alpha.#2!#3=reste de A. #4={{x'y},x,K,L},#5=B,«c» de-

vient {x'y},alpha sur K+4 chiffres.B, {{x'y},x,K,L}, #6= nouvel alpha',B,«c»

1377 \def\XINT_div_I_h #1\xint:#2!#3\xint:#4#5%

1378 {%

1379 \XINT_div_II_b #1#2!\xint:{#5}{#4}{#3}{#5}%

1380 }%

{x'y}alpha.B, {{x'y},x,K,L}, nouveau alpha',B,«c»

1381 \def\XINT_div_II_b #11#2!#3!%

1382 {%

1383 \xint_gob_til_eightzeroes #2\XINT_div_II_skipc 00000000%

1384 \XINT_div_II_c #1{1#2}{#3}%

1385 }%

x'y{100000000}{1<8>}reste de alpha.#6=B,#7={{x'y},x,K,L}, alpha',B, «c» -> {x'y}x,K,L (à dimin-

uer de 4), {alpha sur K}B{q1=00000000}{alpha'}B,«c»

1386 \def\XINT_div_II_skipc 00000000\XINT_div_II_c #1#2#3#4#5\xint:#6#7%

1387 {%

1388 \XINT_div_II_k #7{#4!#5}{#6}{00000000}%

1389 }%

x'ya->1qx'yalpha.B, {{x'y},x,K,L}, nouveau alpha',B, «c». En fait, attention, ici #3 et #4 sont

les 16 premiers chiffres du numérateur,sous la forme blocs 1<8chiffres>.

1390 \def\XINT_div_II_c #1#2#3#4%

1391 {%

1392 \expandafter\XINT_div_II_d\the\numexpr\XINT_div_xmini

1393 #1\xint:#2!#3!#4!{#1}{#2}#3!#4!%

1394 }%

1395 \def\XINT_div_xmini #1%

1396 {%

1397 \xint_gob_til_one #1\XINT_div_xmini_a 1\XINT_div_mini #1%

1398 }%

1399 \def\XINT_div_xmini_a 1\XINT_div_mini 1#1%

1400 {%

1401 \xint_gob_til_zero #1\XINT_div_xmini_b 0\XINT_div_mini 1#1%

1402 }%

1403 \def\XINT_div_xmini_b 0\XINT_div_mini 10#1#2#3#4#5#6#7%

1404 {%

1405 \xint_gob_til_zero #7\XINT_div_xmini_c 0\XINT_div_mini 10#1#2#3#4#5#6#7%

1406 }%

x'=10^8 and we return #1=1<8digits>.

1407 \def\XINT_div_xmini_c 0\XINT_div_mini 100000000\xint:50000000!#1!#2!{#1!}%

1 suivi de q1 sur huit chiffres! #2=x', #3=y, #4=alpha.#5=B, {{x'y},x,K,L}, alpha', B, «c» -->

nouvel alpha.x',y,B,q1,{{x'y},x,K,L}, alpha', B, «c»

1408 \def\XINT_div_II_d 1#1#2#3#4#5!#6#7#8\xint:#9%

1409 {%

1410 \expandafter\XINT_div_II_e

341

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1411 \romannumeral0\expandafter\XINT_div_sub\expandafter

1412 {\romannumeral0\XINT_rev_nounsep {}#8\R!\R!\R!\R!\R!\R!\R!\R!\W}%

1413 {\the\numexpr\XINT_div_smallmul_a 100000000\xint:#1#2#3#4\xint:#5!#91;!}%

1414 \xint:{#6}{#7}{#9}{#1#2#3#4#5}%

1415 }%

alpha.x',y,B,q1, {{x'y},x,K,L}, alpha', B, «c». Attention la soustraction spéciale doit main-

tenir les blocs 1<8>!

1416 \def\XINT_div_II_e 1#1!%

1417 {%

1418 \xint_gob_til_eightzeroes #1\XINT_div_II_skipf 00000000%

1419 \XINT_div_II_f 1#1!%

1420 }%

100000000! alpha sur K chiffres.#2=x',#3=y,#4=B,#5=q1, #6={{x'y},x,K,L}, #7=alpha',B«c» ->

{x'y}x,K,L (à diminuer de 1), {alpha sur K}B{q1}{alpha'}B«c»

1421 \def\XINT_div_II_skipf 00000000\XINT_div_II_f 100000000!#1\xint:#2#3#4#5#6%

1422 {%

1423 \XINT_div_II_k #6{#1}{#4}{#5}%

1424 }%

1<a1>!1<a2>!, alpha (sur K+1 blocs de 8). x', y, B, q1, {{x'y},x,K,L}, alpha', B,«c».

Here also we are dividing with x' which could be 10^8 in the exceptional case x=99999999. Must

intercept it before sending to \XINT_div_mini.

1425 \def\XINT_div_II_f #1!#2!#3\xint:%

1426 {%

1427 \XINT_div_II_fa {#1!#2!}{#1!#2!#3}%

1428 }%

1429 \def\XINT_div_II_fa #1#2#3#4%

1430 {%

1431 \expandafter\XINT_div_II_g \the\numexpr\XINT_div_xmini #3\xint:#4!#1{#2}%

1432 }%

#1=q, #2=alpha (K+4), #3=B, #4=q1, {{x'y},x,K,L}, alpha', BQ«c» -> 1 puis nouveau q sur 8

chiffres. nouvel alpha sur K blocs, B, {{x'y},x,K,L}, alpha',B«c»

1433 \def\XINT_div_II_g 1#1#2#3#4#5!#6#7#8%

1434 {%

1435 \expandafter \XINT_div_II_h

1436 \the\numexpr 1#1#2#3#4#5+#8\expandafter\expandafter\expandafter

1437 \xint:\expandafter\expandafter\expandafter

1438 {\expandafter\xint_gob_til_exclam

1439 \romannumeral0\expandafter\XINT_div_sub\expandafter

1440 {\romannumeral0\XINT_rev_nounsep {}#6\R!\R!\R!\R!\R!\R!\R!\R!\W}%

1441 {\the\numexpr\XINT_div_smallmul_a 100000000\xint:#1#2#3#4\xint:#5!#71;!}}%

1442 {#7}%

1443 }%

1 puis nouveau q sur 8 chiffres, #2=nouvel alpha sur K blocs, #3=B, #4={{x'y},x,K,L} avec L à

ajuster, alpha', BQ«c» -> {x'y}x,K,L à diminuer de 1, {alpha}B{q}, alpha', BQ«c»

1444 \def\XINT_div_II_h 1#1\xint:#2#3#4%

1445 {%

1446 \XINT_div_II_k #4{#2}{#3}{#1}%

1447 }%

{x'y}x,K,L à diminuer de 1, alpha, B{q}alpha',B«c» ->nouveau L.K,x',y,x,alpha.B,q,alpha',B,«c»

->{LK{x'y}x},x,a,alpha.B,q,alpha',B,«c»

342

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1448 \def\XINT_div_II_k #1#2#3#4#5%

1449 {%

1450 \expandafter\XINT_div_II_l \the\numexpr #4-\xint_c_i\xint:{#3}#1{#2}#5\xint:%

1451 }%

1452 \def\XINT_div_II_l #1\xint:#2#3#4#51#6!%

1453 {%

1454 \XINT_div_II_m {{#1}{#2}{{#3}{#4}}{#5}}{#5}{#6}1#6!%

1455 }%

{LK{x'y}x},x,a,alpha.B{q}alpha'B -> a, x, alpha, B, q, L, K, {x'y}, x, alpha', B«c»

1456 \def\XINT_div_II_m #1#2#3#4\xint:#5#6%

1457 {%

1458 \XINT_div_I_a {#3}{#2}{#4}{#5}{#6}#1%

1459 }%

This multiplication is exactly like \XINT_smallmul -- apart from not inserting an ending 1;! --,

but keeps ever a vanishing ending carry.

1460 \def\XINT_div_minimulwc_a 1#1\xint:#2\xint:#3!#4#5#6#7#8\xint:%

1461 {%

1462 \expandafter\XINT_div_minimulwc_b

1463 \the\numexpr \xint_c_x^ix+#1+#3*#8\xint:#3*#4#5#6#7+#2*#8\xint:#2*#4#5#6#7\xint:%

1464 }%

1465 \def\XINT_div_minimulwc_b 1#1#2#3#4#5#6\xint:#7\xint:%

1466 {%

1467 \expandafter\XINT_div_minimulwc_c

1468 \the\numexpr \xint_c_x^ix+#1#2#3#4#5+#7\xint:#6\xint:%

1469 }%

1470 \def\XINT_div_minimulwc_c 1#1#2#3#4#5#6\xint:#7\xint:#8\xint:%

1471 {%

1472 1#6#7\expandafter!%

1473 \the\numexpr\expandafter\XINT_div_smallmul_a

1474 \the\numexpr \xint_c_x^viii+#1#2#3#4#5+#8\xint:%

1475 }%

1476 \def\XINT_div_smallmul_a #1\xint:#2\xint:#3!1#4!%

1477 {%

1478 \xint_gob_til_sc #4\XINT_div_smallmul_e;%

1479 \XINT_div_minimulwc_a #1\xint:#2\xint:#3!#4\xint:#2\xint:#3!%

1480 }%

1481 \def\XINT_div_smallmul_e;\XINT_div_minimulwc_a 1#1\xint:#2;#3!{1\relax #1!}%

Special very small multiplication for division. We only need to cater for multiplicands from 1

to 9. The ending is different from standard verysmallmul, a zero carry is not suppressed. And no

final 1;! is added. If multiplicand is just 1 let's not forget to add the zero carry 100000000! at

the end.

1482 \def\XINT_div_verysmallmul #1%

1483 {\xint_gob_til_one #1\XINT_div_verysmallisone 1\XINT_div_verysmallmul_a 0\xint:#1}%

1484 \def\XINT_div_verysmallisone 1\XINT_div_verysmallmul_a 0\xint:1!1#11;!%

1485 {1\relax #1100000000!}%

1486 \def\XINT_div_verysmallmul_a #1\xint:#2!1#3!%

1487 {%

1488 \xint_gob_til_sc #3\XINT_div_verysmallmul_e;%

1489 \expandafter\XINT_div_verysmallmul_b

1490 \the\numexpr \xint_c_x^ix+#2*#3+#1\xint:#2!%

1491 }%

343

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1492 \def\XINT_div_verysmallmul_b 1#1#2\xint:%

1493 {1#2\expandafter!\the\numexpr\XINT_div_verysmallmul_a #1\xint:}%

1494 \def\XINT_div_verysmallmul_e;#1;+#2#3!{1\relax 0000000#2!}%

Special subtraction for division purposes. If the subtracted thing turns out to be bigger, then

just return a -. If not, then we must reverse the result, keeping the separators.

1495 \def\XINT_div_sub #1#2%

1496 {%

1497 \expandafter\XINT_div_sub_clean

1498 \the\numexpr\expandafter\XINT_div_sub_a\expandafter

1499 1#2;!;!;!;!;!\W #1;!;!;!;!;!\W

1500 }%

1501 \def\XINT_div_sub_clean #1-#2#3\W

1502 {%

1503 \if1#2\expandafter\XINT_rev_nounsep\else\expandafter\XINT_div_sub_neg\fi

1504 {}#1\R!\R!\R!\R!\R!\R!\R!\R!\W

1505 }%

1506 \def\XINT_div_sub_neg #1\W { -}%

1507 \def\XINT_div_sub_a #1!#2!#3!#4!#5\W #6!#7!#8!#9!%

1508 {%

1509 \XINT_div_sub_b #1!#6!#2!#7!#3!#8!#4!#9!#5\W

1510 }%

1511 \def\XINT_div_sub_b #1#2#3!#4!%

1512 {%

1513 \xint_gob_til_sc #4\XINT_div_sub_bi ;%

1514 \expandafter\XINT_div_sub_c\the\numexpr#1-#3+1#4-\xint_c_i\xint:%

1515 }%

1516 \def\XINT_div_sub_c 1#1#2\xint:%

1517 {%

1518 1#2\expandafter!\the\numexpr\XINT_div_sub_d #1%

1519 }%

1520 \def\XINT_div_sub_d #1#2#3!#4!%

1521 {%

1522 \xint_gob_til_sc #4\XINT_div_sub_di ;%

1523 \expandafter\XINT_div_sub_e\the\numexpr#1-#3+1#4-\xint_c_i\xint:%

1524 }%

1525 \def\XINT_div_sub_e 1#1#2\xint:%

1526 {%

1527 1#2\expandafter!\the\numexpr\XINT_div_sub_f #1%

1528 }%

1529 \def\XINT_div_sub_f #1#2#3!#4!%

1530 {%

1531 \xint_gob_til_sc #4\XINT_div_sub_fi ;%

1532 \expandafter\XINT_div_sub_g\the\numexpr#1-#3+1#4-\xint_c_i\xint:%

1533 }%

1534 \def\XINT_div_sub_g 1#1#2\xint:%

1535 {%

1536 1#2\expandafter!\the\numexpr\XINT_div_sub_h #1%

1537 }%

1538 \def\XINT_div_sub_h #1#2#3!#4!%

1539 {%

1540 \xint_gob_til_sc #4\XINT_div_sub_hi ;%

1541 \expandafter\XINT_div_sub_i\the\numexpr#1-#3+1#4-\xint_c_i\xint:%

344

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1542 }%

1543 \def\XINT_div_sub_i 1#1#2\xint:%

1544 {%

1545 1#2\expandafter!\the\numexpr\XINT_div_sub_a #1%

1546 }%

1547 \def\XINT_div_sub_bi;%

1548 \expandafter\XINT_div_sub_c\the\numexpr#1-#2+#3\xint:#4!#5!#6!#7!#8!#9!;!\W

1549 {%

1550 \XINT_div_sub_l #1#2!#5!#7!#9!%

1551 }%

1552 \def\XINT_div_sub_di;%

1553 \expandafter\XINT_div_sub_e\the\numexpr#1-#2+#3\xint:#4!#5!#6!#7!#8\W

1554 {%

1555 \XINT_div_sub_l #1#2!#5!#7!%

1556 }%

1557 \def\XINT_div_sub_fi;%

1558 \expandafter\XINT_div_sub_g\the\numexpr#1-#2+#3\xint:#4!#5!#6\W

1559 {%

1560 \XINT_div_sub_l #1#2!#5!%

1561 }%

1562 \def\XINT_div_sub_hi;%

1563 \expandafter\XINT_div_sub_i\the\numexpr#1-#2+#3\xint:#4\W

1564 {%

1565 \XINT_div_sub_l #1#2!%

1566 }%

1567 \def\XINT_div_sub_l #1%

1568 {%

1569 \xint_UDzerofork

1570 #1{-2\relax}%

1571 0\XINT_div_sub_r

1572 \krof

1573 }%

1574 \def\XINT_div_sub_r #1!%

1575 {%

1576 -\ifnum 0#1=\xint_c_ 1\else2\fi\relax

1577 }%

Ici B<10^8 (et est >2). On exécute

\expandafter\XINT_sdiv_out\the\numexpr\XINT_smalldivx_a x.1B!1<8d>!...1<8d>!1;!

avec x =round(B/2), 1B=10^8+B, et A déjà en blocs 1<8d>! (non renversés). Le \the\numexpr\XINT_s ⤸
malldivx_a va produire Q\Z R\W avec un R<10^8, et un Q sous forme de blocs 1<8d>! terminé par 1! et

nécessitant le nettoyage du premier bloc. Dans cette branche le B n'a pas été multiplié par une

puissance de 10, il peut avoir moins de huit chiffres.

1578 \def\XINT_sdiv_out #1;!#2!%

1579 {\expandafter

1580 {\romannumeral0\XINT_unsep_cuzsmall

1581 #1\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax}%

1582 {#2}}%

La toute première étape fait la première division pour être sûr par la suite d'avoir un premier

bloc pour A qui sera < B.

1583 \def\XINT_smalldivx_a #1\xint:1#2!1#3!%

1584 {%

1585 \expandafter\XINT_smalldivx_b

345

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1586 \the\numexpr (#3+#1)/#2-\xint_c_i!#1\xint:#2!#3!%

1587 }%

1588 \def\XINT_smalldivx_b #1#2!%

1589 {%

1590 \if0#1\else

1591 \xint_c_x^viii+#1#2\xint_afterfi{\expandafter!\the\numexpr}\fi

1592 \XINT_smalldiv_c #1#2!%

1593 }%

1594 \def\XINT_smalldiv_c #1!#2\xint:#3!#4!%

1595 {%

1596 \expandafter\XINT_smalldiv_d\the\numexpr #4-#1*#3!#2\xint:#3!%

1597 }%

On va boucler ici: #1 est un reste, #2 est x.B (avec B sans le 1 mais sur huit chiffres). #3#4 est

le premier bloc qui reste de A. Si on a terminé avec A, alors #1 est le reste final. Le quotient

lui est terminé par un 1! ce 1! disparaîtra dans le nettoyage par \XINT_unsep_cuzsmall.

1598 \def\XINT_smalldiv_d #1!#2!1#3#4!%

1599 {%

1600 \xint_gob_til_sc #3\XINT_smalldiv_end ;%

1601 \XINT_smalldiv_e #1!#2!1#3#4!%

1602 }%

1603 \def\XINT_smalldiv_end;\XINT_smalldiv_e #1!#2!1;!{1!;!#1!}%

Il est crucial que le reste #1 est < #3. J'ai documenté cette routine dans le fichier où j'ai

préparé 1.2, il faudra transférer ici. Il n'est pas nécessaire pour cette routine que le diviseur

B ait au moins 8 chiffres. Mais il doit être < 10^8.

1604 \def\XINT_smalldiv_e #1!#2\xint:#3!%

1605 {%

1606 \expandafter\XINT_smalldiv_f\the\numexpr

1607 \xint_c_xi_e_viii_mone+#1*\xint_c_x^viii/#3!#2\xint:#3!#1!%

1608 }%

1609 \def\XINT_smalldiv_f 1#1#2#3#4#5#6!#7\xint:#8!%

1610 {%

1611 \xint_gob_til_zero #1\XINT_smalldiv_fz 0%

1612 \expandafter\XINT_smalldiv_g

1613 \the\numexpr\XINT_minimul_a #2#3#4#5\xint:#6!#8!#2#3#4#5#6!#7\xint:#8!%

1614 }%

1615 \def\XINT_smalldiv_fz 0%

1616 \expandafter\XINT_smalldiv_g\the\numexpr\XINT_minimul_a

1617 9999\xint:9999!#1!99999999!#2!0!1#3!%

1618 {%

1619 \XINT_smalldiv_i \xint:#3!\xint_c_!#2!%

1620 }%

1621 \def\XINT_smalldiv_g 1#1!1#2!#3!#4!#5!#6!%

1622 {%

1623 \expandafter\XINT_smalldiv_h\the\numexpr 1#6-#1\xint:#2!#5!#3!#4!%

1624 }%

1625 \def\XINT_smalldiv_h 1#1#2\xint:#3!#4!%

1626 {%

1627 \expandafter\XINT_smalldiv_i\the\numexpr #4-#3+#1-\xint_c_i\xint:#2!%

1628 }%

1629 \def\XINT_smalldiv_i #1\xint:#2!#3!#4\xint:#5!%

1630 {%

1631 \expandafter\XINT_smalldiv_j\the\numexpr (#1#2+#4)/#5-\xint_c_i!#3!#1#2!#4\xint:#5!%

346

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1632 }%

1633 \def\XINT_smalldiv_j #1!#2!%

1634 {%

1635 \xint_c_x^viii+#1+#2\expandafter!\the\numexpr\XINT_smalldiv_k

1636 #1!%

1637 }%

On boucle vers \XINT_smalldiv_d.

1638 \def\XINT_smalldiv_k #1!#2!#3\xint:#4!%

1639 {%

1640 \expandafter\XINT_smalldiv_d\the\numexpr #2-#1*#4!#3\xint:#4!%

1641 }%

Cette routine fait la division euclidienne d'un nombre de seize chiffres par #1 = C = di-

viseur sur huit chiffres >= 10^7, avec #2 = sa moitié utilisée dans \numexpr pour contrebalancer

l'arrondi (ARRRRRRGGGGGHHHH) fait par /. Le nombre divisé XY = X*10^8+Y se présente sous la forme

1<8chiffres>!1<8chiffres>! avec plus significatif en premier.

Seul le quotient est calculé, pas le reste. En effet la routine de division principale va

utiliser ce quotient pour déterminer le "grand" reste, et le petit reste ici ne nous serait d'à

peu près aucune utilité.

ATTENTION UNIQUEMENT UTILISÉ POUR DES SITUATIONS OÙ IL EST GARANTI QUE X < C ! (et C au moins

10^7) le quotient euclidien de X*10^8+Y par C sera donc < 10^8. Il sera renvoyé sous la forme

1<8chiffres>.

1642 \def\XINT_div_mini #1\xint:#2!1#3!%

1643 {%

1644 \expandafter\XINT_div_mini_a\the\numexpr

1645 \xint_c_xi_e_viii_mone+#3*\xint_c_x^viii/#1!#1\xint:#2!#3!%

1646 }%

Note (2015/10/08). Attention à la différence dans l'ordre des arguments avec ce que je vois en

dans \XINT_smalldiv_f. Je ne me souviens plus du tout s'il y a une raison quelconque.

1647 \def\XINT_div_mini_a 1#1#2#3#4#5#6!#7\xint:#8!%

1648 {%

1649 \xint_gob_til_zero #1\XINT_div_mini_w 0%

1650 \expandafter\XINT_div_mini_b

1651 \the\numexpr\XINT_minimul_a #2#3#4#5\xint:#6!#7!#2#3#4#5#6!#7\xint:#8!%

1652 }%

1653 \def\XINT_div_mini_w 0%

1654 \expandafter\XINT_div_mini_b\the\numexpr\XINT_minimul_a

1655 9999\xint:9999!#1!99999999!#2\xint:#3!00000000!#4!%

1656 {%

1657 \xint_c_x^viii_mone+(#4+#3)/#2!%

1658 }%

1659 \def\XINT_div_mini_b 1#1!1#2!#3!#4!#5!#6!%

1660 {%

1661 \expandafter\XINT_div_mini_c

1662 \the\numexpr 1#6-#1\xint:#2!#5!#3!#4!%

1663 }%

1664 \def\XINT_div_mini_c 1#1#2\xint:#3!#4!%

1665 {%

1666 \expandafter\XINT_div_mini_d

1667 \the\numexpr #4-#3+#1-\xint_c_i\xint:#2!%

1668 }%

1669 \def\XINT_div_mini_d #1\xint:#2!#3!#4\xint:#5!%

347

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1670 {%

1671 \xint_c_x^viii_mone+#3+(#1#2+#5)/#4!%

1672 }%

Derived arithmetic

20.37. \xintiiQuo, \xintiiRem
1673 \def\xintiiQuo {\romannumeral0\xintiiquo }%

1674 \def\xintiiRem {\romannumeral0\xintiirem }%

1675 \def\xintiiquo

1676 {\expandafter\xint_stop_atfirstoftwo\romannumeral0\xintiidivision }%

1677 \def\xintiirem

1678 {\expandafter\xint_stop_atsecondoftwo\romannumeral0\xintiidivision }%

20.38. \xintiiDivRound
1.1, transferred from first release of bnumexpr. Rewritten for 1.2. Ending rewritten for 1.2i.

(new \xintDSRr).

1.2l: \xintiiDivRound made robust against non terminated input.

1679 \def\xintiiDivRound {\romannumeral0\xintiidivround }%

1680 \def\xintiidivround #1{\expandafter\XINT_iidivround\romannumeral`&&@#1\xint:}%

1681 \def\XINT_iidivround #1#2\xint:#3%

1682 {\expandafter\XINT_iidivround_a\expandafter #1\romannumeral`&&@#3\xint:#2\xint:}%

1683 \def\XINT_iidivround_a #1#2% #1 de A, #2 de B.

1684 {%

1685 \if0#2\xint_dothis{\XINT_iidivround_divbyzero#1#2}\fi

1686 \if0#1\xint_dothis\XINT_iidivround_aiszero\fi

1687 \if-#2\xint_dothis{\XINT_iidivround_bneg #1}\fi

1688 \xint_orthat{\XINT_iidivround_bpos #1#2}%

1689 }%

1690 \def\XINT_iidivround_divbyzero #1#2#3\xint:#4\xint:

1691 {\XINT_signalcondition{DivisionByZero}{Division by zero: #1#4/#2#3.}{}{ 0}}%

1692 \def\XINT_iidivround_aiszero #1\xint:#2\xint:{ 0}%

1693 \def\XINT_iidivround_bpos #1%

1694 {%

1695 \xint_UDsignfork

1696 #1{\xintiiopp\XINT_iidivround_pos {}}%

1697 -{\XINT_iidivround_pos #1}%

1698 \krof

1699 }%

1700 \def\XINT_iidivround_bneg #1%

1701 {%

1702 \xint_UDsignfork

1703 #1{\XINT_iidivround_pos {}}%

1704 -{\xintiiopp\XINT_iidivround_pos #1}%

1705 \krof

1706 }%

1707 \def\XINT_iidivround_pos #1#2\xint:#3\xint:

1708 {%

1709 \expandafter\expandafter\expandafter\XINT_dsrr

1710 \expandafter\xint_firstoftwo

1711 \romannumeral0\XINT_div_prepare {#2}{#1#30}%

348

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1712 \xint_bye\xint_Bye3456789\xint_bye/\xint_c_x\relax

1713 }%

20.39. \xintiiDivTrunc
1.2l: \xintiiDivTrunc made robust against non terminated input.

1714 \def\xintiiDivTrunc {\romannumeral0\xintiidivtrunc }%

1715 \def\xintiidivtrunc #1{\expandafter\XINT_iidivtrunc\romannumeral`&&@#1\xint:}%

1716 \def\XINT_iidivtrunc #1#2\xint:#3{\expandafter\XINT_iidivtrunc_a\expandafter #1%

1717 \romannumeral`&&@#3\xint:#2\xint:}%

1718 \def\XINT_iidivtrunc_a #1#2% #1 de A, #2 de B.

1719 {%

1720 \if0#2\xint_dothis{\XINT_iidivtrunc_divbyzero#1#2}\fi

1721 \if0#1\xint_dothis\XINT_iidivtrunc_aiszero\fi

1722 \if-#2\xint_dothis{\XINT_iidivtrunc_bneg #1}\fi

1723 \xint_orthat{\XINT_iidivtrunc_bpos #1#2}%

1724 }%

Attention to not move DivRound code beyond that point.

1725 \let\XINT_iidivtrunc_divbyzero\XINT_iidivround_divbyzero

1726 \let\XINT_iidivtrunc_aiszero \XINT_iidivround_aiszero

1727 \def\XINT_iidivtrunc_bpos #1%

1728 {%

1729 \xint_UDsignfork

1730 #1{\xintiiopp\XINT_iidivtrunc_pos {}}%

1731 -{\XINT_iidivtrunc_pos #1}%

1732 \krof

1733 }%

1734 \def\XINT_iidivtrunc_bneg #1%

1735 {%

1736 \xint_UDsignfork

1737 #1{\XINT_iidivtrunc_pos {}}%

1738 -{\xintiiopp\XINT_iidivtrunc_pos #1}%

1739 \krof

1740 }%

1741 \def\XINT_iidivtrunc_pos #1#2\xint:#3\xint:

1742 {\expandafter\xint_stop_atfirstoftwo

1743 \romannumeral0\XINT_div_prepare {#2}{#1#3}}%

20.40. \xintiiModTrunc
Renamed from \xintiiMod to \xintiiModTrunc at 1.2p.

1744 \def\xintiiModTrunc {\romannumeral0\xintiimodtrunc }%

1745 \def\xintiimodtrunc #1{\expandafter\XINT_iimodtrunc\romannumeral`&&@#1\xint:}%

1746 \def\XINT_iimodtrunc #1#2\xint:#3{\expandafter\XINT_iimodtrunc_a\expandafter #1%

1747 \romannumeral`&&@#3\xint:#2\xint:}%

1748 \def\XINT_iimodtrunc_a #1#2% #1 de A, #2 de B.

1749 {%

1750 \if0#2\xint_dothis{\XINT_iimodtrunc_divbyzero#1#2}\fi

1751 \if0#1\xint_dothis\XINT_iimodtrunc_aiszero\fi

1752 \if-#2\xint_dothis{\XINT_iimodtrunc_bneg #1}\fi

1753 \xint_orthat{\XINT_iimodtrunc_bpos #1#2}%

1754 }%

349

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Attention to not move DivRound code beyond that point. A bit of abuse here for divbyzero defaulted-

to value, which happily works in both.

1755 \let\XINT_iimodtrunc_divbyzero\XINT_iidivround_divbyzero

1756 \let\XINT_iimodtrunc_aiszero \XINT_iidivround_aiszero

1757 \def\XINT_iimodtrunc_bpos #1%

1758 {%

1759 \xint_UDsignfork

1760 #1{\xintiiopp\XINT_iimodtrunc_pos {}}%

1761 -{\XINT_iimodtrunc_pos #1}%

1762 \krof

1763 }%

1764 \def\XINT_iimodtrunc_bneg #1%

1765 {%

1766 \xint_UDsignfork

1767 #1{\xintiiopp\XINT_iimodtrunc_pos {}}%

1768 -{\XINT_iimodtrunc_pos #1}%

1769 \krof

1770 }%

1771 \def\XINT_iimodtrunc_pos #1#2\xint:#3\xint:

1772 {\expandafter\xint_stop_atsecondoftwo\romannumeral0\XINT_div_prepare

1773 {#2}{#1#3}}%

20.41. \xintiiDivMod

Modified at 1.2p (2017/12/05). It is associated with floored division (like Python divmod func-

tion), and with the // operator in \xintiiexpr.

1774 \def\xintiiDivMod {\romannumeral0\xintiidivmod }%

1775 \def\xintiidivmod #1{\expandafter\XINT_iidivmod\romannumeral`&&@#1\xint:}%

1776 \def\XINT_iidivmod #1#2\xint:#3{\expandafter\XINT_iidivmod_a\expandafter #1%

1777 \romannumeral`&&@#3\xint:#2\xint:}%

1778 \def\XINT_iidivmod_a #1#2% #1 de A, #2 de B.

1779 {%

1780 \if0#2\xint_dothis{\XINT_iidivmod_divbyzero#1#2}\fi

1781 \if0#1\xint_dothis\XINT_iidivmod_aiszero\fi

1782 \if-#2\xint_dothis{\XINT_iidivmod_bneg #1}\fi

1783 \xint_orthat{\XINT_iidivmod_bpos #1#2}%

1784 }%

1785 \def\XINT_iidivmod_divbyzero #1#2\xint:#3\xint:

1786 {%

1787 \XINT_signalcondition{DivisionByZero}{Division by zero: #1#3/#2.}{}%

1788 {{0}{0}}% à revoir...

1789 }%

1790 \def\XINT_iidivmod_aiszero #1\xint:#2\xint:{{0}{0}}%

1791 \def\XINT_iidivmod_bneg #1%

1792 {%

1793 \expandafter\XINT_iidivmod_bneg_finish

1794 \romannumeral0\xint_UDsignfork

1795 #1{\XINT_iidivmod_bpos {}}%

1796 -{\XINT_iidivmod_bpos {-#1}}%

1797 \krof

1798 }%

1799 \def\XINT_iidivmod_bneg_finish#1#2%

350

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1800 {%

1801 \expandafter\xint_exchangetwo_keepbraces\expandafter

1802 {\romannumeral0\xintiiopp#2}{#1}%

1803 }%

1804 \def\XINT_iidivmod_bpos #1#2\xint:#3\xint:{\xintiidivision{#1#3}{#2}}%

20.42. \xintiiDivFloor
1.2p. For bnumexpr actually, because \xintiiexpr could use \xintDivFloor which also outputs an

integer in strict format.

1805 \def\xintiiDivFloor {\romannumeral0\xintiidivfloor}%

1806 \def\xintiidivfloor {\expandafter\xint_stop_atfirstoftwo

1807 \romannumeral0\xintiidivmod}%

20.43. \xintiiMod
Associated with floored division at 1.2p. Formerly was associated with truncated division.

1808 \def\xintiiMod {\romannumeral0\xintiimod}%

1809 \def\xintiimod {\expandafter\xint_stop_atsecondoftwo

1810 \romannumeral0\xintiidivmod}%

20.44. \xintiiSqr
1.2l: \xintiiSqr made robust against non terminated input.

1811 \def\xintiiSqr {\romannumeral0\xintiisqr }%

1812 \def\xintiisqr #1%

1813 {%

1814 \expandafter\XINT_sqr\romannumeral0\xintiiabs{#1}\xint:

1815 }%

1816 \def\XINT_sqr #1\xint:

1817 {%

1818 \expandafter\XINT_sqr_a

1819 \romannumeral0\expandafter\XINT_sepandrev_andcount

1820 \romannumeral0\XINT_zeroes_forviii #1\R\R\R\R\R\R\R\R{10}0000001\W

1821 #1\XINT_rsepbyviii_end_A 2345678%

1822 \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

1823 \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi

1824 \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

1825 \xint:

1826 }%

1.2c \XINT_mul_loop can now be called directly even with small arguments, thus the following check

is not anymore a necessity.

1827 \def\XINT_sqr_a #1\xint:

1828 {%

1829 \ifnum #1=\xint_c_i \expandafter\XINT_sqr_small

1830 \else\expandafter\XINT_sqr_start\fi

1831 }%

1832 \def\XINT_sqr_small 1#1#2#3#4#5!\xint:

1833 {%

1834 \ifnum #1#2#3#4#5<46341 \expandafter\XINT_sqr_verysmall\fi

1835 \expandafter\XINT_sqr_small_out

1836 \the\numexpr\XINT_minimul_a #1#2#3#4\xint:#5!#1#2#3#4#5!%

351

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1837 }%

1838 \def\XINT_sqr_verysmall#1{%

1839 \def\XINT_sqr_verysmall

1840 \expandafter\XINT_sqr_small_out\the\numexpr\XINT_minimul_a ##1!##2!%

1841 {\expandafter#1\the\numexpr ##2*##2\relax}%

1842 }\XINT_sqr_verysmall{ }%

1843 \def\XINT_sqr_small_out 1#1!1#2!%

1844 {%

1845 \XINT_cuz #2#1\R

1846 }%

An ending 1;! is produced on output for \XINT_mul_loop and gets incorporated to the delimiter

needed by the \XINT_unrevbyviii done by \XINT_mul_out.

1847 \def\XINT_sqr_start #1\xint:

1848 {%

1849 \expandafter\XINT_mul_out

1850 \the\numexpr\XINT_mul_loop

1851 100000000!1;!\W #11;!\W #11;!%

1852 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

1853 }%

20.45. \xintiiPow
1.2f Modifies the initial steps: 1) in order to be able to let more easily \xintiPow use \xintNum

on the exponent once xintfrac.sty is loaded; 2) also because I noticed it was not very well coded.

And it did only a \numexpr on the exponent, contradicting the documentation related to the "i"

convention in names.

1.2l: \xintiiPow made robust against non terminated input.

The macro makes no a priori test on whether computation has a chance to complete succesfully, as

this depends on TeX memory parameters. But roughly, the size of the output should be less than the

maximal size for addition, i.e. with TeXLive 2025 settings, have less than about 26600 decimal

digits.

1854 \def\xintiiPow {\romannumeral0\xintiipow }%

1855 \def\xintiipow #1#2%

1856 {%

1857 \expandafter\xint_pow\the\numexpr #2\expandafter

1858 .\romannumeral`&&@#1\xint:

1859 }%

1860 \def\xint_pow #1.#2%#3\xint:

1861 {%

1862 \xint_UDzerominusfork

1863 #2-\XINT_pow_AisZero

1864 0#2\XINT_pow_Aneg

1865 0-{\XINT_pow_Apos #2}%

1866 \krof {#1}%

1867 }%

1868 \def\XINT_pow_AisZero #1#2\xint:

1869 {%

1870 \ifcase\XINT_cntSgn #1\xint:

1871 \xint_afterfi { 1}%

1872 \or

1873 \xint_afterfi { 0}%

1874 \else

352

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1875 \xint_afterfi

1876 {\XINT_signalcondition{DivisionByZero}{0 raised to power #1.}{}{ 0}}%

1877 \fi

1878 }%

1879 \def\XINT_pow_Aneg #1%

1880 {%

1881 \ifodd #1

1882 \expandafter\XINT_opp\romannumeral0%

1883 \fi

1884 \XINT_pow_Apos {}{#1}%

1885 }%

1886 \def\XINT_pow_Apos #1#2{\XINT_pow_Apos_a {#2}#1}%

1887 \def\XINT_pow_Apos_a #1#2#3%

1888 {%

1889 \xint_gob_til_xint: #3\XINT_pow_Apos_short\xint:

1890 \XINT_pow_AatleastTwo {#1}#2#3%

1891 }%

1892 \def\XINT_pow_Apos_short\xint:\XINT_pow_AatleastTwo #1#2\xint:

1893 {%

1894 \ifcase #2

1895 \xintError:thiscannothappen

1896 \or \expandafter\XINT_pow_AisOne

1897 \else\expandafter\XINT_pow_AatleastTwo

1898 \fi {#1}#2\xint:

1899 }%

1900 \def\XINT_pow_AisOne #1\xint:{ 1}%

1901 \def\XINT_pow_AatleastTwo #1%

1902 {%

1903 \ifcase\XINT_cntSgn #1\xint:

1904 \expandafter\XINT_pow_BisZero

1905 \or

1906 \expandafter\XINT_pow_I_in

1907 \else

1908 \expandafter\XINT_pow_BisNegative

1909 \fi

1910 {#1}%

1911 }%

1912 \def\XINT_pow_BisNegative #1\xint:{\XINT_signalcondition{Underflow}%

1913 {Inverse power is not an integer.}{}{ 0}}%

1914 \def\XINT_pow_BisZero #1\xint:{ 1}%

B = #1 > 0, A = #2 > 1. Earlier code checked if size of B did not exceed a given limit (for example

131000).

1915 \def\XINT_pow_I_in #1#2\xint:

1916 {%

1917 \expandafter\XINT_pow_I_loop

1918 \the\numexpr #1\expandafter\xint:%

1919 \romannumeral0\expandafter\XINT_sepandrev

1920 \romannumeral0\XINT_zeroes_forviii #2\R\R\R\R\R\R\R\R{10}0000001\W

1921 #2\XINT_rsepbyviii_end_A 2345678%

1922 \XINT_rsepbyviii_end_B 2345678\relax XX%

1923 \R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\R\xint:\W

1924 1;!\W

353

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1925 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

1926 }%

1927 \def\XINT_pow_I_loop #1\xint:%

1928 {%

1929 \ifnum #1 = \xint_c_i\expandafter\XINT_pow_I_exit\fi

1930 \ifodd #1

1931 \expandafter\XINT_pow_II_in

1932 \else

1933 \expandafter\XINT_pow_I_squareit

1934 \fi #1\xint:%

1935 }%

1936 \def\XINT_pow_I_exit \ifodd #1\fi #2\xint:#3\W {\XINT_mul_out #3}%

The 1.2c \XINT_mul_loop can be called directly even with small arguments, hence the "butcheckifs-

mall" is not a necessity as it was earlier with 1.2. On 2^30, it does bring roughly a 40% time gain

though, and 30% gain for 2^60. The overhead on big computations should be negligible.

1937 \def\XINT_pow_I_squareit #1\xint:#2\W%

1938 {%

1939 \expandafter\XINT_pow_I_loop

1940 \the\numexpr #1/\xint_c_ii\expandafter\xint:%

1941 \the\numexpr\XINT_pow_mulbutcheckifsmall #2\W #2\W

1942 }%

1943 \def\XINT_pow_mulbutcheckifsmall #1!1#2%

1944 {%

1945 \xint_gob_til_sc #2\XINT_pow_mul_small;%

1946 \XINT_mul_loop 100000000!1;!\W #1!1#2%

1947 }%

1948 \def\XINT_pow_mul_small;\XINT_mul_loop

1949 100000000!1;!\W 1#1!1;!\W

1950 {%

1951 \XINT_smallmul 1#1!%

1952 }%

1953 \def\XINT_pow_II_in #1\xint:#2\W

1954 {%

1955 \expandafter\XINT_pow_II_loop

1956 \the\numexpr #1/\xint_c_ii-\xint_c_i\expandafter\xint:%

1957 \the\numexpr\XINT_pow_mulbutcheckifsmall #2\W #2\W #2\W

1958 }%

1959 \def\XINT_pow_II_loop #1\xint:%

1960 {%

1961 \ifnum #1 = \xint_c_i\expandafter\XINT_pow_II_exit\fi

1962 \ifodd #1

1963 \expandafter\XINT_pow_II_odda

1964 \else

1965 \expandafter\XINT_pow_II_even

1966 \fi #1\xint:%

1967 }%

1968 \def\XINT_pow_II_exit\ifodd #1\fi #2\xint:#3\W #4\W

1969 {%

1970 \expandafter\XINT_mul_out

1971 \the\numexpr\XINT_pow_mulbutcheckifsmall #4\W #3%

1972 }%

1973 \def\XINT_pow_II_even #1\xint:#2\W

354

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1974 {%

1975 \expandafter\XINT_pow_II_loop

1976 \the\numexpr #1/\xint_c_ii\expandafter\xint:%

1977 \the\numexpr\XINT_pow_mulbutcheckifsmall #2\W #2\W

1978 }%

1979 \def\XINT_pow_II_odda #1\xint:#2\W #3\W

1980 {%

1981 \expandafter\XINT_pow_II_oddb

1982 \the\numexpr #1/\xint_c_ii-\xint_c_i\expandafter\xint:%

1983 \the\numexpr\XINT_pow_mulbutcheckifsmall #3\W #2\W #2\W

1984 }%

1985 \def\XINT_pow_II_oddb #1\xint:#2\W #3\W

1986 {%

1987 \expandafter\XINT_pow_II_loop

1988 \the\numexpr #1\expandafter\xint:%

1989 \the\numexpr\XINT_pow_mulbutcheckifsmall #3\W #3\W #2\W

1990 }%

20.46. \xintiiFac
Moved here from xint.sty with release 1.2 (to be usable by \bnumexpr).

Partially rewritten with release 1.2 to benefit from the inner format of the 1.2 multiplication.

With current default settings of the etex memory and a.t.t.o.w (11/2015) the maximal possible

computation is 5971! (which has 19956 digits).

Note (end november 2015): I also tried out a quickly written recursive (binary split) imple-

mentation

\catcode`_ 11

\catcode`^ 11

\long\def\xint_firstofthree #1#2#3{#1}%

\long\def\xint_secondofthree #1#2#3{#2}%

\long\def\xint_thirdofthree #1#2#3{#3}%

% quickly written factorial using binary split recursive method

\def\tFac {\romannumeral-`0\tfac }%

\def\tfac #1{\expandafter\XINT_mul_out

\romannumeral-`0\ufac {1}{#1}1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W}%

\def\ufac #1#2{\ifcase\numexpr#2-#1\relax

\expandafter\xint_firstofthree

\or

\expandafter\xint_secondofthree

\else

\expandafter\xint_thirdofthree

\fi

{\the\numexpr\xint_c_x^viii+#1!1;!}%

{\the\numexpr\xint_c_x^viii+#1*#2!1;!}%

{\expandafter\vfac\the\numexpr (#1+#2)/\xint_c_ii.#1.#2.}%

}%

\def\vfac #1.#2.#3.%

{%

\expandafter

\wfac\expandafter

{\romannumeral-`0\expandafter

\ufac\expandafter{\the\numexpr #1+\xint_c_i}{#3}}%

{\ufac {#2}{#1}}%

355

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

}%

\def\wfac #1#2{\expandafter\zfac\romannumeral-`0#2\W #1}%

\def\zfac {\the\numexpr\XINT_mul_loop 100000000!1;!\W }% core multiplication...

\catcode`_ 8

\catcode`^ 7

and I was quite surprised that it was only about 1.6x--2x slower in the range N=200 to 2000 than

the \xintiiFac here which attempts to be smarter...

Note (2017, 1.2l): I found out some code comment of mine that the code here should be more in

the style of \xintiiBinomial, but I left matters untouched.

1991 \def\xintiiFac {\romannumeral0\xintiifac }%

1992 \def\xintiifac #1{\expandafter\XINT_fac_fork\the\numexpr#1.}%

1993 \def\XINT_fac_fork #1#2.%

1994 {%

1995 \xint_UDzerominusfork

1996 #1-\XINT_fac_zero

1997 0#1\XINT_fac_neg

1998 0-\XINT_fac_checksize

1999 \krof #1#2.%

2000 }%

2001 \def\XINT_fac_zero #1.{ 1}%

2002 \def\XINT_fac_neg #1.{\XINT_signalcondition{InvalidOperation}{Factorial of

2003 negative argument: #1.}{}{ 0}}%

2004 \def\XINT_fac_checksize #1.%

2005 {%

2006 \ifnum #1>\xint_c_x^iv \xint_dothis{\XINT_fac_toobig #1.}\fi

2007 \ifnum #1>465 \xint_dothis{\XINT_fac_bigloop_a #1.}\fi

2008 \ifnum #1>101 \xint_dothis{\XINT_fac_medloop_a #1.\XINT_mul_out}\fi

2009 \xint_orthat{\XINT_fac_smallloop_a #1.\XINT_mul_out}%

2010 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

2011 }%

2012 \def\XINT_fac_toobig

2013 #1.#2\W{\XINT_signalcondition{InvalidOperation}{Factorial

2014 argument is too large: #1 > 10^4.}{}{ 0}}%

2015 \def\XINT_fac_bigloop_a #1.%

2016 {%

2017 \expandafter\XINT_fac_bigloop_b \the\numexpr

2018 #1+\xint_c_i-\xint_c_ii*((#1-464)/\xint_c_ii).#1.%

2019 }%

2020 \def\XINT_fac_bigloop_b #1.#2.%

2021 {%

2022 \expandafter\XINT_fac_medloop_a

2023 \the\numexpr #1-\xint_c_i.{\XINT_fac_bigloop_loop #1.#2.}%

2024 }%

2025 \def\XINT_fac_bigloop_loop #1.#2.%

2026 {%

2027 \ifnum #1>#2 \expandafter\XINT_fac_bigloop_exit\fi

2028 \expandafter\XINT_fac_bigloop_loop

2029 \the\numexpr #1+\xint_c_ii\expandafter.%

2030 \the\numexpr #2\expandafter.\the\numexpr\XINT_fac_bigloop_mul #1!%

2031 }%

2032 \def\XINT_fac_bigloop_exit #1!{\XINT_mul_out}%

2033 \def\XINT_fac_bigloop_mul #1!%

356

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2034 {%

2035 \expandafter\XINT_smallmul

2036 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)!%

2037 }%

2038 \def\XINT_fac_medloop_a #1.%

2039 {%

2040 \expandafter\XINT_fac_medloop_b

2041 \the\numexpr #1+\xint_c_i-\xint_c_iii*((#1-100)/\xint_c_iii).#1.%

2042 }%

2043 \def\XINT_fac_medloop_b #1.#2.%

2044 {%

2045 \expandafter\XINT_fac_smallloop_a

2046 \the\numexpr #1-\xint_c_i.{\XINT_fac_medloop_loop #1.#2.}%

2047 }%

2048 \def\XINT_fac_medloop_loop #1.#2.%

2049 {%

2050 \ifnum #1>#2 \expandafter\XINT_fac_loop_exit\fi

2051 \expandafter\XINT_fac_medloop_loop

2052 \the\numexpr #1+\xint_c_iii\expandafter.%

2053 \the\numexpr #2\expandafter.\the\numexpr\XINT_fac_medloop_mul #1!%

2054 }%

2055 \def\XINT_fac_medloop_mul #1!%

2056 {%

2057 \expandafter\XINT_smallmul

2058 \the\numexpr

2059 \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%

2060 }%

2061 \def\XINT_fac_smallloop_a #1.%

2062 {%

2063 \csname

2064 XINT_fac_smallloop_\the\numexpr #1-\xint_c_iv*(#1/\xint_c_iv)\relax

2065 \endcsname #1.%

2066 }%

2067 \expandafter\def\csname XINT_fac_smallloop_1\endcsname #1.%

2068 {%

2069 \XINT_fac_smallloop_loop 2.#1.100000001!1;!%

2070 }%

2071 \expandafter\def\csname XINT_fac_smallloop_-2\endcsname #1.%

2072 {%

2073 \XINT_fac_smallloop_loop 3.#1.100000002!1;!%

2074 }%

2075 \expandafter\def\csname XINT_fac_smallloop_-1\endcsname #1.%

2076 {%

2077 \XINT_fac_smallloop_loop 4.#1.100000006!1;!%

2078 }%

2079 \expandafter\def\csname XINT_fac_smallloop_0\endcsname #1.%

2080 {%

2081 \XINT_fac_smallloop_loop 5.#1.1000000024!1;!%

2082 }%

2083 \def\XINT_fac_smallloop_loop #1.#2.%

2084 {%

2085 \ifnum #1>#2 \expandafter\XINT_fac_loop_exit\fi

357

TOC
TOC, xintkernel, xinttools, xintcore , xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2086 \expandafter\XINT_fac_smallloop_loop

2087 \the\numexpr #1+\xint_c_iv\expandafter.%

2088 \the\numexpr #2\expandafter.\the\numexpr\XINT_fac_smallloop_mul #1!%

2089 }%

2090 \def\XINT_fac_smallloop_mul #1!%

2091 {%

2092 \expandafter\XINT_smallmul

2093 \the\numexpr

2094 \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

2095 }%

2096 \def\XINT_fac_loop_exit #1!#2;!#3{#3#2;!}%

20.47. \XINT_useiimessage
1.2o

2097 \def\XINT_useiimessage #1% used in LaTeX only

2098 {%

2099 \XINT_ifFlagRaised {#1}%

2100 {\@backslashchar#1

2101 (load xintfrac or use \@backslashchar xintii\xint_gobble_iv#1!)\MessageBreak}%

2102 {}%

2103 }%

2104 \XINTrestorecatcodesendinput%

358

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

21. Package xint implementation

.1 Package identification 360

.2 \xintLen, \xintiLen 360

.3 \xintiiLogTen 361

.4 \xintReverseDigits 361

.5 \xintiiE 362

.6 \xintDecSplit 362

.7 \xintDecSplitL 364

.8 \xintDecSplitR 364

.9 \xintDSHr 364

.10 \xintDSH 365

.11 \xintDSx 365

.12 \xintiiEq 367

.13 \xintiiNotEq 367

.14 \xintiiGeq 367

.15 \xintiiGt 368

.16 \xintiiLt 368

.17 \xintiiGtorEq 368

.18 \xintiiLtorEq 368

.19 \xintiiIsZero 368

.20 \xintiiIsNotZero 368

.21 \xintiiIsOne 368

.22 \xintiiOdd 369

.23 \xintiiEven 369

.24 \xintiiMON 369

.25 \xintiiMMON 369

.26 \xintSgnFork 370

.27 \xintiiifSgn 370

.28 \xintiiifCmp 370

.29 \xintiiifEq 371

.30 \xintiiifGt 371

.31 \xintiiifLt 371

.32 \xintiiifZero 371

.33 \xintiiifNotZero 372

.34 \xintiiifOne 372

.35 \xintiiifOdd 372

.36 \xintifTrueAelseB, \xintifFalseAelseB 372

.37 \xintIsTrue, \xintIsFalse 372

.38 \xintNOT 373

.39 \xintAND, \xintOR, \xintXOR 373

.40 \xintANDof 373

.41 \xintORof 373

.42 \xintXORof 374

.43 \xintiiMax 374

.44 \xintiiMin 375

.45 \xintiiMaxof 376

.46 \xintiiMinof 377

.47 \xintiiSum 377

.48 \xintiiPrd 378

.49 \xintiiSquareRoot 378

.50 \xintiiSqrt, \xintiiSqrtR 384

.51 \xintiiBinomial 384

.52 \xintiiPFactorial 390

.53 \xintBool, \xintToggle 393

.54 \xintiiGCD 393

.55 \xintiiGCDof 394

.56 \xintiiLCM 394

.57 \xintiiLCMof 395

.58 (WIP) \xintRandomDigits 395

.59 (WIP) \XINT_eightrandomdigits, \xin-
tEightRandomDigits 396

.60 (WIP) \xintRandBit 396

.61 (WIP) \xintXRandomDigits 396

.62 (WIP) \xintiiRandRangeAtoB 397

.63 (WIP) \xintiiRandRange 397

.64 (WIP) Adjustments for engines without
uniformdeviate primitive 398

With release 1.1 the core arithmetic routines \xintiiAdd, \xintiiSub, \xintiiMul, \xintiiQuo,

\xintiiPow were separated to be the main component of the then new xintcore.

1.3b adds randomness related macros.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode44=12 % ,

8 \catcode46=12 % .

9 \catcode58=12 % :

10 \catcode94=7 % ^

11 \def\empty{}\def\space{ }\newlinechar10

12 \def\z{\endgroup}%

13 \expandafter\let\expandafter\x\csname ver@xint.sty\endcsname

359

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

14 \expandafter\let\expandafter\w\csname ver@xintcore.sty\endcsname

15 \expandafter\ifx\csname numexpr\endcsname\relax

16 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

17 \immediate\write128{^^JPackage xint Warning:^^J%

18 \space\space\space\space

19 \numexpr not available, aborting input.^^J}%

20 \else

21 \PackageWarningNoLine{xint}{\numexpr not available, aborting input}%

22 \fi

23 \def\z{\endgroup\endinput}%

24 \else

25 \ifx\x\relax % plain-TeX, first loading of xintcore.sty

26 \ifx\w\relax % but xintkernel.sty not yet loaded.

27 \def\z{\endgroup\input xintcore.sty\relax}%

28 \fi

29 \else

30 \ifx\x\empty % LaTeX, first loading,

31 % variable is initialized, but \ProvidesPackage not yet seen

32 \ifx\w\relax % xintcore.sty not yet loaded.

33 \def\z{\endgroup\RequirePackage{xintcore}}%

34 \fi

35 \else

36 \def\z{\endgroup\endinput}% xint already loaded.

37 \fi

38 \fi

39 \fi

40 \z%

41 \XINTsetupcatcodes% defined in xintkernel.sty (loaded by xintcore.sty)

21.1. Package identification
42 \XINT_providespackage

43 \ProvidesPackage{xint}%

44 [2025/09/06 v1.4o Expandable operations on big integers (JFB)]%

21.2. \xintLen, \xintiLen
\xintLen gets extended to fractions by xintfrac.sty: A/B is given length len(A)+len(B)-1 (some-

what arbitrary). It applies \xintNum to its argument. A minus sign is accepted and ignored.

For parallelism with \xintiNum/\xintNum, 1.2o defines \xintiLen.

\xintLen gets redefined by xintfrac.

45 \def\xintiLen {\romannumeral0\xintilen }%

46 \def\xintilen #1{\def\xintilen ##1%

47 {%

48 \expandafter#1\the\numexpr

49 \expandafter\XINT_len_fork\romannumeral0\xintinum{##1}%

50 \xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

51 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

52 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye\relax

53 }}\xintilen{ }%

54 \def\xintLen {\romannumeral0\xintlen }%

55 \let\xintlen\xintilen

56 \def\XINT_len_fork #1%

360

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

57 {%

58 \expandafter\XINT_length_loop\xint_UDsignfork#1{}-#1\krof

59 }%

21.3. \xintiiLogTen
1.3e. Support for ilog10() function in \xintiiexpr. See \XINTiLogTen in xintfrac.sty which also

currently uses -"7FFF8000 as value if input is zero.

60 \def\xintiiLogTen {\the\numexpr\xintiilogten }%

61 \def\xintiilogten #1%

62 {%

63 \expandafter\XINT_iilogten\romannumeral`&&@#1%

64 \xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

65 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

66 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

67 \relax

68 }%

69 \def\XINT_iilogten #1{\if#10-"7FFF8000\fi -1+%

70 \expandafter\XINT_length_loop\xint_UDsignfork#1{}-#1\krof}%

21.4. \xintReverseDigits
1.2.

This puts digits in reverse order, not suppressing leading zeros after reverse. Despite lacking

the "ii" in its name, it does not apply \xintNum to its argument (contrarily to \xintLen, this is

not very coherent).

1.2l variant is robust against non terminated \the\numexpr input.

This macro is currently not used elsewhere in xint code.

71 \def\xintReverseDigits {\romannumeral0\xintreversedigits }%

72 \def\xintreversedigits #1%

73 {%

74 \expandafter\XINT_revdigits\romannumeral`&&@#1%

75 {\XINT_microrevsep_end\W}\XINT_microrevsep_end

76 \XINT_microrevsep_end\XINT_microrevsep_end

77 \XINT_microrevsep_end\XINT_microrevsep_end

78 \XINT_microrevsep_end\XINT_microrevsep_end\XINT_microrevsep_end\Z

79 1\Z!1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

80 }%

81 \def\XINT_revdigits #1%

82 {%

83 \xint_UDsignfork

84 #1{\expandafter-\romannumeral0\XINT_revdigits_a}%

85 -{\XINT_revdigits_a #1}%

86 \krof

87 }%

88 \def\XINT_revdigits_a

89 {%

90 \expandafter\XINT_revdigits_b\expandafter{\expandafter}%

91 \the\numexpr\XINT_microrevsep

92 }%

93 \def\XINT_microrevsep #1#2#3#4#5#6#7#8#9%

94 {%

361

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

95 1#9#8#7#6#5#4#3#2#1\expandafter!\the\numexpr\XINT_microrevsep

96 }%

97 \def\XINT_microrevsep_end #1\W #2\expandafter #3\Z{\relax#2!}%

98 \def\XINT_revdigits_b #11#2!1#3!1#4!1#5!1#6!1#7!1#8!1#9!%

99 {%

100 \xint_gob_til_R #9\XINT_revdigits_end\R

101 \XINT_revdigits_b {#9#8#7#6#5#4#3#2#1}%

102 }%

103 \def\XINT_revdigits_end#1{%

104 \def\XINT_revdigits_end\R\XINT_revdigits_b ##1##2\W

105 {\expandafter#1\xint_gob_til_Z ##1}%

106 }\XINT_revdigits_end{ }%

107 \let\xintRev\xintReverseDigits

21.5. \xintiiE
Originally was used in \xintiiexpr. Transferred from xintfrac for 1.1. Code rewritten for 1.2i.

\xintiiE{x}{e} extends x with e zeroes if e is positive and simply outputs x if e is zero or nega-

tive. Attention, le comportement pour e < 0 ne doit pas être modifié car \xintMod et autres macros

en dépendent.

108 \def\xintiiE {\romannumeral0\xintiie }%

109 \def\xintiie #1#2%

110 {\expandafter\XINT_iie_fork\the\numexpr #2\expandafter.\romannumeral`&&@#1;}%

111 \def\XINT_iie_fork #1%

112 {%

113 \xint_UDsignfork

114 #1\XINT_iie_neg

115 -\XINT_iie_a

116 \krof #1%

117 }%

le #2 a le bon pattern terminé par ; #1=0 est OK pour \XINT_rep.

118 \def\XINT_iie_a #1.%

119 {\expandafter\XINT_dsx_append\romannumeral\XINT_rep #1\endcsname 0.}%

120 \def\XINT_iie_neg #1.#2;{ #2}%

21.6. \xintDecSplit
DECIMAL SPLIT

The macro \xintDecSplit {x}{A} cuts A which is composed of digits (leading zeroes ok, but no

sign) (*) into two (each possibly empty) pieces L and R. The concatenation LR always reproduces A.

The position of the cut is specified by the first argument x. If x is zero or positive the cut

location is x slots to the left of the right end of the number. If x becomes equal to or larger

than the length of the number then L becomes empty. If x is negative the location of the cut is |x|

slots to the right of the left end of the number.

(*) versions earlier than 1.2i first replaced A with its absolute value. This is not the case

anymore. This macro should NOT be used for A with a leading sign (+ or -).

Entirely rewritten for 1.2i (2016/12/11).

Attention: \xintDecSplit not robust against non terminated second argument.

121 \def\xintDecSplit {\romannumeral0\xintdecsplit }%

122 \def\xintdecsplit #1#2%

123 {%

124 \expandafter\XINT_split_finish

362

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

125 \romannumeral0\expandafter\XINT_split_xfork

126 \the\numexpr #1\expandafter.\romannumeral`&&@#2%

127 \xint_bye2345678\xint_bye..%

128 }%

129 \def\XINT_split_finish #1.#2.{{#1}{#2}}%

130 \def\XINT_split_xfork #1%

131 {%

132 \xint_UDzerominusfork

133 #1-\XINT_split_zerosplit

134 0#1\XINT_split_fromleft

135 0-{\XINT_split_fromright #1}%

136 \krof

137 }%

138 \def\XINT_split_zerosplit .#1\xint_bye#2\xint_bye..{ #1..}%

139 \def\XINT_split_fromleft

140 {\expandafter\XINT_split_fromleft_a\the\numexpr\xint_c_viii-}%

141 \def\XINT_split_fromleft_a #1%

142 {%

143 \xint_UDsignfork

144 #1\XINT_split_fromleft_b

145 -{\XINT_split_fromleft_end_a #1}%

146 \krof

147 }%

148 \def\XINT_split_fromleft_b #1.#2#3#4#5#6#7#8#9%

149 {%

150 \expandafter\XINT_split_fromleft_clean

151 \the\numexpr1#2#3#4#5#6#7#8#9\expandafter

152 \XINT_split_fromleft_a\the\numexpr\xint_c_viii-#1.%

153 }%

154 \def\XINT_split_fromleft_end_a #1.%

155 {%

156 \expandafter\XINT_split_fromleft_clean

157 \the\numexpr1\csname XINT_split_fromleft_end#1\endcsname

158 }%

159 \def\XINT_split_fromleft_clean 1{ }%

160 \expandafter\def\csname XINT_split_fromleft_end7\endcsname #1%

161 {#1\XINT_split_fromleft_end_b}%

162 \expandafter\def\csname XINT_split_fromleft_end6\endcsname #1#2%

163 {#1#2\XINT_split_fromleft_end_b}%

164 \expandafter\def\csname XINT_split_fromleft_end5\endcsname #1#2#3%

165 {#1#2#3\XINT_split_fromleft_end_b}%

166 \expandafter\def\csname XINT_split_fromleft_end4\endcsname #1#2#3#4%

167 {#1#2#3#4\XINT_split_fromleft_end_b}%

168 \expandafter\def\csname XINT_split_fromleft_end3\endcsname #1#2#3#4#5%

169 {#1#2#3#4#5\XINT_split_fromleft_end_b}%

170 \expandafter\def\csname XINT_split_fromleft_end2\endcsname #1#2#3#4#5#6%

171 {#1#2#3#4#5#6\XINT_split_fromleft_end_b}%

172 \expandafter\def\csname XINT_split_fromleft_end1\endcsname #1#2#3#4#5#6#7%

173 {#1#2#3#4#5#6#7\XINT_split_fromleft_end_b}%

174 \expandafter\def\csname XINT_split_fromleft_end0\endcsname #1#2#3#4#5#6#7#8%

175 {#1#2#3#4#5#6#7#8\XINT_split_fromleft_end_b}%

176 \def\XINT_split_fromleft_end_b #1\xint_bye#2\xint_bye.{.#1}% puis .

363

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

177 \def\XINT_split_fromright #1.#2\xint_bye

178 {%

179 \expandafter\XINT_split_fromright_a

180 \the\numexpr#1-\numexpr\XINT_length_loop

181 #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

182 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

183 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

184 .#2\xint_bye

185 }%

186 \def\XINT_split_fromright_a #1%

187 {%

188 \xint_UDsignfork

189 #1\XINT_split_fromleft

190 -\XINT_split_fromright_Lempty

191 \krof

192 }%

193 \def\XINT_split_fromright_Lempty #1.#2\xint_bye#3..{.#2.}%

21.7. \xintDecSplitL
194 \def\xintDecSplitL {\romannumeral0\xintdecsplitl }%

195 \def\xintdecsplitl #1#2%

196 {%

197 \expandafter\XINT_splitl_finish

198 \romannumeral0\expandafter\XINT_split_xfork

199 \the\numexpr #1\expandafter.\romannumeral`&&@#2%

200 \xint_bye2345678\xint_bye..%

201 }%

202 \def\XINT_splitl_finish #1.#2.{ #1}%

21.8. \xintDecSplitR
203 \def\xintDecSplitR {\romannumeral0\xintdecsplitr }%

204 \def\xintdecsplitr #1#2%

205 {%

206 \expandafter\XINT_splitr_finish

207 \romannumeral0\expandafter\XINT_split_xfork

208 \the\numexpr #1\expandafter.\romannumeral`&&@#2%

209 \xint_bye2345678\xint_bye..%

210 }%

211 \def\XINT_splitr_finish #1.#2.{ #2}%

21.9. \xintDSHr
DECIMAL SHIFTS \xintDSH {x}{A}

si x <= 0, fait A -> A.10^(|x|). si x > 0, et A >=0, fait A -> quo(A,10^(x))

si x > 0, et A < 0, fait A -> -quo(-A,10^(x))

(donc pour x > 0 c'est comme DSR itéré x fois)

\xintDSHr donne le `reste' (si x<=0 donne zéro).

Badly named macros.

Rewritten for 1.2i, this was old code and \xintDSx has changed interface.

212 \def\xintDSHr {\romannumeral0\xintdshr }%

213 \def\xintdshr #1#2%

364

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

214 {%

215 \expandafter\XINT_dshr_fork\the\numexpr#1\expandafter.\romannumeral`&&@#2;%

216 }%

217 \def\XINT_dshr_fork #1%

218 {%

219 \xint_UDzerominusfork

220 0#1\XINT_dshr_xzeroorneg

221 #1-\XINT_dshr_xzeroorneg

222 0-\XINT_dshr_xpositive

223 \krof #1%

224 }%

225 \def\XINT_dshr_xzeroorneg #1;{ 0}%

226 \def\XINT_dshr_xpositive

227 {%

228 \expandafter\xint_stop_atsecondoftwo\romannumeral0\XINT_dsx_xisPos

229 }%

21.10. \xintDSH
230 \def\xintDSH {\romannumeral0\xintdsh }%

231 \def\xintdsh #1#2%

232 {%

233 \expandafter\XINT_dsh_fork\the\numexpr#1\expandafter.\romannumeral`&&@#2;%

234 }%

235 \def\XINT_dsh_fork #1%

236 {%

237 \xint_UDzerominusfork

238 #1-\XINT_dsh_xiszero

239 0#1\XINT_dsx_xisNeg_checkA

240 0-{\XINT_dsh_xisPos #1}%

241 \krof

242 }%

243 \def\XINT_dsh_xiszero #1.#2;{ #2}%

244 \def\XINT_dsh_xisPos

245 {%

246 \expandafter\xint_stop_atfirstoftwo\romannumeral0\XINT_dsx_xisPos

247 }%

21.11. \xintDSx
--> Attention le cas x=0 est traité dans la même catégorie que x > 0 <--

si x < 0, fait A -> A.10^(|x|)

si x >= 0, et A >=0, fait A -> {quo(A,10^(x))}{rem(A,10^(x))}

si x >= 0, et A < 0, d'abord on calcule {quo(-A,10^(x))}{rem(-A,10^(x))}

puis, si le premier n'est pas nul on lui donne le signe -

si le premier est nul on donne le signe - au second.

On peut donc toujours reconstituer l'original A par 10^x Q \pm R où il faut prendre le signe plus

si Q est positif ou nul et le signe moins si Q est strictement négatif.

Rewritten for 1.2i, this was old code.

248 \def\xintDSx {\romannumeral0\xintdsx }%

249 \def\xintdsx #1#2%

250 {%

251 \expandafter\XINT_dsx_fork\the\numexpr#1\expandafter.\romannumeral`&&@#2;%

365

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

252 }%

253 \def\XINT_dsx_fork #1%

254 {%

255 \xint_UDzerominusfork

256 #1-\XINT_dsx_xisZero

257 0#1\XINT_dsx_xisNeg_checkA

258 0-{\XINT_dsx_xisPos #1}%

259 \krof

260 }%

261 \def\XINT_dsx_xisZero #1.#2;{{#2}{0}}%

262 \def\XINT_dsx_xisNeg_checkA #1.#2%

263 {%

264 \xint_gob_til_zero #2\XINT_dsx_xisNeg_Azero 0%

265 \expandafter\XINT_dsx_append\romannumeral\XINT_rep #1\endcsname 0.#2%

266 }%

267 \def\XINT_dsx_xisNeg_Azero #1;{ 0}%

268 \def\XINT_dsx_addzeros #1%

269 {\expandafter\XINT_dsx_append\romannumeral\XINT_rep#1\endcsname0.}%

270 \def\XINT_dsx_addzerosnofuss #1%

271 {\expandafter\XINT_dsx_append\romannumeral\xintreplicate{#1}0.}%

272 \def\XINT_dsx_append #1.#2;{ #2#1}%

273 \def\XINT_dsx_xisPos #1.#2%

274 {%

275 \xint_UDzerominusfork

276 #2-\XINT_dsx_AisZero

277 0#2\XINT_dsx_AisNeg

278 0-\XINT_dsx_AisPos

279 \krof #1.#2%

280 }%

281 \def\XINT_dsx_AisZero #1;{{0}{0}}%

282 \def\XINT_dsx_AisNeg #1.-#2;%

283 {%

284 \expandafter\XINT_dsx_AisNeg_checkiffirstempty

285 \romannumeral0\XINT_split_xfork #1.#2\xint_bye2345678\xint_bye..%

286 }%

287 \def\XINT_dsx_AisNeg_checkiffirstempty #1%

288 {%

289 \xint_gob_til_dot #1\XINT_dsx_AisNeg_finish_zero.%

290 \XINT_dsx_AisNeg_finish_notzero #1%

291 }%

292 \def\XINT_dsx_AisNeg_finish_zero.\XINT_dsx_AisNeg_finish_notzero.#1.%

293 {%

294 \expandafter\XINT_dsx_end

295 \expandafter {\romannumeral0\XINT_num {-#1}}{0}%

296 }%

297 \def\XINT_dsx_AisNeg_finish_notzero #1.#2.%

298 {%

299 \expandafter\XINT_dsx_end

300 \expandafter {\romannumeral0\XINT_num {#2}}{-#1}%

301 }%

302 \def\XINT_dsx_AisPos #1.#2;%

303 {%

366

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

304 \expandafter\XINT_dsx_AisPos_finish

305 \romannumeral0\XINT_split_xfork #1.#2\xint_bye2345678\xint_bye..%

306 }%

307 \def\XINT_dsx_AisPos_finish #1.#2.%

308 {%

309 \expandafter\XINT_dsx_end

310 \expandafter {\romannumeral0\XINT_num {#2}}%

311 {\romannumeral0\XINT_num {#1}}%

312 }%

313 \def\XINT_dsx_end #1#2{\expandafter{#2}{#1}}%

21.12. \xintiiEq
no \xintiieq.

314 \def\xintiiEq #1#2{\romannumeral0\xintiiifeq{#1}{#2}{1}{0}}%

21.13. \xintiiNotEq
Pour xintexpr. Pas de version en lowercase.

315 \def\xintiiNotEq #1#2{\romannumeral0\xintiiifeq {#1}{#2}{0}{1}}%

21.14. \xintiiGeq
PLUS GRAND OU ÉGAL attention compare les **valeurs absolues**

1.2l made \xintiiGeq robust against non terminated items.

1.2l rewrote \xintiiCmp, but forgot to handle \xintiiGeq too. Done at 1.2m.

This macro should have been called \xintGEq for example.

316 \def\xintiiGeq {\romannumeral0\xintiigeq }%

317 \def\xintiigeq #1{\expandafter\XINT_iigeq\romannumeral`&&@#1\xint:}%

318 \def\XINT_iigeq #1#2\xint:#3%

319 {%

320 \expandafter\XINT_geq_fork\expandafter #1\romannumeral`&&@#3\xint:#2\xint:

321 }%

322 \def\XINT_geq #1#2\xint:#3%

323 {%

324 \expandafter\XINT_geq_fork\expandafter #1\romannumeral0\xintnum{#3}\xint:#2\xint:

325 }%

326 \def\XINT_geq_fork #1#2%

327 {%

328 \xint_UDzerofork

329 #1\XINT_geq_firstiszero

330 #2\XINT_geq_secondiszero

331 0{}%

332 \krof

333 \xint_UDsignsfork

334 #1#2\XINT_geq_minusminus

335 #1-\XINT_geq_minusplus

336 #2-\XINT_geq_plusminus

337 --\XINT_geq_plusplus

338 \krof #1#2%

339 }%

340 \def\XINT_geq_firstiszero #1\krof 0#2#3\xint:#4\xint:

367

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

341 {\xint_UDzerofork #2{ 1}0{ 0}\krof }%

342 \def\XINT_geq_secondiszero #1\krof #20#3\xint:#4\xint:{ 1}%

343 \def\XINT_geq_plusminus #1-{\XINT_geq_plusplus #1{}}%

344 \def\XINT_geq_minusplus -#1{\XINT_geq_plusplus {}#1}%

345 \def\XINT_geq_minusminus --{\XINT_geq_plusplus {}{}}%

346 \def\XINT_geq_plusplus

347 {\expandafter\XINT_geq_finish\romannumeral0\XINT_cmp_plusplus}%

348 \def\XINT_geq_finish #1{\if-#1\expandafter\XINT_geq_no

349 \else\expandafter\XINT_geq_yes\fi}%

350 \def\XINT_geq_no 1{ 0}%

351 \def\XINT_geq_yes { 1}%

21.15. \xintiiGt
352 \def\xintiiGt #1#2{\romannumeral0\xintiiifgt{#1}{#2}{1}{0}}%

21.16. \xintiiLt
353 \def\xintiiLt #1#2{\romannumeral0\xintiiiflt{#1}{#2}{1}{0}}%

21.17. \xintiiGtorEq
354 \def\xintiiGtorEq #1#2{\romannumeral0\xintiiiflt {#1}{#2}{0}{1}}%

21.18. \xintiiLtorEq
355 \def\xintiiLtorEq #1#2{\romannumeral0\xintiiifgt {#1}{#2}{0}{1}}%

21.19. \xintiiIsZero
1.09a. restyled in 1.09i. 1.1 adds \xintiiIsZero, etc... for optimization in \xintexpr

356 \def\xintiiIsZero {\romannumeral0\xintiiiszero }%

357 \def\xintiiiszero #1{\if0\xintiiSgn{#1}\xint_afterfi{ 1}\else\xint_afterfi{ 0}\fi}%

21.20. \xintiiIsNotZero
1.09a. restyled in 1.09i. 1.1 adds \xintiiIsZero, etc... for optimization in \xintexpr

358 \def\xintiiIsNotZero {\romannumeral0\xintiiisnotzero }%

359 \def\xintiiisnotzero

360 #1{\if0\xintiiSgn{#1}\xint_afterfi{ 0}\else\xint_afterfi{ 1}\fi}%

21.21. \xintiiIsOne
Added in 1.03. 1.09a defines \xintIsOne. 1.1a adds \xintiiIsOne.

\XINT_isOne rewritten for 1.2g. Works with expanded strict integers, positive or negative.

361 \def\xintiiIsOne {\romannumeral0\xintiiisone }%

362 \def\xintiiisone #1{\expandafter\XINT_isone\romannumeral`&&@#1XY}%

363 \def\XINT_isone #1#2#3Y%

364 {%

365 \unless\if#2X\xint_dothis{ 0}\fi

366 \unless\if#11\xint_dothis{ 0}\fi

367 \xint_orthat{ 1}%

368 }%

368

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

369 \def\XINT_isOne #1{\XINT_is_One#1XY}%

370 \def\XINT_is_One #1#2#3Y%

371 {%

372 \unless\if#2X\xint_dothis0\fi

373 \unless\if#11\xint_dothis0\fi

374 \xint_orthat1%

375 }%

21.22. \xintiiOdd
\xintOdd is needed for the xintexpr-essions even() and odd() functions (and also by \xintNewExpr).

376 \def\xintiiOdd {\romannumeral0\xintiiodd }%

377 \def\xintiiodd #1%

378 {%

379 \ifodd\xintLDg{#1} %<- intentional space

380 \xint_afterfi{ 1}%

381 \else

382 \xint_afterfi{ 0}%

383 \fi

384 }%

21.23. \xintiiEven
385 \def\xintiiEven {\romannumeral0\xintiieven }%

386 \def\xintiieven #1%

387 {%

388 \ifodd\xintLDg{#1} %<- intentional space

389 \xint_afterfi{ 0}%

390 \else

391 \xint_afterfi{ 1}%

392 \fi

393 }%

21.24. \xintiiMON
MINUS ONE TO THE POWER N

394 \def\xintiiMON {\romannumeral0\xintiimon }%

395 \def\xintiimon #1%

396 {%

397 \ifodd\xintLDg {#1} %<- intentional space

398 \xint_afterfi{ -1}%

399 \else

400 \xint_afterfi{ 1}%

401 \fi

402 }%

21.25. \xintiiMMON
MINUS ONE TO THE POWER N-1

403 \def\xintiiMMON {\romannumeral0\xintiimmon }%

404 \def\xintiimmon #1%

405 {%

369

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

406 \ifodd\xintLDg {#1} %<- intentional space

407 \xint_afterfi{ 1}%

408 \else

409 \xint_afterfi{ -1}%

410 \fi

411 }%

21.26. \xintSgnFork
Expandable three-way fork added in 1.07. The argument #1 must expand to non-self-ending -1,0 or

1. 1.09i with _thenstop (now _stop_at...).

412 \def\xintSgnFork {\romannumeral0\xintsgnfork }%

413 \def\xintsgnfork #1%

414 {%

415 \ifcase #1 \expandafter\xint_stop_atsecondofthree

416 \or\expandafter\xint_stop_atthirdofthree

417 \else\expandafter\xint_stop_atfirstofthree

418 \fi

419 }%

21.27. \xintiiifSgn
Expandable three-way fork added in 1.09a. Branches expandably depending on whether <0, =0, >0.

Choice of branch guaranteed in two steps.

1.09i has \xint_firstofthreeafterstop (now \xint_stop_atfirstofthree) etc for faster expan-

sion.

1.1 adds \xintiiifSgn for optimization in xintexpr-essions. Should I move them to xintcore?

(for bnumexpr)

420 \def\xintiiifSgn {\romannumeral0\xintiiifsgn }%

421 \def\xintiiifsgn #1%

422 {%

423 \ifcase \xintiiSgn{#1}

424 \expandafter\xint_stop_atsecondofthree

425 \or\expandafter\xint_stop_atthirdofthree

426 \else\expandafter\xint_stop_atfirstofthree

427 \fi

428 }%

21.28. \xintiiifCmp
1.09e \xintifCmp {n}{m}{if n<m}{if n=m}{if n>m}. 1.1a adds ii variant

429 \def\xintiiifCmp {\romannumeral0\xintiiifcmp }%

430 \def\xintiiifcmp #1#2%

431 {%

432 \ifcase\xintiiCmp {#1}{#2}

433 \expandafter\xint_stop_atsecondofthree

434 \or\expandafter\xint_stop_atthirdofthree

435 \else\expandafter\xint_stop_atfirstofthree

436 \fi

437 }%

370

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

21.29. \xintiiifEq
1.09a \xintifEq {n}{m}{YES if n=m}{NO if n<>m}. 1.1a adds ii variant

438 \def\xintiiifEq {\romannumeral0\xintiiifeq }%

439 \def\xintiiifeq #1#2%

440 {%

441 \if0\xintiiCmp{#1}{#2}%

442 \expandafter\xint_stop_atfirstoftwo

443 \else\expandafter\xint_stop_atsecondoftwo

444 \fi

445 }%

21.30. \xintiiifGt
1.09a \xintifGt {n}{m}{YES if n>m}{NO if n<=m}. 1.1a adds ii variant

446 \def\xintiiifGt {\romannumeral0\xintiiifgt }%

447 \def\xintiiifgt #1#2%

448 {%

449 \if1\xintiiCmp{#1}{#2}%

450 \expandafter\xint_stop_atfirstoftwo

451 \else\expandafter\xint_stop_atsecondoftwo

452 \fi

453 }%

21.31. \xintiiifLt
1.09a \xintifLt {n}{m}{YES if n<m}{NO if n>=m}. Restyled in 1.09i. 1.1a adds ii variant

454 \def\xintiiifLt {\romannumeral0\xintiiiflt }%

455 \def\xintiiiflt #1#2%

456 {%

457 \ifnum\xintiiCmp{#1}{#2}<\xint_c_

458 \expandafter\xint_stop_atfirstoftwo

459 \else \expandafter\xint_stop_atsecondoftwo

460 \fi

461 }%

21.32. \xintiiifZero
Expandable two-way fork added in 1.09a. Branches expandably depending on whether the argument is

zero (branch A) or not (branch B). 1.09i restyling. By the way it appears (not thoroughly tested,

though) that \if tests are faster than \ifnum tests. 1.1 adds ii versions.

462 \def\xintiiifZero {\romannumeral0\xintiiifzero }%

463 \def\xintiiifzero #1%

464 {%

465 \if0\xintiiSgn{#1}%

466 \expandafter\xint_stop_atfirstoftwo

467 \else

468 \expandafter\xint_stop_atsecondoftwo

469 \fi

470 }%

371

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

21.33. \xintiiifNotZero
471 \def\xintiiifNotZero {\romannumeral0\xintiiifnotzero }%

472 \def\xintiiifnotzero #1%

473 {%

474 \if0\xintiiSgn{#1}%

475 \expandafter\xint_stop_atsecondoftwo

476 \else

477 \expandafter\xint_stop_atfirstoftwo

478 \fi

479 }%

21.34. \xintiiifOne
added in 1.09i. 1.1a adds \xintiiifOne.

480 \def\xintiiifOne {\romannumeral0\xintiiifone }%

481 \def\xintiiifone #1%

482 {%

483 \if1\xintiiIsOne{#1}%

484 \expandafter\xint_stop_atfirstoftwo

485 \else

486 \expandafter\xint_stop_atsecondoftwo

487 \fi

488 }%

21.35. \xintiiifOdd
1.09e. Restyled in 1.09i. 1.1a adds \xintiiifOdd.

489 \def\xintiiifOdd {\romannumeral0\xintiiifodd }%

490 \def\xintiiifodd #1%

491 {%

492 \if\xintiiOdd{#1}1%

493 \expandafter\xint_stop_atfirstoftwo

494 \else

495 \expandafter\xint_stop_atsecondoftwo

496 \fi

497 }%

21.36. \xintifTrueAelseB, \xintifFalseAelseB
1.09i, with name changes at 1.2i.

1.2o uses \xintiiifNotZero, see comments to \xintAND etc... This will work fine with arguments

being nested xintfrac.sty macros, without the overhead of \xintNum or \xintRaw parsing.

498 \def\xintifTrueAelseB {\romannumeral0\xintiiifnotzero}%

499 \def\xintifFalseAelseB{\romannumeral0\xintiiifzero}%

21.37. \xintIsTrue, \xintIsFalse
1.09c. Suppressed at 1.2o. They seem not to have been documented, fortunately.

500 %\let\xintIsTrue \xintIsNotZero

501 %\let\xintIsFalse\xintIsZero

372

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

21.38. \xintNOT
1.09c with name change at 1.2o. Besides, the macro is now defined as ii-type.

502 \def\xintNOT{\romannumeral0\xintiiiszero}%

21.39. \xintAND, \xintOR, \xintXOR
Added with 1.09a. But they used \xintSgn, etc... rather than \xintiiSgn. This brings \xintNum

overhead which is not really desired, and which is not needed for use by xintexpr.sty. At 1.2o I

modify them to use only ii macros. This is enough for sign or zeroness even for xintfrac format,

as manipulated inside the \xintexpr. Big hesitation whether there should be however \xintiiAND

outputting 1 or 0 versus an \xintAND outputting 1[0] versus 0[0] for example.

503 \def\xintAND {\romannumeral0\xintand }%

504 \def\xintand #1#2{\if0\xintiiSgn{#1}\expandafter\xint_firstoftwo

505 \else\expandafter\xint_secondoftwo\fi

506 { 0}{\xintiiisnotzero{#2}}}%

507 \def\xintOR {\romannumeral0\xintor }%

508 \def\xintor #1#2{\if0\xintiiSgn{#1}\expandafter\xint_firstoftwo

509 \else\expandafter\xint_secondoftwo\fi

510 {\xintiiisnotzero{#2}}{ 1}}%

511 \def\xintXOR {\romannumeral0\xintxor }%

512 \def\xintxor #1#2{\if\xintiiIsZero{#1}\xintiiIsZero{#2}%

513 \xint_afterfi{ 0}\else\xint_afterfi{ 1}\fi }%

21.40. \xintANDof
New with 1.09a. \xintANDof works also with an empty list. Empty items however are not accepted.

1.2l made \xintANDof robust against non terminated items.

1.2o's \xintifTrueAelseB is now an ii macro, actually.

1.4. This macro as well as ORof and XORof were formally not used by xintexpr, which uses comma

separated items, but at 1.4 xintexpr uses braced items. And the macros here got slightly refac-

tored and \XINT_ANDof added for usage by xintexpr and the NewExpr hook. For some random reason

I decided to use ^ as delimiter this has to do that other macros in xintfrac in same family (such

as \xintGCDof, \xintSum) also use \xint: internally and although not strictly needed having two

separate ones clarifies.

514 \def\xintANDof {\romannumeral0\xintandof }%

515 \def\xintandof #1{\expandafter\XINT_andof\romannumeral`&&@#1^}%

516 \def\XINT_ANDof {\romannumeral0\XINT_andof}%

517 \def\XINT_andof #1%

518 {%

519 \xint_gob_til_^ #1\XINT_andof_yes ^%

520 \xintiiifNotZero{#1}\XINT_andof\XINT_andof_no

521 }%

522 \def\XINT_andof_no #1^{ 0}%

523 \def\XINT_andof_yes ^#1\XINT_andof_no{ 1}%

21.41. \xintORof
New with 1.09a. Works also with an empty list. Empty items however are not accepted.

1.2l made \xintORof robust against non terminated items.

Refactored at 1.4.

524 \def\xintORof {\romannumeral0\xintorof }%

373

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

525 \def\xintorof #1{\expandafter\XINT_orof\romannumeral`&&@#1^}%

526 \def\XINT_ORof {\romannumeral0\XINT_orof}%

527 \def\XINT_orof #1%

528 {%

529 \xint_gob_til_^ #1\XINT_orof_no ^%

530 \xintiiifNotZero{#1}\XINT_orof_yes\XINT_orof

531 }%

532 \def\XINT_orof_yes#1^{ 1}%

533 \def\XINT_orof_no ^#1\XINT_orof{ 0}%

21.42. \xintXORof
New with 1.09a. Works with an empty list, too. Empty items however are not accepted. \XINT_xoro ⤸
f_c more efficient in 1.09i.

1.2l made \xintXORof robust against non terminated items.

Refactored at 1.4 to use \numexpr (or an \ifnum). I have not tested if more efficient or not or

if one can do better without \the. \XINT_XORof for xintexpr matters.

534 \def\xintXORof {\romannumeral0\xintxorof }%

535 \def\xintxorof #1{\expandafter\XINT_xorof\romannumeral`&&@#1^}%

536 \def\XINT_XORof {\romannumeral0\XINT_xorof}%

537 \def\XINT_xorof {\if1\the\numexpr\XINT_xorof_a}%

538 \def\XINT_xorof_a #1%

539 {%

540 \xint_gob_til_^ #1\XINT_xorof_e ^%

541 \xintiiifNotZero{#1}{-}{}\XINT_xorof_a

542 }%

543 \def\XINT_xorof_e ^#1\XINT_xorof_a

544 {1\relax\xint_afterfi{ 0}\else\xint_afterfi{ 1}\fi}%

21.43. \xintiiMax
At 1.2m, a long-standing bug was fixed: \xintiiMax had the overhead of applying \xintNum to its

arguments due to use of a sub-macro of \xintGeq code to which this overhead was added at some point.

And on this occasion I reduced even more number of times input is grabbed.

545 \def\xintiiMax {\romannumeral0\xintiimax }%

546 \def\xintiimax #1%

547 {%

548 \expandafter\xint_iimax \romannumeral`&&@#1\xint:

549 }%

550 \def\xint_iimax #1\xint:#2%

551 {%

552 \expandafter\XINT_max_fork\romannumeral`&&@#2\xint:#1\xint:

553 }%

#3#4 vient du *premier*, #1#2 vient du *second*. I have renamed the sub-macros at 1.2m because

the terminology was quite counter-intuitive; there was no bug, but still.

554 \def\XINT_max_fork #1#2\xint:#3#4\xint:

555 {%

556 \xint_UDsignsfork

557 #1#3\XINT_max_minusminus % A < 0, B < 0

558 #1-\XINT_max_plusminus % B < 0, A >= 0

559 #3-\XINT_max_minusplus % A < 0, B >= 0

560 --{\xint_UDzerosfork

374

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

561 #1#3\XINT_max_zerozero % A = B = 0

562 #10\XINT_max_pluszero % B = 0, A > 0

563 #30\XINT_max_zeroplus % A = 0, B > 0

564 00\XINT_max_plusplus % A, B > 0

565 \krof }%

566 \krof

567 #3#1#2\xint:#4\xint:

568 \expandafter\xint_stop_atfirstoftwo

569 \else

570 \expandafter\xint_stop_atsecondoftwo

571 \fi

572 {#3#4}{#1#2}%

573 }%

Refactored at 1.2m for avoiding grabbing arguments. Position of inputs shared with iiCmp and

iiGeq code.

574 \def\XINT_max_zerozero #1\fi{\xint_stop_atfirstoftwo }%

575 \def\XINT_max_zeroplus #1\fi{\xint_stop_atsecondoftwo }%

576 \def\XINT_max_pluszero #1\fi{\xint_stop_atfirstoftwo }%

577 \def\XINT_max_minusplus #1\fi{\xint_stop_atsecondoftwo }%

578 \def\XINT_max_plusminus #1\fi{\xint_stop_atfirstoftwo }%

579 \def\XINT_max_plusplus

580 {%

581 \if1\romannumeral0\XINT_geq_plusplus

582 }%

Premier des testés |A|=-A, second est |B|=-B. On veut le max(A,B), c'est donc A si |A|<|B| (ou

|A|=|B|, mais peu importe alors). Donc on peut faire cela avec \unless. Simple.

583 \def\XINT_max_minusminus --%

584 {%

585 \unless\if1\romannumeral0\XINT_geq_plusplus{}{}%

586 }%

21.44. \xintiiMin
New with 1.09a. I add \xintiiMin in 1.1 and \xintMin is an xintfrac macro.

At 1.2m, a long-standing bug was fixed: \xintiiMin had the overhead of applying \xintNum to

its arguments due to use of a sub-macro of \xintGeq code to which this overhead was added at some

point.

And on this occasion I reduced even more number of times input is grabbed.

587 \def\xintiiMin {\romannumeral0\xintiimin }%

588 \def\xintiimin #1%

589 {%

590 \expandafter\xint_iimin \romannumeral`&&@#1\xint:

591 }%

592 \def\xint_iimin #1\xint:#2%

593 {%

594 \expandafter\XINT_min_fork\romannumeral`&&@#2\xint:#1\xint:

595 }%

596 \def\XINT_min_fork #1#2\xint:#3#4\xint:

597 {%

598 \xint_UDsignsfork

599 #1#3\XINT_min_minusminus % A < 0, B < 0

600 #1-\XINT_min_plusminus % B < 0, A >= 0

375

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

601 #3-\XINT_min_minusplus % A < 0, B >= 0

602 --{\xint_UDzerosfork

603 #1#3\XINT_min_zerozero % A = B = 0

604 #10\XINT_min_pluszero % B = 0, A > 0

605 #30\XINT_min_zeroplus % A = 0, B > 0

606 00\XINT_min_plusplus % A, B > 0

607 \krof }%

608 \krof

609 #3#1#2\xint:#4\xint:

610 \expandafter\xint_stop_atsecondoftwo

611 \else

612 \expandafter\xint_stop_atfirstoftwo

613 \fi

614 {#3#4}{#1#2}%

615 }%

616 \def\XINT_min_zerozero #1\fi{\xint_stop_atfirstoftwo }%

617 \def\XINT_min_zeroplus #1\fi{\xint_stop_atfirstoftwo }%

618 \def\XINT_min_pluszero #1\fi{\xint_stop_atsecondoftwo }%

619 \def\XINT_min_minusplus #1\fi{\xint_stop_atfirstoftwo }%

620 \def\XINT_min_plusminus #1\fi{\xint_stop_atsecondoftwo }%

621 \def\XINT_min_plusplus

622 {%

623 \if1\romannumeral0\XINT_geq_plusplus

624 }%

625 \def\XINT_min_minusminus --%

626 {%

627 \unless\if1\romannumeral0\XINT_geq_plusplus{}{}%

628 }%

21.45. \xintiiMaxof
New with 1.09a. 1.2 has NO MORE \xintMaxof, requires \xintfracname. 1.2a adds \xintiiMaxof, as

\xintiiMaxof:csv is not public.

NOT compatible with empty list.

1.2l made \xintiiMaxof robust against non terminated items.

1.4 refactors code to allow empty argument. For usage by \xintiiexpr. Slight deterioration,

will come back.

629 \def\xintiiMaxof {\romannumeral0\xintiimaxof }%

630 \def\xintiimaxof #1{\expandafter\XINT_iimaxof\romannumeral`&&@#1^}%

631 \def\XINT_iiMaxof{\romannumeral0\XINT_iimaxof}%

632 \def\XINT_iimaxof#1%

633 {%

634 \xint_gob_til_^ #1\XINT_iimaxof_empty ^%

635 \expandafter\XINT_iimaxof_loop\romannumeral`&&@#1\xint:

636 }%

637 \def\XINT_iimaxof_empty ^#1\xint:{ 0}%

638 \def\XINT_iimaxof_loop #1\xint:#2%

639 {%

640 \xint_gob_til_^ #2\XINT_iimaxof_e ^%

641 \expandafter\XINT_iimaxof_loop\romannumeral0\xintiimax{#1}{#2}\xint:

642 }%

643 \def\XINT_iimaxof_e ^#1\xintiimax #2#3\xint:{ #2}%

376

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

21.46. \xintiiMinof
1.09a. 1.2a adds \xintiiMinof which was lacking.

1.4 refactoring for \xintiiexpr matters.

644 \def\xintiiMinof {\romannumeral0\xintiiminof }%

645 \def\xintiiminof #1{\expandafter\XINT_iiminof\romannumeral`&&@#1^}%

646 \def\XINT_iiMinof{\romannumeral0\XINT_iiminof}%

647 \def\XINT_iiminof#1%

648 {%

649 \xint_gob_til_^ #1\XINT_iiminof_empty ^%

650 \expandafter\XINT_iiminof_loop\romannumeral`&&@#1\xint:

651 }%

652 \def\XINT_iiminof_empty ^#1\xint:{ 0}%

653 \def\XINT_iiminof_loop #1\xint:#2%

654 {%

655 \xint_gob_til_^ #2\XINT_iiminof_e ^%

656 \expandafter\XINT_iiminof_loop\romannumeral0\xintiimin{#1}{#2}\xint:

657 }%

658 \def\XINT_iiminof_e ^#1\xintiimin #2#3\xint:{ #2}%

21.47. \xintiiSum
\xintiiSum {{a}{b}...{z}} Refactored at 1.4 for matters initially related to xintexpr delimiter

choice.

659 \def\xintiiSum {\romannumeral0\xintiisum }%

660 \def\xintiisum #1{\expandafter\XINT_iisum\romannumeral`&&@#1^}%

661 \def\XINT_iiSum{\romannumeral0\XINT_iisum}%

662 \def\XINT_iisum #1%

663 {%

664 \expandafter\XINT_iisum_a\romannumeral`&&@#1\xint:

665 }%

666 \def\XINT_iisum_a #1%

667 {%

668 \xint_gob_til_^ #1\XINT_iisum_empty ^%

669 \XINT_iisum_loop #1%

670 }%

671 \def\XINT_iisum_empty ^#1\xint:{ 0}%

bad coding as it depends on internal conventions of \XINT_add_nfork

672 \def\XINT_iisum_loop #1#2\xint:#3%

673 {%

674 \expandafter\XINT_iisum_loop_a

675 \expandafter#1\romannumeral`&&@#3\xint:#2\xint:\xint:

676 }%

677 \def\XINT_iisum_loop_a #1#2%

678 {%

679 \xint_gob_til_^ #2\XINT_iisum_loop_end ^%

680 \expandafter\XINT_iisum_loop\romannumeral0\XINT_add_nfork #1#2%

681 }%

see previous comment!

682 \def\XINT_iisum_loop_end ^#1\XINT_add_nfork #2#3\xint:#4\xint:\xint:{ #2#4}%

377

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

21.48. \xintiiPrd
\xintiiPrd {{a}...{z}}

Macros renamed and refactored (slightly more macros here to supposedly bring micro-gain) at 1.4

to match changes in xintfrac of delimiter, in sync with some usage in xintexpr.

Contrarily to the xintfrac version \xintPrd, this one aborts as soon as it hits a zero value.

683 \def\xintiiPrd {\romannumeral0\xintiiprd }%

684 \def\xintiiprd #1{\expandafter\XINT_iiprd\romannumeral`&&@#1^}%

685 \def\XINT_iiPrd{\romannumeral0\XINT_iiprd}%

The above romannumeral caused f-expansion of the list argument. We f-expand below the first item

and each successive items because we do not use \xintiiMul but jump directly into \XINT_mul_nfork.

686 \def\XINT_iiprd #1%

687 {%

688 \expandafter\XINT_iiprd_a\romannumeral`&&@#1\xint:

689 }%

690 \def\XINT_iiprd_a #1%

691 {%

692 \xint_gob_til_^ #1\XINT_iiprd_empty ^%

693 \xint_gob_til_zero #1\XINT_iiprd_zero 0%

694 \XINT_iiprd_loop #1%

695 }%

696 \def\XINT_iiprd_empty ^#1\xint:{ 1}%

697 \def\XINT_iiprd_zero 0#1^{ 0}%

bad coding as it depends on internal conventions of \XINT_mul_nfork

698 \def\XINT_iiprd_loop #1#2\xint:#3%

699 {%

700 \expandafter\XINT_iiprd_loop_a

701 \expandafter#1\romannumeral`&&@#3\xint:#2\xint:\xint:

702 }%

703 \def\XINT_iiprd_loop_a #1#2%

704 {%

705 \xint_gob_til_^ #2\XINT_iiprd_loop_end ^%

706 \xint_gob_til_zero #2\XINT_iiprd_zero 0%

707 \expandafter\XINT_iiprd_loop\romannumeral0\XINT_mul_nfork #1#2%

708 }%

see previous comment!

709 \def\XINT_iiprd_loop_end ^#1\XINT_mul_nfork #2#3\xint:#4\xint:\xint:{ #2#4}%

21.49. \xintiiSquareRoot
First done with 1.08.

1.1 added \xintiiSquareRoot.

1.1a added \xintiiSqrtR.

1.2f (2016/03/01-02-03) has rewritten the implementation, the underlying mathematics remaining

about the same. The routine is much faster for inputs having up to 16 digits (because it does it

all with \numexpr directly now), and also much faster for very long inputs (because it now fetches

only the needed new digits after the first 16 (or 17) ones, via the geometric sequence 16, then 32,

then 64, etc...; earlier version did the computations with all remaining digits after a suitable

starting point with correct 4 or 5 leading digits). Note however that the fetching of tokens is via

intrinsically O(N^2) macros, hence inevitably inputs with thousands of digits start being treated

less well.

378

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Actually there is some room for improvements, one could prepare better input X for the upcoming

treatment of fetching its digits by 16, then 32, then 64, etc...

Incidently, as \xintiiSqrt uses subtraction and subtraction was broken from 1.2 to 1.2c, then

for another reason from 1.2c to 1.2f, it could get wrong in certain (relatively rare) cases. There

was also a bug that made it unneedlessly slow for odd number of digits on input.

1.2f also modifies \xintFloatSqrt in xintfrac.sty which now has more code in common with here

and benefits from the same speed improvements.

1.2k belatedly corrects the output to {1}{1} and not 11 when input is zero. As braces are used

in all other cases they should have been used here too.

Also, 1.2k adds an \xintiSqrtR macro, for coherence as \xintiSqrt is defined (and mentioned in

user manual.)

710 \def\xintiiSquareRoot {\romannumeral0\xintiisquareroot }%

711 \def\xintiisquareroot #1{\expandafter\XINT_sqrt_checkin\romannumeral`&&@#1\xint:}%

712 \def\XINT_sqrt_checkin #1%

713 {%

714 \xint_UDzerominusfork

715 #1-\XINT_sqrt_iszero

716 0#1\XINT_sqrt_isneg

717 0-\XINT_sqrt

718 \krof #1%

719 }%

720 \def\XINT_sqrt_iszero #1\xint:{{1}{1}}%

721 \def\XINT_sqrt_isneg #1\xint:

722 {\XINT_signalcondition{InvalidOperation}%

723 {Square root of negative: #1.}{}{{0}{0}}}%

724 \def\XINT_sqrt #1\xint:

725 {%

726 \expandafter\XINT_sqrt_start\romannumeral0\xintlength {#1}.#1.%

727 }%

728 \def\XINT_sqrt_start #1.%

729 {%

730 \ifnum #1<\xint_c_x\xint_dothis\XINT_sqrt_small_a\fi

731 \xint_orthat\XINT_sqrt_big_a #1.%

732 }%

733 \def\XINT_sqrt_small_a #1.{\XINT_sqrt_a #1.\XINT_sqrt_small_d }%

734 \def\XINT_sqrt_big_a #1.{\XINT_sqrt_a #1.\XINT_sqrt_big_d }%

735 \def\XINT_sqrt_a #1.%

736 {%

737 \ifodd #1

738 \expandafter\XINT_sqrt_bO

739 \else

740 \expandafter\XINT_sqrt_bE

741 \fi

742 #1.%

743 }%

744 \def\XINT_sqrt_bE #1.#2#3#4%

745 {%

746 \XINT_sqrt_c {#3#4}#2{#1}#3#4%

747 }%

748 \def\XINT_sqrt_bO #1.#2#3%

749 {%

750 \XINT_sqrt_c #3#2{#1}#3%

379

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

751 }%

752 \def\XINT_sqrt_c #1#2%

753 {%

754 \expandafter #2%

755 \the\numexpr \ifnum #1>\xint_c_ii

756 \ifnum #1>\xint_c_vi

757 \ifnum #1>12 \ifnum #1>20 \ifnum #1>30

758 \ifnum #1>42 \ifnum #1>56 \ifnum #1>72

759 \ifnum #1>90

760 10\else 9\fi \else 8\fi \else 7\fi \else 6\fi \else 5\fi

761 \else 4\fi \else 3\fi \else 2\fi \else 1\fi .%

762 }%

763 \def\XINT_sqrt_small_d #1.#2%

764 {%

765 \expandafter\XINT_sqrt_small_e

766 \the\numexpr #1\ifcase \numexpr #2/\xint_c_ii-\xint_c_i\relax

767 \or 0\or 00\or 000\or 0000\fi .%

768 }%

769 \def\XINT_sqrt_small_e #1.#2.%

770 {%

771 \expandafter\XINT_sqrt_small_ea\the\numexpr #1*#1-#2.#1.%

772 }%

773 \def\XINT_sqrt_small_ea #1%

774 {%

775 \if0#1\xint_dothis\XINT_sqrt_small_ez\fi

776 \if-#1\xint_dothis\XINT_sqrt_small_eb\fi

777 \xint_orthat\XINT_sqrt_small_f #1%

778 }%

779 \def\XINT_sqrt_small_ez 0.#1.{\expandafter{\the\numexpr#1+\xint_c_i

780 \expandafter}\expandafter{\the\numexpr #1*\xint_c_ii+\xint_c_i}}%

781 \def\XINT_sqrt_small_eb -#1.#2.%

782 {%

783 \expandafter\XINT_sqrt_small_ec \the\numexpr

784 (#1-\xint_c_i+#2)/(\xint_c_ii*#2).#1.#2.%

785 }%

786 \def\XINT_sqrt_small_ec #1.#2.#3.%

787 {%

788 \expandafter\XINT_sqrt_small_f \the\numexpr

789 -#2+\xint_c_ii*#3*#1+#1*#1\expandafter.\the\numexpr #3+#1.%

790 }%

791 \def\XINT_sqrt_small_f #1.#2.%

792 {%

793 \expandafter\XINT_sqrt_small_g

794 \the\numexpr (#1+#2)/(\xint_c_ii*#2)-\xint_c_i.#1.#2.%

795 }%

796 \def\XINT_sqrt_small_g #1#2.%

797 {%

798 \if 0#1%

799 \expandafter\XINT_sqrt_small_end

800 \else

801 \expandafter\XINT_sqrt_small_h

802 \fi

380

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

803 #1#2.%

804 }%

805 \def\XINT_sqrt_small_h #1.#2.#3.%

806 {%

807 \expandafter\XINT_sqrt_small_f

808 \the\numexpr #2-\xint_c_ii*#1*#3+#1*#1\expandafter.%

809 \the\numexpr #3-#1.%

810 }%

811 \def\XINT_sqrt_small_end #1.#2.#3.{{#3}{#2}}%

812 \def\XINT_sqrt_big_d #1.#2%

813 {%

814 \ifodd #2 \xint_dothis{\expandafter\XINT_sqrt_big_eO}\fi

815 \xint_orthat{\expandafter\XINT_sqrt_big_eE}%

816 \the\numexpr (#2-\xint_c_i)/\xint_c_ii.#1;%

817 }%

818 \def\XINT_sqrt_big_eE #1;#2#3#4#5#6#7#8#9%

819 {%

820 \XINT_sqrt_big_eE_a #1;{#2#3#4#5#6#7#8#9}%

821 }%

822 \def\XINT_sqrt_big_eE_a #1.#2;#3%

823 {%

824 \expandafter\XINT_sqrt_bigormed_f

825 \romannumeral0\XINT_sqrt_small_e #2000.#3.#1;%

826 }%

827 \def\XINT_sqrt_big_eO #1;#2#3#4#5#6#7#8#9%

828 {%

829 \XINT_sqrt_big_eO_a #1;{#2#3#4#5#6#7#8#9}%

830 }%

831 \def\XINT_sqrt_big_eO_a #1.#2;#3#4%

832 {%

833 \expandafter\XINT_sqrt_bigormed_f

834 \romannumeral0\XINT_sqrt_small_e #20000.#3#4.#1;%

835 }%

836 \def\XINT_sqrt_bigormed_f #1#2#3;%

837 {%

838 \ifnum#3<\xint_c_ix

839 \xint_dothis {\csname XINT_sqrt_med_f\romannumeral#3\endcsname}%

840 \fi

841 \xint_orthat\XINT_sqrt_big_f #1.#2.#3;%

842 }%

843 \def\XINT_sqrt_med_fv {\XINT_sqrt_med_fa .}%

844 \def\XINT_sqrt_med_fvi {\XINT_sqrt_med_fa 0.}%

845 \def\XINT_sqrt_med_fvii {\XINT_sqrt_med_fa 00.}%

846 \def\XINT_sqrt_med_fviii{\XINT_sqrt_med_fa 000.}%

847 \def\XINT_sqrt_med_fa #1.#2.#3.#4;%

848 {%

849 \expandafter\XINT_sqrt_med_fb

850 \the\numexpr (#30#1-5#1)/(\xint_c_ii*#2).#1.#2.#3.%

851 }%

852 \def\XINT_sqrt_med_fb #1.#2.#3.#4.#5.%

853 {%

854 \expandafter\XINT_sqrt_small_ea

381

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

855 \the\numexpr (#40#2-\xint_c_ii*#3*#1)*10#2+(#1*#1-#5)\expandafter.%

856 \the\numexpr #30#2-#1.%

857 }%

858 \def\XINT_sqrt_big_f #1;#2#3#4#5#6#7#8#9%

859 {%

860 \XINT_sqrt_big_fa #1;{#2#3#4#5#6#7#8#9}%

861 }%

862 \def\XINT_sqrt_big_fa #1.#2.#3;#4%

863 {%

864 \expandafter\XINT_sqrt_big_ga

865 \the\numexpr #3-\xint_c_viii\expandafter.%

866 \romannumeral0\XINT_sqrt_med_fa 000.#1.#2.;#4.%

867 }%

868 \def\XINT_sqrt_big_ga #1.#2#3%

869 {%

870 \ifnum #1>\xint_c_viii

871 \expandafter\XINT_sqrt_big_gb\else

872 \expandafter\XINT_sqrt_big_ka

873 \fi #1.#3.#2.%

874 }%

875 \def\XINT_sqrt_big_gb #1.#2.#3.%

876 {%

877 \expandafter\XINT_sqrt_big_gc

878 \the\numexpr (\xint_c_ii*#2-\xint_c_i)*\xint_c_x^viii/(\xint_c_iv*#3).%

879 #3.#2.#1;%

880 }%

881 \def\XINT_sqrt_big_gc #1.#2.#3.%

882 {%

883 \expandafter\XINT_sqrt_big_gd

884 \romannumeral0\xintiiadd

885 {\xintiiSub {#300000000}{\xintDouble{\xintiiMul{#2}{#1}}}00000000}%

886 {\xintiiSqr {#1}}.%

887 \romannumeral0\xintiisub{#200000000}{#1}.%

888 }%

889 \def\XINT_sqrt_big_gd #1.#2.%

890 {%

891 \expandafter\XINT_sqrt_big_ge #2.#1.%

892 }%

893 \def\XINT_sqrt_big_ge #1;#2#3#4#5#6#7#8#9%

894 {\XINT_sqrt_big_gf #1.#2#3#4#5#6#7#8#9;}%

895 \def\XINT_sqrt_big_gf #1;#2#3#4#5#6#7#8#9%

896 {\XINT_sqrt_big_gg #1#2#3#4#5#6#7#8#9.}%

897 \def\XINT_sqrt_big_gg #1.#2.#3.#4.%

898 {%

899 \expandafter\XINT_sqrt_big_gloop

900 \expandafter\xint_c_xvi\expandafter.%

901 \the\numexpr #3-\xint_c_viii\expandafter.%

902 \romannumeral0\xintiisub {#2}{\xintiNum{#4}}.#1.%

903 }%

904 \def\XINT_sqrt_big_gloop #1.#2.%

905 {%

906 \unless\ifnum #1<#2 \xint_dothis\XINT_sqrt_big_ka \fi

382

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

907 \xint_orthat{\XINT_sqrt_big_gi #1.}#2.%

908 }%

909 \def\XINT_sqrt_big_gi #1.%

910 {%

911 \expandafter\XINT_sqrt_big_gj\romannumeral\xintreplicate{#1}0.#1.%

912 }%

913 \def\XINT_sqrt_big_gj #1.#2.#3.#4.#5.%

914 {%

915 \expandafter\XINT_sqrt_big_gk

916 \romannumeral0\xintiidivision {#4#1}%

917 {\XINT_dbl #5\xint_bye2345678\xint_bye*\xint_c_ii\relax}.%

918 #1.#5.#2.#3.%

919 }%

920 \def\XINT_sqrt_big_gk #1#2.#3.#4.%

921 {%

922 \expandafter\XINT_sqrt_big_gl

923 \romannumeral0\xintiiadd {#2#3}{\xintiiSqr{#1}}.%

924 \romannumeral0\xintiisub {#4#3}{#1}.%

925 }%

926 \def\XINT_sqrt_big_gl #1.#2.%

927 {%

928 \expandafter\XINT_sqrt_big_gm #2.#1.%

929 }%

930 \def\XINT_sqrt_big_gm #1.#2.#3.#4.#5.%

931 {%

932 \expandafter\XINT_sqrt_big_gn

933 \romannumeral0\XINT_split_fromleft\xint_c_ii*#3.#5\xint_bye2345678\xint_bye..%

934 #1.#2.#3.#4.%

935 }%

936 \def\XINT_sqrt_big_gn #1.#2.#3.#4.#5.#6.%

937 {%

938 \expandafter\XINT_sqrt_big_gloop

939 \the\numexpr \xint_c_ii*#5\expandafter.%

940 \the\numexpr #6-#5\expandafter.%

941 \romannumeral0\xintiisub{#4}{\xintiNum{#1}}.#3.#2.%

942 }%

943 \def\XINT_sqrt_big_ka #1.#2.#3.#4.%

944 {%

945 \expandafter\XINT_sqrt_big_kb

946 \romannumeral0\XINT_dsx_addzeros {#1}#3;.%

947 \romannumeral0\xintiisub

948 {\XINT_dsx_addzerosnofuss {\xint_c_ii*#1}#2;}%

949 {\xintiNum{#4}}.%

950 }%

951 \def\XINT_sqrt_big_kb #1.#2.%

952 {%

953 \expandafter\XINT_sqrt_big_kc #2.#1.%

954 }%

955 \def\XINT_sqrt_big_kc #1%

956 {%

957 \if0#1\xint_dothis\XINT_sqrt_big_kz\fi

958 \xint_orthat\XINT_sqrt_big_kloop #1%

383

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

959 }%

960 \def\XINT_sqrt_big_kz 0.#1.%

961 {%

962 \expandafter\XINT_sqrt_big_kend

963 \romannumeral0%

964 \xintinc{\XINT_dbl#1\xint_bye2345678\xint_bye*\xint_c_ii\relax}.#1.%

965 }%

966 \def\XINT_sqrt_big_kend #1.#2.%

967 {%

968 \expandafter{\romannumeral0\xintinc{#2}}{#1}%

969 }%

970 \def\XINT_sqrt_big_kloop #1.#2.%

971 {%

972 \expandafter\XINT_sqrt_big_ke

973 \romannumeral0\xintiidivision{#1}%

974 {\romannumeral0\XINT_dbl #2\xint_bye2345678\xint_bye*\xint_c_ii\relax}{#2}%

975 }%

976 \def\XINT_sqrt_big_ke #1%

977 {%

978 \if0\XINT_Sgn #1\xint:

979 \expandafter \XINT_sqrt_big_end

980 \else \expandafter \XINT_sqrt_big_kf

981 \fi {#1}%

982 }%

983 \def\XINT_sqrt_big_kf #1#2#3%

984 {%

985 \expandafter\XINT_sqrt_big_kg

986 \romannumeral0\xintiisub {#3}{#1}.%

987 \romannumeral0\xintiiadd {#2}{\xintiiSqr {#1}}.%

988 }%

989 \def\XINT_sqrt_big_kg #1.#2.%

990 {%

991 \expandafter\XINT_sqrt_big_kloop #2.#1.%

992 }%

993 \def\XINT_sqrt_big_end #1#2#3{{#3}{#2}}%

21.50. \xintiiSqrt, \xintiiSqrtR
994 \def\xintiiSqrt {\romannumeral0\xintiisqrt }%

995 \def\xintiisqrt {\expandafter\XINT_sqrt_post\romannumeral0\xintiisquareroot }%

996 \def\XINT_sqrt_post #1#2{\XINT_dec #1\XINT_dec_bye234567890\xint_bye}%

997 \def\xintiiSqrtR {\romannumeral0\xintiisqrtr }%

998 \def\xintiisqrtr {\expandafter\XINT_sqrtr_post\romannumeral0\xintiisquareroot }%

N = (#1)^2 - #2 avec #1 le plus petit possible et #2>0 (hence #2<2*#1). (#1-.5)^2=#1^2-

#1+.25=N+#2-#1+.25. Si 0<#2<#1, <= N-0.75<N, donc rounded->#1 si #2>=#1, (#1-.5)^2>=N+.25>N,

donc rounded->#1-1.

999 \def\XINT_sqrtr_post #1#2%

1000 {\xintiiifLt {#2}{#1}{ #1}{\XINT_dec #1\XINT_dec_bye234567890\xint_bye}}%

21.51. \xintiiBinomial
2015/11/28-29 for 1.2f.

384

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2016/11/19 for 1.2h: I truly can't understand why I hard-coded last year an error-message for

arguments outside of the range for binomial formula. Naturally there should be no error but a

rather a 0 return value for binomial(x,y), if y<0 or x<y !

I really lack some kind of infinity or NaN value.

1001 \def\xintiiBinomial {\romannumeral0\xintiibinomial }%

1002 \def\xintiibinomial #1#2%

1003 {%

1004 \expandafter\XINT_binom_pre\the\numexpr #1\expandafter.\the\numexpr #2.%

1005 }%

1006 \def\XINT_binom_pre #1.#2.%

1007 {%

1008 \expandafter\XINT_binom_fork \the\numexpr#1-#2.#2.#1.%

1009 }%

k.x-k.x. I hesitated to restrict maximal allowed value of x to 10000. Finally I don't. But due

to using small multiplication and small division, x must have at most eight digits. If x>=2^31 an

arithmetic overflow error will have happened already.

1010 \def\XINT_binom_fork #1#2.#3#4.#5#6.%

1011 {%

1012 \if-#5\xint_dothis{\XINT_signalcondition{InvalidOperation}%

1013 {Binomial with negative first argument: #5#6.}{}{ 0}}\fi

1014 \if-#1\xint_dothis{ 0}\fi

1015 \if-#3\xint_dothis{ 0}\fi

1016 \if0#1\xint_dothis{ 1}\fi

1017 \if0#3\xint_dothis{ 1}\fi

1018 \ifnum #5#6>\xint_c_x^viii_mone\xint_dothis

1019 {\XINT_signalcondition{InvalidOperation}%

1020 {Binomial with too large argument: #5#6 >= 10^8.}{}{ 0}}\fi

1021 \ifnum #1#2>#3#4 \xint_dothis{\XINT_binom_a #1#2.#3#4.}\fi

1022 \xint_orthat{\XINT_binom_a #3#4.#1#2.}%

1023 }%

x-k.k. avec 0<k<x, k<=x-k. Les divisions produiront en extra après le quotient un terminateur

1!\Z!0!. On va procéder par petite multiplication suivie par petite division. Donc ici on met le

1!\Z!0! pour amorcer.

Le \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax est le terminateur pour le \XINT_unsep_cuzsmall

final.

1024 \def\XINT_binom_a #1.#2.%

1025 {%

1026 \expandafter\XINT_binom_b\the\numexpr \xint_c_i+#1.1.#2.100000001!1!;!0!%

1027 }%

y=x-k+1.j=1.k. On va évaluer par y/1*(y+1)/2*(y+2)/3 etc... On essaie de regrouper de manière à

utiliser au mieux \numexpr. On peut aller jusqu'à x=10000 car 9999*10000<10^8. 463*464*465=99896880,

98*99*100*101=97990200. On va vérifier à chaque étape si on dépasse un seuil. Le style de

l'implémentation diffère de celui que j'avais utilisé pour \xintiiFac. On pourrait tout-à-fait

avoir une verybigloop, mais bon. Je rajoute aussi un verysmall. Le traitement est un peu dif-

férent pour elle afin d'aller jusqu'à x=29 (et pas seulement 26 si je suivais le modèle des autres,

mais je veux pouvoir faire binomial(29,1), binomial(29,2), ... en vsmall).

1028 \def\XINT_binom_b #1.%

1029 {%

1030 \ifnum #1>9999 \xint_dothis\XINT_binom_vbigloop \fi

1031 \ifnum #1>463 \xint_dothis\XINT_binom_bigloop \fi

1032 \ifnum #1>98 \xint_dothis\XINT_binom_medloop \fi

385

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1033 \ifnum #1>29 \xint_dothis\XINT_binom_smallloop \fi

1034 \xint_orthat\XINT_binom_vsmallloop #1.%

1035 }%

y.j.k. Au départ on avait x-k+1.1.k. Ensuite on a des blocs 1<8d>! donnant le résultat intermé-

diaire, dans l'ordre, et à la fin on a 1!1;!0!. Dans smallloop on peut prendre 4 par 4.

1036 \def\XINT_binom_smallloop #1.#2.#3.%

1037 {%

1038 \ifcase\numexpr #3-#2\relax

1039 \expandafter\XINT_binom_end_

1040 \or \expandafter\XINT_binom_end_i

1041 \or \expandafter\XINT_binom_end_ii

1042 \or \expandafter\XINT_binom_end_iii

1043 \else\expandafter\XINT_binom_smallloop_a

1044 \fi #1.#2.#3.%

1045 }%

Ça m'ennuie un peu de reprendre les #1, #2, #3 ici. On a besoin de \numexpr pour \XINT_binom_div,

mais de \romannumeral0 pour le unsep après \XINT_binom_mul.

1046 \def\XINT_binom_smallloop_a #1.#2.#3.%

1047 {%

1048 \expandafter\XINT_binom_smallloop_b

1049 \the\numexpr #1+\xint_c_iv\expandafter.%

1050 \the\numexpr #2+\xint_c_iv\expandafter.%

1051 \the\numexpr #3\expandafter.%

1052 \the\numexpr\expandafter\XINT_binom_div

1053 \the\numexpr #2*(#2+\xint_c_i)*(#2+\xint_c_ii)*(#2+\xint_c_iii)\expandafter

1054 !\romannumeral0\expandafter\XINT_binom_mul

1055 \the\numexpr #1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

1056 }%

1057 \def\XINT_binom_smallloop_b #1.%

1058 {%

1059 \ifnum #1>98 \expandafter\XINT_binom_medloop \else

1060 \expandafter\XINT_binom_smallloop \fi #1.%

1061 }%

Ici on prend trois par trois.

1062 \def\XINT_binom_medloop #1.#2.#3.%

1063 {%

1064 \ifcase\numexpr #3-#2\relax

1065 \expandafter\XINT_binom_end_

1066 \or \expandafter\XINT_binom_end_i

1067 \or \expandafter\XINT_binom_end_ii

1068 \else\expandafter\XINT_binom_medloop_a

1069 \fi #1.#2.#3.%

1070 }%

1071 \def\XINT_binom_medloop_a #1.#2.#3.%

1072 {%

1073 \expandafter\XINT_binom_medloop_b

1074 \the\numexpr #1+\xint_c_iii\expandafter.%

1075 \the\numexpr #2+\xint_c_iii\expandafter.%

1076 \the\numexpr #3\expandafter.%

1077 \the\numexpr\expandafter\XINT_binom_div

1078 \the\numexpr #2*(#2+\xint_c_i)*(#2+\xint_c_ii)\expandafter

386

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1079 !\romannumeral0\expandafter\XINT_binom_mul

1080 \the\numexpr #1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%

1081 }%

1082 \def\XINT_binom_medloop_b #1.%

1083 {%

1084 \ifnum #1>463 \expandafter\XINT_binom_bigloop \else

1085 \expandafter\XINT_binom_medloop \fi #1.%

1086 }%

Ici on prend deux par deux.

1087 \def\XINT_binom_bigloop #1.#2.#3.%

1088 {%

1089 \ifcase\numexpr #3-#2\relax

1090 \expandafter\XINT_binom_end_

1091 \or \expandafter\XINT_binom_end_i

1092 \else\expandafter\XINT_binom_bigloop_a

1093 \fi #1.#2.#3.%

1094 }%

1095 \def\XINT_binom_bigloop_a #1.#2.#3.%

1096 {%

1097 \expandafter\XINT_binom_bigloop_b

1098 \the\numexpr #1+\xint_c_ii\expandafter.%

1099 \the\numexpr #2+\xint_c_ii\expandafter.%

1100 \the\numexpr #3\expandafter.%

1101 \the\numexpr\expandafter\XINT_binom_div

1102 \the\numexpr #2*(#2+\xint_c_i)\expandafter

1103 !\romannumeral0\expandafter\XINT_binom_mul

1104 \the\numexpr #1*(#1+\xint_c_i)!%

1105 }%

1106 \def\XINT_binom_bigloop_b #1.%

1107 {%

1108 \ifnum #1>9999 \expandafter\XINT_binom_vbigloop \else

1109 \expandafter\XINT_binom_bigloop \fi #1.%

1110 }%

Et finalement un par un.

1111 \def\XINT_binom_vbigloop #1.#2.#3.%

1112 {%

1113 \ifnum #3=#2

1114 \expandafter\XINT_binom_end_

1115 \else\expandafter\XINT_binom_vbigloop_a

1116 \fi #1.#2.#3.%

1117 }%

1118 \def\XINT_binom_vbigloop_a #1.#2.#3.%

1119 {%

1120 \expandafter\XINT_binom_vbigloop

1121 \the\numexpr #1+\xint_c_i\expandafter.%

1122 \the\numexpr #2+\xint_c_i\expandafter.%

1123 \the\numexpr #3\expandafter.%

1124 \the\numexpr\expandafter\XINT_binom_div\the\numexpr #2\expandafter

1125 !\romannumeral0\XINT_binom_mul #1!%

1126 }%

y.j.k. La partie very small. y est au plus 26 (non 29 mais retesté dans \XINT_binom_vsmallloop ⤸
_a), et tous les binomial(29,n) sont <10^8. On peut donc faire y(y+1)(y+2)(y+3) et aussi il y a

387

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

le fait que etex fait a*b/c en double precision. Pour ne pas bifurquer à la fin sur smallloop, si

n=27, 27, ou 29 on procède un peu différemment des autres boucles. Si je testais aussi #1 après

#3-#2 pour les autres il faudrait des terminaisons différentes.

1127 \def\XINT_binom_vsmallloop #1.#2.#3.%

1128 {%

1129 \ifcase\numexpr #3-#2\relax

1130 \expandafter\XINT_binom_vsmallend_

1131 \or \expandafter\XINT_binom_vsmallend_i

1132 \or \expandafter\XINT_binom_vsmallend_ii

1133 \or \expandafter\XINT_binom_vsmallend_iii

1134 \else\expandafter\XINT_binom_vsmallloop_a

1135 \fi #1.#2.#3.%

1136 }%

1137 \def\XINT_binom_vsmallloop_a #1.%

1138 {%

1139 \ifnum #1>26 \expandafter\XINT_binom_smallloop_a \else

1140 \expandafter\XINT_binom_vsmallloop_b \fi #1.%

1141 }%

1142 \def\XINT_binom_vsmallloop_b #1.#2.#3.%

1143 {%

1144 \expandafter\XINT_binom_vsmallloop

1145 \the\numexpr #1+\xint_c_iv\expandafter.%

1146 \the\numexpr #2+\xint_c_iv\expandafter.%

1147 \the\numexpr #3\expandafter.%

1148 \the\numexpr \expandafter\XINT_binom_vsmallmuldiv

1149 \the\numexpr #2*(#2+\xint_c_i)*(#2+\xint_c_ii)*(#2+\xint_c_iii)\expandafter

1150 !\the\numexpr #1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

1151 }%

1152 \def\XINT_binom_mul #1!#21!;!0!%

1153 {%

1154 \expandafter\XINT_rev_nounsep\expandafter{\expandafter}%

1155 \the\numexpr\expandafter\XINT_smallmul

1156 \the\numexpr\xint_c_x^viii+#1\expandafter

1157 !\romannumeral0\XINT_rev_nounsep {}1;!#2%

1158 \R!\R!\R!\R!\R!\R!\R!\R!\W

1159 \R!\R!\R!\R!\R!\R!\R!\R!\W

1160 1;!%

1161 }%

1162 \def\XINT_binom_div #1!1;!%

1163 {%

1164 \expandafter\XINT_smalldivx_a

1165 \the\numexpr #1/\xint_c_ii\expandafter\xint:

1166 \the\numexpr \xint_c_x^viii+#1!%

1167 }%

Vaguement envisagé d'éviter le 10^8+ mais bon.

1168 \def\XINT_binom_vsmallmuldiv #1!#2!1#3!{\xint_c_x^viii+#2*#3/#1!}%

On a des terminaisons communes aux trois situations small, med, big, et on est sûr de pouvoir faire

les multiplications dans \numexpr, car on vient ici *après* avoir comparé à 9999 ou 463 ou 98.

1169 \def\XINT_binom_end_iii #1.#2.#3.%

1170 {%

1171 \expandafter\XINT_binom_finish

1172 \the\numexpr\expandafter\XINT_binom_div

388

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1173 \the\numexpr #2*(#2+\xint_c_i)*(#2+\xint_c_ii)*(#2+\xint_c_iii)\expandafter

1174 !\romannumeral0\expandafter\XINT_binom_mul

1175 \the\numexpr #1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

1176 }%

1177 \def\XINT_binom_end_ii #1.#2.#3.%

1178 {%

1179 \expandafter\XINT_binom_finish

1180 \the\numexpr\expandafter\XINT_binom_div

1181 \the\numexpr #2*(#2+\xint_c_i)*(#2+\xint_c_ii)\expandafter

1182 !\romannumeral0\expandafter\XINT_binom_mul

1183 \the\numexpr #1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%

1184 }%

1185 \def\XINT_binom_end_i #1.#2.#3.%

1186 {%

1187 \expandafter\XINT_binom_finish

1188 \the\numexpr\expandafter\XINT_binom_div

1189 \the\numexpr #2*(#2+\xint_c_i)\expandafter

1190 !\romannumeral0\expandafter\XINT_binom_mul

1191 \the\numexpr #1*(#1+\xint_c_i)!%

1192 }%

1193 \def\XINT_binom_end_ #1.#2.#3.%

1194 {%

1195 \expandafter\XINT_binom_finish

1196 \the\numexpr\expandafter\XINT_binom_div\the\numexpr #2\expandafter

1197 !\romannumeral0\XINT_binom_mul #1!%

1198 }%

1199 \def\XINT_binom_finish #1;!0!%

1200 {\XINT_unsep_cuzsmall #1\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\xint_c_i\relax}%

Duplication de code seulement pour la boucle avec très petits coeffs, mais en plus on fait au

maximum des possibilités. (on pourrait tester plus le résultat déjà obtenu).

1201 \def\XINT_binom_vsmallend_iii #1.%

1202 {%

1203 \ifnum #1>26 \expandafter\XINT_binom_end_iii \else

1204 \expandafter\XINT_binom_vsmallend_iiib \fi #1.%

1205 }%

1206 \def\XINT_binom_vsmallend_iiib #1.#2.#3.%

1207 {%

1208 \expandafter\XINT_binom_vsmallfinish

1209 \the\numexpr \expandafter\XINT_binom_vsmallmuldiv

1210 \the\numexpr #2*(#2+\xint_c_i)*(#2+\xint_c_ii)*(#2+\xint_c_iii)\expandafter

1211 !\the\numexpr #1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

1212 }%

1213 \def\XINT_binom_vsmallend_ii #1.%

1214 {%

1215 \ifnum #1>27 \expandafter\XINT_binom_end_ii \else

1216 \expandafter\XINT_binom_vsmallend_iib \fi #1.%

1217 }%

1218 \def\XINT_binom_vsmallend_iib #1.#2.#3.%

1219 {%

1220 \expandafter\XINT_binom_vsmallfinish

1221 \the\numexpr \expandafter\XINT_binom_vsmallmuldiv

1222 \the\numexpr #2*(#2+\xint_c_i)*(#2+\xint_c_ii)\expandafter

389

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1223 !\the\numexpr #1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%

1224 }%

1225 \def\XINT_binom_vsmallend_i #1.%

1226 {%

1227 \ifnum #1>28 \expandafter\XINT_binom_end_i \else

1228 \expandafter\XINT_binom_vsmallend_ib \fi #1.%

1229 }%

1230 \def\XINT_binom_vsmallend_ib #1.#2.#3.%

1231 {%

1232 \expandafter\XINT_binom_vsmallfinish

1233 \the\numexpr \expandafter\XINT_binom_vsmallmuldiv

1234 \the\numexpr #2*(#2+\xint_c_i)\expandafter

1235 !\the\numexpr #1*(#1+\xint_c_i)!%

1236 }%

1237 \def\XINT_binom_vsmallend_ #1.%

1238 {%

1239 \ifnum #1>29 \expandafter\XINT_binom_end_ \else

1240 \expandafter\XINT_binom_vsmallend_b \fi #1.%

1241 }%

1242 \def\XINT_binom_vsmallend_b #1.#2.#3.%

1243 {%

1244 \expandafter\XINT_binom_vsmallfinish

1245 \the\numexpr\XINT_binom_vsmallmuldiv #2!#1!%

1246 }%

1247 \def\XINT_binom_vsmallfinish#1{%

1248 \def\XINT_binom_vsmallfinish1##1!1!;!0!{\expandafter#1\the\numexpr##1\relax}%

1249 }\XINT_binom_vsmallfinish{ }%

21.52. \xintiiPFactorial
2015/11/29 for 1.2f. Partial factorial pfac(a,b)=(a+1)...b, only for non-negative integers with

a<=b<10^8.

1.2h (2016/11/20) removes the non-negativity condition. It was a bit unfortunate that the code

raised \xintError:OutOfRangePFac if 0<=a<=b<10^8 was violated. The rule now applied is to inter-

pret pfac(a,b) as the product for a<j<=b (not as a ratio of Gamma function), hence if a>=b, return 1

because of an empty product. If a<b: if a<0, return 0 for b>=0 and (-1)^(b-a) times |b|...(|a|-1)

for b<0. But only for the range 0<= a <= b < 10^8 is the macro result to be considered as stable.

1250 \def\xintiiPFactorial {\romannumeral0\xintiipfactorial }%

1251 \def\xintiipfactorial #1#2%

1252 {%

1253 \expandafter\XINT_pfac_fork\the\numexpr#1\expandafter.\the\numexpr #2.%

1254 }%

1255 \def\xintPFactorial{\romannumeral0\xintpfactorial}%
1256 \let\xintpfactorial\xintiipfactorial

Code is a simplified version of the one for \xintiiBinomial, with no attempt at implementing a

"very small" branch.

1257 \def\XINT_pfac_fork #1#2.#3#4.%

1258 {%

1259 \unless\ifnum #1#2<#3#4 \xint_dothis\XINT_pfac_one\fi

1260 \if-#3\xint_dothis\XINT_pfac_neg\fi

1261 \if-#1\xint_dothis\XINT_pfac_zero\fi

1262 \ifnum #3#4>\xint_c_x^viii_mone\xint_dothis\XINT_pfac_outofrange\fi

390

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1263 \xint_orthat \XINT_pfac_a #1#2.#3#4.%

1264 }%

1265 \def\XINT_pfac_outofrange #1.#2.%

1266 {\XINT_signalcondition{InvalidOperation}%

1267 {pFactorial with too large argument: #2 >= 10^8.}{}{ 0}}%

1268 \def\XINT_pfac_one #1.#2.{ 1}%

1269 \def\XINT_pfac_zero #1.#2.{ 0}%

1270 \def\XINT_pfac_neg -#1.-#2.%

1271 {%

1272 \ifnum #1>\xint_c_x^viii\xint_dothis\XINT_pfac_outofrange\fi

1273 \xint_orthat

1274 {\ifodd\numexpr#2-#1\relax\xint_afterfi{\expandafter-\romannumeral`&&@}\fi

1275 \expandafter\XINT_pfac_a }%

1276 \the\numexpr #2-\xint_c_i\expandafter.\the\numexpr#1-\xint_c_i.%

1277 }%

1278 \def\XINT_pfac_a #1.#2.%

1279 {%

1280 \expandafter\XINT_pfac_b\the\numexpr \xint_c_i+#1.#2.100000001!1;!%

1281 1\R!1\R!1\R!1\R!1\R!1\R!1\R!1\R!\W

1282 }%

1283 \def\XINT_pfac_b #1.%

1284 {%

1285 \ifnum #1>9999 \xint_dothis\XINT_pfac_vbigloop \fi

1286 \ifnum #1>463 \xint_dothis\XINT_pfac_bigloop \fi

1287 \ifnum #1>98 \xint_dothis\XINT_pfac_medloop \fi

1288 \xint_orthat\XINT_pfac_smallloop #1.%

1289 }%

1290 \def\XINT_pfac_smallloop #1.#2.%

1291 {%

1292 \ifcase\numexpr #2-#1\relax

1293 \expandafter\XINT_pfac_end_

1294 \or \expandafter\XINT_pfac_end_i

1295 \or \expandafter\XINT_pfac_end_ii

1296 \or \expandafter\XINT_pfac_end_iii

1297 \else\expandafter\XINT_pfac_smallloop_a

1298 \fi #1.#2.%

1299 }%

1300 \def\XINT_pfac_smallloop_a #1.#2.%

1301 {%

1302 \expandafter\XINT_pfac_smallloop_b

1303 \the\numexpr #1+\xint_c_iv\expandafter.%

1304 \the\numexpr #2\expandafter.%

1305 \the\numexpr\expandafter\XINT_smallmul

1306 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

1307 }%

1308 \def\XINT_pfac_smallloop_b #1.%

1309 {%

1310 \ifnum #1>98 \expandafter\XINT_pfac_medloop \else

1311 \expandafter\XINT_pfac_smallloop \fi #1.%

1312 }%

1313 \def\XINT_pfac_medloop #1.#2.%

1314 {%

391

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1315 \ifcase\numexpr #2-#1\relax

1316 \expandafter\XINT_pfac_end_

1317 \or \expandafter\XINT_pfac_end_i

1318 \or \expandafter\XINT_pfac_end_ii

1319 \else\expandafter\XINT_pfac_medloop_a

1320 \fi #1.#2.%

1321 }%

1322 \def\XINT_pfac_medloop_a #1.#2.%

1323 {%

1324 \expandafter\XINT_pfac_medloop_b

1325 \the\numexpr #1+\xint_c_iii\expandafter.%

1326 \the\numexpr #2\expandafter.%

1327 \the\numexpr\expandafter\XINT_smallmul

1328 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%

1329 }%

1330 \def\XINT_pfac_medloop_b #1.%

1331 {%

1332 \ifnum #1>463 \expandafter\XINT_pfac_bigloop \else

1333 \expandafter\XINT_pfac_medloop \fi #1.%

1334 }%

1335 \def\XINT_pfac_bigloop #1.#2.%

1336 {%

1337 \ifcase\numexpr #2-#1\relax

1338 \expandafter\XINT_pfac_end_

1339 \or \expandafter\XINT_pfac_end_i

1340 \else\expandafter\XINT_pfac_bigloop_a

1341 \fi #1.#2.%

1342 }%

1343 \def\XINT_pfac_bigloop_a #1.#2.%

1344 {%

1345 \expandafter\XINT_pfac_bigloop_b

1346 \the\numexpr #1+\xint_c_ii\expandafter.%

1347 \the\numexpr #2\expandafter.%

1348 \the\numexpr\expandafter

1349 \XINT_smallmul\the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)!%

1350 }%

1351 \def\XINT_pfac_bigloop_b #1.%

1352 {%

1353 \ifnum #1>9999 \expandafter\XINT_pfac_vbigloop \else

1354 \expandafter\XINT_pfac_bigloop \fi #1.%

1355 }%

1356 \def\XINT_pfac_vbigloop #1.#2.%

1357 {%

1358 \ifnum #2=#1

1359 \expandafter\XINT_pfac_end_

1360 \else\expandafter\XINT_pfac_vbigloop_a

1361 \fi #1.#2.%

1362 }%

1363 \def\XINT_pfac_vbigloop_a #1.#2.%

1364 {%

1365 \expandafter\XINT_pfac_vbigloop

1366 \the\numexpr #1+\xint_c_i\expandafter.%

392

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1367 \the\numexpr #2\expandafter.%

1368 \the\numexpr\expandafter\XINT_smallmul\the\numexpr\xint_c_x^viii+#1!%

1369 }%

1370 \def\XINT_pfac_end_iii #1.#2.%

1371 {%

1372 \expandafter\XINT_mul_out

1373 \the\numexpr\expandafter\XINT_smallmul

1374 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

1375 }%

1376 \def\XINT_pfac_end_ii #1.#2.%

1377 {%

1378 \expandafter\XINT_mul_out

1379 \the\numexpr\expandafter\XINT_smallmul

1380 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%

1381 }%

1382 \def\XINT_pfac_end_i #1.#2.%

1383 {%

1384 \expandafter\XINT_mul_out

1385 \the\numexpr\expandafter\XINT_smallmul

1386 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)!%

1387 }%

1388 \def\XINT_pfac_end_ #1.#2.%

1389 {%

1390 \expandafter\XINT_mul_out

1391 \the\numexpr\expandafter\XINT_smallmul\the\numexpr \xint_c_x^viii+#1!%

1392 }%

21.53. \xintBool, \xintToggle
1.09c

1393 \def\xintBool #1{\romannumeral`&&@%

1394 \csname if#1\endcsname\expandafter1\else\expandafter0\fi }%

1395 \def\xintToggle #1{\romannumeral`&&@\iftoggle{#1}{1}{0}}%

21.54. \xintiiGCD
1.3d: \xintiiGCD code from xintgcd is copied here to support gcd() function in \xintiiexpr.

1.4: removed from xintgcd the original caode as now xintgcd loads xint.

Modified at 1.4d (2021/03/29). Damn'ed! Since 1.3d (2019/01/06) the code was broken if one of

the arguments vanished due to a typo in macro names: "AisZero" at one location and "Aiszero" at

next, and same for B...

How could this not be detected by my tests !?!

This caused \xintiiGCDof hence the gcd() function in \xintiiexpr to break as soon as one argument

was zero.

1396 \def\xintiiGCD {\romannumeral0\xintiigcd }%

1397 \def\xintiigcd #1{\expandafter\XINT_iigcd\romannumeral0\xintiiabs#1\xint:}%

1398 \def\XINT_iigcd #1#2\xint:#3%

1399 {%

1400 \expandafter\XINT_gcd_fork\expandafter#1%

1401 \romannumeral0\xintiiabs#3\xint:#1#2\xint:

1402 }%

1403 \def\XINT_gcd_fork #1#2%

393

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1404 {%

1405 \xint_UDzerofork

1406 #1\XINT_gcd_Aiszero

1407 #2\XINT_gcd_Biszero

1408 0\XINT_gcd_loop

1409 \krof

1410 #2%

1411 }%

1412 \def\XINT_gcd_Aiszero #1\xint:#2\xint:{ #1}%

1413 \def\XINT_gcd_Biszero #1\xint:#2\xint:{ #2}%

1414 \def\XINT_gcd_loop #1\xint:#2\xint:

1415 {%

1416 \expandafter\expandafter\expandafter\XINT_gcd_CheckRem

1417 \expandafter\xint_secondoftwo

1418 \romannumeral0\XINT_div_prepare {#1}{#2}\xint:#1\xint:

1419 }%

1420 \def\XINT_gcd_CheckRem #1%

1421 {%

1422 \xint_gob_til_zero #1\XINT_gcd_end0\XINT_gcd_loop #1%

1423 }%

1424 \def\XINT_gcd_end0\XINT_gcd_loop #1\xint:#2\xint:{ #2}%

21.55. \xintiiGCDof

New with 1.09a (was located in xintgcd.sty).

1.2l adds protection against items being non-terminated \the\numexpr.

1.4 renames the macro into \xintiiGCDof and moves it here. Terminator modified to ^ for direct

call by \xintiiexpr function.

1.4d fixes breakage inherited since 1.3d rom \xintiiGCD, in case any argument vanished.

Currently does not support empty list of arguments.

1425 \def\xintiiGCDof {\romannumeral0\xintiigcdof }%

1426 \def\xintiigcdof #1{\expandafter\XINT_iigcdof_a\romannumeral`&&@#1^}%

1427 \def\XINT_iiGCDof {\romannumeral0\XINT_iigcdof_a}%

1428 \def\XINT_iigcdof_a #1{\expandafter\XINT_iigcdof_b\romannumeral`&&@#1!}%

1429 \def\XINT_iigcdof_b #1!#2{\expandafter\XINT_iigcdof_c\romannumeral`&&@#2!{#1}!}%

1430 \def\XINT_iigcdof_c #1{\xint_gob_til_^ #1\XINT_iigcdof_e ^\XINT_iigcdof_d #1}%

1431 \def\XINT_iigcdof_d #1!{\expandafter\XINT_iigcdof_b\romannumeral0\xintiigcd {#1}}%

1432 \def\XINT_iigcdof_e #1!#2!{ #2}%

21.56. \xintiiLCM
Copied over \xintiiLCM code from xintgcd at 1.3d in order to support lcm() function in \xintiiexpr.

At 1.4 original code removed from xintgcd as the latter now requires xint.

1433 \def\xintiiLCM {\romannumeral0\xintiilcm}%

1434 \def\xintiilcm #1{\expandafter\XINT_iilcm\romannumeral0\xintiiabs#1\xint:}%

1435 \def\XINT_iilcm #1#2\xint:#3%

1436 {%

1437 \expandafter\XINT_lcm_fork\expandafter#1%

1438 \romannumeral0\xintiiabs#3\xint:#1#2\xint:

1439 }%

1440 \def\XINT_lcm_fork #1#2%

1441 {%

394

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1442 \xint_UDzerofork

1443 #1\XINT_lcm_iszero

1444 #2\XINT_lcm_iszero

1445 0\XINT_lcm_notzero

1446 \krof

1447 #2%

1448 }%

1449 \def\XINT_lcm_iszero #1\xint:#2\xint:{ 0}%

1450 \def\XINT_lcm_notzero #1\xint:#2\xint:

1451 {%

1452 \expandafter\XINT_lcm_end\romannumeral0%

1453 \expandafter\expandafter\expandafter\XINT_gcd_CheckRem

1454 \expandafter\xint_secondoftwo

1455 \romannumeral0\XINT_div_prepare {#1}{#2}\xint:#1\xint:

1456 \xint:#1\xint:#2\xint:

1457 }%

1458 \def\XINT_lcm_end #1\xint:#2\xint:#3\xint:{\xintiimul {#2}{\xintiiQuo{#3}{#1}}}%

21.57. \xintiiLCMof

See comments of \xintiiGCDof.

1459 \def\xintiiLCMof {\romannumeral0\xintiilcmof }%

1460 \def\xintiilcmof #1{\expandafter\XINT_iilcmof_a\romannumeral`&&@#1^}%

1461 \def\XINT_iiLCMof {\romannumeral0\XINT_iilcmof_a}%

1462 \def\XINT_iilcmof_a #1{\expandafter\XINT_iilcmof_b\romannumeral`&&@#1!}%

1463 \def\XINT_iilcmof_b #1!#2{\expandafter\XINT_iilcmof_c\romannumeral`&&@#2!{#1}!}%

1464 \def\XINT_iilcmof_c #1{\xint_gob_til_^ #1\XINT_iilcmof_e ^\XINT_iilcmof_d #1}%

1465 \def\XINT_iilcmof_d #1!{\expandafter\XINT_iilcmof_b\romannumeral0\xintiilcm {#1}}%

1466 \def\XINT_iilcmof_e #1!#2!{ #2}%

21.58. (WIP) \xintRandomDigits

1.3b. See user manual. Whether this will be part of xintkernel, xintcore, or xint is yet to be

decided.

1467 \def\xintRandomDigits{\romannumeral0\xintrandomdigits}%
1468 \def\xintrandomdigits#1%

1469 {%

1470 \csname xint_gob_andstop_\expandafter\XINT_randomdigits\the\numexpr#1\xint:

1471 }%

1472 \def\XINT_randomdigits#1\xint:

1473 {%

1474 \expandafter\XINT_randomdigits_a

1475 \the\numexpr(#1+\xint_c_iii)/\xint_c_viii\xint:#1\xint:

1476 }%

1477 \def\XINT_randomdigits_a#1\xint:#2\xint:

1478 {%

1479 \romannumeral\numexpr\xint_c_viii*#1-#2\csname XINT_%

1480 \romannumeral\XINT_replicate #1\endcsname \csname

1481 XINT_rdg\endcsname

1482 }%

1483 \def\XINT_rdg

1484 {%

395

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1485 \expandafter\XINT_rdg_aux\the\numexpr%

1486 \xint_c_nine_x^viii%

1487 -\xint_texuniformdeviate\xint_c_ii^vii%

1488 -\xint_c_ii^vii*\xint_texuniformdeviate\xint_c_ii^vii%

1489 -\xint_c_ii^xiv*\xint_texuniformdeviate\xint_c_ii^vii%

1490 -\xint_c_ii^xxi*\xint_texuniformdeviate\xint_c_ii^vii%

1491 +\xint_texuniformdeviate\xint_c_x^viii%

1492 \relax%

1493 }%

1494 \def\XINT_rdg_aux#1{XINT_rdg\endcsname}%

1495 \let\XINT_XINT_rdg\endcsname

21.59. (WIP) \XINT_eightrandomdigits, \xintEightRandomDigits

1.3b. 1.4 adds some public alias...

1496 \def\XINT_eightrandomdigits
1497 {%

1498 \expandafter\xint_gobble_i\the\numexpr%

1499 \xint_c_nine_x^viii%

1500 -\xint_texuniformdeviate\xint_c_ii^vii%

1501 -\xint_c_ii^vii*\xint_texuniformdeviate\xint_c_ii^vii%

1502 -\xint_c_ii^xiv*\xint_texuniformdeviate\xint_c_ii^vii%

1503 -\xint_c_ii^xxi*\xint_texuniformdeviate\xint_c_ii^vii%

1504 +\xint_texuniformdeviate\xint_c_x^viii%

1505 \relax%

1506 }%

1507 \let\xintEightRandomDigits\XINT_eightrandomdigits
1508 \def\xintRandBit{\xint_texuniformdeviate\xint_c_ii}%

21.60. (WIP) \xintRandBit

1.4 And let's add also \xintRandBit while we are at it.

1509 \def\xintRandBit{\xint_texuniformdeviate\xint_c_ii}%

21.61. (WIP) \xintXRandomDigits

1.3b.

1510 \def\xintXRandomDigits#1%
1511 {%

1512 \csname xint_gobble_\expandafter\XINT_xrandomdigits\the\numexpr#1\xint:

1513 }%

1514 \def\XINT_xrandomdigits#1\xint:

1515 {%

1516 \expandafter\XINT_xrandomdigits_a

1517 \the\numexpr(#1+\xint_c_iii)/\xint_c_viii\xint:#1\xint:

1518 }%

1519 \def\XINT_xrandomdigits_a#1\xint:#2\xint:

1520 {%

1521 \romannumeral\numexpr\xint_c_viii*#1-#2\expandafter\endcsname

1522 \romannumeral`&&@\romannumeral

1523 \XINT_replicate #1\endcsname\XINT_eightrandomdigits

1524 }%

396

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

21.62. (WIP) \xintiiRandRangeAtoB

1.3b. Support for randrange() function.

We do it f-expandably for matters of \xintNewExpr etc... The \xintexpr will add \xintNum wrapper

to possible fractional input. But \xintiiexpr will call as is.

TODO: ? implement third argument (STEP) TODO: \xintNum wrapper (which truncates) not so good

in floatexpr. Use round?

It is an error if b<=a, as in Python.

1525 \def\xintiiRandRangeAtoB{\romannumeral`&&@\xintiirandrangeAtoB}%
1526 \def\xintiirandrangeAtoB#1%

1527 {%

1528 \expandafter\XINT_randrangeAtoB_a\romannumeral`&&@#1\xint:

1529 }%

1530 \def\XINT_randrangeAtoB_a#1\xint:#2%

1531 {%

1532 \xintiiadd{\expandafter\XINT_randrange

1533 \romannumeral0\xintiisub{#2}{#1}\xint:}%

1534 {#1}%

1535 }%

21.63. (WIP) \xintiiRandRange

1.3b. Support for randrange().

1536 \def\xintiiRandRange{\romannumeral`&&@\xintiirandrange}%
1537 \def\xintiirandrange#1%

1538 {%

1539 \expandafter\XINT_randrange\romannumeral`&&@#1\xint:

1540 }%

1541 \def\XINT_randrange #1%

1542 {%

1543 \xint_UDzerominusfork

1544 #1-\XINT_randrange_err:empty

1545 0#1\XINT_randrange_err:empty

1546 0-\XINT_randrange_a

1547 \krof #1%

1548 }%

1549 \def\XINT_randrange_err:empty#1\xint:

1550 {%

1551 \XINT_expandableerror{Empty range for randrange.} 0%

1552 }%

1553 \def\XINT_randrange_a #1\xint:

1554 {%

1555 \expandafter\XINT_randrange_b\romannumeral0\xintlength{#1}.#1\xint:

1556 }%

1557 \def\XINT_randrange_b #1.%

1558 {%

1559 \ifnum#1<\xint_c_x\xint_dothis{\the\numexpr\XINT_uniformdeviate{}}\fi

1560 \xint_orthat{\XINT_randrange_c #1.}%

1561 }%

1562 \def\XINT_randrange_c #1.#2#3#4#5#6#7#8#9%

1563 {%

1564 \expandafter\XINT_randrange_d

397

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1565 \the\numexpr\expandafter\XINT_uniformdeviate\expandafter

1566 {\expandafter}\the\numexpr\xint_c_i+#2#3#4#5#6#7#8#9\xint:\xint:

1567 #2#3#4#5#6#7#8#9\xint:#1\xint:

1568 }%

This raises following annex question: immediately after setting the seed is it possible for

\xintUniformDeviate{N} where N>0 has exactly eight digits to return either 0 or N-1 ? It could be

that this is never the case, then there is a bias in randrange(). Of course there are anyhow only

2^28 seeds so randrange(10^X) is by necessity biased when executed immediately after setting the

seed, if X is at least 9.

1569 \def\XINT_randrange_d #1\xint:#2\xint:

1570 {%

1571 \ifnum#1=\xint_c_\xint_dothis\XINT_randrange_Z\fi

1572 \ifnum#1=#2 \xint_dothis\XINT_randrange_A\fi

1573 \xint_orthat\XINT_randrange_e #1\xint:

1574 }%

1575 \def\XINT_randrange_e #1\xint:#2\xint:#3\xint:

1576 {%

1577 \the\numexpr#1\expandafter\relax

1578 \romannumeral0\xintrandomdigits{#2-\xint_c_viii}%

1579 }%

This is quite unlikely to get executed but if it does it must pay attention to leading zeros,

hence the \xintinum. We don't have to be overly obstinate about removing overheads...

1580 \def\XINT_randrange_Z 0\xint:#1\xint:#2\xint:

1581 {%

1582 \xintinum{\xintRandomDigits{#1-\xint_c_viii}}%

1583 }%

Here too, overhead is not such a problem. The idea is that we got by extraordinary same first 8

digits as upper range bound so we pick at random the remaining needed digits in one go and compare

with the upper bound. If too big, we start again with another random 8 leading digits in given

range. No need to aim at any kind of efficiency for the check and loop back.

1584 \def\XINT_randrange_A #1\xint:#2\xint:#3\xint:

1585 {%

1586 \expandafter\XINT_randrange_B

1587 \romannumeral0\xintrandomdigits{#2-\xint_c_viii}\xint:

1588 #3\xint:#2.#1\xint:

1589 }%

1590 \def\XINT_randrange_B #1\xint:#2\xint:#3.#4\xint:

1591 {%

1592 \xintiiifLt{#1}{#2}{\XINT_randrange_E}{\XINT_randrange_again}%

1593 #4#1\xint:#3.#4#2\xint:

1594 }%

1595 \def\XINT_randrange_E #1\xint:#2\xint:{ #1}%

1596 \def\XINT_randrange_again #1\xint:{\XINT_randrange_c}%

21.64. (WIP) Adjustments for engines without uniformdeviate primitive

Added at 1.3b (2018/05/18).

1597 \ifdefined\xint_texuniformdeviate

1598 \else

1599 \def\xintrandomdigits#1%

398

TOC
TOC, xintkernel, xinttools, xintcore, xint , xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1600 {%

1601 \XINT_expandableerror

1602 {No uniformdeviate at engine level.} 0%

1603 }%

1604 \let\xintXRandomDigits\xintRandomDigits

1605 \def\XINT_randrange#1\xint:

1606 {%

1607 \XINT_expandableerror

1608 {No uniformdeviate at engine level.} 0%

1609 }%

1610 \fi

1611 \XINTrestorecatcodesendinput%

399

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

22. Package xintbinhex implementation

.1 Catcodes, 𝜀-TEX and reload detection . . 400

.2 Package identification 401

.3 Storage macros 401

.4 Helper macros 403

.4.1 \XINT_zeroes_foriv 403

.4.2 \XINT_zeroes_foriii 403

.5 \xintDecToHex 403

.6 \xintDecToOct 406

.7 \xintDecToBin 409

.8 \xintHexToDec 410

.9 \xintOctToDec 412

.10 \xintBinToDec 414

.11 \xintHexToOct 414

.12 \xintHexToBin 415

.13 \xintCHexToBin 416

.14 \xintOctToHex 416

.15 \xintBinToHex 416

.16 \xintOctToBin 417

.17 \xintCOctToBin 418

.18 \xintBinToOct 418

The commenting is currently (2025/09/06) still very sparse.

1.2m (2017/07/31) rewrote entirely the original macros coming with 1.08 (2013/06/07).

At 1.2n the dependencies on xintcore were removed, so now the package loads only xintkernel.

Also at 1.2n (2017/08/06), \csname governed expansion was used at some places rather than \numex ⤸
pr. This increased the maximal input sizes for \xintDecToHex, \xintDecToBin, and \xintBinToHex.

1.4n (2025/09/05) adds:

• Conversion to and from octal base.

• Usage of \expanded in place of the \csname-based expansion from 1.2n. This has increased the

maximal input sizes. The increase is spectacular for the conversions between binary, octal

and hexadecimal, the limit on size being solely dependent on TEX main memory size. This change

however caused seemingly (but barely tested) a slight (1%) decrease in speed for \xintDecToHex

and \xintHexToDec.

Note that the whole architecture was last re-thought in 2017 at a time \expanded did not exist.

The most subtle coding, which is the one regarding conversion to and from decimal radix is of such

a nature that I am not motivated at this stage to modify it other than minimally (see initial code

comments for \xintDecToHex). So the \expanded was used therein but only for some subroutines. For

the conversions between binary, octal, and hexadecimal, the whole expansion basically is governed

by a single \expanded. But for legacy reasons and stylistic coherence across the codebase, the

code keeps using \romannumeral0 trigger at the start of the macros with a systematic naming scheme.

I am not much motivated to engage into systematic changes across about 20000 code lines in the xint

bundle!

xintexpr loads xintbinhex automatically as of 1.4n. Formerly it supported only " prefix for

hexadecimal, now it supports also ' for octal, as well as 0x, 0o and 0b.

22.1. Catcodes, 𝜺-TEX and reload detection
The code for reload detection was initially copied from Heiko Oberdiek's packages, then modified.

The method for catcodes was also initially directly inspired by these packages.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode44=12 % ,

8 \catcode46=12 % .

9 \catcode58=12 % :

10 \catcode94=7 % ^

11 \def\empty{}\def\space{ }\newlinechar10

400

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

12 \def\z{\endgroup}%

13 \expandafter\let\expandafter\x\csname ver@xintbinhex.sty\endcsname

14 \expandafter\let\expandafter\w\csname ver@xintkernel.sty\endcsname

15 \expandafter\ifx\csname numexpr\endcsname\relax

16 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

17 \immediate\write128{^^JPackage xintbinhex Warning:^^J%

18 \space\space\space\space

19 \numexpr not available, aborting input.^^J}%

20 \else

21 \PackageWarningNoLine{xintbinhex}{\numexpr not available, aborting input}%

22 \fi

23 \def\z{\endgroup\endinput}%

24 \else

25 \ifx\x\relax % plain-TeX, first loading of xintbinhex.sty

26 \ifx\w\relax % but xintkernel.sty not yet loaded.

27 \def\z{\endgroup\input xintkernel.sty\relax}%

28 \fi

29 \else

30 \ifx\x\empty % LaTeX, first loading,

31 % variable is initialized, but \ProvidesPackage not yet seen

32 \ifx\w\relax % xintkernel.sty not yet loaded.

33 \def\z{\endgroup\RequirePackage{xintkernel}}%

34 \fi

35 \else

36 \def\z{\endgroup\endinput}% xintbinhex already loaded.

37 \fi

38 \fi

39 \fi

40 \z%

41 \XINTsetupcatcodes% defined in xintkernel.sty

22.2. Package identification
42 \XINT_providespackage

43 \ProvidesPackage{xintbinhex}%

44 [2025/09/06 v1.4o Expandable radix conversions (2, 8, 10, and 16) (JFB)]%

22.3. Storage macros

Modified at 1.2n (2017/08/06). Switch to \csname-governed expansion at various places.

Modified at 1.4n (2025/09/05). Move two \newcount's to xintkernel.

Modified at 1.4n (2025/09/05). This release uses \expanded in place of \csname governed expan-

sion. This means that the mysterious \endcsname's have vanished from the storage macros. And

support for octal was added, hence a few more storage macros were added.

45 \def\XINT_tmpa #1{\ifx\relax#1\else

46 \expandafter\edef\csname XINT_csdth_#1\endcsname

47 {\ifcase #1 0\or 1\or 2\or 3\or 4\or 5\or 6\or 7\or

48 8\or 9\or A\or B\or C\or D\or E\or F\fi}%

49 \expandafter\XINT_tmpa\fi }%

50 \XINT_tmpa {0}{1}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11}{12}{13}{14}{15}\relax

51 \def\XINT_tmpa #1{\ifx\relax#1\else

52 \expandafter\edef\csname XINT_csdtb_#1\endcsname

401

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

53 {\ifcase #1

54 0000\or 0001\or 0010\or 0011\or 0100\or 0101\or 0110\or 0111\or

55 1000\or 1001\or 1010\or 1011\or 1100\or 1101\or 1110\or 1111\fi}%

56 \expandafter\XINT_tmpa\fi }%

57 \XINT_tmpa {0}{1}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11}{12}{13}{14}{15}\relax

58 \let\XINT_tmpa\relax

59 \expandafter\def\csname XINT_csbth_0000\endcsname {0}%

60 \expandafter\def\csname XINT_csbth_0001\endcsname {1}%

61 \expandafter\def\csname XINT_csbth_0010\endcsname {2}%

62 \expandafter\def\csname XINT_csbth_0011\endcsname {3}%

63 \expandafter\def\csname XINT_csbth_0100\endcsname {4}%

64 \expandafter\def\csname XINT_csbth_0101\endcsname {5}%

65 \expandafter\def\csname XINT_csbth_0110\endcsname {6}%

66 \expandafter\def\csname XINT_csbth_0111\endcsname {7}%

67 \expandafter\def\csname XINT_csbth_1000\endcsname {8}%

68 \expandafter\def\csname XINT_csbth_1001\endcsname {9}%

69 \expandafter\def\csname XINT_csbth_1010\endcsname {A}%

70 \expandafter\def\csname XINT_csbth_1011\endcsname {B}%

71 \expandafter\def\csname XINT_csbth_1100\endcsname {C}%

72 \expandafter\def\csname XINT_csbth_1101\endcsname {D}%

73 \expandafter\def\csname XINT_csbth_1110\endcsname {E}%

74 \expandafter\def\csname XINT_csbth_1111\endcsname {F}%

75 \expandafter\def\csname XINT_csbto_000\endcsname {0}%

76 \expandafter\def\csname XINT_csbto_001\endcsname {1}%

77 \expandafter\def\csname XINT_csbto_010\endcsname {2}%

78 \expandafter\def\csname XINT_csbto_011\endcsname {3}%

79 \expandafter\def\csname XINT_csbto_100\endcsname {4}%

80 \expandafter\def\csname XINT_csbto_101\endcsname {5}%

81 \expandafter\def\csname XINT_csbto_110\endcsname {6}%

82 \expandafter\def\csname XINT_csbto_111\endcsname {7}%

83 \expandafter\def\csname XINT_cshtb_0\endcsname {0000}%

84 \expandafter\def\csname XINT_cshtb_1\endcsname {0001}%

85 \expandafter\def\csname XINT_cshtb_2\endcsname {0010}%

86 \expandafter\def\csname XINT_cshtb_3\endcsname {0011}%

87 \expandafter\def\csname XINT_cshtb_4\endcsname {0100}%

88 \expandafter\def\csname XINT_cshtb_5\endcsname {0101}%

89 \expandafter\def\csname XINT_cshtb_6\endcsname {0110}%

90 \expandafter\def\csname XINT_cshtb_7\endcsname {0111}%

91 \expandafter\def\csname XINT_cshtb_8\endcsname {1000}%

92 \expandafter\def\csname XINT_cshtb_9\endcsname {1001}%

93 \def\XINT_cshtb_A {1010}%

94 \def\XINT_cshtb_B {1011}%

95 \def\XINT_cshtb_C {1100}%

96 \def\XINT_cshtb_D {1101}%

97 \def\XINT_cshtb_E {1110}%

98 \def\XINT_cshtb_F {1111}%

99 \expandafter\def\csname XINT_csotb_0\endcsname {000}%

100 \expandafter\def\csname XINT_csotb_1\endcsname {001}%

101 \expandafter\def\csname XINT_csotb_2\endcsname {010}%

102 \expandafter\def\csname XINT_csotb_3\endcsname {011}%

103 \expandafter\def\csname XINT_csotb_4\endcsname {100}%

104 \expandafter\def\csname XINT_csotb_5\endcsname {101}%

402

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

105 \expandafter\def\csname XINT_csotb_6\endcsname {110}%

106 \expandafter\def\csname XINT_csotb_7\endcsname {111}%

22.4. Helper macros
We need at 1.4n to ensure lengths either multiple of 5, 4 or 3. For multiples of three we simply

imitate what we had in 2017 for multiples of four. For multiples of five we will do it rather ``in

place'' appealing to \xintLength and \xintReplicate for convenience. I suspected grabbing five

by five (as we can't do ten by ten) would prove less efficient, but I am not motivated enough at

this stage to devote the time needed for implementing and comparing.

22.4.1. \XINT_zeroes_foriv

\romannumeral0\XINT_zeroes_foriv #1\R{0\R}{00\R}{000\R}%

\R{0\R}{00\R}{000\R}\R\W

expands to <empty> or 0 or 00 or 000 as needed to prepend to #1 to extend it to length 4N.

107 \def\XINT_zeroes_foriv #1#2#3#4#5#6#7#8%

108 {%

109 \xint_gob_til_R #8\XINT_zeroes_foriv_end\R\XINT_zeroes_foriv

110 }%

111 \def\XINT_zeroes_foriv_end\R\XINT_zeroes_foriv #1#2\W

112 {\XINT_zeroes_foriv_done #1}%

113 \def\XINT_zeroes_foriv_done #1\R{ #1}%

22.4.2. \XINT_zeroes_foriii

Added at 1.4n (2025/09/05).
\romannumeral0\XINT_zeroes_foriii #1\R{0\R}{00\R}%

\R{0\R}{00\R}%

\R{0\R}{00\R}\R\W

expands to <empty> or 0 or 00 as needed to prepend to #1 to extend it to length 3N.

114 \def\XINT_zeroes_foriii #1#2#3#4#5#6#7#8#9%

115 {%

116 \xint_gob_til_R #9\XINT_zeroes_foriii_end\R\XINT_zeroes_foriii

117 }%

118 \def\XINT_zeroes_foriii_end\R\XINT_zeroes_foriii #1#2\W

119 {\XINT_zeroes_foriii_done #1}%

120 \def\XINT_zeroes_foriii_done #1\R{ #1}%

22.5. \xintDecToHex
Now that illicit tools such as unravel exist, we can not hide anymore too much the crux of the

matter. Let's simply say that the decimal input is tacitly converted into a sequence of succes-

sive elementary steps ``multiply by 10000 and add a base 10000 digit''. This is made to act on a

sequence of radix 164 digits (note that 10000 < 164). Those radix 164 digits are of course manip-

ulated via \numexpr as 105-based digits (note that 164 < 105 and that not only 164 · 1000 < 109 < 231

but also 109 + 164 · 1000 < 231 which helps in ensuring certain operations expand to a fixed number of

digit tokens). When the sequence of elementary steps is complete, the base-164 digits only need

to be converted to hexadecimal notation and purged of separators. Of course doing the whole thing

expandably requires some skill. This was done when I was not yet an old man, and obviously was

still very clever. Enjoy.

Modified at 1.2m (2017/07/31). Rewritten from scratch using the xintcore 1.2 style. Now guards

against non terminated inputs.

403

https://ctan.org/pkg/unravel

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Modified at 1.2n (2017/08/06). Coding improvements, \csname-governed expansion, increased max-

imal size.

Modified at 1.2o (2017/08/29). Again coding improvements (efficiency gain about 6%).

Modified at 1.4n (2025/09/05). Replacement of \csname-based expansion by usage of \expanded.

This has increased the maximal input size from 12035 to 16042 digits (depends on nesting level;

evaluated with TL2025 default TEX memory parameters, see user manual). I noticed a slight per-

formance decrease of the order of 1% but did not test extensively.

Perhaps \expanded could be used to a deeper refactoring but... I preferred to make minimal

changes, not having kept in mind all subtle details of the 2017 code.

121 \def\xintDecToHex {\romannumeral0\xintdectohex }%

122 \def\xintdectohex #1%

123 {%

124 \expandafter\XINT_dth_checkin\romannumeral`&&@#1\xint:

125 }%

126 \def\XINT_dth_checkin #1%

127 {%

128 \xint_UDsignfork

129 #1\XINT_dth_neg

130 -{\XINT_dth_main #1}%

131 \krof

132 }%

133 \def\XINT_dth_neg {\expandafter-\romannumeral0\XINT_dth_main}%

134 \def\XINT_dth_main #1\xint:

135 {%

136 \expandafter\XINT_dth_finish

137 \romannumeral`&&@\expandafter\XINT_dthb_start

138 \romannumeral0\XINT_zeroes_foriv

139 #1\R{0\R}{00\R}{000\R}\R{0\R}{00\R}{000\R}\R\W

140 #1\xint_bye\XINT_dth_tohex

141 }%

142 \def\XINT_dthb_start #1#2#3#4#5%

143 {%

144 \xint_bye#5\XINT_dthb_small\xint_bye\XINT_dthb_start_a #1#2#3#4#5%

145 }%

146 \def\XINT_dthb_small\xint_bye\XINT_dthb_start_a #1\xint_bye#2{#2#1!}%

147 \def\XINT_dthb_start_a #1#2#3#4#5#6#7#8#9%

148 {%

149 \expandafter\XINT_dthb_again

150 \the\numexpr\expandafter\XINT_dthb_update

151 \the\numexpr#1#2#3#4%

152 \xint_bye#9\XINT_dthb_lastpass\xint_bye

153 #5#6#7#8!\XINT_dthb_exclam\relax\XINT_dthb_nextfour #9%

154 }%

The 1.2n inserted exclamations marks, which when bumping back from \XINT_dthb_again gave rise

to a \numexpr-loop which gathered the ! delimited arguments and inserted \expandafter\XINT_dt ⤸
hb_update\the\numexpr dynamically. The 1.2o trick is to insert it here immediately. Then at

\XINT_dthb_again the \numexpr will trigger an already prepared chain.

The crux of the thing is handling of #3 at \XINT_dthb_update_a.

155 \def\XINT_dthb_exclam {!\XINT_dthb_exclam\relax

156 \expandafter\XINT_dthb_update\the\numexpr}%

157 \def\XINT_dthb_update #1!%

404

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

158 {%

159 \expandafter\XINT_dthb_update_a

160 \the\numexpr (#1+\xint_c_ii^xv)/\xint_c_ii^xvi-\xint_c_i\xint:

161 #1\xint:%

162 }%

The four zeros here will get appended to prior digits. They enact the multiplication by 10000.

163 \def\XINT_dthb_update_a #1\xint:#2\xint:#3%

164 {%

165 0000+#1\expandafter#3\the\numexpr#2-#1*\xint_c_ii^xvi

166 }%

167 \def\XINT_dthb_nextfour #1#2#3#4#5%

168 {%

169 \xint_bye#5\XINT_dthb_lastpass\xint_bye

170 #1#2#3#4!\XINT_dthb_exclam\relax\XINT_dthb_nextfour#5%

171 }%

172 \def\XINT_dthb_lastpass\xint_bye #1!#2\xint_bye#3{#1!#3!}%

173 \def\XINT_dthb_again #1!#2#3%

174 {%

175 \ifx#3\relax

176 \expandafter\xint_firstoftwo

177 \else

178 \expandafter\xint_secondoftwo

179 \fi

180 {\expandafter\XINT_dthb_again

181 \the\numexpr

182 \ifnum #1>\xint_c_

183 \xint_afterfi{\expandafter\XINT_dthb_update\the\numexpr#1}%

184 \fi}%

185 {\ifnum #1>\xint_c_ \xint_dothis{#2#1!}\fi\xint_orthat{!#2!}}%

186 }%

1.4n replaces here \csname's method by simpler \expanded control. This is the part of the algo-

rithm which rewrites base 164 (kept in decimal) digits into four hexadecimal digits.

187 \def\XINT_dth_tohex

188 {%

189 \expandafter\XINT_dth_tohex_a\expanded\XINT_tofourhex

190 }%

191 \def\XINT_dth_tohex_a{!\XINT_dth_tohex!}%

192 \def\XINT_tofourhex #1!%

193 {%

194 {\iffalse}\fi\expandafter\XINT_tofourhex_a

195 \the\numexpr (#1+\xint_c_ii^vii)/\xint_c_ii^viii-\xint_c_i\xint:

196 #1\xint:

197 }%

198 \def\XINT_tofourhex_a #1\xint:#2\xint:

199 {%

200 \expandafter\XINT_tofourhex_c

201 \the\numexpr (#1+\xint_c_viii)/\xint_c_xvi-\xint_c_i\xint:

202 #1\xint:

203 #2-\xint_c_ii^viii*#1!%

204 }%

205 \def\XINT_tofourhex_c #1\xint:#2\xint:

206 {%

405

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

207 \csname XINT_csdth_#1\endcsname

208 \csname XINT_csdth_\the\numexpr #2-\xint_c_xvi*#1\endcsname

209 \expandafter\XINT_tofourhex_d\the\numexpr

210 }%

211 \def\XINT_tofourhex_d #1!%

212 {%

213 \expandafter\XINT_tofourhex_e

214 \the\numexpr (#1+\xint_c_viii)/\xint_c_xvi-\xint_c_i\xint:

215 #1\xint:

216 }%

217 \def\XINT_tofourhex_e #1\xint:#2\xint:

218 {%

219 \csname XINT_csdth_#1\endcsname

220 \csname XINT_csdth_\the\numexpr #2-\xint_c_xvi*#1\endcsname

221 \iffalse{\fi}%

222 }%

We only clean up up to 3 hexadecimal zeros, as output is produced in chunks of 4 hex digits, and

(this comment added at 1.4n) as far as I understand the leading chunk can be 0000 only if input was

vanishing.

The coding for this simple trimming may not be the most efficient, but this code is executed only

once. I remember from 2017 that I had gotten tired to always try to optimize and did not even try

to test efficiency.

223 \def\XINT_dth_finish !\XINT_dth_tohex!#1#2#3%

224 {%

225 \unless\if#10\xint_dothis{ #1#2#3}\fi

226 \unless\if#20\xint_dothis{ #2#3}\fi

227 \unless\if#30\xint_dothis{ #3}\fi

228 \xint_orthat{ }%

229 }%

22.6. \xintDecToOct

Added at 1.4n (2025/09/05).
This late extension to the package is imitated from (the \expanded updated) \xintDecToHex.

It does not share macros with \xintDecToHeX to same extent as \xintDecToBin does (those macros

with _dthb_ in their names), because the input gets converted to radix 8^5, not radix 16^4.

Note that we have 10000 < 85 < 100000 and refer to \xintDecToHex for some information on the

algorithm.

230 \def\xintDecToOct {\romannumeral0\xintdectooct }%

231 \def\xintdectooct #1%

232 {%

233 \expandafter\XINT_dto_checkin\romannumeral`&&@#1\xint:

234 }%

235 \def\XINT_dto_checkin #1%

236 {%

237 \xint_UDsignfork

238 #1\XINT_dto_neg

239 -{\XINT_dto_main #1}%

240 \krof

241 }%

242 \def\XINT_dto_neg {\expandafter-\romannumeral0\XINT_dto_main}%

243 \def\XINT_dto_main #1\xint:

406

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

244 {%

245 \expandafter\XINT_dto_finish

246 \romannumeral`&&@\expandafter\XINT_dto_start

247 \romannumeral0\XINT_zeroes_foriv

248 #1\R{0\R}{00\R}{000\R}\R{0\R}{00\R}{000\R}\R\W

249 #1\xint_bye\XINT_dto_tooct

250 }%

251 \def\XINT_dto_start #1#2#3#4#5%

252 {%

253 \xint_bye#5\XINT_dto_small\xint_bye\XINT_dto_start_a #1#2#3#4#5%

254 }%

255 \def\XINT_dto_small\xint_bye\XINT_dto_start_a #1\xint_bye#2{#2#1!}%

256 \def\XINT_dto_start_a #1#2#3#4#5#6#7#8#9%

257 {%

258 \expandafter\XINT_dto_again\the\numexpr\expandafter\XINT_dto_update

259 \the\numexpr#1#2#3#4%

260 \xint_bye#9\XINT_dto_lastpass\xint_bye

261 #5#6#7#8!\XINT_dto_exclam\relax\XINT_dto_nextfour #9%

262 }%

263 \def\XINT_dto_exclam {!\XINT_dto_exclam\relax

264 \expandafter\XINT_dto_update\the\numexpr}%

265 \def\XINT_dto_update #1!%

266 {%

267 \expandafter\XINT_dto_update_a

268 \the\numexpr (#1+\xint_c_ii^xiv)/\xint_c_ii^xv-\xint_c_i\xint:

269 #1\xint:%

270 }%

271 \def\XINT_dto_update_a #1\xint:#2\xint:#3%

272 {%

273 0000+#1\expandafter#3\the\numexpr#2-#1*\xint_c_ii^xv

274 }%

275 \def\XINT_dto_nextfour #1#2#3#4#5%

276 {%

277 \xint_bye#5\XINT_dto_lastpass\xint_bye

278 #1#2#3#4!\XINT_dto_exclam\relax\XINT_dto_nextfour#5%

279 }%

280 \def\XINT_dto_lastpass\xint_bye #1!#2\xint_bye#3{#1!#3!}%

281 \def\XINT_dto_again #1!#2#3%

282 {%

283 \ifx#3\relax

284 \expandafter\xint_firstoftwo

285 \else

286 \expandafter\xint_secondoftwo

287 \fi

288 {\expandafter\XINT_dto_again

289 \the\numexpr

290 \ifnum #1>\xint_c_

291 \xint_afterfi{\expandafter\XINT_dto_update\the\numexpr#1}%

292 \fi}%

293 {\ifnum #1>\xint_c_ \xint_dothis{#2#1!}\fi\xint_orthat{!#2!}}%

294 }%

295 \def\XINT_dto_tooct

407

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

296 {%

297 \expandafter\XINT_dto_tooct_a\expanded\XINT_tofiveoct

298 }%

299 \def\XINT_dto_tooct_a{!\XINT_dto_tooct!}%

300 \def\XINT_tofiveoct #1!%

301 {%

302 {\iffalse}\fi\expandafter\XINT_tofiveoct_a

303 \the\numexpr (#1+\xint_c_ii^viii)/\xint_c_ii^ix-\xint_c_i\xint:

304 #1\xint:

305 }%

306 \def\XINT_tofiveoct_a #1\xint:#2\xint:

307 {%

308 \expandafter\XINT_tofiveoct_c

309 \the\numexpr (#1+\xint_c_iv)/\xint_c_viii-\xint_c_i\xint:#1\xint:

310 #2-\xint_c_ii^ix*#1!%

311 }%

312 \def\XINT_tofiveoct_c #1\xint:#2\xint:

313 {%

314 #1\the\numexpr #2-\xint_c_viii*#1\relax

315 \expandafter\XINT_tofiveoct_d\the\numexpr

316 }%

317 \def\XINT_tofiveoct_d #1!%

318 {%

319 \expandafter\XINT_tofiveoct_e

320 \the\numexpr (#1+\xint_c_ii^v)/\xint_c_ii^vi-\xint_c_i\xint:

321 #1\xint:

322 }%

323 \def\XINT_tofiveoct_e #1\xint:#2\xint:

324 {%

325 #1\expandafter\XINT_tofiveoct_f\the\numexpr #2-\xint_c_ii^vi*#1!%

326 }%

327 \def\XINT_tofiveoct_f #1!%

328 {%

329 \expandafter\XINT_tofiveoct_g

330 \the\numexpr (#1+\xint_c_iv)/\xint_c_viii-\xint_c_i\xint:

331 #1\xint:

332 }%

333 \def\XINT_tofiveoct_g #1\xint:#2\xint:

334 {%

335 #1\the\numexpr #2-\xint_c_viii*#1\iffalse{\fi}%

336 }%

We only clean-up up to 4 zero octal digits, as output was produced in chunks of 5 octal digits and

as far as this author understands his own code, the leading block can not be vanishing, except when

input was itself only with zeros.

337 \def\XINT_dto_finish !\XINT_dto_tooct!#1#2#3#4%

338 {%

339 \unless\if#10\xint_dothis{ #1#2#3#4}\fi

340 \unless\if#20\xint_dothis{ #2#3#4}\fi

341 \unless\if#30\xint_dothis{ #3#4}\fi

342 \unless\if#40\xint_dothis{ #4}\fi

343 \xint_orthat{ }%

344 }%

408

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

22.7. \xintDecToBin
An input without leading zeroes gives an output without leading zeroes.

Macros with _dtohb in their names are shared with \xintDecToHex.

Modified at 1.2m (2017/07/31). Complete rewrite in the 1.2 style. Also, 1.2m version is robust

against non terminated inputs.

Modified at 1.2n (2017/08/06). Increased maximal size from using \csname-based expansion.

Modified at 1.4n (2025/09/05). Same use of \expanded as in \xintDecToHex.

345 \def\xintDecToBin {\romannumeral0\xintdectobin }%

346 \def\xintdectobin #1%

347 {%

348 \expandafter\XINT_dtb_checkin\romannumeral`&&@#1\xint:

349 }%

350 \def\XINT_dtb_checkin #1%

351 {%

352 \xint_UDsignfork

353 #1\XINT_dtb_neg

354 -{\XINT_dtb_main #1}%

355 \krof

356 }%

357 \def\XINT_dtb_neg {\expandafter-\romannumeral0\XINT_dtb_main}%

358 \def\XINT_dtb_main #1\xint:

359 {%

360 \expandafter\XINT_dtb_finish

361 \romannumeral`&&@\expandafter\XINT_dthb_start

362 \romannumeral0\XINT_zeroes_foriv

363 #1\R{0\R}{00\R}{000\R}\R{0\R}{00\R}{000\R}\R\W

364 #1\xint_bye\XINT_dtb_tobin

365 }%

366 \def\XINT_dtb_tobin

367 {%

368 \expandafter\XINT_dtb_tobin_a\expanded\XINT_tosixteenbits

369 }%

370 \def\XINT_dtb_tobin_a{!\XINT_dtb_tobin!}%

371 \def\XINT_tosixteenbits #1!%

372 {%

373 {\iffalse}\fi\expandafter\XINT_tosixteenbits_a

374 \the\numexpr (#1+\xint_c_ii^vii)/\xint_c_ii^viii-\xint_c_i\xint:

375 #1\xint:

376 }%

377 \def\XINT_tosixteenbits_a #1\xint:#2\xint:

378 {%

379 \expandafter\XINT_tosixteenbits_c

380 \the\numexpr (#1+\xint_c_viii)/\xint_c_xvi-\xint_c_i\xint:

381 #1\xint:

382 #2-\xint_c_ii^viii*#1!%

383 }%

384 \def\XINT_tosixteenbits_c #1\xint:#2\xint:

385 {%

386 \csname XINT_csdtb_#1\endcsname

387 \csname XINT_csdtb_\the\numexpr #2-\xint_c_xvi*#1\endcsname

388 \expandafter\XINT_tosixteenbits_d\the\numexpr

409

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

389 }%

390 \def\XINT_tosixteenbits_d #1!%

391 {%

392 \expandafter\XINT_tosixteenbits_e

393 \the\numexpr (#1+\xint_c_viii)/\xint_c_xvi-\xint_c_i\xint:

394 #1\xint:

395 }%

396 \def\XINT_tosixteenbits_e #1\xint:#2\xint:

397 {%

398 \csname XINT_csdtb_#1\endcsname

399 \csname XINT_csdtb_\the\numexpr #2-\xint_c_xvi*#1\endcsname

400 \iffalse{\fi}%

401 }%

402 \def\XINT_dtb_finish !\XINT_dtb_tobin!#1#2#3#4#5#6#7#8%

403 {%

404 \expandafter\XINT_dtb_finish_a\the\numexpr #1#2#3#4#5#6#7#8\relax

405 }%

406 \def\XINT_dtb_finish_a #1{%

407 \def\XINT_dtb_finish_a ##1##2##3##4##5##6##7##8##9%

408 {%

409 \expandafter#1\the\numexpr ##1##2##3##4##5##6##7##8##9\relax

410 }}\XINT_dtb_finish_a { }%

22.8. \xintHexToDec
Completely (and belatedly) rewritten at 1.2m in the 1.2 style.

1.2m version robust against non terminated inputs, but there is no primitive from TeX which may

generate hexadecimal digits and provoke expansion ahead, afaik, except of course if decimal digits

are treated as hexadecimal. This robustness is not on purpose but from need to expand argument

and then grab it again. So we do it safely.

Increased maximal size at 1.2n.

1.2m version robust against non terminated inputs.

An input without leading zeroes gives an output without leading zeroes.

411 \def\xintHexToDec {\romannumeral0\xinthextodec }%

412 \def\xinthextodec #1%

413 {%

414 \expandafter\XINT_htd_checkin\romannumeral`&&@#1\xint:

415 }%

416 \def\XINT_htd_checkin #1%

417 {%

418 \xint_UDsignfork

419 #1\XINT_htd_neg

420 -{\XINT_htd_main #1}%

421 \krof

422 }%

423 \def\XINT_htd_neg {\expandafter-\romannumeral0\XINT_htd_main}%

424 \def\XINT_htd_main #1\xint:

425 {%

426 \expandafter\XINT_htd_startb

427 \the\numexpr\expandafter\XINT_htd_starta

428 \romannumeral0\XINT_zeroes_foriv

429 #1\R{0\R}{00\R}{000\R}\R{0\R}{00\R}{000\R}\R\W

410

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

430 #1\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\relax

431 }%

432 \def\XINT_htd_starta #1#2#3#4{"#1#2#3#4+\xint_c_x^v!}%

433 \def\XINT_htd_startb 1#1%

434 {%

435 \if#10\expandafter\XINT_htd_startba\else

436 \expandafter\XINT_htd_startbb

437 \fi 1#1%

438 }%

439 \def\XINT_htd_startba 10#1!{\XINT_htd_again #1%

440 \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\XINT_htd_nextfour}%

441 \def\XINT_htd_startbb 1#1#2!{\XINT_htd_again #1!#2%

442 \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\XINT_htd_nextfour}%

It is a bit annoying to grab all to the end here. I had a version, modeled on the 1.2n variant of

\xintDecToHex which solved that problem, but it did not prove much (or at all) faster in my brief

testing and it had the defect of a reduced maximal allowed size of the input.

443 \def\XINT_htd_again #1\XINT_htd_nextfour #2%

444 {%

445 \xint_bye #2\XINT_htd_finish\xint_bye

446 \expandafter\XINT_htd_A\the\numexpr

447 \XINT_htd_a #1\XINT_htd_nextfour #2%

448 }%

449 \def\XINT_htd_a #1!#2!#3!#4!#5!#6!#7!#8!#9!%

450 {%

451 #1\expandafter\XINT_htd_update

452 \the\numexpr #2\expandafter\XINT_htd_update

453 \the\numexpr #3\expandafter\XINT_htd_update

454 \the\numexpr #4\expandafter\XINT_htd_update

455 \the\numexpr #5\expandafter\XINT_htd_update

456 \the\numexpr #6\expandafter\XINT_htd_update

457 \the\numexpr #7\expandafter\XINT_htd_update

458 \the\numexpr #8\expandafter\XINT_htd_update

459 \the\numexpr #9\expandafter\XINT_htd_update

460 \the\numexpr \XINT_htd_a

461 }%

462 \def\XINT_htd_nextfour #1#2#3#4%

463 {%

464 *\xint_c_ii^xvi+"#1#2#3#4+\xint_c_x^ix\relax\xint_bye!%

465 2!3!4!5!6!7!8!9!\xint_bye\XINT_htd_nextfour

466 }%

467 \def\XINT_htd_update 1#1#2#3#4#5%

468 {%

469 *\xint_c_ii^xvi+10000#1#2#3#4#5!%

470 }%

Modified at 1.4n (2025/09/05). \XINT_htd_A small refactoring to introduce shared macros with the

octal conversion routine. Slight loss of efficiency.

471 \def\XINT_htd_A {\XINT_hotd_A\XINT_htd_again}%

472 \def\XINT_hotd_A #11#2%

473 {%

474 \if#20\expandafter\XINT_hotd_Aa\else

475 \expandafter\XINT_hotd_Ab

476 \fi #11#2%

411

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

477 }%

478 \def\XINT_hotd_Aa #110#2#3#4#5{#1#2#3#4#5!}%

479 \def\XINT_hotd_Ab #11#2#3#4#5#6{#1#2!#3#4#5#6!}%

480 \def\XINT_htd_finish\xint_bye

481 \expandafter\XINT_htd_A\the\numexpr \XINT_htd_a #1\XINT_htd_nextfour

482 {%

483 \expandafter\XINT_htd_finish_cuz\the\numexpr0\XINT_htd_unsep_loop #1%

484 }%

485 \def\XINT_htd_unsep_loop #1!#2!#3!#4!#5!#6!#7!#8!#9!%

486 {%

487 \expandafter\XINT_unsep_clean

488 \the\numexpr 1#1#2\expandafter\XINT_unsep_clean

489 \the\numexpr 1#3#4\expandafter\XINT_unsep_clean

490 \the\numexpr 1#5#6\expandafter\XINT_unsep_clean

491 \the\numexpr 1#7#8\expandafter\XINT_unsep_clean

492 \the\numexpr 1#9\XINT_htd_unsep_loop_a

493 }%

494 \def\XINT_htd_unsep_loop_a #1!#2!#3!#4!#5!#6!#7!#8!#9!%

495 {%

496 #1\expandafter\XINT_unsep_clean

497 \the\numexpr 1#2#3\expandafter\XINT_unsep_clean

498 \the\numexpr 1#4#5\expandafter\XINT_unsep_clean

499 \the\numexpr 1#6#7\expandafter\XINT_unsep_clean

500 \the\numexpr 1#8#9\XINT_htd_unsep_loop

501 }%

502 \def\XINT_unsep_clean 1{\relax}% also in xintcore

503 \def\XINT_htd_finish_cuz #1{%

504 \def\XINT_htd_finish_cuz ##1##2##3##4##5%

505 {\expandafter#1\the\numexpr ##1##2##3##4##5\relax}%

506 }\XINT_htd_finish_cuz{ }%

22.9. \xintOctToDec

Added at 1.4n (2025/09/05). Yes, the explanations are somewhat lacking. Basically this imitates

\xintxintHexToDec the main difference being to handle 5 octal digits at a time in place of 4

hexadecimal ones.

507 \def\xintOctToDec {\romannumeral0\xintocttodec }%

508 \def\xintocttodec #1%

509 {%

510 \expandafter\XINT_otd_checkin\romannumeral`&&@#1\xint:

511 }%

512 \def\XINT_otd_checkin #1%

513 {%

514 \xint_UDsignfork

515 #1\XINT_otd_neg

516 -{\XINT_otd_main #1}%

517 \krof

518 }%

519 \def\XINT_otd_neg {\expandafter-\romannumeral0\XINT_otd_main}%

First we inject leading octal zeroes to make the length a multiple of 5. We do not try to code a

direct way as with \XINT_zeroes_foriv, in part because as we can't grab 10 by 10, we would have to

proceed 5 by 5, which for very long input may prove slower than using \xintLength combined with

412

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

\xintReplicate, as provided by xintkernel. However, the author is not motivated enough to do the

alternative coding and compare its efficiency with the one here.

520 \def\XINT_otd_main #1\xint:

521 {%

522 \expandafter\XINT_otd_startb

523 \the\numexpr\expandafter\XINT_otd_starta_i

524 \romannumeral0\xintlength{#1}\xint:

525 #1\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\relax

526 }%

527 \def\XINT_otd_starta_i #1\xint:

528 {%

529 \expandafter\XINT_otd_starta

530 \romannumeral\xintreplicate{\xint_c_v*((#1+\xint_c_ii)/\xint_c_v)-#1}{0}%

531 }%

Now we grab five octal digits and convert to decimal in a \numexpr.

532 \def\XINT_otd_starta #1#2#3#4#5{'#1#2#3#4#5+\xint_c_x^v!}%

533 \def\XINT_otd_startb 1#1%

534 {%

535 \if#10\expandafter\XINT_otd_startba\else

536 \expandafter\XINT_otd_startbb

537 \fi 1#1%

538 }%

539 \def\XINT_otd_startba 10#1!{\XINT_otd_again #1%

540 \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\XINT_otd_nextfive}%

541 \def\XINT_otd_startbb 1#1#2!{\XINT_otd_again #1!#2%

542 \xint_bye!2!3!4!5!6!7!8!9!\xint_bye\XINT_otd_nextfive}%

543 \def\XINT_otd_again #1\XINT_otd_nextfive #2%

544 {%

545 \xint_bye #2\XINT_otd_finish\xint_bye

546 \expandafter\XINT_otd_A\the\numexpr

547 \XINT_otd_a #1\XINT_otd_nextfive #2%

548 }%

549 \def\XINT_otd_a #1!#2!#3!#4!#5!#6!#7!#8!#9!%

550 {%

551 #1\expandafter\XINT_otd_update

552 \the\numexpr #2\expandafter\XINT_otd_update

553 \the\numexpr #3\expandafter\XINT_otd_update

554 \the\numexpr #4\expandafter\XINT_otd_update

555 \the\numexpr #5\expandafter\XINT_otd_update

556 \the\numexpr #6\expandafter\XINT_otd_update

557 \the\numexpr #7\expandafter\XINT_otd_update

558 \the\numexpr #8\expandafter\XINT_otd_update

559 \the\numexpr #9\expandafter\XINT_otd_update

560 \the\numexpr \XINT_otd_a

561 }%

562 \def\XINT_otd_nextfive #1#2#3#4#5%

563 {%

564 *\xint_c_ii^xv+'#1#2#3#4#5+\xint_c_x^ix\relax\xint_bye!%

565 2!3!4!5!6!7!8!9!\xint_bye\XINT_otd_nextfive

566 }%

567 \def\XINT_otd_update 1#1#2#3#4#5%

568 {%

413

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

569 *\xint_c_ii^xv+10000#1#2#3#4#5!%

570 }%

We can hook here into the \xintHexToDec final sub-routines.

571 \def\XINT_otd_A {\XINT_hotd_A\XINT_otd_again}%

572 \def\XINT_otd_finish\xint_bye

573 \expandafter\XINT_otd_A\the\numexpr \XINT_otd_a #1\XINT_otd_nextfive

574 {%

575 \expandafter\XINT_htd_finish_cuz\the\numexpr0\XINT_htd_unsep_loop #1%

576 }%

22.10. \xintBinToDec
Redone entirely for 1.2m. Starts by converting to hexadecimal first.

Increased maximal size at 1.2n.

An input without leading zeroes gives an output without leading zeroes.

Robust against non-terminated input.

577 \def\xintBinToDec {\romannumeral0\xintbintodec }%

578 \def\xintbintodec #1%

579 {%

580 \expandafter\XINT_btd_checkin\romannumeral`&&@#1\xint:

581 }%

582 \def\XINT_btd_checkin #1%

583 {%

584 \xint_UDsignfork

585 #1\XINT_btd_N

586 -{\XINT_btd_main #1}%

587 \krof

588 }%

589 \def\XINT_btd_N {\expandafter-\romannumeral0\XINT_btd_main }%

590 \def\XINT_btd_main #1\xint:

591 {%

592 \expandafter\XINT_btd_htd

593 \expanded{\expandafter\XINT_bth_loop

594 \romannumeral0\XINT_zeroes_foriv

595 #1\R{0\R}{00\R}{000\R}\R{0\R}{00\R}{000\R}\R\W

596 #1nonenone\xint_bye}\xint:

597 }%

598 \def\XINT_btd_htd #1\xint:

599 {%

600 \expandafter\XINT_htd_startb

601 \the\numexpr\expandafter\XINT_htd_starta

602 \romannumeral0\XINT_zeroes_foriv

603 #1\R{0\R}{00\R}{000\R}\R{0\R}{00\R}{000\R}\R\W

604 #1\xint_bye!2!3!4!5!6!7!8!9!\xint_bye\relax

605 }%

22.11. \xintHexToOct

Added at 1.4n (2025/09/05). This is done the lazy way, from hexadecimal to binary to octal. I

am simply not motivated enough at this stage to implement a direct conversion (3 hexa digits

mapping to 4 octal ones), handle leading zeros, and compare efficiency and size limits with the

simple minded one here.

414

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

606 \def\xintHexToOct {\romannumeral0\xinthextooct }%

607 \def\xinthextooct #1%

608 {%

609 \expandafter\XINT_bto_checkin

610 \romannumeral0\expandafter\XINT_htb_checkin\romannumeral`&&@#1.........\xint_bye

611 \iffalse{\fi}%

612 \xint:

613 }%

22.12. \xintHexToBin
Completely rewritten for 1.2m.

Only up to three zeros are removed on front of output: if the input had a leading zero, there

will be a leading zero (and then possibly 4n of them if inputs had more leading zeroes) on output.

Rewritten again at 1.2n for \csname governed expansion.

Modified at 1.4n (2025/09/05). Use of \expanded (quasi globally, in contrast to the local uses

made in the decimal conversions).. Dramatic increase of upper limit on the size of input.

As a by-product the initial expansion of the argument #1 is now guarded at the end by (many) full

stops, but anyhow I don't know TEX construct potentially creating hexadecimal digits and poten-

tially causing expansion of what comes next if not terminated.

614 \def\xintHexToBin {\romannumeral0\xinthextobin }%

615 \def\xinthextobin #1%

616 {%

617 \expandafter\XINT_htb_checkin\romannumeral`&&@#1.........\xint_bye

618 \iffalse{\fi}%

619 }%

620 \def\XINT_htb_checkin #1%

621 {%

622 \xint_UDsignfork

623 #1\XINT_htb_N

624 -{\XINT_htb_main #1}%

625 \krof

626 }%

627 \def\XINT_htb_N {\expandafter-\romannumeral0\XINT_htb_main }%

628 \def\XINT_htb_main

629 {%

630 \expandafter\XINT_htb_cuz

631 \expanded{\iffalse}\fi\XINT_htb_loop

632 }%

633 \def\XINT_htb_loop #1#2#3#4#5#6#7#8#9%

634 {%

635 \csname XINT_cshtb_#1\endcsname

636 \csname XINT_cshtb_#2\endcsname

637 \csname XINT_cshtb_#3\endcsname

638 \csname XINT_cshtb_#4\endcsname

639 \csname XINT_cshtb_#5\endcsname

640 \csname XINT_cshtb_#6\endcsname

641 \csname XINT_cshtb_#7\endcsname

642 \csname XINT_cshtb_#8\endcsname

643 \csname XINT_cshtb_#9\endcsname

644 \XINT_htb_loop

645 }%

415

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

646 \expandafter\let\csname XINT_cshtb_.\endcsname\xint_bye

647 \def\XINT_htb_cuz #1{%

648 \def\XINT_htb_cuz ##1##2##3##4%

649 {\expandafter#1\the\numexpr##1##2##3##4\relax}%

650 }\XINT_htb_cuz { }%

22.13. \xintCHexToBin

The 1.08 macro had same functionality as \xintHexToBin, and slightly different code, the 1.2m ver-

sion has the same code as \xintHexToBin except that it does not remove leading zeros from output:

if the input had N hexadecimal digits, the output will have exactly 4N binary digits.

Rewritten again at 1.2n for \csname governed expansion.

Modified at 1.4n (2025/09/05). Kept in sync with new \xintHexToBin.

651 \def\xintCHexToBin {\romannumeral0\xintchextobin }%

652 \def\xintchextobin #1%

653 {%

654 \expandafter\XINT_chtb_checkin\romannumeral`&&@#1.........\xint_bye

655 \iffalse{\fi}%

656 }%

657 \def\XINT_chtb_checkin #1%

658 {%

659 \xint_UDsignfork

660 #1\XINT_chtb_N

661 -{\XINT_chtb_main #1}%

662 \krof

663 }%

664 \def\XINT_chtb_N {\expandafter-\romannumeral0\XINT_chtb_main }%

665 \def\XINT_chtb_main {\expanded{ \iffalse}\fi\XINT_htb_loop}%

22.14. \xintOctToHex

Added at 1.4n (2025/09/05). This is done the lazy way, from octal to binary to hexadecimal.

666 \def\xintOctToHex {\romannumeral0\xintocttohex }%

667 \def\xintocttohex #1%

668 {%

669 \expandafter\XINT_bth_checkin

670 \romannumeral0\expandafter\XINT_otb_checkin\romannumeral`&&@#1.........\xint_bye

671 \iffalse{\fi}%

672 \xint:

673 }%

22.15. \xintBinToHex

Modified at 1.2m (2017/07/31). Complete rewrite. Much more efficient but smaller maximals sizes.

Modified at 1.2n (2017/08/06). Again redone and now using \csname governed expansion: increased

maximal size.

Size of output is ceil(size(input)/4). If the input has leading zeroes, they may exist in the

output too. An input without leading zeroes gives an output without leading zeroes.

Modified at 1.4n (2025/09/05). Expansion is governed by \expanded. Tremendous increase of max-

imal size. Note that for legacy reasons of the package history, the primary trigger is via

\romannumeral0, we could use \expanded upfront, with some advantages. But well.

416

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

674 \def\xintBinToHex {\romannumeral0\xintbintohex }%

675 \def\xintbintohex #1%

676 {%

677 \expandafter\XINT_bth_checkin\romannumeral`&&@#1\xint:

678 }%

679 \def\XINT_bth_checkin #1%

680 {%

681 \xint_UDsignfork

682 #1\XINT_bth_N

683 -{\XINT_bth_main #1}%

684 \krof

685 }%

686 \def\XINT_bth_N {\expandafter-\romannumeral0\XINT_bth_main }%

687 \def\XINT_bth_main #1\xint:

688 {%

689 \expanded{ \expandafter\XINT_bth_loop

690 \romannumeral0\XINT_zeroes_foriv

691 #1\R{0\R}{00\R}{000\R}\R{0\R}{00\R}{000\R}\R\W

692 #1%

693 nonenone\xint_bye}%

694 }%

695 \def\XINT_bth_loop #1#2#3#4#5#6#7#8%

696 {%

697 \csname XINT_csbth_#1#2#3#4\endcsname

698 \csname XINT_csbth_#5#6#7#8\endcsname

699 \XINT_bth_loop

700 }%

701 \let\XINT_csbth_none\xint_bye

22.16. \xintOctToBin

Added at 1.4n (2025/09/05).

702 \def\xintOctToBin {\romannumeral0\xintocttobin }%

703 \def\xintocttobin #1%

704 {%

705 \expandafter\XINT_otb_checkin\romannumeral`&&@#1.........\xint_bye

706 \iffalse{\fi}%

707 }%

708 \def\XINT_otb_checkin #1%

709 {%

710 \xint_UDsignfork

711 #1\XINT_otb_N

712 -{\XINT_otb_main #1}%

713 \krof

714 }%

715 \def\XINT_otb_N {\expandafter-\romannumeral0\XINT_otb_main }%

716 \def\XINT_otb_main

717 {%

718 \expandafter\XINT_otb_cuz

719 \expanded{\iffalse}\fi \XINT_otb_loop

720 }%

721 \def\XINT_otb_loop #1#2#3#4#5#6#7#8#9%

417

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

722 {%

723 \csname XINT_csotb_#1\endcsname

724 \csname XINT_csotb_#2\endcsname

725 \csname XINT_csotb_#3\endcsname

726 \csname XINT_csotb_#4\endcsname

727 \csname XINT_csotb_#5\endcsname

728 \csname XINT_csotb_#6\endcsname

729 \csname XINT_csotb_#7\endcsname

730 \csname XINT_csotb_#8\endcsname

731 \csname XINT_csotb_#9\endcsname

732 \XINT_otb_loop

733 }%

734 \expandafter\let\csname XINT_csotb_.\endcsname\xint_bye

735 \def\XINT_otb_cuz #1{%

736 \def\XINT_otb_cuz ##1##2##3%

737 {\expandafter#1\the\numexpr##1##2##3\relax}%

738 }\XINT_otb_cuz { }%

22.17. \xintCOctToBin

Added at 1.4n (2025/09/05).

739 \def\xintCOctToBin {\romannumeral0\xintcocttobin }%

740 \def\xintcocttobin #1%

741 {%

742 \expandafter\XINT_cotb_checkin\romannumeral`&&@#1.........\xint_bye

743 \iffalse{\fi}%

744 }%

745 \def\XINT_cotb_checkin #1%

746 {%

747 \xint_UDsignfork

748 #1\XINT_cotb_N

749 -{\XINT_cotb_main #1}%

750 \krof

751 }%

752 \def\XINT_cotb_N {\expandafter-\romannumeral0\XINT_cotb_main }%

753 \def\XINT_cotb_main {\expanded{ \iffalse}\fi\XINT_otb_loop}%

22.18. \xintBinToOct

Added at 1.4n (2025/09/05).

754 \def\xintBinToOct {\romannumeral0\xintbintooct }%

755 \def\xintbintooct #1%

756 {%

757 \expandafter\XINT_bto_checkin\romannumeral`&&@#1\xint:

758 }%

759 \def\XINT_bto_checkin #1%

760 {%

761 \xint_UDsignfork

762 #1\XINT_bto_N

763 -{\XINT_bto_main #1}%

764 \krof

765 }%

418

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex , xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

766 \def\XINT_bto_N {\expandafter-\romannumeral0\XINT_bto_main }%

767 \def\XINT_bto_main #1\xint:

768 {%

769 \expanded{ \expandafter\XINT_bto_loop

770 \romannumeral0\XINT_zeroes_foriii

771 #1\R{0\R}{00\R}\R{0\R}{00\R}\R{0\R}{00\R}\R\W

772 #1%

773 endendend\xint_bye}%

774 }%

775 \def\XINT_bto_loop #1#2#3#4#5#6#7#8#9%

776 {%

777 \csname XINT_csbto_#1#2#3\endcsname

778 \csname XINT_csbto_#4#5#6\endcsname

779 \csname XINT_csbto_#7#8#9\endcsname

780 \XINT_bto_loop

781 }%

782 \let\XINT_csbto_end\xint_bye

783 \XINTrestorecatcodesendinput%

419

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

23. Package xintgcd implementation

.1 Catcodes, 𝜀-TEX and reload detection . . 420

.2 Package identification 421

.3 \xintBezout 421

.4 \xintEuclideAlgorithm 425

.5 \xintBezoutAlgorithm 426

.6 \xintTypesetEuclideAlgorithm 428

.7 \xintTypesetBezoutAlgorithm 428

The commenting is currently (2025/09/06) very sparse.

Release 1.09h has modified a bit the \xintTypesetEuclideAlgorithm and \xintTypesetBezoutAlgorithm

layout with respect to line indentation in particular. And they use the xinttools \xintloop rather

than the Plain TEX or LATEX's \loop.

Breaking change at 1.2p: \xintBezout{A}{B} formerly had output {A}{B}{U}{V}{D} with AU-BV=D,

now it is {U}{V}{D} with AU+BV=D.

From 1.1 to 1.3f the package loaded only xintcore. At 1.4 it now automatically loads both of

xint and xinttools (the latter being in fact a requirement of \xintTypesetEuclideAlgorithm and

\xintTypesetBezoutAlgorithm since 1.09h).

At 1.4 \xintGCD, \xintLCM, \xintGCDof, and \xintLCMof are removed from the package:they are+
{

provided only by xintfrac and they handle general fractions, not only integers.

The original integer-only macros have been renamed into respectively \xintiiGCD, \xint-Changed
at 1.4! iiLCM, \xintiiGCDof, and \xintiiLCMof and got relocated into xint package.

23.1. Catcodes, 𝜺-TEX and reload detection
The code for reload detection was initially copied from Heiko Oberdiek's packages, then modified.

The method for catcodes was also initially directly inspired by these packages.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode44=12 % ,

8 \catcode46=12 % .

9 \catcode58=12 % :

10 \catcode94=7 % ^

11 \def\empty{}\def\space{ }\newlinechar10

12 \def\z{\endgroup}%

13 \expandafter\let\expandafter\x\csname ver@xintgcd.sty\endcsname

14 \expandafter\let\expandafter\w\csname ver@xint.sty\endcsname

15 \expandafter\let\expandafter\t\csname ver@xinttools.sty\endcsname

16 \expandafter\ifx\csname numexpr\endcsname\relax

17 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

18 \immediate\write128{^^JPackage xintgcd Warning:^^J%

19 \space\space\space\space

20 \numexpr not available, aborting input.^^J}%

21 \else

22 \PackageWarningNoLine{xintgcd}{\numexpr not available, aborting input}%

23 \fi

24 \def\z{\endgroup\endinput}%

25 \else

420

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

26 \ifx\x\relax % plain-TeX, first loading of xintgcd.sty

27 \ifx\w\relax % but xint.sty not yet loaded.

28 \expandafter\def\expandafter\z\expandafter{\z\input xint.sty\relax}%

29 \fi

30 \ifx\t\relax % but xinttools.sty not yet loaded.

31 \expandafter\def\expandafter\z\expandafter{\z\input xinttools.sty\relax}%

32 \fi

33 \else

34 \ifx\x\empty % LaTeX, first loading,

35 % variable is initialized, but \ProvidesPackage not yet seen

36 \ifx\w\relax % xint.sty not yet loaded.

37 \expandafter\def\expandafter\z\expandafter{\z\RequirePackage{xint}}%

38 \fi

39 \ifx\t\relax % xinttools.sty not yet loaded.

40 \expandafter\def\expandafter\z\expandafter{\z\RequirePackage{xinttools}}%

41 \fi

42 \else

43 \def\z{\endgroup\endinput}% xintgcd already loaded.

44 \fi

45 \fi

46 \fi

47 \z%

48 \XINTsetupcatcodes% defined in xintkernel.sty

23.2. Package identification
49 \XINT_providespackage

50 \ProvidesPackage{xintgcd}%

51 [2025/09/06 v1.4o Euclide algorithm with xint package (JFB)]%

23.3. \xintBezout
\xintBezout{#1}{#2} produces {U}{V}{D} with UA+VB=D, D = PGCD(A,B) (non-positive), where #1 and

#2 f-expand to big integers A and B.

I had not checked this macro for about three years when I realized in January 2017 that

\xintBezout{A}{B} was buggy for the cases A = 0 or B = 0. I fixed that blemish in 1.2l but over-

looked the other blemish that \xintBezout{A}{B} with A multiple of B produced a coefficient U as

-0 in place of 0.

Hence I rewrote again for 1.2p. On this occasion I modified the output of the macro to be

{U}{V}{D} with AU+BV=D, formerly it was {A}{B}{U}{V}{D} with AU - BV = D. This is quite break-

ing change!

Note in particular change of sign of V.

I don't know why I had designed this macro to contain {A}{B} in its output. Perhaps I initially

intended to output {A//D}{B//D} (but forgot), as this is actually possible from outcome of the

last iteration, with no need of actually dividing. Current code however arranges to skip this

last update, as U and V are already furnished by the iteration prior to realizing that the last

non-zero remainder was found.

Also 1.2l raised InvalidOperation if both A and B vanished, but I removed this behaviour at 1.2p.

52 \def\xintBezout {\romannumeral0\xintbezout }%

53 \def\xintbezout #1%

54 {%

55 \expandafter\XINT_bezout\expandafter {\romannumeral0\xintnum{#1}}%

56 }%

421

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

57 \def\XINT_bezout #1#2%

58 {%

59 \expandafter\XINT_bezout_fork \romannumeral0\xintnum{#2}\Z #1\Z

60 }%

#3#4 = A, #1#2=B. Micro improvement for 1.2l.

61 \def\XINT_bezout_fork #1#2\Z #3#4\Z

62 {%

63 \xint_UDzerosfork

64 #1#3\XINT_bezout_botharezero

65 #10\XINT_bezout_secondiszero

66 #30\XINT_bezout_firstiszero

67 00\xint_UDsignsfork

68 \krof

69 #1#3\XINT_bezout_minusminus % A < 0, B < 0

70 #1-\XINT_bezout_minusplus % A > 0, B < 0

71 #3-\XINT_bezout_plusminus % A < 0, B > 0

72 --\XINT_bezout_plusplus % A > 0, B > 0

73 \krof

74 {#2}{#4}#1#3% #1#2=B, #3#4=A

75 }%

76 \def\XINT_bezout_botharezero #1\krof#2#300{{0}{0}{0}}%

77 \def\XINT_bezout_firstiszero #1\krof#2#3#4#5%

78 {%

79 \xint_UDsignfork

80 #4{{0}{-1}{#2}}%

81 -{{0}{1}{#4#2}}%

82 \krof

83 }%

84 \def\XINT_bezout_secondiszero #1\krof#2#3#4#5%

85 {%

86 \xint_UDsignfork

87 #5{{-1}{0}{#3}}%

88 -{{1}{0}{#5#3}}%

89 \krof

90 }%

#4#2= A < 0, #3#1 = B < 0

91 \def\XINT_bezout_minusminus #1#2#3#4%

92 {%

93 \expandafter\XINT_bezout_mm_post

94 \romannumeral0\expandafter\XINT_bezout_preloop_a

95 \romannumeral0\XINT_div_prepare {#1}{#2}{#1}%

96 }%

97 \def\XINT_bezout_mm_post #1#2%

98 {%

99 \expandafter\XINT_bezout_mm_postb\expandafter

100 {\romannumeral0\xintiiopp{#2}}{\romannumeral0\xintiiopp{#1}}%

101 }%

102 \def\XINT_bezout_mm_postb #1#2{\expandafter{#2}{#1}}%

minusplus #4#2= A > 0, B < 0

103 \def\XINT_bezout_minusplus #1#2#3#4%

104 {%

422

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

105 \expandafter\XINT_bezout_mp_post

106 \romannumeral0\expandafter\XINT_bezout_preloop_a

107 \romannumeral0\XINT_div_prepare {#1}{#4#2}{#1}%

108 }%

109 \def\XINT_bezout_mp_post #1#2%

110 {%

111 \expandafter\xint_exchangetwo_keepbraces\expandafter

112 {\romannumeral0\xintiiopp {#2}}{#1}%

113 }%

plusminus A < 0, B > 0

114 \def\XINT_bezout_plusminus #1#2#3#4%

115 {%

116 \expandafter\XINT_bezout_pm_post

117 \romannumeral0\expandafter\XINT_bezout_preloop_a

118 \romannumeral0\XINT_div_prepare {#3#1}{#2}{#3#1}%

119 }%

120 \def\XINT_bezout_pm_post #1{\expandafter{\romannumeral0\xintiiopp{#1}}}%

plusplus, B = #3#1 > 0, A = #4#2 > 0

121 \def\XINT_bezout_plusplus #1#2#3#4%

122 {%

123 \expandafter\XINT_bezout_preloop_a

124 \romannumeral0\XINT_div_prepare {#3#1}{#4#2}{#3#1}%

125 }%

n = 0: BA1001 (B, A, e=1, vv, uu, v, u)

r(1)=B, r(0)=A, après n étapes {r(n+1)}{r(n)}{vv}{uu}{v}{u}

q(n) quotient de r(n-1) par r(n)

si reste nul, exit et renvoie U = -e*uu, V = e*vv, A*U+B*V=D

sinon mise à jour

vv, v = q * vv + v, vv

uu, u = q * uu + u, uu

e = -e

puis calcul quotient reste et itération

We arrange for \xintiiMul sub-routine to be called only with positive arguments, thus skipping

some un-needed sign parsing there. For that though we have to screen out the special cases A

divides B, or B divides A. And we first want to exchange A and B if A < B. These special cases are

the only one possibly leading to U or V zero (for A and B positive which is the case here.) Thus the

general case always leads to non-zero U and V's and assigning a final sign is done simply adding a

- to one of them, with no fear of producing -0.

126 \def\XINT_bezout_preloop_a #1#2#3%

127 {%

128 \if0#1\xint_dothis\XINT_bezout_preloop_exchange\fi

129 \if0#2\xint_dothis\XINT_bezout_preloop_exit\fi

130 \xint_orthat{\expandafter\XINT_bezout_loop_B}%

131 \romannumeral0\XINT_div_prepare {#2}{#3}{#2}{#1}110%

132 }%

133 \def\XINT_bezout_preloop_exit

134 \romannumeral0\XINT_div_prepare #1#2#3#4#5#6#7%

135 {%

136 {0}{1}{#2}%

137 }%

138 \def\XINT_bezout_preloop_exchange

423

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

139 {%

140 \expandafter\xint_exchangetwo_keepbraces

141 \romannumeral0\expandafter\XINT_bezout_preloop_A

142 }%

143 \def\XINT_bezout_preloop_A #1#2#3#4%

144 {%

145 \if0#2\xint_dothis\XINT_bezout_preloop_exit\fi

146 \xint_orthat{\expandafter\XINT_bezout_loop_B}%

147 \romannumeral0\XINT_div_prepare {#2}{#3}{#2}{#1}%

148 }%

149 \def\XINT_bezout_loop_B #1#2%

150 {%

151 \if0#2\expandafter\XINT_bezout_exitA

152 \else\expandafter\XINT_bezout_loop_C

153 \fi {#1}{#2}%

154 }%

We use the fact that the \romannumeral-`0 (or equivalent) done by \xintiiadd will absorb the ini-

tial space token left by \XINT_mul_plusplus in its output.

We arranged for operands here to be always positive which is needed for \XINT_mul_plusplus entry

point (last time I checked...). Admittedly this kind of optimization is not good for maintenance

of code, but I can't resist temptation of limiting the shuffling around of tokens...

155 \def\XINT_bezout_loop_C #1#2#3#4#5#6#7%

156 {%

157 \expandafter\XINT_bezout_loop_D\expandafter

158 {\romannumeral0\xintiiadd{\XINT_mul_plusplus{}{}#1\xint:#4\xint:}{#6}}%

159 {\romannumeral0\xintiiadd{\XINT_mul_plusplus{}{}#1\xint:#5\xint:}{#7}}%

160 {#2}{#3}{#4}{#5}%

161 }%

162 \def\XINT_bezout_loop_D #1#2%

163 {%

164 \expandafter\XINT_bezout_loop_E\expandafter{#2}{#1}%

165 }%

166 \def\XINT_bezout_loop_E #1#2#3#4%

167 {%

168 \expandafter\XINT_bezout_loop_b

169 \romannumeral0\XINT_div_prepare {#3}{#4}{#3}{#2}{#1}%

170 }%

171 \def\XINT_bezout_loop_b #1#2%

172 {%

173 \if0#2\expandafter\XINT_bezout_exita

174 \else\expandafter\XINT_bezout_loop_c

175 \fi {#1}{#2}%

176 }%

177 \def\XINT_bezout_loop_c #1#2#3#4#5#6#7%

178 {%

179 \expandafter\XINT_bezout_loop_d\expandafter

180 {\romannumeral0\xintiiadd{\XINT_mul_plusplus{}{}#1\xint:#4\xint:}{#6}}%

181 {\romannumeral0\xintiiadd{\XINT_mul_plusplus{}{}#1\xint:#5\xint:}{#7}}%

182 {#2}{#3}{#4}{#5}%

183 }%

184 \def\XINT_bezout_loop_d #1#2%

185 {%

424

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

186 \expandafter\XINT_bezout_loop_e\expandafter{#2}{#1}%

187 }%

188 \def\XINT_bezout_loop_e #1#2#3#4%

189 {%

190 \expandafter\XINT_bezout_loop_B

191 \romannumeral0\XINT_div_prepare {#3}{#4}{#3}{#2}{#1}%

192 }%

sortir U, V, D mais on a travaillé avec vv, uu, v, u dans cet ordre.

The code is structured so that #4 and #5 are guaranteed non-zero if we exit here, hence we can not

create a -0 in output.

193 \def\XINT_bezout_exita #1#2#3#4#5#6#7{{-#5}{#4}{#3}}%

194 \def\XINT_bezout_exitA #1#2#3#4#5#6#7{{#5}{-#4}{#3}}%

23.4. \xintEuclideAlgorithm
Pour Euclide: {N}{A}{D=r(n)}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}

u<2n> = u<2n+3>u<2n+2> + u<2n+4> à la n ième étape.

Formerly, used \xintiabs, but got deprecated at 1.2o.

195 \def\xintEuclideAlgorithm {\romannumeral0\xinteuclidealgorithm }%

196 \def\xinteuclidealgorithm #1%

197 {%

198 \expandafter\XINT_euc\expandafter{\romannumeral0\xintiiabs{\xintNum{#1}}}%

199 }%

200 \def\XINT_euc #1#2%

201 {%

202 \expandafter\XINT_euc_fork\romannumeral0\xintiiabs{\xintNum{#2}}\Z #1\Z

203 }%

Ici #3#4=A, #1#2=B

204 \def\XINT_euc_fork #1#2\Z #3#4\Z

205 {%

206 \xint_UDzerofork

207 #1\XINT_euc_BisZero

208 #3\XINT_euc_AisZero

209 0\XINT_euc_a

210 \krof

211 {0}{#1#2}{#3#4}{{#3#4}{#1#2}}{}\Z

212 }%

Le {} pour protéger {{A}{B}} si on s'arrête après une étape (B divise A). On va renvoyer:

{N}{A}{D=r(n)}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}

213 \def\XINT_euc_AisZero #1#2#3#4#5#6{{1}{0}{#2}{#2}{0}{0}}%

214 \def\XINT_euc_BisZero #1#2#3#4#5#6{{1}{0}{#3}{#3}{0}{0}}%

{n}{rn}{an}{{qn}{rn}}...{{A}{B}}{}\Z

a(n) = r(n-1). Pour n=0 on a juste {0}{B}{A}{{A}{B}}{}\Z

\XINT_div_prepare {u}{v} divise v par u

215 \def\XINT_euc_a #1#2#3%

216 {%

217 \expandafter\XINT_euc_b\the\numexpr #1+\xint_c_i\expandafter.%

218 \romannumeral0\XINT_div_prepare {#2}{#3}{#2}%

219 }%

425

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

{n+1}{q(n+1)}{r(n+1)}{rn}{{qn}{rn}}...

220 \def\XINT_euc_b #1.#2#3#4%

221 {%

222 \XINT_euc_c #3\Z {#1}{#3}{#4}{{#2}{#3}}%

223 }%

r(n+1)\Z {n+1}{r(n+1)}{r(n)}{{q(n+1)}{r(n+1)}}{{qn}{rn}}...

Test si r(n+1) est nul.

224 \def\XINT_euc_c #1#2\Z

225 {%

226 \xint_gob_til_zero #1\XINT_euc_end0\XINT_euc_a

227 }%

{n+1}{r(n+1)}{r(n)}{{q(n+1)}{r(n+1)}}...{}\Z Ici r(n+1) = 0. On arrête on se prépare à inverser

{n+1}{0}{r(n)}{{q(n+1)}{r(n+1)}}.....{{q1}{r1}}{{A}{B}}{}\Z

On veut renvoyer: {N=n+1}{A}{D=r(n)}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}

228 \def\XINT_euc_end0\XINT_euc_a #1#2#3#4\Z%

229 {%

230 \expandafter\XINT_euc_end_a

231 \romannumeral0%

232 \XINT_rord_main {}#4{{#1}{#3}}%

233 \xint:

234 \xint_bye\xint_bye\xint_bye\xint_bye

235 \xint_bye\xint_bye\xint_bye\xint_bye

236 \xint:

237 }%

238 \def\XINT_euc_end_a #1#2#3{{#1}{#3}{#2}}%

23.5. \xintBezoutAlgorithm
Pour Bezout: objectif, renvoyer

{N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}

{q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}

alpha0=1, beta0=0, alpha(-1)=0, beta(-1)=1

239 \def\xintBezoutAlgorithm {\romannumeral0\xintbezoutalgorithm }%

240 \def\xintbezoutalgorithm #1%

241 {%

242 \expandafter \XINT_bezalg

243 \expandafter{\romannumeral0\xintiiabs{\xintNum{#1}}}%

244 }%

245 \def\XINT_bezalg #1#2%

246 {%

247 \expandafter\XINT_bezalg_fork\romannumeral0\xintiiabs{\xintNum{#2}}\Z #1\Z

248 }%

Ici #3#4=A, #1#2=B

249 \def\XINT_bezalg_fork #1#2\Z #3#4\Z

250 {%

251 \xint_UDzerofork

252 #1\XINT_bezalg_BisZero

253 #3\XINT_bezalg_AisZero

254 0\XINT_bezalg_a

255 \krof

256 0{#1#2}{#3#4}1001{{#3#4}{#1#2}}{}\Z

426

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

257 }%

258 \def\XINT_bezalg_AisZero #1#2#3\Z{{1}{0}{0}{1}{#2}{#2}{1}{0}{0}{0}{0}{1}}%

259 \def\XINT_bezalg_BisZero #1#2#3#4\Z{{1}{0}{0}{1}{#3}{#3}{1}{0}{0}{0}{0}{1}}%

pour préparer l'étape n+1 il faut {n}{r(n)}{r(n-1)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}

{{q(n)}{r(n)}{alpha(n)}{beta(n)}}... division de #3 par #2

260 \def\XINT_bezalg_a #1#2#3%

261 {%

262 \expandafter\XINT_bezalg_b\the\numexpr #1+\xint_c_i\expandafter.%

263 \romannumeral0\XINT_div_prepare {#2}{#3}{#2}%

264 }%

{n+1}{q(n+1)}{r(n+1)}{r(n)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}...

265 \def\XINT_bezalg_b #1.#2#3#4#5#6#7#8%

266 {%

267 \expandafter\XINT_bezalg_c\expandafter

268 {\romannumeral0\xintiiadd {\xintiiMul {#6}{#2}}{#8}}%

269 {\romannumeral0\xintiiadd {\xintiiMul {#5}{#2}}{#7}}%

270 {#1}{#2}{#3}{#4}{#5}{#6}%

271 }%

{beta(n+1)}{alpha(n+1)}{n+1}{q(n+1)}{r(n+1)}{r(n)}{alpha(n)}{beta(n}}

272 \def\XINT_bezalg_c #1#2#3#4#5#6%

273 {%

274 \expandafter\XINT_bezalg_d\expandafter {#2}{#3}{#4}{#5}{#6}{#1}%

275 }%

{alpha(n+1)}{n+1}{q(n+1)}{r(n+1)}{r(n)}{beta(n+1)}

276 \def\XINT_bezalg_d #1#2#3#4#5#6#7#8%

277 {%

278 \XINT_bezalg_e #4\Z {#2}{#4}{#5}{#1}{#6}{#7}{#8}{{#3}{#4}{#1}{#6}}%

279 }%

r(n+1)\Z {n+1}{r(n+1)}{r(n)}{alpha(n+1)}{beta(n+1)}

{alpha(n)}{beta(n)}{q,r,alpha,beta(n+1)}

Test si r(n+1) est nul.

280 \def\XINT_bezalg_e #1#2\Z

281 {%

282 \xint_gob_til_zero #1\XINT_bezalg_end0\XINT_bezalg_a

283 }%

Ici r(n+1) = 0. On arrête on se prépare à inverser.

{n+1}{r(n+1)}{r(n)}{alpha(n+1)}{beta(n+1)}{alpha(n)}{beta(n)}

{q,r,alpha,beta(n+1)}...{{A}{B}}{}\Z

On veut renvoyer

{N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}

{q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}

284 \def\XINT_bezalg_end0\XINT_bezalg_a #1#2#3#4#5#6#7#8\Z

285 {%

286 \expandafter\XINT_bezalg_end_a

287 \romannumeral0%

288 \XINT_rord_main {}#8{{#1}{#3}}%

289 \xint:

290 \xint_bye\xint_bye\xint_bye\xint_bye

291 \xint_bye\xint_bye\xint_bye\xint_bye

292 \xint:

427

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

293 }%

{N}{D}{A}{B}{q1}{r1}{alpha1=q1}{beta1=1}{q2}{r2}{alpha2}{beta2}

....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}

On veut renvoyer

{N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}

{q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}

294 \def\XINT_bezalg_end_a #1#2#3#4{{#1}{#3}{0}{1}{#2}{#4}{1}{0}}%

23.6. \xintTypesetEuclideAlgorithm
TYPESETTING

Organisation:

{N}{A}{D}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}

\U1 = N = nombre d'étapes, \U3 = PGCD, \U2 = A, \U4=B q1 = \U5, q2 = \U7 --> qn = \U<2n+3>, rn =

\U<2n+4> bn = rn. B = r0. A=r(-1)

r(n-2) = q(n)r(n-1)+r(n) (n e étape)

\U{2n} = \U{2n+3} \times \U{2n+2} + \U{2n+4}, n e étape. (avec n entre 1 et N)

1.09h uses \xintloop, and \par rather than \endgraf; and \par rather than \hfill\break

295 \def\xintTypesetEuclideAlgorithm {%

296 \unless\ifdefined\xintAssignArray

297 \errmessage

298 {xintgcd: package xinttools is required for \string\xintTypesetEuclideAlgorithm}%

299 \expandafter\xint_gobble_iii

300 \fi

301 \XINT_TypesetEuclideAlgorithm

302 }%

303 \def\XINT_TypesetEuclideAlgorithm #1#2%

304 {% l'algo remplace #1 et #2 par |#1| et |#2|

305 \par

306 \begingroup

307 \xintAssignArray\xintEuclideAlgorithm {#1}{#2}\to\U

308 \edef\A{\U2}\edef\B{\U4}\edef\N{\U1}%

309 \setbox 0 \vbox{\halign {$##$\cr \A\cr \B \cr}}%

310 \count 255 1

311 \xintloop

312 \indent\hbox to \wd 0 {\hfil$\U{\numexpr 2*\count255\relax}$}%

313 ${} = \U{\numexpr 2*\count255 + 3\relax}

314 \times \U{\numexpr 2*\count255 + 2\relax}

315 + \U{\numexpr 2*\count255 + 4\relax}$%

316 \ifnum \count255 < \N

317 \par

318 \advance \count255 1

319 \repeat

320 \endgroup

321 }%

23.7. \xintTypesetBezoutAlgorithm
Pour Bezout on a: {N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}

{q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}

Donc 4N+8 termes: U1 = N, U2= A, U5=D, U6=B, q1 = U9, qn = U{4n+5}, n au moins 1

rn = U{4n+6}, n au moins -1

428

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd , xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

alpha(n) = U{4n+7}, n au moins -1

beta(n) = U{4n+8}, n au moins -1

1.09h uses \xintloop, and \par rather than \endgraf; and no more \parindent0pt

322 \def\xintTypesetBezoutAlgorithm {%

323 \unless\ifdefined\xintAssignArray

324 \errmessage

325 {xintgcd: package xinttools is required for \string\xintTypesetBezoutAlgorithm}%

326 \expandafter\xint_gobble_iii

327 \fi

328 \XINT_TypesetBezoutAlgorithm

329 }%

330 \def\XINT_TypesetBezoutAlgorithm #1#2%

331 {%

332 \par

333 \begingroup

334 \xintAssignArray\xintBezoutAlgorithm {#1}{#2}\to\BEZ

335 \edef\A{\BEZ2}\edef\B{\BEZ6}\edef\N{\BEZ1}% A = |#1|, B = |#2|

336 \setbox 0 \vbox{\halign {$##$\cr \A\cr \B \cr}}%

337 \count255 1

338 \xintloop

339 \indent\hbox to \wd 0 {\hfil$\BEZ{4*\count255 - 2}$}%

340 ${} = \BEZ{4*\count255 + 5}

341 \times \BEZ{4*\count255 + 2}

342 + \BEZ{4*\count255 + 6}$\hfill\break

343 \hbox to \wd 0 {\hfil$\BEZ{4*\count255 +7}$}%

344 ${} = \BEZ{4*\count255 + 5}

345 \times \BEZ{4*\count255 + 3}

346 + \BEZ{4*\count255 - 1}$\hfill\break

347 \hbox to \wd 0 {\hfil$\BEZ{4*\count255 +8}$}%

348 ${} = \BEZ{4*\count255 + 5}

349 \times \BEZ{4*\count255 + 4}

350 + \BEZ{4*\count255 }$

351 \par

352 \ifnum \count255 < \N

353 \advance \count255 1

354 \repeat

355 \edef\U{\BEZ{4*\N + 4}}%

356 \edef\V{\BEZ{4*\N + 3}}%

357 \edef\D{\BEZ5}%

358 \ifodd\N

359 $\U\times\A - \V\times \B = -\D$%

360 \else

361 $\U\times\A - \V\times\B = \D$%

362 \fi

363 \par

364 \endgroup

365 }%

366 \XINTrestorecatcodesendinput%

429

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

24. Package xintfrac implementation

.1 Catcodes, 𝜀-TEX and reload detection . . 431

.2 Package identification 432

.3 \XINT_cntSgnFork 432

.4 \xintLen 432

.5 \XINT_outfrac 432

.6 \XINT_infrac 433

.7 \XINT_frac_gen 435

.8 \XINT_factortens 437

.9 \xintEq, \xintNotEq, \xintGt, \xintLt,
\xintGtorEq, \xintLtorEq, \xintIsZero,
\xintIsNotZero, \xintOdd, \xintEven,
\xintifSgn, \xintifCmp, \xintifEq, \xin-
tifGt, \xintifLt, \xintifZero, \xin-

tifNotZero, \xintifOne, \xintifOdd . 438
.10 \xintRaw 440
.11 \xintRawBraced 440
.12 \xintiLogTen 440
.13 \xintPRaw 441
.14 \xintSPRaw 442
.15 \xintFracToSci 442
.16 \xintFracToDecimal 442
.17 \xintRawWithZeros 442
.18 \xintDecToString 443
.19 \xintDecToStringREZ 443
.20 \xintFloor, \xintiFloor 443
.21 \xintCeil, \xintiCeil 444
.22 \xintNumerator 444
.23 \xintDenominator 444
.24 \xintTeXFrac 445
.25 \xintTeXsignedFrac 446
.26 \xintTeXFromSci 446
.27 \xintTeXOver 447
.28 \xintTeXsignedOver 448
.29 \xintREZ 448
.30 \xintE 449
.31 \xintIrr, \xintPIrr 449
.32 \xintifInt 451
.33 \xintIsInt 451
.34 \xintJrr 451
.35 \xintTFrac 453
.36 \xintTrunc, \xintiTrunc 453
.37 \xintTTrunc 456
.38 \xintNum, \xintnum 456
.39 \xintRound, \xintiRound 456
.40 \xintXTrunc 457
.41 \xintAdd 462
.42 \xintSub 464
.43 \xintSum 464
.44 \xintMul 464
.45 \xintSqr 465

.46 \xintPow 465

.47 \xintFac 466

.48 \xintBinomial 466

.49 \xintPFactorial 466

.50 \xintPrd 467

.51 \xintDiv 467

.52 \xintDivFloor 467

.53 \xintDivTrunc 468

.54 \xintDivRound 468

.55 \xintModTrunc 468

.56 \xintDivMod 469

.57 \xintMod 470

.58 \xintIsOne 471

.59 \xintGeq 471

.60 \xintMax 472

.61 \xintMaxof 473

.62 \xintMin 473

.63 \xintMinof 474

.64 \xintCmp 474

.65 \xintAbs 476

.66 \xintOpp 476

.67 \xintInv 476

.68 \xintSgn 477

.69 \xintSignBit 477

.70 \xintGCD 477

.71 \xintGCDof 478

.72 \xintLCM 479

.73 \xintLCMof 480

.74 Floating point macros 481

.75 \xintDigits, \xintSetDigits 483

.76 \xintFloat, \xintFloatZero 483

.77 \xintFloatBraced 485

.78 \XINTinFloat, \XINTinFloatS 486

.79 \XINTFloatiLogTen 491

.80 \xintPFloat 492

.81 \xintFloatToDecimal 496

.82 \XINTinFloatFrac 497

.83 \xintFloatAdd, \XINTinFloatAdd . . . 497

.84 \xintFloatSub, \XINTinFloatSub . . . 498

.85 \xintFloatMul, \XINTinFloatMul . . . 499

.86 \xintFloatSqr, \XINTinFloatSqr . . . 499

.87 \XINTinFloatInv 500

.88 \xintFloatDiv, \XINTinFloatDiv . . . 500

.89 \xintFloatPow, \XINTinFloatPow . . . 501

.90 \xintFloatPower, \XINTinFloatPower . 505

.91 \xintFloatFac, \XINTFloatFac 508

.92 \xintFloatPFactorial, \XINTinFloatP-
Factorial 513

.93 \xintFloatBinomial, \XINTinFloatBino-
mial 517

430

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

.94 \xintFloatSqrt, \XINTinFloatSqrt . . 518

.95 \xintFloatE, \XINTinFloatE 520

.96 \XINTinFloatMod 521

.97 \XINTinFloatDivFloor 521

.98 \XINTinFloatDivMod 522

.99 \xintifFloatInt 522

.100 \xintFloatIsInt 522

.101 \xintFloatIntType 522

.102 \XINTinFloatdigits, \XINTinFloatSdigits523

.103 (WIP) \XINTinRandomFloatS, \XINTinRan-
domFloatSdigits 523

.104 (WIP) \XINTinRandomFloatSixteen . . 524

The commenting is currently (2025/09/06) very sparse.

24.1. Catcodes, 𝜺-TEX and reload detection
The code for reload detection was initially copied from Heiko Oberdiek's packages, then modified.

The method for catcodes was also initially directly inspired by these packages.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode44=12 % ,

8 \catcode46=12 % .

9 \catcode58=12 % :

10 \catcode94=7 % ^

11 \def\empty{}\def\space{ }\newlinechar10

12 \def\z{\endgroup}%

13 \expandafter\let\expandafter\x\csname ver@xintfrac.sty\endcsname

14 \expandafter\let\expandafter\w\csname ver@xint.sty\endcsname

15 \expandafter\ifx\csname numexpr\endcsname\relax

16 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

17 \immediate\write128{^^JPackage xintfrac Warning:^^J%

18 \space\space\space\space

19 \numexpr not available, aborting input.^^J}%

20 \else

21 \PackageWarningNoLine{xintfrac}{\numexpr not available, aborting input}%

22 \fi

23 \def\z{\endgroup\endinput}%

24 \else

25 \ifx\x\relax % plain-TeX, first loading of xintfrac.sty

26 \ifx\w\relax % but xint.sty not yet loaded.

27 \def\z{\endgroup\input xint.sty\relax}%

28 \fi

29 \else

30 \ifx\x\empty % LaTeX, first loading,

31 % variable is initialized, but \ProvidesPackage not yet seen

32 \ifx\w\relax % xint.sty not yet loaded.

33 \def\z{\endgroup\RequirePackage{xint}}%

34 \fi

35 \else

36 \def\z{\endgroup\endinput}% xintfrac already loaded.

37 \fi

38 \fi

39 \fi

40 \z%

431

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

41 \XINTsetupcatcodes% defined in xintkernel.sty

24.2. Package identification
42 \XINT_providespackage

43 \ProvidesPackage{xintfrac}%

44 [2025/09/06 v1.4o Expandable operations on fractions (JFB)]%

24.3. \XINT_cntSgnFork
1.09i. Used internally, #1 must expand to \m@ne, \z@, or \@ne or equivalent. \XINT_cntSgnFork

does not insert a romannumeral stopper.

45 \def\XINT_cntSgnFork #1%

46 {%

47 \ifcase #1\expandafter\xint_secondofthree

48 \or\expandafter\xint_thirdofthree

49 \else\expandafter\xint_firstofthree

50 \fi

51 }%

24.4. \xintLen
The used formula is disputable, the idea is that A/1 and A should have same length. Venerable code

rewritten for 1.2i, following updates to \xintLength in xintkernel.sty. And sadly, I forgot on

this occasion that this macro is not supposed to count the sign... Fixed in 1.2k.

52 \def\xintLen {\romannumeral0\xintlen }%

53 \def\xintlen #1%

54 {%

55 \expandafter\XINT_flen\romannumeral0\XINT_infrac {#1}%

56 }%

57 \def\XINT_flen#1{\def\XINT_flen ##1##2##3%

58 {%

59 \expandafter#1%

60 \the\numexpr \XINT_abs##1+%

61 \XINT_len_fork ##2##3\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

62 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

63 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye-\xint_c_i

64 \relax

65 }}\XINT_flen{ }%

24.5. \XINT_outfrac

Modified at 1.06b (2013/05/14). 1.06b version now outputs 0/1[0] and not 0[0] in case of zero.

More generally all macros have been checked in xintfrac, xintseries, xintcfrac, to make sure the

output format for fractions was always A/B[n]. (except \xintIrr, \xintJrr, \xintRawWithZeros).

Months later (2014/10/22): perhaps I should document what this macro does before I forget? from

{e}{N}{D} it outputs N/D[e], checking in passing if D=0 or if N=0. It also makes sure D is not <

0. I am not sure but I don't think there is any place in the code which could call \XINT_outfrac

with a D < 0, but I should check.

66 \def\XINT_outfrac #1#2#3%

67 {%

68 \ifcase\XINT_cntSgn #3\xint:

432

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

69 \expandafter \XINT_outfrac_divisionbyzero

70 \or

71 \expandafter \XINT_outfrac_P

72 \else

73 \expandafter \XINT_outfrac_N

74 \fi

75 {#2}{#3}[#1]%

76 }%

77 \def\XINT_outfrac_divisionbyzero #1#2[#3]%

78 {%

79 \XINT_signalcondition{DivisionByZero}{Division by zero: #1/#2.}{}{ 0/1[0]}%

80 }%

81 \def\XINT_outfrac_P#1{%

82 \def\XINT_outfrac_P ##1##2%

83 {\if0\XINT_Sgn ##1\xint:\expandafter\XINT_outfrac_Zero\fi#1##1/##2}%

84 }\XINT_outfrac_P{ }%

85 \def\XINT_outfrac_Zero #1[#2]{ 0/1[0]}%

86 \def\XINT_outfrac_N #1#2%

87 {%

88 \expandafter\XINT_outfrac_N_a\expandafter

89 {\romannumeral0\XINT_opp #2}{\romannumeral0\XINT_opp #1}%

90 }%

91 \def\XINT_outfrac_N_a #1#2%

92 {%

93 \expandafter\XINT_outfrac_P\expandafter {#2}{#1}%

94 }%

24.6. \XINT_infrac

Added at 1.03 (2013/04/14). Parses fraction, scientific notation, etc... and produces {n}{A}{B}

corresponding to A/B times 10^n. No reduction to smallest terms.

Modified at 1.07 (2013/05/25). Extended in 1.07 to accept scientific notation on input. With

lowercase e only. The \xintexpr parser does accept uppercase E also. Ah, by the way, perhaps

I should at least say what this macro does? (belated addition 2014/10/22...), before I for-

get! It prepares the fraction in the internal format {exponent}{Numerator}{Denominator} where

Denominator is at least 1.

Modified at 1.2 (2015/10/10). This venerable macro from the very early days has gotten a lifting

for release 1.2. There were two kinds of issues:

1) use of \W, \Z, \T delimiters was very poor choice as this could clash with user input,

2) the new \XINT_frac_gen handles macros (possibly empty) in the input as general as \A.\Be\C/\ ⤸
D.\Ee\F. The earlier version would not have expanded the \B or \E: digits after decimal mark were

constrained to arise from expansion of the first token. Thus the 1.03 original code would have

expanded only \A, \D, \C, and \F for this input.

This reminded me think I should revisit the remaining earlier portions of code, as I was still

learning TeX coding when I wrote them.

Also I thought about parsing even faster the A/B[N] input, not expanding B, but this turned out

to clash with some established uses in the documentation such as 1/\xintiiSqr{...}[0]. For the

implementation, careful here about potential brace removals with parameter patterns such as like

#1/#2#3[#4]for example.

While I was at it 1.2 added \numexpr parsing of the N, which earlier was restricted to be only

explicit digits. I allowed [] with empty N, but the way I did it in 1.2 with \the\numexpr 0#1 was

buggy, as it did not allow #1 to be a \count for example or itself a \numexpr (although such inputs

433

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

were not previously allowed, I later turned out to use them in the code itself, e.g. the float

factorial of version 1.2f). The better way would be \the\numexpr#1+\xint_c_ but 1.2f finally

does only \the\numexpr #1 and #1 is not allowed to be empty.

The 1.2 \XINT_frac_gen had two locations with such a problematic \numexpr 0#1 which I replaced

for 1.2f with \numexpr#1+\xint_c_.

Regarding calling the macro with an argument A[<expression>], a / inthe expression must be suit-

ably hidden for example in \firstofone type constructs.

Note: when the numerator is found to be zero \XINT_infrac *always* returns {0}{0}{1}. This

behaviour must not change because 1.2g \xintFloat and XINTinFloat (for example) rely upon it: if

the denominator on output is not 1, then \xintFloat assumes that the numerator is not zero.

As described in the manual, if the input contains a (final) [N] part, it is assumed that it is in

the shape A[N] or A/B[N] with A (and B) not containing neither decimal mark nor scientific part,

moreover B must be positive and A have at most one minus sign (and no plus sign). Else there will

be errors, for example -0/2[0] would not be recognized as being zero at this stage and this could

cause issues afterwards. When there is no ending [N] part, both numerator and denominator will

be parsed for the more general format allowing decimal digits and scientific part and possibly

multiple leading signs.

Modified at 1.2l (2017/07/26). 1.2l fixes frailty of \XINT_infrac (hence basically of all xint-

frac macros) respective to non terminated \numexpr input: \xintRaw{\the\numexpr1} for example.

The issue was that \numexpr sees the / and expands what's next. But even \numexpr 1// for ex-

ample creates an error, and to my mind this is a defect of \numexpr. It should be able to trace

back and see that / was used as delimiter not as operator. Anyway, I thus fixed this problem

belatedly here regarding \XINT_infrac.

Modified at 1.4l (2022/05/29). Deprecate venerable \XINT_inFrac, whose new name is \xintRawBraced.

Should have been removed then.

Modified at 1.4n (2025/09/05). Remove \XINT_inFrac.

95 \def\XINT_infrac #1% the core xintfrac in-parser; triggered by \romannumeral0

96 {%

97 \expandafter\XINT_infrac_fork\romannumeral`&&@#1\xint:/\XINT_W[\XINT_W\XINT_T

98 }%

99 \def\XINT_infrac_fork #1[#2%

100 {%

101 \xint_UDXINTWfork

102 #2\XINT_frac_gen % input has no brackets [N]

103 \XINT_W\XINT_infrac_res_a % there is some [N], must be strict A[N] or A/B[N] input

104 \krof

105 #1[#2%

106 }%

107 \def\XINT_infrac_res_a #1%

108 {%

109 \xint_gob_til_zero #1\XINT_infrac_res_zero 0\XINT_infrac_res_b #1%

110 }%

Note that input exponent is here ignored and forced to be zero.

111 \def\XINT_infrac_res_zero 0\XINT_infrac_res_b #1\XINT_T {{0}{0}{1}}%

112 \def\XINT_infrac_res_b #1/#2%

113 {%

114 \xint_UDXINTWfork

115 #2\XINT_infrac_res_ca % it was A[N] input

116 \XINT_W\XINT_infrac_res_cb % it was A/B[N] input

117 \krof

118 #1/#2%

434

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

119 }%

An empty [] is not allowed. (this was authorized in 1.2, removed in 1.2f).

120 \def\XINT_infrac_res_ca #1[#2]\xint:/\XINT_W[\XINT_W\XINT_T

121 {\expandafter{\the\numexpr #2}{#1}{1}}%

122 \def\XINT_infrac_res_cb #1/#2[%

123 {\expandafter\XINT_infrac_res_cc\romannumeral`&&@#2~#1[}%

124 \def\XINT_infrac_res_cc #1~#2[#3]\xint:/\XINT_W[\XINT_W\XINT_T

125 {\expandafter{\the\numexpr #3}{#2}{#1}}%

24.7. \XINT_frac_gen

Modified at 1.07 (2013/05/25). Extended at to recognize and accept scientific notation both at

the numerator and (possible) denominator. Only a lowercase e will do here, but uppercase E is

possible within an \xintexpr..\relax

Modified at 1.2 (2015/10/10). Completely rewritten. The parsing handles inputs such as \A.\B ⤸
e\C/\D.\Ee\F where each of \A, \B, \D, and \E may need f-expansion and \C and \F will end up in

\numexpr.

Modified at 1.2f (2016/03/12). 1.2f corrects an issue to allow \C and \F to be \count variable (or

expressions with \numexpr): 1.2 did a bad \numexpr0#1 which allowed only explicit digits for

expanded #1.

126 \def\XINT_frac_gen #1/#2%

127 {%

128 \xint_UDXINTWfork

129 #2\XINT_frac_gen_A % there was no /

130 \XINT_W\XINT_frac_gen_B % there was a /

131 \krof

132 #1/#2%

133 }%

Note that #1 is only expanded so far up to decimal mark or "e".

134 \def\XINT_frac_gen_A #1\xint:/\XINT_W [\XINT_W {\XINT_frac_gen_C 0~1!#1ee.\XINT_W }%

135 \def\XINT_frac_gen_B #1/#2\xint:/\XINT_W[%\XINT_W

136 {%

137 \expandafter\XINT_frac_gen_Ba

138 \romannumeral`&&@#2ee.\XINT_W\XINT_Z #1ee.%\XINT_W

139 }%

140 \def\XINT_frac_gen_Ba #1.#2%

141 {%

142 \xint_UDXINTWfork

143 #2\XINT_frac_gen_Bb

144 \XINT_W\XINT_frac_gen_Bc

145 \krof

146 #1.#2%

147 }%

148 \def\XINT_frac_gen_Bb #1e#2e#3\XINT_Z

149 {\expandafter\XINT_frac_gen_C\the\numexpr #2+\xint_c_~#1!}%

150 \def\XINT_frac_gen_Bc #1.#2e%

151 {%

152 \expandafter\XINT_frac_gen_Bd\romannumeral`&&@#2.#1e%

153 }%

154 \def\XINT_frac_gen_Bd #1.#2e#3e#4\XINT_Z

155 {%

435

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

156 \expandafter\XINT_frac_gen_C\the\numexpr #3-%

157 \numexpr\XINT_length_loop

158 #1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

159 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

160 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

161 ~#2#1!%

162 }%

163 \def\XINT_frac_gen_C #1!#2.#3%

164 {%

165 \xint_UDXINTWfork

166 #3\XINT_frac_gen_Ca

167 \XINT_W\XINT_frac_gen_Cb

168 \krof

169 #1!#2.#3%

170 }%

171 \def\XINT_frac_gen_Ca #1~#2!#3e#4e#5\XINT_T

172 {%

173 \expandafter\XINT_frac_gen_F\the\numexpr #4-#1\expandafter

174 ~\romannumeral0\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop

175 #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z~#3~%

176 }%

177 \def\XINT_frac_gen_Cb #1.#2e%

178 {%

179 \expandafter\XINT_frac_gen_Cc\romannumeral`&&@#2.#1e%

180 }%

181 \def\XINT_frac_gen_Cc #1.#2~#3!#4e#5e#6\XINT_T

182 {%

183 \expandafter\XINT_frac_gen_F\the\numexpr #5-#2-%

184 \numexpr\XINT_length_loop

185 #1\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

186 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

187 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

188 \relax\expandafter~%

189 \romannumeral0\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop

190 #3\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z

191 ~#4#1~%

192 }%

193 \def\XINT_frac_gen_F #1~#2%

194 {%

195 \xint_UDzerominusfork

196 #2-\XINT_frac_gen_Gdivbyzero

197 0#2{\XINT_frac_gen_G -{}}%

198 0-{\XINT_frac_gen_G {}#2}%

199 \krof #1~%

200 }%

201 \def\XINT_frac_gen_Gdivbyzero #1~~#2~%

202 {%

203 \expandafter\XINT_frac_gen_Gdivbyzero_a

204 \romannumeral0\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop

205 #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z~#1~%

206 }%

207 \def\XINT_frac_gen_Gdivbyzero_a #1~#2~%

436

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

208 {%

209 \XINT_signalcondition{DivisionByZero}{Division by zero: #1/0.}{}{{#2}{#1}{0}}%

210 }%

211 \def\XINT_frac_gen_G #1#2#3~#4~#5~%

212 {%

213 \expandafter\XINT_frac_gen_Ga

214 \romannumeral0\expandafter\XINT_num_cleanup\the\numexpr\XINT_num_loop

215 #1#5\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\Z~#3~{#2#4}%

216 }%

217 \def\XINT_frac_gen_Ga #1#2~#3~%

218 {%

219 \xint_gob_til_zero #1\XINT_frac_gen_zero 0%

220 {#3}{#1#2}%

221 }%

222 \def\XINT_frac_gen_zero 0#1#2#3{{0}{0}{1}}%

24.8. \XINT_factortens
This is the core macro for \xintREZ. To be used as \romannumeral0\XINT_factortens{...}. Output

is A.N. (formerly {A}{N}) where A is the integer stripped from trailing zeroes and N is the number

of removed zeroes. Only for positive strict integers!

Modified at 1.3a (2018/03/07). Completely rewritten at 1.3a to replace a double \xintReverseOrder

by a direct \numexpr governed expansion to the end and back, à la 1.2. I should comment more...

and perhaps improve again in future.

Testing shows significant gain at 100 digits or more.

223 \def\XINT_factortens #1{\expandafter\XINT_factortens_z

224 \romannumeral0\XINT_factortens_a#1%

225 \XINT_factortens_b123456789.}%

226 \def\XINT_factortens_z.\XINT_factortens_y{ }%

227 \def\XINT_factortens_a #1#2#3#4#5#6#7#8#9%

228 {\expandafter\XINT_factortens_x

229 \the\numexpr 1#1#2#3#4#5#6#7#8#9\XINT_factortens_a}%

230 \def\XINT_factortens_b#1\XINT_factortens_a#2#3.%

231 {.\XINT_factortens_cc 000000000-#2.}%

232 \def\XINT_factortens_x1#1.#2{#2#1}%

233 \def\XINT_factortens_y{.\XINT_factortens_y}%

234 \def\XINT_factortens_cc #1#2#3#4#5#6#7#8#9%

235 {\if#90\xint_dothis

236 {\expandafter\XINT_factortens_d\the\numexpr #8#7#6#5#4#3#2#1\relax

237 \xint_c_i 2345678.}\fi

238 \xint_orthat{\XINT_factortens_yy{#1#2#3#4#5#6#7#8#9}}}%

239 \def\XINT_factortens_yy #1#2.{.\XINT_factortens_y#1.0.}%

240 \def\XINT_factortens_c #1#2#3#4#5#6#7#8#9%

241 {\if#90\xint_dothis

242 {\expandafter\XINT_factortens_d\the\numexpr #8#7#6#5#4#3#2#1\relax

243 \xint_c_i 2345678.}\fi

244 \xint_orthat{.\XINT_factortens_y #1#2#3#4#5#6#7#8#9.}}%

245 \def\XINT_factortens_d #1#2#3#4#5#6#7#8#9%

246 {\if#10\expandafter\XINT_factortens_e\fi

247 \XINT_factortens_f #9#9#8#7#6#5#4#3#2#1.}%

248 \def\XINT_factortens_f #1#2\xint_c_i#3.#4.#5.%

249 {\expandafter\XINT_factortens_g\the\numexpr#1+#5.#3.}%

437

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

250 \def\XINT_factortens_g #1.#2.{.\XINT_factortens_y#2.#1.}%

251 \def\XINT_factortens_e #1..#2.%

252 {\expandafter.\expandafter\XINT_factortens_c

253 \the\numexpr\xint_c_ix+#2.}%

24.9. \xintEq, \xintNotEq, \xintGt, \xintLt, \xintGtorEq, \xintLtorEq,
\xintIsZero, \xintIsNotZero, \xintOdd, \xintEven, \xintifSgn, \xintifCmp,
\xintifEq, \xintifGt, \xintifLt, \xintifZero, \xintifNotZero, \xintifOne,
\xintifOdd

Moved here at 1.3. Formerly these macros were already defined in xint.sty or even xintcore.sty.

They are slim wrappers of macros defined elsewhere in xintfrac.

254 \def\xintEq {\romannumeral0\xinteq }%

255 \def\xinteq #1#2{\xintifeq{#1}{#2}{1}{0}}%

256 \def\xintNotEq#1#2{\romannumeral0\xintifeq {#1}{#2}{0}{1}}%

257 \def\xintGt {\romannumeral0\xintgt }%

258 \def\xintgt #1#2{\xintifgt{#1}{#2}{1}{0}}%

259 \def\xintLt {\romannumeral0\xintlt }%

260 \def\xintlt #1#2{\xintiflt{#1}{#2}{1}{0}}%

261 \def\xintGtorEq #1#2{\romannumeral0\xintiflt {#1}{#2}{0}{1}}%

262 \def\xintLtorEq #1#2{\romannumeral0\xintifgt {#1}{#2}{0}{1}}%

263 \def\xintIsZero {\romannumeral0\xintiszero }%

264 \def\xintiszero #1{\if0\xintSgn{#1}\xint_afterfi{ 1}\else\xint_afterfi{ 0}\fi}%

265 \def\xintIsNotZero{\romannumeral0\xintisnotzero }%

266 \def\xintisnotzero

267 #1{\if0\xintSgn{#1}\xint_afterfi{ 0}\else\xint_afterfi{ 1}\fi}%

268 \def\xintOdd {\romannumeral0\xintodd }%

269 \def\xintodd #1%

270 {%

271 \ifodd\xintLDg{\xintNum{#1}} %<- intentional space

272 \xint_afterfi{ 1}%

273 \else

274 \xint_afterfi{ 0}%

275 \fi

276 }%

277 \def\xintEven {\romannumeral0\xinteven }%

278 \def\xinteven #1%

279 {%

280 \ifodd\xintLDg{\xintNum{#1}} %<- intentional space

281 \xint_afterfi{ 0}%

282 \else

283 \xint_afterfi{ 1}%

284 \fi

285 }%

286 \def\xintifSgn{\romannumeral0\xintifsgn }%

287 \def\xintifsgn #1%

288 {%

289 \ifcase \xintSgn{#1}

290 \expandafter\xint_stop_atsecondofthree

291 \or\expandafter\xint_stop_atthirdofthree

292 \else\expandafter\xint_stop_atfirstofthree

293 \fi

438

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

294 }%

295 \def\xintifCmp{\romannumeral0\xintifcmp }%

296 \def\xintifcmp #1#2%

297 {%

298 \ifcase\xintCmp {#1}{#2}

299 \expandafter\xint_stop_atsecondofthree

300 \or\expandafter\xint_stop_atthirdofthree

301 \else\expandafter\xint_stop_atfirstofthree

302 \fi

303 }%

304 \def\xintifEq {\romannumeral0\xintifeq }%

305 \def\xintifeq #1#2%

306 {%

307 \if0\xintCmp{#1}{#2}%

308 \expandafter\xint_stop_atfirstoftwo

309 \else\expandafter\xint_stop_atsecondoftwo

310 \fi

311 }%

312 \def\xintifGt {\romannumeral0\xintifgt }%

313 \def\xintifgt #1#2%

314 {%

315 \if1\xintCmp{#1}{#2}%

316 \expandafter\xint_stop_atfirstoftwo

317 \else\expandafter\xint_stop_atsecondoftwo

318 \fi

319 }%

320 \def\xintifLt {\romannumeral0\xintiflt }%

321 \def\xintiflt #1#2%

322 {%

323 \ifnum\xintCmp{#1}{#2}<\xint_c_

324 \expandafter\xint_stop_atfirstoftwo

325 \else \expandafter\xint_stop_atsecondoftwo

326 \fi

327 }%

328 \def\xintifZero {\romannumeral0\xintifzero }%

329 \def\xintifzero #1%

330 {%

331 \if0\xintSgn{#1}%

332 \expandafter\xint_stop_atfirstoftwo

333 \else

334 \expandafter\xint_stop_atsecondoftwo

335 \fi

336 }%

337 \def\xintifNotZero{\romannumeral0\xintifnotzero }%

338 \def\xintifnotzero #1%

339 {%

340 \if0\xintSgn{#1}%

341 \expandafter\xint_stop_atsecondoftwo

342 \else

343 \expandafter\xint_stop_atfirstoftwo

344 \fi

345 }%

439

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

346 \def\xintifOne {\romannumeral0\xintifone }%

347 \def\xintifone #1%

348 {%

349 \if1\xintIsOne{#1}%

350 \expandafter\xint_stop_atfirstoftwo

351 \else

352 \expandafter\xint_stop_atsecondoftwo

353 \fi

354 }%

355 \def\xintifOdd {\romannumeral0\xintifodd }%

356 \def\xintifodd #1%

357 {%

358 \if\xintOdd{#1}1%

359 \expandafter\xint_stop_atfirstoftwo

360 \else

361 \expandafter\xint_stop_atsecondoftwo

362 \fi

363 }%

24.10. \xintRaw

Added at 1.07 (2013/05/25). 1.07: this macro simply prints in a user readable form the fraction

after its initial scanning. Useful when put inside braces in an \xintexpr, when the input is

not yet in the A/B[n] form.

364 \def\xintRaw {\romannumeral0\xintraw }%

365 \def\xintraw

366 {%

367 \expandafter\XINT_raw\romannumeral0\XINT_infrac

368 }%

369 \def\XINT_raw #1#2#3{ #2/#3[#1]}%

24.11. \xintRawBraced

Added at 1.4l (2022/05/29). User level interface to core \romannumeral0\XINT_infrac. Replaces

\XINT_inFrac which was defined but nowhere used by the xint packages.

370 \def\xintRawBraced {\romannumeral0\xintrawbraced }%

371 \let\xintrawbraced \XINT_infrac

24.12. \xintiLogTen

Added at 1.3e (2019/04/05). The exponent a, such that 10^a<= abs(x) < 10^(a+1). No rounding done

on x, handled as an exact fraction.

372 \def\xintiLogTen {\the\numexpr\xintilogten}%

373 \def\xintilogten

374 {%

375 \expandafter\XINT_ilogten\romannumeral0\xintraw

376 }%

377 \def\XINT_ilogten #1%

378 {%

379 \xint_UDzerominusfork

380 0#1\XINT_ilogten_p

381 #1-\XINT_ilogten_z

440

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

382 0-{\XINT_ilogten_p#1}%

383 \krof

384 }%

385 \def\XINT_ilogten_z #1[#2]{-"7FFF8000\relax}%

386 \def\XINT_ilogten_p #1/#2[#3]%

387 {%

388 #3+\expandafter\XINT_ilogten_a

389 \the\numexpr\xintLength{#1}\expandafter.\the\numexpr\xintLength{#2}.#1.#2.%

390 }%

391 \def\XINT_ilogten_a #1.#2.%

392 {%

393 #1-#2\ifnum#1>#2

394 \expandafter\XINT_ilogten_aa

395 \else

396 \expandafter\XINT_ilogten_ab

397 \fi #1.#2.%

398 }%

399 \def\XINT_ilogten_aa #1.#2.#3.#4.%

400 {%

401 \xintiiifLt{#3}{\XINT_dsx_addzerosnofuss{#1-#2}#4;}{-1}{}\relax

402 }%

403 \def\XINT_ilogten_ab #1.#2.#3.#4.%

404 {%

405 \xintiiifLt{\XINT_dsx_addzerosnofuss{#2-#1}#3;}{#4}{-1}{}\relax

406 }%

24.13. \xintPRaw

Added at 1.09b (2013/10/03).

407 \def\xintPRaw {\romannumeral0\xintpraw }%

408 \def\xintpraw

409 {%

410 \expandafter\XINT_praw\romannumeral0\XINT_infrac

411 }%

412 \def\XINT_praw #1%

413 {%

414 \ifnum #1=\xint_c_ \expandafter\XINT_praw_a\fi \XINT_praw_A {#1}%

415 }%

416 \def\XINT_praw_A #1#2#3%

417 {%

418 \if\XINT_isOne{#3}1\expandafter\xint_firstoftwo

419 \else\expandafter\xint_secondoftwo

420 \fi { #2[#1]}{ #2/#3[#1]}%

421 }%

422 \def\XINT_praw_a\XINT_praw_A #1#2#3%

423 {%

424 \if\XINT_isOne{#3}1\expandafter\xint_firstoftwo

425 \else\expandafter\xint_secondoftwo

426 \fi { #2}{ #2/#3}%

427 }%

441

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

24.14. \xintSPRaw
This private macro was for internal usage by \xinttheexpr. It got moved here at 1.4 and is not

used anymore by the package.

It checks if input has a [N] part, if yes uses \xintPRaw, else simply lets the input pass through

as is.

428 \def\xintSPRaw {\romannumeral0\xintspraw }%

429 \def\xintspraw #1{\expandafter\XINT_spraw\romannumeral`&&@#1[\W]}%

430 \def\XINT_spraw #1[#2#3]{\xint_gob_til_W #2\XINT_spraw_a\W\XINT_spraw_p #1[#2#3]}%

431 \def\XINT_spraw_a\W\XINT_spraw_p #1[\W]{ #1}%

432 \def\XINT_spraw_p #1[\W]{\xintpraw {#1}}%

24.15. \xintFracToSci

Added at 1.4l (2022/05/29). The macro with this name which was added here at 1.4 then had var-

ious changes and finally was moved to xintexpr at 1.4k is now called there \xint_FracToSci_x

and is private. The present macro is public and behaves like the other xintfrac macros: f-

expandable and accepts general input. Its output is exactly the same as \xint_FracToSci_x for

same inputs, with the exception of the empty input which \xintFracToSci will output as 0 but

\xint_FracToSci_x as empty. But the latter is not used by \xinteval for an empty leaf as it

employs then \xintexprEmptyItem.

433 \def\xintFracToSci{\romannumeral0\xintfractosci}%
434 \def\xintfractosci#1{\expandafter\XINT_fractosci\romannumeral0\xintraw{#1}}%

435 \def\XINT_fractosci#1#2/#3[#4]{\expanded{ %

436 \ifnum#4=\xint_c_ #1#2\else

437 \romannumeral0\expandafter\XINT_pfloat_a_fork\romannumeral0\xintrez{#1#2[#4]}%

438 \fi

439 \if\XINT_isOne{#3}1\else\if#10\else/#3\fi\fi}%

440 }%

24.16. \xintFracToDecimal

Added at 1.4l (2022/05/29). The macro with this name which was added at 1.4k to xintexpr has been

removed. The public variant here behaves like the other xintfrac macros: f-expandable and

accepts general input.

441 \def\xintFracToDecimal{\romannumeral0\xintfractodecimal}%
442 \def\xintfractodecimal#1{\expandafter\XINT_fractodecimal\romannumeral0\xintraw{#1}}%

443 \def\XINT_fractodecimal #1#2/#3[#4]{\expanded{ %

444 \ifnum#4=\xint_c_ #1#2\else

445 \romannumeral0\expandafter\XINT_dectostr\romannumeral0\xintrez{#1#2[#4]}%

446 \fi

447 \if\XINT_isOne{#3}1\else\if#10\else/#3\fi\fi}%

448 }%

24.17. \xintRawWithZeros
This was called \xintRaw in versions earlier than 1.07

449 \def\xintRawWithZeros {\romannumeral0\xintrawwithzeros }%

450 \def\xintrawwithzeros

451 {%

452 \expandafter\XINT_rawz_fork\romannumeral0\XINT_infrac

453 }%

442

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

454 \def\XINT_rawz_fork #1%

455 {%

456 \ifnum#1<\xint_c_

457 \expandafter\XINT_rawz_Ba

458 \else

459 \expandafter\XINT_rawz_A

460 \fi

461 #1.%

462 }%

463 \def\XINT_rawz_A #1.#2#3{\XINT_dsx_addzeros{#1}#2;/#3}%

464 \def\XINT_rawz_Ba -#1.#2#3{\expandafter\XINT_rawz_Bb

465 \expandafter{\romannumeral0\XINT_dsx_addzeros{#1}#3;}{#2}}%

466 \def\XINT_rawz_Bb #1#2{ #2/#1}%

24.18. \xintDecToString

Added at 1.3 (2018/03/01). This is a backport from polexpr 0.4. It is definitely not in final

form, consider it to be an unstable macro.

467 \def\xintDecToString{\romannumeral0\xintdectostring}%
468 \def\xintdectostring#1{\expandafter\XINT_dectostr\romannumeral0\xintraw{#1}}%

469 \def\XINT_dectostr #1/#2[#3]{\xintiiifZero {#1}%

470 \XINT_dectostr_z

471 {\if1\XINT_isOne{#2}\expandafter\XINT_dectostr_a

472 \else\expandafter\XINT_dectostr_b

473 \fi}%

474 #1/#2[#3]%

475 }%

476 \def\XINT_dectostr_z#1[#2]{ 0}%

477 \def\XINT_dectostr_a#1/#2[#3]{%

478 \ifnum#3<\xint_c_\xint_dothis{\xinttrunc{-#3}{#1[#3]}}\fi

479 \xint_orthat{\xintiie{#1}{#3}}%

480 }%

481 \def\XINT_dectostr_b#1/#2[#3]{% just to handle this somehow

482 \ifnum#3<\xint_c_\xint_dothis{\xinttrunc{-#3}{#1[#3]}/#2}\fi

483 \xint_orthat{\xintiie{#1}{#3}/#2}%

484 }%

24.19. \xintDecToStringREZ

Added at 1.4e (2021/05/05). And I took this opportunity to improve documentation in manual.

485 \def\xintDecToStringREZ{\romannumeral0\xintdectostringrez}%
486 \def\xintdectostringrez#1{\expandafter\XINT_dectostr\romannumeral0\xintrez{#1}}%

24.20. \xintFloor, \xintiFloor

Added at 1.09a (2013/09/24). 1.1 for \xintiFloor/\xintFloor. Not efficient if big negative dec-

imal exponent. Also sub-efficient if big positive decimal exponent.

487 \def\xintFloor {\romannumeral0\xintfloor }%

488 \def\xintfloor #1% devrais-je faire \xintREZ?

489 {\expandafter\XINT_ifloor \romannumeral0\xintrawwithzeros {#1}./1[0]}%

490 \def\xintiFloor {\romannumeral0\xintifloor }%

491 \def\xintifloor #1%

443

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

492 {\expandafter\XINT_ifloor \romannumeral0\xintrawwithzeros {#1}.}%

493 \def\XINT_ifloor #1/#2.{\xintiiquo {#1}{#2}}%

24.21. \xintCeil, \xintiCeil

Added at 1.09a (2013/09/24).

494 \def\xintCeil {\romannumeral0\xintceil }%

495 \def\xintceil #1{\xintiiopp {\xintFloor {\xintOpp{#1}}}}%

496 \def\xintiCeil {\romannumeral0\xinticeil }%

497 \def\xinticeil #1{\xintiiopp {\xintiFloor {\xintOpp{#1}}}}%

24.22. \xintNumerator
498 \def\xintNumerator {\romannumeral0\xintnumerator }%

499 \def\xintnumerator

500 {%

501 \expandafter\XINT_numer\romannumeral0\XINT_infrac

502 }%

503 \def\XINT_numer #1%

504 {%

505 \ifcase\XINT_cntSgn #1\xint:

506 \expandafter\XINT_numer_B

507 \or

508 \expandafter\XINT_numer_A

509 \else

510 \expandafter\XINT_numer_B

511 \fi

512 {#1}%

513 }%

514 \def\XINT_numer_A #1#2#3{\XINT_dsx_addzeros{#1}#2;}%

515 \def\XINT_numer_B #1#2#3{ #2}%

24.23. \xintDenominator
516 \def\xintDenominator {\romannumeral0\xintdenominator }%

517 \def\xintdenominator

518 {%

519 \expandafter\XINT_denom_fork\romannumeral0\XINT_infrac

520 }%

521 \def\XINT_denom_fork #1%

522 {%

523 \ifnum#1<\xint_c_

524 \expandafter\XINT_denom_B

525 \else

526 \expandafter\XINT_denom_A

527 \fi

528 #1.%

529 }%

530 \def\XINT_denom_A #1.#2#3{ #3}%

531 \def\XINT_denom_B -#1.#2#3{\XINT_dsx_addzeros{#1}#3;}%

444

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

24.24. \xintTeXFrac

Added at 1.03 (2013/04/14). Useless typesetting macro.

Modified at 1.4g (2021/05/25). Renamed from \xintFrac.

Modified at 1.4m (2022/06/10). The old name now raises an error, not a warning.

532 \ifdefined\PackageWarning

533 \def\xintfracTeXDeprecation#1#2{%

534 \PackageWarning{xintfrac}{\string#1 is deprecated. Use \string#2\MessageBreak

535 to suppress this warning}#2%

536 }%

537 \else

538 \edef\xintfracTeXDeprecation#1#2{{\newlinechar10

539 \immediate\noexpand\write128{&&JPackage xintfrac Warning: \noexpand\string#1 is

540 deprecated. Use \noexpand\string#2&&J%

541 (xintfrac)\xintReplicate{16}{ }to suppress this warning

542 on input line \noexpand\the\inputlineno.&&J}}#2%

543 }%

544 \fi

545 \ifdefined\PackageError

546 \def\xintfracTeXError#1#2{%

547 \PackageError{xintfrac}{\string#1 has been removed.\MessageBreak

548 Use \string#2 to suppress this error}%

549 {I will fix it for now if you hit the `Return' key.}#2%

550 }%

551 \else

552 \edef\xintfracTeXError#1#2{{\newlinechar10

553 \errhelp{I will fix it for now if you hit the `Return' key.}%

554 \errmessage{Package xintfrac Error: \noexpand\string#1 has been removed.&&J%

555 (xintfrac)\xintReplicate{16}{ }Use \noexpand\string#2 to suppress this error}}#2%

556 }%

557 \fi

558 \def\xintFrac {\xintfracTeXError\xintFrac\xintTeXFrac}%

559 \def\xintTeXFrac{\romannumeral0\xintfrac }%

560 \def\xintfrac #1%

561 {%

562 \expandafter\XINT_fracfrac_A\romannumeral0\XINT_infrac {#1}%

563 }%

564 \def\XINT_fracfrac_A #1{\XINT_fracfrac_B #1\Z }%

565 \catcode`^=7

566 \def\XINT_fracfrac_B #1#2\Z

567 {%

568 \xint_gob_til_zero #1\XINT_fracfrac_C 0\XINT_fracfrac_D {10^{#1#2}}%

569 }%

570 \def\XINT_fracfrac_C 0\XINT_fracfrac_D #1#2#3%

571 {%

572 \if1\XINT_isOne {#3}%

573 \xint_afterfi {\expandafter\xint_stop_atfirstoftwo\xint_gobble_ii }%

574 \fi

575 \space

576 \frac {#2}{#3}%

577 }%

578 \def\XINT_fracfrac_D #1#2#3%

445

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

579 {%

580 \if1\XINT_isOne {#3}\XINT_fracfrac_E\fi

581 \space

582 \frac {#2}{#3}#1%

583 }%

584 \def\XINT_fracfrac_E \fi\space\frac #1#2{\fi \space #1\cdot }%

24.25. \xintTeXsignedFrac

Modified at 1.4g (2021/05/25). Renamed from \xintSignedFrac.

Modified at 1.4m (2022/06/10). The old name now raises an error, not a warning.

585 \def\xintSignedFrac {\xintfracTeXError\xintSignedFrac\xintTeXsignedFrac}%

586 \def\xintTeXsignedFrac{\romannumeral0\xintsignedfrac }%

587 \def\xintsignedfrac #1%

588 {%

589 \expandafter\XINT_sgnfrac_a\romannumeral0\XINT_infrac {#1}%

590 }%

591 \def\XINT_sgnfrac_a #1#2%

592 {%

593 \XINT_sgnfrac_b #2\Z {#1}%

594 }%

595 \def\XINT_sgnfrac_b #1%

596 {%

597 \xint_UDsignfork

598 #1\XINT_sgnfrac_N

599 -{\XINT_sgnfrac_P #1}%

600 \krof

601 }%

602 \def\XINT_sgnfrac_P #1\Z #2%

603 {%

604 \XINT_fracfrac_A {#2}{#1}%

605 }%

606 \def\XINT_sgnfrac_N

607 {%

608 \expandafter-\romannumeral0\XINT_sgnfrac_P

609 }%

24.26. \xintTeXFromSci

Added at 1.4g (2021/05/25). The main problem is how to name this and related macros.

I use \expanded here, as \xintFracToSci is not f-expandable.

Some complications as I want this to be usable on output of \xintFracToSci hence need to handle

the case of a /B. After some hesitations I ended with the following which looks reasonable:

- if no scientific part, use \frac (or \over) for A/B

- if scientific part, postfix /B as \cdot B^{-1}

Modified at 1.4l (2022/05/29). Suppress external \expanded. Keep internal one.

Rename \xintTeXFromSci from \xintTeXfromSci. Keep deprecated old name for the moment.

Add \xintTeXFromScifracmacro. Make it \protected.

Nota bene: catcode of ^ is normal one here (else nothing would work).

610 \def\xintTeXfromSci{\xintfracTeXDeprecated\xintTeXfromSci\xintTeXFromSci}%

611 \def\xintTeXFromSci#1%

446

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

612 {%

613 \expandafter\XINT_texfromsci\expanded{#1}/\relax/\xint:

614 }%

615 \def\XINT_texfromsci #1/#2#3/#4\xint:

616 {%

617 \XINT_texfromsci_a #1e\relax e\xint:

618 {\ifx\relax#2\xint_dothis\xint_firstofone\fi

619 \xint_orthat{\xintTeXFromScifracmacro{#2#3}}}%

620 {\unless\ifx\relax#2\cdot{#2#3}^{-1}\fi}%

621 }%

622 \def\XINT_texfromsci_a #1e#2#3e#4\xint:#5#6%

623 {%

624 \ifx\relax#2#5{#1}\else#1\cdot10^{#2#3}#6\fi

625 }%

626 \ifdefined\frac

627 \protected\def\xintTeXFromScifracmacro#1#2{\frac{#2}{#1}}%

628 \else

629 \protected\def\xintTeXFromScifracmacro#1#2{{#2\over#1}}%

630 \fi

24.27. \xintTeXOver

Modified at 1.4g (2021/05/25). Renamed from \xintFwOver.

Modified at 1.4m (2022/06/10). The old name now raises an error, not a warning.

631 \def\xintFwOver {\xintfracTeXError\xintFwOver\xintTeXOver}%

632 \def\xintTeXOver{\romannumeral0\xintfwover }%

633 \def\xintfwover #1%

634 {%

635 \expandafter\XINT_fwover_A\romannumeral0\XINT_infrac {#1}%

636 }%

637 \def\XINT_fwover_A #1{\XINT_fwover_B #1\Z }%

638 \def\XINT_fwover_B #1#2\Z

639 {%

640 \xint_gob_til_zero #1\XINT_fwover_C 0\XINT_fwover_D {10^{#1#2}}%

641 }%

642 \catcode`^=11

643 \def\XINT_fwover_C #1#2#3#4#5%

644 {%

645 \if0\XINT_isOne {#5}\xint_afterfi { {#4\over #5}}%

646 \else\xint_afterfi { #4}%

647 \fi

648 }%

649 \def\XINT_fwover_D #1#2#3%

650 {%

651 \if0\XINT_isOne {#3}\xint_afterfi { {#2\over #3}}%

652 \else\xint_afterfi { #2\cdot }%

653 \fi

654 #1%

655 }%

447

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

24.28. \xintTeXsignedOver

Modified at 1.4g (2021/05/25). Renamed from \xintSignedFwOver.

Modified at 1.4m (2022/06/10). The old name now raises an error, not a warning.

656 \def\xintSignedFwOver {\xintfracTeXError\xintSignedFwOver\xintTeXsignedOver}%

657 \def\xintTeXsignedOver{\romannumeral0\xintsignedfwover }%

658 \def\xintsignedfwover #1%

659 {%

660 \expandafter\XINT_sgnfwover_a\romannumeral0\XINT_infrac {#1}%

661 }%

662 \def\XINT_sgnfwover_a #1#2%

663 {%

664 \XINT_sgnfwover_b #2\Z {#1}%

665 }%

666 \def\XINT_sgnfwover_b #1%

667 {%

668 \xint_UDsignfork

669 #1\XINT_sgnfwover_N

670 -{\XINT_sgnfwover_P #1}%

671 \krof

672 }%

673 \def\XINT_sgnfwover_P #1\Z #2%

674 {%

675 \XINT_fwover_A {#2}{#1}%

676 }%

677 \def\XINT_sgnfwover_N

678 {%

679 \expandafter-\romannumeral0\XINT_sgnfwover_P

680 }%

24.29. \xintREZ
Removes trailing zeros from A and B and adjust the N in A/B[N].

The macro really doing the job \XINT_factortens was redone at 1.3a. But speed gain really no-

ticeable only beyond about 100 digits.

681 \def\xintREZ {\romannumeral0\xintrez }%

682 \def\xintrez

683 {%

684 \expandafter\XINT_rez_A\romannumeral0\XINT_infrac

685 }%

686 \def\XINT_rez_A #1#2%

687 {%

688 \XINT_rez_AB #2\Z {#1}%

689 }%

690 \def\XINT_rez_AB #1%

691 {%

692 \xint_UDzerominusfork

693 #1-\XINT_rez_zero

694 0#1\XINT_rez_neg

695 0-{\XINT_rez_B #1}%

696 \krof

697 }%

448

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

698 \def\XINT_rez_zero #1\Z #2#3{ 0/1[0]}%

699 \def\XINT_rez_neg {\expandafter-\romannumeral0\XINT_rez_B }%

700 \def\XINT_rez_B #1\Z

701 {%

702 \expandafter\XINT_rez_C\romannumeral0\XINT_factortens {#1}%

703 }%

704 \def\XINT_rez_C #1.#2.#3#4%

705 {%

706 \expandafter\XINT_rez_D\romannumeral0\XINT_factortens {#4}#3+#2.#1.%

707 }%

708 \def\XINT_rez_D #1.#2.#3.%

709 {%

710 \expandafter\XINT_rez_E\the\numexpr #3-#2.#1.%

711 }%

712 \def\XINT_rez_E #1.#2.#3.{ #3/#2[#1]}%

24.30. \xintE

Added at 1.07 (2013/05/25). The fraction is the first argument contrarily to \xintTrunc and

\xintRound.

Modified at 1.1 (2014/10/28). 1.1 modifies and moves \xintiiE to xint.sty.

713 \def\xintE {\romannumeral0\xinte }%

714 \def\xinte #1%

715 {%

716 \expandafter\XINT_e \romannumeral0\XINT_infrac {#1}%

717 }%

718 \def\XINT_e #1#2#3#4%

719 {%

720 \expandafter\XINT_e_end\the\numexpr #1+#4.{#2}{#3}%

721 }%

722 \def\XINT_e_end #1.#2#3{ #2/#3[#1]}%

24.31. \xintIrr, \xintPIrr

Modified at 1.04 (2013/04/25). fixes a buggy \xintIrr {0}.

Modified at 1.05 (2013/05/01). modifies the initial parsing and post-processing to use \xintraw ⤸
withzeros and to more quickly deal with an input denominator equal to 1.

Modified at 1.08 (2013/06/07). this version does not remove a /1 denominator.

Modified at 1.3 (2018/03/01). added \xintPIrr (partial Irr, which ignores the decimal part).

723 \def\xintIrr {\romannumeral0\xintirr }%

724 \def\xintPIrr{\romannumeral0\xintpirr }%

725 \def\xintirr #1%

726 {%

727 \expandafter\XINT_irr_start\romannumeral0\xintrawwithzeros {#1}\Z

728 }%

729 \def\xintpirr #1%

730 {%

731 \expandafter\XINT_pirr_start\romannumeral0\xintraw{#1}%

732 }%

733 \def\XINT_irr_start #1#2/#3\Z

734 {%

449

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

735 \if0\XINT_isOne {#3}%

736 \xint_afterfi

737 {\xint_UDsignfork

738 #1\XINT_irr_negative

739 -{\XINT_irr_nonneg #1}%

740 \krof}%

741 \else

742 \xint_afterfi{\XINT_irr_denomisone #1}%

743 \fi

744 #2\Z {#3}%

745 }%

746 \def\XINT_pirr_start #1#2/#3[%

747 {%

748 \if0\XINT_isOne {#3}%

749 \xint_afterfi

750 {\xint_UDsignfork

751 #1\XINT_irr_negative

752 -{\XINT_irr_nonneg #1}%

753 \krof}%

754 \else

755 \xint_afterfi{\XINT_irr_denomisone #1}%

756 \fi

757 #2\Z {#3}[%

758 }%

759 \def\XINT_irr_denomisone #1\Z #2{ #1/1}% changed in 1.08

760 \def\XINT_irr_negative #1\Z #2{\XINT_irr_D #1\Z #2\Z -}%

761 \def\XINT_irr_nonneg #1\Z #2{\XINT_irr_D #1\Z #2\Z \space}%

762 \def\XINT_irr_D #1#2\Z #3#4\Z

763 {%

764 \xint_UDzerosfork

765 #3#1\XINT_irr_indeterminate

766 #30\XINT_irr_divisionbyzero

767 #10\XINT_irr_zero

768 00\XINT_irr_loop_a

769 \krof

770 {#3#4}{#1#2}{#3#4}{#1#2}%

771 }%

772 \def\XINT_irr_indeterminate #1#2#3#4#5%

773 {%

774 \XINT_signalcondition{DivisionUndefined}{0/0 indeterminate fraction.}{}{ 0/1}%

775 }%

776 \def\XINT_irr_divisionbyzero #1#2#3#4#5%

777 {%

778 \XINT_signalcondition{DivisionByZero}{Division by zero: #5#2/0.}{}{ 0/1}%

779 }%

780 \def\XINT_irr_zero #1#2#3#4#5{ 0/1}% changed in 1.08

781 \def\XINT_irr_loop_a #1#2%

782 {%

783 \expandafter\XINT_irr_loop_d

784 \romannumeral0\XINT_div_prepare {#1}{#2}{#1}%

785 }%

786 \def\XINT_irr_loop_d #1#2%

450

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

787 {%

788 \XINT_irr_loop_e #2\Z

789 }%

790 \def\XINT_irr_loop_e #1#2\Z

791 {%

792 \xint_gob_til_zero #1\XINT_irr_loop_exit0\XINT_irr_loop_a {#1#2}%

793 }%

794 \def\XINT_irr_loop_exit0\XINT_irr_loop_a #1#2#3#4%

795 {%

796 \expandafter\XINT_irr_loop_exitb\expandafter

797 {\romannumeral0\xintiiquo {#3}{#2}}%

798 {\romannumeral0\xintiiquo {#4}{#2}}%

799 }%

800 \def\XINT_irr_loop_exitb #1#2%

801 {%

802 \expandafter\XINT_irr_finish\expandafter {#2}{#1}%

803 }%

804 \def\XINT_irr_finish #1#2#3{#3#1/#2}% changed in 1.08

24.32. \xintifInt
805 \def\xintifInt {\romannumeral0\xintifint }%

806 \def\xintifint #1{\expandafter\XINT_ifint\romannumeral0\xintrawwithzeros {#1}.}%

807 \def\XINT_ifint #1/#2.%

808 {%

809 \if 0\xintiiRem {#1}{#2}%

810 \expandafter\xint_stop_atfirstoftwo

811 \else

812 \expandafter\xint_stop_atsecondoftwo

813 \fi

814 }%

24.33. \xintIsInt
Added at 1.3d only, for isint() xintexpr function.

815 \def\xintIsInt {\romannumeral0\xintisint }%

816 \def\xintisint #1%

817 {\expandafter\XINT_ifint\romannumeral0\xintrawwithzeros {#1}.10}%

24.34. \xintJrr
818 \def\xintJrr {\romannumeral0\xintjrr }%

819 \def\xintjrr #1%

820 {%

821 \expandafter\XINT_jrr_start\romannumeral0\xintrawwithzeros {#1}\Z

822 }%

823 \def\XINT_jrr_start #1#2/#3\Z

824 {%

825 \if0\XINT_isOne {#3}\xint_afterfi

826 {\xint_UDsignfork

827 #1\XINT_jrr_negative

828 -{\XINT_jrr_nonneg #1}%

829 \krof}%

451

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

830 \else

831 \xint_afterfi{\XINT_jrr_denomisone #1}%

832 \fi

833 #2\Z {#3}%

834 }%

835 \def\XINT_jrr_denomisone #1\Z #2{ #1/1}% changed in 1.08

836 \def\XINT_jrr_negative #1\Z #2{\XINT_jrr_D #1\Z #2\Z -}%

837 \def\XINT_jrr_nonneg #1\Z #2{\XINT_jrr_D #1\Z #2\Z \space}%

838 \def\XINT_jrr_D #1#2\Z #3#4\Z

839 {%

840 \xint_UDzerosfork

841 #3#1\XINT_jrr_indeterminate

842 #30\XINT_jrr_divisionbyzero

843 #10\XINT_jrr_zero

844 00\XINT_jrr_loop_a

845 \krof

846 {#3#4}{#1#2}1001%

847 }%

848 \def\XINT_jrr_indeterminate #1#2#3#4#5#6#7%

849 {%

850 \XINT_signalcondition{DivisionUndefined}{0/0 indeterminate fraction.}{}{ 0/1}%

851 }%

852 \def\XINT_jrr_divisionbyzero #1#2#3#4#5#6#7%

853 {%

854 \XINT_signalcondition{DivisionByZero}{Division by zero: #7#2/0.}{}{ 0/1}%

855 }%

856 \def\XINT_jrr_zero #1#2#3#4#5#6#7{ 0/1}% changed in 1.08

857 \def\XINT_jrr_loop_a #1#2%

858 {%

859 \expandafter\XINT_jrr_loop_b

860 \romannumeral0\XINT_div_prepare {#1}{#2}{#1}%

861 }%

862 \def\XINT_jrr_loop_b #1#2#3#4#5#6#7%

863 {%

864 \expandafter \XINT_jrr_loop_c \expandafter

865 {\romannumeral0\xintiiadd{\XINT_mul_fork #4\xint:#1\xint:}{#6}}%

866 {\romannumeral0\xintiiadd{\XINT_mul_fork #5\xint:#1\xint:}{#7}}%

867 {#2}{#3}{#4}{#5}%

868 }%

869 \def\XINT_jrr_loop_c #1#2%

870 {%

871 \expandafter \XINT_jrr_loop_d \expandafter{#2}{#1}%

872 }%

873 \def\XINT_jrr_loop_d #1#2#3#4%

874 {%

875 \XINT_jrr_loop_e #3\Z {#4}{#2}{#1}%

876 }%

877 \def\XINT_jrr_loop_e #1#2\Z

878 {%

879 \xint_gob_til_zero #1\XINT_jrr_loop_exit0\XINT_jrr_loop_a {#1#2}%

880 }%

881 \def\XINT_jrr_loop_exit0\XINT_jrr_loop_a #1#2#3#4#5#6%

452

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

882 {%

883 \XINT_irr_finish {#3}{#4}%

884 }%

24.35. \xintTFrac

Added at 1.09i (2013/12/18). For frac in \xintexpr. And \xintFrac is already assigned. T for

truncation. However, potentially not very efficient with numbers in scientific notations, with

big exponents. Will have to think it again some day. I hesitated how to call the macro. Same

convention as in maple, but some people reserve fractional part to x - floor(x). Also, not clear

if I had to make it negative (or zero) if x < 0, or rather always positive. There should be in

fact such a thing for each rounding function, trunc, round, floor, ceil.

885 \def\xintTFrac {\romannumeral0\xinttfrac }%

886 \def\xinttfrac #1{\expandafter\XINT_tfrac_fork\romannumeral0\xintrawwithzeros {#1}\Z }%

887 \def\XINT_tfrac_fork #1%

888 {%

889 \xint_UDzerominusfork

890 #1-\XINT_tfrac_zero

891 0#1{\xintiiopp\XINT_tfrac_P }%

892 0-{\XINT_tfrac_P #1}%

893 \krof

894 }%

895 \def\XINT_tfrac_zero #1\Z { 0/1[0]}%

896 \def\XINT_tfrac_P #1/#2\Z {\expandafter\XINT_rez_AB

897 \romannumeral0\xintiirem{#1}{#2}\Z {0}{#2}}%

24.36. \xintTrunc, \xintiTrunc
This of course has a long history. Only showing here some comments.

Modified at 1.2i (2016/12/13). 1.2i release notes: ever since its inception this macro was stupid

for a decimal input: it did not handle it separately from the general fraction case A/B[N] with

B>1, hence ended up doing divisions by powers of ten. But this meant that nesting \xintTrunc

with itself was very inefficient.

1.2i version is better. However it still handles B>1, N<0 via adding zeros to B and dividing

with this extended B. A possibly more efficient approach is implemented in \xintXTrunc, but its

logic is more complicated, the code is quite longer and making it f-expandable would not shorten

it... I decided for the time being to not complicate things here.

Modified at 1.4a (2020/02/19).
Adds handling of a negative first argument.

Zero input still gives single digit 0 output as I did not want to complicate the code. But if

quantization gives 0, the exponent [D] will be there. Well actually eD because of problem that

sign of original is preserved in output so we can have -0 and I can not use -0[D] notation as it

is not legal for strict format. So I will use -0eD hence eD generally even though this means so

slight suboptimality for trunc() function in \xintexpr.

The idea to give a meaning to negative D (in the context of optional argument to \xintiexpr) was

suggested a long time ago by Kpym (October 20, 2015). His suggestion was then to treat it as posi-

tive D but trim trailing zeroes. But since then, there is \xintDecToString which can be combined

with \xintREZ, and I feel matters of formatting output require a whole module (or rather use ex-

isting third-party tools), and I decided to opt rather for an operation similar as the quantize()

of Python Decimal module. I.e. we truncate (or round) to an integer multiple of a given power of

10.

453

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Other reason to decide to do this is that it looks as if I don't even need to understand the

original code to hack into its ending via \XINT_trunc_G or \XINT_itrunc_G. For the latter it looks

as if logically I simply have to do nothing. For the former I simply have to add some eD postfix.

898 \def\xintTrunc {\romannumeral0\xinttrunc }%

899 \def\xintiTrunc {\romannumeral0\xintitrunc}%

900 \def\xinttrunc #1{\expandafter\XINT_trunc\the\numexpr#1.\XINT_trunc_G}%

901 \def\xintitrunc #1{\expandafter\XINT_trunc\the\numexpr#1.\XINT_itrunc_G}%

902 \def\XINT_trunc #1.#2#3%

903 {%

904 \expandafter\XINT_trunc_a\romannumeral0\XINT_infrac{#3}#1.#2%

905 }%

906 \def\XINT_trunc_a #1#2#3#4.#5%

907 {%

908 \if0\XINT_Sgn#2\xint:\xint_dothis\XINT_trunc_zero\fi

909 \if1\XINT_is_One#3XY\xint_dothis\XINT_trunc_sp_b\fi

910 \xint_orthat\XINT_trunc_b #1+#4.{#2}{#3}#5#4.%

911 }%

912 \def\XINT_trunc_zero #1.#2.{ 0}%

913 \def\XINT_trunc_b {\expandafter\XINT_trunc_B\the\numexpr}%

914 \def\XINT_trunc_sp_b {\expandafter\XINT_trunc_sp_B\the\numexpr}%

915 \def\XINT_trunc_B #1%

916 {%

917 \xint_UDsignfork

918 #1\XINT_trunc_C

919 -\XINT_trunc_D

920 \krof #1%

921 }%

922 \def\XINT_trunc_sp_B #1%

923 {%

924 \xint_UDsignfork

925 #1\XINT_trunc_sp_C

926 -\XINT_trunc_sp_D

927 \krof #1%

928 }%

929 \def\XINT_trunc_C -#1.#2#3%

930 {%

931 \expandafter\XINT_trunc_CE

932 \romannumeral0\XINT_dsx_addzeros{#1}#3;.{#2}%

933 }%

934 \def\XINT_trunc_CE #1.#2{\XINT_trunc_E #2.{#1}}%

935 \def\XINT_trunc_sp_C -#1.#2#3{\XINT_trunc_sp_Ca #2.#1.}%

936 \def\XINT_trunc_sp_Ca #1%

937 {%

938 \xint_UDsignfork

939 #1{\XINT_trunc_sp_Cb -}%

940 -{\XINT_trunc_sp_Cb \space#1}%

941 \krof

942 }%

943 \def\XINT_trunc_sp_Cb #1#2.#3.%

944 {%

945 \expandafter\XINT_trunc_sp_Cc

946 \romannumeral0\expandafter\XINT_split_fromright_a

454

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

947 \the\numexpr#3-\numexpr\XINT_length_loop

948 #2\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:\xint:

949 \xint_c_viii\xint_c_vii\xint_c_vi\xint_c_v

950 \xint_c_iv\xint_c_iii\xint_c_ii\xint_c_i\xint_c_\xint_bye

951 .#2\xint_bye2345678\xint_bye..#1%

952 }%

953 \def\XINT_trunc_sp_Cc #1%

954 {%

955 \if.#1\xint_dothis{\XINT_trunc_sp_Cd 0.}\fi

956 \xint_orthat {\XINT_trunc_sp_Cd #1}%

957 }%

958 \def\XINT_trunc_sp_Cd #1.#2.#3%

959 {%

960 \XINT_trunc_sp_F #3#1.%

961 }%

962 \def\XINT_trunc_D #1.#2%

963 {%

964 \expandafter\XINT_trunc_E

965 \romannumeral0\XINT_dsx_addzeros {#1}#2;.%

966 }%

967 \def\XINT_trunc_sp_D #1.#2#3%

968 {%

969 \expandafter\XINT_trunc_sp_E

970 \romannumeral0\XINT_dsx_addzeros {#1}#2;.%

971 }%

972 \def\XINT_trunc_E #1%

973 {%

974 \xint_UDsignfork

975 #1{\XINT_trunc_F -}%

976 -{\XINT_trunc_F \space#1}%

977 \krof

978 }%

979 \def\XINT_trunc_sp_E #1%

980 {%

981 \xint_UDsignfork

982 #1{\XINT_trunc_sp_F -}%

983 -{\XINT_trunc_sp_F\space#1}%

984 \krof

985 }%

986 \def\XINT_trunc_F #1#2.#3#4%

987 {\expandafter#4\romannumeral`&&@\expandafter\xint_firstoftwo

988 \romannumeral0\XINT_div_prepare {#3}{#2}.#1}%

989 \def\XINT_trunc_sp_F #1#2.#3{#3#2.#1}%

990 \def\XINT_itrunc_G #1#2.#3#4.%

991 {%

992 \if#10\xint_dothis{ 0}\fi

993 \xint_orthat{#3#1}#2%

994 }%

995 \def\XINT_trunc_G #1.#2#3#4.%

996 {%

997 \xint_gob_til_minus#3\XINT_trunc_Hc-%

998 \expandafter\XINT_trunc_H

455

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

999 \the\numexpr\romannumeral0\xintlength {#1}-#3#4.#3#4.{#1}#2%

1000 }%

1001 \def\XINT_trunc_Hc-\expandafter\XINT_trunc_H

1002 \the\numexpr\romannumeral0\xintlength #1.-#2.#3#4{#4#3e#2}%

1003 \def\XINT_trunc_H #1.#2.%

1004 {%

1005 \ifnum #1 > \xint_c_ \xint_dothis{\XINT_trunc_Ha {#2}}\fi

1006 \xint_orthat {\XINT_trunc_Hb {-#1}}% -0,--1,--2,

1007 }%

1008 \def\XINT_trunc_Ha%

1009 {%

1010 \expandafter\XINT_trunc_Haa\romannumeral0\xintdecsplit

1011 }%

1012 \def\XINT_trunc_Haa #1#2#3{#3#1.#2}%

1013 \def\XINT_trunc_Hb #1#2#3%

1014 {%

1015 \expandafter #3\expandafter0\expandafter.%

1016 \romannumeral\xintreplicate{#1}0#2%

1017 }%

24.37. \xintTTrunc

Added at 1.1 (2014/10/28).

1018 \def\xintTTrunc {\romannumeral0\xintttrunc }%

1019 \def\xintttrunc {\xintitrunc\xint_c_}%

24.38. \xintNum, \xintnum
1020 \let\xintnum \xintttrunc

24.39. \xintRound, \xintiRound
Modified in 1.2i.

It benefits first of all from the faster \xintTrunc, particularly when the input is already a

decimal number (denominator B=1).

And the rounding is now done in 1.2 style (with much delay, sorry), like of the rewritten \xintInc

and \xintDec.

At 1.4a, first argument can be negative. This is handled at \XINT_trunc_G.

1021 \def\xintRound {\romannumeral0\xintround }%

1022 \def\xintiRound {\romannumeral0\xintiround }%

1023 \def\xintround #1{\expandafter\XINT_round\the\numexpr #1.\XINT_round_A}%

1024 \def\xintiround #1{\expandafter\XINT_round\the\numexpr #1.\XINT_iround_A}%

1025 \def\XINT_round #1.{\expandafter\XINT_round_aa\the\numexpr #1+\xint_c_i.#1.}%

1026 \def\XINT_round_aa #1.#2.#3#4%

1027 {%

1028 \expandafter\XINT_round_a\romannumeral0\XINT_infrac{#4}#1.#3#2.%

1029 }%

1030 \def\XINT_round_a #1#2#3#4.%

1031 {%

1032 \if0\XINT_Sgn#2\xint:\xint_dothis\XINT_trunc_zero\fi

1033 \if1\XINT_is_One#3XY\xint_dothis\XINT_trunc_sp_b\fi

1034 \xint_orthat\XINT_trunc_b #1+#4.{#2}{#3}%

456

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1035 }%

1036 \def\XINT_round_A{\expandafter\XINT_trunc_G\romannumeral0\XINT_round_B}%

1037 \def\XINT_iround_A{\expandafter\XINT_itrunc_G\romannumeral0\XINT_round_B}%

1038 \def\XINT_round_B #1.%

1039 {\XINT_dsrr #1\xint_bye\xint_Bye3456789\xint_bye/\xint_c_x\relax.}%

24.40. \xintXTrunc

Added at 1.09j (2014/01/09) [on 2014/01/06]. This is completely expandable but not f-expandable.

Modified at 1.2i (2016/12/13). Rewritten:

- no more use of \xintiloop from xinttools.sty (replaced by \xintreplicate... from xintker-

nel.sty),

- no more use in 0>N>-D case of a dummy control sequence name via \csname...\endcsname

- handles better the case of an input already a decimal number

1040 \def\xintXTrunc #1%#2%

1041 {%

1042 \expandafter\XINT_xtrunc_a

1043 \the\numexpr #1\expandafter.\romannumeral0\xintraw

1044 }%

1045 \def\XINT_xtrunc_a #1.% ?? faire autre chose

1046 {%

1047 \expandafter\XINT_xtrunc_b\the\numexpr\ifnum#1<\xint_c_i \xint_c_i-\fi #1.%

1048 }%

1049 \def\XINT_xtrunc_b #1.#2{\XINT_xtrunc_c #2{#1}}%

1050 \def\XINT_xtrunc_c #1%

1051 {%

1052 \xint_UDzerominusfork

1053 #1-\XINT_xtrunc_zero

1054 0#1{-\XINT_xtrunc_d {}}%

1055 0-{\XINT_xtrunc_d #1}%

1056 \krof

1057 }%[

1058 \def\XINT_xtrunc_zero #1#2]{0.\romannumeral\xintreplicate{#1}0}%

1059 \def\XINT_xtrunc_d #1#2#3/#4[#5]%

1060 {%

1061 \XINT_xtrunc_prepare_a#4\R\R\R\R\R\R\R\R {10}0000001\W

1062 !{#4};{#5}{#2}{#1#3}%

1063 }%

1064 \def\XINT_xtrunc_prepare_a #1#2#3#4#5#6#7#8#9%

1065 {%

1066 \xint_gob_til_R #9\XINT_xtrunc_prepare_small\R

1067 \XINT_xtrunc_prepare_b #9%

1068 }%

1069 \def\XINT_xtrunc_prepare_small\R #1!#2;%

1070 {%

1071 \ifcase #2

1072 \or\expandafter\XINT_xtrunc_BisOne

1073 \or\expandafter\XINT_xtrunc_BisTwo

1074 \or

1075 \or\expandafter\XINT_xtrunc_BisFour

1076 \or\expandafter\XINT_xtrunc_BisFive

1077 \or

457

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1078 \or

1079 \or\expandafter\XINT_xtrunc_BisEight

1080 \fi\XINT_xtrunc_BisSmall {#2}%

1081 }%

1082 \def\XINT_xtrunc_BisOne\XINT_xtrunc_BisSmall #1#2#3#4%

1083 {\XINT_xtrunc_sp_e {#2}{#4}{#3}}%

1084 \def\XINT_xtrunc_BisTwo\XINT_xtrunc_BisSmall #1#2#3#4%

1085 {%

1086 \expandafter\XINT_xtrunc_sp_e\expandafter

1087 {\the\numexpr #2-\xint_c_i\expandafter}\expandafter

1088 {\romannumeral0\xintiimul 5{#4}}{#3}%

1089 }%

1090 \def\XINT_xtrunc_BisFour\XINT_xtrunc_BisSmall #1#2#3#4%

1091 {%

1092 \expandafter\XINT_xtrunc_sp_e\expandafter

1093 {\the\numexpr #2-\xint_c_ii\expandafter}\expandafter

1094 {\romannumeral0\xintiimul {25}{#4}}{#3}%

1095 }%

1096 \def\XINT_xtrunc_BisFive\XINT_xtrunc_BisSmall #1#2#3#4%

1097 {%

1098 \expandafter\XINT_xtrunc_sp_e\expandafter

1099 {\the\numexpr #2-\xint_c_i\expandafter}\expandafter

1100 {\romannumeral0\xintdouble {#4}}{#3}%

1101 }%

1102 \def\XINT_xtrunc_BisEight\XINT_xtrunc_BisSmall #1#2#3#4%

1103 {%

1104 \expandafter\XINT_xtrunc_sp_e\expandafter

1105 {\the\numexpr #2-\xint_c_iii\expandafter}\expandafter

1106 {\romannumeral0\xintiimul {125}{#4}}{#3}%

1107 }%

1108 \def\XINT_xtrunc_BisSmall #1%

1109 {%

1110 \expandafter\XINT_xtrunc_e\expandafter

1111 {\expandafter\XINT_xtrunc_small_a

1112 \the\numexpr #1/\xint_c_ii\expandafter

1113 .\the\numexpr \xint_c_x^viii+#1!}%

1114 }%

1115 \def\XINT_xtrunc_small_a #1.#2!#3%

1116 {%

1117 \expandafter\XINT_div_small_b\the\numexpr #1\expandafter

1118 \xint:\the\numexpr #2\expandafter!%

1119 \romannumeral0\XINT_div_small_ba #3\R\R\R\R\R\R\R\R{10}0000001\W

1120 #3\XINT_sepbyviii_Z_end 2345678\relax

1121 }%

1122 \def\XINT_xtrunc_prepare_b

1123 {\expandafter\XINT_xtrunc_prepare_c\romannumeral0\XINT_zeroes_forviii }%

1124 \def\XINT_xtrunc_prepare_c #1!%

1125 {%

1126 \XINT_xtrunc_prepare_d #1.00000000!{#1}%

1127 }%

1128 \def\XINT_xtrunc_prepare_d #1#2#3#4#5#6#7#8#9%

1129 {%

458

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1130 \expandafter\XINT_xtrunc_prepare_e

1131 \xint_gob_til_dot #1#2#3#4#5#6#7#8#9!%

1132 }%

1133 \def\XINT_xtrunc_prepare_e #1!#2!#3#4%

1134 {%

1135 \XINT_xtrunc_prepare_f #4#3\X {#1}{#3}%

1136 }%

1137 \def\XINT_xtrunc_prepare_f #1#2#3#4#5#6#7#8#9\X

1138 {%

1139 \expandafter\XINT_xtrunc_prepare_g\expandafter

1140 \XINT_div_prepare_g

1141 \the\numexpr #1#2#3#4#5#6#7#8+\xint_c_i\expandafter

1142 \xint:\the\numexpr (#1#2#3#4#5#6#7#8+\xint_c_i)/\xint_c_ii\expandafter

1143 \xint:\the\numexpr #1#2#3#4#5#6#7#8\expandafter

1144 \xint:\romannumeral0\XINT_sepandrev_andcount

1145 #1#2#3#4#5#6#7#8#9\XINT_rsepbyviii_end_A 2345678%

1146 \XINT_rsepbyviii_end_B 2345678\relax\xint_c_ii\xint_c_i

1147 \R\xint:\xint_c_xii \R\xint:\xint_c_x \R\xint:\xint_c_viii \R\xint:\xint_c_vi

1148 \R\xint:\xint_c_iv \R\xint:\xint_c_ii \R\xint:\xint_c_\W

1149 \X

1150 }%

1151 \def\XINT_xtrunc_prepare_g #1;{\XINT_xtrunc_e {#1}}%

1152 \def\XINT_xtrunc_e #1#2%

1153 {%

1154 \ifnum #2<\xint_c_

1155 \expandafter\XINT_xtrunc_I

1156 \else

1157 \expandafter\XINT_xtrunc_II

1158 \fi #2\xint:{#1}%

1159 }%

1160 \def\XINT_xtrunc_I -#1\xint:#2#3#4%

1161 {%

1162 \expandafter\XINT_xtrunc_I_a\romannumeral0#2{#4}{#2}{#1}{#3}%

1163 }%

1164 \def\XINT_xtrunc_I_a #1#2#3#4#5%

1165 {%

1166 \expandafter\XINT_xtrunc_I_b\the\numexpr #4-#5\xint:#4\xint:{#5}{#2}{#3}{#1}%

1167 }%

1168 \def\XINT_xtrunc_I_b #1%

1169 {%

1170 \xint_UDsignfork

1171 #1\XINT_xtrunc_IA_c

1172 -\XINT_xtrunc_IB_c

1173 \krof #1%

1174 }%

1175 \def\XINT_xtrunc_IA_c -#1\xint:#2\xint:#3#4#5#6%

1176 {%

1177 \expandafter\XINT_xtrunc_IA_d

1178 \the\numexpr#2-\xintLength{#6}\xint:{#6}%

1179 \expandafter\XINT_xtrunc_IA_xd

1180 \the\numexpr (#1+\xint_c_ii^v)/\xint_c_ii^vi-\xint_c_i\xint:#1\xint:{#5}{#4}%

1181 }%

459

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1182 \def\XINT_xtrunc_IA_d #1%

1183 {%

1184 \xint_UDsignfork

1185 #1\XINT_xtrunc_IAA_e

1186 -\XINT_xtrunc_IAB_e

1187 \krof #1%

1188 }%

1189 \def\XINT_xtrunc_IAA_e -#1\xint:#2%

1190 {%

1191 \romannumeral0\XINT_split_fromleft

1192 #1.#2\xint_gobble_i\xint_bye2345678\xint_bye..%

1193 }%

1194 \def\XINT_xtrunc_IAB_e #1\xint:#2%

1195 {%

1196 0.\romannumeral\XINT_rep#1\endcsname0#2%

1197 }%

1198 \def\XINT_xtrunc_IA_xd #1\xint:#2\xint:%

1199 {%

1200 \expandafter\XINT_xtrunc_IA_xe\the\numexpr #2-\xint_c_ii^vi*#1\xint:#1\xint:%

1201 }%

1202 \def\XINT_xtrunc_IA_xe #1\xint:#2\xint:#3#4%

1203 {%

1204 \XINT_xtrunc_loop {#2}{#4}{#3}{#1}%

1205 }%

1206 \def\XINT_xtrunc_IB_c #1\xint:#2\xint:#3#4#5#6%

1207 {%

1208 \expandafter\XINT_xtrunc_IB_d

1209 \romannumeral0\XINT_split_xfork #1.#6\xint_bye2345678\xint_bye..{#3}%

1210 }%

1211 \def\XINT_xtrunc_IB_d #1.#2.#3%

1212 {%

1213 \expandafter\XINT_xtrunc_IA_d\the\numexpr#3-\xintLength {#1}\xint:{#1}%

1214 }%

1215 \def\XINT_xtrunc_II #1\xint:%

1216 {%

1217 \expandafter\XINT_xtrunc_II_a\romannumeral\xintreplicate{#1}0\xint:%

1218 }%

1219 \def\XINT_xtrunc_II_a #1\xint:#2#3#4%

1220 {%

1221 \expandafter\XINT_xtrunc_II_b

1222 \the\numexpr (#3+\xint_c_ii^v)/\xint_c_ii^vi-\xint_c_i\expandafter\xint:%

1223 \the\numexpr #3\expandafter\xint:\romannumeral0#2{#4#1}{#2}%

1224 }%

1225 \def\XINT_xtrunc_II_b #1\xint:#2\xint:%

1226 {%

1227 \expandafter\XINT_xtrunc_II_c\the\numexpr #2-\xint_c_ii^vi*#1\xint:#1\xint:%

1228 }%

1229 \def\XINT_xtrunc_II_c #1\xint:#2\xint:#3#4#5%

1230 {%

1231 #3.\XINT_xtrunc_loop {#2}{#4}{#5}{#1}%

1232 }%

1233 \def\XINT_xtrunc_loop #1%

460

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1234 {%

1235 \ifnum #1=\xint_c_ \expandafter\XINT_xtrunc_transition\fi

1236 \expandafter\XINT_xtrunc_loop_a\the\numexpr #1-\xint_c_i\xint:%

1237 }%

1238 \def\XINT_xtrunc_loop_a #1\xint:#2#3%

1239 {%

1240 \expandafter\XINT_xtrunc_loop_b\romannumeral0#3%

1241 {#200}%

1242 {#1}{#3}%

1243 }%

1244 \def\XINT_xtrunc_loop_b #1#2#3%

1245 {%

1246 \romannumeral\xintreplicate{\xint_c_ii^vi-\xintLength{#1}}0#1%

1247 \XINT_xtrunc_loop {#3}{#2}%

1248 }%

1249 \def\XINT_xtrunc_transition

1250 \expandafter\XINT_xtrunc_loop_a\the\numexpr #1\xint:#2#3#4%

1251 {%

1252 \ifnum #4=\xint_c_ \expandafter\xint_gobble_vi\fi

1253 \expandafter\XINT_xtrunc_finish\expandafter

1254 {\romannumeral0\XINT_dsx_addzeros{#4}#2;}{#3}{#4}%

1255 }%

1256 \def\XINT_xtrunc_finish #1#2%

1257 {%

1258 \expandafter\XINT_xtrunc_finish_a\romannumeral0#2{#1}%

1259 }%

1260 \def\XINT_xtrunc_finish_a #1#2#3%

1261 {%

1262 \romannumeral\xintreplicate{#3-\xintLength{#1}}0#1%

1263 }%

1264 \def\XINT_xtrunc_sp_e #1%

1265 {%

1266 \ifnum #1<\xint_c_

1267 \expandafter\XINT_xtrunc_sp_I

1268 \else

1269 \expandafter\XINT_xtrunc_sp_II

1270 \fi #1\xint:%

1271 }%

1272 \def\XINT_xtrunc_sp_I -#1\xint:#2#3%

1273 {%

1274 \expandafter\XINT_xtrunc_sp_I_a\the\numexpr #1-#3\xint:#1\xint:{#3}{#2}%

1275 }%

1276 \def\XINT_xtrunc_sp_I_a #1%

1277 {%

1278 \xint_UDsignfork

1279 #1\XINT_xtrunc_sp_IA_b

1280 -\XINT_xtrunc_sp_IB_b

1281 \krof #1%

1282 }%

1283 \def\XINT_xtrunc_sp_IA_b -#1\xint:#2\xint:#3#4%

1284 {%

1285 \expandafter\XINT_xtrunc_sp_IA_c

461

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1286 \the\numexpr#2-\xintLength{#4}\xint:{#4}\romannumeral\XINT_rep#1\endcsname0%

1287 }%

1288 \def\XINT_xtrunc_sp_IA_c #1%

1289 {%

1290 \xint_UDsignfork

1291 #1\XINT_xtrunc_sp_IAA

1292 -\XINT_xtrunc_sp_IAB

1293 \krof #1%

1294 }%

1295 \def\XINT_xtrunc_sp_IAA -#1\xint:#2%

1296 {%

1297 \romannumeral0\XINT_split_fromleft

1298 #1.#2\xint_gobble_i\xint_bye2345678\xint_bye..%

1299 }%

1300 \def\XINT_xtrunc_sp_IAB #1\xint:#2%

1301 {%

1302 0.\romannumeral\XINT_rep#1\endcsname0#2%

1303 }%

1304 \def\XINT_xtrunc_sp_IB_b #1\xint:#2\xint:#3#4%

1305 {%

1306 \expandafter\XINT_xtrunc_sp_IB_c

1307 \romannumeral0\XINT_split_xfork #1.#4\xint_bye2345678\xint_bye..{#3}%

1308 }%

1309 \def\XINT_xtrunc_sp_IB_c #1.#2.#3%

1310 {%

1311 \expandafter\XINT_xtrunc_sp_IA_c\the\numexpr#3-\xintLength {#1}\xint:{#1}%

1312 }%

1313 \def\XINT_xtrunc_sp_II #1\xint:#2#3%

1314 {%

1315 #2\romannumeral\XINT_rep#1\endcsname0.\romannumeral\XINT_rep#3\endcsname0%

1316 }%

24.41. \xintAdd

Modified at 1.3 (2018/03/01). Big change at 1.3: a/b+c/d uses lcm(b,d) as denominator.

1317 \def\xintAdd {\romannumeral0\xintadd }%

1318 \def\xintadd #1{\expandafter\XINT_fadd\romannumeral0\xintraw {#1}}%

1319 \def\XINT_fadd #1{\xint_gob_til_zero #1\XINT_fadd_Azero 0\XINT_fadd_a #1}%

1320 \def\XINT_fadd_Azero #1]{\xintraw }%

1321 \def\XINT_fadd_a #1/#2[#3]#4%

1322 {\expandafter\XINT_fadd_b\romannumeral0\xintraw {#4}{#3}{#1}{#2}}%

1323 \def\XINT_fadd_b #1{\xint_gob_til_zero #1\XINT_fadd_Bzero 0\XINT_fadd_c #1}%

1324 \def\XINT_fadd_Bzero #1]#2#3#4{ #3/#4[#2]}%

1325 \def\XINT_fadd_c #1/#2[#3]#4%

1326 {%

1327 \expandafter\XINT_fadd_Aa\the\numexpr #4-#3.{#3}{#4}{#1}{#2}%

1328 }%

1329 \def\XINT_fadd_Aa #1%

1330 {%

1331 \xint_UDzerominusfork

1332 #1-\XINT_fadd_B

1333 0#1\XINT_fadd_Bb

462

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1334 0-\XINT_fadd_Ba

1335 \krof #1%

1336 }%

1337 \def\XINT_fadd_B #1.#2#3#4#5#6#7{\XINT_fadd_C {#4}{#5}{#7}{#6}[#3]}%

1338 \def\XINT_fadd_Ba #1.#2#3#4#5#6#7%

1339 {%

1340 \expandafter\XINT_fadd_C\expandafter

1341 {\romannumeral0\XINT_dsx_addzeros {#1}#6;}%

1342 {#7}{#5}{#4}[#2]%

1343 }%

1344 \def\XINT_fadd_Bb -#1.#2#3#4#5#6#7%

1345 {%

1346 \expandafter\XINT_fadd_C\expandafter

1347 {\romannumeral0\XINT_dsx_addzeros {#1}#4;}%

1348 {#5}{#7}{#6}[#3]%

1349 }%

1350 \def\XINT_fadd_iszero #1[#2]{ 0/1[0]}% ou [#2] originel?

1351 \def\XINT_fadd_C #1#2#3%

1352 {%

1353 \expandafter\XINT_fadd_D_b

1354 \romannumeral0\XINT_div_prepare{#2}{#3}{#2}{#2}{#3}{#1}%

1355 }%

Basically a clone of the \XINT_irr_loop_a loop. I should modify the output of \XINT_div_prepare

perhaps to be optimized for checking if remainder vanishes.

1356 \def\XINT_fadd_D_a #1#2%

1357 {%

1358 \expandafter\XINT_fadd_D_b

1359 \romannumeral0\XINT_div_prepare {#1}{#2}{#1}%

1360 }%

1361 \def\XINT_fadd_D_b #1#2{\XINT_fadd_D_c #2\Z}%

1362 \def\XINT_fadd_D_c #1#2\Z

1363 {%

1364 \xint_gob_til_zero #1\XINT_fadd_D_exit0\XINT_fadd_D_a {#1#2}%

1365 }%

1366 \def\XINT_fadd_D_exit0\XINT_fadd_D_a #1#2#3%

1367 {%

1368 \expandafter\XINT_fadd_E

1369 \romannumeral0\xintiiquo {#3}{#2}.{#2}%

1370 }%

1371 \def\XINT_fadd_E #1.#2#3%

1372 {%

1373 \expandafter\XINT_fadd_F

1374 \romannumeral0\xintiimul{#1}{#3}.{\xintiiQuo{#3}{#2}}{#1}%

1375 }%

1376 \def\XINT_fadd_F #1.#2#3#4#5%

1377 {%

1378 \expandafter\XINT_fadd_G

1379 \romannumeral0\xintiiadd{\xintiiMul{#2}{#4}}{\xintiiMul{#3}{#5}}/#1%

1380 }%

1381 \def\XINT_fadd_G #1{%

1382 \def\XINT_fadd_G ##1{\if0##1\expandafter\XINT_fadd_iszero\fi#1##1}%

1383 }\XINT_fadd_G{ }%

463

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

24.42. \xintSub

Modified at 1.3 (2018/03/01). Since 1.3 will use least common multiple of denominators.

1384 \def\xintSub {\romannumeral0\xintsub }%

1385 \def\xintsub #1{\expandafter\XINT_fsub\romannumeral0\xintraw {#1}}%

1386 \def\XINT_fsub #1{\xint_gob_til_zero #1\XINT_fsub_Azero 0\XINT_fsub_a #1}%

1387 \def\XINT_fsub_Azero #1]{\xintopp }%

1388 \def\XINT_fsub_a #1/#2[#3]#4%

1389 {\expandafter\XINT_fsub_b\romannumeral0\xintraw {#4}{#3}{#1}{#2}}%

1390 \def\XINT_fsub_b #1{\xint_UDzerominusfork

1391 #1-\XINT_fadd_Bzero

1392 0#1\XINT_fadd_c

1393 0-{\XINT_fadd_c -#1}%

1394 \krof }%

24.43. \xintSum
There was (not documented anymore since 1.09d, 2013/10/22) a macro \xintSumExpr, but it has been

deleted at 1.2l.

Empty items in the input are not accepted by this macro, but the input may be empty.

Refactored slightly at 1.4. \XINT_Sum used in xintexpr code.

1395 \def\xintSum {\romannumeral0\xintsum }%

1396 \def\xintsum #1{\expandafter\XINT_sum\romannumeral`&&@#1^}%

1397 \def\XINT_Sum{\romannumeral0\XINT_sum}%

1398 \def\XINT_sum#1%

1399 {%

1400 \xint_gob_til_^ #1\XINT_sum_empty ^%

1401 \expandafter\XINT_sum_loop\romannumeral0\xintraw{#1}\xint:

1402 }%

1403 \def\XINT_sum_empty ^#1\xint:{ 0/1[0]}%

1404 \def\XINT_sum_loop #1\xint:#2%

1405 {%

1406 \xint_gob_til_^ #2\XINT_sum_end ^%

1407 \expandafter\XINT_sum_loop

1408 \romannumeral0\xintadd{#1}{\romannumeral0\xintraw{#2}}\xint:

1409 }%

1410 \def\XINT_sum_end ^#1\xintadd #2#3\xint:{ #2}%

24.44. \xintMul
1411 \def\xintMul {\romannumeral0\xintmul }%

1412 \def\xintmul #1{\expandafter\XINT_fmul\romannumeral0\xintraw {#1}.}%

1413 \def\XINT_fmul #1{\xint_gob_til_zero #1\XINT_fmul_zero 0\XINT_fmul_a #1}%

1414 \def\XINT_fmul_a #1[#2].#3%

1415 {\expandafter\XINT_fmul_b\romannumeral0\xintraw {#3}#1[#2.]}%

1416 \def\XINT_fmul_b #1{\xint_gob_til_zero #1\XINT_fmul_zero 0\XINT_fmul_c #1}%

1417 \def\XINT_fmul_c #1/#2[#3]#4/#5[#6.]%

1418 {%

1419 \expandafter\XINT_fmul_d

1420 \expandafter{\the\numexpr #3+#6\expandafter}%

1421 \expandafter{\romannumeral0\xintiimul {#5}{#2}}%

1422 {\romannumeral0\xintiimul {#4}{#1}}%

1423 }%

464

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1424 \def\XINT_fmul_d #1#2#3%

1425 {%

1426 \expandafter \XINT_fmul_e \expandafter{#3}{#1}{#2}%

1427 }%

1428 \def\XINT_fmul_e #1#2{\XINT_outfrac {#2}{#1}}%

1429 \def\XINT_fmul_zero #1.#2{ 0/1[0]}%

24.45. \xintSqr
1430 \def\xintSqr {\romannumeral0\xintsqr }%

1431 \def\xintsqr #1{\expandafter\XINT_fsqr\romannumeral0\xintraw {#1}}%

1432 \def\XINT_fsqr #1{\xint_gob_til_zero #1\XINT_fsqr_zero 0\XINT_fsqr_a #1}%

1433 \def\XINT_fsqr_a #1/#2[#3]%

1434 {%

1435 \expandafter\XINT_fsqr_b

1436 \expandafter{\the\numexpr #3+#3\expandafter}%

1437 \expandafter{\romannumeral0\xintiisqr {#2}}%

1438 {\romannumeral0\xintiisqr {#1}}%

1439 }%

1440 \def\XINT_fsqr_b #1#2#3{\expandafter \XINT_fmul_e \expandafter{#3}{#1}{#2}}%

1441 \def\XINT_fsqr_zero #1]{ 0/1[0]}%

24.46. \xintPow
1.2f: to be coherent with the "i" convention \xintiPow should parse also its exponent via \xintNum

when xintfrac.sty is loaded. This was not the case so far. Cependant le problème est que le fait

d'appliquer \xintNum rend impossible certains inputs qui auraient pu être gérès par \numexpr. Le

\numexpr externe est ici pour intercepter trop grand input.

1442 \def\xintipow #1#2%

1443 {%

1444 \expandafter\xint_pow\the\numexpr \xintNum{#2}\expandafter

1445 .\romannumeral0\xintnum{#1}\xint:

1446 }%

1447 \def\xintPow {\romannumeral0\xintpow }%

1448 \def\xintpow #1%

1449 {%

1450 \expandafter\XINT_fpow\expandafter {\romannumeral0\XINT_infrac {#1}}%

1451 }%

1452 \def\XINT_fpow #1#2%

1453 {%

1454 \expandafter\XINT_fpow_fork\the\numexpr \xintNum{#2}\relax\Z #1%

1455 }%

1456 \def\XINT_fpow_fork #1#2\Z

1457 {%

1458 \xint_UDzerominusfork

1459 #1-\XINT_fpow_zero

1460 0#1\XINT_fpow_neg

1461 0-{\XINT_fpow_pos #1}%

1462 \krof

1463 {#2}%

1464 }%

1465 \def\XINT_fpow_zero #1#2#3#4{ 1/1[0]}%

1466 \def\XINT_fpow_pos #1#2#3#4#5%

465

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1467 {%

1468 \expandafter\XINT_fpow_pos_A\expandafter

1469 {\the\numexpr #1#2*#3\expandafter}\expandafter

1470 {\romannumeral0\xintiipow {#5}{#1#2}}%

1471 {\romannumeral0\xintiipow {#4}{#1#2}}%

1472 }%

1473 \def\XINT_fpow_neg #1#2#3#4%

1474 {%

1475 \expandafter\XINT_fpow_pos_A\expandafter

1476 {\the\numexpr -#1*#2\expandafter}\expandafter

1477 {\romannumeral0\xintiipow {#3}{#1}}%

1478 {\romannumeral0\xintiipow {#4}{#1}}%

1479 }%

1480 \def\XINT_fpow_pos_A #1#2#3%

1481 {%

1482 \expandafter\XINT_fpow_pos_B\expandafter {#3}{#1}{#2}%

1483 }%

1484 \def\XINT_fpow_pos_B #1#2{\XINT_outfrac {#2}{#1}}%

24.47. \xintFac
Factorial coefficients: variant which can be chained with other xintfrac macros.

1485 \def\xintFac {\romannumeral0\xintfac}%

1486 \def\xintfac #1{\expandafter\XINT_fac_fork\the\numexpr\xintNum{#1}.[0]}%

24.48. \xintBinomial

Added at 1.2f (2016/03/12).

1487 \def\xintBinomial {\romannumeral0\xintbinomial}%

1488 \def\xintbinomial #1#2%

1489 {%

1490 \expandafter\XINT_binom_pre

1491 \the\numexpr\xintNum{#1}\expandafter.\the\numexpr\xintNum{#2}.[0]%

1492 }%

24.49. \xintPFactorial

Added at 1.2f (2016/03/12). Partial factorial. For needs of xintexpr.sty.

1493 \def\xintipfactorial #1#2%

1494 {%

1495 \expandafter\XINT_pfac_fork

1496 \the\numexpr\xintNum{#1}\expandafter.\the\numexpr\xintNum{#2}.%

1497 }%

1498 \def\xintPFactorial {\romannumeral0\xintpfactorial}%

1499 \def\xintpfactorial #1#2%

1500 {%

1501 \expandafter\XINT_pfac_fork

1502 \the\numexpr\xintNum{#1}\expandafter.\the\numexpr\xintNum{#2}.[0]%

1503 }%

466

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

24.50. \xintPrd
Refactored at 1.4. After some hesitation the routine still does not try to detect on the fly a zero

item, to abort the loop. Indeed this would add some overhead generally (as we need normalizing

the item before checking if it vanishes hence we must then grab things once more).

1504 \def\xintPrd {\romannumeral0\xintprd }%

1505 \def\xintprd #1{\expandafter\XINT_prd\romannumeral`&&@#1^}%

1506 \def\XINT_Prd{\romannumeral0\XINT_prd}%

1507 \def\XINT_prd#1%

1508 {%

1509 \xint_gob_til_^ #1\XINT_prd_empty ^%

1510 \expandafter\XINT_prd_loop\romannumeral0\xintraw{#1}\xint:

1511 }%

1512 \def\XINT_prd_empty ^#1\xint:{ 1/1[0]}%

1513 \def\XINT_prd_loop #1\xint:#2%

1514 {%

1515 \xint_gob_til_^ #2\XINT_prd_end ^%

1516 \expandafter\XINT_prd_loop

1517 \romannumeral0\xintmul{#1}{\romannumeral0\xintraw{#2}}\xint:

1518 }%

1519 \def\XINT_prd_end ^#1\xintmul #2#3\xint:{ #2}%

24.51. \xintDiv
1520 \def\xintDiv {\romannumeral0\xintdiv }%

1521 \def\xintdiv #1%

1522 {%

1523 \expandafter\XINT_fdiv\expandafter {\romannumeral0\XINT_infrac {#1}}%

1524 }%

1525 \def\XINT_fdiv #1#2%

1526 {\expandafter\XINT_fdiv_A\romannumeral0\XINT_infrac {#2}#1}%

1527 \def\XINT_fdiv_A #1#2#3#4#5#6%

1528 {%

1529 \expandafter\XINT_fdiv_B

1530 \expandafter{\the\numexpr #4-#1\expandafter}%

1531 \expandafter{\romannumeral0\xintiimul {#2}{#6}}%

1532 {\romannumeral0\xintiimul {#3}{#5}}%

1533 }%

1534 \def\XINT_fdiv_B #1#2#3%

1535 {%

1536 \expandafter\XINT_fdiv_C

1537 \expandafter{#3}{#1}{#2}%

1538 }%

1539 \def\XINT_fdiv_C #1#2{\XINT_outfrac {#2}{#1}}%

24.52. \xintDivFloor

Added at 1.1 (2014/10/28). Changed at 1.2p to not append /1[0] ending but rather output a big

integer in strict format, like \xintDivTrunc and \xintDivRound.

1540 \def\xintDivFloor {\romannumeral0\xintdivfloor }%

1541 \def\xintdivfloor #1#2{\xintifloor{\xintDiv {#1}{#2}}}%

467

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

24.53. \xintDivTrunc

Added at 1.1 (2014/10/28).

1542 \def\xintDivTrunc {\romannumeral0\xintdivtrunc }%

1543 \def\xintdivtrunc #1#2{\xintttrunc {\xintDiv {#1}{#2}}}%

24.54. \xintDivRound
1.1

1544 \def\xintDivRound {\romannumeral0\xintdivround }%

1545 \def\xintdivround #1#2{\xintiround 0{\xintDiv {#1}{#2}}}%

24.55. \xintModTrunc

Added at 1.1 (2014/10/28). \xintModTrunc {q1}{q2} computes q1 - q2*t(q1/q2) with t(q1/q2) equal

to the truncated division of two fractions q1 and q2.

Its former name, prior to 1.2p, was \xintMod.

Modified at 1.3 (2018/03/01). At 1.3, uses least common multiple denominator, like \xintMod

(next).

1546 \def\xintModTrunc {\romannumeral0\xintmodtrunc }%

1547 \def\xintmodtrunc #1{\expandafter\XINT_modtrunc_a\romannumeral0\xintraw{#1}.}%

1548 \def\XINT_modtrunc_a #1#2.#3%

1549 {\expandafter\XINT_modtrunc_b\expandafter #1\romannumeral0\xintraw{#3}#2.}%

1550 \def\XINT_modtrunc_b #1#2% #1 de A, #2 de B.

1551 {%

1552 \if0#2\xint_dothis{\XINT_modtrunc_divbyzero #1#2}\fi

1553 \if0#1\xint_dothis\XINT_modtrunc_aiszero\fi

1554 \if-#2\xint_dothis{\XINT_modtrunc_bneg #1}\fi

1555 \xint_orthat{\XINT_modtrunc_bpos #1#2}%

1556 }%

1557 \def\XINT_modtrunc_divbyzero #1#2[#3]#4.%

1558 {%

1559 \XINT_signalcondition{DivisionByZero}{Division by zero: #1#4/(#2[#3]).}{}{ 0/1[0]}%

1560 }%

1561 \def\XINT_modtrunc_aiszero #1.{ 0/1[0]}%

1562 \def\XINT_modtrunc_bneg #1%

1563 {%

1564 \xint_UDsignfork

1565 #1{\xintiiopp\XINT_modtrunc_pos {}}%

1566 -{\XINT_modtrunc_pos #1}%

1567 \krof

1568 }%

1569 \def\XINT_modtrunc_bpos #1%

1570 {%

1571 \xint_UDsignfork

1572 #1{\xintiiopp\XINT_modtrunc_pos {}}%

1573 -{\XINT_modtrunc_pos #1}%

1574 \krof

1575 }%

Attention. This crucially uses that xint's \xintiiE{x}{e} is defined to return x unchanged if e

is negative (and x extended by e zeroes if e >= 0).

468

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1576 \def\XINT_modtrunc_pos #1#2/#3[#4]#5/#6[#7].%

1577 {%

1578 \expandafter\XINT_modtrunc_pos_a

1579 \the\numexpr\ifnum#7>#4 #4\else #7\fi\expandafter.%

1580 \romannumeral0\expandafter\XINT_mod_D_b

1581 \romannumeral0\XINT_div_prepare{#3}{#6}{#3}{#3}{#6}%

1582 {#1#5}{#7-#4}{#2}{#4-#7}%

1583 }%

1584 \def\XINT_modtrunc_pos_a #1.#2#3#4{\xintiirem {#3}{#4}/#2[#1]}%

24.56. \xintDivMod

Added at 1.2p (2017/12/05). \xintDivMod{q1}{q2} outputs {floor(q1/q2)}{q1 - q2*floor(q1/q2)}.

Attention that it relies on \xintiiE{x}{e} returning x if e < 0.

Modified at 1.3 (2018/03/01). Modified (like \xintAdd and \xintSub) at 1.3 to use a l.c.m for

final denominator of the "mod" part.

1585 \def\xintDivMod {\romannumeral0\xintdivmod }%

1586 \def\xintdivmod #1{\expandafter\XINT_divmod_a\romannumeral0\xintraw{#1}.}%

1587 \def\XINT_divmod_a #1#2.#3%

1588 {\expandafter\XINT_divmod_b\expandafter #1\romannumeral0\xintraw{#3}#2.}%

1589 \def\XINT_divmod_b #1#2% #1 de A, #2 de B.

1590 {%

1591 \if0#2\xint_dothis{\XINT_divmod_divbyzero #1#2}\fi

1592 \if0#1\xint_dothis\XINT_divmod_aiszero\fi

1593 \if-#2\xint_dothis{\XINT_divmod_bneg #1}\fi

1594 \xint_orthat{\XINT_divmod_bpos #1#2}%

1595 }%

1596 \def\XINT_divmod_divbyzero #1#2[#3]#4.%

1597 {%

1598 \XINT_signalcondition{DivisionByZero}{Division by zero: #1#4/(#2[#3]).}{}%

1599 {{0}{0/1[0]}}% à revoir...

1600 }%

1601 \def\XINT_divmod_aiszero #1.{{0}{0/1[0]}}%

1602 \def\XINT_divmod_bneg #1% f // -g = (-f) // g, f % -g = - ((-f) % g)

1603 {%

1604 \expandafter\XINT_divmod_bneg_finish

1605 \romannumeral0\xint_UDsignfork

1606 #1{\XINT_divmod_bpos {}}%

1607 -{\XINT_divmod_bpos {-#1}}%

1608 \krof

1609 }%

1610 \def\XINT_divmod_bneg_finish#1#2%

1611 {%

1612 \expandafter\xint_exchangetwo_keepbraces\expandafter

1613 {\romannumeral0\xintiiopp#2}{#1}%

1614 }%

1615 \def\XINT_divmod_bpos #1#2/#3[#4]#5/#6[#7].%

1616 {%

1617 \expandafter\XINT_divmod_bpos_a

1618 \the\numexpr\ifnum#7>#4 #4\else #7\fi\expandafter.%

1619 \romannumeral0\expandafter\XINT_mod_D_b

1620 \romannumeral0\XINT_div_prepare{#3}{#6}{#3}{#3}{#6}%

469

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1621 {#1#5}{#7-#4}{#2}{#4-#7}%

1622 }%

1623 \def\XINT_divmod_bpos_a #1.#2#3#4%

1624 {%

1625 \expandafter\XINT_divmod_bpos_finish

1626 \romannumeral0\xintiidivision{#3}{#4}{/#2[#1]}%

1627 }%

1628 \def\XINT_divmod_bpos_finish #1#2#3{{#1}{#2#3}}%

24.57. \xintMod

Added at 1.2p (2017/12/05). \xintMod{q1}{q2} computes q1 - q2*floor(q1/q2). Attention that it

relies on \xintiiE{x}{e} returning x if e < 0.

Prior to 1.2p, that macro had the meaning now attributed to \xintModTrunc.

Modified at 1.3 (2018/03/01). Modified (like \xintAdd and \xintSub) at 1.3 to use a l.c.m for

final denominator.

1629 \def\xintMod {\romannumeral0\xintmod }%

1630 \def\xintmod #1{\expandafter\XINT_mod_a\romannumeral0\xintraw{#1}.}%

1631 \def\XINT_mod_a #1#2.#3%

1632 {\expandafter\XINT_mod_b\expandafter #1\romannumeral0\xintraw{#3}#2.}%

1633 \def\XINT_mod_b #1#2% #1 de A, #2 de B.

1634 {%

1635 \if0#2\xint_dothis{\XINT_mod_divbyzero #1#2}\fi

1636 \if0#1\xint_dothis\XINT_mod_aiszero\fi

1637 \if-#2\xint_dothis{\XINT_mod_bneg #1}\fi

1638 \xint_orthat{\XINT_mod_bpos #1#2}%

1639 }%

Attention to not move ModTrunc code beyond that point.

1640 \let\XINT_mod_divbyzero\XINT_modtrunc_divbyzero

1641 \let\XINT_mod_aiszero \XINT_modtrunc_aiszero

1642 \def\XINT_mod_bneg #1% f % -g = - ((-f) % g), for g > 0

1643 {%

1644 \xintiiopp\xint_UDsignfork

1645 #1{\XINT_mod_bpos {}}%

1646 -{\XINT_mod_bpos {-#1}}%

1647 \krof

1648 }%

1649 \def\XINT_mod_bpos #1#2/#3[#4]#5/#6[#7].%

1650 {%

1651 \expandafter\XINT_mod_bpos_a

1652 \the\numexpr\ifnum#7>#4 #4\else #7\fi\expandafter.%

1653 \romannumeral0\expandafter\XINT_mod_D_b

1654 \romannumeral0\XINT_div_prepare{#3}{#6}{#3}{#3}{#6}%

1655 {#1#5}{#7-#4}{#2}{#4-#7}%

1656 }%

1657 \def\XINT_mod_D_a #1#2%

1658 {%

1659 \expandafter\XINT_mod_D_b

1660 \romannumeral0\XINT_div_prepare {#1}{#2}{#1}%

1661 }%

1662 \def\XINT_mod_D_b #1#2{\XINT_mod_D_c #2\Z}%

1663 \def\XINT_mod_D_c #1#2\Z

470

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1664 {%

1665 \xint_gob_til_zero #1\XINT_mod_D_exit0\XINT_mod_D_a {#1#2}%

1666 }%

1667 \def\XINT_mod_D_exit0\XINT_mod_D_a #1#2#3%

1668 {%

1669 \expandafter\XINT_mod_E

1670 \romannumeral0\xintiiquo {#3}{#2}.{#2}%

1671 }%

1672 \def\XINT_mod_E #1.#2#3%

1673 {%

1674 \expandafter\XINT_mod_F

1675 \romannumeral0\xintiimul{#1}{#3}.{\xintiiQuo{#3}{#2}}{#1}%

1676 }%

1677 \def\XINT_mod_F #1.#2#3#4#5#6#7%

1678 {%

1679 {#1}{\xintiiE{\xintiiMul{#4}{#3}}{#5}}%

1680 {\xintiiE{\xintiiMul{#6}{#2}}{#7}}%

1681 }%

1682 \def\XINT_mod_bpos_a #1.#2#3#4{\xintiirem {#3}{#4}/#2[#1]}%

24.58. \xintIsOne

Added at 1.09a (2013/09/24). Could be more efficient. For fractions with big powers of tens, it

is better to use \xintCmp{f}{1}. Restyled in 1.09i.

1683 \def\xintIsOne {\romannumeral0\xintisone }%

1684 \def\xintisone #1{\expandafter\XINT_fracisone

1685 \romannumeral0\xintrawwithzeros{#1}\Z }%

1686 \def\XINT_fracisone #1/#2\Z

1687 {\if0\xintiiCmp {#1}{#2}\xint_afterfi{ 1}\else\xint_afterfi{ 0}\fi}%

24.59. \xintGeq
1688 \def\xintGeq {\romannumeral0\xintgeq }%

1689 \def\xintgeq #1%

1690 {%

1691 \expandafter\XINT_fgeq\expandafter {\romannumeral0\xintabs {#1}}%

1692 }%

1693 \def\XINT_fgeq #1#2%

1694 {%

1695 \expandafter\XINT_fgeq_A \romannumeral0\xintabs {#2}#1%

1696 }%

1697 \def\XINT_fgeq_A #1%

1698 {%

1699 \xint_gob_til_zero #1\XINT_fgeq_Zii 0%

1700 \XINT_fgeq_B #1%

1701 }%

1702 \def\XINT_fgeq_Zii 0\XINT_fgeq_B #1[#2]#3[#4]{ 1}%

1703 \def\XINT_fgeq_B #1/#2[#3]#4#5/#6[#7]%

1704 {%

1705 \xint_gob_til_zero #4\XINT_fgeq_Zi 0%

1706 \expandafter\XINT_fgeq_C\expandafter

1707 {\the\numexpr #7-#3\expandafter}\expandafter

471

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1708 {\romannumeral0\xintiimul {#4#5}{#2}}%

1709 {\romannumeral0\xintiimul {#6}{#1}}%

1710 }%

1711 \def\XINT_fgeq_Zi 0#1#2#3#4#5#6#7{ 0}%

1712 \def\XINT_fgeq_C #1#2#3%

1713 {%

1714 \expandafter\XINT_fgeq_D\expandafter

1715 {#3}{#1}{#2}%

1716 }%

1717 \def\XINT_fgeq_D #1#2#3%

1718 {%

1719 \expandafter\XINT_cntSgnFork\romannumeral`&&@\expandafter\XINT_cntSgn

1720 \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\xint:

1721 { 0}{\XINT_fgeq_E #2\Z {#3}{#1}}{ 1}%

1722 }%

1723 \def\XINT_fgeq_E #1%

1724 {%

1725 \xint_UDsignfork

1726 #1\XINT_fgeq_Fd

1727 -{\XINT_fgeq_Fn #1}%

1728 \krof

1729 }%

1730 \def\XINT_fgeq_Fd #1\Z #2#3%

1731 {%

1732 \expandafter\XINT_fgeq_Fe

1733 \romannumeral0\XINT_dsx_addzeros {#1}#3;\xint:#2\xint:

1734 }%

1735 \def\XINT_fgeq_Fe #1\xint:#2#3\xint:{\XINT_geq_plusplus #2#1\xint:#3\xint:}%

1736 \def\XINT_fgeq_Fn #1\Z #2#3%

1737 {%

1738 \expandafter\XINT_fgeq_Fo

1739 \romannumeral0\XINT_dsx_addzeros {#1}#2;\xint:#3\xint:

1740 }%

1741 \def\XINT_fgeq_Fo #1#2\xint:#3\xint:{\XINT_geq_plusplus #1#3\xint:#2\xint:}%

24.60. \xintMax
1742 \def\xintMax {\romannumeral0\xintmax }%

1743 \def\xintmax #1%

1744 {%

1745 \expandafter\XINT_fmax\expandafter {\romannumeral0\xintraw {#1}}%

1746 }%

1747 \def\XINT_fmax #1#2%

1748 {%

1749 \expandafter\XINT_fmax_A\romannumeral0\xintraw {#2}#1%

1750 }%

1751 \def\XINT_fmax_A #1#2/#3[#4]#5#6/#7[#8]%

1752 {%

1753 \xint_UDsignsfork

1754 #1#5\XINT_fmax_minusminus

1755 -#5\XINT_fmax_firstneg

1756 #1-\XINT_fmax_secondneg

1757 --\XINT_fmax_nonneg_a

472

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1758 \krof

1759 #1#5{#2/#3[#4]}{#6/#7[#8]}%

1760 }%

1761 \def\XINT_fmax_minusminus --%

1762 {\expandafter-\romannumeral0\XINT_fmin_nonneg_b }%

1763 \def\XINT_fmax_firstneg #1-#2#3{ #1#2}%

1764 \def\XINT_fmax_secondneg -#1#2#3{ #1#3}%

1765 \def\XINT_fmax_nonneg_a #1#2#3#4%

1766 {%

1767 \XINT_fmax_nonneg_b {#1#3}{#2#4}%

1768 }%

1769 \def\XINT_fmax_nonneg_b #1#2%

1770 {%

1771 \if0\romannumeral0\XINT_fgeq_A #1#2%

1772 \xint_afterfi{ #1}%

1773 \else \xint_afterfi{ #2}%

1774 \fi

1775 }%

24.61. \xintMaxof
1.2l protects \xintMaxof against items with non terminated \the\numexpr expressions.

1.4 renders the macro compatible with an empty argument and it also defines an accessor \XINT_ ⤸
Maxof suitable for xintexpr usage (formerly xintexpr had its own macro handling comma separated

values, but it changed internal representation at 1.4).

1776 \def\xintMaxof {\romannumeral0\xintmaxof }%

1777 \def\xintmaxof #1{\expandafter\XINT_maxof\romannumeral`&&@#1^}%

1778 \def\XINT_Maxof{\romannumeral0\XINT_maxof}%

1779 \def\XINT_maxof#1%

1780 {%

1781 \xint_gob_til_^ #1\XINT_maxof_empty ^%

1782 \expandafter\XINT_maxof_loop\romannumeral0\xintraw{#1}\xint:

1783 }%

1784 \def\XINT_maxof_empty ^#1\xint:{ 0/1[0]}%

1785 \def\XINT_maxof_loop #1\xint:#2%

1786 {%

1787 \xint_gob_til_^ #2\XINT_maxof_e ^%

1788 \expandafter\XINT_maxof_loop

1789 \romannumeral0\xintmax{#1}{\romannumeral0\xintraw{#2}}\xint:

1790 }%

1791 \def\XINT_maxof_e ^#1\xintmax #2#3\xint:{ #2}%

24.62. \xintMin
1792 \def\xintMin {\romannumeral0\xintmin }%

1793 \def\xintmin #1%

1794 {%

1795 \expandafter\XINT_fmin\expandafter {\romannumeral0\xintraw {#1}}%

1796 }%

1797 \def\XINT_fmin #1#2%

1798 {%

1799 \expandafter\XINT_fmin_A\romannumeral0\xintraw {#2}#1%

1800 }%

473

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1801 \def\XINT_fmin_A #1#2/#3[#4]#5#6/#7[#8]%

1802 {%

1803 \xint_UDsignsfork

1804 #1#5\XINT_fmin_minusminus

1805 -#5\XINT_fmin_firstneg

1806 #1-\XINT_fmin_secondneg

1807 --\XINT_fmin_nonneg_a

1808 \krof

1809 #1#5{#2/#3[#4]}{#6/#7[#8]}%

1810 }%

1811 \def\XINT_fmin_minusminus --%

1812 {\expandafter-\romannumeral0\XINT_fmax_nonneg_b }%

1813 \def\XINT_fmin_firstneg #1-#2#3{ -#3}%

1814 \def\XINT_fmin_secondneg -#1#2#3{ -#2}%

1815 \def\XINT_fmin_nonneg_a #1#2#3#4%

1816 {%

1817 \XINT_fmin_nonneg_b {#1#3}{#2#4}%

1818 }%

1819 \def\XINT_fmin_nonneg_b #1#2%

1820 {%

1821 \if0\romannumeral0\XINT_fgeq_A #1#2%

1822 \xint_afterfi{ #2}%

1823 \else \xint_afterfi{ #1}%

1824 \fi

1825 }%

24.63. \xintMinof
1.2l protects \xintMinof against items with non terminated \the\numexpr expressions.

1.4 version is compatible with an empty input (empty items are handled as zero).

1826 \def\xintMinof {\romannumeral0\xintminof }%

1827 \def\xintminof #1{\expandafter\XINT_minof\romannumeral`&&@#1^}%

1828 \def\XINT_Minof{\romannumeral0\XINT_minof}%

1829 \def\XINT_minof#1%

1830 {%

1831 \xint_gob_til_^ #1\XINT_minof_empty ^%

1832 \expandafter\XINT_minof_loop\romannumeral0\xintraw{#1}\xint:

1833 }%

1834 \def\XINT_minof_empty ^#1\xint:{ 0/1[0]}%

1835 \def\XINT_minof_loop #1\xint:#2%

1836 {%

1837 \xint_gob_til_^ #2\XINT_minof_e ^%

1838 \expandafter\XINT_minof_loop\romannumeral0\xintmin{#1}{\romannumeral0\xintraw{#2}}\xint:

1839 }%

1840 \def\XINT_minof_e ^#1\xintmin #2#3\xint:{ #2}%

24.64. \xintCmp
1841 \def\xintCmp {\romannumeral0\xintcmp }%

1842 \def\xintcmp #1%

1843 {%

1844 \expandafter\XINT_fcmp\expandafter {\romannumeral0\xintraw {#1}}%

1845 }%

474

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1846 \def\XINT_fcmp #1#2%

1847 {%

1848 \expandafter\XINT_fcmp_A\romannumeral0\xintraw {#2}#1%

1849 }%

1850 \def\XINT_fcmp_A #1#2/#3[#4]#5#6/#7[#8]%

1851 {%

1852 \xint_UDsignsfork

1853 #1#5\XINT_fcmp_minusminus

1854 -#5\XINT_fcmp_firstneg

1855 #1-\XINT_fcmp_secondneg

1856 --\XINT_fcmp_nonneg_a

1857 \krof

1858 #1#5{#2/#3[#4]}{#6/#7[#8]}%

1859 }%

1860 \def\XINT_fcmp_minusminus --#1#2{\XINT_fcmp_B #2#1}%

1861 \def\XINT_fcmp_firstneg #1-#2#3{ -1}%

1862 \def\XINT_fcmp_secondneg -#1#2#3{ 1}%

1863 \def\XINT_fcmp_nonneg_a #1#2%

1864 {%

1865 \xint_UDzerosfork

1866 #1#2\XINT_fcmp_zerozero

1867 0#2\XINT_fcmp_firstzero

1868 #10\XINT_fcmp_secondzero

1869 00\XINT_fcmp_pos

1870 \krof

1871 #1#2%

1872 }%

1873 \def\XINT_fcmp_zerozero #1#2#3#4{ 0}%

1874 \def\XINT_fcmp_firstzero #1#2#3#4{ -1}%

1875 \def\XINT_fcmp_secondzero #1#2#3#4{ 1}%

1876 \def\XINT_fcmp_pos #1#2#3#4%

1877 {%

1878 \XINT_fcmp_B #1#3#2#4%

1879 }%

1880 \def\XINT_fcmp_B #1/#2[#3]#4/#5[#6]%

1881 {%

1882 \expandafter\XINT_fcmp_C\expandafter

1883 {\the\numexpr #6-#3\expandafter}\expandafter

1884 {\romannumeral0\xintiimul {#4}{#2}}%

1885 {\romannumeral0\xintiimul {#5}{#1}}%

1886 }%

1887 \def\XINT_fcmp_C #1#2#3%

1888 {%

1889 \expandafter\XINT_fcmp_D\expandafter

1890 {#3}{#1}{#2}%

1891 }%

1892 \def\XINT_fcmp_D #1#2#3%

1893 {%

1894 \expandafter\XINT_cntSgnFork\romannumeral`&&@\expandafter\XINT_cntSgn

1895 \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\xint:

1896 { -1}{\XINT_fcmp_E #2\Z {#3}{#1}}{ 1}%

1897 }%

475

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1898 \def\XINT_fcmp_E #1%

1899 {%

1900 \xint_UDsignfork

1901 #1\XINT_fcmp_Fd

1902 -{\XINT_fcmp_Fn #1}%

1903 \krof

1904 }%

1905 \def\XINT_fcmp_Fd #1\Z #2#3%

1906 {%

1907 \expandafter\XINT_fcmp_Fe

1908 \romannumeral0\XINT_dsx_addzeros {#1}#3;\xint:#2\xint:

1909 }%

1910 \def\XINT_fcmp_Fe #1\xint:#2#3\xint:{\XINT_cmp_plusplus #2#1\xint:#3\xint:}%

1911 \def\XINT_fcmp_Fn #1\Z #2#3%

1912 {%

1913 \expandafter\XINT_fcmp_Fo

1914 \romannumeral0\XINT_dsx_addzeros {#1}#2;\xint:#3\xint:

1915 }%

1916 \def\XINT_fcmp_Fo #1#2\xint:#3\xint:{\XINT_cmp_plusplus #1#3\xint:#2\xint:}%

24.65. \xintAbs
1917 \def\xintAbs {\romannumeral0\xintabs }%

1918 \def\xintabs #1{\expandafter\XINT_abs\romannumeral0\xintraw {#1}}%

24.66. \xintOpp
1919 \def\xintOpp {\romannumeral0\xintopp }%

1920 \def\xintopp #1{\expandafter\XINT_opp\romannumeral0\xintraw {#1}}%

24.67. \xintInv

Modified at 1.3d (2019/01/06).

1921 \def\xintInv {\romannumeral0\xintinv }%

1922 \def\xintinv #1{\expandafter\XINT_inv\romannumeral0\xintraw {#1}}%

1923 \def\XINT_inv #1%

1924 {%

1925 \xint_UDzerominusfork

1926 #1-\XINT_inv_iszero

1927 0#1\XINT_inv_a

1928 0-{\XINT_inv_a {}}%

1929 \krof #1%

1930 }%

1931 \def\XINT_inv_iszero #1]%

1932 {\XINT_signalcondition{DivisionByZero}{Inverse of zero: inv(#1]).}{}{ 0/1[0]}}%

1933 \def\XINT_inv_a #1#2/#3[#4#5]%

1934 {%

1935 \xint_UDzerominusfork

1936 #4-\XINT_inv_expiszero

1937 0#4\XINT_inv_b

1938 0-{\XINT_inv_b -#4}%

1939 \krof #5.{#1#3/#2}%

476

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1940 }%

1941 \def\XINT_inv_expiszero #1.#2{ #2[0]}%

1942 \def\XINT_inv_b #1.#2{ #2[#1]}%

24.68. \xintSgn
1943 \def\xintSgn {\romannumeral0\xintsgn }%

1944 \def\xintsgn #1{\expandafter\XINT_sgn\romannumeral0\xintraw {#1}\xint:}%

24.69. \xintSignBit

Added at 1.4l (2022/05/29).

1945 \def\xintSignBit {\romannumeral0\xintsignbit }%

1946 \def\xintsignbit #1{\expandafter\XINT_signbit\romannumeral0\xintraw {#1}\xint:}%

1947 \def\XINT_signbit #1#2\xint:

1948 {%

1949 \xint_UDzerominusfork

1950 #1-{ 0}%

1951 0#1{ 1}%

1952 0-{ 0}%

1953 \krof

1954 }%

24.70. \xintGCD

Modified at 1.4 (2020/01/31). They replace the former xintgcd macros of the same names which trun-

cated to integers their arguments. Fraction-producing gcd() and lcm() functions were available

since 1.3d xintexpr, with non-public support macros handling comma separated values.

Modified at 1.4d (2021/03/29). Somewhat strangely \xintGCD was formerly \xintGCDof used with

only two arguments, as the latter directly implemented a fractionl gcd algorithm using \xintMod

repeatedly for two arguments.

Now \xintGCD contains the pairwise gcd routine and \xintGCDof is only a wrapper. And the pair-

wise gcd is reduced to integer-only computations to hopefully reduce fraction overhead.

Each input is filtered via \xintPIrr and \xintREZ to reduce size of maniuplate integers in al-

gebra.

But hesitation about applying \xintPIrr to output, and/or \xintREZ. (as it is applied on input).

But as the code is now used for frational lcm's we actually need to do some reduction of output

else lcm's of integers will not be necessarily printed by \xinteval as integers.

Well finally I apply \xintIrr (but not \xintREZ to output). Hesitations here (thinking of inputs

with large [n] parts, the output will have many zeros). So I do this only for the user macro but

the core routine as used by \xintGCDof will not do it.

Also at 1.4d the code uses \expanded.

1955 \def\xintGCD {\romannumeral0\xintgcd}%

1956 \def\xintgcd #1%

1957 {%

1958 \expandafter\XINT_fgcd_in

1959 \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint:

1960 }%

1961 \def\XINT_fgcd_in #1#2\xint:#3%

1962 {%

1963 \expandafter\XINT_fgcd_out

1964 \romannumeral0\expandafter\XINT_fgcd_chkzeros\expandafter#1%

477

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1965 \romannumeral0\xintrez{\xintPIrr{\xintAbs{#3}}}\xint:#1#2\xint:

1966 }%

1967 \def\XINT_fgcd_out#1[#2]{\xintirr{#1[#2]}[0]}%

1968 \def\XINT_fgcd_chkzeros #1#2%

1969 {%

1970 \xint_UDzerofork

1971 #1\XINT_fgcd_aiszero

1972 #2\XINT_fgcd_biszero

1973 0\XINT_fgcd_main

1974 \krof #2%

1975 }%

1976 \def\XINT_fgcd_aiszero #1\xint:#2\xint:{ #1}%

1977 \def\XINT_fgcd_biszero #1\xint:#2\xint:{ #2}%

1978 \def\XINT_fgcd_main #1/#2[#3]\xint:#4/#5[#6]\xint:

1979 {%

1980 \expandafter\XINT_fgcd_a

1981 \romannumeral0\XINT_gcd_loop #2\xint:#5\xint:\xint:

1982 #2\xint:#5\xint:#1\xint:#4\xint:#3.#6.%

1983 }%

1984 \def\XINT_fgcd_a #1\xint:#2\xint:

1985 {%

1986 \expandafter\XINT_fgcd_b

1987 \romannumeral0\xintiiquo{#2}{#1}\xint:#1\xint:#2\xint:

1988 }%

1989 \def\XINT_fgcd_b #1\xint:#2\xint:#3\xint:#4\xint:#5\xint:#6\xint:#7.#8.%

1990 {%

1991 \expanded{%

1992 \xintiigcd{\xintiiE{\xintiiMul{#5}{\xintiiQuo{#4}{#2}}}{#7-#8}}%

1993 {\xintiiE{\xintiiMul{#6}{#1}}{#8-#7}}%

1994 /\xintiiMul{#1}{#4}%

1995 [\ifnum#7>#8 #8\else #7\fi]%

1996 }%

1997 }%

24.71. \xintGCDof

Modified at 1.4 (2020/01/31). This inherits from former non public xintexpr macro called \xintG ⤸
CDof:csv, which handled comma separated items.

It handles fractions presented as braced items and is the support macro for the gcd() function in

\xintexpr and \xintfloatexpr. The support macro for the gcd() function in \xintiiexpr is \xint-

iiGCDof, from xint.

An empty input is allowed but I have some hesitations on the return value of 1.

Modified at 1.4d (2021/03/29). Sadly the 1.4 version had multiple problems:

• broken if first argument vanished,

• broken if some argument was not in strict format, for example had leading chains of signs or

zeros (\xintGCDof{2}{03}). This bug originates in the fact the original macro was used only

in xintexpr sanitized context.

Also, output is now always an irreducible fraction (ending with [0]).

1998 \def\xintGCDof {\romannumeral0\xintgcdof}%

1999 \def\xintgcdof #1{\expandafter\XINT_fgcdof\romannumeral`&&@#1^}%

478

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2000 \def\XINT_GCDof{\romannumeral0\XINT_fgcdof}%

2001 \def\XINT_fgcdof #1%

2002 {%

2003 \expandafter\XINT_fgcdof_chkempty\romannumeral`&&@#1\xint:

2004 }%

2005 \def\XINT_fgcdof_chkempty #1%

2006 {%

2007 \xint_gob_til_^#1\XINT_fgcdof_empty ^\XINT_fgcdof_in #1%

2008 }%

2009 \def\XINT_fgcdof_empty #1\xint:{ 1/1[0]}% hesitation, should it be infinity? O?

2010 \def\XINT_fgcdof_in #1\xint:

2011 {%

2012 \expandafter\XINT_fgcd_out

2013 \romannumeral0\expandafter\XINT_fgcdof_loop

2014 \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint:

2015 }%

2016 \def\XINT_fgcdof_loop #1\xint:#2%

2017 {%

2018 \expandafter\XINT_fgcdof_chkend\romannumeral`&&@#2\xint:#1\xint:\xint:

2019 }%

2020 \def\XINT_fgcdof_chkend #1%

2021 {%

2022 \xint_gob_til_^#1\XINT_fgcdof_end ^\XINT_fgcdof_loop_pair #1%

2023 }%

2024 \def\XINT_fgcdof_end #1\xint:#2\xint:\xint:{ #2}%

2025 \def\XINT_fgcdof_loop_pair #1\xint:#2%

2026 {%

2027 \expandafter\XINT_fgcdof_loop

2028 \romannumeral0\expandafter\XINT_fgcd_chkzeros\expandafter#2%

2029 \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint:#2%

2030 }%

24.72. \xintLCM
Same comments as for \xintGCD. Entirely redone for 1.4d. Well, actually we can express it in terms

of fractional gcd.

2031 \def\xintLCM {\romannumeral0\xintlcm}%

2032 \def\xintlcm #1%

2033 {%

2034 \expandafter\XINT_flcm_in

2035 \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint:

2036 }%

2037 \def\XINT_flcm_in #1#2\xint:#3%

2038 {%

2039 \expandafter\XINT_fgcd_out

2040 \romannumeral0\expandafter\XINT_flcm_chkzeros\expandafter#1%

2041 \romannumeral0\xintrez{\xintPIrr{\xintAbs{#3}}}\xint:#1#2\xint:

2042 }%

2043 \def\XINT_flcm_chkzeros #1#2%

2044 {%

2045 \xint_UDzerofork

2046 #1\XINT_flcm_zero

479

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2047 #2\XINT_flcm_zero

2048 0\XINT_flcm_main

2049 \krof #2%

2050 }%

2051 \def\XINT_flcm_zero #1\xint:#2\xint:{ 0/1[0]}%

2052 \def\XINT_flcm_main #1/#2[#3]\xint:#4/#5[#6]\xint:

2053 {%

2054 \xintinv

2055 {%

2056 \romannumeral0\XINT_fgcd_main #2/#1[-#3]\xint:#5/#4[-#6]\xint:

2057 }%

2058 }%

24.73. \xintLCMof
See comments for \xintGCDof. xint provides the integer only \xintiiLCMof.

Modified at 1.4d (2021/03/29). Sadly, although a public xintfrac macro, it did not (since 1.4)

sanitize its arguments like other xintfrac macros.

2059 \def\xintLCMof {\romannumeral0\xintlcmof}%

2060 \def\xintlcmof #1{\expandafter\XINT_flcmof\romannumeral`&&@#1^}%

2061 \def\XINT_LCMof{\romannumeral0\XINT_flcmof}%

2062 \def\XINT_flcmof #1%

2063 {%

2064 \expandafter\XINT_flcmof_chkempty\romannumeral`&&@#1\xint:

2065 }%

2066 \def\XINT_flcmof_chkempty #1%

2067 {%

2068 \xint_gob_til_^#1\XINT_flcmof_empty ^\XINT_flcmof_in #1%

2069 }%

2070 \def\XINT_flcmof_empty #1\xint:{ 0/1[0]}% hesitation

2071 \def\XINT_flcmof_in #1\xint:

2072 {%

2073 \expandafter\XINT_fgcd_out

2074 \romannumeral0\expandafter\XINT_flcmof_loop

2075 \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint:

2076 }%

2077 \def\XINT_flcmof_loop #1\xint:#2%

2078 {%

2079 \expandafter\XINT_flcmof_chkend\romannumeral`&&@#2\xint:#1\xint:\xint:

2080 }%

2081 \def\XINT_flcmof_chkend #1%

2082 {%

2083 \xint_gob_til_^#1\XINT_flcmof_end ^\XINT_flcmof_loop_pair #1%

2084 }%

2085 \def\XINT_flcmof_end #1\xint:#2\xint:\xint:{ #2}%

2086 \def\XINT_flcmof_loop_pair #1\xint:#2%

2087 {%

2088 \expandafter\XINT_flcmof_chkzero

2089 \romannumeral0\expandafter\XINT_flcm_chkzeros\expandafter#2%

2090 \romannumeral0\xintrez{\xintPIrr{\xintAbs{#1}}}\xint:#2%

2091 }%

2092 \def\XINT_flcmof_chkzero #1%

480

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2093 {%

2094 \xint_gob_til_zero#1\XINT_flcmof_zero0\XINT_flcmof_loop#1%

2095 }%

2096 \def\XINT_flcmof_zero#1^{ 0/1[0]}%

24.74. Floating point macros
For a long time the float routines dating back to releases 1.07/1.08a (May-June 2013) were not

modified.

Since 1.2f (March 2016) the four operations first round their arguments to \xinttheDigits-

floats (or P-floats), not (\xinttheDigits+2)-floats or (P+2)-floats as was the case with earlier

releases.

The four operations addition, subtraction, multiplication, division have always produced the

correct rounding of the theoretical exact value to P or \xinttheDigits digits when the inputs are

decimal numbers with at most P digits, and arbitrary decimal exponent part.

From 1.08a to 1.2j, \xintFloat (and \XINTinFloat which is used to parse inputs to other float

macros) handled a fractional input A/B via an initial replacement to A'/B' where A' and B' were A

and B truncated to Q+2 digits (where asked-for precision is Q), and then they correctly rounded A ⤸
'/B' to Q digits. But this meant that this rounding of the input could differ (by up to one unit

in the last place) from the correct rounding of the original A/B to the asked-for number of digits

(which until 1.2f in uses as auxiliary to the macros for the basic operations was 2 more than the

prevailing precision).

Since 1.2k all inputs are correctly rounded to the asked-for number of digits (this was, I think,

the case in the 1.07 release -- there are no code comments -- but was, afaicr, not very efficiently

done, and this is why the 1.08a release opeted for truncation of the numerator and denominator.)

Notice that in float expressions, the / is treated as operator, hence the above discussion makes

a difference only for the special input form qfloat(A/B) or for an \xintexpr A/B\relax embedded

in the float expression, with A or B having more digits than the prevailing float precision.

Internally there is no inner representation of P-floats as such !!!!!

The input parser will again compute the length of the mantissa on each use !!! This is

obviously something that must be improved upon before implementation of higher functions.

Currently, special tricks are used to quickly recognize inputs having no denominators, or

fractions whose numerators and denominators are not too long compared to the target precision

P, and in particular P-floats or quotients of two such.

Another long-standing issue is that float multiplication will first compute the 2P or 2P- ⤸
1 digits of the exact product, and then round it to P digits. This is sub-optimal for large

P particularly as the multiplication algorithm is basically the schoolbook one, hence worse
than quadratic in the TEX implementation which has extra cost of fetching long sequences of

tokens.

Changes at 1.4e (done 2021/04/15; undone 2021/04/29)

Macros named \XINTinFloat<name> are not public user-level but were designed a long time ago for

\xintfloatexpr context as a very preliminary step towards attempting to preserve some internal

format, here A[N] type.

When <name> is lowercased it means it needs a \romannumeral0 trigger (\XINTinfloatS keeps an

uppercase S).

Most were coded to check for an optional argument [D], and to use D=\XINTdigits in its place

if absent but it turned out only \XINTinfloatpow, \XINTinfloatmul, \XINTinfloatadd were actually

used with an optional argument and this happened only in macros from the very old xintseries.sty,

so I changed all of them to not check for optional argument [D] anymore, keeping only some private

481

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

interface for the xintseries.sty use case. Some required being used with [D], some still had names

ending in "digits" indicating they would use \XINTdigits always.

Indeed basically all algebra is done "exactly" and the [D] governs rules of float-rounding on

input and output.

During development of 1.4e we fleetingly experimented with letting the value used in place of

D be \XINTdigitsx to 1.4e, i.e. \XINTdigits with guard digits, a situation which was motivated

by the implementation of trigonometrical functions at high level, i.e. using \xintdeffloatfunc

which had no mechanism to make intermediate calculations with guard digits.

Simply doing everything "as is" but with 2 guard digits proved very good (surprisingly effi-

cient, even) to the trigonometrical functions. However using them systematically raises many

issues (for example, the correct rounding at P digits is destroyed if we obtain it a D=P+2 then

round from P+2 to P digits so we definitely can not do this as default, so some interface is needed

to define intermediate functions only using such guard digits and keeping them in their output).

Finally, an approach limited to the xinttrig.sty scope was used and I removed all \XINTdigits ⤸
x related matters from 1.4e. But this left some modifications of the interfaces of the "float"

macros here which this list tries to document, mainly for the author's benefit.

Macros always using \XINTdigits and now not allowing [P] option

\XINTinFloatAdd

\XINTinFloatSub

\XINTinFloatMul

\XINTinFloatSqr

\XINTinFloatInv

\XINTinFloatDiv

\XINTinFloatPow

\XINTinFloatPower

\XINTinFloatPFactorial

\XINTinFloatBinomial

Macros which already did not allow [P] option prior to 1.4e refactoring

\XINTinFloatFrac (renamed from \XINTinFloatFracdigits)

\XINTinFloatE

\XINTinFloatMod

\XINTinFloatDivFloor

\XINTinFloatDivMod

Macros requiring a [P]. Some of the "_wopt" named macros are renamings of macros formerly

requiring [P].

\XINTinFloat

\XINTinFloatS

\XINTFloatiLogTen

\XINTinRandomFloatS (this one has only the [P] mandatory argument)

\XINTinFloatFac

\XINTinFloatSqrt

\XINTinFloatAdd_wopt, \XINTinfloatadd_wopt

\XINTinFloatSub_wopt, \XINTinfloatsub_wopt

\XINTinFloatMul_wopt, \XINTinfloatmul_wopt

\XINTinFloatSqr_wopt

\XINTinfloatpow_wopt (not FloatPow)

\XINTinFloatDiv_wopt

\XINTinFloatInv_wopt

Specially named macros indicating usage of \XINTdigits

\XINTinFloatdigits

\XINTinFloatSdigits

\XINTFloatiLogTendigits

482

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

\XINTinRandomFloatSdigits

\XINTinFloatFacdigits

\XINTinFloatSqrtdigits

24.75. \xintDigits, \xintSetDigits

Modified at 1.3 (2018/03/01). 1.3f allows \xintDigits= in place of \xintDigits:= syntax. It

defines \xintDigits*[:]= which reloads xinttrig.sty. Perhaps this should be default, well.

During 1.4e development I added an interface for guard digits, but I decided to drop inclusion

from 1.4e release because there were pending issues both in documentation and functionalities for

which I did not have time left.

1.4e fixes the issue that \xinttheDigits could not be used in the right hand side of \xintDigits[*][:]=...;

or inside the argument to \xintSetDigits.

2097 \mathchardef\XINTdigits 16

2098 \chardef\XINTguarddigits 0

2099 \def\xinttheDigits {\number\XINTdigits}%

2100 %\def\xinttheGuardDigits{\number\XINTguarddigits}%

2101 \def\xinttheGuardDigits{0}% in case used in some of my test files

2102 \def\xintDigits #1={\afterassignment\xintDigits_i\mathchardef\XINT_digits=}%

2103 \def\xintDigits_i#1%

2104 {%

2105 \let\XINTdigits\XINT_digits

2106 }%

2107 \def\xintSetDigits #1%

2108 {%

2109 \mathchardef\XINT_digits=\numexpr#1\relax

2110 \let\XINTdigits=\XINT_digits

2111 }%

24.76. \xintFloat, \xintFloatZero
1.2f and 1.2g brought some refactoring which resulted in faster treatment of decimal inputs. 1.2i

dropped use of some old routines dating back to pre 1.2 era in favor of more modern \xintDSRr for

rounding. Then 1.2k improves again the handling of denominators B with few digits.

But the main change with 1.2k is a complete rewrite of the B>1 case in order to achieve again

correct rounding in all cases.

The original version from 1.07 (May 2013) computed the exact rounding to P digits for all inputs.

But from 1.08 on (June 2013), the macro handled A/B input by first truncating both A and B to at most

P+2 digits. This meant that decimal input (arbitrarily long, with scientific part) was correctly

rounded, but in case of fractional input there could be up to 0.6 unit in the last place difference

of the produced rounding to the input, hence the output could differ from the correct rounding.

Example with 16 digits (the default): \xintFloat {1/17597472569900621233}

with xintfrac 1.07: 5.682634230727187e-20

with xintfrac 1.08b--1.2j: 5.682634230727188e-20

with xintfrac 1.2k: 5.682634230727187e-20

The exact value is 5.682634230727187499924124...e-20, showing that 1.07 and 1.2k produce the cor-

rect rounding.

Currently the code ends in a more costly branch in about 1 case among 500, where it does some

extra operations (a multiplication in particular). There is a free parameter delta (here set at

4), I have yet to make some numerical explorations, to see if it could be favorable to set it to a

higher value (with delta=5, there is only 1 exceptional case in 5000, etc...).

483

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

I have always hesitated about the policy of printing 10.00...0 in case of rounding upwards to

the next power of ten. Already since 1.2f \XINTinFloat always produced a mantissa with exactly P

digits (except for the zero value). Starting with 1.2k, \xintFloat drops this habit of printing

10.00..0 in such cases. Side note: the rounding-up detection worked when the input A/B was with

numerator A and denominator B having each less than P+2 digits, or with B=1, else, it could happen

that the output was a power of ten but not detected to be a rounding up of the original fraction.

The value was ok, but printed 1.0...0eN with P-1 zeroes, not 10.0...0e(N-1).

I decided it was not worth the effort to enhance the algorithm to detect with 100% fiability all

cases of rounding up to next power of ten, hence 1.2k dropped this.

To avoid duplication of code, and any extra burden on \XINTinFloat, which is the macro used

internally by the float macros for parsing their inputs, we simply make now \xintFloat a wrapper

of \XINTinFloat.

2112 \def\xintFloatZero{0.0e0}% 1.4k breaking change. Replaces hard-coded 0.e0

2113 \def\xintFloat {\romannumeral0\xintfloat }%

2114 \def\xintfloat #1{\XINT_float_chkopt #1\xint:}%

2115 \def\XINT_float_chkopt #1%

2116 {%

2117 \ifx [#1\expandafter\XINT_float_opt

2118 \else\expandafter\XINT_float_noopt

2119 \fi #1%

2120 }%

2121 \def\XINT_float_noopt #1\xint:%

2122 {%

2123 \expandafter\XINT_float_post

2124 \romannumeral0\XINTinfloat[\XINTdigits]{#1}\XINTdigits.%

2125 }%

2126 \def\XINT_float_opt [\xint:

2127 {%

2128 \expandafter\XINT_float_opt_a\the\numexpr

2129 }%

2130 \def\XINT_float_opt_a #1]#2%

2131 {%

2132 \expandafter\XINT_float_post

2133 \romannumeral0\XINTinfloat[#1]{#2}#1.%

2134 }%

2135 \def\XINT_float_post #1%

2136 {%

2137 \xint_UDzerominusfork

2138 #1-\XINT_float_zero

2139 0#1\XINT_float_neg

2140 0-\XINT_float_pos

2141 \krof #1%

2142 }%[

2143 \def\XINT_float_zero #1]#2.{\expanded{ \xintFloatZero}}%

2144 \def\XINT_float_neg-{\expandafter-\romannumeral0\XINT_float_pos}%

2145 \def\XINT_float_pos #1#2[#3]#4.%

2146 {%

2147 \expandafter\XINT_float_pos_done\the\numexpr#3+#4-\xint_c_i.#1.#2;%

2148 }%

2149 \def\XINT_float_pos_done #1.#2;{ #2e#1}%

484

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

24.77. \xintFloatBraced

Added at 1.4l (2022/05/29). Je ne le fais pas comme un wrapper au-dessus de \xintFloat car c'est

pénible avec argument optionnel donc finalemnt on est obligé de rajouter overhead comme ici.

Hésitation si on obéit à \xintFloatZero ou pas. Finalement non.

Hésitation si on renvoie avec séparateur décimal ou pas.

Hésitation si on met l'exposant scientifique en premier.

Hésitation si on sépare le signe pour le mettre en premier.

Hésitation si on renvoie un exposant pour mantisse normalisée ou pas normalisée.

Finalement je décide {signe}{exposant}{mantisse sans point décimal}. Avec en fait 0 ou 1 pour

signe (mais ce sign bit mais ça n'a pas grand sens en décimal...). Non finalement mantisse avec

point décimal.

2150 \def\xintFloatBraced{\romannumeral0\xintfloatbraced }%

2151 \def\xintfloatbraced#1{\XINT_floatbr_chkopt #1\xint:}%

2152 \def\XINT_floatbr_chkopt #1%

2153 {%

2154 \ifx [#1\expandafter\XINT_floatbr_opt

2155 \else\expandafter\XINT_floatbr_noopt

2156 \fi #1%

2157 }%

2158 \def\XINT_floatbr_noopt #1\xint:%

2159 {%

2160 \expandafter\XINT_floatbr_post

2161 \romannumeral0\XINTinfloat[\XINTdigits]{#1}\XINTdigits.%

2162 }%

2163 \def\XINT_floatbr_opt [\xint:

2164 {%

2165 \expandafter\XINT_floatbr_opt_a\the\numexpr

2166 }%

2167 \def\XINT_floatbr_opt_a #1]#2%

2168 {%

2169 \expandafter\XINT_floatbr_post

2170 \romannumeral0\XINTinfloat[#1]{#2}#1.%

2171 }%

2172 \def\XINT_floatbr_post #1%

2173 {%

2174 \xint_UDzerominusfork

2175 #1-\XINT_floatbr_zero

2176 0#1\XINT_floatbr_neg

2177 0-\XINT_floatbr_pos

2178 \krof #1%

2179 }%

Hésitation à faire

\def\XINT_floatbr_zero #1]#2.{\expandafter\XINT_floatbr_zero_a\xintFloatZero e0e\relax}

\def\XINT_floatbr_zero_a#1e#2e#3\relax{{#1}{#2}}

Finalement non. Et même je décide de renvoyer autant de zéros que P. De plus depuis j'ai opté pour

{sign bit}{exposant}{mantisse} Hésitation si mantisse avec ou sans le séparateur décimal. Est-ce

que je devrais mettre plutôt -0+ au début?

2180 \def\XINT_floatbr_zero #1]#2.{\expanded{{0}{0}{0.\xintReplicate{#2-\xint_c_i}0}}}%

2181 \def\XINT_floatbr_neg-{\expandafter\XINT_floatbr_neg_a\romannumeral0\XINT_floatbr_pos}%

2182 \def\XINT_floatbr_neg_a#1{{1}}%

2183 \def\XINT_floatbr_pos #1#2[#3]#4.%

485

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2184 {%

2185 \expanded{{0}{\the\numexpr#3+#4-\xint_c_i}}{#1.#2}%

2186 }%

24.78. \XINTinFloat, \XINTinFloatS
This routine is like \xintFloat but produces an output of the shape A[N] which is then parsed faster

as input to other float macros. Float operations in \xintfloatexpr...\relax use internally this

format.

It must be used in form \XINTinFloat[P]{f}: the optional [P] is mandatory.

Since 1.2f, the mantissa always has exactly P digits even in case of rounding up to next power

of ten. This simplifies other routines.

(but the zero value must always be checked for, as it outputs 0[0])

1.2g added a variant \XINTinFloatS which, in case of decimal input with less than the asked

for precision P will not add extra zeros to the mantissa. For example it may output 2[0] even if

P=500, rather than the canonical representation 200...000[-499]. This is how \xintFloatMul and

\xintFloatDiv parse their inputs, which speeds-up follow-up processing. But \xintFloatAdd and

\xintFloatSub still use \XINTinFloat for parsing their inputs; anyway this will have to be changed

again when inner structure will carry upfront at least the length of mantissa as data.

Each time \XINTinFloat is called it at least computes a length. Naturally if we had some format

for floats that would be dispensed of...

something like <letterP><length of mantissa>.mantissa.exponent, etc... not yet.

Since 1.2k, \XINTinFloat always correctly rounds its argument, even if it is a fraction with

very big numerator and denominator. See the discussion of \xintFloat.

2187 \def\XINTinFloat {\romannumeral0\XINTinfloat }%

2188 \def\XINTinfloat

2189 {\expandafter\XINT_infloat_clean\romannumeral0\XINT_infloat}%

Attention que ici le fait que l'on grabbe #1 est important car il pourrait y avoir un zéro (en

particulier dans le cas où input est nul).

2190 \def\XINT_infloat_clean #1%

2191 {\if #1!\xint_dothis\XINT_infloat_clean_a\fi\xint_orthat{ }#1}%

Ici on ajoute les zeros pour faire exactement avec P chiffres. Car le #1 = P - L avec L la longueur

de #2, (ou plutôt de abs(#2), car ici le #2 peut avoir un signe) et L < P

2192 \def\XINT_infloat_clean_a !#1.#2[#3]%

2193 {%

2194 \expandafter\XINT_infloat_done

2195 \the\numexpr #3-#1\expandafter.%

2196 \romannumeral0\XINT_dsx_addzeros {#1}#2;;%

2197 }%

2198 \def\XINT_infloat_done #1.#2;{ #2[#1]}%

variant which allows output with shorter mantissas.

2199 \def\XINTinFloatS {\romannumeral0\XINTinfloatS}%

2200 \def\XINTinfloatS

2201 {\expandafter\XINT_infloatS_clean\romannumeral0\XINT_infloat}%

2202 \def\XINT_infloatS_clean #1%

2203 {\if #1!\xint_dothis\XINT_infloatS_clean_a\fi\xint_orthat{ }#1}%

2204 \def\XINT_infloatS_clean_a !#1.{ }%

début de la routine proprement dite, l'argument optionnel est obligatoire.

2205 \def\XINT_infloat [#1]%#2%

2206 {%

2207 \expandafter\XINT_infloat_a\the\numexpr #1\expandafter.%

486

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2208 \romannumeral0\XINT_infrac% {#2}%

2209 }%

#1=P, #2=n, #3=A, #4=B.

2210 \def\XINT_infloat_a #1.#2#3#4%

2211 {%

micro boost au lieu d'utiliser \XINT_isOne{#4}, mais pas bon style.

2212 \if1\XINT_is_One#4XY%

2213 \expandafter\XINT_infloat_sp

2214 \else\expandafter\XINT_infloat_fork

2215 \fi #3.{#1}{#2}{#4}%

2216 }%

Special quick treatment of B=1 case (1.2f then again 1.2g.)

maintenant: A.{P}{N}{1} Il est possible que A soit nul.

2217 \def\XINT_infloat_sp #1%

2218 {%

2219 \xint_UDzerominusfork

2220 #1-\XINT_infloat_spzero

2221 0#1\XINT_infloat_spneg

2222 0-\XINT_infloat_sppos

2223 \krof #1%

2224 }%

Attention surtout pas 0/1[0] ici.

2225 \def\XINT_infloat_spzero 0.#1#2#3{ 0[0]}%

2226 \def\XINT_infloat_spneg-%

2227 {\expandafter\XINT_infloat_spnegend\romannumeral0\XINT_infloat_sppos}%

2228 \def\XINT_infloat_spnegend #1%

2229 {\if#1!\expandafter\XINT_infloat_spneg_needzeros\fi -#1}%

2230 \def\XINT_infloat_spneg_needzeros -!#1.{!#1.-}%

in: A.{P}{N}{1}

out: P-L.A.P.N.

2231 \def\XINT_infloat_sppos #1.#2#3#4%

2232 {%

2233 \expandafter\XINT_infloat_sp_b\the\numexpr#2-\xintLength{#1}.#1.#2.#3.%

2234 }%

#1= P-L. Si c'est positif ou nul il faut retrancher #1 à l'exposant, et ajouter autant de zéros.

On regarde premier token. P-L.A.P.N.

2235 \def\XINT_infloat_sp_b #1%

2236 {%

2237 \xint_UDzerominusfork

2238 #1-\XINT_infloat_sp_quick

2239 0#1\XINT_infloat_sp_c

2240 0-\XINT_infloat_sp_needzeros

2241 \krof #1%

2242 }%

Ici P=L. Le cas usuel dans \xintfloatexpr.

2243 \def\XINT_infloat_sp_quick 0.#1.#2.#3.{ #1[#3]}%

Ici #1=P-L est >0. L'exposant sera N-(P-L). #2=A. #3=P. #4=N.

18 mars 2016. En fait dans certains contextes il est sous-optimal d'ajouter les zéros. Par

exemple quand c'est appelé par la multiplication ou la division, c'est idiot de convertir 2 en

487

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

200000...00000[-499]. Donc je redéfinis addzeros en needzeroes. Si on appelle sous la forme

\XINTinFloatS, on ne fait pas l'addition de zeros.

2244 \def\XINT_infloat_sp_needzeros #1.#2.#3.#4.{!#1.#2[#4]}%

L-P=#1.A=#2#3.P=#4.N=#5.

Ici P<L. Il va falloir arrondir. Attention si on va à la puissance de 10 suivante. En #1 on a

L-P qui est >0. L'exposant final sera N+L-P, sauf dans le cas spécial, il sera alors N+L-P+1.

L'ajustement final est fait par \XINT_infloat_Y.

2245 \def\XINT_infloat_sp_c -#1.#2#3.#4.#5.%

2246 {%

2247 \expandafter\XINT_infloat_Y

2248 \the\numexpr #5+#1\expandafter.%

2249 \romannumeral0\expandafter\XINT_infloat_sp_round

2250 \romannumeral0\XINT_split_fromleft

2251 (\xint_c_i+#4).#2#3\xint_bye2345678\xint_bye..#2%

2252 }%

2253 \def\XINT_infloat_sp_round #1.#2.%

2254 {%

2255 \XINT_dsrr#1\xint_bye\xint_Bye3456789\xint_bye/\xint_c_x\relax.%

2256 }%

General branch for A/B with B>1 inputs. It achieves correct rounding always since 1.2k (done

January 2, 2017.) This branch is never taken for A=0 because \XINT_infrac will have returned B=1

then.

2257 \def\XINT_infloat_fork #1%

2258 {%

2259 \xint_UDsignfork

2260 #1\XINT_infloat_J

2261 -\XINT_infloat_K

2262 \krof #1%

2263 }%

2264 \def\XINT_infloat_J-{\expandafter-\romannumeral0\XINT_infloat_K }%

A.{P}{n}{B} avec B>1.

2265 \def\XINT_infloat_K #1.#2%

2266 {%

2267 \expandafter\XINT_infloat_L

2268 \the\numexpr\xintLength{#1}\expandafter.\the\numexpr #2+\xint_c_iv.{#1}{#2}%

2269 }%

|A|.P+4.{A}{P}{n}{B}. We check if A already has length <= P+4.

2270 \def\XINT_infloat_L #1.#2.%

2271 {%

2272 \ifnum #1>#2

2273 \expandafter\XINT_infloat_Ma

2274 \else

2275 \expandafter\XINT_infloat_Mb

2276 \fi #1.#2.%

2277 }%

|A|.P+4.{A}{P}{n}{B}. We will keep only the first P+4 digits of A, denoted A'' in what follows.

output: u=-0.A''.junk.P+4.|A|.{A}{P}{n}{B}

2278 \def\XINT_infloat_Ma #1.#2.#3%

2279 {%

2280 \expandafter\XINT_infloat_MtoN\expandafter-\expandafter0\expandafter.%

488

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2281 \romannumeral0\XINT_split_fromleft#2.#3\xint_bye2345678\xint_bye..%

2282 #2.#1.{#3}%

2283 }%

|A|.P+4.{A}{P}{n}{B}.

Here A is short. We set u = P+4-|A|, and A''=A (A' = 10^u A)

output: u.A''..P+4.|A|.{A}{P}{n}{B}

2284 \def\XINT_infloat_Mb #1.#2.#3%

2285 {%

2286 \expandafter\XINT_infloat_MtoN\the\numexpr#2-#1.%

2287 #3..#2.#1.{#3}%

2288 }%

input u.A''.junk.P+4.|A|.{A}{P}{n}{B}

output |B|.P+4.{B}u.A''.P.|A|.n.{A}{B}

2289 \def\XINT_infloat_MtoN #1.#2.#3.#4.#5.#6#7#8#9%

2290 {%

2291 \expandafter\XINT_infloat_N

2292 \the\numexpr\xintLength{#9}.#4.{#9}#1.#2.#7.#5.#8.{#6}{#9}%

2293 }%

2294 \def\XINT_infloat_N #1.#2.%

2295 {%

2296 \ifnum #1>#2

2297 \expandafter\XINT_infloat_Oa

2298 \else

2299 \expandafter\XINT_infloat_Ob

2300 \fi #1.#2.%

2301 }%

input |B|.P+4.{B}u.A''.P.|A|.n.{A}{B}

output v=-0.B''.junk.|B|.u.A''.P.|A|.n.{A}{B}

2302 \def\XINT_infloat_Oa #1.#2.#3%

2303 {%

2304 \expandafter\XINT_infloat_P\expandafter-\expandafter0\expandafter.%

2305 \romannumeral0\XINT_split_fromleft#2.#3\xint_bye2345678\xint_bye..%

2306 #1.%

2307 }%

output v=P+4-|B|>=0.B''.junk.|B|.u.A''.P.|A|.n.{A}{B}

2308 \def\XINT_infloat_Ob #1.#2.#3%

2309 {%

2310 \expandafter\XINT_infloat_P\the\numexpr#2-#1.#3..#1.%

2311 }%

input v.B''.junk.|B|.u.A''.P.|A|.n.{A}{B}

output Q1.P.|B|.|A|.n.{A}{B}

Q1 = division euclidienne de A''.10^{u-v+P+3} par B''.

Special detection of cases with A and B both having length at most P+4: this will happen when

called from \xintFloatDiv as A and B (produced then via \XINTinFloatS) will have at most P digits.

We then only need integer division with P+1 extra zeros, not P+3.

2312 \def\XINT_infloat_P #1#2.#3.#4.#5.#6#7.#8.#9.%

2313 {%

2314 \csname XINT_infloat_Q\if-#1\else\if-#6\else q\fi\fi\expandafter\endcsname

2315 \romannumeral0\xintiiquo

2316 {\romannumeral0\XINT_dsx_addzerosnofuss

489

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2317 {#6#7-#1#2+#9+\xint_c_iii\if-#1\else\if-#6\else-\xint_c_ii\fi\fi}#8;}%

2318 {#3}.#9.#5.%

2319 }%

«quick» branch.

2320 \def\XINT_infloat_Qq #1.#2.%

2321 {%

2322 \expandafter\XINT_infloat_Rq

2323 \romannumeral0\XINT_split_fromleft#2.#1\xint_bye2345678\xint_bye..#2.%

2324 }%

2325 \def\XINT_infloat_Rq #1.#2#3.%

2326 {%

2327 \ifnum#2<\xint_c_v

2328 \expandafter\XINT_infloat_SEq

2329 \else\expandafter\XINT_infloat_SUp

2330 \fi

2331 {\if.#3.\xint_c_\else\xint_c_i\fi}#1.%

2332 }%

standard branch which will have to handle undecided rounding, if too close to a mid-value.

2333 \def\XINT_infloat_Q #1.#2.%

2334 {%

2335 \expandafter\XINT_infloat_R

2336 \romannumeral0\XINT_split_fromleft#2.#1\xint_bye2345678\xint_bye..#2.%

2337 }%

2338 \def\XINT_infloat_R #1.#2#3#4#5.%

2339 {%

2340 \if.#5.\expandafter\XINT_infloat_Sa\else\expandafter\XINT_infloat_Sb\fi

2341 #2#3#4#5.#1.%

2342 }%

trailing digits.Q.P.|B|.|A|.n.{A}{B}

#1=trailing digits (they may have leading zeros.)

2343 \def\XINT_infloat_Sa #1.%

2344 {%

2345 \ifnum#1>500 \xint_dothis\XINT_infloat_SUp\fi

2346 \ifnum#1<499 \xint_dothis\XINT_infloat_SEq\fi

2347 \xint_orthat\XINT_infloat_X\xint_c_

2348 }%

2349 \def\XINT_infloat_Sb #1.%

2350 {%

2351 \ifnum#1>5009 \xint_dothis\XINT_infloat_SUp\fi

2352 \ifnum#1<4990 \xint_dothis\XINT_infloat_SEq\fi

2353 \xint_orthat\XINT_infloat_X\xint_c_i

2354 }%

epsilon #2=Q.#3=P.#4=|B|.#5=|A|.#6=n.{A}{B}

exposant final est n+|A|-|B|-P+epsilon

2355 \def\XINT_infloat_SEq #1#2.#3.#4.#5.#6.#7#8%

2356 {%

2357 \expandafter\XINT_infloat_SY

2358 \the\numexpr #6+#5-#4-#3+#1.#2.%

2359 }%

2360 \def\XINT_infloat_SY #1.#2.{ #2[#1]}%

490

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

initial digit #2 put aside to check for case of rounding up to next power of ten, which will need

adjustment of mantissa and exponent.

2361 \def\XINT_infloat_SUp #1#2#3.#4.#5.#6.#7.#8#9%

2362 {%

2363 \expandafter\XINT_infloat_Y

2364 \the\numexpr#7+#6-#5-#4+#1\expandafter.%

2365 \romannumeral0\xintinc{#2#3}.#2%

2366 }%

epsilon Q.P.|B|.|A|.n.{A}{B}

\xintDSH{-x}{U} multiplies U by 10^x. When x is negative, this means it truncates (i.e. it

drops the last -x digits).

We don't try to optimize too much macro calls here, the odds are 2 per 1000 for this branch to be

taken. Perhaps in future I will use higher free parameter d, which currently is set at 4.

#1=epsilon, #2#3=Q, #4=P, #5=|B|, #6=|A|, #7=n, #8=A, #9=B

2367 \def\XINT_infloat_X #1#2#3.#4.#5.#6.#7.#8#9%

2368 {%

2369 \expandafter\XINT_infloat_Y

2370 \the\numexpr #7+#6-#5-#4+#1\expandafter.%

2371 \romannumeral`&&@\romannumeral0\xintiiiflt

2372 {\xintDSH{#6-#5-#4+#1}{\xintDouble{#8}}}%

2373 {\xintiiMul{\xintInc{\xintDouble{#2#3}}}{#9}}%

2374 \xint_firstofone

2375 \xintinc{#2#3}.#2%

2376 }%

check for rounding up to next power of ten.

2377 \def\XINT_infloat_Y #1{%

2378 \def\XINT_infloat_Y ##1.##2##3.##4%

2379 {%

2380 \if##49\if##21\expandafter\expandafter\expandafter\XINT_infloat_Z\fi\fi

2381 #1##2##3[##1]%

2382 }}\XINT_infloat_Y{ }%

#1=1, #2=0.

2383 \def\XINT_infloat_Z #1#2#3[#4]%

2384 {%

2385 \expandafter\XINT_infloat_ZZ\the\numexpr#4+\xint_c_i.#3.%

2386 }%

2387 \def\XINT_infloat_ZZ #1.#2.{ 1#2[#1]}%

24.79. \XINTFloatiLogTen

Added at 1.3e (2019/04/05). Le comportement pour un input nul est non encore finalisé. Il chang-

era lorsque NaN, +Inf, -Inf existeront.

The optional argument [#1] is in fact mandatory and #1 is not pre-expanded in a \numexpr.

The return value here 2^31-2^15 is highly undecided.

2388 \def\XINTFloatiLogTen {\the\numexpr\XINTfloatilogten}%

2389 \def\XINTfloatilogten [#1]#2%

2390 {\expandafter\XINT_floatilogten\romannumeral0\XINT_infloat[#1]{#2}#1.}%

2391 \def\XINTFloatiLogTendigits{\the\numexpr\XINTfloatilogten[\XINTdigits]}%

2392 \def\XINT_floatilogten #1{%

2393 \if #10\xint_dothis\XINT_floatilogten_z\fi

491

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2394 \if #1!\xint_dothis\XINT_floatilogten_a\fi

2395 \xint_orthat\XINT_floatilogten_b #1%

2396 }%

2397 \def\XINT_floatilogten_z 0[0]#1.{-"7FFF8000\relax}%

2398 \def\XINT_floatilogten_a !#1.#2[#3]#4.{#3-#1+#4-\xint_c_i\relax}%

2399 \def\XINT_floatilogten_b #1[#2]#3.{#2+#3-\xint_c_i\relax}%

24.80. \xintPFloat

Added at 1.1 (2014/10/28).

Modified at 1.4e (2021/05/05).
xint has not yet incorporated a general formatter as it was not a priority during development

and external solutions exist (I did not check for a while but I think LaTeX3 has implemented a

general formatter in the printf or Python ".format" spirit)

But when one starts using really the package, especially in an interactive way (xintsession

2021), one needs the default output to be as nice as possible.

The \xintPFloat macro was added at 1.1 as a "prettifying printer" for floats, basically influ-

enced by Maple.

The rules were:

0. The input is float-rounded to either Digits or the optional argument

1. zero is printed as "0."

2. x.yz...eK is printed "as is" if K>5 or K<-5.

3. if -5<=K<=5, fixed point decimal notation is used.

4. in cases 2. and 3., no trimming of trailing zeroes.

1.4b added \xintPFloatE to customize whether to use e or E.

1.4e, with some hesitation, decided to make a breaking change and to modify the behaviour.

The new rules:

0. The input is float-rounded to either Digits or the optional argument

1. zero is printed as 0.0

2. x.yz...eK is printed in decimal fixed point if -4<=K<=+5 (notice the change, formerly

K=-5 used fixed point notation in output) else it is printed in scientific notation

3. trailing zeros of the mantissa are trimmed always

4. in case of decimal fixed point for an integer, there is a trailing ".0"

5. in case of scientific notation with a one-digit trimmed mantissa there is an added ".0"

too

Further, \xintPFloatE can now also be redefined as a macro with a parameter delimited by a full

stop, with the full stop also in its ouput as terminator. It would then grab the scientific expo-

nent K as explicit digit possibly prefixed by a minus sign. The macro must be f-expandable.

The macro \xintPFloat_wopt is only there for a micro gain as the package does

\let\xintfloatexprPrintOne\xintPFloat_wopt

as it knows it will be used always with a [P] argument in the xintexpr.sty context.

Modified at 1.4k (2022/05/18). Addition of customization via \xintPFloatZero, \xintPFloatLengt ⤸
hOneSuffix, \xintPFloatNoSciEmax, \xintPFloatNoSciEmin which replace formerly hard-coded be-

haviour.

Breaking change to not add ".0" suffix to integers (when scientific notation dropped) or to

one-digit mantissas.

In my own practice I started being annoyed by the automatic trimming of zeros added at 1.4e.

This change had been influenced by using Python in interactive mode which since 3.1 prints floats

(in decimal conversion) choosing the shortest string. In particular it trims trailing zeros, and

it drops the scientific notation in favor of decimal notation for something like -4<= K <= 15, with

K the scientific exponent.

492

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

At 1.4e I was still influenced by my experience with Maple and did for -4 <= K <= 5. Not very

well thought anyhow (one may wish to use decimal notation when sending things to PostScript, so

perhaps I should have kept with -5).

But, the main problem is with trimming trailing zeros: although in interactive sessions, this

has its logic, as soon as one does tables with numbers, dropping a trailing zero upsets alignments

or creates visual holes compared to other lines and this is in the end very annoying.

After much hesitation, I decided to slightly modifify only the former behaviour: trimming only

if that removes at least 4 zeros. I had also experimented with another condition: trimmed man-

tissas should be at most 6 digits (for example) wide, else use no trimming.

Threshold customizable via \xintPFloatMinTrimmed.

Modified at 1.4l (2022/05/29). The 1.4k check for canceling the trimming of trailing zeros took

over priority over the later check for being an integer when decimal fixed point notation was

used (or being only with a one-digit trimmed mantissa). In particular if user set \xintPFloatM ⤸
inTrimmed to the value of Digits (or P) to avoid trimming it also prevented recognition of some

integers (but not all). Fixed at 1.4l

2400 \def\xintPFloatE{e}%
2401 \def\xintPFloatNoSciEmax{\xint_c_v}% 1e6 uses sci.not.

2402 \def\xintPFloatNoSciEmin{-\xint_c_iv}% 1e-5 uses sci.not.

2403 \def\xintPFloatIntSuffix{}%
2404 \def\xintPFloatLengthOneSuffix{}%
2405 \def\xintPFloatZero{0}%
2406 \def\xintPFloatMinTrimmed{\xint_c_iv}%
2407 \def\xintPFloat {\romannumeral0\xintpfloat }%

2408 \def\xintpfloat #1{\XINT_pfloat_chkopt #1\xint:}%

2409 \def\xintPFloat_wopt[#1]#2%

2410 {%

2411 \romannumeral0\expandafter\XINT_pfloat

2412 \romannumeral0\XINTinfloatS[#1]{#2}#1.%

2413 }%

2414 \def\XINT_pfloat_chkopt #1%

2415 {%

2416 \ifx [#1\expandafter\XINT_pfloat_opt

2417 \else\expandafter\XINT_pfloat_noopt

2418 \fi #1%

2419 }%

2420 \def\XINT_pfloat_noopt #1\xint:%

2421 {%

2422 \expandafter\XINT_pfloat\romannumeral0\XINTinfloatS[\XINTdigits]{#1}%

2423 \XINTdigits.%

2424 }%

2425 \def\XINT_pfloat_opt [\xint:{\expandafter\XINT_pfloat_opt_a\the\numexpr}%

2426 \def\XINT_pfloat_opt_a #1]#2%

2427 {%

2428 \expandafter\XINT_pfloat\romannumeral0\XINTinfloatS[#1]{#2}%

2429 #1.%

2430 }%

2431 \def\XINT_pfloat#1]%

2432 {%

2433 \expandafter\XINT_pfloat_fork\romannumeral0\xintrez{#1]}%

2434 }%

2435 \def\XINT_pfloat_fork#1%

2436 {%

493

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2437 \xint_UDzerominusfork

2438 #1-\XINT_pfloat_zero

2439 0#1\XINT_pfloat_neg

2440 0-\XINT_pfloat_pos

2441 \krof #1%

2442 }%

2443 \def\XINT_pfloat_zero#1]#2.{\expanded{ \xintPFloatZero}}%

2444 \def\XINT_pfloat_neg-{\expandafter-\romannumeral0\XINT_pfloat_pos}%

2445 \def\XINT_pfloat_pos#1/1[#2]#3.%

2446 {%

2447 \expandafter\XINT_pfloat_aa\the\numexpr\xintLength{#1}.%

2448 #3.#2.#1.%

2449 }%

#1 est la longueur de la mantisse trimmée

#2 est Digits ou P

Si #2-#1 < MinTrimmed, on se prépare à peut-être remettre les trailing zeros

On teste pour #2=#1, car c'est le cas le plus fréquent (mais est-ce une bonne idée) car on sait

qu'alors il n'y a pas de trailing zéros donc on va direct vers \XINT_pfloat_a.

2450 \def\XINT_pfloat_aa #1.#2.%

2451 {%

2452 \unless\ifnum\xintPFloatMinTrimmed>\numexpr#2-#1\relax

2453 \xint_dothis\XINT_pfloat_a\fi

2454 \ifnum#2>#1 \xint_dothis{\XINT_pfloat_i #2.}\fi

2455 \xint_orthat\XINT_pfloat_a #1.%

2456 }%

Needed for \xintFracToSci, which uses old pre 1.4k interface, where the P parameter was not stored

for counting how many zeros were trimmed. \xintFracToSci trims always.

2457 \def\XINT_pfloat_a_fork#1%

2458 {%

2459 \xint_UDzerominusfork

2460 #1-\XINT_pfloat_a_zero

2461 0#1\XINT_pfloat_a_neg

2462 0-\XINT_pfloat_a_pos

2463 \krof #1%

2464 }%

2465 \def\XINT_pfloat_a_zero#1]{\expanded{ \xintPFloatZero}}%

2466 \def\XINT_pfloat_a_neg-{\expandafter-\romannumeral0\XINT_pfloat_a_pos}%

2467 \def\XINT_pfloat_a_pos#1/1[#2]%

2468 {%

2469 \expandafter\XINT_pfloat_a\the\numexpr\xintLength{#1}.#2.#1.%

2470 }%

#1 est P > #2 mais peut être encore sous la forme \XINTdigits

#2 est la longueur de la mantisse trimmée

#3 est l'exposant non normalisé

#4 est la mantisse

On reconstitue les trailing zéros à remettre éventuellement.

2471 \def\XINT_pfloat_i #1.#2.%#3.#4.%

2472 {%

2473 \expandafter\XINT_pfloat_j\romannumeral\xintreplicate{#1-#2}0.#2.%

2474 }%

#1 est les trailing zeros à remettre peut-être

494

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

#2 est la longueur de la mantisse trimmée

#3#4 est l'exposant N pour mantisse trimmée entière

#5 serait la mantisse trimmée

On calcule l'exposant scientifique.

La façon bizarre de mettre #3 est liée aux versions anciennes de la macro, héritage conservé

pour minimiser effort d'adaptation.

2475 \def\XINT_pfloat_j #1.#2.#3#4.%#5.

2476 {%

2477 \expandafter\XINT_pfloat_b\the\numexpr#2+#3#4-\xint_c_i.%

2478 #3#2.#1.%

2479 }%

#1 est la longueur de la mantisse trimmée

#2#3 est l'exposant N pour mantisse trimmée

#4 serait la mantisse

On calcule l'exposant scientifique. On est arrivé ici dans une branche où on n'a pas besoin de

remettre les zéros trimmés donc on positionne un dernier argument vide pour \XINT_pfloat_b

2480 \def\XINT_pfloat_a #1.#2#3.%#4.

2481 {%

2482 \expandafter\XINT_pfloat_b\the\numexpr#1+#2#3-\xint_c_i.%

2483 #2#1..%

2484 }%

#1 est l'exposant scientifique K

#2 est le signe ou premier chiffre de l'exposant N pour mantisse trimmée

#3 serait la longueur de la mantisse trimmée

#4 serait les trailing zéros

#5 serait la mantisse trimmée

On va vers \XINT_float_P lorsque l'on n'utilise pas la notation scientifique, mais qu'on a besoin

de chiffres non nuls fractionnaires, et vers \XINT_float_Ps si on n'en a pas besoin.

On va vers \XINT_pfloat_N lorsque l'on n'utilise pas la notation scientifique et que l'exposant

scientifique était strictement négatif.

2485 \def\XINT_pfloat_b #1.#2%#3.#4.#5.

2486 {%

2487 \ifnum \xintPFloatNoSciEmax<#1 \xint_dothis\XINT_pfloat_sci\fi

2488 \ifnum \xintPFloatNoSciEmin>#1 \xint_dothis\XINT_pfloat_sci\fi

2489 \ifnum #1<\xint_c_ \xint_dothis\XINT_pfloat_N\fi

2490 \if-#2\xint_dothis\XINT_pfloat_P\fi

2491 \xint_orthat\XINT_pfloat_Ps

2492 #1.%

2493 }%

#1 is the scientific exponent, #2 is the length of the trimmed mantissa, #3 are the trailing zeros,

#4 is the trimmed integer mantissa

\xintPFloatE can be replaced by any f-expandable macro with a dot-delimited argument which pro-

duces a dot-delimited output.

2494 \def\XINT_pfloat_sci #1.#2.%

2495 {%

2496 \ifnum#2=\xint_c_i\expandafter\XINT_pfloat_sci_i\expandafter\fi

2497 \expandafter\XINT_pfloat_sci_a\romannumeral`&&@\xintPFloatE #1.%

2498 }%

2499 \def\XINT_pfloat_sci_a #1.#2.#3#4.{ #3.#4#2#1}%

#1#2=\fi\XINT_pfloat_sci_a

495

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1-digit mantissa, hesitation between d.0eK or deK Finally at 1.4k, \xintPFloatLengthOneSuffix

for customization.

2500 \def\XINT_pfloat_sci_i #1#2#3.#4.#5.{\expanded{#1 #5\xintPFloatLengthOneSuffix}#3}%

#1=sci.exp. K, #2=mant. wd L, #3=trailing zéros, #4=trimmed mantissa

For _N, #1 is at most -1, for _P, #1 is at least 0. For _P there will be fractional digits, and

#1+1 digits before the mark.

2501 \def\XINT_pfloat_N#1.#2.#3.#4.%

2502 {%

2503 \expandafter\XINT_pfloat_N_e\romannumeral\xintreplicate{-#1}{0}#4#3%

2504 }%

2505 \def\XINT_pfloat_N_e 0{ 0.}%

#1=sci.exp. K, #2=mant. wd L, #3=trailing zéros, #4=trimmed mantissa

Abusive usage of internal \XINT_split_fromleft_a. It means using x = -1 - #1 in \xintDecSplit

from xint.sty. We benefit also with the way \xintDecSplit is built upon \XINT_split_fromleft with

a final clean-up which here we can shortcut via using terminator "\xint_bye." not "\xint_bye.."

2506 \def\XINT_pfloat_P #1.#2.#3.#4.%

2507 {%

2508 \expandafter\XINT_split_fromleft_a

2509 \the\numexpr\xint_c_vii-#1.#4\xint_bye2345678\xint_bye.#3%

2510 }%

Here we have an integer so we only need to postfix the trimmed mantissa #4 with #1+1-#2 zeros

(#1=sci exp., #2=trimmed mantissa width). Less cumbersome to do that with \expanded. And the

trailing zeros #3 ignored here.

2511 \def\XINT_pfloat_Ps #1.#2.#3.#4.%

2512 {%

2513 \expanded{ #4%

2514 \romannumeral\xintreplicate{#1+\xint_c_i-#2}{0}\xintPFloatIntSuffix}%

2515 }%

24.81. \xintFloatToDecimal

Added at 1.4k (2022/05/18).

2516 \def\xintFloatToDecimal {\romannumeral0\xintfloattodecimal }%

2517 \def\xintfloattodecimal #1{\XINT_floattodec_chkopt #1\xint:}%

2518 \def\XINT_floattodec_chkopt #1%

2519 {%

2520 \ifx [#1\expandafter\XINT_floattodec_opt

2521 \else\expandafter\XINT_floattodec_noopt

2522 \fi #1%

2523 }%

2524 \def\XINT_floattodec_noopt #1\xint:%

2525 {%

2526 \expandafter\XINT_floattodec\romannumeral0\XINTinfloatS[\XINTdigits]{#1}%

2527 }%

2528 \def\XINT_floattodec_opt [\xint:#1]%

2529 {%

2530 \expandafter\XINT_floattodec\romannumeral0\XINTinfloatS[#1]%

2531 }%

Temptation to try to use direct access to lower entry points from \xintREZ, but it dates back from

very early days and uses old \Z delimiters (same remarks for the code jumping from \xintFracToSci

to \xintrez)

496

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2532 \def\XINT_floattodec#1]%

2533 {%

2534 \expandafter\XINT_dectostr\romannumeral0\xintrez{#1]}%

2535 }%

24.82. \XINTinFloatFrac

Added at 1.09i (2013/12/18).
For frac function in \xintfloatexpr. This version computes exactly from the input the frac-

tional part and then only converts it into a float with the asked-for number of digits. I will

have to think it again some day, certainly.

Modified at 1.1 (2014/10/28). 1.1 removes optional argument for which there was anyhow no inter-

face, for technical reasons having to do with \xintNewExpr.

Modified at 1.1a (2014/11/07). 1.1a renames the macro as \XINTinFloatFracdigits (from \XINTinFloatFrac)

to be synchronous with the \XINTinFloatSqrt and \XINTinFloat habits related to \xintNewExpr

context and issues with macro names.

Modified at 1.4e (2021/05/05). 1.4e renames it back to \XINTinFloatFrac because of all such sim-

ilarly named macros also using \XINTdigits forcedly.

2536 \def\XINTinFloatFrac {\romannumeral0\XINTinfloatfrac}%

2537 \def\XINTinfloatfrac #1%

2538 {%

2539 \expandafter\XINT_infloatfrac_a\expandafter {\romannumeral0\xinttfrac{#1}}%

2540 }%

2541 \def\XINT_infloatfrac_a {\XINTinfloat[\XINTdigits]}%

24.83. \xintFloatAdd, \XINTinFloatAdd
First included in release 1.07.

1.09ka improved a bit the efficiency. However the add, sub, mul, div routines were provisory

and supposed to be revised soon.

Which didn't happen until 1.2f. Now, the inputs are first rounded to P digits, not P+2 as ear-

lier.

See general introduction for important changes at 1.4e relative to the \XINTinFloat<name>

macros.

2542 \def\xintFloatAdd {\romannumeral0\xintfloatadd}%

2543 \def\xintfloatadd #1{\XINT_fladd_chkopt \xintfloat #1\xint:}%

2544 \def\XINTinFloatAdd{\romannumeral0\XINTinfloatadd }%

2545 \def\XINTinfloatadd{\XINT_fladd_opt_a\XINTdigits.\XINTinfloatS}%

2546 \def\XINTinFloatAdd_wopt{\romannumeral0\XINTinfloatadd_wopt}%

2547 \def\XINTinfloatadd_wopt[#1]{\expandafter\XINT_fladd_opt_a\the\numexpr#1.\XINTinfloatS}%

2548 \def\XINT_fladd_chkopt #1#2%

2549 {%

2550 \ifx [#2\expandafter\XINT_fladd_opt

2551 \else\expandafter\XINT_fladd_noopt

2552 \fi #1#2%

2553 }%

2554 \def\XINT_fladd_noopt #1#2\xint:#3%

2555 {%

2556 #1[\XINTdigits]%

2557 {\expandafter\XINT_FL_add_a

2558 \romannumeral0\XINTinfloat[\XINTdigits]{#2}\XINTdigits.{#3}}%

497

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2559 }%

2560 \def\XINT_fladd_opt #1[\xint:#2]%#3#4%

2561 {%

2562 \expandafter\XINT_fladd_opt_a\the\numexpr #2.#1%

2563 }%

2564 \def\XINT_fladd_opt_a #1.#2#3#4%

2565 {%

2566 #2[#1]{\expandafter\XINT_FL_add_a\romannumeral0\XINTinfloat[#1]{#3}#1.{#4}}%

2567 }%

2568 \def\XINT_FL_add_a #1%

2569 {%

2570 \xint_gob_til_zero #1\XINT_FL_add_zero 0\XINT_FL_add_b #1%

2571 }%

2572 \def\XINT_FL_add_zero #1.#2{#2}%[[

2573 \def\XINT_FL_add_b #1]#2.#3%

2574 {%

2575 \expandafter\XINT_FL_add_c\romannumeral0\XINTinfloat[#2]{#3}#2.#1]%

2576 }%

2577 \def\XINT_FL_add_c #1%

2578 {%

2579 \xint_gob_til_zero #1\XINT_FL_add_zero 0\XINT_FL_add_d #1%

2580 }%

2581 \def\XINT_FL_add_d #1[#2]#3.#4[#5]%

2582 {%

2583 \ifnum\numexpr #2-#3-#5>\xint_c_\xint_dothis\xint_firstoftwo\fi

2584 \ifnum\numexpr #5-#3-#2>\xint_c_\xint_dothis\xint_secondoftwo\fi

2585 \xint_orthat\xintAdd {#1[#2]}{#4[#5]}%

2586 }%

24.84. \xintFloatSub, \XINTinFloatSub

Added at 1.07 (2013/05/25).

Modified at 1.2f (2016/03/12). Starting with 1.2f the arguments undergo an intial rounding to the

target precision P not P+2.

2587 \def\xintFloatSub {\romannumeral0\xintfloatsub}%

2588 \def\xintfloatsub #1{\XINT_flsub_chkopt \xintfloat #1\xint:}%

2589 \def\XINTinFloatSub{\romannumeral0\XINTinfloatsub}%
2590 \def\XINTinfloatsub{\XINT_flsub_opt_a\XINTdigits.\XINTinfloatS}%

2591 \def\XINTinFloatSub_wopt{\romannumeral0\XINTinfloatsub_wopt}%

2592 \def\XINTinfloatsub_wopt[#1]{\expandafter\XINT_flsub_opt_a\the\numexpr#1.\XINTinfloatS}%

2593 \def\XINT_flsub_chkopt #1#2%

2594 {%

2595 \ifx [#2\expandafter\XINT_flsub_opt

2596 \else\expandafter\XINT_flsub_noopt

2597 \fi #1#2%

2598 }%

2599 \def\XINT_flsub_noopt #1#2\xint:#3%

2600 {%

2601 #1[\XINTdigits]%

2602 {\expandafter\XINT_FL_add_a

2603 \romannumeral0\XINTinfloat[\XINTdigits]{#2}\XINTdigits.{\xintOpp{#3}}}%

2604 }%

498

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2605 \def\XINT_flsub_opt #1[\xint:#2]%#3#4%

2606 {%

2607 \expandafter\XINT_flsub_opt_a\the\numexpr #2.#1%

2608 }%

2609 \def\XINT_flsub_opt_a #1.#2#3#4%

2610 {%

2611 #2[#1]{\expandafter\XINT_FL_add_a\romannumeral0\XINTinfloat[#1]{#3}#1.{\xintOpp{#4}}}%

2612 }%

24.85. \xintFloatMul, \XINTinFloatMul

Added at 1.07 (2013/05/25).

Modified at 1.2d (2015/11/18). Starting with 1.2f the arguments are rounded to the target preci-

sion P not P+2.

Modified at 1.2g (2016/03/19). 1.2g handles the inputs via \XINTinFloatS which will be more ef-

ficient when the precision is large and the input is for example a small constant like 2.

2613 \def\xintFloatMul {\romannumeral0\xintfloatmul}%

2614 \def\xintfloatmul #1{\XINT_flmul_chkopt \xintfloat #1\xint:}%

2615 \def\XINTinFloatMul{\romannumeral0\XINTinfloatmul}%
2616 \def\XINTinfloatmul{\XINT_flmul_opt_a\XINTdigits.\XINTinfloatS}%

2617 \def\XINTinFloatMul_wopt{\romannumeral0\XINTinfloatmul_wopt}%

2618 \def\XINTinfloatmul_wopt[#1]{\expandafter\XINT_flmul_opt_a\the\numexpr#1.\XINTinfloatS}%

2619 \def\XINT_flmul_chkopt #1#2%

2620 {%

2621 \ifx [#2\expandafter\XINT_flmul_opt

2622 \else\expandafter\XINT_flmul_noopt

2623 \fi #1#2%

2624 }%

2625 \def\XINT_flmul_noopt #1#2\xint:#3%

2626 {%

2627 #1[\XINTdigits]%

2628 {\expandafter\XINT_FL_mul_a

2629 \romannumeral0\XINTinfloatS[\XINTdigits]{#2}\XINTdigits.{#3}}%

2630 }%

2631 \def\XINT_flmul_opt #1[\xint:#2]%#3#4%

2632 {%

2633 \expandafter\XINT_flmul_opt_a\the\numexpr #2.#1%

2634 }%

2635 \def\XINT_flmul_opt_a #1.#2#3#4%

2636 {%

2637 #2[#1]{\expandafter\XINT_FL_mul_a\romannumeral0\XINTinfloatS[#1]{#3}#1.{#4}}%

2638 }%

2639 \def\XINT_FL_mul_a #1[#2]#3.#4%

2640 {%

2641 \expandafter\XINT_FL_mul_b\romannumeral0\XINTinfloatS[#3]{#4}#1[#2]%

2642 }%

2643 \def\XINT_FL_mul_b #1[#2]#3[#4]{\xintiiMul{#3}{#1}/1[#4+#2]}%

24.86. \xintFloatSqr, \XINTinFloatSqr

Added at 1.4e (2021/05/05). Strangely \xintFloatSqr had never been defined so far.

499

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

An \XINTinFloatSqr{#1} was defined in xintexpr.sty directly as \XINTinFloatMul[\XINTdigit ⤸
s]{#1}{#1}, to support the sqr() function. The {#1}{#1} causes no problem as #1 in this context

is always pre-expanded so we don't need to worry about this, and the \xintdeffloatfunc mechanism

should hopefully take care to add the needed argument pre-expansion if need be.

Anyway let's do this finally properly here.

2644 \def\xintFloatSqr {\romannumeral0\xintfloatsqr}%

2645 \def\xintfloatsqr #1{\XINT_flsqr_chkopt \xintfloat #1\xint:}%

2646 \def\XINTinFloatSqr{\romannumeral0\XINTinfloatsqr}%
2647 \def\XINTinfloatsqr{\XINT_flsqr_opt_a\XINTdigits.\XINTinfloatS}%

2648 \def\XINT_flsqr_chkopt #1#2%

2649 {%

2650 \ifx [#2\expandafter\XINT_flsqr_opt

2651 \else\expandafter\XINT_flsqr_noopt

2652 \fi #1#2%

2653 }%

2654 \def\XINT_flsqr_noopt #1#2\xint:

2655 {%

2656 #1[\XINTdigits]%

2657 {\expandafter\XINT_FL_sqr_a\romannumeral0\XINTinfloatS[\XINTdigits]{#2}}%

2658 }%

2659 \def\XINT_flsqr_opt #1[\xint:#2]%

2660 {%

2661 \expandafter\XINT_flsqr_opt_a\the\numexpr #2.#1%

2662 }%

2663 \def\XINT_flsqr_opt_a #1.#2#3%

2664 {%

2665 #2[#1]{\expandafter\XINT_FL_sqr_a\romannumeral0\XINTinfloatS[#1]{#3}}%

2666 }%

2667 \def\XINT_FL_sqr_a #1[#2]{\xintiiSqr{#1}/1[#2+#2]}%

2668 \def\XINTinFloatSqr_wopt[#1]#2{\XINTinFloatS[#1]{\expandafter\XINT_FL_sqr_a\romannumeral0\XINTinfloatS[#1]{#2}}}%

24.87. \XINTinFloatInv

Added at 1.3e (2019/04/05). Added belatedly at 1.3e, to support inv() function. We use Short

output, for rare inv(\xintexpr 1/3\relax) case. I need to think the whole thing out at some

later date.

2669 \def\XINTinFloatInv#1{\XINTinFloatS[\XINTdigits]{\xintInv{#1}}}%
2670 \def\XINTinFloatInv_wopt[#1]#2{\XINTinFloatS[#1]{\xintInv{#2}}}%

24.88. \xintFloatDiv, \XINTinFloatDiv

Added at 1.07 (2013/05/25).

Modified at 1.2f (2016/03/12). Starting with 1.2f the arguments are rounded to the target preci-

sion P not P+2.

Modified at 1.2g (2016/03/19). 1.2g handles the inputs via \XINTinFloatS which will be more ef-

ficient when the precision is large and the input is for example a small constant like 2.

The actual rounding of the quotient is handled via \xintfloat (or \XINTinfloatS).

Modified at 1.2k (2017/01/06). 1.2k does the same kind of improvement in \XINT_FL_div_b as for

multiplication: earlier code was unnecessarily high level.

2671 \def\xintFloatDiv {\romannumeral0\xintfloatdiv}%

2672 \def\xintfloatdiv #1{\XINT_fldiv_chkopt \xintfloat #1\xint:}%

500

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2673 \def\XINTinFloatDiv{\romannumeral0\XINTinfloatdiv}%
2674 \def\XINTinfloatdiv{\XINT_fldiv_opt_a\XINTdigits.\XINTinfloatS}%

2675 \def\XINTinFloatDiv_wopt[#1]{\romannumeral0\XINT_fldiv_opt_a#1.\XINTinfloatS}%

2676 \def\XINT_fldiv_chkopt #1#2%

2677 {%

2678 \ifx [#2\expandafter\XINT_fldiv_opt

2679 \else\expandafter\XINT_fldiv_noopt

2680 \fi #1#2%

2681 }%

1.4g adds here intercept of second argument being zero, else a low level error will arise at later

stage from the the fall-back value returned by core iidivision being 0 and not having expected

number of digits at \XINT_infloat_Qq and split from left returning some empty value breaking the

\ifnum test in \XINT_infloat_Rq.

2682 \def\XINT_fldiv_noopt #1#2\xint:#3%

2683 {%

2684 #1[\XINTdigits]%

2685 {\expandafter\XINT_FL_div_aa

2686 \romannumeral0\XINTinfloatS[\XINTdigits]{#3}\XINTdigits.{#2}}%

2687 }%

2688 \def\XINT_FL_div_aa #1%

2689 {%

2690 \xint_gob_til_zero#1\XINT_FL_div_Bzero0\XINT_FL_div_a #1%

2691 }%

2692 \def\XINT_FL_div_Bzero0\XINT_FL_div_a#1[#2]#3.#4%

2693 {%

2694 \XINT_signalcondition{DivisionByZero}{Division by zero (#1[#2]) of #4}{}{ 0[0]}%

2695 }%

2696 \def\XINT_fldiv_opt #1[\xint:#2]%#3#4%

2697 {%

2698 \expandafter\XINT_fldiv_opt_a\the\numexpr #2.#1%

2699 }%

Also here added early check at 1.4g if divisor is zero.

2700 \def\XINT_fldiv_opt_a #1.#2#3#4%

2701 {%

2702 #2[#1]{\expandafter\XINT_FL_div_aa\romannumeral0\XINTinfloatS[#1]{#4}#1.{#3}}%

2703 }%

2704 \def\XINT_FL_div_a #1[#2]#3.#4%

2705 {%

2706 \expandafter\XINT_FL_div_b\romannumeral0\XINTinfloatS[#3]{#4}/#1e#2%

2707 }%

2708 \def\XINT_FL_div_b #1[#2]{#1e#2}%

24.89. \xintFloatPow, \XINTinFloatPow

Added at 1.07 (2013/05/25).
1.09j has re-organized the core loop.

2015/12/07. I have hesitated to map ^ in expressions to \xintFloatPow rather than \xintFloatPower.

But for 1.234567890123456 to the power 2145678912 with P=16, using Pow rather than Power seems to

bring only about 5% gain.

This routine requires the exponent x to be compatible with \numexpr parsing.

501

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

Modified at 1.2f (2016/03/12). 1.2f has rewritten the code for better efficiency. Also, now

the argument A for A^x is first rounded to P digits before switching to the increased working

precision (which depends upon x).

2709 \def\xintFloatPow {\romannumeral0\xintfloatpow}%

2710 \def\xintfloatpow #1{\XINT_flpow_chkopt \xintfloat #1\xint:}%

2711 \def\XINTinFloatPow{\romannumeral0\XINTinfloatpow }%

2712 \def\XINTinfloatpow{\XINT_flpow_opt_a\XINTdigits.\XINTinfloatS}%

2713 \def\XINTinfloatpow_wopt[#1]{\expandafter\XINT_flpow_opt_a\the\numexpr#1.\XINTinfloatS}%

2714 \def\XINT_flpow_chkopt #1#2%

2715 {%

2716 \ifx [#2\expandafter\XINT_flpow_opt

2717 \else\expandafter\XINT_flpow_noopt

2718 \fi

2719 #1#2%

2720 }%

2721 \def\XINT_flpow_noopt #1#2\xint:#3%

2722 {%

2723 \expandafter\XINT_flpow_checkB_a

2724 \the\numexpr #3.\XINTdigits.{#2}{#1[\XINTdigits]}%

2725 }%

2726 \def\XINT_flpow_opt #1[\xint:#2]%

2727 {%

2728 \expandafter\XINT_flpow_opt_a\the\numexpr #2.#1%

2729 }%

2730 \def\XINT_flpow_opt_a #1.#2#3#4%

2731 {%

2732 \expandafter\XINT_flpow_checkB_a\the\numexpr #4.#1.{#3}{#2[#1]}%

2733 }%

2734 \def\XINT_flpow_checkB_a #1%

2735 {%

2736 \xint_UDzerominusfork

2737 #1-\XINT_flpow_BisZero

2738 0#1{\XINT_flpow_checkB_b -}%

2739 0-{\XINT_flpow_checkB_b {}#1}%

2740 \krof

2741 }%

2742 \def\XINT_flpow_BisZero .#1.#2#3{#3{1[0]}}%

2743 \def\XINT_flpow_checkB_b #1#2.#3.%

2744 {%

2745 \expandafter\XINT_flpow_checkB_c

2746 \the\numexpr\xintLength{#2}+\xint_c_iii.#3.#2.{#1}%

2747 }%

2748 \def\XINT_flpow_checkB_c #1.#2.%

2749 {%

2750 \expandafter\XINT_flpow_checkB_d\the\numexpr#1+#2.#1.#2.%

2751 }%

1.2f rounds input to P digits, first.

2752 \def\XINT_flpow_checkB_d #1.#2.#3.#4.#5#6%

2753 {%

2754 \expandafter \XINT_flpow_aa

2755 \romannumeral0\XINTinfloat [#3]{#6}{#2}{#1}{#4}{#5}%

2756 }%

502

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2757 \def\XINT_flpow_aa #1[#2]#3%

2758 {%

2759 \expandafter\XINT_flpow_ab\the\numexpr #2-#3\expandafter.%

2760 \romannumeral\XINT_rep #3\endcsname0.#1.%

2761 }%

2762 \def\XINT_flpow_ab #1.#2.#3.{\XINT_flpow_a #3#2[#1]}%

2763 \def\XINT_flpow_a #1%

2764 {%

2765 \xint_UDzerominusfork

2766 #1-\XINT_flpow_zero

2767 0#1{\XINT_flpow_b \iftrue}%

2768 0-{\XINT_flpow_b \iffalse#1}%

2769 \krof

2770 }%

2771 \def\XINT_flpow_zero #1[#2]#3#4#5#6%

2772 {%

2773 #6{\if 1#51\xint_dothis {0[0]}\fi

2774 \xint_orthat

2775 {\XINT_signalcondition{DivisionByZero}{0 raised to power -#4.}{}{ 0[0]}}%

2776 }%

2777 }%

2778 \def\XINT_flpow_b #1#2[#3]#4#5%

2779 {%

2780 \XINT_flpow_loopI #5.#3.#2.#4.{#1\ifodd #5 \xint_c_i\fi\fi}%

2781 }%

2782 \def\XINT_flpow_truncate #1.#2.#3.%

2783 {%

2784 \expandafter\XINT_flpow_truncate_a

2785 \romannumeral0\XINT_split_fromleft

2786 #3.#2\xint_bye2345678\xint_bye..#1.#3.%

2787 }%

2788 \def\XINT_flpow_truncate_a #1.#2.#3.{#3+\xintLength{#2}.#1.}%

2789 \def\XINT_flpow_loopI #1.%

2790 {%

2791 \ifnum #1=\xint_c_i\expandafter\XINT_flpow_ItoIII\fi

2792 \ifodd #1

2793 \expandafter\XINT_flpow_loopI_odd

2794 \else

2795 \expandafter\XINT_flpow_loopI_even

2796 \fi

2797 #1.%

2798 }%

2799 \def\XINT_flpow_ItoIII\ifodd #1\fi #2.#3.#4.#5.#6%

2800 {%

2801 \expandafter\XINT_flpow_III\the\numexpr #6+\xint_c_.#3.#4.#5.%

2802 }%

2803 \def\XINT_flpow_loopI_even #1.#2.#3.%#4.%

2804 {%

2805 \expandafter\XINT_flpow_loopI

2806 \the\numexpr #1/\xint_c_ii\expandafter.%

2807 \the\numexpr\expandafter\XINT_flpow_truncate

2808 \the\numexpr\xint_c_ii*#2\expandafter.\romannumeral0\xintiisqr{#3}.%

503

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2809 }%

2810 \def\XINT_flpow_loopI_odd #1.#2.#3.#4.%

2811 {%

2812 \expandafter\XINT_flpow_loopII

2813 \the\numexpr #1/\xint_c_ii-\xint_c_i\expandafter.%

2814 \the\numexpr\expandafter\XINT_flpow_truncate

2815 \the\numexpr\xint_c_ii*#2\expandafter.\romannumeral0\xintiisqr{#3}.#4.#2.#3.%

2816 }%

2817 \def\XINT_flpow_loopII #1.%

2818 {%

2819 \ifnum #1 = \xint_c_i\expandafter\XINT_flpow_IItoIII\fi

2820 \ifodd #1

2821 \expandafter\XINT_flpow_loopII_odd

2822 \else

2823 \expandafter\XINT_flpow_loopII_even

2824 \fi

2825 #1.%

2826 }%

2827 \def\XINT_flpow_loopII_even #1.#2.#3.%#4.%

2828 {%

2829 \expandafter\XINT_flpow_loopII

2830 \the\numexpr #1/\xint_c_ii\expandafter.%

2831 \the\numexpr\expandafter\XINT_flpow_truncate

2832 \the\numexpr\xint_c_ii*#2\expandafter.\romannumeral0\xintiisqr{#3}.%

2833 }%

2834 \def\XINT_flpow_loopII_odd #1.#2.#3.#4.#5.#6.%

2835 {%

2836 \expandafter\XINT_flpow_loopII_odda

2837 \the\numexpr\expandafter\XINT_flpow_truncate

2838 \the\numexpr#2+#5\expandafter.\romannumeral0\xintiimul{#3}{#6}.#4.%

2839 #1.#2.#3.%

2840 }%

2841 \def\XINT_flpow_loopII_odda #1.#2.#3.#4.#5.#6.%

2842 {%

2843 \expandafter\XINT_flpow_loopII

2844 \the\numexpr #4/\xint_c_ii-\xint_c_i\expandafter.%

2845 \the\numexpr\expandafter\XINT_flpow_truncate

2846 \the\numexpr\xint_c_ii*#5\expandafter.\romannumeral0\xintiisqr{#6}.#3.%

2847 #1.#2.%

2848 }%

2849 \def\XINT_flpow_IItoIII\ifodd #1\fi #2.#3.#4.#5.#6.#7.#8%

2850 {%

2851 \expandafter\XINT_flpow_III\the\numexpr #8+\xint_c_\expandafter.%

2852 \the\numexpr\expandafter\XINT_flpow_truncate

2853 \the\numexpr#3+#6\expandafter.\romannumeral0\xintiimul{#4}{#7}.#5.%

2854 }%

This ending is common with \xintFloatPower.

In the case of negative exponent we need to inverse the Q-digits mantissa. This requires no

special attention now as 1.2k's \xintFloat does correct rounding of fractions hence it is easy to

bound the total error. It can be checked that the algorithm after final rounding to the target

precision computes a value Z whose distance to the exact theoretical will be less than 0.52 ulp(Z)

(and worst cases can only be slightly worse than 0.51 ulp(Z)).

504

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

In the case of the half-integer exponent (only via the expression interface,) the computation

(which proceeds via \XINTinFloatPowerH) ends with a square root. This square root extraction is

done with 3 guard digits (the power operations were done with more.) Then the value is rounded

to the target precision. There is thus this rounding to 3 guard digits (in the case of negative

exponent the reciprocal is computed before the square-root), then the square root is (computed

with exact rounding for these 3 guard digits), and then there is the final rounding of this to the

target precision. The total error (for positive as well as negative exponent) has been estimated

to at worst possibly exceed slightly 0.5125 ulp(Z), and at any rate it is less than 0.52 ulp(Z).

2855 \def\XINT_flpow_III #1.#2.#3.#4.#5%

2856 {%

2857 \expandafter\XINT_flpow_IIIend

2858 \xint_UDsignfork

2859 #5{{1/#3[-#2]}}%

2860 -{{#3[#2]}}%

2861 \krof #1%

2862 }%

2863 \def\XINT_flpow_IIIend #1#2#3%

2864 {#3{\if#21\xint_afterfi{\expandafter-\romannumeral`&&@}\fi#1}}%

24.90. \xintFloatPower, \XINTinFloatPower

Added at 1.07 (2013/05/25). The core loop has been re-organized in 1.09j for some slight ef-

ficiency gain. The exponent B is given to \xintNum. The ^ in expressions is mapped to this

routine.

Modified at 1.2f (2016/03/12). Same modifications as in \xintFloatPow for 1.2f.

1.2f \XINTinFloatPowerH (now moved to xintlog, and renamed). It truncated the exponent to an

integer of half-integer, and in the latter case use Square-root extraction. At 1.2k this was

improved as 1.2f stupidly rounded to Digits before, not after the square root extraction, 1.2k

kept 3 guard digits for this last step. And the initial step was changed to a rounding rather than

truncating.

Modified at 1.4e (2021/05/05). Until 1.4e this \XINTinFloatPowerH was the macro for a^b in ex-

pressions, but of course it behaved strangely for b not an integer or an half-integer! At 1.4e,

the non-integer, non-half-integer exponents will be handled via log10() and pow10() support

macros, see xintlog. The code has now been relocated there.

2865 \def\xintFloatPower {\romannumeral0\xintfloatpower}%

2866 \def\xintfloatpower #1{\XINT_flpower_chkopt \xintfloat #1\xint:}%

2867 \def\XINTinFloatPower{\romannumeral0\XINTinfloatpower }%

2868 \def\XINTinfloatpower{\XINT_flpower_opt_a\XINTdigits.\XINTinfloatS}%

Start of macro. Check for optional argument.

2869 \def\XINT_flpower_chkopt #1#2%

2870 {%

2871 \ifx [#2\expandafter\XINT_flpower_opt

2872 \else\expandafter\XINT_flpower_noopt

2873 \fi

2874 #1#2%

2875 }%

2876 \def\XINT_flpower_noopt #1#2\xint:#3%

2877 {%

2878 \expandafter\XINT_flpower_checkB_a

2879 \romannumeral0\xintnum{#3}.\XINTdigits.{#2}{#1[\XINTdigits]}%

2880 }%

505

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2881 \def\XINT_flpower_opt #1[\xint:#2]%

2882 {%

2883 \expandafter\XINT_flpower_opt_a\the\numexpr #2.#1%

2884 }%

2885 \def\XINT_flpower_opt_a #1.#2#3#4%

2886 {%

2887 \expandafter\XINT_flpower_checkB_a

2888 \romannumeral0\xintnum{#4}.#1.{#3}{#2[#1]}%

2889 }%

2890 \def\XINT_flpower_checkB_a #1%

2891 {%

2892 \xint_UDzerominusfork

2893 #1-{\XINT_flpower_BisZero 0}%

2894 0#1{\XINT_flpower_checkB_b -}%

2895 0-{\XINT_flpower_checkB_b {}#1}%

2896 \krof

2897 }%

2898 \def\XINT_flpower_BisZero 0.#1.#2#3{#3{1[0]}}%

2899 \def\XINT_flpower_checkB_b #1#2.#3.%

2900 {%

2901 \expandafter\XINT_flpower_checkB_c

2902 \the\numexpr\xintLength{#2}+\xint_c_iii.#3.#2.{#1}%

2903 }%

2904 \def\XINT_flpower_checkB_c #1.#2.%

2905 {%

2906 \expandafter\XINT_flpower_checkB_d\the\numexpr#1+#2.#1.#2.%

2907 }%

2908 \def\XINT_flpower_checkB_d #1.#2.#3.#4.#5#6%

2909 {%

2910 \expandafter \XINT_flpower_aa

2911 \romannumeral0\XINTinfloat [#3]{#6}{#2}{#1}{#4}{#5}%

2912 }%

2913 \def\XINT_flpower_aa #1[#2]#3%

2914 {%

2915 \expandafter\XINT_flpower_ab\the\numexpr #2-#3\expandafter.%

2916 \romannumeral\XINT_rep #3\endcsname0.#1.%

2917 }%

2918 \def\XINT_flpower_ab #1.#2.#3.{\XINT_flpower_a #3#2[#1]}%

2919 \def\XINT_flpower_a #1%

2920 {%

2921 \xint_UDzerominusfork

2922 #1-\XINT_flpow_zero

2923 0#1{\XINT_flpower_b \iftrue}%

2924 0-{\XINT_flpower_b \iffalse#1}%

2925 \krof

2926 }%

2927 \def\XINT_flpower_b #1#2[#3]#4#5%

2928 {%

2929 \XINT_flpower_loopI #5.#3.#2.#4.{#1\xintiiOdd{#5}\fi}%

2930 }%

2931 \def\XINT_flpower_loopI #1.%

2932 {%

506

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2933 \if1\XINT_isOne {#1}\xint_dothis\XINT_flpower_ItoIII\fi

2934 \ifodd\xintLDg{#1} %<- intentional space

2935 \xint_dothis{\expandafter\XINT_flpower_loopI_odd}\fi

2936 \xint_orthat{\expandafter\XINT_flpower_loopI_even}%

2937 \romannumeral0\XINT_half

2938 #1\xint_bye\xint_Bye345678\xint_bye

2939 *\xint_c_v+\xint_c_v)/\xint_c_x-\xint_c_i\relax.%

2940 }%

2941 \def\XINT_flpower_ItoIII #1.#2.#3.#4.#5%

2942 {%

2943 \expandafter\XINT_flpow_III\the\numexpr #5+\xint_c_.#2.#3.#4.%

2944 }%

2945 \def\XINT_flpower_loopI_even #1.#2.#3.#4.%

2946 {%

2947 \expandafter\XINT_flpower_toloopI

2948 \the\numexpr\expandafter\XINT_flpow_truncate

2949 \the\numexpr\xint_c_ii*#2\expandafter.\romannumeral0\xintiisqr{#3}.#4.#1.%

2950 }%

2951 \def\XINT_flpower_toloopI #1.#2.#3.#4.{\XINT_flpower_loopI #4.#1.#2.#3.}%

2952 \def\XINT_flpower_loopI_odd #1.#2.#3.#4.%

2953 {%

2954 \expandafter\XINT_flpower_toloopII

2955 \the\numexpr\expandafter\XINT_flpow_truncate

2956 \the\numexpr\xint_c_ii*#2\expandafter.\romannumeral0\xintiisqr{#3}.#4.%

2957 #1.#2.#3.%

2958 }%

2959 \def\XINT_flpower_toloopII #1.#2.#3.#4.{\XINT_flpower_loopII #4.#1.#2.#3.}%

2960 \def\XINT_flpower_loopII #1.%

2961 {%

2962 \if1\XINT_isOne{#1}\xint_dothis\XINT_flpower_IItoIII\fi

2963 \ifodd\xintLDg{#1} %<- intentional space

2964 \xint_dothis{\expandafter\XINT_flpower_loopII_odd}\fi

2965 \xint_orthat{\expandafter\XINT_flpower_loopII_even}%

2966 \romannumeral0\XINT_half#1\xint_bye\xint_Bye345678\xint_bye

2967 *\xint_c_v+\xint_c_v)/\xint_c_x-\xint_c_i\relax.%

2968 }%

2969 \def\XINT_flpower_loopII_even #1.#2.#3.#4.%

2970 {%

2971 \expandafter\XINT_flpower_toloopII

2972 \the\numexpr\expandafter\XINT_flpow_truncate

2973 \the\numexpr\xint_c_ii*#2\expandafter.\romannumeral0\xintiisqr{#3}.#4.#1.%

2974 }%

2975 \def\XINT_flpower_loopII_odd #1.#2.#3.#4.#5.#6.%

2976 {%

2977 \expandafter\XINT_flpower_loopII_odda

2978 \the\numexpr\expandafter\XINT_flpow_truncate

2979 \the\numexpr#2+#5\expandafter.\romannumeral0\xintiimul{#3}{#6}.#4.%

2980 #1.#2.#3.%

2981 }%

2982 \def\XINT_flpower_loopII_odda #1.#2.#3.#4.#5.#6.%

2983 {%

2984 \expandafter\XINT_flpower_toloopII

507

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

2985 \the\numexpr\expandafter\XINT_flpow_truncate

2986 \the\numexpr\xint_c_ii*#5\expandafter.\romannumeral0\xintiisqr{#6}.#3.%

2987 #4.#1.#2.%

2988 }%

2989 \def\XINT_flpower_IItoIII #1.#2.#3.#4.#5.#6.#7%

2990 {%

2991 \expandafter\XINT_flpow_III\the\numexpr #7+\xint_c_\expandafter.%

2992 \the\numexpr\expandafter\XINT_flpow_truncate

2993 \the\numexpr#2+#5\expandafter.\romannumeral0\xintiimul{#3}{#6}.#4.%

2994 }%

24.91. \xintFloatFac, \XINTFloatFac

Added at 1.2 (2015/10/10).

2995 \def\xintFloatFac {\romannumeral0\xintfloatfac}%

2996 \def\xintfloatfac #1{\XINT_flfac_chkopt \xintfloat #1\xint:}%

2997 \def\XINTinFloatFac{\romannumeral0\XINTinfloatfac}%

2998 \def\XINTinfloatfac[#1]{\expandafter\XINT_flfac_opt_a\the\numexpr#1.\XINTinfloatS}%

2999 \def\XINTinFloatFacdigits{\romannumeral0\XINT_flfac_opt_a\XINTdigits.\XINTinfloatS}%

3000 \def\XINT_flfac_chkopt #1#2%

3001 {%

3002 \ifx [#2\expandafter\XINT_flfac_opt

3003 \else\expandafter\XINT_flfac_noopt

3004 \fi

3005 #1#2%

3006 }%

3007 \def\XINT_flfac_noopt #1#2\xint:

3008 {%

3009 \expandafter\XINT_FL_fac_fork_a

3010 \the\numexpr \xintNum{#2}.\xint_c_i \XINTdigits\XINT_FL_fac_out{#1[\XINTdigits]}%

3011 }%

3012 \def\XINT_flfac_opt #1[\xint:#2]%

3013 {%

3014 \expandafter\XINT_flfac_opt_a\the\numexpr #2.#1%

3015 }%

3016 \def\XINT_flfac_opt_a #1.#2#3%

3017 {%

3018 \expandafter\XINT_FL_fac_fork_a\the\numexpr \xintNum{#3}.\xint_c_i {#1}\XINT_FL_fac_out{#2[#1]}%

3019 }%

3020 \def\XINT_FL_fac_fork_a #1%

3021 {%

3022 \xint_UDzerominusfork

3023 #1-\XINT_FL_fac_iszero

3024 0#1\XINT_FL_fac_isneg

3025 0-{\XINT_FL_fac_fork_b #1}%

3026 \krof

3027 }%

3028 \def\XINT_FL_fac_iszero #1.#2#3#4#5{#5{1[0]}}%

1.2f XINT_FL_fac_isneg returns 0, earlier versions used 1 here.

3029 \def\XINT_FL_fac_isneg #1.#2#3#4#5%

3030 {%

3031 #5{\XINT_signalcondition{InvalidOperation}

508

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3032 {Factorial argument is negative: -#1.}{}{ 0[0]}}%

3033 }%

3034 \def\XINT_FL_fac_fork_b #1.%

3035 {%

3036 \ifnum #1>\xint_c_x^viii_mone\xint_dothis\XINT_FL_fac_toobig\fi

3037 \ifnum #1>\xint_c_x^iv\xint_dothis\XINT_FL_fac_vbig \fi

3038 \ifnum #1>465 \xint_dothis\XINT_FL_fac_big\fi

3039 \ifnum #1>101 \xint_dothis\XINT_FL_fac_med\fi

3040 \xint_orthat\XINT_FL_fac_small

3041 #1.%

3042 }%

3043 \def\XINT_FL_fac_toobig #1.#2#3#4#5%

3044 {%

3045 #5{\XINT_signalcondition{InvalidOperation}

3046 {Factorial argument is too large: #1>=10^8.}{}{ 0[0]}}%

3047 }%

Computations are done with Q blocks of eight digits. When a multiplication has a carry, hence

creates Q+1 blocks, the least significant one is dropped. The goal is to compute an approximate

value X' to the exact value X, such that the final relative error (X-X')/X will be at most 10^{-

P-1} with P the desired precision. Then, when we round X' to X'' with P significant digits, we

can prove that the absolute error |X-X''| is bounded (strictly) by 0.6 ulp(X''). (ulp= unit in the

last (significant) place). Let N be the number of such operations, the formula for Q deduces from

the previous explanations is that 8Q should be at least P+9+k, with k the number of digits of N (in

base 10). Note that 1.2 version used P+10+k, for 1.2f I reduced to P+9+k. Also, k should be the

number of digits of the number N of multiplications done, hence for n<=10000 we can take N=n/2, or

N/3, or N/4. This is rounded above by numexpr and always an overestimate of the actual number of

approximate multiplications done (the first ones are exact). (vérifier ce que je raconte, j'ai

la flemme là).

We then want ceil((P+k+n)/8). Using \numexpr rounding division (ARRRRRGGGHHHH), if m is a posi-

tive integer, ceil(m/8) can be computed as (m+3)/8. Thus with m=P+10+k, this gives Q<-(P+13+k)/8.

The routine actually computes 8(Q-1) for use in \XINT_FL_fac_addzeros.

With 1.2f the formula is m=P+9+k, Q<-(P+12+k)/8, and we use now 4=12-8 rather than the earlier

5=13-8. Whatever happens, the value computed in \XINT_FL_fac_increaseP is at least 8. There will

always be an extra block.

Note: with Digits:=32; Maple gives for 200!:

> factorial(200.);

375

0.78865786736479050355236321393218 10

My 1.2f routine (and also 1.2) outputs:

7.8865786736479050355236321393219e374

and this is the correct rounding because for 40 digits it computes

7.886578673647905035523632139321850622951e374

Maple's result (contrarily to xint) is thus not the correct rounding but still it is less than

0.6 ulp wrong.

3048 \def\XINT_FL_fac_vbig

3049 {\expandafter\XINT_FL_fac_vbigloop_a

3050 \the\numexpr \XINT_FL_fac_increaseP \xint_c_i }%

3051 \def\XINT_FL_fac_big

3052 {\expandafter\XINT_FL_fac_bigloop_a

3053 \the\numexpr \XINT_FL_fac_increaseP \xint_c_ii }%

3054 \def\XINT_FL_fac_med

3055 {\expandafter\XINT_FL_fac_medloop_a

509

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3056 \the\numexpr \XINT_FL_fac_increaseP \xint_c_iii }%

3057 \def\XINT_FL_fac_small

3058 {\expandafter\XINT_FL_fac_smallloop_a

3059 \the\numexpr \XINT_FL_fac_increaseP \xint_c_iv }%

3060 \def\XINT_FL_fac_increaseP #1#2.#3#4%

3061 {%

3062 #2\expandafter.\the\numexpr\xint_c_viii*%

3063 ((\xint_c_iv+#4+\expandafter\XINT_FL_fac_countdigits

3064 \the\numexpr #2/(#1*#3)\relax 87654321\Z)/\xint_c_viii).%

3065 }%

3066 \def\XINT_FL_fac_countdigits #1#2#3#4#5#6#7#8{\XINT_FL_fac_countdone }%

3067 \def\XINT_FL_fac_countdone #1#2\Z {#1}%

3068 \def\XINT_FL_fac_out #1;![#2]#3%

3069 {#3{\romannumeral0\XINT_mul_out

3070 #1;!1\R!1\R!1\R!1\R!%

3071 1\R!1\R!1\R!1\R!\W [#2]}}%

3072 \def\XINT_FL_fac_vbigloop_a #1.#2.%

3073 {%

3074 \XINT_FL_fac_bigloop_a \xint_c_x^iv.#2.%

3075 {\expandafter\XINT_FL_fac_vbigloop_loop\the\numexpr 100010001\expandafter.%

3076 \the\numexpr \xint_c_x^viii+#1.}%

3077 }%

3078 \def\XINT_FL_fac_vbigloop_loop #1.#2.%

3079 {%

3080 \ifnum #1>#2 \expandafter\XINT_FL_fac_loop_exit\fi

3081 \expandafter\XINT_FL_fac_vbigloop_loop

3082 \the\numexpr #1+\xint_c_i\expandafter.%

3083 \the\numexpr #2\expandafter.\the\numexpr\XINT_FL_fac_mul #1!%

3084 }%

3085 \def\XINT_FL_fac_bigloop_a #1.%

3086 {%

3087 \expandafter\XINT_FL_fac_bigloop_b \the\numexpr

3088 #1+\xint_c_i-\xint_c_ii*((#1-464)/\xint_c_ii).#1.%

3089 }%

3090 \def\XINT_FL_fac_bigloop_b #1.#2.#3.%

3091 {%

3092 \expandafter\XINT_FL_fac_medloop_a

3093 \the\numexpr #1-\xint_c_i.#3.{\XINT_FL_fac_bigloop_loop #1.#2.}%

3094 }%

3095 \def\XINT_FL_fac_bigloop_loop #1.#2.%

3096 {%

3097 \ifnum #1>#2 \expandafter\XINT_FL_fac_loop_exit\fi

3098 \expandafter\XINT_FL_fac_bigloop_loop

3099 \the\numexpr #1+\xint_c_ii\expandafter.%

3100 \the\numexpr #2\expandafter.\the\numexpr\XINT_FL_fac_bigloop_mul #1!%

3101 }%

3102 \def\XINT_FL_fac_bigloop_mul #1!%

3103 {%

3104 \expandafter\XINT_FL_fac_mul

3105 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)!%

3106 }%

3107 \def\XINT_FL_fac_medloop_a #1.%

510

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3108 {%

3109 \expandafter\XINT_FL_fac_medloop_b

3110 \the\numexpr #1+\xint_c_i-\xint_c_iii*((#1-100)/\xint_c_iii).#1.%

3111 }%

3112 \def\XINT_FL_fac_medloop_b #1.#2.#3.%

3113 {%

3114 \expandafter\XINT_FL_fac_smallloop_a

3115 \the\numexpr #1-\xint_c_i.#3.{\XINT_FL_fac_medloop_loop #1.#2.}%

3116 }%

3117 \def\XINT_FL_fac_medloop_loop #1.#2.%

3118 {%

3119 \ifnum #1>#2 \expandafter\XINT_FL_fac_loop_exit\fi

3120 \expandafter\XINT_FL_fac_medloop_loop

3121 \the\numexpr #1+\xint_c_iii\expandafter.%

3122 \the\numexpr #2\expandafter.\the\numexpr\XINT_FL_fac_medloop_mul #1!%

3123 }%

3124 \def\XINT_FL_fac_medloop_mul #1!%

3125 {%

3126 \expandafter\XINT_FL_fac_mul

3127 \the\numexpr

3128 \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%

3129 }%

3130 \def\XINT_FL_fac_smallloop_a #1.%

3131 {%

3132 \csname

3133 XINT_FL_fac_smallloop_\the\numexpr #1-\xint_c_iv*(#1/\xint_c_iv)\relax

3134 \endcsname #1.%

3135 }%

3136 \expandafter\def\csname XINT_FL_fac_smallloop_1\endcsname #1.#2.%

3137 {%

3138 \XINT_FL_fac_addzeros #2.100000001!.{2.#1.}{#2}%

3139 }%

3140 \expandafter\def\csname XINT_FL_fac_smallloop_-2\endcsname #1.#2.%

3141 {%

3142 \XINT_FL_fac_addzeros #2.100000002!.{3.#1.}{#2}%

3143 }%

3144 \expandafter\def\csname XINT_FL_fac_smallloop_-1\endcsname #1.#2.%

3145 {%

3146 \XINT_FL_fac_addzeros #2.100000006!.{4.#1.}{#2}%

3147 }%

3148 \expandafter\def\csname XINT_FL_fac_smallloop_0\endcsname #1.#2.%

3149 {%

3150 \XINT_FL_fac_addzeros #2.100000024!.{5.#1.}{#2}%

3151 }%

3152 \def\XINT_FL_fac_addzeros #1.%

3153 {%

3154 \ifnum #1=\xint_c_viii \expandafter\XINT_FL_fac_addzeros_exit\fi

3155 \expandafter\XINT_FL_fac_addzeros

3156 \the\numexpr #1-\xint_c_viii.100000000!%

3157 }%

We will manipulate by successive *small* multiplications Q blocks 1<8d>!, terminated by 1;!. We

need a custom small multiplication which tells us when it has create a new block, and the least

511

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

significant one should be dropped.

3158 \def\XINT_FL_fac_addzeros_exit #1.#2.#3#4{\XINT_FL_fac_smallloop_loop #3#21;![-#4]}%

3159 \def\XINT_FL_fac_smallloop_loop #1.#2.%

3160 {%

3161 \ifnum #1>#2 \expandafter\XINT_FL_fac_loop_exit\fi

3162 \expandafter\XINT_FL_fac_smallloop_loop

3163 \the\numexpr #1+\xint_c_iv\expandafter.%

3164 \the\numexpr #2\expandafter.\romannumeral0\XINT_FL_fac_smallloop_mul #1!%

3165 }%

3166 \def\XINT_FL_fac_smallloop_mul #1!%

3167 {%

3168 \expandafter\XINT_FL_fac_mul

3169 \the\numexpr

3170 \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

3171 }%[[

3172 \def\XINT_FL_fac_loop_exit #1!#2]#3{#3#2]}%

3173 \def\XINT_FL_fac_mul 1#1!%

3174 {\expandafter\XINT_FL_fac_mul_a\the\numexpr\XINT_FL_fac_smallmul 10!{#1}}%

3175 \def\XINT_FL_fac_mul_a #1-#2%

3176 {%

3177 \if#21\xint_afterfi{\expandafter\space\xint_gob_til_exclam}\else

3178 \expandafter\space\fi #11;!%

3179 }%

3180 \def\XINT_FL_fac_minimulwc_a #1#2#3#4#5!#6#7#8#9%

3181 {%

3182 \XINT_FL_fac_minimulwc_b {#1#2#3#4}{#5}{#6#7#8#9}%

3183 }%

3184 \def\XINT_FL_fac_minimulwc_b #1#2#3#4!#5%

3185 {%

3186 \expandafter\XINT_FL_fac_minimulwc_c

3187 \the\numexpr \xint_c_x^ix+#5+#2*#4!{{#1}{#2}{#3}{#4}}%

3188 }%

3189 \def\XINT_FL_fac_minimulwc_c 1#1#2#3#4#5#6!#7%

3190 {%

3191 \expandafter\XINT_FL_fac_minimulwc_d {#1#2#3#4#5}#7{#6}%

3192 }%

3193 \def\XINT_FL_fac_minimulwc_d #1#2#3#4#5%

3194 {%

3195 \expandafter\XINT_FL_fac_minimulwc_e

3196 \the\numexpr \xint_c_x^ix+#1+#2*#5+#3*#4!{#2}{#4}%

3197 }%

3198 \def\XINT_FL_fac_minimulwc_e 1#1#2#3#4#5#6!#7#8#9%

3199 {%

3200 1#6#9\expandafter!%

3201 \the\numexpr\expandafter\XINT_FL_fac_smallmul

3202 \the\numexpr \xint_c_x^viii+#1#2#3#4#5+#7*#8!%

3203 }%

3204 \def\XINT_FL_fac_smallmul 1#1!#21#3!%

3205 {%

3206 \xint_gob_til_sc #3\XINT_FL_fac_smallmul_end;%

3207 \XINT_FL_fac_minimulwc_a #2!#3!{#1}{#2}%

3208 }%

512

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

This is the crucial ending. I note that I used here an \ifnum test rather than the gob_til_eightzeroes

thing. Actually for eight digits there is much less difference than for only four.

The "carry" situation is marked by a final !-1 rather than !-2 for no-carry. (a \numexpr muste

be stopped, and leaving a - as delimiter is good as it will not arise earlier.)

3209 \def\XINT_FL_fac_smallmul_end;\XINT_FL_fac_minimulwc_a #1!;!#2#3[#4]%

3210 {%

3211 \ifnum #2=\xint_c_

3212 \expandafter\xint_firstoftwo\else

3213 \expandafter\xint_secondoftwo

3214 \fi

3215 {-2\relax[#4]}%

3216 {1#2\expandafter!\expandafter-\expandafter1\expandafter

3217 [\the\numexpr #4+\xint_c_viii]}%

3218 }%

24.92. \xintFloatPFactorial, \XINTinFloatPFactorial

Added at 1.2f (2016/03/12) [on 2015/11/29]. Partial factorial pfactorial(a,b)=(a+1)...b, only

for non-negative integers with a<=b<10^8.

Modified at 1.2h (2016/11/20). Now avoids raising \xintError:OutOfRangePFac if the condition

0<=a<=b<10^8 is violated. Same as for \xintiiPFactorial.

Modified at 1.4e (2021/05/05). 1.4e extends the precision in floating point context adding some

overhead but well.

3219 \def\xintFloatPFactorial {\romannumeral0\xintfloatpfactorial}%

3220 \def\xintfloatpfactorial #1{\XINT_flpfac_chkopt \xintfloat #1\xint:}%

3221 \def\XINTinFloatPFactorial{\romannumeral0\XINTinfloatpfactorial }%

3222 \def\XINTinfloatpfactorial{\XINT_flpfac_opt_a\XINTdigits.\XINTinfloatS}%

3223 \def\XINT_flpfac_chkopt #1#2%

3224 {%

3225 \ifx [#2\expandafter\XINT_flpfac_opt

3226 \else\expandafter\XINT_flpfac_noopt

3227 \fi

3228 #1#2%

3229 }%

3230 \def\XINT_flpfac_noopt #1#2\xint:#3%

3231 {%

3232 \expandafter\XINT_FL_pfac_fork

3233 \the\numexpr \xintNum{#2}\expandafter.%

3234 \the\numexpr \xintNum{#3}.\xint_c_i{\XINTdigits}{#1[\XINTdigits]}%

3235 }%

3236 \def\XINT_flpfac_opt #1[\xint:#2]%

3237 {%

3238 \expandafter\XINT_flpfac_opt_a\the\numexpr #2.#1%

3239 }%

3240 \def\XINT_flpfac_opt_a #1.#2#3#4%

3241 {%

3242 \expandafter\XINT_FL_pfac_fork

3243 \the\numexpr \xintNum{#3}\expandafter.%

3244 \the\numexpr \xintNum{#4}.\xint_c_i{#1}{#2[#1]}%

3245 }%

3246 \def\XINT_FL_pfac_fork #1#2.#3#4.%

3247 {%

513

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3248 \unless\ifnum #1#2<#3#4 \xint_dothis\XINT_FL_pfac_one\fi

3249 \if-#3\xint_dothis\XINT_FL_pfac_neg \fi

3250 \if-#1\xint_dothis\XINT_FL_pfac_zero\fi

3251 \ifnum #3#4>\xint_c_x^viii_mone\xint_dothis\XINT_FL_pfac_outofrange\fi

3252 \xint_orthat \XINT_FL_pfac_increaseP #1#2.#3#4.%

3253 }%

3254 \def\XINT_FL_pfac_outofrange #1.#2.#3#4#5%

3255 {%

3256 #5{\XINT_signalcondition{InvalidOperation}

3257 {pFactorial with too large argument: #2 >= 10^8.}{}{ 0[0]}}%

3258 }%

3259 \def\XINT_FL_pfac_one #1.#2.#3#4#5{#5{1[0]}}%

3260 \def\XINT_FL_pfac_zero #1.#2.#3#4#5{#5{0[0]}}%

3261 \def\XINT_FL_pfac_neg -#1.-#2.%

3262 {%

3263 \ifnum #1>\xint_c_x^viii\xint_dothis\XINT_FL_pfac_outofrange\fi

3264 \xint_orthat {%

3265 \ifodd\numexpr#2-#1\relax\xint_afterfi{\expandafter-\romannumeral`&&@}\fi

3266 \expandafter\XINT_FL_pfac_increaseP}%

3267 \the\numexpr #2-\xint_c_i\expandafter.\the\numexpr#1-\xint_c_i.%

3268 }%

See the comments for \XINT_FL_pfac_increaseP. Case of b=a+1 should be filtered out perhaps. We

only needed here to copy the \xintPFactorial macros and re-use \XINT_FL_fac_mul/\XINT_FL_fac_o ⤸
ut. Had to modify a bit \XINT_FL_pfac_addzeroes. We can enter here directly with #3 equal to

specify the precision (the calculated value before final rounding has a relative error less than

#3.10^{-#4-1}), and #5 would hold the macro doing the final rounding (or truncating, if I make a

FloatTrunc available) to a given number of digits, possibly not #4. By default the #3 is 1, but

FloatBinomial calls it with #3=4.

3269 \def\XINT_FL_pfac_increaseP #1.#2.#3#4%

3270 {%

3271 \expandafter\XINT_FL_pfac_a

3272 \the\numexpr \xint_c_viii*((\xint_c_iv+#4+\expandafter

3273 \XINT_FL_fac_countdigits\the\numexpr (#2-#1-\xint_c_i)%

3274 /\ifnum #2>\xint_c_x^iv #3\else(#3*\xint_c_ii)\fi\relax

3275 87654321\Z)/\xint_c_viii).#1.#2.%

3276 }%

3277 \def\XINT_FL_pfac_a #1.#2.#3.%

3278 {%

3279 \expandafter\XINT_FL_pfac_b\the\numexpr \xint_c_i+#2\expandafter.%

3280 \the\numexpr#3\expandafter.%

3281 \romannumeral0\XINT_FL_pfac_addzeroes #1.100000001!1;![-#1]%

3282 }%

3283 \def\XINT_FL_pfac_addzeroes #1.%

3284 {%

3285 \ifnum #1=\xint_c_viii \expandafter\XINT_FL_pfac_addzeroes_exit\fi

3286 \expandafter\XINT_FL_pfac_addzeroes\the\numexpr #1-\xint_c_viii.100000000!%

3287 }%

3288 \def\XINT_FL_pfac_addzeroes_exit #1.{ }%

3289 \def\XINT_FL_pfac_b #1.%

3290 {%

3291 \ifnum #1>9999 \xint_dothis\XINT_FL_pfac_vbigloop \fi

3292 \ifnum #1>463 \xint_dothis\XINT_FL_pfac_bigloop \fi

514

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3293 \ifnum #1>98 \xint_dothis\XINT_FL_pfac_medloop \fi

3294 \xint_orthat\XINT_FL_pfac_smallloop #1.%

3295 }%

3296 \def\XINT_FL_pfac_smallloop #1.#2.%

3297 {%

3298 \ifcase\numexpr #2-#1\relax

3299 \expandafter\XINT_FL_pfac_end_

3300 \or \expandafter\XINT_FL_pfac_end_i

3301 \or \expandafter\XINT_FL_pfac_end_ii

3302 \or \expandafter\XINT_FL_pfac_end_iii

3303 \else\expandafter\XINT_FL_pfac_smallloop_a

3304 \fi #1.#2.%

3305 }%

3306 \def\XINT_FL_pfac_smallloop_a #1.#2.%

3307 {%

3308 \expandafter\XINT_FL_pfac_smallloop_b

3309 \the\numexpr #1+\xint_c_iv\expandafter.%

3310 \the\numexpr #2\expandafter.%

3311 \romannumeral0\expandafter\XINT_FL_fac_mul

3312 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

3313 }%

3314 \def\XINT_FL_pfac_smallloop_b #1.%

3315 {%

3316 \ifnum #1>98 \expandafter\XINT_FL_pfac_medloop \else

3317 \expandafter\XINT_FL_pfac_smallloop \fi #1.%

3318 }%

3319 \def\XINT_FL_pfac_medloop #1.#2.%

3320 {%

3321 \ifcase\numexpr #2-#1\relax

3322 \expandafter\XINT_FL_pfac_end_

3323 \or \expandafter\XINT_FL_pfac_end_i

3324 \or \expandafter\XINT_FL_pfac_end_ii

3325 \else\expandafter\XINT_FL_pfac_medloop_a

3326 \fi #1.#2.%

3327 }%

3328 \def\XINT_FL_pfac_medloop_a #1.#2.%

3329 {%

3330 \expandafter\XINT_FL_pfac_medloop_b

3331 \the\numexpr #1+\xint_c_iii\expandafter.%

3332 \the\numexpr #2\expandafter.%

3333 \romannumeral0\expandafter\XINT_FL_fac_mul

3334 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%

3335 }%

3336 \def\XINT_FL_pfac_medloop_b #1.%

3337 {%

3338 \ifnum #1>463 \expandafter\XINT_FL_pfac_bigloop \else

3339 \expandafter\XINT_FL_pfac_medloop \fi #1.%

3340 }%

3341 \def\XINT_FL_pfac_bigloop #1.#2.%

3342 {%

3343 \ifcase\numexpr #2-#1\relax

3344 \expandafter\XINT_FL_pfac_end_

515

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3345 \or \expandafter\XINT_FL_pfac_end_i

3346 \else\expandafter\XINT_FL_pfac_bigloop_a

3347 \fi #1.#2.%

3348 }%

3349 \def\XINT_FL_pfac_bigloop_a #1.#2.%

3350 {%

3351 \expandafter\XINT_FL_pfac_bigloop_b

3352 \the\numexpr #1+\xint_c_ii\expandafter.%

3353 \the\numexpr #2\expandafter.%

3354 \romannumeral0\expandafter\XINT_FL_fac_mul

3355 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)!%

3356 }%

3357 \def\XINT_FL_pfac_bigloop_b #1.%

3358 {%

3359 \ifnum #1>9999 \expandafter\XINT_FL_pfac_vbigloop \else

3360 \expandafter\XINT_FL_pfac_bigloop \fi #1.%

3361 }%

3362 \def\XINT_FL_pfac_vbigloop #1.#2.%

3363 {%

3364 \ifnum #2=#1

3365 \expandafter\XINT_FL_pfac_end_

3366 \else\expandafter\XINT_FL_pfac_vbigloop_a

3367 \fi #1.#2.%

3368 }%

3369 \def\XINT_FL_pfac_vbigloop_a #1.#2.%

3370 {%

3371 \expandafter\XINT_FL_pfac_vbigloop

3372 \the\numexpr #1+\xint_c_i\expandafter.%

3373 \the\numexpr #2\expandafter.%

3374 \romannumeral0\expandafter\XINT_FL_fac_mul

3375 \the\numexpr\xint_c_x^viii+#1!%

3376 }%

3377 \def\XINT_FL_pfac_end_iii #1.#2.%

3378 {%

3379 \expandafter\XINT_FL_fac_out

3380 \romannumeral0\expandafter\XINT_FL_fac_mul

3381 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)*(#1+\xint_c_iii)!%

3382 }%

3383 \def\XINT_FL_pfac_end_ii #1.#2.%

3384 {%

3385 \expandafter\XINT_FL_fac_out

3386 \romannumeral0\expandafter\XINT_FL_fac_mul

3387 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)*(#1+\xint_c_ii)!%

3388 }%

3389 \def\XINT_FL_pfac_end_i #1.#2.%

3390 {%

3391 \expandafter\XINT_FL_fac_out

3392 \romannumeral0\expandafter\XINT_FL_fac_mul

3393 \the\numexpr \xint_c_x^viii+#1*(#1+\xint_c_i)!%

3394 }%

3395 \def\XINT_FL_pfac_end_ #1.#2.%

3396 {%

516

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3397 \expandafter\XINT_FL_fac_out

3398 \romannumeral0\expandafter\XINT_FL_fac_mul

3399 \the\numexpr \xint_c_x^viii+#1!%

3400 }%

24.93. \xintFloatBinomial, \XINTinFloatBinomial

Added at 1.2f (2016/03/12) [on 2015/12/01]. We compute binomial(x,y) as pfac(x-y,x)/y!, where the

numerator and denominator are computed with a relative error at most 4.10^{-P-2}, then rounded

(once I have a float truncation, I will use truncation rather) to P+3 digits, and finally the

quotient is correctly rounded to P digits. This will guarantee that the exact value X differs

from the computed one Y by at most 0.6 ulp(Y).

Modified at 1.2h (2016/11/20). As for \xintiiBinomial, hard to understand why last year I coded

this to raise an error if y<0 or y>x ! The question of the Gamma function is for another occasion,

here x and y must be (small) integers.

1.4e: same remarks as for factorial and partial factorial about added overhead due to extra

guard digits.

3401 \def\xintFloatBinomial {\romannumeral0\xintfloatbinomial}%

3402 \def\xintfloatbinomial #1{\XINT_flbinom_chkopt \xintfloat #1\xint:}%

3403 \def\XINTinFloatBinomial{\romannumeral0\XINTinfloatbinomial }%

3404 \def\XINTinfloatbinomial{\XINT_flbinom_opt\XINTinfloatS[\xint:\XINTdigits]}%

3405 \def\XINT_flbinom_chkopt #1#2%

3406 {%

3407 \ifx [#2\expandafter\XINT_flbinom_opt

3408 \else\expandafter\XINT_flbinom_noopt

3409 \fi #1#2%

3410 }%

3411 \def\XINT_flbinom_noopt #1#2\xint:#3%

3412 {%

3413 \expandafter\XINT_FL_binom_a

3414 \the\numexpr\xintNum{#2}\expandafter.\the\numexpr\xintNum{#3}.\XINTdigits.#1%

3415 }%

3416 \def\XINT_flbinom_opt #1[\xint:#2]#3#4%

3417 {%

3418 \expandafter\XINT_FL_binom_a

3419 \the\numexpr\xintNum{#3}\expandafter.\the\numexpr\xintNum{#4}\expandafter.%

3420 \the\numexpr #2.#1%

3421 }%

3422 \def\XINT_FL_binom_a #1.#2.%

3423 {%

3424 \expandafter\XINT_FL_binom_fork \the\numexpr #1-#2.#2.#1.%

3425 }%

3426 \def\XINT_FL_binom_fork #1#2.#3#4.#5#6.%

3427 {%

3428 \if-#5\xint_dothis \XINT_FL_binom_neg\fi

3429 \if-#1\xint_dothis \XINT_FL_binom_zero\fi

3430 \if-#3\xint_dothis \XINT_FL_binom_zero\fi

3431 \if0#1\xint_dothis \XINT_FL_binom_one\fi

3432 \if0#3\xint_dothis \XINT_FL_binom_one\fi

3433 \ifnum #5#6>\xint_c_x^viii_mone \xint_dothis\XINT_FL_binom_toobig\fi

3434 \ifnum #1#2>#3#4 \xint_dothis\XINT_FL_binom_ab \fi

3435 \xint_orthat\XINT_FL_binom_aa

517

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3436 #1#2.#3#4.#5#6.%

3437 }%

3438 \def\XINT_FL_binom_neg #1.#2.#3.#4.#5%

3439 {%

3440 #5[#4]{\XINT_signalcondition{InvalidOperation}

3441 {Binomial with negative argument: #3.}{}{ 0[0]}}%

3442 }%

3443 \def\XINT_FL_binom_toobig #1.#2.#3.#4.#5%

3444 {%

3445 #5[#4]{\XINT_signalcondition{InvalidOperation}

3446 {Binomial with too large argument: #3 >= 10^8.}{}{ 0[0]}}%

3447 }%

3448 \def\XINT_FL_binom_one #1.#2.#3.#4.#5{#5[#4]{1[0]}}%

3449 \def\XINT_FL_binom_zero #1.#2.#3.#4.#5{#5[#4]{0[0]}}%

3450 \def\XINT_FL_binom_aa #1.#2.#3.#4.#5%

3451 {%

3452 #5[#4]{\xintDiv{\XINT_FL_pfac_increaseP

3453 #2.#3.\xint_c_iv{#4+\xint_c_i}{\XINTinfloat[#4+\xint_c_iii]}}%

3454 {\XINT_FL_fac_fork_b

3455 #1.\xint_c_iv{#4+\xint_c_i}\XINT_FL_fac_out{\XINTinfloat[#4+\xint_c_iii]}}}%

3456 }%

3457 \def\XINT_FL_binom_ab #1.#2.#3.#4.#5%

3458 {%

3459 #5[#4]{\xintDiv{\XINT_FL_pfac_increaseP

3460 #1.#3.\xint_c_iv{#4+\xint_c_i}{\XINTinfloat[#4+\xint_c_iii]}}%

3461 {\XINT_FL_fac_fork_b

3462 #2.\xint_c_iv{#4+\xint_c_i}\XINT_FL_fac_out{\XINTinfloat[#4+\xint_c_iii]}}}%

3463 }%

24.94. \xintFloatSqrt, \XINTinFloatSqrt

Added at 1.08 (2013/06/07).

Modified at 1.2f (2016/03/12).
The float version was developed at the same time as the integer one and even a bit earlier. As

a result the integer variant had some sub-optimal parts. Anyway, for 1.2f I have rewritten the

integer variant, and the float variant delegates all preparatory wrok for it until the last step.

In particular the very low precisions are not penalized anymore from doing computations for at

least 17 or 18 digits. Both the large and small precisions give quite shorter computation times.

Also, after examining more closely the achieved precision I decided to extend the float version

in order for it to obtain the correct rounding (for inputs already of at most P digits with P the

precision) of the theoretical exact value.

Beyond about 500 digits of precision the efficiency decreases swiftly, as is the case generally

speaking with xintcore/xint/xintfrac arithmetic macros.

Final note: with 1.2f the input is always first rounded to P significant places.

3464 \def\xintFloatSqrt {\romannumeral0\xintfloatsqrt}%

3465 \def\xintfloatsqrt #1{\XINT_flsqrt_chkopt \xintfloat #1\xint:}%

3466 \def\XINTinFloatSqrt{\romannumeral0\XINTinfloatsqrt}%
3467 \def\XINTinfloatsqrt[#1]{\expandafter\XINT_flsqrt_opt_a\the\numexpr#1.\XINTinfloatS}%

3468 \def\XINTinFloatSqrtdigits{\romannumeral0\XINT_flsqrt_opt_a\XINTdigits.\XINTinfloatS}%

3469 \def\XINT_flsqrt_chkopt #1#2%

3470 {%

3471 \ifx [#2\expandafter\XINT_flsqrt_opt

518

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3472 \else\expandafter\XINT_flsqrt_noopt

3473 \fi #1#2%

3474 }%

3475 \def\XINT_flsqrt_noopt #1#2\xint:%

3476 {%

3477 \expandafter\XINT_FL_sqrt_a

3478 \romannumeral0\XINTinfloat[\XINTdigits]{#2}\XINTdigits.#1%

3479 }%

3480 \def\XINT_flsqrt_opt #1[\xint:#2]%#3%

3481 {%

3482 \expandafter\XINT_flsqrt_opt_a\the\numexpr #2.#1%

3483 }%

3484 \def\XINT_flsqrt_opt_a #1.#2#3%

3485 {%

3486 \expandafter\XINT_FL_sqrt_a\romannumeral0\XINTinfloat[#1]{#3}#1.#2%

3487 }%

3488 \def\XINT_FL_sqrt_a #1%

3489 {%

3490 \xint_UDzerominusfork

3491 #1-\XINT_FL_sqrt_iszero

3492 0#1\XINT_FL_sqrt_isneg

3493 0-{\XINT_FL_sqrt_pos #1}%

3494 \krof

3495 }%[

3496 \def\XINT_FL_sqrt_iszero #1]#2.#3{#3[#2]{0[0]}}%

3497 \def\XINT_FL_sqrt_isneg #1]#2.#3%

3498 {%

3499 #3[#2]{\XINT_signalcondition{InvalidOperation}

3500 {Square root of negative: -#1].}{}{ 0[0]}}%

3501 }%

3502 \def\XINT_FL_sqrt_pos #1[#2]#3.%

3503 {%

3504 \expandafter\XINT_flsqrt

3505 \the\numexpr #3\ifodd #2 \xint_dothis {+\xint_c_iii.(#2+\xint_c_i).0}\fi

3506 \xint_orthat {+\xint_c_ii.#2.{}}#100.#3.%

3507 }%

3508 \def\XINT_flsqrt #1.#2.%

3509 {%

3510 \expandafter\XINT_flsqrt_a

3511 \the\numexpr #2/\xint_c_ii-(#1-\xint_c_i)/\xint_c_ii.#1.%

3512 }%

3513 \def\XINT_flsqrt_a #1.#2.#3#4.#5.%

3514 {%

3515 \expandafter\XINT_flsqrt_b

3516 \the\numexpr (#2-\xint_c_i)/\xint_c_ii\expandafter.%

3517 \romannumeral0\XINT_sqrt_start #2.#4#3.#5.#2.#4#3.#5.#1.%

3518 }%

3519 \def\XINT_flsqrt_b #1.#2#3%

3520 {%

3521 \expandafter\XINT_flsqrt_c

3522 \romannumeral0\xintiisub

3523 {\XINT_dsx_addzeros {#1}#2;}%

519

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3524 {\xintiiDivRound{\XINT_dsx_addzeros {#1}#3;}%

3525 {\XINT_dbl#2\xint_bye2345678\xint_bye*\xint_c_ii\relax}}.%

3526 }%

3527 \def\XINT_flsqrt_c #1.#2.%

3528 {%

3529 \expandafter\XINT_flsqrt_d

3530 \romannumeral0\XINT_split_fromleft#2.#1\xint_bye2345678\xint_bye..%

3531 }%

3532 \def\XINT_flsqrt_d #1.#2#3.%

3533 {%

3534 \ifnum #2=\xint_c_v

3535 \expandafter\XINT_flsqrt_f\else\expandafter\XINT_flsqrt_finish\fi

3536 #2#3.#1.%

3537 }%

3538 \def\XINT_flsqrt_finish #1#2.#3.#4.#5.#6.#7.#8{#8[#6]{#3#1[#7]}}%

3539 \def\XINT_flsqrt_f 5#1.%

3540 {\expandafter\XINT_flsqrt_g\romannumeral0\xintinum{#1}\relax.}%

3541 \def\XINT_flsqrt_g #1#2#3.{\if\relax#2\xint_dothis{\XINT_flsqrt_h #1}\fi

3542 \xint_orthat{\XINT_flsqrt_finish 5.}}%

3543 \def\XINT_flsqrt_h #1{\ifnum #1<\xint_c_iii\xint_dothis{\XINT_flsqrt_again}\fi

3544 \xint_orthat{\XINT_flsqrt_finish 5.}}%

3545 \def\XINT_flsqrt_again #1.#2.%

3546 {%

3547 \expandafter\XINT_flsqrt_again_a\the\numexpr #2+\xint_c_viii.%

3548 }%

3549 \def\XINT_flsqrt_again_a #1.#2.#3.%

3550 {%

3551 \expandafter\XINT_flsqrt_b

3552 \the\numexpr (#1-\xint_c_i)/\xint_c_ii\expandafter.%

3553 \romannumeral0\XINT_sqrt_start #1.#200000000.#3.%

3554 #1.#200000000.#3.%

3555 }%

24.95. \xintFloatE, \XINTinFloatE

Added at 1.07 (2013/05/25). The fraction is the first argument contrarily to \xintTrunc and

\xintRound.

Attention to \XINTinFloatE: it is for use by xintexpr. With input 0 it produces on output an

0[N], not 0[0].

3556 \def\xintFloatE {\romannumeral0\xintfloate }%

3557 \def\xintfloate #1{\XINT_floate_chkopt #1\xint:}%

3558 \def\XINT_floate_chkopt #1%

3559 {%

3560 \ifx [#1\expandafter\XINT_floate_opt

3561 \else\expandafter\XINT_floate_noopt

3562 \fi #1%

3563 }%

3564 \def\XINT_floate_noopt #1\xint:%

3565 {%

3566 \expandafter\XINT_floate_post

3567 \romannumeral0\XINTinfloat[\XINTdigits]{#1}\XINTdigits.%

3568 }%

520

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3569 \def\XINT_floate_opt [\xint:#1]%

3570 {%

3571 \expandafter\XINT_floate_opt_a\the\numexpr #1.%

3572 }%

3573 \def\XINT_floate_opt_a #1.#2%

3574 {%

3575 \expandafter\XINT_floate_post

3576 \romannumeral0\XINTinfloat[#1]{#2}#1.%

3577 }%

3578 \def\XINT_floate_post #1%

3579 {%

3580 \xint_UDzerominusfork

3581 #1-\XINT_floate_zero

3582 0#1\XINT_floate_neg

3583 0-\XINT_floate_pos

3584 \krof #1%

3585 }%[

3586 \def\XINT_floate_zero #1]#2.#3{ 0.e0}%

3587 \def\XINT_floate_neg-{\expandafter-\romannumeral0\XINT_floate_pos}%

3588 \def\XINT_floate_pos #1#2[#3]#4.#5%

3589 {%

3590 \expandafter\XINT_float_pos_done\the\numexpr#3+#4+#5-\xint_c_i.#1.#2;%

3591 }%

3592 \def\XINTinFloatE {\romannumeral0\XINTinfloate }%

3593 \def\XINTinfloate

3594 {\expandafter\XINT_infloate\romannumeral0\XINTinfloat[\XINTdigits]}%

3595 \def\XINT_infloate #1[#2]#3%

3596 {\expandafter\XINT_infloate_end\the\numexpr #3+#2.{#1}}%

3597 \def\XINT_infloate_end #1.#2{ #2[#1]}%

24.96. \XINTinFloatMod

Added at 1.1 (2014/10/28). Pour emploi dans xintexpr. Code shortened at 1.2p.

3598 \def\XINTinFloatMod {\romannumeral0\XINTinfloatmod [\XINTdigits]}%

3599 \def\XINTinfloatmod [#1]#2#3%

3600 {%

3601 \XINTinfloat[#1]{\xintMod

3602 {\romannumeral0\XINTinfloat[#1]{#2}}%

3603 {\romannumeral0\XINTinfloat[#1]{#3}}}%

3604 }%

24.97. \XINTinFloatDivFloor

Added at 1.2p (2017/12/05). Formerly // and /: in \xintfloatexpr used \xintDivFloor and

\xintMod, hence did not round their operands to float precision beforehand.

3605 \def\XINTinFloatDivFloor {\romannumeral0\XINTinfloatdivfloor [\XINTdigits]}%

3606 \def\XINTinfloatdivfloor [#1]#2#3%

3607 {%

3608 \xintdivfloor

3609 {\romannumeral0\XINTinfloat[#1]{#2}}%

3610 {\romannumeral0\XINTinfloat[#1]{#3}}%

3611 }%

521

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

24.98. \XINTinFloatDivMod

Added at 1.2p (2017/12/05). Pour emploi dans xintexpr, donc je ne prends pas la peine de faire

l'expansion du modulo, qui se produira dans le \csname.

Hésitation sur le quotient, faut-il l'arrondir immédiatement ? Finalement non, le produire

comme un integer.

Breaking change at 1.4 as output format is not comma separated anymore. Attention also that it

uses \expanded.

No time now at the time of completion of the big 1.4 rewrite of xintexpr to test whether code

efficiency here can be improved to expand the second item of output.

3612 \def\XINTinFloatDivMod {\romannumeral0\XINTinfloatdivmod [\XINTdigits]}%

3613 \def\XINTinfloatdivmod [#1]#2#3%

3614 {%

3615 \expandafter\XINT_infloatdivmod

3616 \romannumeral0\xintdivmod

3617 {\romannumeral0\XINTinfloat[#1]{#2}}%

3618 {\romannumeral0\XINTinfloat[#1]{#3}}%

3619 {#1}%

3620 }%

3621 \def\XINT_infloatdivmod #1#2#3{\expanded{{#1}{\XINTinFloat[#3]{#2}}}}%

24.99. \xintifFloatInt

Added at 1.3a (2018/03/07). For ifint() function in \xintfloatexpr.

3622 \def\xintifFloatInt {\romannumeral0\xintiffloatint}%

3623 \def\xintiffloatint #1{\expandafter\XINT_iffloatint

3624 \romannumeral0\xintrez{\XINTinFloatS[\XINTdigits]{#1}}}%

3625 \def\XINT_iffloatint #1#2/1[#3]%

3626 {%

3627 \if 0#1\xint_dothis\xint_stop_atfirstoftwo\fi

3628 \ifnum#3<\xint_c_\xint_dothis\xint_stop_atsecondoftwo\fi

3629 \xint_orthat\xint_stop_atfirstoftwo

3630 }%

24.100. \xintFloatIsInt

Added at 1.3d (2019/01/06). For isint() function in \xintfloatexpr.

3631 \def\xintFloatIsInt {\romannumeral0\xintfloatisint}%

3632 \def\xintfloatisint #1{\expandafter\XINT_iffloatint

3633 \romannumeral0\xintrez{\XINTinFloatS[\XINTdigits]{#1}}10}%

24.101. \xintFloatIntType

Added at 1.4e (2021/05/05). For fractional powers. Expands to \xint_c_mone if argument is not an

integer, to \xint_c_ if it is an even integer and to \xint_c_i if it is an odd integer.

3634 \def\xintFloatIntType {\romannumeral`&&@\xintfloatinttype}%

3635 \def\xintfloatinttype #1%

3636 {%

3637 \expandafter\XINT_floatinttype

3638 \romannumeral0\xintrez{\XINTinFloatS[\XINTdigits]{#1}}%

3639 }%

522

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3640 \def\XINT_floatinttype #1#2/1[#3]%

3641 {%

3642 \if 0#1\xint_dothis\xint_c_\fi

3643 \ifnum#3<\xint_c_\xint_dothis\xint_c_mone\fi

3644 \ifnum#3>\xint_c_\xint_dothis\xint_c_\fi

3645 \ifodd\xintLDg{#1#2} \xint_dothis\xint_c_i\fi

3646 \xint_orthat\xint_c_

3647 }%

24.102. \XINTinFloatdigits, \XINTinFloatSdigits
3648 \def\XINTinFloatdigits {\XINTinFloat [\XINTdigits]}%

3649 \def\XINTinFloatSdigits{\XINTinFloatS[\XINTdigits]}%

24.103. (WIP) \XINTinRandomFloatS, \XINTinRandomFloatSdigits

Added at 1.3b (2018/05/18). Support for random() function.

Thus as it is a priori only for xintexpr usage, it expands inside \csname context, but as we need

to get rid of initial zeros we use \xintRandomDigits not \xintXRandomDigits (\expanded would have

a use case here).

And anyway as we want to be able to use random() in \xintdeffunc/\xintNewExpr, it is good to have

f-expandable macros, so we add the small overhead to make it f-expandable.

We don't have to be very efficient in removing leading zeroes, as there is only 10% chance for

each successive one. Besides we use (current) internal storage format of the type A[N], where

A is not required to be with \xintDigits digits, so N will simply be -\xintDigits and needs no

adjustment.

In case we use in future with #1 something else than \xintDigits we do the 0-(#1) construct.

I had some qualms about doing a random float like this which means that when there are leading

zeros in the random digits the (virtual) mantissa ends up with trailing zeros. That did not feel

right but I checked random() in Python (which of course uses radix 2), and indeed this is what

happens there.

3650 \def\XINTinRandomFloatS{\romannumeral0\XINTinrandomfloatS}%
3651 \def\XINTinRandomFloatSdigits{\XINTinRandomFloatS[\XINTdigits]}%
3652 \def\XINTinrandomfloatS[#1]%

3653 {%

3654 \expandafter\XINT_inrandomfloatS\the\numexpr\xint_c_-(#1)\xint:

3655 }%

3656 \def\XINT_inrandomfloatS-#1\xint:

3657 {%

3658 \expandafter\XINT_inrandomfloatS_a

3659 \romannumeral0\xintrandomdigits{#1}[-#1]%

3660 }%

We add one macro to handle a tiny bit faster 90% of cases, after all we also use one extra macro for

the completely improbable all 0 case.

3661 \def\XINT_inrandomfloatS_a#1%

3662 {%

3663 \if#10\xint_dothis{\XINT_inrandomfloatS_b}\fi

3664 \xint_orthat{ #1}%

3665 }%[

3666 \def\XINT_inrandomfloatS_b#1%

3667 {%

3668 \if#1[\xint_dothis{\XINT_inrandomfloatS_zero}\fi%]

523

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac , xintseries, xintcfrac, xintexpr, xinttrig, xintlog

3669 \if#10\xint_dothis{\XINT_inrandomfloatS_b}\fi

3670 \xint_orthat{ #1}%

3671 }%[

3672 \def\XINT_inrandomfloatS_zero#1]{ 0[0]}%

24.104. (WIP) \XINTinRandomFloatSixteen

Added at 1.3b (2018/05/18). Support for qrand() function.

3673 \def\XINTinRandomFloatSixteen%
3674 {%

3675 \romannumeral0\expandafter\XINT_inrandomfloatS_a

3676 \romannumeral`&&@\expandafter\XINT_eightrandomdigits

3677 \romannumeral`&&@\XINT_eightrandomdigits[-16]%

3678 }%

3679 \let\XINTinFloatMaxof\XINT_Maxof

3680 \let\XINTinFloatMinof\XINT_Minof

3681 \let\XINTinFloatSum\XINT_Sum

3682 \let\XINTinFloatPrd\XINT_Prd

3683 \XINTrestorecatcodesendinput%

524

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries , xintcfrac, xintexpr, xinttrig, xintlog

25. Package xintseries implementation

.1 Catcodes, 𝜀-TEX and reload detection . . 525

.2 Package identification 526

.3 \xintSeries 526

.4 \xintiSeries 526

.5 \xintPowerSeries 527

.6 \xintPowerSeriesX 528

.7 \xintRationalSeries 528

.8 \xintRationalSeriesX 529

.9 \xintFxPtPowerSeries 530

.10 \xintFxPtPowerSeriesX 531

.11 \xintFloatPowerSeries 531

.12 \xintFloatPowerSeriesX 533

The commenting is currently (2025/09/06) very sparse.

25.1. Catcodes, 𝜺-TEX and reload detection
The code for reload detection was initially copied from Heiko Oberdiek's packages, then modified.

The method for catcodes was also initially directly inspired by these packages.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode44=12 % ,

8 \catcode46=12 % .

9 \catcode58=12 % :

10 \catcode94=7 % ^

11 \def\empty{}\def\space{ }\newlinechar10

12 \def\z{\endgroup}%

13 \expandafter\let\expandafter\x\csname ver@xintseries.sty\endcsname

14 \expandafter\let\expandafter\w\csname ver@xintfrac.sty\endcsname

15 \expandafter\ifx\csname numexpr\endcsname\relax

16 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

17 \immediate\write128{^^JPackage xintseries Warning:^^J%

18 \space\space\space\space

19 \numexpr not available, aborting input.^^J}%

20 \else

21 \PackageWarningNoLine{xintseries}{\numexpr not available, aborting input}%

22 \fi

23 \def\z{\endgroup\endinput}%

24 \else

25 \ifx\x\relax % plain-TeX, first loading of xintseries.sty

26 \ifx\w\relax % but xintfrac.sty not yet loaded.

27 \def\z{\endgroup\input xintfrac.sty\relax}%

28 \fi

29 \else

30 \ifx\x\empty % LaTeX, first loading,

31 % variable is initialized, but \ProvidesPackage not yet seen

32 \ifx\w\relax % xintfrac.sty not yet loaded.

33 \def\z{\endgroup\RequirePackage{xintfrac}}%

34 \fi

35 \else

36 \def\z{\endgroup\endinput}% xintseries already loaded.

37 \fi

38 \fi

525

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries , xintcfrac, xintexpr, xinttrig, xintlog

39 \fi

40 \z%

41 \XINTsetupcatcodes% defined in xintkernel.sty

25.2. Package identification
42 \XINT_providespackage

43 \ProvidesPackage{xintseries}%

44 [2025/09/06 v1.4o Expandable partial sums with xint package (JFB)]%

25.3. \xintSeries
45 \def\xintSeries {\romannumeral0\xintseries }%

46 \def\xintseries #1#2%

47 {%

48 \expandafter\XINT_series\expandafter

49 {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}%

50 }%

51 \def\XINT_series #1#2#3%

52 {%

53 \ifnum #2<#1

54 \xint_afterfi { 0/1[0]}%

55 \else

56 \xint_afterfi {\XINT_series_loop {#1}{0}{#2}{#3}}%

57 \fi

58 }%

59 \def\XINT_series_loop #1#2#3#4%

60 {%

61 \ifnum #3>#1 \else \XINT_series_exit \fi

62 \expandafter\XINT_series_loop\expandafter

63 {\the\numexpr #1+1\expandafter }\expandafter

64 {\romannumeral0\xintadd {#2}{#4{#1}}}%

65 {#3}{#4}%

66 }%

67 \def\XINT_series_exit \fi #1#2#3#4#5#6#7#8%

68 {%

69 \fi\xint_gobble_ii #6%

70 }%

25.4. \xintiSeries
71 \def\xintiSeries {\romannumeral0\xintiseries }%

72 \def\xintiseries #1#2%

73 {%

74 \expandafter\XINT_iseries\expandafter

75 {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}%

76 }%

77 \def\XINT_iseries #1#2#3%

78 {%

79 \ifnum #2<#1

80 \xint_afterfi { 0}%

81 \else

82 \xint_afterfi {\XINT_iseries_loop {#1}{0}{#2}{#3}}%

526

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries , xintcfrac, xintexpr, xinttrig, xintlog

83 \fi

84 }%

85 \def\XINT_iseries_loop #1#2#3#4%

86 {%

87 \ifnum #3>#1 \else \XINT_iseries_exit \fi

88 \expandafter\XINT_iseries_loop\expandafter

89 {\the\numexpr #1+1\expandafter }\expandafter

90 {\romannumeral0\xintiiadd {#2}{#4{#1}}}%

91 {#3}{#4}%

92 }%

93 \def\XINT_iseries_exit \fi #1#2#3#4#5#6#7#8%

94 {%

95 \fi\xint_gobble_ii #6%

96 }%

25.5. \xintPowerSeries
The 1.03 version was very lame and created a build-up of denominators. (this was at a time \xintAdd

always multiplied denominators, by the way) The Horner scheme for polynomial evaluation is used

in 1.04, this cures the denominator problem and drastically improves the efficiency of the macro.

Modified in 1.06 to give the indices first to a \numexpr rather than expanding twice. I just use

\the\numexpr and maintain the previous code after that. 1.08a adds the forgotten optimization

following that previous change.

97 \def\xintPowerSeries {\romannumeral0\xintpowerseries }%

98 \def\xintpowerseries #1#2%

99 {%

100 \expandafter\XINT_powseries\expandafter

101 {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}%

102 }%

103 \def\XINT_powseries #1#2#3#4%

104 {%

105 \ifnum #2<#1

106 \xint_afterfi { 0/1[0]}%

107 \else

108 \xint_afterfi

109 {\XINT_powseries_loop_i {#3{#2}}{#1}{#2}{#3}{#4}}%

110 \fi

111 }%

112 \def\XINT_powseries_loop_i #1#2#3#4#5%

113 {%

114 \ifnum #3>#2 \else\XINT_powseries_exit_i\fi

115 \expandafter\XINT_powseries_loop_ii\expandafter

116 {\the\numexpr #3-1\expandafter}\expandafter

117 {\romannumeral0\xintmul {#1}{#5}}{#2}{#4}{#5}%

118 }%

119 \def\XINT_powseries_loop_ii #1#2#3#4%

120 {%

121 \expandafter\XINT_powseries_loop_i\expandafter

122 {\romannumeral0\xintadd {#4{#1}}{#2}}{#3}{#1}{#4}%

123 }%

124 \def\XINT_powseries_exit_i\fi #1#2#3#4#5#6#7#8#9%

125 {%

527

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries , xintcfrac, xintexpr, xinttrig, xintlog

126 \fi \XINT_powseries_exit_ii #6{#7}%

127 }%

128 \def\XINT_powseries_exit_ii #1#2#3#4#5#6%

129 {%

130 \xintmul{\xintPow {#5}{#6}}{#4}%

131 }%

25.6. \xintPowerSeriesX
Same as \xintPowerSeries except for the initial expansion of the x parameter. Modified in 1.06

to give the indices first to a \numexpr rather than expanding twice. I just use \the\numexpr

and maintain the previous code after that. 1.08a adds the forgotten optimization following that

previous change.

132 \def\xintPowerSeriesX {\romannumeral0\xintpowerseriesx }%

133 \def\xintpowerseriesx #1#2%

134 {%

135 \expandafter\XINT_powseriesx\expandafter

136 {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}%

137 }%

138 \def\XINT_powseriesx #1#2#3#4%

139 {%

140 \ifnum #2<#1

141 \xint_afterfi { 0/1[0]}%

142 \else

143 \xint_afterfi

144 {\expandafter\XINT_powseriesx_pre\expandafter

145 {\romannumeral`&&@#4}{#1}{#2}{#3}%

146 }%

147 \fi

148 }%

149 \def\XINT_powseriesx_pre #1#2#3#4%

150 {%

151 \XINT_powseries_loop_i {#4{#3}}{#2}{#3}{#4}{#1}%

152 }%

25.7. \xintRationalSeries
This computes F(a)+...+F(b) on the basis of the value of F(a) and the ratios F(n)/F(n-1). As in

\xintPowerSeries we use an iterative scheme which has the great advantage to avoid denominator

build-up. This makes exact computations possible with exponential type series, which would be

completely inaccessible to \xintSeries. #1=a, #2=b, #3=F(a), #4=ratio function Modified in 1.06

to give the indices first to a \numexpr rather than expanding twice. I just use \the\numexpr

and maintain the previous code after that. 1.08a adds the forgotten optimization following that

previous change.

153 \def\xintRationalSeries {\romannumeral0\xintratseries }%

154 \def\xintratseries #1#2%

155 {%

156 \expandafter\XINT_ratseries\expandafter

157 {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}%

158 }%

159 \def\XINT_ratseries #1#2#3#4%

160 {%

528

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries , xintcfrac, xintexpr, xinttrig, xintlog

161 \ifnum #2<#1

162 \xint_afterfi { 0/1[0]}%

163 \else

164 \xint_afterfi

165 {\XINT_ratseries_loop {#2}{1}{#1}{#4}{#3}}%

166 \fi

167 }%

168 \def\XINT_ratseries_loop #1#2#3#4%

169 {%

170 \ifnum #1>#3 \else\XINT_ratseries_exit_i\fi

171 \expandafter\XINT_ratseries_loop\expandafter

172 {\the\numexpr #1-1\expandafter}\expandafter

173 {\romannumeral0\xintadd {1}{\xintMul {#2}{#4{#1}}}}{#3}{#4}%

174 }%

175 \def\XINT_ratseries_exit_i\fi #1#2#3#4#5#6#7#8%

176 {%

177 \fi \XINT_ratseries_exit_ii #6%

178 }%

179 \def\XINT_ratseries_exit_ii #1#2#3#4#5%

180 {%

181 \XINT_ratseries_exit_iii #5%

182 }%

183 \def\XINT_ratseries_exit_iii #1#2#3#4%

184 {%

185 \xintmul{#2}{#4}%

186 }%

25.8. \xintRationalSeriesX
a,b,initial,ratiofunction,x

This computes F(a,x)+...+F(b,x) on the basis of the value of F(a,x) and the ratios F(n,x)/F(n-

1,x). The argument x is first expanded and it is the value resulting from this which is used then

throughout. The initial term F(a,x) must be defined as one-parameter macro which will be given x.

Modified in 1.06 to give the indices first to a \numexpr rather than expanding twice. I just use

\the\numexpr and maintain the previous code after that. 1.08a adds the forgotten optimization

following that previous change.

187 \def\xintRationalSeriesX {\romannumeral0\xintratseriesx }%

188 \def\xintratseriesx #1#2%

189 {%

190 \expandafter\XINT_ratseriesx\expandafter

191 {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}%

192 }%

193 \def\XINT_ratseriesx #1#2#3#4#5%

194 {%

195 \ifnum #2<#1

196 \xint_afterfi { 0/1[0]}%

197 \else

198 \xint_afterfi

199 {\expandafter\XINT_ratseriesx_pre\expandafter

200 {\romannumeral`&&@#5}{#2}{#1}{#4}{#3}%

201 }%

202 \fi

529

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries , xintcfrac, xintexpr, xinttrig, xintlog

203 }%

204 \def\XINT_ratseriesx_pre #1#2#3#4#5%

205 {%

206 \XINT_ratseries_loop {#2}{1}{#3}{#4{#1}}{#5{#1}}%

207 }%

25.9. \xintFxPtPowerSeries
I am not two happy with this piece of code. Will make it more economical another day. Modified in

1.06 to give the indices first to a \numexpr rather than expanding twice. I just use \the\numexp ⤸
r and maintain the previous code after that. 1.08a: forgot last time some optimization from the

change to \numexpr.

208 \def\xintFxPtPowerSeries {\romannumeral0\xintfxptpowerseries }%

209 \def\xintfxptpowerseries #1#2%

210 {%

211 \expandafter\XINT_fppowseries\expandafter

212 {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}%

213 }%

214 \def\XINT_fppowseries #1#2#3#4#5%

215 {%

216 \ifnum #2<#1

217 \xint_afterfi { 0}%

218 \else

219 \xint_afterfi

220 {\expandafter\XINT_fppowseries_loop_pre\expandafter

221 {\romannumeral0\xinttrunc {#5}{\xintPow {#4}{#1}}}%

222 {#1}{#4}{#2}{#3}{#5}%

223 }%

224 \fi

225 }%

226 \def\XINT_fppowseries_loop_pre #1#2#3#4#5#6%

227 {%

228 \ifnum #4>#2 \else\XINT_fppowseries_dont_i \fi

229 \expandafter\XINT_fppowseries_loop_i\expandafter

230 {\the\numexpr #2+\xint_c_i\expandafter}\expandafter

231 {\romannumeral0\xintitrunc {#6}{\xintMul {#5{#2}}{#1}}}%

232 {#1}{#3}{#4}{#5}{#6}%

233 }%

234 \def\XINT_fppowseries_dont_i \fi\expandafter\XINT_fppowseries_loop_i

235 {\fi \expandafter\XINT_fppowseries_dont_ii }%

236 \def\XINT_fppowseries_dont_ii #1#2#3#4#5#6#7{\xinttrunc {#7}{#2[-#7]}}%

237 \def\XINT_fppowseries_loop_i #1#2#3#4#5#6#7%

238 {%

239 \ifnum #5>#1 \else \XINT_fppowseries_exit_i \fi

240 \expandafter\XINT_fppowseries_loop_ii\expandafter

241 {\romannumeral0\xinttrunc {#7}{\xintMul {#3}{#4}}}%

242 {#1}{#4}{#2}{#5}{#6}{#7}%

243 }%

244 \def\XINT_fppowseries_loop_ii #1#2#3#4#5#6#7%

245 {%

246 \expandafter\XINT_fppowseries_loop_i\expandafter

247 {\the\numexpr #2+\xint_c_i\expandafter}\expandafter

530

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries , xintcfrac, xintexpr, xinttrig, xintlog

248 {\romannumeral0\xintiiadd {#4}{\xintiTrunc {#7}{\xintMul {#6{#2}}{#1}}}}%

249 {#1}{#3}{#5}{#6}{#7}%

250 }%

251 \def\XINT_fppowseries_exit_i\fi\expandafter\XINT_fppowseries_loop_ii

252 {\fi \expandafter\XINT_fppowseries_exit_ii }%

253 \def\XINT_fppowseries_exit_ii #1#2#3#4#5#6#7%

254 {%

255 \xinttrunc {#7}

256 {\xintiiadd {#4}{\xintiTrunc {#7}{\xintMul {#6{#2}}{#1}}}[-#7]}%

257 }%

25.10. \xintFxPtPowerSeriesX
a,b,coeff,x,D

Modified in 1.06 to give the indices first to a \numexpr rather than expanding twice. I just use

\the\numexpr and maintain the previous code after that. 1.08a adds the forgotten optimization

following that previous change.

258 \def\xintFxPtPowerSeriesX {\romannumeral0\xintfxptpowerseriesx }%

259 \def\xintfxptpowerseriesx #1#2%

260 {%

261 \expandafter\XINT_fppowseriesx\expandafter

262 {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}%

263 }%

264 \def\XINT_fppowseriesx #1#2#3#4#5%

265 {%

266 \ifnum #2<#1

267 \xint_afterfi { 0}%

268 \else

269 \xint_afterfi

270 {\expandafter \XINT_fppowseriesx_pre \expandafter

271 {\romannumeral`&&@#4}{#1}{#2}{#3}{#5}%

272 }%

273 \fi

274 }%

275 \def\XINT_fppowseriesx_pre #1#2#3#4#5%

276 {%

277 \expandafter\XINT_fppowseries_loop_pre\expandafter

278 {\romannumeral0\xinttrunc {#5}{\xintPow {#1}{#2}}}%

279 {#2}{#1}{#3}{#4}{#5}%

280 }%

25.11. \xintFloatPowerSeries
1.08a. I still have to re-visit \xintFxPtPowerSeries; temporarily I just adapted the code to the

case of floats.

Usage of new names \XINTinfloatpow_wopt \XINTinfloatmul_wopt, \XINTinfloatadd_wopt to track

xintfrac.sty changes at 1.4e.

281 \def\xintFloatPowerSeries {\romannumeral0\xintfloatpowerseries }%

282 \def\xintfloatpowerseries #1{\XINT_flpowseries_chkopt #1\xint:}%

283 \def\XINT_flpowseries_chkopt #1%

284 {%

285 \ifx [#1\expandafter\XINT_flpowseries_opt

531

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries , xintcfrac, xintexpr, xinttrig, xintlog

286 \else\expandafter\XINT_flpowseries_noopt

287 \fi

288 #1%

289 }%

290 \def\XINT_flpowseries_noopt #1\xint:#2%

291 {%

292 \expandafter\XINT_flpowseries\expandafter

293 {\the\numexpr #1\expandafter}\expandafter

294 {\the\numexpr #2}\XINTdigits

295 }%

296 \def\XINT_flpowseries_opt [\xint:#1]#2#3%

297 {%

298 \expandafter\XINT_flpowseries\expandafter

299 {\the\numexpr #2\expandafter}\expandafter

300 {\the\numexpr #3\expandafter}{\the\numexpr #1}%

301 }%

302 \def\XINT_flpowseries #1#2#3#4#5%

303 {%

304 \ifnum #2<#1

305 \xint_afterfi { 0.e0}%

306 \else

307 \xint_afterfi

308 {\expandafter\XINT_flpowseries_loop_pre\expandafter

309 {\romannumeral0\XINTinfloatpow_wopt[#3]{#5}{#1}}%

310 {#1}{#5}{#2}{#4}{#3}%

311 }%

312 \fi

313 }%

314 \def\XINT_flpowseries_loop_pre #1#2#3#4#5#6%

315 {%

316 \ifnum #4>#2 \else\XINT_flpowseries_dont_i \fi

317 \expandafter\XINT_flpowseries_loop_i\expandafter

318 {\the\numexpr #2+\xint_c_i\expandafter}\expandafter

319 {\romannumeral0\XINTinfloatmul_wopt[#6]{#5{#2}}{#1}}%

320 {#1}{#3}{#4}{#5}{#6}%

321 }%

322 \def\XINT_flpowseries_dont_i \fi\expandafter\XINT_flpowseries_loop_i

323 {\fi \expandafter\XINT_flpowseries_dont_ii }%

324 \def\XINT_flpowseries_dont_ii #1#2#3#4#5#6#7{\xintfloat [#7]{#2}}%

325 \def\XINT_flpowseries_loop_i #1#2#3#4#5#6#7%

326 {%

327 \ifnum #5>#1 \else \XINT_flpowseries_exit_i \fi

328 \expandafter\XINT_flpowseries_loop_ii\expandafter

329 {\romannumeral0\XINTinfloatmul_wopt[#7]{#3}{#4}}%

330 {#1}{#4}{#2}{#5}{#6}{#7}%

331 }%

332 \def\XINT_flpowseries_loop_ii #1#2#3#4#5#6#7%

333 {%

334 \expandafter\XINT_flpowseries_loop_i\expandafter

335 {\the\numexpr #2+\xint_c_i\expandafter}\expandafter

336 {\romannumeral0\XINTinfloatadd_wopt[#7]{#4}%

337 {\XINTinfloatmul_wopt[#7]{#6{#2}}{#1}}}%

532

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries , xintcfrac, xintexpr, xinttrig, xintlog

338 {#1}{#3}{#5}{#6}{#7}%

339 }%

340 \def\XINT_flpowseries_exit_i\fi\expandafter\XINT_flpowseries_loop_ii

341 {\fi \expandafter\XINT_flpowseries_exit_ii }%

342 \def\XINT_flpowseries_exit_ii #1#2#3#4#5#6#7%

343 {%

344 \xintfloatadd[#7]{#4}{\XINTinfloatmul_wopt[#7]{#6{#2}}{#1}}%

345 }%

25.12. \xintFloatPowerSeriesX
1.08a

See \xintFloatPowerSeries for 1.4e comments.

346 \def\xintFloatPowerSeriesX {\romannumeral0\xintfloatpowerseriesx }%

347 \def\xintfloatpowerseriesx #1{\XINT_flpowseriesx_chkopt #1\xint:}%

348 \def\XINT_flpowseriesx_chkopt #1%

349 {%

350 \ifx [#1\expandafter\XINT_flpowseriesx_opt

351 \else\expandafter\XINT_flpowseriesx_noopt

352 \fi

353 #1%

354 }%

355 \def\XINT_flpowseriesx_noopt #1\xint:#2%

356 {%

357 \expandafter\XINT_flpowseriesx\expandafter

358 {\the\numexpr #1\expandafter}\expandafter

359 {\the\numexpr #2}\XINTdigits

360 }%

361 \def\XINT_flpowseriesx_opt [\xint:#1]#2#3%

362 {%

363 \expandafter\XINT_flpowseriesx\expandafter

364 {\the\numexpr #2\expandafter}\expandafter

365 {\the\numexpr #3\expandafter}{\the\numexpr #1}%

366 }%

367 \def\XINT_flpowseriesx #1#2#3#4#5%

368 {%

369 \ifnum #2<#1

370 \xint_afterfi { 0.e0}%

371 \else

372 \xint_afterfi

373 {\expandafter \XINT_flpowseriesx_pre \expandafter

374 {\romannumeral`&&@#5}{#1}{#2}{#4}{#3}%

375 }%

376 \fi

377 }%

378 \def\XINT_flpowseriesx_pre #1#2#3#4#5%

379 {%

380 \expandafter\XINT_flpowseries_loop_pre\expandafter

381 {\romannumeral0\XINTinfloatpow_wopt[#5]{#1}{#2}}%

382 {#2}{#1}{#3}{#4}{#5}%

383 }%

384 \XINTrestorecatcodesendinput%

533

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

26. Package xintcfrac implementation

.1 Catcodes, 𝜀-TEX and reload detection . . 534

.2 Package identification 535

.3 \xintCFrac 535

.4 \xintGCFrac 537

.5 \xintGGCFrac 538

.6 \xintGCtoGCx 539

.7 \xintFtoCs 539

.8 \xintFtoCx 540

.9 \xintFtoC 541

.10 \xintFtoGC 541

.11 \xintFGtoC 541

.12 \xintFtoCC 542

.13 \xintCtoF, \xintCstoF 543

.14 \xintiCstoF 544

.15 \xintGCtoF 545

.16 \xintiGCtoF 546

.17 \xintCtoCv, \xintCstoCv 547

.18 \xintiCstoCv 548

.19 \xintGCtoCv 549

.20 \xintiGCtoCv 550

.21 \xintFtoCv 551

.22 \xintFtoCCv 551

.23 \xintCntoF 552

.24 \xintGCntoF 552

.25 \xintCntoCs 553

.26 \xintCntoGC 554

.27 \xintGCntoGC 554

.28 \xintCstoGC 555

.29 \xintGCtoGC 555

The commenting is currently (2025/09/06) very sparse. Release 1.09m (2014/02/26) has modified a

few things: \xintFtoCs and \xintCntoCs insert spaces after the commas, \xintCstoF and \xintCstoCv

authorize spaces in the input also before the commas, \xintCntoCs does not brace the produced

coefficients, new macros \xintFtoC, \xintCtoF, \xintCtoCv, \xintFGtoC, and \xintGGCFrac.

The macros \xintCstoF and \xintCstoCv use xinttools's \xintCSVtoList. Formerly, it was up to

user to load xinttools to enable these macros. Starting at 1.4n the loading is automatic.

26.1. Catcodes, 𝜺-TEX and reload detection
The code for reload detection was initially copied from Heiko Oberdiek's packages, then modified.

The method for catcodes was also initially directly inspired by these packages.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode44=12 % ,

8 \catcode46=12 % .

9 \catcode58=12 % :

10 \catcode94=7 % ^

11 \def\empty{}\def\space{ }\newlinechar10

12 \def\z{\endgroup}%

13 \expandafter\let\expandafter\x\csname ver@xintcfrac.sty\endcsname

14 \expandafter\let\expandafter\w\csname ver@xintfrac.sty\endcsname

15 \expandafter\let\expandafter\t\csname ver@xinttools.sty\endcsname

16 \expandafter\ifx\csname numexpr\endcsname\relax

17 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

18 \immediate\write128{^^JPackage xintcfrac Warning:^^J%

19 \space\space\space\space

20 \numexpr not available, aborting input.^^J}%

21 \else

22 \PackageWarningNoLine{xintcfrac}{\numexpr not available, aborting input}%

23 \fi

24 \def\z{\endgroup\endinput}%

534

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

25 \else

26 \ifx\x\relax % not LaTeX, first loading of xintcfrac.sty

27 \ifx\w\relax % but xintfrac.sty not yet loaded.

28 \expandafter\def\expandafter\z\expandafter

29 {\z\input xintfrac.sty\relax}%

30 \fi

31 \ifx\t\relax % but xinttools.sty not yet loaded.

32 \expandafter\def\expandafter\z\expandafter

33 {\z\input xinttools.sty\relax}%

34 \fi

35 \else

36 \ifx\x\empty % LaTeX, first loading,

37 % variable is initialized, but \ProvidesPackage not yet seen

38 \ifx\w\relax % xintfrac not yet loaded.

39 \expandafter\def\expandafter\z\expandafter

40 {\z\RequirePackage{xintfrac}}%

41 \fi

42 \ifx\t\relax % xinttools not yet loaded.

43 \expandafter\def\expandafter\z\expandafter

44 {\z\RequirePackage{xinttools}}%

45 \fi

46 \else

47 \def\z{\endgroup\endinput}% xintcfrac already loaded.

48 \fi

49 \fi

50 \fi

51 \z%

52 \XINTsetupcatcodes% defined in xintkernel.sty

26.2. Package identification
53 \XINT_providespackage

54 \ProvidesPackage{xintcfrac}%

55 [2025/09/06 v1.4o Expandable continued fractions with xint package (JFB)]%

26.3. \xintCFrac
56 \def\xintCFrac {\romannumeral0\xintcfrac }%

57 \def\xintcfrac #1%

58 {%

59 \XINT_cfrac_opt_a #1\xint:

60 }%

61 \def\XINT_cfrac_opt_a #1%

62 {%

63 \ifx[#1\XINT_cfrac_opt_b\fi \XINT_cfrac_noopt #1%

64 }%

65 \def\XINT_cfrac_noopt #1\xint:

66 {%

67 \expandafter\XINT_cfrac_A\romannumeral0\xintrawwithzeros {#1}\Z

68 \relax\relax

69 }%

70 \def\XINT_cfrac_opt_b\fi\XINT_cfrac_noopt [\xint:#1]%

71 {%

535

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

72 \fi\csname XINT_cfrac_opt#1\endcsname

73 }%

74 \def\XINT_cfrac_optl #1%

75 {%

76 \expandafter\XINT_cfrac_A\romannumeral0\xintrawwithzeros {#1}\Z

77 \relax\hfill

78 }%

79 \def\XINT_cfrac_optc #1%

80 {%

81 \expandafter\XINT_cfrac_A\romannumeral0\xintrawwithzeros {#1}\Z

82 \relax\relax

83 }%

84 \def\XINT_cfrac_optr #1%

85 {%

86 \expandafter\XINT_cfrac_A\romannumeral0\xintrawwithzeros {#1}\Z

87 \hfill\relax

88 }%

89 \def\XINT_cfrac_A #1/#2\Z

90 {%

91 \expandafter\XINT_cfrac_B\romannumeral0\xintiidivision {#1}{#2}{#2}%

92 }%

93 \def\XINT_cfrac_B #1#2%

94 {%

95 \XINT_cfrac_C #2\Z {#1}%

96 }%

97 \def\XINT_cfrac_C #1%

98 {%

99 \xint_gob_til_zero #1\XINT_cfrac_integer 0\XINT_cfrac_D #1%

100 }%

101 \def\XINT_cfrac_integer 0\XINT_cfrac_D 0#1\Z #2#3#4#5{ #2}%

102 \def\XINT_cfrac_D #1\Z #2#3{\XINT_cfrac_loop_a {#1}{#3}{#1}{{#2}}}%

103 \def\XINT_cfrac_loop_a

104 {%

105 \expandafter\XINT_cfrac_loop_d\romannumeral0\XINT_div_prepare

106 }%

107 \def\XINT_cfrac_loop_d #1#2%

108 {%

109 \XINT_cfrac_loop_e #2.{#1}%

110 }%

111 \def\XINT_cfrac_loop_e #1%

112 {%

113 \xint_gob_til_zero #1\xint_cfrac_loop_exit0\XINT_cfrac_loop_f #1%

114 }%

115 \def\XINT_cfrac_loop_f #1.#2#3#4%

116 {%

117 \XINT_cfrac_loop_a {#1}{#3}{#1}{{#2}#4}%

118 }%

119 \def\xint_cfrac_loop_exit0\XINT_cfrac_loop_f #1.#2#3#4#5#6%

120 {\XINT_cfrac_T #5#6{#2}#4\Z }%

121 \def\XINT_cfrac_T #1#2#3#4%

122 {%

123 \xint_gob_til_Z #4\XINT_cfrac_end\Z\XINT_cfrac_T #1#2{#4+\cfrac{#11#2}{#3}}%

536

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

124 }%

125 \def\XINT_cfrac_end\Z\XINT_cfrac_T #1#2#3%

126 {%

127 \XINT_cfrac_end_b #3%

128 }%

129 \def\XINT_cfrac_end_b \Z+\cfrac#1#2{ #2}%

26.4. \xintGCFrac
Updated at 1.4g to follow-up on renaming of \xintFrac into \xintTeXFrac.

130 \def\xintGCFrac {\romannumeral0\xintgcfrac }%

131 \def\xintgcfrac #1{\XINT_gcfrac_opt_a #1\xint:}%

132 \def\XINT_gcfrac_opt_a #1%

133 {%

134 \ifx[#1\XINT_gcfrac_opt_b\fi \XINT_gcfrac_noopt #1%

135 }%

136 \def\XINT_gcfrac_noopt #1\xint:%

137 {%

138 \XINT_gcfrac #1+!/\relax\relax

139 }%

140 \def\XINT_gcfrac_opt_b\fi\XINT_gcfrac_noopt [\xint:#1]%

141 {%

142 \fi\csname XINT_gcfrac_opt#1\endcsname

143 }%

144 \def\XINT_gcfrac_optl #1%

145 {%

146 \XINT_gcfrac #1+!/\relax\hfill

147 }%

148 \def\XINT_gcfrac_optc #1%

149 {%

150 \XINT_gcfrac #1+!/\relax\relax

151 }%

152 \def\XINT_gcfrac_optr #1%

153 {%

154 \XINT_gcfrac #1+!/\hfill\relax

155 }%

156 \def\XINT_gcfrac

157 {%

158 \expandafter\XINT_gcfrac_enter\romannumeral`&&@%

159 }%

160 \def\XINT_gcfrac_enter {\XINT_gcfrac_loop {}}%

161 \def\XINT_gcfrac_loop #1#2+#3/%

162 {%

163 \xint_gob_til_exclam #3\XINT_gcfrac_endloop!%

164 \XINT_gcfrac_loop {{#3}{#2}#1}%

165 }%

166 \def\XINT_gcfrac_endloop!\XINT_gcfrac_loop #1#2#3%

167 {%

168 \XINT_gcfrac_T #2#3#1!!%

169 }%

170 \def\XINT_gcfrac_T #1#2#3#4{\XINT_gcfrac_U #1#2{\xintTeXFrac{#4}}}%

171 \def\XINT_gcfrac_U #1#2#3#4#5%

537

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

172 {%

173 \xint_gob_til_exclam #5\XINT_gcfrac_end!\XINT_gcfrac_U

174 #1#2{\xintTeXFrac{#5}%

175 \ifcase\xintSgn{#4}

176 +\or+\else-\fi

177 \cfrac{#1\xintTeXFrac{\xintAbs{#4}}#2}{#3}}%

178 }%

179 \def\XINT_gcfrac_end!\XINT_gcfrac_U #1#2#3%

180 {%

181 \XINT_gcfrac_end_b #3%

182 }%

183 \def\XINT_gcfrac_end_b #1\cfrac#2#3{ #3}%

26.5. \xintGGCFrac
New with 1.09m

184 \def\xintGGCFrac {\romannumeral0\xintggcfrac }%

185 \def\xintggcfrac #1{\XINT_ggcfrac_opt_a #1\xint:}%

186 \def\XINT_ggcfrac_opt_a #1%

187 {%

188 \ifx[#1\XINT_ggcfrac_opt_b\fi \XINT_ggcfrac_noopt #1%

189 }%

190 \def\XINT_ggcfrac_noopt #1\xint:

191 {%

192 \XINT_ggcfrac #1+!/\relax\relax

193 }%

194 \def\XINT_ggcfrac_opt_b\fi\XINT_ggcfrac_noopt [\xint:#1]%

195 {%

196 \fi\csname XINT_ggcfrac_opt#1\endcsname

197 }%

198 \def\XINT_ggcfrac_optl #1%

199 {%

200 \XINT_ggcfrac #1+!/\relax\hfill

201 }%

202 \def\XINT_ggcfrac_optc #1%

203 {%

204 \XINT_ggcfrac #1+!/\relax\relax

205 }%

206 \def\XINT_ggcfrac_optr #1%

207 {%

208 \XINT_ggcfrac #1+!/\hfill\relax

209 }%

210 \def\XINT_ggcfrac

211 {%

212 \expandafter\XINT_ggcfrac_enter\romannumeral`&&@%

213 }%

214 \def\XINT_ggcfrac_enter {\XINT_ggcfrac_loop {}}%

215 \def\XINT_ggcfrac_loop #1#2+#3/%

216 {%

217 \xint_gob_til_exclam #3\XINT_ggcfrac_endloop!%

218 \XINT_ggcfrac_loop {{#3}{#2}#1}%

219 }%

538

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

220 \def\XINT_ggcfrac_endloop!\XINT_ggcfrac_loop #1#2#3%

221 {%

222 \XINT_ggcfrac_T #2#3#1!!%

223 }%

224 \def\XINT_ggcfrac_T #1#2#3#4{\XINT_ggcfrac_U #1#2{#4}}%

225 \def\XINT_ggcfrac_U #1#2#3#4#5%

226 {%

227 \xint_gob_til_exclam #5\XINT_ggcfrac_end!\XINT_ggcfrac_U

228 #1#2{#5+\cfrac{#1#4#2}{#3}}%

229 }%

230 \def\XINT_ggcfrac_end!\XINT_ggcfrac_U #1#2#3%

231 {%

232 \XINT_ggcfrac_end_b #3%

233 }%

234 \def\XINT_ggcfrac_end_b #1\cfrac#2#3{ #3}%

26.6. \xintGCtoGCx
235 \def\xintGCtoGCx {\romannumeral0\xintgctogcx }%

236 \def\xintgctogcx #1#2#3%

237 {%

238 \expandafter\XINT_gctgcx_start\expandafter {\romannumeral`&&@#3}{#1}{#2}%

239 }%

240 \def\XINT_gctgcx_start #1#2#3{\XINT_gctgcx_loop_a {}{#2}{#3}#1+!/}%

241 \def\XINT_gctgcx_loop_a #1#2#3#4+#5/%

242 {%

243 \xint_gob_til_exclam #5\XINT_gctgcx_end!%

244 \XINT_gctgcx_loop_b {#1{#4}}{#2{#5}#3}{#2}{#3}%

245 }%

246 \def\XINT_gctgcx_loop_b #1#2%

247 {%

248 \XINT_gctgcx_loop_a {#1#2}%

249 }%

250 \def\XINT_gctgcx_end!\XINT_gctgcx_loop_b #1#2#3#4{ #1}%

26.7. \xintFtoCs
Modified in 1.09m: a space is added after the inserted commas.

251 \def\xintFtoCs {\romannumeral0\xintftocs }%

252 \def\xintftocs #1%

253 {%

254 \expandafter\XINT_ftc_A\romannumeral0\xintrawwithzeros {#1}\Z

255 }%

256 \def\XINT_ftc_A #1/#2\Z

257 {%

258 \expandafter\XINT_ftc_B\romannumeral0\xintiidivision {#1}{#2}{#2}%

259 }%

260 \def\XINT_ftc_B #1#2%

261 {%

262 \XINT_ftc_C #2.{#1}%

263 }%

264 \def\XINT_ftc_C #1%

265 {%

539

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

266 \xint_gob_til_zero #1\XINT_ftc_integer 0\XINT_ftc_D #1%

267 }%

268 \def\XINT_ftc_integer 0\XINT_ftc_D 0#1.#2#3{ #2}%

269 \def\XINT_ftc_D #1.#2#3{\XINT_ftc_loop_a {#1}{#3}{#1}{#2, }}% 1.09m adds a space

270 \def\XINT_ftc_loop_a

271 {%

272 \expandafter\XINT_ftc_loop_d\romannumeral0\XINT_div_prepare

273 }%

274 \def\XINT_ftc_loop_d #1#2%

275 {%

276 \XINT_ftc_loop_e #2.{#1}%

277 }%

278 \def\XINT_ftc_loop_e #1%

279 {%

280 \xint_gob_til_zero #1\xint_ftc_loop_exit0\XINT_ftc_loop_f #1%

281 }%

282 \def\XINT_ftc_loop_f #1.#2#3#4%

283 {%

284 \XINT_ftc_loop_a {#1}{#3}{#1}{#4#2, }% 1.09m has an added space here

285 }%

286 \def\xint_ftc_loop_exit0\XINT_ftc_loop_f #1.#2#3#4{ #4#2}%

26.8. \xintFtoCx
287 \def\xintFtoCx {\romannumeral0\xintftocx }%

288 \def\xintftocx #1#2%

289 {%

290 \expandafter\XINT_ftcx_A\romannumeral0\xintrawwithzeros {#2}\Z {#1}%

291 }%

292 \def\XINT_ftcx_A #1/#2\Z

293 {%

294 \expandafter\XINT_ftcx_B\romannumeral0\xintiidivision {#1}{#2}{#2}%

295 }%

296 \def\XINT_ftcx_B #1#2%

297 {%

298 \XINT_ftcx_C #2.{#1}%

299 }%

300 \def\XINT_ftcx_C #1%

301 {%

302 \xint_gob_til_zero #1\XINT_ftcx_integer 0\XINT_ftcx_D #1%

303 }%

304 \def\XINT_ftcx_integer 0\XINT_ftcx_D 0#1.#2#3#4{ #2}%

305 \def\XINT_ftcx_D #1.#2#3#4{\XINT_ftcx_loop_a {#1}{#3}{#1}{{#2}#4}{#4}}%

306 \def\XINT_ftcx_loop_a

307 {%

308 \expandafter\XINT_ftcx_loop_d\romannumeral0\XINT_div_prepare

309 }%

310 \def\XINT_ftcx_loop_d #1#2%

311 {%

312 \XINT_ftcx_loop_e #2.{#1}%

313 }%

314 \def\XINT_ftcx_loop_e #1%

315 {%

540

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

316 \xint_gob_til_zero #1\xint_ftcx_loop_exit0\XINT_ftcx_loop_f #1%

317 }%

318 \def\XINT_ftcx_loop_f #1.#2#3#4#5%

319 {%

320 \XINT_ftcx_loop_a {#1}{#3}{#1}{#4{#2}#5}{#5}%

321 }%

322 \def\xint_ftcx_loop_exit0\XINT_ftcx_loop_f #1.#2#3#4#5{ #4{#2}}%

26.9. \xintFtoC
New in 1.09m: this is the same as \xintFtoCx with empty separator. I had temporarily during

preparation of 1.09m removed braces from \xintFtoCx, but I recalled later why that was useful (see

doc), thus let's just here do \xintFtoCx {}

323 \def\xintFtoC {\romannumeral0\xintftoc }%

324 \def\xintftoc {\xintftocx {}}%

26.10. \xintFtoGC
325 \def\xintFtoGC {\romannumeral0\xintftogc }%

326 \def\xintftogc {\xintftocx {+1/}}%

26.11. \xintFGtoC
New with 1.09m of 2014/02/26. Computes the common initial coefficients for the two fractions f

and g, and outputs them as a sequence of braced items.

327 \def\xintFGtoC {\romannumeral0\xintfgtoc}%

328 \def\xintfgtoc#1%

329 {%

330 \expandafter\XINT_fgtc_a\romannumeral0\xintrawwithzeros {#1}\Z

331 }%

332 \def\XINT_fgtc_a #1/#2\Z #3%

333 {%

334 \expandafter\XINT_fgtc_b\romannumeral0\xintrawwithzeros {#3}\Z #1/#2\Z { }%

335 }%

336 \def\XINT_fgtc_b #1/#2\Z

337 {%

338 \expandafter\XINT_fgtc_c\romannumeral0\xintiidivision {#1}{#2}{#2}%

339 }%

340 \def\XINT_fgtc_c #1#2#3#4/#5\Z

341 {%

342 \expandafter\XINT_fgtc_d\romannumeral0\xintiidivision

343 {#4}{#5}{#5}{#1}{#2}{#3}%

344 }%

345 \def\XINT_fgtc_d #1#2#3#4%#5#6#7%

346 {%

347 \xintifEq {#1}{#4}{\XINT_fgtc_da {#1}{#2}{#3}{#4}}%

348 {\xint_thirdofthree}%

349 }%

350 \def\XINT_fgtc_da #1#2#3#4#5#6#7%

351 {%

352 \XINT_fgtc_e {#2}{#5}{#3}{#6}{#7{#1}}%

353 }%

541

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

354 \def\XINT_fgtc_e #1%

355 {%

356 \xintiiifZero {#1}{\expandafter\xint_firstofone\xint_gobble_iii}%

357 {\XINT_fgtc_f {#1}}%

358 }%

359 \def\XINT_fgtc_f #1#2%

360 {%

361 \xintiiifZero {#2}{\xint_thirdofthree}{\XINT_fgtc_g {#1}{#2}}%

362 }%

363 \def\XINT_fgtc_g #1#2#3%

364 {%

365 \expandafter\XINT_fgtc_h\romannumeral0\XINT_div_prepare {#1}{#3}{#1}{#2}%

366 }%

367 \def\XINT_fgtc_h #1#2#3#4#5%

368 {%

369 \expandafter\XINT_fgtc_d\romannumeral0\XINT_div_prepare

370 {#4}{#5}{#4}{#1}{#2}{#3}%

371 }%

26.12. \xintFtoCC
372 \def\xintFtoCC {\romannumeral0\xintftocc }%

373 \def\xintftocc #1%

374 {%

375 \expandafter\XINT_ftcc_A\expandafter {\romannumeral0\xintrawwithzeros {#1}}%

376 }%

377 \def\XINT_ftcc_A #1%

378 {%

379 \expandafter\XINT_ftcc_B

380 \romannumeral0\xintrawwithzeros {\xintAdd {1/2[0]}{#1[0]}}\Z {#1[0]}%

381 }%

382 \def\XINT_ftcc_B #1/#2\Z

383 {%

384 \expandafter\XINT_ftcc_C\expandafter {\romannumeral0\xintiiquo {#1}{#2}}%

385 }%

386 \def\XINT_ftcc_C #1#2%

387 {%

388 \expandafter\XINT_ftcc_D\romannumeral0\xintsub {#2}{#1}\Z {#1}%

389 }%

390 \def\XINT_ftcc_D #1%

391 {%

392 \xint_UDzerominusfork

393 #1-\XINT_ftcc_integer

394 0#1\XINT_ftcc_En

395 0-{\XINT_ftcc_Ep #1}%

396 \krof

397 }%

398 \def\XINT_ftcc_Ep #1\Z #2%

399 {%

400 \expandafter\XINT_ftcc_loop_a\expandafter

401 {\romannumeral0\xintdiv {1[0]}{#1}}{#2+1/}%

402 }%

403 \def\XINT_ftcc_En #1\Z #2%

542

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

404 {%

405 \expandafter\XINT_ftcc_loop_a\expandafter

406 {\romannumeral0\xintdiv {1[0]}{#1}}{#2+-1/}%

407 }%

408 \def\XINT_ftcc_integer #1\Z #2{ #2}%

409 \def\XINT_ftcc_loop_a #1%

410 {%

411 \expandafter\XINT_ftcc_loop_b

412 \romannumeral0\xintrawwithzeros {\xintAdd {1/2[0]}{#1}}\Z {#1}%

413 }%

414 \def\XINT_ftcc_loop_b #1/#2\Z

415 {%

416 \expandafter\XINT_ftcc_loop_c\expandafter

417 {\romannumeral0\xintiiquo {#1}{#2}}%

418 }%

419 \def\XINT_ftcc_loop_c #1#2%

420 {%

421 \expandafter\XINT_ftcc_loop_d

422 \romannumeral0\xintsub {#2}{#1[0]}\Z {#1}%

423 }%

424 \def\XINT_ftcc_loop_d #1%

425 {%

426 \xint_UDzerominusfork

427 #1-\XINT_ftcc_end

428 0#1\XINT_ftcc_loop_N

429 0-{\XINT_ftcc_loop_P #1}%

430 \krof

431 }%

432 \def\XINT_ftcc_end #1\Z #2#3{ #3#2}%

433 \def\XINT_ftcc_loop_P #1\Z #2#3%

434 {%

435 \expandafter\XINT_ftcc_loop_a\expandafter

436 {\romannumeral0\xintdiv {1[0]}{#1}}{#3#2+1/}%

437 }%

438 \def\XINT_ftcc_loop_N #1\Z #2#3%

439 {%

440 \expandafter\XINT_ftcc_loop_a\expandafter

441 {\romannumeral0\xintdiv {1[0]}{#1}}{#3#2+-1/}%

442 }%

26.13. \xintCtoF, \xintCstoF
1.09m uses xinttools's \xintCSVtoList on the argument of \xintCstoF to allow spaces also before

the commas. And the original \xintCstoF code became the one of the new \xintCtoF dealing with a

braced rather than comma separated list.

443 \def\xintCstoF {\romannumeral0\xintcstof }%

444 \def\xintcstof #1%

445 {%

446 \expandafter\XINT_ctf_prep \romannumeral0\xintcsvtolist{#1}!%

447 }%

448 \def\xintCtoF {\romannumeral0\xintctof }%

449 \def\xintctof #1%

543

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

450 {%

451 \expandafter\XINT_ctf_prep \romannumeral`&&@#1!%

452 }%

453 \def\XINT_ctf_prep

454 {%

455 \XINT_ctf_loop_a 1001%

456 }%

457 \def\XINT_ctf_loop_a #1#2#3#4#5%

458 {%

459 \xint_gob_til_exclam #5\XINT_ctf_end!%

460 \expandafter\XINT_ctf_loop_b

461 \romannumeral0\xintrawwithzeros {#5}.{#1}{#2}{#3}{#4}%

462 }%

463 \def\XINT_ctf_loop_b #1/#2.#3#4#5#6%

464 {%

465 \expandafter\XINT_ctf_loop_c\expandafter

466 {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%

467 {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%

468 {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#6\xint:}%

469 {\XINT_mul_fork #1\xint:#4\xint:}}%

470 {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#5\xint:}%

471 {\XINT_mul_fork #1\xint:#3\xint:}}%

472 }%

473 \def\XINT_ctf_loop_c #1#2%

474 {%

475 \expandafter\XINT_ctf_loop_d\expandafter {\expandafter{#2}{#1}}%

476 }%

477 \def\XINT_ctf_loop_d #1#2%

478 {%

479 \expandafter\XINT_ctf_loop_e\expandafter {\expandafter{#2}#1}%

480 }%

481 \def\XINT_ctf_loop_e #1#2%

482 {%

483 \expandafter\XINT_ctf_loop_a\expandafter{#2}#1%

484 }%

485 \def\XINT_ctf_end #1.#2#3#4#5{\xintrawwithzeros {#2/#3}}% 1.09b removes [0]

26.14. \xintiCstoF
486 \def\xintiCstoF {\romannumeral0\xinticstof }%

487 \def\xinticstof #1%

488 {%

489 \expandafter\XINT_icstf_prep \romannumeral`&&@#1,!,%

490 }%

491 \def\XINT_icstf_prep

492 {%

493 \XINT_icstf_loop_a 1001%

494 }%

495 \def\XINT_icstf_loop_a #1#2#3#4#5,%

496 {%

497 \xint_gob_til_exclam #5\XINT_icstf_end!%

498 \expandafter

499 \XINT_icstf_loop_b \romannumeral`&&@#5.{#1}{#2}{#3}{#4}%

544

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

500 }%

501 \def\XINT_icstf_loop_b #1.#2#3#4#5%

502 {%

503 \expandafter\XINT_icstf_loop_c\expandafter

504 {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\xint:#3\xint:}}%

505 {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\xint:#2\xint:}}%

506 {#2}{#3}%

507 }%

508 \def\XINT_icstf_loop_c #1#2%

509 {%

510 \expandafter\XINT_icstf_loop_a\expandafter {#2}{#1}%

511 }%

512 \def\XINT_icstf_end#1.#2#3#4#5{\xintrawwithzeros {#2/#3}}% 1.09b removes [0]

26.15. \xintGCtoF
513 \def\xintGCtoF {\romannumeral0\xintgctof }%

514 \def\xintgctof #1%

515 {%

516 \expandafter\XINT_gctf_prep \romannumeral`&&@#1+!/%

517 }%

518 \def\XINT_gctf_prep

519 {%

520 \XINT_gctf_loop_a 1001%

521 }%

522 \def\XINT_gctf_loop_a #1#2#3#4#5+%

523 {%

524 \expandafter\XINT_gctf_loop_b

525 \romannumeral0\xintrawwithzeros {#5}.{#1}{#2}{#3}{#4}%

526 }%

527 \def\XINT_gctf_loop_b #1/#2.#3#4#5#6%

528 {%

529 \expandafter\XINT_gctf_loop_c\expandafter

530 {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%

531 {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%

532 {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#6\xint:}%

533 {\XINT_mul_fork #1\xint:#4\xint:}}%

534 {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#5\xint:}%

535 {\XINT_mul_fork #1\xint:#3\xint:}}%

536 }%

537 \def\XINT_gctf_loop_c #1#2%

538 {%

539 \expandafter\XINT_gctf_loop_d\expandafter {\expandafter{#2}{#1}}%

540 }%

541 \def\XINT_gctf_loop_d #1#2%

542 {%

543 \expandafter\XINT_gctf_loop_e\expandafter {\expandafter{#2}#1}%

544 }%

545 \def\XINT_gctf_loop_e #1#2%

546 {%

547 \expandafter\XINT_gctf_loop_f\expandafter {\expandafter{#2}#1}%

548 }%

549 \def\XINT_gctf_loop_f #1#2/%

545

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

550 {%

551 \xint_gob_til_exclam #2\XINT_gctf_end!%

552 \expandafter\XINT_gctf_loop_g

553 \romannumeral0\xintrawwithzeros {#2}.#1%

554 }%

555 \def\XINT_gctf_loop_g #1/#2.#3#4#5#6%

556 {%

557 \expandafter\XINT_gctf_loop_h\expandafter

558 {\romannumeral0\XINT_mul_fork #1\xint:#6\xint:}%

559 {\romannumeral0\XINT_mul_fork #1\xint:#5\xint:}%

560 {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%

561 {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%

562 }%

563 \def\XINT_gctf_loop_h #1#2%

564 {%

565 \expandafter\XINT_gctf_loop_i\expandafter {\expandafter{#2}{#1}}%

566 }%

567 \def\XINT_gctf_loop_i #1#2%

568 {%

569 \expandafter\XINT_gctf_loop_j\expandafter {\expandafter{#2}#1}%

570 }%

571 \def\XINT_gctf_loop_j #1#2%

572 {%

573 \expandafter\XINT_gctf_loop_a\expandafter {#2}#1%

574 }%

575 \def\XINT_gctf_end #1.#2#3#4#5{\xintrawwithzeros {#2/#3}}% 1.09b removes [0]

26.16. \xintiGCtoF
576 \def\xintiGCtoF {\romannumeral0\xintigctof }%

577 \def\xintigctof #1%

578 {%

579 \expandafter\XINT_igctf_prep \romannumeral`&&@#1+!/%

580 }%

581 \def\XINT_igctf_prep

582 {%

583 \XINT_igctf_loop_a 1001%

584 }%

585 \def\XINT_igctf_loop_a #1#2#3#4#5+%

586 {%

587 \expandafter\XINT_igctf_loop_b

588 \romannumeral`&&@#5.{#1}{#2}{#3}{#4}%

589 }%

590 \def\XINT_igctf_loop_b #1.#2#3#4#5%

591 {%

592 \expandafter\XINT_igctf_loop_c\expandafter

593 {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\xint:#3\xint:}}%

594 {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\xint:#2\xint:}}%

595 {#2}{#3}%

596 }%

597 \def\XINT_igctf_loop_c #1#2%

598 {%

599 \expandafter\XINT_igctf_loop_f\expandafter {\expandafter{#2}{#1}}%

546

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

600 }%

601 \def\XINT_igctf_loop_f #1#2#3#4/%

602 {%

603 \xint_gob_til_exclam #4\XINT_igctf_end!%

604 \expandafter\XINT_igctf_loop_g

605 \romannumeral`&&@#4.{#2}{#3}#1%

606 }%

607 \def\XINT_igctf_loop_g #1.#2#3%

608 {%

609 \expandafter\XINT_igctf_loop_h\expandafter

610 {\romannumeral0\XINT_mul_fork #1\xint:#3\xint:}%

611 {\romannumeral0\XINT_mul_fork #1\xint:#2\xint:}%

612 }%

613 \def\XINT_igctf_loop_h #1#2%

614 {%

615 \expandafter\XINT_igctf_loop_i\expandafter {#2}{#1}%

616 }%

617 \def\XINT_igctf_loop_i #1#2#3#4%

618 {%

619 \XINT_igctf_loop_a {#3}{#4}{#1}{#2}%

620 }%

621 \def\XINT_igctf_end #1.#2#3#4#5{\xintrawwithzeros {#4/#5}}% 1.09b removes [0]

26.17. \xintCtoCv, \xintCstoCv
1.09m uses xinttools's \xintCSVtoList on the argument of \xintCstoCv to allow spaces also before

the commas. The original \xintCstoCv code became the one of the new \xintCtoF dealing with a

braced rather than comma separated list.

622 \def\xintCstoCv {\romannumeral0\xintcstocv }%

623 \def\xintcstocv #1%

624 {%

625 \expandafter\XINT_ctcv_prep\romannumeral0\xintcsvtolist{#1}!%

626 }%

627 \def\xintCtoCv {\romannumeral0\xintctocv }%

628 \def\xintctocv #1%

629 {%

630 \expandafter\XINT_ctcv_prep\romannumeral`&&@#1!%

631 }%

632 \def\XINT_ctcv_prep

633 {%

634 \XINT_ctcv_loop_a {}1001%

635 }%

636 \def\XINT_ctcv_loop_a #1#2#3#4#5#6%

637 {%

638 \xint_gob_til_exclam #6\XINT_ctcv_end!%

639 \expandafter\XINT_ctcv_loop_b

640 \romannumeral0\xintrawwithzeros {#6}.{#2}{#3}{#4}{#5}{#1}%

641 }%

642 \def\XINT_ctcv_loop_b #1/#2.#3#4#5#6%

643 {%

644 \expandafter\XINT_ctcv_loop_c\expandafter

645 {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%

547

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

646 {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%

647 {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#6\xint:}%

648 {\XINT_mul_fork #1\xint:#4\xint:}}%

649 {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#5\xint:}%

650 {\XINT_mul_fork #1\xint:#3\xint:}}%

651 }%

652 \def\XINT_ctcv_loop_c #1#2%

653 {%

654 \expandafter\XINT_ctcv_loop_d\expandafter {\expandafter{#2}{#1}}%

655 }%

656 \def\XINT_ctcv_loop_d #1#2%

657 {%

658 \expandafter\XINT_ctcv_loop_e\expandafter {\expandafter{#2}#1}%

659 }%

660 \def\XINT_ctcv_loop_e #1#2%

661 {%

662 \expandafter\XINT_ctcv_loop_f\expandafter{#2}#1%

663 }%

664 \def\XINT_ctcv_loop_f #1#2#3#4#5%

665 {%

666 \expandafter\XINT_ctcv_loop_g\expandafter

667 {\romannumeral0\xintrawwithzeros {#1/#2}}{#5}{#1}{#2}{#3}{#4}%

668 }%

669 \def\XINT_ctcv_loop_g #1#2{\XINT_ctcv_loop_a {#2{#1}}}% 1.09b removes [0]

670 \def\XINT_ctcv_end #1.#2#3#4#5#6{ #6}%

26.18. \xintiCstoCv
671 \def\xintiCstoCv {\romannumeral0\xinticstocv }%

672 \def\xinticstocv #1%

673 {%

674 \expandafter\XINT_icstcv_prep \romannumeral`&&@#1,!,%

675 }%

676 \def\XINT_icstcv_prep

677 {%

678 \XINT_icstcv_loop_a {}1001%

679 }%

680 \def\XINT_icstcv_loop_a #1#2#3#4#5#6,%

681 {%

682 \xint_gob_til_exclam #6\XINT_icstcv_end!%

683 \expandafter

684 \XINT_icstcv_loop_b \romannumeral`&&@#6.{#2}{#3}{#4}{#5}{#1}%

685 }%

686 \def\XINT_icstcv_loop_b #1.#2#3#4#5%

687 {%

688 \expandafter\XINT_icstcv_loop_c\expandafter

689 {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\xint:#3\xint:}}%

690 {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\xint:#2\xint:}}%

691 {{#2}{#3}}%

692 }%

693 \def\XINT_icstcv_loop_c #1#2%

694 {%

695 \expandafter\XINT_icstcv_loop_d\expandafter {#2}{#1}%

548

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

696 }%

697 \def\XINT_icstcv_loop_d #1#2%

698 {%

699 \expandafter\XINT_icstcv_loop_e\expandafter

700 {\romannumeral0\xintrawwithzeros {#1/#2}}{{#1}{#2}}%

701 }%

702 \def\XINT_icstcv_loop_e #1#2#3#4{\XINT_icstcv_loop_a {#4{#1}}#2#3}%

703 \def\XINT_icstcv_end #1.#2#3#4#5#6{ #6}% 1.09b removes [0]

26.19. \xintGCtoCv
704 \def\xintGCtoCv {\romannumeral0\xintgctocv }%

705 \def\xintgctocv #1%

706 {%

707 \expandafter\XINT_gctcv_prep \romannumeral`&&@#1+!/%

708 }%

709 \def\XINT_gctcv_prep

710 {%

711 \XINT_gctcv_loop_a {}1001%

712 }%

713 \def\XINT_gctcv_loop_a #1#2#3#4#5#6+%

714 {%

715 \expandafter\XINT_gctcv_loop_b

716 \romannumeral0\xintrawwithzeros {#6}.{#2}{#3}{#4}{#5}{#1}%

717 }%

718 \def\XINT_gctcv_loop_b #1/#2.#3#4#5#6%

719 {%

720 \expandafter\XINT_gctcv_loop_c\expandafter

721 {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%

722 {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%

723 {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#6\xint:}%

724 {\XINT_mul_fork #1\xint:#4\xint:}}%

725 {\romannumeral0\xintiiadd {\XINT_mul_fork #2\xint:#5\xint:}%

726 {\XINT_mul_fork #1\xint:#3\xint:}}%

727 }%

728 \def\XINT_gctcv_loop_c #1#2%

729 {%

730 \expandafter\XINT_gctcv_loop_d\expandafter {\expandafter{#2}{#1}}%

731 }%

732 \def\XINT_gctcv_loop_d #1#2%

733 {%

734 \expandafter\XINT_gctcv_loop_e\expandafter {\expandafter{#2}{#1}}%

735 }%

736 \def\XINT_gctcv_loop_e #1#2%

737 {%

738 \expandafter\XINT_gctcv_loop_f\expandafter {#2}#1%

739 }%

740 \def\XINT_gctcv_loop_f #1#2%

741 {%

742 \expandafter\XINT_gctcv_loop_g\expandafter

743 {\romannumeral0\xintrawwithzeros {#1/#2}}{{#1}{#2}}%

744 }%

745 \def\XINT_gctcv_loop_g #1#2#3#4%

549

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

746 {%

747 \XINT_gctcv_loop_h {#4{#1}}{#2#3}% 1.09b removes [0]

748 }%

749 \def\XINT_gctcv_loop_h #1#2#3/%

750 {%

751 \xint_gob_til_exclam #3\XINT_gctcv_end!%

752 \expandafter\XINT_gctcv_loop_i

753 \romannumeral0\xintrawwithzeros {#3}.#2{#1}%

754 }%

755 \def\XINT_gctcv_loop_i #1/#2.#3#4#5#6%

756 {%

757 \expandafter\XINT_gctcv_loop_j\expandafter

758 {\romannumeral0\XINT_mul_fork #1\xint:#6\xint:}%

759 {\romannumeral0\XINT_mul_fork #1\xint:#5\xint:}%

760 {\romannumeral0\XINT_mul_fork #2\xint:#4\xint:}%

761 {\romannumeral0\XINT_mul_fork #2\xint:#3\xint:}%

762 }%

763 \def\XINT_gctcv_loop_j #1#2%

764 {%

765 \expandafter\XINT_gctcv_loop_k\expandafter {\expandafter{#2}{#1}}%

766 }%

767 \def\XINT_gctcv_loop_k #1#2%

768 {%

769 \expandafter\XINT_gctcv_loop_l\expandafter {\expandafter{#2}#1}%

770 }%

771 \def\XINT_gctcv_loop_l #1#2%

772 {%

773 \expandafter\XINT_gctcv_loop_m\expandafter {\expandafter{#2}#1}%

774 }%

775 \def\XINT_gctcv_loop_m #1#2{\XINT_gctcv_loop_a {#2}#1}%

776 \def\XINT_gctcv_end #1.#2#3#4#5#6{ #6}%

26.20. \xintiGCtoCv
777 \def\xintiGCtoCv {\romannumeral0\xintigctocv }%

778 \def\xintigctocv #1%

779 {%

780 \expandafter\XINT_igctcv_prep \romannumeral`&&@#1+!/%

781 }%

782 \def\XINT_igctcv_prep

783 {%

784 \XINT_igctcv_loop_a {}1001%

785 }%

786 \def\XINT_igctcv_loop_a #1#2#3#4#5#6+%

787 {%

788 \expandafter\XINT_igctcv_loop_b

789 \romannumeral`&&@#6.{#2}{#3}{#4}{#5}{#1}%

790 }%

791 \def\XINT_igctcv_loop_b #1.#2#3#4#5%

792 {%

793 \expandafter\XINT_igctcv_loop_c\expandafter

794 {\romannumeral0\xintiiadd {#5}{\XINT_mul_fork #1\xint:#3\xint:}}%

795 {\romannumeral0\xintiiadd {#4}{\XINT_mul_fork #1\xint:#2\xint:}}%

550

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

796 {{#2}{#3}}%

797 }%

798 \def\XINT_igctcv_loop_c #1#2%

799 {%

800 \expandafter\XINT_igctcv_loop_f\expandafter {\expandafter{#2}{#1}}%

801 }%

802 \def\XINT_igctcv_loop_f #1#2#3#4/%

803 {%

804 \xint_gob_til_exclam #4\XINT_igctcv_end_a!%

805 \expandafter\XINT_igctcv_loop_g

806 \romannumeral`&&@#4.#1#2{#3}%

807 }%

808 \def\XINT_igctcv_loop_g #1.#2#3#4#5%

809 {%

810 \expandafter\XINT_igctcv_loop_h\expandafter

811 {\romannumeral0\XINT_mul_fork #1\xint:#5\xint:}%

812 {\romannumeral0\XINT_mul_fork #1\xint:#4\xint:}%

813 {{#2}{#3}}%

814 }%

815 \def\XINT_igctcv_loop_h #1#2%

816 {%

817 \expandafter\XINT_igctcv_loop_i\expandafter {\expandafter{#2}{#1}}%

818 }%

819 \def\XINT_igctcv_loop_i #1#2{\XINT_igctcv_loop_k #2{#2#1}}%

820 \def\XINT_igctcv_loop_k #1#2%

821 {%

822 \expandafter\XINT_igctcv_loop_l\expandafter

823 {\romannumeral0\xintrawwithzeros {#1/#2}}%

824 }%

825 \def\XINT_igctcv_loop_l #1#2#3{\XINT_igctcv_loop_a {#3{#1}}#2}%1.09i removes [0]

826 \def\XINT_igctcv_end_a #1.#2#3#4#5%

827 {%

828 \expandafter\XINT_igctcv_end_b\expandafter

829 {\romannumeral0\xintrawwithzeros {#2/#3}}%

830 }%

831 \def\XINT_igctcv_end_b #1#2{ #2{#1}}% 1.09b removes [0]

26.21. \xintFtoCv
Still uses \xinticstocv \xintFtoCs rather than \xintctocv \xintFtoC.

832 \def\xintFtoCv {\romannumeral0\xintftocv }%

833 \def\xintftocv #1%

834 {%

835 \xinticstocv {\xintFtoCs {#1}}%

836 }%

26.22. \xintFtoCCv
837 \def\xintFtoCCv {\romannumeral0\xintftoccv }%

838 \def\xintftoccv #1%

839 {%

840 \xintigctocv {\xintFtoCC {#1}}%

841 }%

551

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

26.23. \xintCntoF
Modified in 1.06 to give the N first to a \numexpr rather than expanding twice. I just use \the\n ⤸
umexpr and maintain the previous code after that.

842 \def\xintCntoF {\romannumeral0\xintcntof }%

843 \def\xintcntof #1%

844 {%

845 \expandafter\XINT_cntf\expandafter {\the\numexpr #1}%

846 }%

847 \def\XINT_cntf #1#2%

848 {%

849 \ifnum #1>\xint_c_

850 \xint_afterfi {\expandafter\XINT_cntf_loop\expandafter

851 {\the\numexpr #1-1\expandafter}\expandafter

852 {\romannumeral`&&@#2{#1}}{#2}}%

853 \else

854 \xint_afterfi

855 {\ifnum #1=\xint_c_

856 \xint_afterfi {\expandafter\space \romannumeral`&&@#2{0}}%

857 \else \xint_afterfi { }% 1.09m now returns nothing.

858 \fi}%

859 \fi

860 }%

861 \def\XINT_cntf_loop #1#2#3%

862 {%

863 \ifnum #1>\xint_c_ \else \XINT_cntf_exit \fi

864 \expandafter\XINT_cntf_loop\expandafter

865 {\the\numexpr #1-1\expandafter }\expandafter

866 {\romannumeral0\xintadd {\xintDiv {1[0]}{#2}}{#3{#1}}}%

867 {#3}%

868 }%

869 \def\XINT_cntf_exit \fi

870 \expandafter\XINT_cntf_loop\expandafter

871 #1\expandafter #2#3%

872 {%

873 \fi\xint_gobble_ii #2%

874 }%

26.24. \xintGCntoF
Modified in 1.06 to give the N argument first to a \numexpr rather than expanding twice. I just

use \the\numexpr and maintain the previous code after that.

875 \def\xintGCntoF {\romannumeral0\xintgcntof }%

876 \def\xintgcntof #1%

877 {%

878 \expandafter\XINT_gcntf\expandafter {\the\numexpr #1}%

879 }%

880 \def\XINT_gcntf #1#2#3%

881 {%

882 \ifnum #1>\xint_c_

883 \xint_afterfi {\expandafter\XINT_gcntf_loop\expandafter

884 {\the\numexpr #1-1\expandafter}\expandafter

885 {\romannumeral`&&@#2{#1}}{#2}{#3}}%

552

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

886 \else

887 \xint_afterfi

888 {\ifnum #1=\xint_c_

889 \xint_afterfi {\expandafter\space\romannumeral`&&@#2{0}}%

890 \else \xint_afterfi { }% 1.09m now returns nothing rather than 0/1[0]

891 \fi}%

892 \fi

893 }%

894 \def\XINT_gcntf_loop #1#2#3#4%

895 {%

896 \ifnum #1>\xint_c_ \else \XINT_gcntf_exit \fi

897 \expandafter\XINT_gcntf_loop\expandafter

898 {\the\numexpr #1-1\expandafter }\expandafter

899 {\romannumeral0\xintadd {\xintDiv {#4{#1}}{#2}}{#3{#1}}}%

900 {#3}{#4}%

901 }%

902 \def\XINT_gcntf_exit \fi

903 \expandafter\XINT_gcntf_loop\expandafter

904 #1\expandafter #2#3#4%

905 {%

906 \fi\xint_gobble_ii #2%

907 }%

26.25. \xintCntoCs
Modified in 1.09m: added spaces after the commas in the produced list. Moreover the coeffi-

cients are not braced anymore. A slight induced limitation is that the macro argument should not

contain some explicit comma (cf. \XINT_cntcs_exit_b), hence \xintCntoCs {\macro,} with \def\mac ⤸
ro,#1{<stuff>} would crash. Not a very serious limitation, I believe.

908 \def\xintCntoCs {\romannumeral0\xintcntocs }%

909 \def\xintcntocs #1%

910 {%

911 \expandafter\XINT_cntcs\expandafter {\the\numexpr #1}%

912 }%

913 \def\XINT_cntcs #1#2%

914 {%

915 \ifnum #1<0

916 \xint_afterfi { }% 1.09i: a 0/1[0] was here, now the macro returns nothing

917 \else

918 \xint_afterfi {\expandafter\XINT_cntcs_loop\expandafter

919 {\the\numexpr #1-\xint_c_i\expandafter}\expandafter

920 {\romannumeral`&&@#2{#1}}{#2}}% produced coeff not braced

921 \fi

922 }%

923 \def\XINT_cntcs_loop #1#2#3%

924 {%

925 \ifnum #1>-\xint_c_i \else \XINT_cntcs_exit \fi

926 \expandafter\XINT_cntcs_loop\expandafter

927 {\the\numexpr #1-\xint_c_i\expandafter}\expandafter

928 {\romannumeral`&&@#3{#1}, #2}{#3}% space added, 1.09m

929 }%

930 \def\XINT_cntcs_exit \fi

553

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

931 \expandafter\XINT_cntcs_loop\expandafter

932 #1\expandafter #2#3%

933 {%

934 \fi\XINT_cntcs_exit_b #2%

935 }%

936 \def\XINT_cntcs_exit_b #1,{}% romannumeral stopping space already there

26.26. \xintCntoGC
Modified in 1.06 to give the N first to a \numexpr rather than expanding twice. I just use \the\n ⤸
umexpr and maintain the previous code after that.

1.09m maintains the braces, as the coeff are allowed to be fraction and the slash can not be

naked in the GC format, contrarily to what happens in \xintCntoCs. Also the separators given to

\xintGCtoGCx may then fetch the coefficients as argument, as they are braced.

937 \def\xintCntoGC {\romannumeral0\xintcntogc }%

938 \def\xintcntogc #1%

939 {%

940 \expandafter\XINT_cntgc\expandafter {\the\numexpr #1}%

941 }%

942 \def\XINT_cntgc #1#2%

943 {%

944 \ifnum #1<0

945 \xint_afterfi { }% 1.09i there was as strange 0/1[0] here, removed

946 \else

947 \xint_afterfi {\expandafter\XINT_cntgc_loop\expandafter

948 {\the\numexpr #1-\xint_c_i\expandafter}\expandafter

949 {\expandafter{\romannumeral`&&@#2{#1}}}{#2}}%

950 \fi

951 }%

952 \def\XINT_cntgc_loop #1#2#3%

953 {%

954 \ifnum #1>-\xint_c_i \else \XINT_cntgc_exit \fi

955 \expandafter\XINT_cntgc_loop\expandafter

956 {\the\numexpr #1-\xint_c_i\expandafter }\expandafter

957 {\expandafter{\romannumeral`&&@#3{#1}}+1/#2}{#3}%

958 }%

959 \def\XINT_cntgc_exit \fi

960 \expandafter\XINT_cntgc_loop\expandafter

961 #1\expandafter #2#3%

962 {%

963 \fi\XINT_cntgc_exit_b #2%

964 }%

965 \def\XINT_cntgc_exit_b #1+1/{ }%

26.27. \xintGCntoGC
Modified in 1.06 to give the N first to a \numexpr rather than expanding twice. I just use \the\n ⤸
umexpr and maintain the previous code after that.

966 \def\xintGCntoGC {\romannumeral0\xintgcntogc }%

967 \def\xintgcntogc #1%

968 {%

969 \expandafter\XINT_gcntgc\expandafter {\the\numexpr #1}%

554

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

970 }%

971 \def\XINT_gcntgc #1#2#3%

972 {%

973 \ifnum #1<0

974 \xint_afterfi { }% 1.09i now returns nothing

975 \else

976 \xint_afterfi {\expandafter\XINT_gcntgc_loop\expandafter

977 {\the\numexpr #1-\xint_c_i\expandafter}\expandafter

978 {\expandafter{\romannumeral`&&@#2{#1}}}{#2}{#3}}%

979 \fi

980 }%

981 \def\XINT_gcntgc_loop #1#2#3#4%

982 {%

983 \ifnum #1>-\xint_c_i \else \XINT_gcntgc_exit \fi

984 \expandafter\XINT_gcntgc_loop_b\expandafter

985 {\expandafter{\romannumeral`&&@#4{#1}}/#2}{#3{#1}}{#1}{#3}{#4}%

986 }%

987 \def\XINT_gcntgc_loop_b #1#2#3%

988 {%

989 \expandafter\XINT_gcntgc_loop\expandafter

990 {\the\numexpr #3-\xint_c_i \expandafter}\expandafter

991 {\expandafter{\romannumeral`&&@#2}+#1}%

992 }%

993 \def\XINT_gcntgc_exit \fi

994 \expandafter\XINT_gcntgc_loop_b\expandafter #1#2#3#4#5%

995 {%

996 \fi\XINT_gcntgc_exit_b #1%

997 }%

998 \def\XINT_gcntgc_exit_b #1/{ }%

26.28. \xintCstoGC
999 \def\xintCstoGC {\romannumeral0\xintcstogc }%

1000 \def\xintcstogc #1%

1001 {%

1002 \expandafter\XINT_cstc_prep \romannumeral`&&@#1,!,%

1003 }%

1004 \def\XINT_cstc_prep #1,{\XINT_cstc_loop_a {{#1}}}%

1005 \def\XINT_cstc_loop_a #1#2,%

1006 {%

1007 \xint_gob_til_exclam #2\XINT_cstc_end!%

1008 \XINT_cstc_loop_b {#1}{#2}%

1009 }%

1010 \def\XINT_cstc_loop_b #1#2{\XINT_cstc_loop_a {#1+1/{#2}}}%

1011 \def\XINT_cstc_end!\XINT_cstc_loop_b #1#2{ #1}%

26.29. \xintGCtoGC
1012 \def\xintGCtoGC {\romannumeral0\xintgctogc }%

1013 \def\xintgctogc #1%

1014 {%

1015 \expandafter\XINT_gctgc_start \romannumeral`&&@#1+!/%

1016 }%

555

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac , xintexpr, xinttrig, xintlog

1017 \def\XINT_gctgc_start {\XINT_gctgc_loop_a {}}%

1018 \def\XINT_gctgc_loop_a #1#2+#3/%

1019 {%

1020 \xint_gob_til_exclam #3\XINT_gctgc_end!%

1021 \expandafter\XINT_gctgc_loop_b\expandafter

1022 {\romannumeral`&&@#2}{#3}{#1}%

1023 }%

1024 \def\XINT_gctgc_loop_b #1#2%

1025 {%

1026 \expandafter\XINT_gctgc_loop_c\expandafter

1027 {\romannumeral`&&@#2}{#1}%

1028 }%

1029 \def\XINT_gctgc_loop_c #1#2#3%

1030 {%

1031 \XINT_gctgc_loop_a {#3{#2}+{#1}/}%

1032 }%

1033 \def\XINT_gctgc_end!\expandafter\XINT_gctgc_loop_b

1034 {%

1035 \expandafter\XINT_gctgc_end_b

1036 }%

1037 \def\XINT_gctgc_end_b #1#2#3{ #3{#1}}%

1038 \XINTrestorecatcodesendinput%

556

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27. Package xintexpr implementation
This is release 1.4o of 2025/09/06.

Contents
27.1 READ ME! Important warnings and explanations relative to the status of the code source at the

time of the 1.4 release . 559
27.2 Old comments . 561
27.3 Catcodes, 𝜀-TEX and reload detection . 561
27.4 Package identification . 563
27.5 \XINTfstop . 563
27.6 \xintDigits*, \xintSetDigits*, \xintreloadscilibs . 563
27.7 \XINTdigitsormax . 564
27.8 Support for output and transform of nested braced contents as core data type 564

27.8.1 Bracketed list rendering with prettifying of leaves from nested braced contents 564
27.8.2 Flattening nested braced contents . 565
27.8.3 Braced contents rendering via a TEX alignment with prettifying of leaves 565
27.8.4 Transforming all leaves within nested braced contents 566

27.9 Top level user TEX interface: \xinteval, \xintfloateval, \xintiieval 567
27.9.1 \xintexpr, \xintiexpr, \xintfloatexpr, \xintiiexpr 568
27.9.2 \XINT_expr_wrap, \XINT_iiexpr_wrap, \XINT_flexpr_wrap 570
27.9.3 \XINTexprprint, \XINTiexprprint, \XINTiiexprprint, \XINTflexprprint 570
27.9.4 \xintthe, \xintthealign, \xinttheexpr, \xinttheiexpr, \xintthefloatexpr, \xint-

theiiexpr . 570
27.9.5 \xintbareeval, \xintbarefloateval, \xintbareiieval 571
27.9.6 \xintthebareeval, \xintthebarefloateval, \xintthebareiieval 571
27.9.7 \xinteval, \xintieval, \xintfloateval, \xintiieval 572
27.9.8 \xintboolexpr, \XINT_boolexpr_print, \xinttheboolexpr 573
27.9.9 \xintifboolexpr, \xintifboolfloatexpr, \xintifbooliiexpr 573
27.9.10 \xintifsgnexpr, \xintifsgnfloatexpr, \xintifsgniiexpr 574
27.9.11 \xint_FracToSci_x . 574
27.9.12 Small bits we have to put somewhere . 575

\xintthecoords . 575
\xintthespaceseparated . 576

27.10 Hooks into the numeric parser for usage by the \xintdeffunc symbolic parser 576
27.11 \XINT_expr_getnext: fetch some value then an operator and present them to last waiter with

the found operator precedence, then the operator, then the value 578
27.12 \XINT_expr_startint . 582

27.12.1 Integral part (skipping zeroes) . 583
27.12.2 Fractional part . 585
27.12.3 Scientific notation . 586
27.12.4 Hexadecimal numbers . 587
27.12.5 Octal numbers . 590
27.12.6 Binary numbers . 592
27.12.7 \XINT_expr_startfunc: collecting names of functions and variables 593
27.12.8 \XINT_expr_func: dispatch to variable replacement or to function execution 594

27.13 \XINT_expr_op_`: launch function or pseudo-function, or evaluate variable and insert operator
of multiplication in front of parenthesized contents . 595

27.14 \XINT_expr_op__: replace a variable by its value and then fetch next operator 596
27.15 \XINT_expr_getop: fetch the next operator or closing parenthesis or end of expression 597
27.16 Expansion spanning; opening and closing parentheses . 600
27.17 The comma as binary operator . 602

557

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.18 The minus as prefix operator of variable precedence level . 603
27.19 The * as Python-like «unpacking» prefix operator . 604
27.20 Infix operators . 604

27.20.1 &&, ||, //, /:, +, –, *, /, ^, **, 'and', 'or', 'xor', and 'mod' 605
27.20.2 .., ..[, and].. for a..b and a..[b]..c syntax . 607
27.20.3 <, >, ==, <=, >=, != with Python-like chaining . 609
27.20.4 Support macros for .., ..[and].. 610

\xintSeq:tl:x . 611
\xintiiSeq:tl:x . 611
\xintSeqA, \xintiiSeqA . 612
\xintSeqB:tl:x . 612
\xintiiSeqB:tl:x . 613

27.21 Square brackets [] both as a container and a Python slicer . 613
27.21.1 [...] as «oneple» constructor . 613
27.21.2 [...] brackets and : operator for NumPy-like slicing and item indexing syntax 614
27.21.3 Macro layer implementing indexing and slicing . 616

27.22 Support for raw A/B[N] . 620
27.23 ? as two-way and ?? as three-way «short-circuit» conditionals 621
27.24 ! as postfix factorial operator . 622
27.25 User defined variables . 622

27.25.1 \xintdefvar, \xintdefiivar, \xintdeffloatvar . 622
27.25.2 \xintunassignvar . 626

27.26 Support for dummy variables . 627
27.26.1 \xintnewdummy . 627
27.26.2 \xintensuredummy, \xintrestorevariable . 628
27.26.3 Checking (without expansion) that a symbolic expression contains correctly nested paren-

theses . 629
27.26.4 Fetching balanced expressions E1, E2 and a variable name Name from E1, Name=E2) . 630
27.26.5 Fetching a balanced expression delimited by a semi-colon 630
27.26.6 Low-level support for omit and abort keywords, the break() function, the n++ construct

and the semi-colon as used in the syntax of seq(), add(), mul(), iter(), rseq(), iterr(),
rrseq(), subsm(), subsn(), ndseq(), ndmap() . 631
The n++ construct . 631
The break() function . 631
The omit and abort keywords . 631
The semi-colon . 632

27.26.7 Reserved dummy variables @, @1, @2, @3, @4, @@, @@(1), . . . , @@@, @@@(1), . . . for
recursions . 632

27.27 Pseudo-functions involving dummy variables and generating scalars or sequences 633
27.27.1 Comments . 633
27.27.2 subs(): substitution of one variable . 635
27.27.3 subsm(): simultaneous independent substitutions . 636
27.27.4 subsn(): leaner syntax for nesting (possibly dependent) substitutions 637
27.27.5 seq(): sequences from assigning values to a dummy variable 639
27.27.6 iter() . 640
27.27.7 add(), mul() . 641
27.27.8 rseq() . 642
27.27.9 iterr() . 643
27.27.10 rrseq() . 644

27.28 Pseudo-functions related to N-dimensional hypercubic lists . 645
27.28.1 ndseq() . 645
27.28.2 ndmap() . 646

558

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.28.3 ndfillraw() . 648
27.29 Other pseudo-functions: bool(), togl(), protect(), qraw(), qint(), qfrac(), qfloat(),

qrand(), random(), rbit() . 648
27.30 Regular built-in functions: num(), reduce(), preduce(), abs(), sgn(), frac(), floor(),

ceil(), sqr(), ?(), !(), not(), odd(), even(), isint(), isone(), factorial(), sqrt(),
sqrtr(), inv(), round(), trunc(), float(), sfloat(), ilog10(), divmod(), mod(), bino-

mial(), pfactorial(), randrange(), iquo(), irem(), gcd(), lcm(), max(), min(), `+`(),
`*`(), all(), any(), xor(), len(), first(), last(), reversed(), if(), ifint(), ifone(),
ifsgn(), nuple(), unpack(), flat() and zip() . 649

27.31 User declared functions . 663
27.31.1 \xintdeffunc, \xintdefiifunc, \xintdeffloatfunc 664
27.31.2 \xintdefufunc, \xintdefiiufunc, \xintdeffloatufunc 667
27.31.3 \xintunassignexprfunc, \xintunassigniiexprfunc, \xintunassignfloatexprfunc . 668
27.31.4 \xintNewFunction . 668
27.31.5 Mysterious stuff . 670
27.31.6 \XINT_expr_redefinemacros . 682
27.31.7 \xintNewExpr, \xintNewIExpr, \xintNewFloatExpr, \xintNewIIExpr 683
27.31.8 \xintexprSafeCatcodes, \xintexprRestoreCatcodes 686

27.32 Matters related to loading log and trig libraries . 687

27.1. READ ME! Important warnings and explanations relative to the status of
the code source at the time of the 1.4 release

At release 1.4 the csname encapsulation of intermediate evaluations during parsing of expressions

is dropped, and xintexpr requires the \expanded primitive. This means that there is no more impact

on the string pool. And as internal storage now uses simply core \TeX{} syntax with braces rather

than comma separated items inside a csname dummy control sequence, it became much easier to let

the [...] syntax be associated to a true internal type of «tuple» or «list».

The output of \xintexpr (after \romannumeral0 or \romannumeral-`0 triggered expansion or double

expansion) is thus modified at 1.4. It now looks like this:76

\XINTfstop \XINTexprprint .{{<number>}} in simplest case

\XINTfstop \XINTexprprint .{{...}...{...}} in general case

where ... stands for nested braces ultimately ending in {<num. rep.>} leaves. The <num. rep.>

stands for some internal representation of numeric data. It may be empty, and currently as well

as probably in future uses only catcode 12 tokens (no spaces currently).

{{}} corresponds (in input as in output) to []. The external TeX braces also serve as set-

theoretical braces. The comma is concatenation, so for example [], [] will become {{}{}}, or

rather {}{} if sub-unit of something else.

The associated vocabulary is explained in the user manual and we avoid too much duplication here.

xintfrac numerical macros receiving an empty argument usually handle it as being 0, but this is

not the case of the xintcore macros supporting \xintiiexpr, they usually break if exercised on

some empty argument.

The above expansion result \XINTfstop \XINTexprprint .{{<num1>}{<num2}...} uses only normal

catcodes: the backslash, regular braces, ascii letters and catcode 12 characters. Scientific

notation is internally converted to raw xintfrac representation [N].

Additional data may be located before the dot; this is the case only for \xintfloatexpr cur-

rently. As xintexpr actually defines three parsers \xintexpr, \xintiiexpr and \xintfloatexpr

but tries to share as much code as possible, some overhead is induced to fit all into the same

mold.

76 The \XINTfstop was a simple \def\XINTfstop{\noexpand\XINTfstop} at 1.4 but has been converted into a fancier token at
1.5, to avoid the “blinking” effect when submitted to finitely many expansions à la \expandafter as first token of a replacement
text.

559

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

\XINTfstop stops \romannumeral-`0 (or 0) type spanned expansion, and is invariant under \edef,

but simply disappears in typesetting context.77 It is thus now legal to use \xintexpr directly in

typesetting flow.

\XINTexprprint is \protected.

The f-expansion of an \xintexpr <expression>\relax is a complete expansion, i.e. one whose

result remains invariant under \edef.

\xintthe\xintexpr <expression>\relax or \xinteval{<expression>} serve as formerly to deliver

the explicit digits, or more exactly some prettifying view of the actual <internal number repre-

sentation>.

Nested contents like this

{{1}{{2}{3}{{4}{5}{6}}}{9}}

will get delivered using nested square brackets like that

1, [2, 3, [4, 5, 6]], 9

and as conversely \xintexpr 1, [2, 3, [4, 5, 6]], 9\relax expands to

\XINTfstop \XINTexprprint .{{1}{{2}{3}{{4}{5}{6}}}{9}}

we obtain the gratifying result that

\xinteval{1, [2, 3, [4, 5, 6]], 9}

expands to

1, [2, 3, [4, 5, 6]], 9

See user manual for explanations on the plasticity of \xintexpr syntax regarding functions with

multiple arguments, and the 1.4 «unpacking» Python-like * prefix operator.

I have suppressed (from the public dtx) many big chunks of comments. Some became obsolete

and need to be updated, others are currently of value only to the author as a historical record.

ATTENTION! As the removal process itself took too much time, I ended up leaving as is many

comments which are obsoleted and wrong to various degrees after the 1.4 release. Precedence

levels of operators have all been doubled to make room for new constructs

Even comments added during 1.4 developement may now be obsolete because the preparation

of 1.4 took a few weeks and that's enough of duration to provide the author many chances to

contradict in the code what has been already commented upon.

Thus don't believe (fully) anything which is said here!+
{

Warning: in text below and also in left-over old comments I may refer to «until» and «op» macros;

due to the change of data storage at 1.4, I needed to refactor a bit the way expansion is controlled,

and the situation now is mainly governed by «op», «exec», «check-» and «checkp» macros the latter

three replacing the two «until_a» and «until_b» of former code. This allows to diminish the num-

ber of times an accumulated result will be grabbed in order to propagate expansion to its right.

Formerly this was not an issue because such things were only a single token! I do not describe

here how this is all articulated but it is not hard to see it from the code (the hardest thing in

all such matter was in 2013 to actually write how the expansion would be initially launched be-

cause to do that one basically has to understand the mechanism in its whole and such things are

not easy to develop piecemeal). Another thing to keep in mind is that operators in truth have a

left precedence (i.e. the precedence they show to operators arising earlier) and a right prece-

dence (which determines how they react to operators coming after them from the right). Only the

first one is usually encapsulated in a chardef, the second one is most of the times identical to

the first one and if not it is only virtual but implemented via \ifcase of \ifnum branching. A

final remark is that some things are achieved by special «op» macros, which are a favorite tool

to hack into the normal regular flow of things, via injection of special syntax elements. I did

not rename these macros for avoiding too large git diffs, and besides the nice thing is that the

1.4 refactoring minimally had to modify them, and all hacky things using them kept on working with

77 It is not \let to \relax as it must be distinguished from it in \ifx tests.

560

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

not a single modification. And a post-scriptum is that advanced features crucially exploit in-

jecting sub-\xintexpr-essions, as all is expandable there is no real «context» (only a minimal

one) which one would have to perhaps store and restore and doing this sub-expression injection is

rather cheap and efficient operation.

27.2. Old comments
These general comments were last updated at the end of the 1.09x series in 2014. The principles

remain in place to this day but refer to CHANGES.html for some significant evolutions since.

The first version was released in June 2013. I was greatly helped in this task of writing an ex-

pandable parser of infix operations by the comments provided in l3fp-parse.dtx (in its version as

available in April-May 2013). One will recognize in particular the idea of the `until' macros; I

have not looked into the actual l3fp code beyond the very useful comments provided in its documen-

tation.

A main worry was that my data has no a priori bound on its size; to keep the code reasonably

efficient, I experimented with a technique of storing and retrieving data expandably as names of

control sequences. Intermediate computation results are stored as control sequences \.=a/b[n].

Roughly speaking, the parser mechanism is as follows: at any given time the last found ``opera-

tor'' has its associated until macro awaiting some news from the token flow; first getnext expands

forward in the hope to construct some number, which may come from a parenthesized sub-expression,

from some braced material, or from a digit by digit scan. After this number has been formed the

next operator is looked for by the getop macro. Once getop has finished its job, until is pre-

sented with three tokens: the first one is the precedence level of the new found operator (which

may be an end of expression marker), the second is the operator character token (earlier versions

had here already some macro name, but in order to keep as much common code to expr and floatexpr

common as possible, this was modified) of the new found operator, and the third one is the newly

found number (which was encountered just before the new operator).

The until macro of the earlier operator examines the precedence level of the new found one, and

either executes the earlier operator (in the case of a binary operation, with the found number and

a previously stored one) or it delays execution, giving the hand to the until macro of the operator

having been found of higher precedence.

A minus sign acting as prefix gets converted into a (unary) operator inheriting the precedence

level of the previous operator.

Once the end of the expression is found (it has to be marked by a \relax) the final result is

output as four tokens (five tokens since 1.09j) the first one a catcode 11 exclamation mark, the

second one an error generating macro, the third one is a protection mechanism, the fourth one a

printing macro and the fifth is \.=a/b[n]. The prefix \xintthe makes the output printable by

killing the first three tokens.

27.3. Catcodes, 𝜺-TEX and reload detection
The code for reload detection was initially copied from Heiko Oberdiek's packages, then modified.

The method for catcodes was also initially directly inspired by these packages.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode44=12 % ,

8 \catcode46=12 % .

9 \catcode58=12 % :

10 \catcode94=7 % ^

561

http://www.ctan.org/pkg/xint/CHANGES.html

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

11 \def\empty{}\def\space{ }\newlinechar10

12 \def\z{\endgroup}%

13 \expandafter\let\expandafter\x\csname ver@xintexpr.sty\endcsname

14 \expandafter\let\expandafter\w\csname ver@xintfrac.sty\endcsname

15 \expandafter\let\expandafter\t\csname ver@xinttools.sty\endcsname

16 \expandafter\let\expandafter\b\csname ver@xintbinhex.sty\endcsname

17 % I assume engines do not exist providing \expanded but not \numexpr

18 \expandafter\ifx\csname expanded\endcsname\relax

19 \expandafter\ifx\csname PackageWarningNoLine\endcsname\relax

20 \immediate\write128{^^JPackage xintexpr Warning:^^J%

21 \space\space\space\space

22 \expanded not available, aborting input.^^J}%

23 \else

24 \PackageWarningNoLine{xintexpr}{\expanded not available, aborting input}%

25 \fi

26 \def\z{\endgroup\endinput}%

27 \else

28 \ifx\x\relax % not LaTeX (perhaps Plain+miniltx), first loading of xintexpr.sty

29 \ifx\w\relax % but xintfrac.sty not yet loaded (made miniltx robust 2022/06/09)

30 \expandafter\def\expandafter\z\expandafter

31 {\z\input xintfrac.sty\relax}%

32 \fi

33 \ifx\t\relax % but xinttools.sty not yet loaded.

34 \expandafter\def\expandafter\z\expandafter

35 {\z\input xinttools.sty\relax}%

36 \fi

37 \ifx\b\relax % but xintbinhex.sty not yet loaded.

38 \expandafter\def\expandafter\z\expandafter

39 {\z\input xintbinhex.sty\relax}%

40 \fi

41 \else

42 \ifx\x\empty % LaTeX, first loading,

43 % variable is initialized, but \ProvidesPackage not yet seen

44 \ifx\w\relax % xintfrac not yet loaded.

45 \expandafter\def\expandafter\z\expandafter

46 {\z\RequirePackage{xintfrac}}%

47 \fi

48 \ifx\t\relax % xinttools not yet loaded.

49 \expandafter\def\expandafter\z\expandafter

50 {\z\RequirePackage{xinttools}}%

51 \fi

52 \ifx\b\relax % xintbinhex not yet loaded.

53 \expandafter\def\expandafter\z\expandafter

54 {\z\RequirePackage{xintbinhex}}%

55 \fi

56 \else

57 \def\z{\endgroup\endinput}% xintexpr already loaded.

58 \fi

59 \fi

60 \fi

61 \z%

62 \XINTsetupcatcodes%

562

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.4. Package identification
The ! is of catcode LETTER for most of the duration of the package. Prior to 1.4 it was the first

token in the complete expansion of \xintexpr...\relax (i.e. without \xintthe prefix). It has

since lost to \XINTfstop this prominent rôle, but its usage in various places of the code as de-

limiter in otherwise catcode 12 contexts has stuck.

63 \XINT_providespackage

64 \ProvidesPackage{xintexpr}%

65 [2025/09/06 v1.4o Expandable expression parser (JFB)]%

66 \catcode`! 11

27.5. \XINTfstop

Added at 1.4 (2020/01/31).
This replaced in 2019 the legacy usage of a catcode 11 exclamation mark to signal the start of a

sub-expression (it was followed by some other tokens).

From 2022 (aiming at 1.5) to 2025 (releasing 1.4n) I had replaced the definition used here with a

fancier one originating in a ``fake'' \relax from unravel. I think in 2022, unravel used a frozen

let to \the, which I had transferred here as a definition of \XINTfstop, now reverted. When I

checked again unravel in 2025, I saw a definition of the type

\expandafter\let\expandafter\foo\noexpand\foo

If I did that with \foo being \XINTfstop then \XINTfstop would test equal via \ifx to the unravel

or any such \foo (if \foo is at first undefined)...

The inconvenience with our more naive \XINTfstop here, is that expanding a finite number of times

\xintexpr...\relax depends on parity of number of expansions. Not really a problem as far as I

can tell. The advantage is that \ifx will never confuse it with something else.

67 \def\XINTfstop{\noexpand\XINTfstop}%

27.6. \xintDigits*, \xintSetDigits*, \xintreloadscilibs

1.3f. 1.4e added some \xintGuardDigits and \XINTdigitsx mechanism but it was finally removed,

due to pending issues of user interface, functionality, and documentation (the worst part) for

whose resolution no time was left.

68 \def\xintreloadscilibs{\xintreloadxintlog\xintreloadxinttrig}%
69 \def\xintDigits {\futurelet\XINT_token\xintDigits_i}%

70 \def\xintDigits_i#1={\afterassignment\xintDigits_j\mathchardef\XINT_digits=}%

71 \def\xintDigits_j#1%

72 {%

73 \let\XINTdigits=\XINT_digits

74 \ifx*\XINT_token\expandafter\xintreloadscilibs\fi

75 }%

76 \let\xintfracSetDigits\xintSetDigits

77 \def\xintSetDigits#1#{\if\relax\detokenize{#1}\relax\expandafter\xintfracSetDigits

78 \else\expandafter\xintSetDigits_a\fi}%

79 \def\xintSetDigits_a#1%

80 {%

81 \mathchardef\XINT_digits=\numexpr#1\relax

82 \let\XINTdigits\XINT_digits

83 \xintreloadscilibs

84 }%

563

https://ctan.org/pkg/unravel
https://ctan.org/pkg/unravel
https://ctan.org/pkg/unravel
https://ctan.org/pkg/unravel

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.7. \XINTdigitsormax

1.4f. To not let xintlog and xinttrig work with, and produce, long mantissas exceeeding the sup-

ported range for accuracy of the math functions. The official maximal value is 62, let's set the

cut-off at 64.

A priori, no need for \expandafter, always ends up expanded in \numexpr (I saw also in an \edef

in xinttrig as argument to \xintReplicate prior to its \numexpr).

85 \def\XINTdigitsormax{\ifnum\XINTdigits>\xint_c_ii^vi\xint_c_ii^vi\else\XINTdigits\fi}%

27.8. Support for output and transform of nested braced contents as core data
type

New at 1.4, of course. The former \csname.=...\endcsname encapsulation technique made very dif-

ficult implementation of nested structures.

27.8.1. Bracketed list rendering with prettifying of leaves from nested braced contents

Added at 1.4 (2020/01/31). The braces in \XINT:expr:toblistwith are there because there is an

\expanded trigger.

Modified at 1.4d (2021/03/29). Add support for the polexpr 0.8 polynomial type. See \XINT:expr: ⤸
toblist_a.

Modified at 1.4l (2022/05/29). Let \XINT:expr:toblist_b use #1{#2} with regular { and } in case

macro #1 is \protected and things are output to external file where former #1<#2> would end up

with catcode 12 < and >.

86 \def\XINT:expr:toblistwith#1#2%

87 {%

88 {\expandafter\XINT:expr:toblist_checkempty

89 \expanded{\noexpand#1!\expandafter}\detokenize{#2}^}%

90 }%

91 \def\XINT:expr:toblist_checkempty #1!#2%

92 {%

93 \if ^#2\expandafter\xint_gob_til_^\else\expandafter\XINT:expr:toblist_a\fi

94 #1!#2%

95 }%

96 \catcode`< 1 \catcode`> 2 \catcode`{ 12 \catcode`} 12

97 \def\XINT:expr:toblist_a #1{#2%

98 <%

99 \if{#2\xint_dothis<[\XINT:expr:toblist_a>\fi

100 \if P#2\xint_dothis<\XINT:expr:toblist_pol>\fi

101 \xint_orthat\XINT:expr:toblist_b #1#2%

102 >%

103 \def\XINT:expr:toblist_pol #1!#2.{#3}}%

104 <%

105 pol([\XINT:expr:toblist_b #1!#3}^])\XINT:expr:toblist_c #1!}%

106 >%

107 \catcode`{ 1 \catcode`} 2

108 \def\XINT:expr:toblist_b #1{%

109 \def\XINT:expr:toblist_b ##1!##2#1%

110 {%

111 \if\relax##2\relax\xintexprEmptyItem\else##1{##2}\fi\XINT:expr:toblist_c ##1!#1%

112 }}\catcode`{ 12 \catcode`} 12 \XINT:expr:toblist_b<}>%

113 \def\XINT:expr:toblist_c #1}#2%

564

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

114 <%

115 \if ^#2\xint_dothis<\xint_gob_til_^>\fi

116 \if{#2\xint_dothis<, \XINT:expr:toblist_a>\fi

117 \xint_orthat<]\XINT:expr:toblist_c>#1#2%

118 >%

119 \catcode`{ 1 \catcode`} 2 \catcode`< 12 \catcode`> 12

27.8.2. Flattening nested braced contents

1.4b I hesitated whether using this technique or some variation of the method of the ListSel

macros. I chose this one which I downscaled from toblistwith, I will revisit later. I only have

a few minutes right now.

Call form is \expanded\XINT:expr:flatten

See \XINT_expr_func_flat. I hesitated with «flattened», but short names are faster parsed.

120 \def\XINT:expr:flatten#1%

121 {%

122 {{\expandafter\XINT:expr:flatten_checkempty\detokenize{#1}^}}%

123 }%

124 \def\XINT:expr:flatten_checkempty #1%

125 {%

126 \if ^#1\expandafter\xint_gobble_i\else\expandafter\XINT:expr:flatten_a\fi

127 #1%

128 }%

129 \begingroup

130 \catcode`[1 \catcode`] 2 \lccode`[`{ \lccode`]`}

131 \catcode`< 1 \catcode`> 2 \catcode`{ 12 \catcode`} 12

132 \lowercase<\endgroup

133 \def\XINT:expr:flatten_a {#1%

134 <%

135 \if{#1\xint_dothis<\XINT:expr:flatten_a>\fi

136 \xint_orthat\XINT:expr:flatten_b #1%

137 >%

138 \def\XINT:expr:flatten_b #1}%

139 <%

140 [#1]\XINT:expr:flatten_c }%

141 >%

142 \def\XINT:expr:flatten_c }#1%

143 <%

144 \if ^#1\xint_dothis<\xint_gobble_i>\fi

145 \if{#1\xint_dothis<\XINT:expr:flatten_a>\fi

146 \xint_orthat<\XINT:expr:flatten_c>#1%

147 >%

148 >% back to normal catcodes

27.8.3. Braced contents rendering via a TEX alignment with prettifying of leaves

1.4.

Breaking change at 1.4a as helper macros were renamed and their meanings refactored: no more

\xintexpraligntab nor \xintexpraligninnercomma or \xintexpralignoutercomma but \xintexpraligni ⤸
nnersep, etc...

At 1.4c I remove the \protected from \xintexpralignend. I had made note a year ago that it served

nothing. Let's trust myself on this one (risky one year later!).

149 \catcode`& 4

565

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

150 \protected\def\xintexpralignbegin {\halign\bgroup\tabskip2ex\hfil##&&##\hfil\cr}%

151 \def\xintexpralignend {\crcr\egroup}%

152 \protected\def\xintexpralignlinesep {,\cr}%

153 \protected\def\xintexpralignleftbracket {[}%

154 \protected\def\xintexpralignrightbracket{]}%

155 \protected\def\xintexpralignleftsep {&}%

156 \protected\def\xintexpralignrightsep {&}%

157 \protected\def\xintexpraligninnersep {,&}%

158 \catcode`& 7

159 \def\XINT:expr:toalignwith#1#2%

160 {%

161 {\expandafter\XINT:expr:toalign_checkempty

162 \expanded{\noexpand#1!\expandafter}\detokenize{#2}^\expandafter}%

163 \xintexpralignend

164 }%

165 \def\XINT:expr:toalign_checkempty #1!#2%

166 {%

167 \if ^#2\expandafter\xint_gob_til_^\else\expandafter\XINT:expr:toalign_a\fi

168 #1!#2%

169 }%

170 \catcode`< 1 \catcode`> 2 \catcode`{ 12 \catcode`} 12

171 \def\XINT:expr:toalign_a #1{#2%

172 <%

173 \if{#2\xint_dothis<\xintexpralignleftbracket\XINT:expr:toalign_a>\fi

174 \xint_orthat<\xintexpralignleftsep\XINT:expr:toalign_b>#1#2%

175 >%

176 \def\XINT:expr:toalign_b #1!#2}%

177 <%

178 \if\relax#2\relax\xintexprEmptyItem\else#1<#2>\fi\XINT:expr:toalign_c #1!}%

179 >%

180 \def\XINT:expr:toalign_c #1}#2%

181 <%

182 \if ^#2\xint_dothis<\xint_gob_til_^>\fi

183 \if {#2\xint_dothis<\xintexpraligninnersep\XINT:expr:toalign_A>\fi

184 \xint_orthat<\xintexpralignrightsep\xintexpralignrightbracket\XINT:expr:toalign_C>#1#2%

185 >%

186 \def\XINT:expr:toalign_A #1{#2%

187 <%

188 \if{#2\xint_dothis<\xintexpralignleftbracket\XINT:expr:toalign_A>\fi

189 \xint_orthat\XINT:expr:toalign_b #1#2%

190 >%

191 \def\XINT:expr:toalign_C #1}#2%

192 <%

193 \if ^#2\xint_dothis<\xint_gob_til_^>\fi

194 \if {#2\xint_dothis<\xintexpralignlinesep\XINT:expr:toalign_a>\fi

195 \xint_orthat<\xintexpralignrightbracket\XINT:expr:toalign_C>#1#2%

196 >%

197 \catcode`{ 1 \catcode`} 2 \catcode`< 12 \catcode`> 12

27.8.4. Transforming all leaves within nested braced contents

1.4. Leaves must be of catcode 12... This is currently not a constraint (or rather not a new

constraint) for xintexpr because formerly anyhow all data went through csname encapsulation and

566

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

extraction via string.

In order to share code with the functioning of universal functions, which will be allowed to

transform a number into an ople, the applied macro is supposed to apply one level of bracing to its

ouput. Thus to apply this with an xintfrac macro such as \xintiRound{0} one needs first to define

a wrapper which will expand it inside an added brace pair:

\def\foo#1{{\xintiRound{0}{#1}}}

As the things will expand inside expanded, propagating expansion is not an issue.

This code is used by \xintiexpr and \xintfloatexpr in case of optional argument and by the «Uni-

versal functions».

Comment at 1.4l: this seems to be used only at private package level, else I should modify \XIN ⤸
T:expr:mapwithin_b like I did with \XINT:expr:toblist_b to use regular braces in case the applied

macro is \protected and things end up in external file.

198 \def\XINT:expr:mapwithin#1#2%

199 {%

200 {{\expandafter\XINT:expr:mapwithin_checkempty

201 \expanded{\noexpand#1!\expandafter}\detokenize{#2}^}}%

202 }%

203 \def\XINT:expr:mapwithin_checkempty #1!#2%

204 {%

205 \if ^#2\expandafter\xint_gob_til_^\else\expandafter\XINT:expr:mapwithin_a\fi

206 #1!#2%

207 }%

208 \begingroup

209 \catcode`[1 \catcode`] 2 \lccode`[`{ \lccode`]`}

210 \catcode`< 1 \catcode`> 2 \catcode`{ 12 \catcode`} 12

211 \lowercase<\endgroup

212 \def\XINT:expr:mapwithin_a #1{#2%

213 <%

214 \if{#2\xint_dothis<[\iffalse]\fi\XINT:expr:mapwithin_a>\fi%

215 \xint_orthat\XINT:expr:mapwithin_b #1#2%

216 >%

217 \def\XINT:expr:mapwithin_b #1!#2}%

218 <%

219 #1<#2>\XINT:expr:mapwithin_c #1!}%

220 >%

221 \def\XINT:expr:mapwithin_c #1}#2%

222 <%

223 \if ^#2\xint_dothis<\xint_gob_til_^>\fi

224 \if{#2\xint_dothis<\XINT:expr:mapwithin_a>\fi%

225 \xint_orthat<\iffalse[\fi]\XINT:expr:mapwithin_c>#1#2%

226 >%

227 >% back to normal catcodes

27.9. Top level user TEX interface: \xinteval, \xintfloateval, \xintiieval
27.9.1 \xintexpr, \xintiexpr, \xintfloatexpr, \xintiiexpr 568
27.9.2 \XINT_expr_wrap, \XINT_iiexpr_wrap, \XINT_flexpr_wrap 570
27.9.3 \XINTexprprint, \XINTiexprprint, \XINTiiexprprint, \XINTflexprprint 570
27.9.4 \xintthe, \xintthealign, \xinttheexpr, \xinttheiexpr, \xintthefloatexpr, \xint-

theiiexpr . 570
27.9.5 \xintbareeval, \xintbarefloateval, \xintbareiieval 571
27.9.6 \xintthebareeval, \xintthebarefloateval, \xintthebareiieval 571

567

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.9.7 \xinteval, \xintieval, \xintfloateval, \xintiieval 572
27.9.8 \xintboolexpr, \XINT_boolexpr_print, \xinttheboolexpr 573
27.9.9 \xintifboolexpr, \xintifboolfloatexpr, \xintifbooliiexpr 573
27.9.10 \xintifsgnexpr, \xintifsgnfloatexpr, \xintifsgniiexpr 574
27.9.11 \xint_FracToSci_x . 574
27.9.12 Small bits we have to put somewhere . 575

\xintthecoords . 575
\xintthespaceseparated . 576

27.9.1. \xintexpr, \xintiexpr, \xintfloatexpr, \xintiiexpr

\xintiexpr and \xintfloatexpr have an optional argument since 1.1.

ATTENTION! 1.3d renamed \xinteval to \xintexpro etc...

Usage of \xintiRound{0} for \xintiexpr without optional [D] means that \xintiexpr ... \relax

wrapper can be used to insert rounded-to-integers values in \xintiiexpr context: no post-fix [0]

which would break it.

1.4a add support for the optional argument [D] for \xintiexpr being negative D, with same meaning

as the 1.4a modified \xintRound from xintfrac.sty.

\xintiexpr mechanism was refactored at 1.4e so that rounding due to [D] optional argument

uses raw format, not fixed point format on output, delegating fixed point conversion to an

\XINTiexprprint now separated from \XINTexprprint.

In case of negative [D], \xintiexpr [D]...\relax internally has the [0] post-fix so it can not be

inserted as sub-expression in \xintiiexpr without a num() or \xintiexpr ...\relax (extra) wrap-

per.

Modified at 1.4o (2025/09/06).
While preparing 1.4n I had made changes to tame Babel active characters via a \csname trick. But

at last minute I thought I had a way requiring not so many ``top level'' changes, but this was a

grave logic error on my part, due to having a bit forgotten the way things are done here, and due

also to external circumstances I released too hastily a 1.4n which turned out to be faulty (except

for \xintiieval). Any test other than simply evaluating 3! with ! Babel active would have revealed

it but I was planning to add test units after (!) release (by the way one has to be careful to do

such tests after a \noindent because the French active ! in vertical mode does things not breaking

the parser. Anyway, here I do it right.

So this is why for example \xintexpro has a \csname construct.

228 \def\xintexpr {\romannumeral0\xintexpro }%

229 \def\xintiexpr {\romannumeral0\xintiexpro }%

230 \def\xintfloatexpr {\romannumeral0\xintfloatexpro }%

231 \def\xintiiexpr {\romannumeral0\xintiiexpro }%

232 \def\xintexpro {\csname XINT_expr_wrap\expandafter\endcsname

233 \romannumeral0\xintbareeval }%

234 \def\xintiiexpro {\csname XINT_iiexpr_wrap\expandafter\endcsname

235 \romannumeral0\xintbareiieval }%

236 \def\xintiexpro #1%

237 {%

238 \ifx [#1\expandafter\XINT_iexpr_withopt\else\expandafter\XINT_iexpr_noopt

239 \fi #1%

240 }%

241 \def\XINT_iexpr_noopt

242 {%

243 \csname XINT_iexpr_iiround\expandafter\endcsname\romannumeral0\xintbareeval

244 }%

245 \def\XINT_iexpr_iiround

568

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

246 {%

247 \expandafter\XINT_expr_wrap

248 \expanded

249 \XINT:NEhook:x:mapwithin\XINT:expr:mapwithin{\XINTiRoundzero_braced}%

250 }%

251 \def\XINTiRoundzero_braced#1{{\xintiRound{0}{#1}}}%

252 \def\XINT_iexpr_withopt [#1]%

253 {%

254 \csname XINT_iexpr_round\expandafter\endcsname

255 \the\numexpr \xint_zapspaces #1 \xint_gobble_i\expandafter.%

256 \romannumeral0\xintbareeval

257 }%

258 \def\XINT_iexpr_round #1.%

259 {%

260 \ifnum#1=\xint_c_\xint_dothis{\XINT_iexpr_iiround}\fi

261 \xint_orthat{\XINT_iexpr_round_a #1.}%

262 }%

263 \def\XINT_iexpr_round_a #1.%

264 {%

265 \expandafter\XINT_iexpr_wrap

266 \expanded

267 \XINT:NEhook:x:mapwithin\XINT:expr:mapwithin{\XINTiRound_braced{#1}}%

268 }%

269 \def\XINTiRound_braced#1#2%

270 {{\xintiRound{#1}{#2}[\the\numexpr\ifnum#1<\xint_c_i0\else-#1\fi]}}%

271 \def\xintfloatexpro #1%

272 {%

273 \ifx [#1\expandafter\XINT_flexpr_withopt\else\expandafter\XINT_flexpr_noopt

274 \fi #1%

275 }%

276 \def\XINT_flexpr_noopt

277 {%

278 \csname XINT_flexpr_wrap\expandafter\endcsname

279 \the\numexpr\XINTdigits\expandafter.%

280 \romannumeral0\xintbarefloateval

281 }%

282 \def\XINT_flexpr_withopt [#1]%

283 {%

284 \csname XINT_flexpr_withopt_a\expandafter\endcsname

285 \the\numexpr\xint_zapspaces #1 \xint_gobble_i\expandafter.%

286 \romannumeral0\xintbarefloateval

287 }%

288 \def\XINT_flexpr_withopt_a #1#2.%

289 {%

290 \expandafter\XINT_flexpr_withopt_b\the\numexpr\if#1-\XINTdigits\fi#1#2.%

291 }%

292 \def\XINT_flexpr_withopt_b #1.%

293 {%

294 \expandafter\XINT_flexpr_wrap

295 \the\numexpr#1\expandafter.%

296 \expanded

297 \XINT:NEhook:x:mapwithin\XINT:expr:mapwithin{\XINTinFloat_braced[#1]}%

569

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

298 }%

299 \def\XINTinFloat_braced[#1]#2{{\XINTinFloat[#1]{#2}}}%

27.9.2. \XINT_expr_wrap, \XINT_iiexpr_wrap, \XINT_flexpr_wrap

1.3e removes some leading space tokens which served nothing. There is no \XINT_iexpr_wrap, be-

cause \XINT_expr_wrap is used directly.

1.4e has \XINT_iexpr_wrap separated from \XINT_expr_wrap, thus simplifying internal matters as

output printer for \xintexpr will not have to handle fixed point input but only extended-raw type

input (i.e. A, A/B, A[N] or A/B[N]).

300 \def\XINT_expr_wrap {\XINTfstop\XINTexprprint.}%

301 \def\XINT_iexpr_wrap {\XINTfstop\XINTiexprprint.}%

302 \def\XINT_iiexpr_wrap {\XINTfstop\XINTiiexprprint.}%

303 \def\XINT_flexpr_wrap {\XINTfstop\XINTflexprprint}%

27.9.3. \XINTexprprint, \XINTiexprprint, \XINTiiexprprint, \XINTflexprprint

Modified at 1.4 (2020/01/31). Requires \expanded.

Modified at 1.4e (2021/05/05). 1.4e has a breaking change of \XINTflexprprint and \xintfloatexprPrintOne

which now requires \xintfloatexprPrintOne[D]{x} syntax, with first argument in brackets.

Modified at 1.4l (2022/05/29). The code does \let\xintexprPrintOne\xint_FracToSci_x but the lat-

ter is not yet defined so this is delayed until \xint_FracToSci_x definition.

Modified at 1.4m (2022/06/10). \xintboolexprPrintOne outputs true or false, not True or False.

By the way (undocumented) all four keywords true, false, True, False are recognized as genuine

variables since 1.4i.

304 \protected\def\XINTexprprint.%
305 {\XINT:NEhook:x:toblist\XINT:expr:toblistwith\xintexprPrintOne}%

306 \protected\def\XINTiexprprint.%
307 {\XINT:NEhook:x:toblist\XINT:expr:toblistwith\xintiexprPrintOne}%

308 \let\xintiexprPrintOne\xintDecToString
309 \def\xintexprEmptyItem{[]}%
310 \protected\def\XINTiiexprprint.%
311 {\XINT:NEhook:x:toblist\XINT:expr:toblistwith\xintiiexprPrintOne}%

312 \let\xintiiexprPrintOne\xint_firstofone
313 \protected\def\XINTflexprprint #1.%

314 {\XINT:NEhook:x:toblist\XINT:expr:toblistwith{\xintfloatexprPrintOne[#1]}}%

315 \let\xintfloatexprPrintOne\xintPFloat_wopt
316 \protected\def\XINTboolexprprint.%

317 {\XINT:NEhook:x:toblist\XINT:expr:toblistwith\xintboolexprPrintOne}%

318 \def\xintboolexprPrintOne#1{\xintiiifNotZero{#1}{true}{false}}%

27.9.4. \xintthe, \xintthealign, \xinttheexpr, \xinttheiexpr, \xintthefloatexpr, \xinttheiiexpr

The reason why \xinttheiexpr et \xintthefloatexpr are handled differently is that they admit an

optional argument which acts via a custom «printing» stage.

We exploit here that \expanded expands forward until finding an implicit or explicit brace, and

that this expansion overrules \protected macros, forcing them to expand, similarly as \romannumer ⤸
al expands \protected macros, and contrarily to what happens *within* the actual \expanded scope.

I discovered this fact by testing (with pdftex) and I don't know where this is documented apart

from the source code of the relevant engines. This is useful to us because there are contexts

where we will want to apply a complete expansion before printing, but in purely numerical context

this is not needed (if I converted correctly after dropping at 1.4 the \csname governed expansions;

570

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

however I rely at various places on the fact that the xint macros are f-expandable, so I have tried

to not use zillions of expanded all over the place), hence it is not needed to add the expansion

overhead by default. But the \expanded here will allow \xintNewExpr to create macro with suitable

modification or the printing step, via some hook rather than having to duplicate all macros here

with some new «NE» meaning (aliasing does not work or causes big issues due to desire to support

\xinteval also in «NE» context as sub-constituent. The \XINT:NEhook:x:toblist is something else

which serves to achieve this support of *sub* \xinteval, it serves nothing for the actual produced

macros. For \xintdeffunc, things are simpler, but still we support the [N] optional argument of

\xintiexpr and \xintfloatexpr, which required some work...

The \expanded upfront ensures \xintthe mechanism does expand completely in two steps.

The fact that \xintthe grabs a #1 is legacy and I am not sure why. I vaguely remember thinking

the overhead was minimal because #1 will simply be one token such as \xintexpr and that it could

potentially be useful. Of course \xintthealign imitates \xintthe in that matter.

Modified at 1.4o (2025/09/06). Again here some \csname's to handle babel-active characters.

319 \def\xintthe #1{\expanded\expandafter\xint_gobble_i\romannumeral`&&@#1}%

320 \def\xintthealign #1{\expandafter\xintexpralignbegin

321 \expanded\expandafter\XINT:expr:toalignwith

322 \romannumeral0\expandafter\expandafter\expandafter\expandafter

323 \expandafter\expandafter\expandafter\xint_gob_andstop_ii

324 \expandafter\xint_gobble_i\romannumeral`&&@#1}%

325 \def\xinttheexpr
326 {\expanded\csname XINTexprprint\expandafter\endcsname

327 \expandafter.\romannumeral0\xintbareeval}%

328 \def\xinttheiiexpr
329 {\expanded\csname XINTiiexprprint\expandafter\endcsname

330 \expandafter.\romannumeral0\xintbareiieval}%

No need at 1.4o of \csname's for Babel here, as \xintiexpr and \xintfloatexpr are already taken

care off.

331 \def\xinttheiexpr
332 {\expanded\expandafter\xint_gobble_i\romannumeral`&&@\xintiexpr}%

333 \def\xintthefloatexpr
334 {\expanded\expandafter\xint_gobble_i\romannumeral`&&@\xintfloatexpr}%

27.9.5. \xintbareeval, \xintbarefloateval, \xintbareiieval

Modified at 1.4 (2020/01/31). one expansion step added via \XINT_expr_start, \XINT_iiexpr_start,

\XINT_flexpr_start. Trigger is expected to be via \romannumeral`^^@ or \romannumeral0.

For the benefit of those who like the author while finishing 1.4n looked in vain for where the

``_start'' macros were defined, this documentation was updated so that one can find the location

via clicking on their names in the previous paragraph. Spoiler: they are in subsection 27.16.

This was hidden because the three are defined in an \xintFor in one-go.

335 \def\xintbareeval {\XINT_expr_start }%

336 \def\xintbarefloateval{\XINT_flexpr_start}%
337 \def\xintbareiieval {\XINT_iiexpr_start}%

27.9.6. \xintthebareeval, \xintthebarefloateval, \xintthebareiieval

For matters of \XINT_NewFunc

Modified at 1.4o (2025/09/06). The matter of Babel active here too, although they are used for

\xintdeffunc and \xintNewExpr which sanitize catcodes. But I already edited the user documen-

tation to explain the case of contexts where changing catcodes is impossible, and would be too

time-costly to re-edit that. So let's add some overhead.

571

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

338 \def\XINT_expr_unlock {\expandafter\xint_firstofone\romannumeral`&&@}%

339 \def\xintthebareeval
340 {\romannumeral0\csname xint_stop_atfirstofone\expandafter\endcsname

341 \romannumeral0\xintbareeval}%

342 \def\xintthebareiieval
343 {\romannumeral0\csname xint_stop_atfirstofone\expandafter\endcsname

344 \romannumeral0\xintbareiieval}%

345 \def\xintthebarefloateval
346 {\romannumeral0\csname xint_stop_atfirstofone\expandafter\endcsname

347 \romannumeral0\xintbarefloateval}%

348 \def\xintthebareroundedfloateval

349 {%

350 \romannumeral0\csname xintthebareroundedfloateval_a\expandafter\endcsname

351 \romannumeral0\xintbarefloateval

352 }%

353 \def\xintthebareroundedfloateval_a

354 {%

355 \expandafter\xint_stop_atfirstofone

356 \expanded\XINT:NEhook:x:mapwithin\XINT:expr:mapwithin{\XINTinFloatSdigits_braced}%

357 }%

358 \def\XINTinFloatSdigits_braced#1{{\XINTinFloatS[\XINTdigits]{#1}}}%

27.9.7. \xinteval, \xintieval, \xintfloateval, \xintiieval

Refactored at 1.4.

The \expanded upfront ensures \xinteval still expands completely in two steps. No \romannumeral

trigger here, in relation to the fact that \XINTexprprint is not f-expandable, only e-expandable.

(and attention that \xintexpr\relax is now legal, and an empty ople can be produced in output

also from \xintexpr [17][1]\relax for example)

Modified at 1.4k (2022/05/18).
The \xintieval and \xintfloateval optional bracketed argument can now be located outside the

braces... took me years to finally make the step towards LaTeX users expectations for the inter-

face.

Modified at 1.4o (2025/09/06). Some \csname's for the Babel-active feature which was botched at

1.4n.

359 \def\xinteval #1%

360 {\expanded\csname XINTexprprint\expandafter\endcsname

361 \expandafter.\romannumeral0\xintbareeval#1\relax}%

362 \def\xintieval{\expanded\expandafter\xint_ieval_chkopt\string}%
363 \def\xint_ieval_chkopt #1%

364 {%

365 \ifx [#1\expandafter\xint_ieval_opt

366 \else\expandafter\xint_ieval_noopt

367 \fi #1%

368 }%

369 \def\xint_ieval_opt [#1]#2%

370 {\expandafter\xint_gobble_i\romannumeral`&&@\xintiexpr[#1]#2\relax}%

371 \def\xint_ieval_noopt #1{\expandafter\xint_ieval\expandafter{\iffalse}\fi}%

372 \def\xint_ieval#1%

373 {\expandafter\xint_gobble_i\romannumeral`&&@\xintiexpr#1\relax}%

374 \def\xintfloateval {\expanded\expandafter\xint_floateval_chkopt\string}%

375 \def\xint_floateval_chkopt #1%

572

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

376 {%

377 \ifx [#1\expandafter\xint_floateval_opt

378 \else\expandafter\xint_floateval_noopt

379 \fi #1%

380 }%

381 \def\xint_floateval_opt [#1]#2%

382 {\expandafter\xint_gobble_i\romannumeral`&&@\xintfloatexpr[#1]#2\relax}%

383 \def\xint_floateval_noopt #1{\expandafter\xint_floateval\expandafter{\iffalse}\fi}%

384 \def\xint_floateval#1%

385 {\expandafter\xint_gobble_i\romannumeral`&&@\xintfloatexpr#1\relax}%

Modified at 1.4n (2025/09/05). \xintiieval admits optional arguments [h], [o] and [b]. The way

this is implemented tames Babel active characters.

386 \def\xintiieval #1#{\expanded\xintiieval_a{#1}}%

387 \def\xintiieval_a#1#2%

388 {%

389 \csname XINTiiexprprint\xint_zapspaces #1 \xint_gobble_i

390 \expandafter\endcsname

391 \expandafter.\romannumeral0\xintbareiieval#2\relax

392 }%

393 \expandafter\def\csname XINTiiexprprint[h]\endcsname.%

394 {\XINT:NEhook:x:toblist\XINT:expr:toblistwith\xintiiexprPrintOneHex}%

395 \expandafter\def\csname XINTiiexprprint[o]\endcsname.%

396 {\XINT:NEhook:x:toblist\XINT:expr:toblistwith\xintiiexprPrintOneOct}%

397 \expandafter\def\csname XINTiiexprprint[b]\endcsname.%

398 {\XINT:NEhook:x:toblist\XINT:expr:toblistwith\xintiiexprPrintOneBin}%

399 \expandafter\let\csname XINTiiexprprint[]\endcsname\XINTiiexprprint

400 \let\xintiiexprPrintOneHex\xintDecToHex
401 \let\xintiiexprPrintOneOct\xintDecToOct
402 \let\xintiiexprPrintOneBin\xintDecToBin

27.9.8. \xintboolexpr, \XINT_boolexpr_print, \xinttheboolexpr

ATTENTION! 1.3d renamed \xinteval to \xintexpro etc...

Attention, the conversion to 1 or 0 is done only by the print macro. Perhaps I should force it

also inside raw result.

\changed{1.4o} Some |\csname| for |\xinttheboolexpr| for Babel.

403 \def\xintboolexpr
404 {%

405 \romannumeral0\expandafter\XINT_boolexpr_done\romannumeral0\xintexpro

406 }%

407 \def\XINT_boolexpr_done #1.{\XINTfstop\XINTboolexprprint.}%

408 \def\xinttheboolexpr
409 {%

410 \expanded\csname XINTboolexprprint\expandafter\endcsname

411 \expandafter.\romannumeral0\xintbareeval

412 }%

27.9.9. \xintifboolexpr, \xintifboolfloatexpr, \xintifbooliiexpr

They do not accept comma separated expressions input.

413 \def\xintifboolexpr #1{\romannumeral0\xintiiifnotzero {\xinttheexpr #1\relax}}%

414 \def\xintifboolfloatexpr #1{\romannumeral0\xintiiifnotzero {\xintthefloatexpr #1\relax}}%

573

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

415 \def\xintifbooliiexpr #1{\romannumeral0\xintiiifnotzero {\xinttheiiexpr #1\relax}}%

27.9.10. \xintifsgnexpr, \xintifsgnfloatexpr, \xintifsgniiexpr

Modified at 1.3d (2019/01/06). They do not accept comma separated expressions.

416 \def\xintifsgnexpr #1{\romannumeral0\xintiiifsgn {\xinttheexpr #1\relax}}%

417 \def\xintifsgnfloatexpr #1{\romannumeral0\xintiiifsgn {\xintthefloatexpr #1\relax}}%

418 \def\xintifsgniiexpr #1{\romannumeral0\xintiiifsgn {\xinttheiiexpr #1\relax}}%

27.9.11. \xint_FracToSci_x

Added at 1.4 (2020/01/31). Under the name of \xintFracToSci and defined in xintfrac.

Modified at 1.4e (2021/05/05). Refactored and much simplified

It only needs to be x-expandable, and indeed the implementation here is only x-expandable.

Finally for 1.4e release I modify. This is breaking change for all \xinteval output in case

of scientific notation: it will not be with an integer mantissa, but with regular scientific

notation, using the same rules as \xintPFloat.

Of course no float rounding! Also, as [0] will always or almost always be present from an

\xinteval, we want then to use integer not scientific notation. But expression contained dec-

imal fixed point input, or uses scientific functions, then probably the N will not be zero and

this will trigger usage of scientific notation in output.

Implementing these changes sort of ruin our previous efforts to minimize grabbing the argument,

but well. So the rules now are

Input: A, A/B, A[N], A/B[N]

Output: A, A/B, A if N=0, A/B if N=0

If N is not zero, scientific notation like \xintPFloat, i.e. behaviour like \xintfloateval

apart from the rounding to significands of width Digits. At 1.4k, trimming of zeros from A is al-

ways done, i.e. the \xintPFloatMinTrimmed is ignored to keep behaviour. unchanged. Trailing

zeros of B are kept as is.

The zero gives 0, except in A[N] and A/B[N] cases, it may give 0.0

Modified at 1.4k (2022/05/18). Moved from xintfrac to xintexpr.

Modified at 1.4l (2022/05/29). Renamed to \xint_FracToSci_x to make it private and provide in

xintfrac another \xintFracToSci with same output but which behaves like other macros there:

f-expandable and accepting the whole range of inputs accepted by the xintfrac public macros.

The private x-expandable macro here will have an empty output for an empty input but is never

used for an empty input (see \xintexprEmptyItem).

419 \def\xint_FracToSci_x #1{\expandafter\XINT_FracToSci_x\romannumeral`&&@#1/\W[\R}%

420 \def\XINT_FracToSci_x #1/#2#3[#4%

421 {%

422 \xint_gob_til_W #2\XINT_FracToSci_x_noslash\W

423 \xint_gob_til_R #4\XINT_FracToSci_x_slash_noN\R

424 \XINT_FracToSci_x_slash_N #1/#2#3[#4%

425 }%

426 \def\XINT_FracToSci_x_noslash#1\XINT_FracToSci_x_slash_N #2[#3%

427 {%

428 \xint_gob_til_R #3\XINT_FracToSci_x_noslash_noN\R

429 \XINT_FracToSci_x_noslash_N #2[#3%

430 }%

431 \def\XINT_FracToSci_x_noslash_noN\R\XINT_FracToSci_x_noslash_N #1/\W[\R{#1}%

432 \def\XINT_FracToSci_x_noslash_N #1[#2]/\W[\R%

433 {%

574

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

434 \ifnum#2=\xint_c_ #1\else

435 \romannumeral0\expandafter\XINT_pfloat_a_fork\romannumeral0\xintrez{#1[#2]}%

436 \fi

437 }%

438 \def\XINT_FracToSci_x_slash_noN\R\XINT_FracToSci_x_slash_N #1#2/#3/\W[\R%

439 {%

440 #1\xint_gob_til_zero#1\expandafter\iffalse\xint_gobble_ii0\iftrue

441 #2\if\XINT_isOne{#3}1\else/#3\fi\fi

442 }%

443 \def\XINT_FracToSci_x_slash_N #1#2/#3[#4]/\W[\R%

444 {%

445 \ifnum#4=\xint_c_ #1#2\else

446 \romannumeral0\expandafter\XINT_pfloat_a_fork\romannumeral0\xintrez{#1#2[#4]}%

447 \fi

448 \if\XINT_isOne{#3}1\else\if#10\else/#3\fi\fi

449 }%

450 \let\xintexprPrintOne\xint_FracToSci_x

27.9.12. Small bits we have to put somewhere

Some renaming and modifications here with release 1.2 to switch from using chains of \romannumer ⤸
al-`0 in order to gather numbers, possibly hexadecimals, to using a \csname governed expansion.

In this way no more limit at 5000 digits, and besides this is a logical move because the \xintexpr

parser is already based on \csname...\endcsname storage of numbers as one token.

The limitation at 5000 digits didn't worry me too much because it was not very realistic to launch

computations with thousands of digits... such computations are still slow with 1.2 but less so

now. Chains or \romannumeral are still used for the gathering of function names and other stuff

which I have half-forgotten because the parser does many things.

In the earlier versions we used the lockscan macro after a chain of \romannumeral-`0 had ended

gathering digits; this uses has been replaced by direct processing inside a \csname...\endcsname

and the macro is kept only for matters of dummy variables.

Currently, the parsing of hexadecimal numbers needs two nested \csname...\endcsname, first to

gather the letters (possibly with a hexadecimal fractional part), and in a second stage to apply

\xintHexToDec to do the actual conversion. This should be faster than updating on the fly the

number (which would be hard for the fraction part...).

451 \def\XINT_embrace#1{{#1}}%

452 \def\xint_gob_til_! #1!{}% ! with catcode 11

453 \def\xintError:noopening

454 {%

455 \XINT_expandableerror{Extra). This is serious and prospects are bleak.}%

456 }%

\xintthecoords 1.1 Wraps up an even number of comma separated items into pairs of TikZ coordi-

nates; for use in the following way:

coordinates {\xintthecoords\xintfloatexpr ... \relax}

The crazyness with the \csname and unlock is due to TikZ somewhat STRANGE control of the TOTAL

number of expansions which should not exceed the very low value of 100 !! As we implemented \XINT_ ⤸
thecoords_b in an "inline" style for efficiency, we need to hide its expansions.

Not to be used as \xintthecoords\xintthefloatexpr, only as \xintthecoords\xintfloatexpr (or

\xintiexpr etc...). Perhaps \xintthecoords could make an extra check, but one should not accustom

users to too loose requirements!

457 \def\xintthecoords#1%

575

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

458 {\romannumeral`&&@\expandafter\XINT_thecoords_a\romannumeral0#1}%

459 \def\XINT_thecoords_a #1#2.#3% #2.=\XINTfloatprint<digits>. etc...

460 {\expanded{\expandafter\XINT_thecoords_b\expanded#2.{#3},!,!,^}}%

461 \def\XINT_thecoords_b #1#2,#3#4,%

462 {\xint_gob_til_! #3\XINT_thecoords_c ! (#1#2, #3#4)\XINT_thecoords_b }%

463 \def\XINT_thecoords_c #1^{}%

\xintthespaceseparated 1.4a This is a utility macro which was distributed previously separately

for usage with PSTricks \listplot

464 \def\xintthespaceseparated#1%
465 {\expanded\expandafter\xintthespaceseparated_a\romannumeral0#1}%

466 \def\xintthespaceseparated_a #1#2.#3%

467 {{\expandafter\xintthespaceseparated_b\expanded#2.{#3},!,!,!,!,!,!,!,!,!,^}}%

468 \def\xintthespaceseparated_b #1,#2,#3,#4,#5,#6,#7,#8,#9,%

469 {\xint_gob_til_! #9\xintthespaceseparated_c !%

470 #1#2#3#4#5#6#7#8#9%

471 \xintthespaceseparated_b}%

1.4c I add a space here to stop the \romannumeral`&&@ in case of empty input. But this space

induces an extra un-needed space token after 9, 18, 27,... items before the last group of less

than 9 items.

Fix (at 1.4h) is simple because I already use \expanded anyhow: I don't need at all the \roman ⤸
numeral`&&@ which was first in \xintthespaceseparated, let's move the first \expanded which was

in \xintthespaceseparated_a to \xintthespaceseparated, and remove the extra space here in _c.

(alternative would have been to put the space after #1 and accept a systematic trailing space,

at least it is more aesthetic).

Again, I did have a test file, but it was not incorporated in my test suite, so I discovered the

problem accidentally by compiling all files in an archive.

472 \def\xintthespaceseparated_c !#1!#2^{#1}%

27.10. Hooks into the numeric parser for usage by the \xintdeffunc symbolic
parser

This is new with 1.3 and considerably refactored at 1.4. See «Mysterious stuff».

473 \let\XINT:NEhook:f:one:from:one\expandafter

474 \let\XINT:NEhook:f:one:from:one:direct\empty

475 \let\XINT:NEhook:f:one:from:two\expandafter

476 \let\XINT:NEhook:f:one:from:two:direct\empty

477 \let\XINT:NEhook:x:one:from:two\empty

478 \let\XINT:NEhook:f:one:and:opt:direct \empty

479 \let\XINT:NEhook:f:tacitzeroifone:direct \empty

480 \let\XINT:NEhook:f:iitacitzeroifone:direct \empty

481 \let\XINT:NEhook:x:select:obey\empty

482 \let\XINT:NEhook:x:listsel\empty

483 \let\XINT:NEhook:f:reverse\empty

At 1.4 it was \def\XINT:NEhook:f:from:delim:u #1#2^{#1#2^} which was trick to allow automatic

unpacking of a nutple argument to multi-arguments functions such as gcd() or max(). But this

sacrificied the usage with a single numeric argument.

Modified at 1.4i (2021/06/11). More sophisticated code to check if the argument ople was actually

a single number. Notice that this forces numeric types to actually use catcode 12 tokens, and

polexpr diverges a bit using P, but actually always testing with \if not \ifx.

This is used by gcd(), lcm(), max(), min(), `+`(), `*`(), all(), any(), xor().

576

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

The nil and None will give the same result due to the initial brace stripping done by \XINT:NEh ⤸
ook:f:from:delim:u (there was even a prior brace stripping to provide the #2 which is empty here

for the nil and {} for the None).

484 \def\XINT:NEhook:f:from:delim:u #1#2^%

485 {%

486 \expandafter\XINT_fooof_checkifnumber\expandafter#1\string#2^%

487 }%

488 \def\XINT_fooof_checkifnumber#1#2%

489 {%

490 \expandafter#1%

491 \romannumeral0\expanded{\if ^#2^\else

492 \if\bgroup#2\noexpand\XINT_fooof_no\else

493 \noexpand\XINT_fooof_yes#2\fi\fi}%

494 }%

495 \def\XINT_fooof_yes#1^{{#1}^}%

496 \def\XINT_fooof_no{\expandafter{\iffalse}\fi}%

Modified at 1.4i (2021/06/11). Same changes as for the other multiple arguments functions, making

them again usable with a single numeric input.

Was at 1.4 \def\XINT:NEhook:f:noeval:from:braced:u#1#2^{#1{#2}} which is not compatible with

a single numeric input.

Used by len(), first(), last() but it is a potential implementation bug that the three share this

as the location where expansion takes places is one level deeper for the support macro of len().

The None is here handled as nil, i.e. it is unpacked, which is fine as the documentations says

nutples are unpacked.

497 \def\XINT:NEhook:f:LFL #1{\expandafter#1\expandafter}%

498 \def\XINT:NEhook:r:check #1^%

499 {%

500 \expandafter\XINT:NEhook:r:check_a\string#1^%

501 }%

502 \let\XINT:NEsaved:r:check \XINT:NEhook:r:check

503 \def\XINT:NEhook:r:check_a #1%

504 {%

505 \if ^#1\xint_dothis\xint_c_\fi

506 \if\bgroup#1\xint_dothis\XINT:NEhook:r:check_no\fi

507 \xint_orthat{\XINT:NEhook:r:check_yes#1}%

508 }%

509 \def\XINT:NEhook:r:check_no

510 {%

511 \expandafter\XINT:NEhook:r:check_no_b

512 \expandafter\xint_c_\expandafter{\iffalse}\fi

513 }%

514 \def\XINT:NEhook:r:check_no_b#1^{#1}%

515 \def\XINT:NEhook:r:check_yes#1^{\xint_c_{#1}}%

516 \let\XINT:NEhook:branch\expandafter

517 \let\XINT:NEhook:seqx\empty

518 \let\XINT:NEhook:iter\expandafter

519 \let\XINT:NEhook:opx\empty

520 \let\XINT:NEhook:rseq\expandafter

521 \let\XINT:NEhook:iterr\expandafter

522 \let\XINT:NEhook:rrseq\expandafter

523 \let\XINT:NEhook:x:toblist\empty

524 \let\XINT:NEhook:x:mapwithin\empty

577

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

525 \let\XINT:NEhook:x:ndmapx\empty

27.11. \XINT_expr_getnext: fetch some value then an operator and present them
to last waiter with the found operator precedence, then the operator, then
the value

Big change in 1.1, no attempt to detect braced stuff anymore as the [N] notation is implemented

otherwise. Now, braces should not be used at all; one level removed, then \romannumeral-`0 ex-

pansion.

Refactored at 1.4 to put expansion of \XINT_expr_getop after the fetched number, thus avoiding

it to have to fetch it (which could happen then multiple times, it was not really important when

it was only one token in pre-1.4 xintexpr).

Allow \xintexpr\relax at 1.4.

Refactored at 1.4 the articulation \XINT_expr_getnext/XINT_expr_func/XINT_expr_getop. For

some legacy reason the first token picked by getnext was soon turned to catcode 12 The next ones af-

ter the first were not a priori stringified but the first token was, and this made allowing things

such as \xintexpr\relax, \xintexpr,,\relax, [], 1+(), [:] etc... complicated and requiring each

time specific measures.

The \expandafter chain in \XINT_expr_put_op_first is an overhead related to an 1.4 attempt,

the "varvalue" mechanism. I.e.: expansion of \XINT_expr_var_foo is {\XINT_expr_varvalue_foo }

and then for example \XINT_expr_varvalue_foo expands to {4/1[0]}. The mechanism was originally

conceived to have only one token with idea its makes things faster. But the xintfrac macros break

with syntax such as \xintMul\foo\bar and \foo expansion giving braces. So at 1.4c I added here

these \expandafter, but this is REALLY not satisfactory because the \expandafter are needed it

seems only for this variable "varvalue" mechanism.

See also the discussion of \XINT_expr_op__ which distinguishes variables from functions.

After a 1.4g refactoring it would be possible to drop here the \expandafter if the \XINT_expr_var ⤸
_foo macro was defined to f-expand to {actual expanded value (as ople)} for example explicit {{3}}.

I have to balance the relative weights of doing always the \expandafter but they are needed only for

the case the value was encapsulated in a variable, and of never doing the \expandafter and ensure

f-expansion of the _var_foo gives explicit value (now that the refactoring let it be f-expanded,

and the case of fake variables omit and abort in particular was safely separated instead of being

treated like other and imposing restrictions on general variable handling), and then there is the

overhead of possibly moving around many digits in the #1 of \XINT_expr_put_op_first.

526 \def\XINT_expr_getnext #1%

527 {%

528 \expandafter\XINT_expr_put_op_first\romannumeral`&&@%

529 \expandafter\XINT_expr_getnext_a\romannumeral`&&@#1%

530 }%

531 \def\XINT_expr_put_op_first #1#2#3{\expandafter#2\expandafter#3\expandafter{#1}}%

532 \def\XINT_expr_getnext_a #1%

533 {%

534 \ifx\relax #1\xint_dothis\XINT_expr_foundprematureend\fi

535 \ifx\XINTfstop#1\xint_dothis\XINT_expr_subexpr\fi

536 \ifcat\relax#1\xint_dothis\XINT_expr_countetc\fi

537 \xint_orthat{}\XINT_expr_getnextfork #1%

538 }%

539 \def\XINT_expr_foundprematureend\XINT_expr_getnextfork #1{{}\xint_c_\relax}%

540 \def\XINT_expr_subexpr #1.#2%

541 {%

542 \expanded{\xint_noxpd{{#2}}\expandafter}\romannumeral`&&@\XINT_expr_getop

543 }%

578

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

The "fetch as number" must be avoided for those cases where \number can not be hoped to need only

one token. Hence the liste of exceptions.

Modified at 1.2 (2015/10/10). Add \ht, \dp, \wd and the eTEX font related primitives.

Modified at 1.4 (2020/01/31). Refactor for readability to avoid huge amounts of \fi's.

Modified at 1.4g (2021/05/25). Check also for \catcode so that \xinteval{\catcode`@} does not

crash. But later I observed that \fpeval{\catcode`@} does crash, so in retrospect I wonder if

I should have added the overhead.

Modified at 1.4n (2025/09/05). Added _catcode to the list for OpTEX. This means though that an

undefined token with other engines will be expanded via \number...

544 \def\XINT_expr_countetc\XINT_expr_getnextfork#1%

545 {%

546 \if0\ifx\count#11\fi

547 \ifx\numexpr#11\fi

548 \ifx\catcode#11\fi

549 \ifx\dimen#11\fi

550 \ifx\dimexpr#11\fi

551 \ifx\skip#11\fi

552 \ifx\glueexpr#11\fi

553 \ifx\fontdimen#11\fi

554 \ifx\ht#11\fi

555 \ifx\dp#11\fi

556 \ifx\wd#11\fi

557 \ifx\fontcharht#11\fi

558 \ifx\fontcharwd#11\fi

559 \ifx\fontchardp#11\fi

560 \ifx\fontcharic#11\fi

561 \ifx_catcode#11\fi

562 0\expandafter\XINT_expr_fetch_as_number\fi

563 \expandafter\XINT_expr_getnext_a\number #1%

564 }%

565 \def\XINT_expr_fetch_as_number

566 \expandafter\XINT_expr_getnext_a\number #1%

567 {%

568 \expanded{{{\number#1}}\expandafter}\romannumeral`&&@\XINT_expr_getop

569 }%

This is the key initial dispatch component. It has been refactored at 1.4g to give priority

to identifying letter and digit tokens first. It thus combines former \XINT_expr_getnextfor ⤸
k, \XINT_expr_scan_nbr_or_func and \XINT_expr_scanfunc. A branch of the latter having become

\XINT_expr_startfunc. The handling of non-catcode 11 underscore _ has changed: it is now skipped

completely like the +. Formerly it would cause an infinite loop because it triggered first in-

sertion of a nil variable, (being confused with a possible operator at a location where one looks

for a value), then tacit multiplication (being now interpreted as starting some name), and then

it came back to getnextfork creating loop. The @ of catcode 12 could have caused the same issue if

it was not handled especially because it is used in the syntax as special variable for recursion

hence was recognized even if of catcode 12. Anyway I could have handled the _ like the @, to avoid

this problem of infinite loop with a non-letter underscore used as first character but decided fi-

nally to have it be ignored (it is already ignored if among digits, but it can be a constituent of

a function of variable name). It is not ignored of course if of catcode 11. It may then start a

variable or function name, but only for use by the package (by polexpr for example), not by users.

Then the matter is handed over to specialized routines: gathering digits of a number (inclusive

of a decimal mark, an exponential part) or letters of a function or variable. And we have to

579

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

intercept some tokens to implement various functionalities.

In each dothis/orthat structure, the first encountered branches are usually handled slower than

the next, because \if..\fi test cost less than grabbing tokens. The exception is in the first one

where letters pass through slightly faster than digits, presumably because the \ifnum test is more

costly. Prior to this 1.4g refactoring the case of a starting letter of a variable or function name

was handled last, it is now handled first. Now, this is only first letter...

Here are the various possibilities in order that they are appear below (the indicative order of

speed of treatment is given as a number).

-1 tokens of catcode letter start a variable or function name

-2 digits (I apply \string for the test, but I will have to review, it seems natural any-

how to require digits to be of catcode 12 and this is in fact basically done by the package, \n ⤸
umexpr does not work if not the case.),

-7 support for Python-like * "unpacking" unary operator (added at 1.4),

-6 support for [as opener for the [..] nutple constructor (1.4),

-5 support for the minus as unary operator of variable precedence,

-4 support for @ as first character of special variables even if not letter,

-3 support for opening parentheses (possibly triggering tacit multiplication),

-13 support for skipping over ignored + character,

-12 support for numbers starting with a decimal point,

-11 support for the `+`() and `*`() functions,

-10 support for the !() function,

-9 support for the ?() function,

-8 support for " for input of hexadecimal numbers and (1.4n) of ' for octal numbers.

-17 support for \xintdeffunc via special handling of # token,

-16 support for ignoring _ if not of catcode 11 and at start of numbers or names (this 1.4g

change fixes \xinteval{_4} creating infinite loop)

-15 support for inserting "nil" in front of operators, as needed in particular for the Python

slicing syntax. This covers the comma, the :, the] and the) and also the ; although I don't think

using ; to delimit nil is licit.

-14 support for inserting 0 as missing value if / or ^ are encountered directly. This 1.4g

changes avoids \xinteval{/3} causing unrecoverable low level errors from \xintDiv receiving only

one argument.

I did not see here other bad syntax to protect.

The handling of "nil" insertion penalizes Python slicing but anyway time differences in the 14-

15-16-17 group are less than 5%. The alternative will be to do some positive test for the targets

(:,], the comma and closing parenthesis) and do this in the prior group but this then penalizes

others. Anyway. This is all negligible compared to actual computations...

Note: the above may not be in sync with code as it is extremely time-consuming to maintain

correspondence in case of re-factoring.

570 \def\XINT_expr_getnextfork #1%

571 {%

572 \ifcat a#1\xint_dothis\XINT_expr_startfunc\fi

573 \ifnum \xint_c_ix<1\string#1 \xint_dothis\XINT_expr_startint\fi

574 \xint_orthat\XINT_expr_getnextfork_a #1%

575 }%

576 \def\XINT_expr_getnextfork_a #1%

577 {%

578 \if#1*\xint_dothis {{}\xint_c_ii^v 0}\fi

579 \if#1[\xint_dothis {{}\xint_c_ii^v \XINT_expr_itself_obracket}\fi

580 \if#1-\xint_dothis {{}{}-}\fi

581 \if#1@\xint_dothis{\XINT_expr_startfunc @}\fi

582 \if#1(\xint_dothis {{}\xint_c_ii^v (}\fi

580

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

583 \xint_orthat{\XINT_expr_getnextfork_b#1}%

584 }%

585 \catcode96 11 % `

586 \def\XINT_expr_getnextfork_b #1%

587 {%

588 \if#1+\xint_dothis \XINT_expr_getnext_a\fi

589 \if#1.\xint_dothis \XINT_expr_startdec\fi

590 \if#1`\xint_dothis {\XINT_expr_onliteral_`}\fi

591 \if#1!\xint_dothis {\XINT_expr_startfunc !}\fi

592 \if#1?\xint_dothis {\XINT_expr_startfunc ?}\fi

593 \if#1'\xint_dothis \XINT_expr_startoct\fi

594 \if#1"\xint_dothis \XINT_expr_starthex\fi

595 \xint_orthat{\XINT_expr_getnextfork_c#1}%

596 }%

597 \def\XINT_tmpa #1{%

598 \def\XINT_expr_getnextfork_c ##1%

599 {%

600 \if##1#1\xint_dothis \XINT_expr_getmacropar\fi

601 \if##1_\xint_dothis \XINT_expr_getnext_a\fi

602 \if0\if##1/1\fi\if##1^1\fi0\xint_dothis{\XINT_expr_insertnil##1}\fi

603 \xint_orthat{\XINT_expr_missing_arg##1}%

604 }%

605 }\expandafter\XINT_tmpa\string#%

The ` syntax is here used for special constructs like `+`(..), `*`(..) where + or * will be

treated as functions. Current implementation picks only one token (could have been braced

stuff), here it will be + or *, and via \XINT_expr_op_` this then becomes a suitable \XINT ⤸
_{expr|iiexpr|flexpr}_func_+ (or *). Documentation says to use `+`(...), but `+(...) is also

valid. The opening parenthesis must be there, it is not allowed to require some expansion.

606 \def\XINT_expr_onliteral_` #1#2({{#1}\xint_c_ii^v `}%

607 \catcode96 12 % `

Prior to 1.4g, I was using a \lowercase technique to insert the catcode 12 #, but this is a bit

risky when one does not ensure a priori control of all lccodes.

608 \def\XINT_tmpa #1{%

609 \def\XINT_expr_getmacropar ##1%

610 {%

611 \expandafter{\expandafter{\expandafter#1\expandafter

612 ##1\expandafter}\expandafter}\romannumeral`&&@\XINT_expr_getop

613 }%

614 }\expandafter\XINT_tmpa\string#%

615 \def\XINT_expr_insertnil #1%

616 {%

617 \expandafter{\expandafter}\romannumeral`&&@\XINT_expr_getop_a#1%

618 }%

619 \def\XINT_expr_missing_arg#1%

620 {%

621 \expanded{\XINT_expandableerror

622 {Expected a value, got nothing before `#1'. Inserting 0.}{{0}}\expandafter}%

623 \romannumeral`&&@\XINT_expr_getop_a#1%

624 }%

581

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.12. \XINT_expr_startint
27.12.1 Integral part (skipping zeroes) . 583
27.12.2 Fractional part . 585
27.12.3 Scientific notation . 586
27.12.4 Hexadecimal numbers . 587
27.12.5 Octal numbers . 590
27.12.6 Binary numbers . 592
27.12.7 \XINT_expr_startfunc: collecting names of functions and variables 593
27.12.8 \XINT_expr_func: dispatch to variable replacement or to function execution 594

Following comments are in part OBSOLETE as the code was refactored at some stage to use \expand ⤸
ed.

1.2 release has replaced chains of \romannumeral-`0 by \csname governed expansion. Thus there

is no more the limit at about 5000 digits for parsed numbers.

In order to avoid having to lock and unlock in succession to handle the scientific part and

adjust the exponent according to the number of digits of the decimal part, the parsing of this

decimal part counts on the fly the number of digits it encounters.

There is some slight annoyance with \xintiiexpr which should never be given a [n] inside its \ ⤸
csname.=<digits>\endcsname storage of numbers (because its arithmetic uses the ii macros which

know nothing about the [N] notation). Hence if the parser has only seen digits when hitting some-

thing else than the dot or e (or E), it will not insert a [0]. Thus we very slightly compromise

the efficiency of \xintexpr and \xintfloatexpr in order to be able to share the same code with

\xintiiexpr.

Indeed, the parser at this location is completely common to all, it does not know if it is working

inside \xintexpr or \xintiiexpr. On the other hand if a dot or a e (or E) is met, then the (common)

parser has no scrupules ending this number with a [n], this will provoke an error later if that was

within an \xintiiexpr, as soon as an arithmetic macro is used.

As the gathered numbers have no spaces, no pluses, no minuses, the only remaining issue is

with leading zeroes, which are discarded on the fly. The hexadecimal numbers leading zeroes are

stripped in a second stage by the \xintHexToDec macro.

With 1.2, \xinttheexpr . \relax does not work anymore (it did in earlier releases). There

must be digits either before or after the decimal mark. Thus both \xinttheexpr 1.\relax and

\xinttheexpr .1\relax are legal.

Attention at this location #1 was of catcode 12 in all versions prior to 1.4.

We assume anyhow that catcodes of digits are 12...

Style of location of the braces around replacement text varies, but is kept as is to avoid wasting

time on cosmetics.

Modified at 1.4n (2025/09/05). Support for the 0b, 0o and 0x prefixes! Implementation of this

extension of the syntax was very easy. I may have thought of it briefly in the past but presumed

it would break things.

This change seems to only break stuff such as +0bar+3 with bar a variable being interpreted +0*b ⤸
ar+3 (tacit multiplication) and will cause the parser to raise then an error message, but this is

not very serious breaking change.

Supporting 0b meant that like for octal 1.4n needed to add the needed support macros, which opens

this TODO: perhaps try to share code between binary, octal, hexadecimal more than currently.

625 \def\XINT_expr_startint #1%

626 {%

627 \if #10\expandafter\XINT_expr_gobz_a\else\expandafter\XINT_expr_scanint_a\fi #1%

628 }%

629 \def\XINT_expr_scanint_a #1#2%

630 {\expanded\bgroup{{\iffalse}}\fi #1% spare a \string

631 \expandafter\XINT_expr_scanint_main\romannumeral`&&@#2}%

582

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

632 \def\XINT_expr_gobz_a #1#2%

633 {\expandafter\XINT_expr_gobz_b\romannumeral`&&@#2}%

Perhaps use \if and not \ifx tests here?

634 \def\XINT_expr_gobz_b #1%%

635 {%

636 \ifx b#1\xint_dothis \XINT_expr_startbin \fi

637 \ifx o#1\xint_dothis \XINT_expr_startoct \fi

638 \ifx x#1\xint_dothis \XINT_expr_starthex \fi

639 \xint_orthat {\XINT_expr_gobz_c #1}%

640 }%

641 \def\XINT_expr_gobz_c #1%

642 {\expanded\bgroup{{\iffalse}}\fi

643 \expandafter\XINT_expr_gobz_scanint_main#1}%

644 \def\XINT_expr_startdec #1%

645 {\expanded\bgroup{{\iffalse}}\fi

646 \expandafter\XINT_expr_scandec_a\romannumeral`&&@#1}%

27.12.1. Integral part (skipping zeroes)

1.2 has modified the code to give highest priority to digits, the accelerating impact is non-

negligeable. I don't think the doubled \string is a serious penalty.

(reference to \string is obsolete: it is only used in the test but the tokens are not submitted

to \string anymore)

647 \def\XINT_expr_scanint_main #1%

648 {%

649 \ifcat \relax #1\expandafter\XINT_expr_scanint_hit_cs \fi

650 \ifnum\xint_c_ix<1\string#1 \else\expandafter\XINT_expr_scanint_next\fi

651 #1\XINT_expr_scanint_again

652 }%

653 \def\XINT_expr_scanint_again #1%

654 {%

655 \expandafter\XINT_expr_scanint_main\romannumeral`&&@#1%

656 }%

1.4f had _getop here, but let's jump directly to _getop_a.

657 \def\XINT_expr_scanint_hit_cs \ifnum#1\fi#2\XINT_expr_scanint_again

658 {%

659 \iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#2%

660 }%

With 1.2d the tacit multiplication in front of a variable name or function name is now done with

a higher precedence, intermediate between the common one of * and / and the one of ^. Thus x/2y is

like x/(2y), but x^2y is like x^2*y and 2y! is not (2y)! but 2*y!.

Finally, 1.2d has moved away from the _scan macros all the business of the tacit multiplication

in one unique place via \XINT_expr_getop. For this, the ending token is not first given to \str ⤸
ing as was done earlier before handing over back control to \XINT_expr_getop. Earlier we had to

identify the catcode 11 ! signaling a sub-expression here. With no \string applied we can do it

in \XINT_expr_getop. As a corollary of this displacement, parsing of big numbers should be a tiny

bit faster now.

Extended for 1.2l to ignore underscore character _ if encountered within digits; so it can serve

as separator for better readability.

It is not obvious at 1.4 to support [] for three things: packing, slicing, ... and raw xint-

frac syntax A/B[N]. The only good way would be to actually really separate completely \xintexpr,

583

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

\xintfloatexpr and \xintiiexpr code which would allow to handle both / and [] from A/B[N] as we

handle e and E. But triplicating the code is something I need to think about. It is not possible

as in pre 1.4 to consider [only as an operator of same precedence as multiplication and division

which was the way we did this, but we can use the technique of fake operators. Thus we intercept

hitting a [here, which is not too much of a problem as anyhow we dropped temporarily 3*[1,2,3]+5

syntax so we don't have to worry that 3[1,2,3] should do tacit multiplication. I think only way

in future will be to really separate the code of the three parsers (or drop entirely support for

A/B[N]; as 1.4 has modified output of \xinteval to not use this notation this is not too dramatic).

Anyway we find a way to inject here the former handling of [N], which will use a delimited macro

to directly fetch until the closing]. We do still need some fake operator because A/B[N] is (A/B)

times 10^N and the /B is allowed to be missing. We hack this using the $ which is not used currently

as operator elsewhere in the syntax and need to hook into \XINT_expr_getop_b. No finally I use

the null char. It must be of catcode 12.

1.4f had _getop here, but let's jump directly to _getop_a.

661 \def\XINT_expr_scanint_next #1\XINT_expr_scanint_again

662 {%

663 \if [#1\xint_dothis\XINT_expr_rawxintfrac\fi

664 \if _#1\xint_dothis\XINT_expr_scanint_again\fi

665 \if e#1\xint_dothis{[\the\numexpr0\XINT_expr_scanexp_a +}\fi

666 \if E#1\xint_dothis{[\the\numexpr0\XINT_expr_scanexp_a +}\fi

667 \if .#1\xint_dothis{\XINT_expr_startdec_a .}\fi

668 \xint_orthat

669 {\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#1}%

670 }%

671 \def\XINT_expr_rawxintfrac

672 {%

673 \iffalse{{{\fi}}\expandafter}\csname XINT_expr_precedence_&&@\endcsname&&@%

674 }%

675 \def\XINT_expr_gobz_scanint_main #1%

676 {%

677 \ifcat \relax #1\expandafter\XINT_expr_gobz_scanint_hit_cs\fi

678 \ifnum\xint_c_x<1\string#1 \else\expandafter\XINT_expr_gobz_scanint_next\fi

679 #1\XINT_expr_scanint_again

680 }%

681 \def\XINT_expr_gobz_scanint_again #1%

682 {%

683 \expandafter\XINT_expr_gobz_scanint_main\romannumeral`&&@#1%

684 }%

1.4f had _getop here, but let's jump directly to _getop_a.

685 \def\XINT_expr_gobz_scanint_hit_cs\ifnum#1\fi#2\XINT_expr_scanint_again

686 {%

687 0\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#2%

688 }%

689 \def\XINT_expr_gobz_scanint_next #1\XINT_expr_scanint_again

690 {%

691 \if [#1\xint_dothis{\expandafter0\XINT_expr_rawxintfrac}\fi

692 \if _#1\xint_dothis\XINT_expr_gobz_scanint_again\fi

693 \if e#1\xint_dothis{0[\the\numexpr0\XINT_expr_scanexp_a +}\fi

694 \if E#1\xint_dothis{0[\the\numexpr0\XINT_expr_scanexp_a +}\fi

695 \if .#1\xint_dothis{\XINT_expr_gobz_startdec_a .}\fi

696 \if 0#1\xint_dothis\XINT_expr_gobz_scanint_again\fi

697 \xint_orthat

584

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

698 {0\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#1}%

699 }%

27.12.2. Fractional part

Annoying duplication of code to allow 0. as input.

1.2a corrects a very bad bug in 1.2 \XINT_expr_gobz_scandec_b which should have stripped leading

zeroes in the fractional part but didn't; as a result \xinttheexpr 0.01\relax returned 0 =:-(((

Thanks to Kroum Tzanev who reported the issue. Does it improve things if I say the bug was intro-

duced in 1.2, it wasn't present before ?

1.4f had _getop here, but let's jump directly to _getop_a.

700 \def\XINT_expr_startdec_a .#1%

701 {%

702 \expandafter\XINT_expr_scandec_a\romannumeral`&&@#1%

703 }%

704 \def\XINT_expr_scandec_a #1%

705 {%

706 \if .#1\xint_dothis{\iffalse{{{\fi}}\expandafter}%

707 \romannumeral`&&@\XINT_expr_getop_a..}\fi

708 \xint_orthat {\XINT_expr_scandec_main 0.#1}%

709 }%

710 \def\XINT_expr_gobz_startdec_a .#1%

711 {%

712 \expandafter\XINT_expr_gobz_scandec_a\romannumeral`&&@#1%

713 }%

714 \def\XINT_expr_gobz_scandec_a #1%

715 {%

716 \if .#1\xint_dothis

717 {0\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a..}\fi

718 \xint_orthat {\XINT_expr_gobz_scandec_main 0.#1}%

719 }%

720 \def\XINT_expr_scandec_main #1.#2%

721 {%

722 \ifcat \relax #2\expandafter\XINT_expr_scandec_hit_cs\fi

723 \ifnum\xint_c_ix<1\string#2 \else\expandafter\XINT_expr_scandec_next\fi

724 #2\expandafter\XINT_expr_scandec_again\the\numexpr #1-\xint_c_i.%

725 }%

726 \def\XINT_expr_scandec_again #1.#2%

727 {%

728 \expandafter\XINT_expr_scandec_main

729 \the\numexpr #1\expandafter.\romannumeral`&&@#2%

730 }%

1.4f had _getop here, but let's jump directly to _getop_a.

731 \def\XINT_expr_scandec_hit_cs\ifnum#1\fi

732 #2\expandafter\XINT_expr_scandec_again\the\numexpr#3-\xint_c_i.%

733 {%

734 [#3]\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#2%

735 }%

736 \def\XINT_expr_scandec_next #1#2\the\numexpr#3-\xint_c_i.%

737 {%

738 \if _#1\xint_dothis{\XINT_expr_scandec_again#3.}\fi

739 \if e#1\xint_dothis{[\the\numexpr#3\XINT_expr_scanexp_a +}\fi

585

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

740 \if E#1\xint_dothis{[\the\numexpr#3\XINT_expr_scanexp_a +}\fi

741 \xint_orthat

742 {[#3]\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#1}%

743 }%

744 \def\XINT_expr_gobz_scandec_main #1.#2%

745 {%

746 \ifcat \relax #2\expandafter\XINT_expr_gobz_scandec_hit_cs\fi

747 \ifnum\xint_c_ix<1\string#2 \else\expandafter\XINT_expr_gobz_scandec_next\fi

748 \if0#2\expandafter\xint_firstoftwo\else\expandafter\xint_secondoftwo\fi

749 {\expandafter\XINT_expr_gobz_scandec_main}%

750 {#2\expandafter\XINT_expr_scandec_again}\the\numexpr#1-\xint_c_i.%

751 }%

1.4f had _getop here, but let's jump directly to _getop_a.

752 \def\XINT_expr_gobz_scandec_hit_cs \ifnum#1\fi\if0#2#3\xint_c_i.%

753 {%

754 0[0]\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#2%

755 }%

756 \def\XINT_expr_gobz_scandec_next\if0#1#2\fi #3\numexpr#4-\xint_c_i.%

757 {%

758 \if _#1\xint_dothis{\XINT_expr_gobz_scandec_main #4.}\fi

759 \if e#1\xint_dothis{0[\the\numexpr0\XINT_expr_scanexp_a +}\fi

760 \if E#1\xint_dothis{0[\the\numexpr0\XINT_expr_scanexp_a +}\fi

761 \xint_orthat

762 {0[0]\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#1}%

763 }%

27.12.3. Scientific notation

Some pluses and minuses are allowed at the start of the scientific part, however not later, and no

parenthesis.

ATTENTION! 1e\numexpr2+3\relax or 1e\xintiexpr i\relax, i=1..5 are not allowed and 1e1\numexp ⤸
r2\relax does 1e1 * \numexpr2\relax. Use \the\numexpr, \xinttheiexpr, etc...

764 \def\XINT_expr_scanexp_a #1#2%

765 {%

766 #1\expandafter\XINT_expr_scanexp_main\romannumeral`&&@#2%

767 }%

768 \def\XINT_expr_scanexp_main #1%

769 {%

770 \ifcat \relax #1\expandafter\XINT_expr_scanexp_hit_cs\fi

771 \ifnum\xint_c_ix<1\string#1 \else\expandafter\XINT_expr_scanexp_next\fi

772 #1\XINT_expr_scanexp_again

773 }%

774 \def\XINT_expr_scanexp_again #1%

775 {%

776 \expandafter\XINT_expr_scanexp_main_b\romannumeral`&&@#1%

777 }%

1.4f had _getop here, but let's jump directly to _getop_a.

778 \def\XINT_expr_scanexp_hit_cs\ifnum#1\fi#2\XINT_expr_scanexp_again

779 {%

780]\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#2%

781 }%

782 \def\XINT_expr_scanexp_next #1\XINT_expr_scanexp_again

586

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

783 {%

784 \if _#1\xint_dothis \XINT_expr_scanexp_again \fi

785 \if +#1\xint_dothis {\XINT_expr_scanexp_a +}\fi

786 \if -#1\xint_dothis {\XINT_expr_scanexp_a -}\fi

787 \xint_orthat

788 {]\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#1}%

789 }%

790 \def\XINT_expr_scanexp_main_b #1%

791 {%

792 \ifcat \relax #1\expandafter\XINT_expr_scanexp_hit_cs_b\fi

793 \ifnum\xint_c_ix<1\string#1 \else\expandafter\XINT_expr_scanexp_next_b\fi

794 #1\XINT_expr_scanexp_again_b

795 }%

1.4f had _getop here, but let's jump directly to _getop_a.

796 \def\XINT_expr_scanexp_hit_cs_b\ifnum#1\fi#2\XINT_expr_scanexp_again_b

797 {%

798]\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#2%

799 }%

800 \def\XINT_expr_scanexp_again_b #1%

801 {%

802 \expandafter\XINT_expr_scanexp_main_b\romannumeral`&&@#1%

803 }%

804 \def\XINT_expr_scanexp_next_b #1\XINT_expr_scanexp_again_b

805 {%

806 \if _#1\xint_dothis\XINT_expr_scanexp_again\fi

807 \xint_orthat

808 {]\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop_a#1}%

809 }%

27.12.4. Hexadecimal numbers

1.2d has moved most of the handling of tacit multiplication to \XINT_expr_getop, but we have to

do some of it here, because we apply \string before calling \XINT_expr_scanhexI_aa. I do not

insert the * in \XINT_expr_scanhexI_a, because it is its higher precedence variant which will

is expected, to do the same as when a non-hexadecimal number prefixes a sub-expression. Tacit

multiplication in front of variable or function names will not work (because of this \string).

Extended for 1.2l to ignore underscore character _ if encountered within digits.

(some above remarks have been obsoleted for some long time, no more applied \string since 1.4)

Notice that internal representation adds a [N] part only in case input used "DDD.dddd form, for

compatibility with \xintiiexpr which is not compatible with such internal representation.

At 1.4g a very long-standing bug was fixed: input such as "\foo broke the parser because (in-

credibly) the \foo token was picked up unexpanded and ended up as is in an \ifcat !

Another long-standing bug was fixed at 1.4g: contrarily to the decimal case, here in the hex-

adecimal input leading zeros were not trimmed. This was ok, because formerly \xintHexToDec

trimmed leading zeros, but at 1.2m 2017/07/31 xintbinhex.sty was modified and this ceased being

the case. But I forgot to upgrade the parser here at that time. Leading zeros would in many cir-

cumstances (presence of a fractional part, or \xintiiexpr context) lead to wrong results. Leading

zeros are now trimmed during input.

810 \def\XINT_expr_hex_in #1.#2#3;%

811 {%

812 \expanded{{{\if#2>%

813 \xintHexToDec{#1}%

587

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

814 \else

815 \xintiiMul{\xintiiPow{625}{\xintLength{#3}}}{\xintHexToDec{#1#3}}%

816 [\the\numexpr-4*\xintLength{#3}]%

817 \fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop

818 }%

Let's not forget to grab-expand next token first as is normal rule of operation. Formerly called

\XINT_expr_scanhex_I and had " upfront.

819 \def\XINT_expr_starthex #1%

820 {%

821 \expandafter\XINT_expr_hex_in\expanded\bgroup

822 \expandafter\XINT_expr_scanhexIgobz_a\romannumeral`&&@#1%

823 }%

824 \def\XINT_expr_scanhexIgobz_a #1%

825 {%

826 \ifcat #1\relax

827 0.>;\iffalse{\fi\expandafter}\expandafter\xint_gobble_i\fi

828 \XINT_expr_scanhexIgobz_aa #1%

829 }%

830 \def\XINT_expr_scanhexIgobz_aa #1%

831 {%

832 \if\ifnum`#1>`0

833 \ifnum`#1>`9

834 \ifnum`#1>`@

835 \ifnum`#1>`F

836 0\else1\fi\else0\fi\else1\fi\else0\fi 1%

837 \xint_dothis\XINT_expr_scanhexI_b

838 \fi

839 \if 0#1\xint_dothis\XINT_expr_scanhexIgobz_bgob\fi

840 \if _#1\xint_dothis\XINT_expr_scanhexIgobz_bgob\fi

841 \if .#1\xint_dothis\XINT_expr_scanhexIgobz_toII\fi

842 \xint_orthat

843 {\XINT_expandableerror

844 {Expected hexadecimal digit, `_', or `.'. got `#1'. Using `0'.}%

845 0.>;\iffalse{\fi}}%

846 #1%

847 }%

848 \def\XINT_expr_scanhexIgobz_bgob #1#2%

849 {%

850 \expandafter\XINT_expr_scanhexIgobz_a\romannumeral`&&@#2%

851 }%

852 \def\XINT_expr_scanhexIgobz_toII .#1%

853 {%

854 0..\expandafter\XINT_expr_scanhexII_a\romannumeral`&&@#1%

855 }%

856 \def\XINT_expr_scanhexI_a #1%

857 {%

858 \ifcat #1\relax

859 .>;\iffalse{\fi\expandafter}\expandafter\xint_gobble_i\fi

860 \XINT_expr_scanhexI_aa #1%

861 }%

862 \def\XINT_expr_scanhexI_aa #1%

863 {%

588

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

864 \if\ifnum`#1>`/

865 \ifnum`#1>`9

866 \ifnum`#1>`@

867 \ifnum`#1>`F

868 0\else1\fi\else0\fi\else1\fi\else0\fi 1%

869 \expandafter\XINT_expr_scanhexI_b

870 \else

871 \if _#1\xint_dothis{\expandafter\XINT_expr_scanhexI_bgob}\fi

872 \if .#1\xint_dothis{\expandafter\XINT_expr_scanhexI_toII}\fi

873 \xint_orthat {.>;\iffalse{\fi\expandafter}}%

874 \fi

875 #1%

876 }%

877 \def\XINT_expr_scanhexI_b #1#2%

878 {%

879 #1\expandafter\XINT_expr_scanhexI_a\romannumeral`&&@#2%

880 }%

881 \def\XINT_expr_scanhexI_bgob #1#2%

882 {%

883 \expandafter\XINT_expr_scanhexI_a\romannumeral`&&@#2%

884 }%

885 \def\XINT_expr_scanhexI_toII .#1%

886 {%

887 ..\expandafter\XINT_expr_scanhexII_a\romannumeral`&&@#1%

888 }%

889 \def\XINT_expr_scanhexII_a #1%

890 {%

891 \ifcat #1\relax\xint_dothis{;\iffalse{\fi}#1}\fi

892 \xint_orthat {\XINT_expr_scanhexII_aa #1}%

893 }%

894 \def\XINT_expr_scanhexII_aa #1%

895 {%

896 \if\ifnum`#1>`/

897 \ifnum`#1>`9

898 \ifnum`#1>`@

899 \ifnum`#1>`F

900 0\else1\fi\else0\fi\else1\fi\else0\fi 1%

901 \expandafter\XINT_expr_scanhexII_b

902 \else

903 \if _#1\xint_dothis{\expandafter\XINT_expr_scanhexII_bgob}\fi

904 \xint_orthat{;\iffalse{\fi\expandafter}}%

905 \fi

906 #1%

907 }%

908 \def\XINT_expr_scanhexII_b #1#2%

909 {%

910 #1\expandafter\XINT_expr_scanhexII_a\romannumeral`&&@#2%

911 }%

912 \def\XINT_expr_scanhexII_bgob #1#2%

913 {%

914 \expandafter\XINT_expr_scanhexII_a\romannumeral`&&@#2%

915 }%

589

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.12.5. Octal numbers

Added at 1.4n (2025/09/05).
The parsing goes exactly as with hexadecimal inputs, except that we require an octal digit when

expected.

TODO: think about perhaps sharing code between binary, octal, and hexadecimal.

916 \def\XINT_expr_oct_in #1.#2#3;%

917 {%

918 \expanded{{{\if#2>%

919 \xintOctToDec{#1}%

920 \else

921 \xintiiMul{\xintiiPow{125}{\xintLength{#3}}}{\xintOctToDec{#1#3}}%

922 [\the\numexpr-3*\xintLength{#3}]%

923 \fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop

924 }%

925 % \begin{macrocode}

926 \def\XINT_expr_startoct #1%

927 {%

928 \expandafter\XINT_expr_oct_in\expanded\bgroup

929 \expandafter\XINT_expr_scanoctIgobz_a\romannumeral`&&@#1%

930 }%

931 \def\XINT_expr_scanoctIgobz_a #1%

932 {%

933 \ifcat #1\relax

934 0.>;\iffalse{\fi\expandafter}\expandafter\xint_gobble_i\fi

935 \XINT_expr_scanoctIgobz_aa #1%

936 }%

Wondering if a bunch of \if tests comparing with 0 to 7 would not be more efficient here. But

testing would take some time I am not motivated enough to use for that. In the code, also added at

1.4n for parsing binary input, I do this, but of course then it was rather more natural to do. But

I did not test either comparing with style as here.

937 \def\XINT_expr_scanoctIgobz_aa #1%

938 {%

939 \if\ifnum`#1>`0 \ifnum`#1>`7 0\else1\fi\else0\fi 1%

940 \xint_dothis\XINT_expr_scanoctI_b

941 \fi

942 \if 0#1\xint_dothis\XINT_expr_scanoctIgobz_bgob\fi

943 \if _#1\xint_dothis\XINT_expr_scanoctIgobz_bgob\fi

944 \if .#1\xint_dothis\XINT_expr_scanoctIgobz_toII\fi

945 \xint_orthat

946 {\XINT_expandableerror

947 {Expected an octal digit, `_', or `.'. Got `#1'. Using `0'.}%

948 0.>;\iffalse{\fi}}%

949 #1%

950 }%

951 \def\XINT_expr_scanoctIgobz_bgob #1#2%

952 {%

953 \expandafter\XINT_expr_scanoctIgobz_a\romannumeral`&&@#2%

954 }%

955 \def\XINT_expr_scanoctIgobz_toII .#1%

956 {%

957 0..\expandafter\XINT_expr_scanoctII_a\romannumeral`&&@#1%

590

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

958 }%

959 \def\XINT_expr_scanoctI_a #1%

960 {%

961 \ifcat #1\relax

962 .>;\iffalse{\fi\expandafter}\expandafter\xint_gobble_i\fi

963 \XINT_expr_scanoctI_aa #1%

964 }%

965 \def\XINT_expr_scanoctI_aa #1%

966 {%

967 \if\ifnum`#1>`/ \ifnum`#1>`7 0\else1\fi\else0\fi 1%

968 \expandafter\XINT_expr_scanoctI_b

969 \else

970 \if _#1\xint_dothis{\expandafter\XINT_expr_scanoctI_bgob}\fi

971 \if .#1\xint_dothis{\expandafter\XINT_expr_scanoctI_toII}\fi

972 \xint_orthat {.>;\iffalse{\fi\expandafter}}%

973 \fi

974 #1%

975 }%

976 \def\XINT_expr_scanoctI_b #1#2%

977 {%

978 #1\expandafter\XINT_expr_scanoctI_a\romannumeral`&&@#2%

979 }%

980 \def\XINT_expr_scanoctI_bgob #1#2%

981 {%

982 \expandafter\XINT_expr_scanoctI_a\romannumeral`&&@#2%

983 }%

984 \def\XINT_expr_scanoctI_toII .#1%

985 {%

986 ..\expandafter\XINT_expr_scanoctII_a\romannumeral`&&@#1%

987 }%

988 \def\XINT_expr_scanoctII_a #1%

989 {%

990 \ifcat #1\relax\xint_dothis{;\iffalse{\fi}#1}\fi

991 \xint_orthat {\XINT_expr_scanoctII_aa #1}%

992 }%

993 \def\XINT_expr_scanoctII_aa #1%

994 {%

995 \if\ifnum`#1>`/ \ifnum`#1>`7 0\else1\fi\else0\fi 1%

996 \expandafter\XINT_expr_scanoctII_b

997 \else

998 \if _#1\xint_dothis{\expandafter\XINT_expr_scanoctII_bgob}\fi

999 \xint_orthat{;\iffalse{\fi\expandafter}}%

1000 \fi

1001 #1%

1002 }%

1003 \def\XINT_expr_scanoctII_b #1#2%

1004 {%

1005 #1\expandafter\XINT_expr_scanoctII_a\romannumeral`&&@#2%

1006 }%

1007 \def\XINT_expr_scanoctII_bgob #1#2%

1008 {%

1009 \expandafter\XINT_expr_scanoctII_a\romannumeral`&&@#2%

591

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1010 }%

27.12.6. Binary numbers

Added at 1.4n (2025/09/05). Analogous to hexadecimal or octal with some simpler tests for digits.

1011 \def\XINT_expr_bin_in #1.#2#3;%

1012 {%

1013 \expanded{{{\if#2>%

1014 \xintBinToDec{#1}%

1015 \else

1016 \xintiiMul{\xintiiPow{5}{\xintLength{#3}}}{\xintBinToDec{#1#3}}%

1017 [\the\numexpr-\xintLength{#3}]%

1018 \fi}}\expandafter}\romannumeral`&&@\XINT_expr_getop

1019 }%

1020 % \begin{macrocode}

1021 \def\XINT_expr_startbin #1%

1022 {%

1023 \expandafter\XINT_expr_bin_in\expanded\bgroup

1024 \expandafter\XINT_expr_scanbinIgobz_a\romannumeral`&&@#1%

1025 }%

1026 \def\XINT_expr_scanbinIgobz_a #1%

1027 {%

1028 \ifcat #1\relax

1029 0.>;\iffalse{\fi\expandafter}\expandafter\xint_gobble_i\fi

1030 \XINT_expr_scanbinIgobz_aa #1%

1031 }%

1032 \def\XINT_expr_scanbinIgobz_aa #1%

1033 {%

1034 \if _#1\xint_dothis\XINT_expr_scanbinIgobz_bgob\fi

1035 \if .#1\xint_dothis\XINT_expr_scanbinIgobz_toII\fi

1036 \if 0#1\xint_dothis\XINT_expr_scanbinIgobz_bgob\fi

1037 \if 1#1\xint_dothis\XINT_expr_scanbinI_b\fi

1038 \xint_orthat

1039 {\XINT_expandableerror

1040 {Expected a binary digit, `_', or `.'. Got `#1'. Using `0'.}%

1041 0.>;\iffalse{\fi}}%

1042 #1%

1043 }%

1044 \def\XINT_expr_scanbinIgobz_bgob #1#2%

1045 {%

1046 \expandafter\XINT_expr_scanbinIgobz_a\romannumeral`&&@#2%

1047 }%

1048 \def\XINT_expr_scanbinIgobz_toII .#1%

1049 {%

1050 0..\expandafter\XINT_expr_scanbinII_a\romannumeral`&&@#1%

1051 }%

1052 \def\XINT_expr_scanbinI_a #1%

1053 {%

1054 \ifcat #1\relax

1055 .>;\iffalse{\fi\expandafter}\expandafter\xint_gobble_i\fi

1056 \XINT_expr_scanbinI_aa #1%

1057 }%

592

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1058 \def\XINT_expr_scanbinI_aa #1%

1059 {%

1060 \if _#1\xint_dothis\XINT_expr_scanbinI_bgob\fi

1061 \if .#1\xint_dothis\XINT_expr_scanbinI_toII\fi

1062 \if 0#1\xint_dothis\XINT_expr_scanbinI_b\fi

1063 \if 1#1\xint_dothis\XINT_expr_scanbinI_b\fi

1064 \xint_orthat {.>;\iffalse{\fi}}%

1065 #1%

1066 }%

1067 \def\XINT_expr_scanbinI_b #1#2%

1068 {%

1069 #1\expandafter\XINT_expr_scanbinI_a\romannumeral`&&@#2%

1070 }%

1071 \def\XINT_expr_scanbinI_bgob #1#2%

1072 {%

1073 \expandafter\XINT_expr_scanbinI_a\romannumeral`&&@#2%

1074 }%

1075 \def\XINT_expr_scanbinI_toII .#1%

1076 {%

1077 ..\expandafter\XINT_expr_scanbinII_a\romannumeral`&&@#1%

1078 }%

1079 \def\XINT_expr_scanbinII_a #1%

1080 {%

1081 \ifcat #1\relax\xint_dothis{;\iffalse{\fi}#1}\fi

1082 \xint_orthat {\XINT_expr_scanbinII_aa #1}%

1083 }%

1084 \def\XINT_expr_scanbinII_aa #1%

1085 {%

1086 \if _#1\xint_dothis\XINT_expr_scanbinII_bgob\fi

1087 \if 0#1\xint_dothis\XINT_expr_scanbinII_b\fi

1088 \if 1#1\xint_dothis\XINT_expr_scanbinII_b\fi

1089 \xint_orthat{;\iffalse{\fi}}%

1090 #1%

1091 }%

1092 \def\XINT_expr_scanbinII_b #1#2%

1093 {%

1094 #1\expandafter\XINT_expr_scanbinII_a\romannumeral`&&@#2%

1095 }%

1096 \def\XINT_expr_scanbinII_bgob #1#2%

1097 {%

1098 \expandafter\XINT_expr_scanbinII_a\romannumeral`&&@#2%

1099 }%

27.12.7. \XINT_expr_startfunc: collecting names of functions and variables

At 1.4 the first token left over has not been submitted to \string. We also know it is not a control

sequence. So we can test catcode to identify if operator is found. And it is allowed to hit some

operator such as a closing parenthesis we will then insert the «nil» value (edited: which however

will cause certain breakage of the infix binary operators: I notice I did not insert None {{}} but

nil {}, perhaps by oversight).

There was prior to 1.4 solely the dispatch in \XINT_expr_scanfunc_b but now we do it immediately

and issue \XINT_expr_func only in certain cases.

Comments here have been removed because 1.4g did a refactoring and renamed \XINT_expr_scanfunc

593

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

to \XINT_expr_startfunc, moving half of it earlier inside the getnextfork macros.

1100 \def\XINT_expr_startfunc #1%

1101 {\expandafter\XINT_expr_func\expanded\bgroup#1\XINT_expr_scanfunc_a}%

1102 \def\XINT_expr_scanfunc_a #1%

1103 {%

1104 \expandafter\XINT_expr_scanfunc_b\romannumeral`&&@#1%

1105 }%

This handles: 1) (indirectly) tacit multiplication by a variable in front a of sub-expression,

2) (indirectly) tacit multiplication in front of a \count etc..., 3) functions which are recog-

nized via an encountered opening parenthesis (but later this must be disambiguated from variables

with tacit multiplication) 4) 5) 6) 7) acceptable components of a variable or function names: @,

underscore, digits, letters (or chars of category code letter.)

The short lived 1.2d which followed the even shorter lived 1.2c managed to introduce a bug here

as it removed the check for catcode 11 !, which must be recognized if ! is not to be taken as part

of a variable name. Don't know what I was thinking, it was the time when I was moving the handling

of tacit mutliplication entirely to the \XINT_expr_getop side. Fixed in 1.2e.

I almost decided to remove the \ifcat\relax test whose rôle is to avoid the \string#1 to do

something bad is the escape char is a digit! Perhaps I will remove it at some point ! I truly almost

did it, but also the case of no escape char is a problem (\string\0, if \0 is a count ...)

The (indirectly) above means that via \XINT_expr_func then \XINT_expr_op__ one goes back to

\XINT_expr_getop then \XINT_expr_getop_b which is the location where tacit multiplication is now

centralized. This makes the treatment of tacit multiplication for situations such as <variable>\ ⤸
count or <variable>\xintexpr..\relax, perhaps a bit sub-optimal, but first the variable name must

be gathered, second the variable must expand to its value.

1106 \def\XINT_expr_scanfunc_b #1%

1107 {%

1108 \ifcat \relax#1\xint_dothis{\iffalse{\fi}(_#1}\fi

1109 \if (#1\xint_dothis{\iffalse{\fi}(`}\fi

1110 \if 1\ifcat a#10\fi

1111 \ifnum\xint_c_ix<1\string#1 0\fi

1112 \if @#10\fi

1113 \if _#10\fi

1114 1%

1115 \xint_dothis{\iffalse{\fi}(_#1}\fi

1116 \xint_orthat {#1\XINT_expr_scanfunc_a}%

1117 }%

27.12.8. \XINT_expr_func: dispatch to variable replacement or to function execution

Comments written 2015/11/12: earlier there was an \ifcsname test for checking if we had a variable

in front of a (, for tacit multiplication for example in x(y+z(x+w)) to work. But after I had

implemented functions (that was yesterday...), I had the problem if was impossible to re-declare

a variable name such as "f" as a function name. The problem is that here we can not test if the

function is available because we don't know if we are in expr, iiexpr or floatexpr. The \xint_c_ ⤸
ii^v causes all fetching operations to stop and control is handed over to the routines which will

be expr, iiexpr ou floatexpr specific, i.e. the \XINT_{expr|iiexpr|flexpr}_op_{`|_} which are

invoked by the until_<op>_b macros earlier in the stream. Functions may exist for one but not the

two other parsers. Variables are declared via one parser and usable in the others, but naturally

\xintiiexpr has its restrictions.

Thinking about this again I decided to treat a priori cases such as x(...) as functions, after

having assigned to each variable a low-weight macro which will convert this into _getop\.=<value

594

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

of x>*(...). To activate that macro at the right time I could for this exploit the "onliteral"

intercept, which is parser independent (1.2c).

This led to me necessarily to rewrite partially the seq, add, mul, subs, iter ... routines as

now the variables fetch only one token. I think the thing is more efficient.

1.2c had \def\XINT_expr_func #1(#2{\xint_c_ii^v #2{#1}}

In \XINT_expr_func the #2 is _ if #1 must be a variable name, or #2=` if #1 must be either a func-

tion name or possibly a variable name which will then have to be followed by tacit multiplication

before the opening parenthesis.

The \xint_c_ii^v is there because _op_` must know in which parser it works. Dispendious for _.

Hence I modify for 1.2d.

1118 \def\XINT_expr_func #1(#2{\if _#2\xint_dothis{\XINT_expr_op__{#1}}\fi

1119 \xint_orthat{{#1}\xint_c_ii^v #2}}%

27.13. \XINT_expr_op_`: launch function or pseudo-function, or evaluate variable
and insert operator of multiplication in front of parenthesized contents

The "onliteral" intercepts is for bool, togl, protect, ... but also for add, mul, seq, etc...

Genuine functions have expr, iiexpr and flexpr versions (or only one or two of the three) and

trigger here the use of the suitable parser-dependant form. The former (pseudo functions and

functions handling dummy variables) first trigger a parser independent mechanism.

With 1.2c "onliteral" is also used to disambiguate a variable followed by an opening parenthesis

from a function and then apply tacit multiplication. However as I use only a \ifcsname test, in

order to be able to re-define a variable as function, I move the check for being a function first.

Each variable name now has its onliteral_<name> associated macro. This used to be decided much

earlier at the time of \XINT_expr_func.

The advantage of 1.2c code is that the same name can be used for a variable or a function.

Modified at 1.4i (2021/06/11). The 1.2c abuse of «onliteral» for both tacit multiplication in

front of an opening parenthesis and «generic» functions or pseudo-functions meant that the lat-

ter were vulnerable against user redefinition of a function name as a variable name. This ap-

plied to subs, subsm, subsn, seq, add, mul, ndseq, ndmap, ndfillraw, bool, togl, protect, qint,

qfrac, qfloat, qraw, random, qrand, rbit and the most susceptible in real life was probably

"seq".

Now variables have an associated «var*» named macro, not «onliteral».

In passing I refactor here in a \romannumeral inspired way how \csname and TeX booleans are

intertwined, minimizing \expandafter usage.

1120 \def\XINT_tmpa #1#2#3{%

1121 \def #1##1%

1122 {%

1123 \csname

1124 XINT_\ifcsname XINT_#3_func_##1\endcsname

1125 #3_func_##1\expandafter\endcsname\romannumeral`&&@\expandafter#2%

1126 \romannumeral\else

1127 \ifcsname XINT_expr_onliteral_##1\endcsname

1128 expr_onliteral_##1\expandafter\endcsname\romannumeral

1129 \else

1130 \ifcsname XINT_expr_var*_##1\endcsname

1131 expr_var*_##1\expandafter\endcsname\romannumeral

1132 \else

1133 #3_func_\XINT_expr_unknown_function {##1}%

1134 \expandafter\endcsname\romannumeral`&&@\expandafter#2%

1135 \romannumeral

1136 \fi\fi\fi\xint_c_

595

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1137 }%

1138 }%

1139 \xintFor #1 in {expr,flexpr,iiexpr} \do {%

1140 \expandafter\XINT_tmpa

1141 \csname XINT_#1_op_`\expandafter\endcsname

1142 \csname XINT_#1_oparen\endcsname

1143 {#1}%

1144 }%

1145 \def\XINT_expr_unknown_function #1%

1146 {\XINT_expandableerror{`#1' is unknown, say `Isome_func' or I use 0.}}%

1147 \def\XINT_expr_func_ #1#2#3{#1#2{{0}}}%

1148 \let\XINT_flexpr_func_\XINT_expr_func_

1149 \let\XINT_iiexpr_func_\XINT_expr_func_

27.14. \XINT_expr_op__: replace a variable by its value and then fetch next
operator

The 1.1 mechanism for \XINT_expr_var_<varname> has been modified in 1.2c. The <varname> associ-

ated macro is now only expanded once, not twice. We arrive here via \XINT_expr_func.

At 1.4 \XINT_expr_getop is launched with accumulated result on its left. But the omit and abort

keywords are implemented via fake variables which rely on possibility to modify incoming upfront

tokens. If we did here something such as

var#1\expandafter\endcsname\romannumeral`^^@\XINT_expr_getop

the premature expansion of getop would break the var_omit and var_abort mechanism. Thus we re-

vert to former code which locates an \XINT_expr_getop (call it _legacy) before the tokens from

the variable expansion (in xintexpr < 1.4 the normal variables expanded to a single token so the

overhead was not serious) so we can expand fake variables first.

Abusing variables to manipulate the incoming token stream is a bit bad, usually I prefer func-

tions for this (such as the break() function) but then I have to define 3 macros for the 3 parsers.

This trick of fake variables puts thus a general overhead at various locations, and the situation

here is REALLY not satisfactory. But 1.4 has (had) to be released now.

Even if I could put the \csname XINT_expr_var_foo\endcsname upfront, which would then be f-

expanded, this would still need \XINT_expr_put_op_first to use its \expandafter's as long as \XI ⤸
NT_expr_var_foo expands to {\XINT_expr_varvalue_foo} with a not-yet expanded \XINT_expr_var_val ⤸
ue.

I could let \XINT_expr_var_foo expand to \expandafter{\XINT_expr_varvalue_foo} allowing then

(if it gets f-expanded) probably to drop the \expandafter in \XINT_expr_put_op_first. But I can

not consider this option in the form

_var_foo\expandafter\endcsname\romannumeral`^^@\XINT_expr_getop

until the issue with fake variables such as omit and abort which must act before \XINT_expr_getop

has some workaround. This could be implemented here with some extra branch, i.e. there would not

be some \XINT_expr_var_omit but something else filtered out in the \else branch here.

The above comments mention only omit and abort, but the case of real dummy variables also needs

consideration.

At 1.4g, I test first for existence of \XINT_expr_onliteral_foo.

Updated for 1.4i: now rather existence of \XINT_expr_var*_foo is tested.

This is a trick which allows to distinguish actual or dummy variables from really fake variables

omit and abort (must check if there are others). For the real or dummy variables we can trigger the

expansion of the \XINT_expr_getop before the one of the variable. I could test vor varvalue_foo

but this applies only to real variables not dummy variables. Actual and dummy variables are thus

handled slightly faster at 1.4g as there is less induced moving around (the \expandafter chain in

\XINT_expr_put_op_first still applies at this stage, as I have not yet re-examined the var/varlue

596

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

mechanism). And the test for var_foo is moved directly inside the \csname construct in the \else

branch which now handles together fake variables and non-existing variables.

I only have to make sure dummy variables are really safe being handled this way with the getop

action having being done before they expand, but it looks ok. Attention it is crucial that if

\XINT_expr_getop finds a \relax it inserts \xint_c_\relax so the \relax token is still there!

With this refactoring the \XINT_expr_getop_legacy is applied only in case of non-existent vari-

ables or fake variables omit/abort or things such as nil, None, false, true, False, True.

If user in interactive mode fixes the variable name, the \XINT_expr_var_foo expanded once with

deliver {\XINT_expr_varvalue_foo} (if not dummy), and the braces are maintained by \XINT_expr_ge ⤸
top_legacy.

1150 \def\XINT_expr_op__ #1% op__ with two _'s

1151 {%

1152 \ifcsname XINT_expr_var*_#1\endcsname

1153 \csname XINT_expr_var_#1\expandafter\endcsname

1154 \romannumeral`&&@\expandafter\XINT_expr_getop

1155 \else

1156 \expandafter\expandafter\expandafter\XINT_expr_getop_legacy

1157 \csname XINT_expr_var_%

1158 \ifcsname XINT_expr_var_#1\endcsname#1\else\XINT_expr_unknown_variable{#1}\fi

1159 \expandafter\endcsname

1160 \fi

1161 }%

1162 \def\XINT_expr_unknown_variable #1%

1163 {\XINT_expandableerror {`#1' unknown, say `Isome_var' or I use 0.}}%

1164 \def\XINT_expr_var_{{{0}}}%

1165 \let\XINT_flexpr_op__ \XINT_expr_op__

1166 \let\XINT_iiexpr_op__ \XINT_expr_op__

1167 \def\XINT_expr_getop_legacy #1%

1168 {%

1169 \expanded{\xint_noxpd{{#1}}\expandafter}\romannumeral`&&@\XINT_expr_getop

1170 }%

27.15. \XINT_expr_getop: fetch the next operator or closing parenthesis or end of
expression

Release 1.1 implements multi-character operators.

1.2d adds tacit mutiplication also in front of variable or functions names starting with a let-

ter, not only a @ or a _ as was already the case. This is for (x+y)z situations. It also applies

higher precedence in cases like x/2y or x/2@, or x/2max(3,5), or x/2\xintexpr 3\relax.

In fact, finally I decide that all sorts of tacit multiplication will always use the higher

precedence.

Indeed I hesitated somewhat: with the current code one does not know if \XINT_expr_getop as

invoked after a closing parenthesis or because a number parsing ended, and I felt distinguishing

the two was unneeded extra stuff. This means cases like (a+b)/(c+d)(e+f) will first multiply the

last two parenthesized terms.

1.2q adds tacit multiplication in cases such as (1+1)3 or 5!7!

1.4 has simplified coding here as \XINT_expr_getop expansion happens at a time when a fetched

value has already being stored.

Prior to 1.4g there was an \if _#1\xint_dothis\xint_secondofthree\fi because the _ can be used

to start names, for private use by package (for example by polexpr). But this test was silly be-

cause these usages are only with a _ of catcode 11. And allowing non-catcode 11 _ also to trigger

597

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

tacit multiplication caused an infinite loop in collaboration with \XINT_expr_scanfunc, see ex-

planations there (now removed after refactoring, see \XINT_expr_startfunc).

The situation with the @ is different because we must allow it even as catcode 12 as a name, as

it used in the syntax and must work the same if of catcode 11 or 12. No infinite loop because it is

filtered out by one of the \XINT_expr_getnextfork macros.

The check for : to send it to thirdofthree "getop" branch is needed, last time I checked, because

during some part of at least \xintdeffunc, some scantokens are done which need to work with the :

of catcode 11, and it would be misconstrued to start a name if not filtered out.

1171 \def\XINT_expr_getop #1%

1172 {%

1173 \expandafter\XINT_expr_getop_a\romannumeral`&&@#1%

1174 }%

1175 \catcode`* 11

1176 \def\XINT_expr_getop_a #1%

1177 {%

1178 \ifx \relax #1\xint_dothis\xint_firstofthree\fi

1179 \ifcat \relax #1\xint_dothis\xint_secondofthree\fi

1180 \ifnum\xint_c_ix<1\string#1 \xint_dothis\xint_secondofthree\fi

1181 \if :#1\xint_dothis \xint_thirdofthree\fi

1182 \if @#1\xint_dothis \xint_secondofthree\fi

1183 \if (#1\xint_dothis \xint_secondofthree\fi %)

1184 \ifcat a#1\xint_dothis \xint_secondofthree\fi

1185 \xint_orthat \xint_thirdofthree

Formerly \XINT_expr_foundend as firstofthree but at 1.4g let's simply insert \xint_c_ as the #1

is \relax (and anyhow a place-holder according to remark in definition of \XINT_expr_foundend

1186 \xint_c_

Tacit multiplication with higher precedence. Formerly \XINT_expr_precedence_*** was used, re-

named to \XINT_expr_prec_tacit at 1.4g in case a backport is done of the \bnumdefinfix from bnum-

expr.

1187 {\XINT_expr_prec_tacit *}%

This is only location which jumps to \XINT_expr_getop_b. At 1.4f and perhaps for old legacy rea-

sons this was \expandafter\XINT_expr_getop_b \string#1 but I see no reason now for applying \s ⤸
tring to #1. Removed at 1.4g. And the #1 now moved out of the secondofthree and thirdofthree

branches.

1188 \XINT_expr_getop_b

1189 #1%

1190 }%

1191 \catcode`* 12

\relax is a place holder here. At 1.4g, we don't use \XINT_expr_foundend anymore in \XINT_expr_g ⤸
etop_a which was slightly refactored, but it is used elsewhere.

Attention that keeping a \relax around if \XINT_expr_getop hits it is crucial to good function-

ing of dummy variables after 1.4g refactoring of \XINT_expr_op__, the \relax being used as delim-

iter by dummy variables, and \XINT_expr_getop is now expanded before the variable itself does its

thing.

1192 \def\XINT_expr_foundend {\xint_c_ \relax}%

? is a very special operator with top precedence which will check if the next token is another ?,

while avoiding removing a brace pair from token stream due to its syntax. Pre 1.1 releases used :

rather than ??, but we need : for Python like slices of lists.

null char is used as hack to implement A/B[N] raw input at 1.4. See also \XINT_expr_scanint_c.

598

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

Memo: 1.4g, the token fetched by \XINT_expr_getop_b has not anymore been previously submitted

in \XINT_expr_getop_a to \string.

1193 \def\XINT_expr_getop_b#1{\def\XINT_expr_getop_b ##1%

1194 {%

1195 \if &&@##1\xint_dothis{#1&&@}\fi

1196 \if '##1\xint_dothis{\XINT_expr_binopwrd }\fi

1197 \if ?##1\xint_dothis{\XINT_expr_precedence_? ?}\fi

1198 \xint_orthat {\XINT_expr_scanop_a ##1}%

1199 }}\expandafter\XINT_expr_getop_b\csname XINT_expr_precedence_&&@\endcsname

1200 \def\XINT_expr_binopwrd #1'%

1201 {%

1202 \expandafter\XINT_expr_foundop_a

1203 \csname XINT_expr_itself_\xint_zapspaces #1 \xint_gobble_i\endcsname

1204 }%

1205 \def\XINT_expr_scanop_a #1#2%

1206 {%

1207 \expandafter\XINT_expr_scanop_b\expandafter#1\romannumeral`&&@#2%

1208 }%

Multi-character operators have an associated itself macro at each stage of decomposition starting

at two characters. Here, nothing imposes to the operator characters not to be of catcode letter,

this constraint applies only on the first character and is done via \XINT_expr_getop_a, to handle

in particular tacit multiplication in front of variable or function names.

But it would be dangerous to allow letters in operator characters, again due to existence of

variables and functions, and anyhow there is no user interface to add such custom operators. How-

ever in bnumexpr, such a constraint does not exist.

I don't worry too much about efficiency here... and at 1.4g I have re-written for code read-

ability only. Once we see that #1#2 is not a candidate to be or start an operator, we need to check

if single-character operator #1 is really an operator and this is done via the existence of the

precedence token.

Unfortunately the 1.4g refactoring of the scanop macros had a bad bug: \XINT_expr_scanop_c

inserted \romannumeral`^^@ in stream but did not grab a token first so a space would stop the \ ⤸
romannumeral and then the #2 in \XINT_expr_scanop_d was not pre-expanded and ended up alone in

\ifcat. It is too distant in the past the time when I wrote the core of xintexpr in 2013... older

and dumber now.

1209 \def\XINT_expr_scanop_b #1#2%

1210 {%

1211 \unless\ifcat#2\relax

1212 \ifcsname XINT_expr_itself_#1#2\endcsname

1213 \XINT_expr_scanop_c

1214 \fi\fi

1215 \XINT_expr_foundop_a #1#2%

1216 }%

1217 \def\XINT_expr_scanop_c #1#2#3#4#5#6% #1#2=\fi\fi

1218 {%

1219 #1#2%

1220 \expandafter\XINT_expr_scanop_d\csname XINT_expr_itself_#4#5\expandafter\endcsname

1221 \romannumeral`&&@#6%

1222 }%

1223 \def\XINT_expr_scanop_d #1#2%

1224 {%

1225 \unless\ifcat#2\relax

1226 \ifcsname XINT_expr_itself_#1#2\endcsname

599

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1227 \XINT_expr_scanop_c

1228 \fi\fi

1229 \XINT_expr_foundop #1#2%

1230 }%

1231 \def\XINT_expr_foundop_a #1%

1232 {%

1233 \ifcsname XINT_expr_precedence_#1\endcsname

1234 \csname XINT_expr_precedence_#1\expandafter\endcsname

1235 \expandafter #1%

1236 \else

1237 \expandafter\XINT_expr_getop\romannumeral`&&@%

1238 \xint_afterfi{\XINT_expandableerror

1239 {Expected an operator but got `#1'. Ignoring.}}%

1240 \fi

1241 }%

1242 \def\XINT_expr_foundop #1{\csname XINT_expr_precedence_#1\endcsname #1}%

27.16. Expansion spanning; opening and closing parentheses
This is also where \XINT_expr_start, \XINT_iiexpr_start and \XINT_flexpr_start are defined.

These comments apply to all definitions coming next relative to execution of operations from

parsing of syntax.

Refactored (and unified) at 1.4. In particular the 1.4 scheme uses op, exec, check-, and checkp.

Formerly it was until_a (check-) and until_b (now split into checkp and exec).

This way neither check- nor checkp have to grab the accumulated number so far (top of stack if

you like) and besides one never has to go back to check- from checkp (and neither from check-).

Prior to 1.4, accumulated intermediate results were stored as one token, but now we have to use

\expanded to propagate expansion beyond possibly arbitrary long braced nested data. With the 1.4

refactoring we do this only once and only grab a second time the data if we actually have to act

upon it.

Version 1.1 had a hack inside the until macros for handling the omit and abort in iterations

over dummy variables. This has been removed by 1.2c, see the subsection where omit and abort are

discussed.

Exceptionally, the check- is here abbreviated to check.

1243 \catcode`) 11

1244 \def\XINT_tmpa #1#2#3#4#5#6%

1245 {%

1246 \def#1% \XINT_expr_start, \XINT_iiexpr_start, \XINT_flexpr_start

1247 {%

1248 \expandafter#2\romannumeral`&&@\XINT_expr_getnext

1249 }%

1250 \def#2##1% check

1251 {%

1252 \xint_UDsignfork

1253 ##1{\expandafter#3\romannumeral`&&@#4}%

1254 -{#3##1}%

1255 \krof

1256 }%

1257 \def#3##1##2% checkp

1258 {%

1259 \ifcase ##1%

1260 \expandafter\XINT_expr_done

600

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1261 \or\expandafter#5%

1262 \else

1263 \expandafter#3\romannumeral`&&@\csname XINT_#6_op_##2\expandafter\endcsname

1264 \fi

1265 }%

1266 \def#5%

1267 {%

1268 \XINT_expandableerror

1269 {Extra) removed. Hit <return>, fingers crossed.}%

1270 \expandafter#2\romannumeral`&&@\expandafter\XINT_expr_put_op_first

1271 \romannumeral`&&@\XINT_expr_getop_legacy

1272 }%

1273 }%

1274 \let\XINT_expr_done\space

1275 \xintFor #1 in {expr,flexpr,iiexpr} \do {%

1276 \expandafter\XINT_tmpa

1277 \csname XINT_#1_start\expandafter\endcsname

1278 \csname XINT_#1_check\expandafter\endcsname

1279 \csname XINT_#1_checkp\expandafter\endcsname

1280 \csname XINT_#1_op_-xii\expandafter\endcsname

1281 \csname XINT_#1_extra_)\endcsname

1282 {#1}%

1283 }%

Here also we take some shortcuts relative to general philosophy and have no explicit exec macro.

1284 \def\XINT_tmpa #1#2#3#4#5#6#7%

1285 {%

1286 \def #1##1% op_(

1287 {%

1288 \expandafter #4\romannumeral`&&@\XINT_expr_getnext

1289 }%

1290 \def #2##1% op_)

1291 {%

1292 \expanded{\xint_noxpd{\XINT_expr_put_op_first{##1}}\expandafter}%

1293 \romannumeral`&&@\XINT_expr_getop

1294 }%

1295 \def #3% oparen

1296 {%

1297 \expandafter #4\romannumeral`&&@\XINT_expr_getnext

1298 }%

1299 \def #4##1% check-

1300 {%

1301 \xint_UDsignfork

1302 ##1{\expandafter#5\romannumeral`&&@#6}%

1303 -{#5##1}%

1304 \krof

1305 }%

1306 \def #5##1##2% checkp

1307 {%

1308 \ifcase ##1\expandafter\XINT_expr_missing_)

1309 \or \csname XINT_#7_op_##2\expandafter\endcsname

1310 \else

1311 \expandafter #5\romannumeral`&&@\csname XINT_#7_op_##2\expandafter\endcsname

601

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1312 \fi

1313 }%

1314 }%

1315 \def\XINT_expr_missing_)

1316 {\XINT_expandableerror{End of expression found, but some) was missing there.}%

1317 \xint_c_ \XINT_expr_done }%

1318 \xintFor #1 in {expr,flexpr,iiexpr} \do {%

1319 \expandafter\XINT_tmpa

1320 \csname XINT_#1_op_(\expandafter\endcsname

1321 \csname XINT_#1_op_)\expandafter\endcsname

1322 \csname XINT_#1_oparen\expandafter\endcsname

1323 \csname XINT_#1_check-_)\expandafter\endcsname

1324 \csname XINT_#1_checkp_)\expandafter\endcsname

1325 \csname XINT_#1_op_-xii\endcsname

1326 {#1}%

1327 }%

1328 \let\XINT_expr_precedence_)\xint_c_i

1329 \catcode`) 12

27.17. The comma as binary operator
New with 1.09a. Refactored at 1.4.

1330 \def\XINT_tmpa #1#2#3#4#5#6%

1331 {%

1332 \def #1##1% \XINT_expr_op_,

1333 {%

1334 \expanded{\xint_noxpd{#2{##1}}\expandafter}%

1335 \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext

1336 }%

1337 \def #2##1##2##3##4{##2##3{##1##4}}% \XINT_expr_exec_,

1338 \def #3##1% \XINT_expr_check-_,

1339 {%

1340 \xint_UDsignfork

1341 ##1{\expandafter#4\romannumeral`&&@#5}%

1342 -{#4##1}%

1343 \krof

1344 }%

1345 \def #4##1##2% \XINT_expr_checkp_,

1346 {%

1347 \ifnum ##1>\xint_c_iii

1348 \expandafter#4%

1349 \romannumeral`&&@\csname XINT_#6_op_##2\expandafter\endcsname

1350 \else

1351 \expandafter##1\expandafter##2%

1352 \fi

1353 }%

1354 }%

1355 \xintFor #1 in {expr,flexpr,iiexpr} \do {%

1356 \expandafter\XINT_tmpa

1357 \csname XINT_#1_op_,\expandafter\endcsname

1358 \csname XINT_#1_exec_,\expandafter\endcsname

1359 \csname XINT_#1_check-_,\expandafter\endcsname

602

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1360 \csname XINT_#1_checkp_,\expandafter\endcsname

1361 \csname XINT_#1_op_-xii\endcsname {#1}%

1362 }%

1363 \expandafter\let\csname XINT_expr_precedence_,\endcsname\xint_c_iii

27.18. The minus as prefix operator of variable precedence level
Inherits the precedence level of the previous infix operator, if the latter has at least the prece-

dence level of binary + and -, i.e. currently 12.

Refactored at 1.4.

At 1.4g I belatedly observe that I have been defining architecture for op_-xvi but such operator

can never be created, because there are no infix operators of precedence level 16. Perhaps in the

past this was really needed? But now such 16 is precedence level of tacit multiplication which is

implemented simply by the \XINT_expr_prec_tacit token, there is no macro check-_*** which would

need an op_-xvi.

For the record: at least one scenario exists which creates tacit multiplication in front of a

unary -, it is 2\count0 which first generates tacit multiplication then applies \number to \coun ⤸
t0, but the operator is still *, so this triggers only \XINT_expr_op_-xiv, not -xvi.

At 1.4g we need 17 and not 18 anymore as the precedence of unary minus following power operators

^ and **. The needed \xint_c_xvii creation was added to xintkernel.sty.

1364 \def\XINT_tmpb #1#2#3#4#5#6#7%

1365 {%

1366 \def #1% \XINT_expr_op_-<level>

1367 {%

1368 \expandafter #2\romannumeral`&&@\expandafter#3%

1369 \romannumeral`&&@\XINT_expr_getnext

1370 }%

1371 \def #2##1##2##3% \XINT_expr_exec_-<level>

1372 {%

1373 \expandafter ##1\expandafter ##2\expandafter

1374 {%

1375 \romannumeral`&&@\XINT:NEhook:f:one:from:one

1376 {\romannumeral`&&@#7##3}%

1377 }%

1378 }%

1379 \def #3##1% \XINT_expr_check-_-<level>

1380 {%

1381 \xint_UDsignfork

1382 ##1{\expandafter #4\romannumeral`&&@#1}%

1383 -{#4##1}%

1384 \krof

1385 }%

1386 \def #4##1##2% \XINT_expr_checkp_-<level>

1387 {%

1388 \ifnum ##1>#5%

1389 \expandafter #4%

1390 \romannumeral`&&@\csname XINT_#6_op_##2\expandafter\endcsname

1391 \else

1392 \expandafter ##1\expandafter ##2%

1393 \fi

1394 }%

1395 }%

603

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1396 \def\XINT_tmpa #1#2#3%

1397 {%

1398 \expandafter\XINT_tmpb

1399 \csname XINT_#1_op_-#3\expandafter\endcsname

1400 \csname XINT_#1_exec_-#3\expandafter\endcsname

1401 \csname XINT_#1_check-_-#3\expandafter\endcsname

1402 \csname XINT_#1_checkp_-#3\expandafter\endcsname

1403 \csname xint_c_#3\endcsname {#1}#2%

1404 }%

1405 \xintApplyInline{\XINT_tmpa {expr}\xintOpp}{{xii}{xiv}{xvii}}%

1406 \xintApplyInline{\XINT_tmpa {flexpr}\xintOpp}{{xii}{xiv}{xvii}}%

1407 \xintApplyInline{\XINT_tmpa {iiexpr}\xintiiOpp}{{xii}{xiv}{xvii}}%

27.19. The * as Python-like «unpacking» prefix operator
New with 1.4. Prior to 1.4 the internal data structure was the one of \csname encapsulated comma

separated numbers. No hierarchical structure was (easily) possible. At 1.4, we can use TeX braces

because there is no detokenization to catcode 12.

1408 \def\XINT_tmpa#1#2#3%

1409 {%

1410 \def#1##1{\expandafter#2\romannumeral`&&@\XINT_expr_getnext}%

1411 \def#2##1##2%

1412 {%

1413 \ifnum ##1>\xint_c_xx

1414 \expandafter #2%

1415 \romannumeral`&&@\csname XINT_#3_op_##2\expandafter\endcsname

1416 \else

1417 \expandafter##1\expandafter##2\romannumeral0\expandafter\XINT:NEhook:unpack

1418 \fi

1419 }%

1420 }%

1421 \def\XINT:NEhook:unpack{\xint_stop_atfirstofone}%

1422 \xintFor* #1 in {{expr}{flexpr}{iiexpr}}:

1423 {\expandafter\XINT_tmpa\csname XINT_#1_op_0\expandafter\endcsname

1424 \csname XINT_#1_until_unpack\endcsname {#1}}%

27.20. Infix operators
27.20.1 &&, ||, //, /:, +, –, *, /, ^, **, 'and', 'or', 'xor', and 'mod' 605
27.20.2 .., ..[, and].. for a..b and a..[b]..c syntax . 607
27.20.3 <, >, ==, <=, >=, != with Python-like chaining . 609
27.20.4 Support macros for .., ..[and].. 610

\xintSeq:tl:x . 611
\xintiiSeq:tl:x . 611
\xintSeqA, \xintiiSeqA . 612
\xintSeqB:tl:x . 612
\xintiiSeqB:tl:x . 613

1.2d adds the *** for tying via tacit multiplication, for example x/2y. Actually I don't need

the _itself mechanism for ***, only a precedence.

At 1.4b we must make sure that the ! in expansion of \XINT_expr_itself_!= is of catcode 12 and

not of catcode 11. This is because implementation of chaining of comparison operators proceeds

604

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

via inserting the itself macro directly into upcoming token stream, whereas formerly such itself

macros would be expanded only in a \csname...\endcsname context.

1425 \catcode`& 12 \catcode`! 12

1426 \xintFor* #1 in {{==}{!=}{<=}{>=}{&&}{||}{//}{/:}{..}{..[}{].}{]..}}%

1427 \do {\expandafter\def\csname XINT_expr_itself_#1\endcsname {#1}}%

1428 \catcode`& 7 \catcode`! 11

27.20.1. &&, ||, //, /:, +, –, *, /, ^, **, 'and', 'or', 'xor', and 'mod'

At 1.4g I finally decide to enact the switch to right associativity for the power operators ^ and

**.

This goes via inserting into the checkp macros not anymore the precedence chardef token (which

now only serves as left precedence, inserted in the token stream) but in its place an \xint_c ⤸
_<roman> token holding the right precedence. Which is also transmitted to spanned unary minus

operators.

Here only levels 12, 14, and 17 are created as right precedences.

#6 and #7 got permuted and the new #7 is directly a control sequence. Also #3 and #4 are now

integers which need \romannumeral. The change in \XINT_expr_defbin_c does not propagate as it is

re-defined shortly thereafter.

1429 \def\XINT_expr_defbin_c #1#2#3#4#5#6#7#8%

1430 {%

1431 \def #1##1% \XINT_expr_op_<op>

1432 {%

1433 \expanded{\xint_noxpd{#2{##1}}\expandafter}%

1434 \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext

1435 }%

1436 \def #2##1##2##3##4% \XINT_expr_exec_<op>

1437 {%

1438 \expandafter##2\expandafter##3\expandafter

1439 {\romannumeral`&&@\XINT:NEhook:f:one:from:two{\romannumeral`&&@#7##1##4}}%

1440 }%

1441 \def #3##1% \XINT_expr_check-_<op>

1442 {%

1443 \xint_UDsignfork

1444 ##1{\expandafter#4\romannumeral`&&@#5}%

1445 -{#4##1}%

1446 \krof

1447 }%

1448 \def #4##1##2% \XINT_expr_checkp_<op>

1449 {%

1450 \ifnum ##1>#6%

1451 \expandafter#4%

1452 \romannumeral`&&@\csname XINT_#8_op_##2\expandafter\endcsname

1453 \else

1454 \expandafter ##1\expandafter ##2%

1455 \fi

1456 }%

1457 }%

1458 \def\XINT_expr_defbin_b #1#2#3#4#5%

1459 {%

1460 \expandafter\XINT_expr_defbin_c

1461 \csname XINT_#1_op_#2\expandafter\endcsname

605

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1462 \csname XINT_#1_exec_#2\expandafter\endcsname

1463 \csname XINT_#1_check-_#2\expandafter\endcsname

1464 \csname XINT_#1_checkp_#2\expandafter\endcsname

1465 \csname XINT_#1_op_-\romannumeral\ifnum#4>12 #4\else12\fi\expandafter\endcsname

1466 \csname xint_c_\romannumeral#4\endcsname

1467 #5%

1468 {#1}%

1469 \expandafter % done 3 times but well

1470 \let\csname XINT_expr_precedence_#2\expandafter\endcsname

1471 \csname xint_c_\romannumeral#3\endcsname

1472 }%

1473 \XINT_expr_defbin_b {expr} {||} {6} {6} \xintOR

1474 \XINT_expr_defbin_b {flexpr}{||} {6} {6} \xintOR

1475 \XINT_expr_defbin_b {iiexpr}{||} {6} {6} \xintOR

1476 \catcode`& 12

1477 \XINT_expr_defbin_b {expr} {&&} {8} {8} \xintAND

1478 \XINT_expr_defbin_b {flexpr}{&&} {8} {8} \xintAND

1479 \XINT_expr_defbin_b {iiexpr}{&&} {8} {8} \xintAND

1480 \catcode`& 7

1481 \XINT_expr_defbin_b {expr} {xor}{6} {6} \xintXOR

1482 \XINT_expr_defbin_b {flexpr}{xor}{6} {6} \xintXOR

1483 \XINT_expr_defbin_b {iiexpr}{xor}{6} {6} \xintXOR

1484 \XINT_expr_defbin_b {expr} {//} {14}{14}\xintDivFloor

1485 \XINT_expr_defbin_b {flexpr}{//} {14}{14}\XINTinFloatDivFloor

1486 \XINT_expr_defbin_b {iiexpr}{//} {14}{14}\xintiiDivFloor

1487 \XINT_expr_defbin_b {expr} {/:} {14}{14}\xintMod

1488 \XINT_expr_defbin_b {flexpr}{/:} {14}{14}\XINTinFloatMod

1489 \XINT_expr_defbin_b {iiexpr}{/:} {14}{14}\xintiiMod

1490 \XINT_expr_defbin_b {expr} + {12}{12}\xintAdd

1491 \XINT_expr_defbin_b {flexpr} + {12}{12}\XINTinFloatAdd

1492 \XINT_expr_defbin_b {iiexpr} + {12}{12}\xintiiAdd

1493 \XINT_expr_defbin_b {expr} - {12}{12}\xintSub

1494 \XINT_expr_defbin_b {flexpr} - {12}{12}\XINTinFloatSub

1495 \XINT_expr_defbin_b {iiexpr} - {12}{12}\xintiiSub

1496 \XINT_expr_defbin_b {expr} * {14}{14}\xintMul

1497 \XINT_expr_defbin_b {flexpr} * {14}{14}\XINTinFloatMul

1498 \XINT_expr_defbin_b {iiexpr} * {14}{14}\xintiiMul

1499 \let\XINT_expr_prec_tacit \xint_c_xvi

1500 \XINT_expr_defbin_b {expr} / {14}{14}\xintDiv

1501 \XINT_expr_defbin_b {flexpr} / {14}{14}\XINTinFloatDiv

1502 \XINT_expr_defbin_b {iiexpr} / {14}{14}\xintiiDivRound

At 1.4g, right associativity is implemented via a lowered right precedence here.

1503 \XINT_expr_defbin_b {expr} ^ {18}{17}\xintPow

1504 \XINT_expr_defbin_b {flexpr} ^ {18}{17}\XINTinFloatSciPow

1505 \XINT_expr_defbin_b {iiexpr} ^ {18}{17}\xintiiPow

1.4g This is a trick (which was in old version of bnumexpr, I wonder why I did not have it here)

but it will make error messages in case of **<token> confusing. The ^ here is of catcode 11 but it

does not matter.

1506 \expandafter\def\csname XINT_expr_itself_**\endcsname{^}%

1507 \catcode`& 12

For this which contributes to implementing 'and', 'or', etc... see \XINT_expr_binopwrd.

606

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1508 \xintFor #1 in {and,or,xor,mod} \do

1509 {%

1510 \expandafter\def\csname XINT_expr_itself_#1\endcsname {#1}%

1511 }%

1512 \expandafter\let\csname XINT_expr_precedence_and\expandafter\endcsname

1513 \csname XINT_expr_precedence_&&\endcsname

1514 \expandafter\let\csname XINT_expr_precedence_or\expandafter\endcsname

1515 \csname XINT_expr_precedence_||\endcsname

1516 \expandafter\let\csname XINT_expr_precedence_mod\expandafter\endcsname

1517 \csname XINT_expr_precedence_/:\endcsname

1518 \xintFor #1 in {expr, flexpr, iiexpr} \do

1519 {%

1520 \expandafter\let\csname XINT_#1_op_and\expandafter\endcsname

1521 \csname XINT_#1_op_&&\endcsname

1522 \expandafter\let\csname XINT_#1_op_or\expandafter\endcsname

1523 \csname XINT_#1_op_||\endcsname

1524 \expandafter\let\csname XINT_#1_op_mod\expandafter\endcsname

1525 \csname XINT_#1_op_/:\endcsname

1526 }%

1527 \catcode`& 7

27.20.2. .., ..[, and].. for a..b and a..[b]..c syntax

The 1.4 exec_..[macros (which do no further expansion!) had silly \expandafter doing nothing for

the sole reason of sharing a common \XINT_expr_defbin_c as used previously for the +, - etc...

operators. At 1.4b we take the time to set things straight and do other similar simplifications.

1528 \def\XINT_expr_defbin_c #1#2#3#4#5#6#7%

1529 {%

1530 \def #1##1% \XINT_expr_op_..[

1531 {%

1532 \expanded{\xint_noxpd{#2{##1}}\expandafter}%

1533 \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext

1534 }%

1535 \def #2##1##2##3##4% \XINT_expr_exec_..[

1536 {%

1537 ##2##3{{##1##4}}%

1538 }%

1539 \def #3##1% \XINT_expr_check-_..[

1540 {%

1541 \xint_UDsignfork

1542 ##1{\expandafter#4\romannumeral`&&@#5}%

1543 -{#4##1}%

1544 \krof

1545 }%

1546 \def #4##1##2% \XINT_expr_checkp_..[

1547 {%

1548 \ifnum ##1>#6%

1549 \expandafter#4%

1550 \romannumeral`&&@\csname XINT_#7_op_##2\expandafter\endcsname

1551 \else

1552 \expandafter ##1\expandafter ##2%

1553 \fi

1554 }%

607

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1555 }%

1556 \def\XINT_expr_defbin_b #1%

1557 {%

1558 \expandafter\XINT_expr_defbin_c

1559 \csname XINT_#1_op_..[\expandafter\endcsname

1560 \csname XINT_#1_exec_..[\expandafter\endcsname

1561 \csname XINT_#1_check-_..[\expandafter\endcsname

1562 \csname XINT_#1_checkp_..[\expandafter\endcsname

1563 \csname XINT_#1_op_-xii\expandafter\endcsname

1564 \csname XINT_expr_precedence_..[\endcsname

1565 {#1}%

1566 }%

1567 \XINT_expr_defbin_b {expr}%

1568 \XINT_expr_defbin_b {flexpr}%

1569 \XINT_expr_defbin_b {iiexpr}%

1570 \expandafter\let\csname XINT_expr_precedence_..[\endcsname\xint_c_vi

1571 \def\XINT_expr_defbin_c #1#2#3#4#5#6#7#8%

1572 {%

1573 \def #1##1% \XINT_expr_op_<op>

1574 {%

1575 \expanded{\xint_noxpd{#2{##1}}\expandafter}%

1576 \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext

1577 }%

1578 \def #2##1##2##3##4% \XINT_expr_exec_<op>

1579 {%

1580 \expandafter##2\expandafter##3\expanded

1581 {{\XINT:NEhook:x:one:from:two#8##1##4}}%

1582 }%

1583 \def #3##1% \XINT_expr_check-_<op>

1584 {%

1585 \xint_UDsignfork

1586 ##1{\expandafter#4\romannumeral`&&@#5}%

1587 -{#4##1}%

1588 \krof

1589 }%

1590 \def #4##1##2% \XINT_expr_checkp_<op>

1591 {%

1592 \ifnum ##1>#6%

1593 \expandafter#4%

1594 \romannumeral`&&@\csname XINT_#7_op_##2\expandafter\endcsname

1595 \else

1596 \expandafter ##1\expandafter ##2%

1597 \fi

1598 }%

1599 }%

1600 \def\XINT_expr_defbin_b #1#2#3%

1601 {%

1602 \expandafter\XINT_expr_defbin_c

1603 \csname XINT_#1_op_#2\expandafter\endcsname

1604 \csname XINT_#1_exec_#2\expandafter\endcsname

1605 \csname XINT_#1_check-_#2\expandafter\endcsname

1606 \csname XINT_#1_checkp_#2\expandafter\endcsname

608

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1607 \csname XINT_#1_op_-xii\expandafter\endcsname

1608 \csname XINT_expr_precedence_#2\endcsname

1609 {#1}#3%

1610 \expandafter\let

1611 \csname XINT_expr_precedence_#2\expandafter\endcsname\xint_c_vi

1612 }%

1613 \XINT_expr_defbin_b {expr} {..}\xintSeq:tl:x

1614 \XINT_expr_defbin_b {flexpr} {..}\xintSeq:tl:x

1615 \XINT_expr_defbin_b {iiexpr} {..}\xintiiSeq:tl:x

1616 \XINT_expr_defbin_b {expr} {]..}\xintSeqB:tl:x

1617 \XINT_expr_defbin_b {flexpr}{]..}\xintSeqB:tl:x

1618 \XINT_expr_defbin_b {iiexpr}{]..}\xintiiSeqB:tl:x

27.20.3. <, >, ==, <=, >=, != with Python-like chaining

1.4b This is preliminary implementation of chaining of comparison operators like Python and (I

think) l3fp do. I am not too happy with how many times the (second) operand (already evaluated)

is fetched.

1619 \def\XINT_expr_defbin_d #1#2%

1620 {%

1621 \def #1##1##2##3##4% \XINT_expr_exec_<op>

1622 {%

1623 \expandafter##2\expandafter##3\expandafter

1624 {\romannumeral`&&@\XINT:NEhook:f:one:from:two{\romannumeral`&&@#2##1##4}}%

1625 }%

1626 }%

1627 \def\XINT_expr_defbin_c #1#2#3#4#5#6#7#8#9%

1628 {%

1629 \def #1##1% \XINT_expr_op_<op>

1630 {%

1631 \expanded{\xint_noxpd{#2{##1}}\expandafter}%

1632 \romannumeral`&&@\expandafter#7%

1633 \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext

1634 }%

1635 \def #3##1% \XINT_expr_check-_<op>

1636 {%

1637 \xint_UDsignfork

1638 ##1{\expandafter#4\romannumeral`&&@#5}%

1639 -{#4##1}%

1640 \krof

1641 }%

1642 \def #4##1##2% \XINT_expr_checkp_<op>

1643 {%

1644 \ifnum ##1>#6%

1645 \expandafter#4%

1646 \romannumeral`&&@\csname XINT_#9_op_##2\expandafter\endcsname

1647 \else

1648 \expandafter ##1\expandafter ##2%

1649 \fi

1650 }%

1651 \let #6\xint_c_x

1652 \def #7##1% \XINT_expr_checkc_<op>

1653 {%

609

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1654 \ifnum ##1=\xint_c_x\expandafter#8\fi ##1%

1655 }%

1656 \edef #8##1##2##3% \XINT_expr_execc_<op>

1657 {%

1658 \csname XINT_#9_precedence_\string&\string&\endcsname

1659 \expandafter\noexpand\csname XINT_#9_itself_\string&\string&\endcsname

1660 {##3}%

1661 \XINTfstop.{##3}##2%

1662 }%

1663 \XINT_expr_defbin_d #2% \XINT_expr_exec_<op>

1664 }%

1665 \def\XINT_expr_defbin_b #1#2%#3%

1666 {%

1667 \expandafter\XINT_expr_defbin_c

1668 \csname XINT_#1_op_#2\expandafter\endcsname

1669 \csname XINT_#1_exec_#2\expandafter\endcsname

1670 \csname XINT_#1_check-_#2\expandafter\endcsname

1671 \csname XINT_#1_checkp_#2\expandafter\endcsname

1672 \csname XINT_#1_op_-xii\expandafter\endcsname

1673 \csname XINT_expr_precedence_#2\expandafter\endcsname

1674 \csname XINT_#1_checkc_#2\expandafter\endcsname

1675 \csname XINT_#1_execc_#2\endcsname

1676 {#1}%#3%

1677 }%

Attention that third token here is left in stream by defbin_b, then also by defbin_c and is picked

up as #2 of defbin_d. Had to work around TeX accepting only 9 arguments. Why did it not start

counting at #0 like all decent mathematicians do?

1678 \XINT_expr_defbin_b {expr} <\xintLt

1679 \XINT_expr_defbin_b {flexpr}<\xintLt

1680 \XINT_expr_defbin_b {iiexpr}<\xintiiLt

1681 \XINT_expr_defbin_b {expr} >\xintGt

1682 \XINT_expr_defbin_b {flexpr}>\xintGt

1683 \XINT_expr_defbin_b {iiexpr}>\xintiiGt

1684 \XINT_expr_defbin_b {expr} {==}\xintEq

1685 \XINT_expr_defbin_b {flexpr}{==}\xintEq

1686 \XINT_expr_defbin_b {iiexpr}{==}\xintiiEq

1687 \XINT_expr_defbin_b {expr} {<=}\xintLtorEq

1688 \XINT_expr_defbin_b {flexpr}{<=}\xintLtorEq

1689 \XINT_expr_defbin_b {iiexpr}{<=}\xintiiLtorEq

1690 \XINT_expr_defbin_b {expr} {>=}\xintGtorEq

1691 \XINT_expr_defbin_b {flexpr}{>=}\xintGtorEq

1692 \XINT_expr_defbin_b {iiexpr}{>=}\xintiiGtorEq

1693 \XINT_expr_defbin_b {expr} {!=}\xintNotEq

1694 \XINT_expr_defbin_b {flexpr}{!=}\xintNotEq

1695 \XINT_expr_defbin_b {iiexpr}{!=}\xintiiNotEq

27.20.4. Support macros for .., ..[and]..

\xintSeq:tl:x . 611
\xintiiSeq:tl:x . 611
\xintSeqA, \xintiiSeqA . 612
\xintSeqB:tl:x . 612

610

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

\xintiiSeqB:tl:x . 613

\xintSeq:tl:x Commence par remplacer a par ceil(a) et b par floor(b) et renvoie ensuite les en-

tiers entre les deux, possiblement en décroissant, et extrémités comprises. Si a=b est non entier

en obtient donc ceil(a) et floor(a). Ne renvoie jamais une liste vide.

Note: le a..b dans \xintfloatexpr utilise cette routine.

1696 \def\xintSeq:tl:x #1#2%

1697 {%

1698 \expandafter\XINT_Seq:tl:x

1699 \the\numexpr \xintiCeil{#1}\expandafter.\the\numexpr \xintiFloor{#2}.%

1700 }%

1701 \def\XINT_Seq:tl:x #1.#2.%

1702 {%

1703 \ifnum #2=#1 \xint_dothis\XINT_Seq:tl:x_z\fi

1704 \ifnum #2<#1 \xint_dothis\XINT_Seq:tl:x_n\fi

1705 \xint_orthat\XINT_Seq:tl:x_p

1706 #1.#2.%

1707 }%

1708 \def\XINT_Seq:tl:x_z #1.#2.{{#1/1[0]}}%

1709 \def\XINT_Seq:tl:x_p #1.#2.%

1710 {%

1711 {#1/1[0]}\ifnum #1=#2 \XINT_Seq:tl:x_e\fi

1712 \expandafter\XINT_Seq:tl:x_p \the\numexpr #1+\xint_c_i.#2.%

1713 }%

1714 \def\XINT_Seq:tl:x_n #1.#2.%

1715 {%

1716 {#1/1[0]}\ifnum #1=#2 \XINT_Seq:tl:x_e\fi

1717 \expandafter\XINT_Seq:tl:x_n \the\numexpr #1-\xint_c_i.#2.%

1718 }%

1719 \def\XINT_Seq:tl:x_e#1#2.#3.{#1}%

\xintiiSeq:tl:x

1720 \def\xintiiSeq:tl:x #1#2%

1721 {%

1722 \expandafter\XINT_iiSeq:tl:x

1723 \the\numexpr \xintiCeil{#1}\expandafter.\the\numexpr \xintiFloor{#2}.%

1724 }%

1725 \def\XINT_iiSeq:tl:x #1.#2.%

1726 {%

1727 \ifnum #2=#1 \xint_dothis\XINT_iiSeq:tl:x_z\fi

1728 \ifnum #2<#1 \xint_dothis\XINT_iiSeq:tl:x_n\fi

1729 \xint_orthat\XINT_iiSeq:tl:x_p

1730 #1.#2.%

1731 }%

1732 \def\XINT_iiSeq:tl:x_z #1.#2.{{#1}}%

1733 \def\XINT_iiSeq:tl:x_p #1.#2.%

1734 {%

1735 {#1}\ifnum #1=#2 \XINT_Seq:tl:x_e\fi

1736 \expandafter\XINT_iiSeq:tl:x_p \the\numexpr #1+\xint_c_i.#2.%

1737 }%

1738 \def\XINT_iiSeq:tl:x_n #1.#2.%

1739 {%

611

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1740 {#1}\ifnum #1=#2 \XINT_Seq:tl:x_e\fi

1741 \expandafter\XINT_iiSeq:tl:x_n \the\numexpr #1-\xint_c_i.#2.%

1742 }%

Contrarily to a..b which is limited to small integers, this works with a, b, and d (big) fractions.

It will produce a «nil» list, if a>b and d<0 or a<b and d>0.

\xintSeqA, \xintiiSeqA
1743 \def\xintSeqA {\expandafter\XINT_SeqA\romannumeral0\xintraw}%

1744 \def\xintiiSeqA #1{\expandafter\XINT_iiSeqA\romannumeral`&&@#1;}%

1745 \def\XINT_SeqA #1]#2{\expandafter\XINT_SeqA_a\romannumeral0\xintraw {#2}#1]}%

1746 \def\XINT_iiSeqA#1;#2{\expandafter\XINT_SeqA_a\romannumeral`&&@#2;#1;}%

1747 \def\XINT_SeqA_a #1{\xint_UDzerominusfork

1748 #1-{z}%

1749 0#1{n}%

1750 0-{p}%

1751 \krof #1}%

\xintSeqB:tl:x At 1.4, delayed expansion of start and step done here and not before, for matters

of \xintdeffunc and «NEhooks».

The float variant at 1.4 is made identical to the exact variant. I.e. stepping is exact and

comparison to the range limit too. But recall that a/b input will be converted to a float. To

handle 1/3 step for example still better to use \xintexpr 1..1/3..10\relax for example inside the

\xintfloateval.

1752 \def\xintSeqB:tl:x #1{\expandafter\XINT_SeqB:tl:x\romannumeral`&&@\xintSeqA#1}%

1753 \def\XINT_SeqB:tl:x #1{\csname XINT_SeqB#1:tl:x\endcsname}%

1754 \def\XINT_SeqBz:tl:x #1]#2]#3{{#2]}}%

1755 \def\XINT_SeqBp:tl:x #1]#2]#3%

1756 {\expandafter\XINT_SeqBp:tl:x_a\romannumeral0\xintraw{#3}#2]#1]}%

1757 \def\XINT_SeqBp:tl:x_a #1]#2]#3]%

1758 {%

1759 \xintifCmp{#1]}{#2]}%

1760 {}{{#2]}}{{#2]}\expandafter\XINT_SeqBp:tl:x_b\romannumeral0\xintadd{#3]}{#2]}#1]#3]}%

1761 }%

1762 \def\XINT_SeqBp:tl:x_b #1]#2]#3]%

1763 {%

1764 \xintifCmp{#1]}{#2]}%

1765 {{#1]}\expandafter\XINT_SeqBp:tl:x_b\romannumeral0\xintadd{#3]}{#1]}#2]#3]}{{#1]}}{}%

1766 }%

1767 \def\XINT_SeqBn:tl:x #1]#2]#3%

1768 {\expandafter\XINT_SeqBn:tl:x_a\romannumeral0\xintraw{#3}#2]#1]}%

1769 \def\XINT_SeqBn:tl:x_a #1]#2]#3]%

1770 {%

1771 \xintifCmp{#1]}{#2]}%

1772 {{#2]}\expandafter\XINT_SeqBn:tl:x_b\romannumeral0\xintadd{#3]}{#2]}#1]#3]}{{#2]}}{}%

1773 }%

1774 \def\XINT_SeqBn:tl:x_b #1]#2]#3]%

1775 {%

1776 \xintifCmp{#1]}{#2]}%

1777 {}{{#1]}}{{#1]}\expandafter\XINT_SeqBn:tl:x_b\romannumeral0\xintadd{#3]}{#1]}#2]#3]}%

1778 }%

612

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

\xintiiSeqB:tl:x

1779 \def\xintiiSeqB:tl:x #1{\expandafter\XINT_iiSeqB:tl:x\romannumeral`&&@\xintiiSeqA#1}%

1780 \def\XINT_iiSeqB:tl:x #1{\csname XINT_iiSeqB#1:tl:x\endcsname}%

1781 \def\XINT_iiSeqBz:tl:x #1;#2;#3{{#2}}%

1782 \def\XINT_iiSeqBp:tl:x #1;#2;#3{\expandafter\XINT_iiSeqBp:tl:x_a\romannumeral`&&@#3;#2;#1;}%

1783 \def\XINT_iiSeqBp:tl:x_a #1;#2;#3;%

1784 {%

1785 \xintiiifCmp{#1}{#2}%

1786 {}{{#2}}{{#2}\expandafter\XINT_iiSeqBp:tl:x_b\romannumeral0\xintiiadd{#3}{#2};#1;#3;}%

1787 }%

1788 \def\XINT_iiSeqBp:tl:x_b #1;#2;#3;%

1789 {%

1790 \xintiiifCmp{#1}{#2}%

1791 {{#1}\expandafter\XINT_iiSeqBp:tl:x_b\romannumeral0\xintiiadd{#3}{#1};#2;#3;}{{#1}}{}%

1792 }%

1793 \def\XINT_iiSeqBn:tl:x #1;#2;#3{\expandafter\XINT_iiSeqBn:tl:x_a\romannumeral`&&@#3;#2;#1;}%

1794 \def\XINT_iiSeqBn:tl:x_a #1;#2;#3;%

1795 {%

1796 \xintiiifCmp{#1}{#2}%

1797 {{#2}\expandafter\XINT_iiSeqBn:tl:x_b\romannumeral0\xintiiadd{#3}{#2};#1;#3;}{{#2}}{}%

1798 }%

1799 \def\XINT_iiSeqBn:tl:x_b #1;#2;#3;%

1800 {%

1801 \xintiiifCmp{#1}{#2}%

1802 {}{{#1}}{{#1}\expandafter\XINT_iiSeqBn:tl:x_b\romannumeral0\xintiiadd{#3}{#1};#2;#3;}%

1803 }%

27.21. Square brackets [] both as a container and a Python slicer
Refactored at 1.4

The architecture allows to implement separately a «left» and a «right» precedence and this is

crucial.

27.21.1 [...] as «oneple» constructor . 613
27.21.2 [...] brackets and : operator for NumPy-like slicing and item indexing syntax 614
27.21.3 Macro layer implementing indexing and slicing . 616

27.21.1. [...] as «oneple» constructor

In the definition of \XINT_expr_op_obracket the parameter is trash {}. The [is intercepted by

the getnextfork and handled via the \xint_c_ii^v highest precedence trick to get op_obracket ex-

ecuted.

1804 \def\XINT_expr_itself_obracket{obracket}%

1805 \catcode`] 11 \catcode`[11

1806 \def\XINT_expr_defbin_c #1#2#3#4#5#6%

1807 {%

1808 \def #1##1%

1809 {%

1810 \expandafter#3\romannumeral`&&@\XINT_expr_getnext

1811 }%

1812 \def #2##1% op_]

1813 {%

1814 \expanded{\xint_noxpd{\XINT_expr_put_op_first{{##1}}}\expandafter}%

613

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1815 \romannumeral`&&@\XINT_expr_getop

1816 }%

1817 \def #3##1% until_cbracket_a

1818 {%

1819 \xint_UDsignfork

1820 ##1{\expandafter#4\romannumeral`&&@#5}% #5 = op_-xii

1821 -{#4##1}%

1822 \krof

1823 }%

1824 \def #4##1##2% until_cbracket_b

1825 {%

1826 \ifcase ##1\expandafter\XINT_expr_missing_]

1827 \or \expandafter\XINT_expr_missing_]

1828 \or \expandafter#2%

1829 \else

1830 \expandafter #4%

1831 \romannumeral`&&@\csname XINT_#6_op_##2\expandafter\endcsname

1832 \fi

1833 }%

1834 }%

1835 \def\XINT_expr_defbin_b #1%

1836 {%

1837 \expandafter\XINT_expr_defbin_c

1838 \csname XINT_#1_op_obracket\expandafter\endcsname

1839 \csname XINT_#1_op_]\expandafter\endcsname

1840 \csname XINT_#1_until_cbracket_a\expandafter\endcsname

1841 \csname XINT_#1_until_cbracket_b\expandafter\endcsname

1842 \csname XINT_#1_op_-xii\endcsname

1843 {#1}%

1844 }%

1845 \XINT_expr_defbin_b {expr}%

1846 \XINT_expr_defbin_b {flexpr}%

1847 \XINT_expr_defbin_b {iiexpr}%

1848 \def\XINT_expr_missing_]

1849 {\XINT_expandableerror{Ooops, looks like we are missing a]. Aborting!}%

1850 \xint_c_ \XINT_expr_done}%

1851 \let\XINT_expr_precedence_]\xint_c_ii

27.21.2. [...] brackets and : operator for NumPy-like slicing and item indexing syntax

The opening bracket [for the nutple constructor is filtered out by \XINT_expr_getnextfork and

becomes «obracket» which behaves with precedence level 2. For the [..] Python slicer on the other

hand, a real operator [is defined with precedence level 4 (it must be higher than precedence level

of commas) on its right and maximal precedence on its left.

Important: although slicing and indexing shares many rules with Python/NumPy there are some

significant differences: in particular there can not be any out-of-range error generated, slicing

applies also to «oples» and not only to «nutple», and nested lists do not have to have their leaves

at a constant depth. See the user manual.

Currently, NumPy-like nested (basic) slicing is implemented, i.e [a:b, c:d, N, e:f, M] type

syntax with Python rules regarding negative integers. This is parsed as an expression and can

arise from expansion or contain calculations.

Currently stepping, Ellipsis, and simultaneous multi-index extracting are not yet implemented.

There are some subtle things here with possibility of variables been passed by reference.

614

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1852 \def\XINT_expr_defbin_c #1#2#3#4#5#6%

1853 {%

1854 \def #1##1% \XINT_expr_op_[

1855 {%

1856 \expanded{\xint_noxpd{#2{##1}}\expandafter}%

1857 \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext

1858 }%

1859 \def #2##1##2##3##4% \XINT_expr_exec_]

1860 {%

1861 \expandafter\XINT_expr_put_op_first

1862 \expanded

1863 {%

1864 {\XINT:NEhook:x:listsel\XINT_ListSel_top ##1__##4&({##1}\expandafter}%

1865 \expandafter

1866 }%

1867 \romannumeral`&&@\XINT_expr_getop

1868 }%

1869 \def #3##1% \XINT_expr_check-_]

1870 {%

1871 \xint_UDsignfork

1872 ##1{\expandafter#4\romannumeral`&&@#5}%

1873 -{#4##1}%

1874 \krof

1875 }%

1876 \def #4##1##2% \XINT_expr_checkp_]

1877 {%

1878 \ifcase ##1\XINT_expr_missing_]

1879 \or \XINT_expr_missing_]

1880 \or \expandafter##1\expandafter##2%

1881 \else \expandafter#4%

1882 \romannumeral`&&@\csname XINT_#6_op_##2\expandafter\endcsname

1883 \fi

1884 }%

1885 }%

1886 \let\XINT_expr_precedence_[\xint_c_xx

1887 \def\XINT_expr_defbin_b #1%

1888 {%

1889 \expandafter\XINT_expr_defbin_c

1890 \csname XINT_#1_op_[\expandafter\endcsname

1891 \csname XINT_#1_exec_]\expandafter\endcsname

1892 \csname XINT_#1_check-_]\expandafter\endcsname

1893 \csname XINT_#1_checkp_]\expandafter\endcsname

1894 \csname XINT_#1_op_-xii\endcsname

1895 {#1}%

1896 }%

1897 \XINT_expr_defbin_b {expr}%

1898 \XINT_expr_defbin_b {flexpr}%

1899 \XINT_expr_defbin_b {iiexpr}%

1900 \catcode`] 12 \catcode`[12

At 1.4 the getnext, scanint, scanfunc, getop chain got revisited to trigger automatic insertion of

the nil variable if needed, without having in situations like here to define operators to support

«[:» or «:]». And as we want to implement nested slicing à la NumPy, we would have had to handle

615

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

also «:,» for example. Thus here we simply have to define the sole operator «:» and it will be some

sort of inert joiner preparing a slicing spec.

1901 \def\XINT_expr_defbin_c #1#2#3#4#5#6%

1902 {%

1903 \def #1##1% \XINT_expr_op_:

1904 {%

1905 \expanded{\xint_noxpd{#2{##1}}\expandafter}%

1906 \romannumeral`&&@\expandafter#3\romannumeral`&&@\XINT_expr_getnext

1907 }%

1908 \def #2##1##2##3##4% \XINT_expr_exec_:

1909 {%

1910 ##2##3{:##1{0};##4:_}%

1911 }%

1912 \def #3##1% \XINT_expr_check-_:

1913 {\xint_UDsignfork

1914 ##1{\expandafter#4\romannumeral`&&@#5}%

1915 -{#4##1}%

1916 \krof

1917 }%

1918 \def #4##1##2% \XINT_expr_checkp_:

1919 {%

1920 \ifnum ##1>\XINT_expr_precedence_:

1921 \expandafter #4\romannumeral`&&@%

1922 \csname XINT_#6_op_##2\expandafter\endcsname

1923 \else

1924 \expandafter##1\expandafter##2%

1925 \fi

1926 }%

1927 }%

1928 \let\XINT_expr_precedence_: \xint_c_vi

1929 \def\XINT_expr_defbin_b #1%

1930 {%

1931 \expandafter\XINT_expr_defbin_c

1932 \csname XINT_#1_op_:\expandafter\endcsname

1933 \csname XINT_#1_exec_:\expandafter\endcsname

1934 \csname XINT_#1_check-_:\expandafter\endcsname

1935 \csname XINT_#1_checkp_:\expandafter\endcsname

1936 \csname XINT_#1_op_-xii\endcsname {#1}%

1937 }%

1938 \XINT_expr_defbin_b {expr}%

1939 \XINT_expr_defbin_b {flexpr}%

1940 \XINT_expr_defbin_b {iiexpr}%

27.21.3. Macro layer implementing indexing and slicing

xintexpr applies slicing not only to «objects» (which can be passed as arguments to functions) but

also to «oples».

Our «nlists» are not necessarily regular N-dimensional arrays à la NumPy. Leaves can be at

arbitrary depths. If we were handling regular «ndarrays», we could proceed a bit differently.

For the related explanations, refer to the user manual.

Notice that currently the code uses f-expandable (and not using \expanded) macros \xintApply,

\xintApplyUnbraced, \xintKeep, \xintTrim, \xintNthOne from xinttools.

616

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

But the whole expansion happens inside an \expanded context, so possibly some gain could be

achieved with x-expandable variants (xintexpr < 1.4 had an \xintKeep:x:csv).

I coded \xintApply:x and \xintApplyUnbraced:x in xinttools, Brief testing indicated they were

perhaps a bit better for 5x5x5x5 and 15x15x15x15 arrays of 8 digits numbers and for 30x30x15 with

16 digits numbers: say 1% gain... this seems to raise to between 4% and 5% for 400x400 array of 1

digit...

Currently sticking with old macros.

1941 \def\XINT_ListSel_deeper #1%

1942 {%

1943 \if :#1\xint_dothis\XINT_ListSel_slice_next\fi

1944 \xint_orthat {\XINT_ListSel_extract_next {#1}}%

1945 }%

1946 \def\XINT_ListSel_slice_next #1(%

1947 {%

1948 \xintApply{\XINT_ListSel_recurse{:#1}}%

1949 }%

1950 \def\XINT_ListSel_extract_next #1(%

1951 {%

1952 \xintApplyUnbraced{\XINT_ListSel_recurse{#1}}%

1953 }%

1954 \def\XINT_ListSel_recurse #1#2%

1955 {%

1956 \XINT_ListSel_check #2__#1({#2}\expandafter\empty\empty

1957 }%

1958 \def\XINT_ListSel_check{\expandafter\XINT_ListSel_check_a \string}%

1959 \def\XINT_ListSel_check_a #1%

1960 {%

1961 \if #1\bgroup\xint_dothis\XINT_ListSel_check_is_ok\fi

1962 \xint_orthat\XINT_ListSel_check_leaf

1963 }%

1964 \def\XINT_ListSel_check_leaf #1\expandafter{\expandafter}%

1965 \def\XINT_ListSel_check_is_ok

1966 {%

1967 \expandafter\XINT_ListSel_check_is_ok_a\expandafter{\string}%

1968 }%

1969 \def\XINT_ListSel_check_is_ok_a #1__#2%

1970 {%

1971 \if :#2\xint_dothis{\XINT_ListSel_slice}\fi

1972 \xint_orthat {\XINT_ListSel_nthone {#2}}%

1973 }%

1974 \def\XINT_ListSel_top #1#2%

1975 {%

1976 \if _\noexpand#2%

1977 \expandafter\XINT_ListSel_top_one_or_none\string#1.\else

1978 \expandafter\XINT_ListSel_top_at_least_two\fi

1979 }%

1980 \def\XINT_ListSel_top_at_least_two #1__{\XINT_ListSel_top_ople}%

1981 \def\XINT_ListSel_top_one_or_none #1%

1982 {%

1983 \if #1_\xint_dothis\XINT_ListSel_top_nil\fi

1984 \if #1.\xint_dothis\XINT_ListSel_top_nutple_a\fi

1985 \if #1\bgroup\xint_dothis\XINT_ListSel_top_nutple\fi

617

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

1986 \xint_orthat\XINT_ListSel_top_number

1987 }%

1988 \def\XINT_ListSel_top_nil #1\expandafter#2\expandafter{\fi\expandafter}%

1989 \def\XINT_ListSel_top_nutple

1990 {%

1991 \expandafter\XINT_ListSel_top_nutple_a\expandafter{\string}%

1992 }%

1993 \def\XINT_ListSel_top_nutple_a #1_#2#3(#4%

1994 {%

1995 \fi\if :#2\xint_dothis{{\XINT_ListSel_slice #3(#4}}\fi

1996 \xint_orthat {\XINT_ListSel_nthone {#2}#3(#4}%

1997 }%

1998 \def\XINT_ListSel_top_number #1_{\fi\XINT_ListSel_top_ople}%

1999 \def\XINT_ListSel_top_ople #1%

2000 {%

2001 \if :#1\xint_dothis\XINT_ListSel_slice\fi

2002 \xint_orthat {\XINT_ListSel_nthone {#1}}%

2003 }%

2004 \def\XINT_ListSel_slice #1%

2005 {%

2006 \expandafter\XINT_ListSel_slice_a \expandafter{\romannumeral0\xintnum{#1}}%

2007 }%

2008 \def\XINT_ListSel_slice_a #1#2;#3#4%

2009 {%

2010 \if _#4\expandafter\XINT_ListSel_s_b

2011 \else\expandafter\XINT_ListSel_slice_b\fi

2012 #1;#3%

2013 }%

2014 \def\XINT_ListSel_s_b #1#2;#3#4%

2015 {%

2016 \if \expandafter\XINT_ListSel_s_last\fi

2017 \XINT_ListSel_s_c #1{#1#2}{#4}%

2018 }%

2019 \def\XINT_ListSel_s_last\XINT_ListSel_s_c #1#2#3(#4%

2020 {%

2021 \if-#1\expandafter\xintKeep\else\expandafter\xintTrim\fi {#2}{#4}%

2022 }%

2023 \def\XINT_ListSel_s_c #1#2#3(#4%

2024 {%

2025 \expandafter\XINT_ListSel_deeper

2026 \expanded{\xint_noxpd{#3}(\expandafter}\expandafter{%

2027 \romannumeral0%

2028 \if-#1\expandafter\xintkeep\else\expandafter\xinttrim\fi {#2}{#4}}%

2029 }%

\xintNthElt from xinttools (knowingly) strips one level of braces when fetching kth «item» from

{v1}...{vN}. If we expand {\xintNthElt{k}{{v1}...{vN}}} (notice external braces):

if k is out of range we end up with {}

if k is in range and the kth braced item was {} we end up with {}

if k is in range and the kth braced item was {17} we end up with {17}

Problem is that individual numbers such as 17 are stored {{17}}. So we must have one more brace

pair and in the first two cases we end up with {{}}. But in the first case we should end up with

the empty ople {}, not the empty bracketed ople {{}}.

618

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

I have thus added \xintNthOne to xinttools which does not strip brace pair from an extracted

item.

Attention: \XINT_nthonepy_a does no expansion on second argument. But here arguments are ei-

ther numerical or already expanded. Normally.

2030 \def\XINT_ListSel_nthone #1#2%

2031 {%

2032 \if \expandafter\XINT_ListSel_nthone_last\fi

2033 \XINT_ListSel_nthone_a {#1}{#2}%

2034 }%

2035 \def\XINT_ListSel_nthone_a #1#2(#3%

2036 {%

2037 \expandafter\XINT_ListSel_deeper

2038 \expanded{\xint_noxpd{#2}(\expandafter}\expandafter{%

2039 \romannumeral0\expandafter\XINT_nthonepy_a\the\numexpr\xintNum{#1}.{#3}}%

2040 }%

2041 \def\XINT_ListSel_nthone_last\XINT_ListSel_nthone_a #1#2(%#3%

2042 {%

2043 \romannumeral0\expandafter\XINT_nthonepy_a\the\numexpr\xintNum{#1}.%{#3}

2044 }%

The macros here are basically f-expandable and use the f-expandable \xintKeep and \xintTrim.

Prior to xint 1.4, there was here an x-expandable \xintKeep:x:csv dealing with comma separated

items, for time being we make do with our f-expandable toolkit.

2045 \def\XINT_ListSel_slice_b #1;#2_#3%

2046 {%

2047 \if \expandafter\XINT_ListSel_slice_last\fi

2048 \expandafter\XINT_ListSel_slice_c \expandafter{\romannumeral0\xintnum{#2}};#1;{#3}%

2049 }%

2050 \def\XINT_ListSel_slice_last\expandafter\XINT_ListSel_slice_c #1;#2;#3(%#4

2051 {%

2052 \expandafter\XINT_ListSel_slice_last_c #1;#2;%{#4}

2053 }%

Modified at 1.4n (2025/09/05). Compatibility with LuaMetaTEX regarding ; not usable as \numexpr

delimiter. Fortunately I had mostly used \xint: or a dot in the past throughout the code base,

so not many locations needed adjustments. Here I simpy replaced all semi-colons by fullstops

starting here with how \XINT_ListSel_slice_d receives arguments. Fortuntely \xint_gob_til_sc

was not used around here.

2054 \def\XINT_ListSel_slice_last_c #1;#2;#3%

2055 {%

2056 \romannumeral0\XINT_ListSel_slice_d #2.#1.{#3}%

2057 }%

2058 \def\XINT_ListSel_slice_c #1;#2;#3(#4%

2059 {%

2060 \expandafter\XINT_ListSel_deeper

2061 \expanded{\xint_noxpd{#3}(\expandafter}\expandafter{%

2062 \romannumeral0\XINT_ListSel_slice_d #2.#1.{#4}}%

2063 }%

2064 \def\XINT_ListSel_slice_d #1#2.#3#4.%

2065 {%

2066 \xint_UDsignsfork

2067 #1#3\XINT_ListSel_N:N

2068 #1-\XINT_ListSel_N:P

619

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2069 -#3\XINT_ListSel_P:N

2070 --\XINT_ListSel_P:P

2071 \krof #1#2.#3#4.%

2072 }%

2073 \def\XINT_ListSel_P:P #1.#2.#3%

2074 {%

2075 \unless\ifnum #1<#2 \expandafter\xint_gob_andstop_iii\fi

2076 \xintkeep{#2-#1}{\xintTrim{#1}{#3}}%

2077 }%

2078 \def\XINT_ListSel_N:N #1.#2.#3%

2079 {%

2080 \expandafter\XINT_ListSel_N:N_a

2081 \the\numexpr #2-#1\expandafter.\the\numexpr#1+\xintLength{#3}.{#3}%

2082 }%

2083 \def\XINT_ListSel_N:N_a #1.#2.#3%

2084 {%

2085 \unless\ifnum #1>\xint_c_ \expandafter\xint_gob_andstop_iii\fi

2086 \xintkeep{#1}{\xintTrim{\ifnum#2<\xint_c_\xint_c_\else#2\fi}{#3}}%

2087 }%

2088 \def\XINT_ListSel_N:P #1.#2.#3%

2089 {%

2090 \expandafter\XINT_ListSel_N:P_a

2091 \the\numexpr #1+\xintLength{#3}.#2.{#3}%

2092 }%

2093 \def\XINT_ListSel_N:P_a #1#2.%

2094 {\if -#1\expandafter\XINT_ListSel_O:P\fi\XINT_ListSel_P:P #1#2.}%

2095 \def\XINT_ListSel_O:P\XINT_ListSel_P:P #1.{\XINT_ListSel_P:P 0.}%

2096 \def\XINT_ListSel_P:N #1.#2.#3%

2097 {%

2098 \expandafter\XINT_ListSel_P:N_a

2099 \the\numexpr #2+\xintLength{#3}.#1.{#3}%

2100 }%

2101 \def\XINT_ListSel_P:N_a #1#2.#3.%

2102 {\if -#1\expandafter\XINT_ListSel_P:O\fi\XINT_ListSel_P:P #3.#1#2.}%

2103 \def\XINT_ListSel_P:O\XINT_ListSel_P:P #1.#2.{\XINT_ListSel_P:P #1.0.}%

27.22. Support for raw A/B[N]
Releases earlier than 1.1 required the use of braces around A/B[N] input. The [N] is now imple-

mented directly. *BUT* this uses a delimited macro! thus N is not allowed to be itself an ex-

pression (I could add it...). \xintE, \xintiiE, and \XINTinFloatE all put #2 in a \numexpr. But

attention to the fact that \numexpr stops at spaces separating digits: \the\numexpr 3 + 7 9\relax

gives 109\relax !! Hence we have to be careful.

\numexpr will not handle catcode 11 digits, but adding a \detokenize will suddenly make illicit

for N to rely on macro expansion.

At 1.4, [is already overloaded and it is not easy to support this. We do this by a kludge

maintaining more or less former (very not efficient) way but using $ sign which is free for time

being. No, finally I use the null character, should be safe enough! (I hesitated about using R

with catcode 12).

As for ? operator we needed to hack into \XINT_expr_getop_b for intercepting that pseudo oper-

ator. See also \XINT_expr_scanint_c (\XINT_expr_rawxintfrac).

2104 \catcode0 11

620

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2105 \let\XINT_expr_precedence_&&@ \xint_c_xiv

2106 \def\XINT_expr_op_&&@ #1#2]%

2107 {%

2108 \expandafter\XINT_expr_put_op_first

2109 \expanded{{{\xintE#1{\xint_zapspaces #2 \xint_gobble_i}}}%

2110 \expandafter}\romannumeral`&&@\XINT_expr_getop

2111 }%

2112 \def\XINT_iiexpr_op_&&@ #1#2]%

2113 {%

2114 \expandafter\XINT_expr_put_op_first

2115 \expanded{{{\xintiiE#1{\xint_zapspaces #2 \xint_gobble_i}}}%

2116 \expandafter}\romannumeral`&&@\XINT_expr_getop

2117 }%

2118 \def\XINT_flexpr_op_&&@ #1#2]%

2119 {%

2120 \expandafter\XINT_expr_put_op_first

2121 \expanded{{{\XINTinFloatE#1{\xint_zapspaces #2 \xint_gobble_i}}}%

2122 \expandafter}\romannumeral`&&@\XINT_expr_getop

2123 }%

2124 \catcode0 12

27.23. ? as two-way and ?? as three-way «short-circuit» conditionals
Comments undergoing reconstruction.

2125 \let\XINT_expr_precedence_? \xint_c_xx

2126 \catcode`- 11

2127 \def\XINT_expr_op_? {\XINT_expr_op__? \XINT_expr_op_-xii}%

2128 \def\XINT_flexpr_op_?{\XINT_expr_op__? \XINT_flexpr_op_-xii}%

2129 \def\XINT_iiexpr_op_?{\XINT_expr_op__? \XINT_iiexpr_op_-xii}%

2130 \catcode`- 12

2131 \def\XINT_expr_op__? #1#2#3%

2132 {\XINT_expr_op__?_a #3!\xint_bye\XINT_expr_exec_? {#1}{#2}{#3}}%

2133 \def\XINT_expr_op__?_a #1{\expandafter\XINT_expr_op__?_b\detokenize{#1}}%

2134 \def\XINT_expr_op__?_b #1%

2135 {\if ?#1\expandafter\XINT_expr_op__?_c\else\expandafter\xint_bye\fi }%

2136 \def\XINT_expr_op__?_c #1{\xint_gob_til_! #1\XINT_expr_op_?? !\xint_bye}%

2137 \def\XINT_expr_op_?? !\xint_bye\xint_bye\XINT_expr_exec_?{\XINT_expr_exec_??}%

2138 \catcode`- 11

2139 \def\XINT_expr_exec_? #1#2%

2140 {%

2141 \expandafter\XINT_expr_check-_after?\expandafter#1%

2142 \romannumeral`&&@\expandafter\XINT_expr_getnext\romannumeral0\xintiiifnotzero#2%

2143 }%

2144 \def\XINT_expr_exec_?? #1#2#3%

2145 {%

2146 \expandafter\XINT_expr_check-_after?\expandafter#1%

2147 \romannumeral`&&@\expandafter\XINT_expr_getnext\romannumeral0\xintiiifsgn#2%

2148 }%

2149 \def\XINT_expr_check-_after? #1{%

2150 \def\XINT_expr_check-_after? ##1##2%

2151 {%

2152 \xint_UDsignfork

621

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2153 ##2{##1}%

2154 #1{##2}%

2155 \krof

2156 }}\expandafter\XINT_expr_check-_after?\string -%

2157 \catcode`- 12

27.24. ! as postfix factorial operator
2158 \let\XINT_expr_precedence_! \xint_c_xx

2159 \def\XINT_expr_op_! #1%

2160 {%

2161 \expandafter\XINT_expr_put_op_first

2162 \expanded{{\romannumeral`&&@\XINT:NEhook:f:one:from:one

2163 {\romannumeral`&&@\xintFac#1}}\expandafter}\romannumeral`&&@\XINT_expr_getop

2164 }%

2165 \def\XINT_flexpr_op_! #1%

2166 {%

2167 \expandafter\XINT_expr_put_op_first

2168 \expanded{{\romannumeral`&&@\XINT:NEhook:f:one:from:one

2169 {\romannumeral`&&@\XINTinFloatFacdigits#1}}\expandafter}%

2170 \romannumeral`&&@\XINT_expr_getop

2171 }%

2172 \def\XINT_iiexpr_op_! #1%

2173 {%

2174 \expandafter\XINT_expr_put_op_first

2175 \expanded{{\romannumeral`&&@\XINT:NEhook:f:one:from:one

2176 {\romannumeral`&&@\xintiiFac#1}}\expandafter}\romannumeral`&&@\XINT_expr_getop

2177 }%

At 1.4g, fix for input "x! == y" via a fake operator !==. The ! is of catcode 11 but this does

not matter here. The definition of \XINT_expr_itself_!== is required by the functioning of the

scanop macros.

We don't have to worry about "x! = y" as the single-character Boolean comparison = operator

has been removed from syntax. Fixing it would have required obeying space tokens when parsing

operators. For "x! == y" case, obeying space tokens would not solve "x!==y" input case anyhow.

2178 \expandafter

2179 \def\csname XINT_expr_precedence_!==\expandafter\endcsname

2180 \csname XINT_expr_itself_!==\endcsname {\XINT_expr_precedence_! !==}%

2181 \expandafter\def\csname XINT_expr_itself_!==\endcsname{!==}%

27.25. User defined variables
27.25.1 \xintdefvar, \xintdefiivar, \xintdeffloatvar . 622
27.25.2 \xintunassignvar . 626

27.25.1. \xintdefvar, \xintdefiivar, \xintdeffloatvar

Modified at 1.1 (2014/10/28).

Modified at 1.2p (2017/12/05). Extends \xintdefvar et al. to accept simultaneous assignments to

multiple variables.

Modified at 1.3c (2018/06/17). Use \xintexprSafeCatcodes (to palliate issue with active semi-

colon from Babel+French if in body of a LATEX document).

622

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

And allow usage with both syntaxes name:=expr; or name=expr;. Also the colon may have catcode

11, 12, or 13 with no issue. Variable names may contain letters, digits, underscores, and must

not start with a digit. Names starting with @ or an underscore are reserved.

• currently @, @1, @2, @3, and @4 are reserved because they have special meanings for use in

iterations,

• @@, @@@, @@@@ are also reserved but are technically functions, not variables: a user may

possibly define @@ as a variable name, but if it is followed by parentheses, the function

interpretation will be applied (rather than the variable interpretation followed by a tacit

multiplication),

• since 1.2l, the underscore _ may be used as separator of digits in long numbers. Hence a vari-

able whose name starts with _ will not play well with the mechanism of tacit multiplication of

variables by numbers: the underscore will be removed from input stream by the number scanner,

thus creating an undefined or wrong variable name, or none at all if the variable name was an

initial _ followed by digits.

Note that the optional argument [P] as usable with \xintfloatexpr is **not** supported by

\xintdeffloatvar. One must do \xintdeffloatvar foo = \xintfloatexpr[16] blabla \relax; to

achieve the effect.

Modified at 1.4 (2020/01/31). The expression will be fetched up to final semi-colon in a manner

allowing inner semi-colons as used in the iter(), rseq(), subsm(), subsn() etc... syntax. They

don't need to be hidden within a braced pair anymore.

Modified at 1.4 (2020/01/31). Automatic unpacking in case of simultaneous assignments if the

expression evaluates to a nutple.

Notes (added much later on 2021/06/10 during preparation of 1.4i):

1. the code did not try to intercept illicit syntax such as \xintdefvar a,b,c:=<number>;. It

blindly «unpacked» the number handling it as if it was a nutple. The extended functionality

added at 1.4i requires to check for such a situation, as the syntax is not illicit anymore.

2. the code was broken in case the expression to evaluate was an ople of length 10 or more, due

to a silly mistake at some point during 1.4 development which replaced some \ifnum by an \i ⤸
f, perhaps due to mental confusion with the fact that functions can have at most 9 arguments,

but here the code is about defining variables. Anyway this got fixed as corollary to the 1.4i

extension.

Modified at 1.4c (2021/02/20). One year later I realized I had broken tacit multiplication for

situations such as variable(1+2). As hinted at in comments above before 1.4 release I had been

doing some deep refactoring here, which I cancelled almost completely in the end... but not

quite, and as a result there was a problem that some macro holding braced contents was expanded

to late, once it was in old core routines of xintfrac not expecting other things than digits. I

do an emergency bugfix here with some \expandafter's but I don't have the code in my brain at this

time, and don't have the luxury now to invest into it. Let's hope this does not induce breakage

elsewhere, and that the February 2020 1.4 did not break something else.

Modified at 1.4e (2021/05/05). Modifies \xintdeffloatvar to round to the prevailing precision

(formerly, any operation would induce rounding, but in case of things such as \xintdeffloatvar

foo:=\xintexpr 1/100!\relax; there was no automatic rounding. One could use 0+ syntax to trig-

ger it, and for oples, some trick like \xintfloatexpr[\XINTdigits]...\relax extra wrapper.

Modified at 1.4g (2021/05/25). The \expandafter\expandafter\expandafter et al. chain which was

kept by \XINT_expr_defvar_one_b for expanding only at time of use the \XINT_expr_var_foo in

\XINT_expr_onliteral_foo were senseless overhead added at 1.4c. This is used only for real

variables, not dummy variables or fake variables and it is simpler to have the \XINT_expr_var_f ⤸
oo pre-expanded. So let's use some \edef here.

623

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

The \XINT_expr_onliteral_foo is expanded as result of action of \XINT_expr_op_` (or \XINT_flexp ⤸
r_op_`, \XINT_iiexpr_op_`) which itself was triggered consuming already an \XINT_expr_put_op_fir ⤸
st, so its expansion has to produce tokens as expected after \XINT_expr_put_op_first: <precedence

token><op token>{expanded value}.

Modified at 1.4i (2021/06/11). Implement extended notion of simultaneous assignments: if there

are more variables than values, define the extra variables to be nil. If there are less vari-

ables than values let the last variable be defined as the ople concatenating all non reclaimed

values.

If there are at least two variables, the right hand side, if it turns out to be a nutple, is (as

since 1.4) automatically unpacked, then the above rules apply.

Modified at 1.4i (2021/06/11). Fix the long-standing «seq renaming bug» via a change here of the

name of auxiliary macro. Previously «onliteral_<varname>» now «var*_<varname>». I hesitated

with using «var_varname*» rather.

Hesitated adding \XINT_expr_letvar_one (motivation: case of simultaneous assignments leading

to defining «nil» variables). Finally, no.

2182 \catcode`* 11

2183 \def\XINT_expr_defvar_one #1#2%

2184 {%

2185 \XINT_global

2186 \expandafter\edef\csname XINT_expr_varvalue_#1\endcsname {#2}%

2187 \XINT_expr_defvar_one_b {#1}%

2188 }%

2189 \def\XINT_expr_defvar_one_b #1%

2190 {%

2191 \XINT_global

2192 \expandafter\edef\csname XINT_expr_var_#1\endcsname

2193 {{\expandafter\noexpand\csname XINT_expr_varvalue_#1\endcsname}}%

2194 \XINT_global

2195 \expandafter\edef\csname XINT_expr_var*_#1\endcsname

2196 {\XINT_expr_prec_tacit *\csname XINT_expr_var_#1\endcsname(}%

2197 \ifxintverbose\xintMessage{xintexpr}{Info}%

2198 {Variable #1 \ifxintglobaldefs globally \fi

2199 defined with value \csname XINT_expr_varvalue_#1\endcsname.}%

2200 \fi

2201 }%

2202 \catcode`* 12

2203 \catcode`~ 13

2204 \catcode`: 12

2205 \def\XINT_expr_defvar_getname #1:#2~%

2206 {%

2207 \endgroup

2208 \def\XINT_defvar_tmpa{#1}\edef\XINT_defvar_tmpc{\xintCSVLength{#1}}%

2209 }%

2210 \def\XINT_expr_defvar #1#2%

2211 {%

2212 \def\XINT_defvar_tmpa{#2}%

2213 \expandafter\XINT_expr_defvar_a\expanded{\xint_noxpd{{#1}}\expandafter}%

2214 \romannumeral\XINT_expr_fetch_to_semicolon

2215 }%

2216 \def\XINT_expr_defvar_a #1#2%

2217 {%

2218 \xintexprRestoreCatcodes

624

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

Maybe SafeCatcodes was without effect because the colon and the rest are from some earlier macro

definition. Give a safe definition to active colon (even if in math mode with a math active

colon..).

The \XINT_expr_defvar_getname closes the group opened here.

2219 \begingroup\lccode`~`: \lowercase{\let~}\empty

2220 \edef\XINT_defvar_tmpa{\XINT_defvar_tmpa}%

2221 \edef\XINT_defvar_tmpa{\xint_zapspaces_o\XINT_defvar_tmpa}%

2222 \expandafter\XINT_expr_defvar_getname

2223 \detokenize\expandafter{\XINT_defvar_tmpa}:~%

2224 \ifcase\XINT_defvar_tmpc\space

2225 \xintMessage {xintexpr}{Error}

2226 {Aborting: not allowed to declare variable with empty name.}%

2227 \or

2228 \XINT_global

2229 \expandafter

2230 \edef\csname XINT_expr_varvalue_\XINT_defvar_tmpa\endcsname{#1#2\relax}%

2231 \XINT_expr_defvar_one_b\XINT_defvar_tmpa

2232 \else

2233 \edef\XINT_defvar_tmpb{#1#2\relax}%

2234 \edef\XINT_defvar_tmpd{\expandafter\xintLength\expandafter{\XINT_defvar_tmpb}}%

2235 \ifnum\XINT_defvar_tmpd=\xint_c_i

2236 \oodef\XINT_defvar_tmpb{\expandafter\xint_firstofone\XINT_defvar_tmpb}%

2237 \if0\expandafter\expandafter\expandafter\XINT_defvar_checkifnutple

2238 \expandafter\string\XINT_defvar_tmpb _\xint_bye

2239 \odef\XINT_defvar_tmpb{\expandafter{\XINT_defvar_tmpb}}%

2240 \else

2241 \edef\XINT_defvar_tmpd{\expandafter\xintLength\expandafter{\XINT_defvar_tmpb}}%

2242 \fi

2243 \fi

2244 \xintAssignArray\xintCSVtoList\XINT_defvar_tmpa\to\XINT_defvar_tmpvar

2245 \def\XINT_defvar_tmpe{1}%

2246 \expandafter\XINT_expr_defvar_multiple\XINT_defvar_tmpb\relax

2247 \fi

2248 }%

2249 \def\XINT_defvar_checkifnutple#1%

2250 {%

2251 \if#1_1\fi

2252 \if#1\bgroup1\fi

2253 0\xint_bye

2254 }%

2255 \def\XINT_expr_defvar_multiple

2256 {%

2257 \ifnum\XINT_defvar_tmpe<\XINT_defvar_tmpc\space

2258 \expandafter\XINT_expr_defvar_multiple_one

2259 \else

2260 \expandafter\XINT_expr_defvar_multiple_last\expandafter\empty

2261 \fi

2262 }%

2263 \def\XINT_expr_defvar_multiple_one

2264 {%

2265 \ifnum\XINT_defvar_tmpe>\XINT_defvar_tmpd\space

2266 \expandafter\XINT_expr_defvar_one

625

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2267 \csname XINT_defvar_tmpvar\XINT_defvar_tmpe\endcsname{}%

2268 \edef\XINT_defvar_tmpe{\the\numexpr\XINT_defvar_tmpe+1}%

2269 \expandafter\XINT_expr_defvar_multiple

2270 \else

2271 \expandafter\XINT_expr_defvar_multiple_one_a

2272 \fi

2273 }%

2274 \def\XINT_expr_defvar_multiple_one_a #1%

2275 {%

2276 \expandafter\XINT_expr_defvar_one

2277 \csname XINT_defvar_tmpvar\XINT_defvar_tmpe\endcsname{{#1}}%

2278 \edef\XINT_defvar_tmpe{\the\numexpr\XINT_defvar_tmpe+1}%

2279 \XINT_expr_defvar_multiple

2280 }%

2281 \def\XINT_expr_defvar_multiple_last #1\relax

2282 {%

2283 \expandafter\XINT_expr_defvar_one

2284 \csname XINT_defvar_tmpvar\XINT_defvar_tmpe\endcsname{#1}%

2285 \xintRelaxArray\XINT_defvar_tmpvar

2286 \let\XINT_defvar_tmpa\empty

2287 \let\XINT_defvar_tmpb\empty

2288 \let\XINT_defvar_tmpc\empty

2289 \let\XINT_defvar_tmpd\empty

2290 \let\XINT_defvar_tmpe\empty

2291 }%

2292 \catcode`~ 3

2293 \catcode`: 11

This SafeCatcodes is mainly in the hope that semi-colon ending the expression can still be sani-

tized.

Pre 1.4e definition:

\def\xintdeffloatvar {\xintexprSafeCatcodes\xintdeffloatvar_a}

\def\xintdeffloatvar_a #1={\XINT_expr_defvar\xintthebarefloateval{#1}}

This would keep the value (or values) with extra digits, now. If this is actually wanted one can

use \xintdefvar foo:=\xintfloatexpr...\relax; syntax, but recalling that only operations trigger

the rounding inside \xintfloatexpr. Some tricks are needed for no operations case if multiple or

nested values. But for a single one, one can use simply the float() function.

2294 \def\xintdefvar {\xintexprSafeCatcodes\xintdefvar_a}%

2295 \def\xintdefvar_a#1={\XINT_expr_defvar\xintthebareeval{#1}}%

2296 \def\xintdefiivar {\xintexprSafeCatcodes\xintdefiivar_a}%

2297 \def\xintdefiivar_a#1={\XINT_expr_defvar\xintthebareiieval{#1}}%

2298 \def\xintdeffloatvar {\xintexprSafeCatcodes\xintdeffloatvar_a}%

2299 \def\xintdeffloatvar_a #1={\XINT_expr_defvar\xintthebareroundedfloateval{#1}}%

27.25.2. \xintunassignvar

Modified at 1.2e (2015/11/22).

Modified at 1.3d (2019/01/06). Embarrassingly I had for a long time a misunderstanding of \ifcs ⤸
name (let's blame its documentation) and I was not aware that it chooses FALSE branch if tested

control sequence has been \let to \undefined... So earlier version didn't do the right thing

(and had another bug: failure to protect \.=0 from expansion).

The \ifcsname tests are done in \XINT_expr_op__ and \XINT_expr_op_`.

Modified at 1.4i (2021/06/11). Track s/onliteral/var*/ change in macro names.

626

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2300 \def\xintunassignvar #1{%

2301 \edef\XINT_unvar_tmpa{#1}%

2302 \edef\XINT_unvar_tmpa {\xint_zapspaces_o\XINT_unvar_tmpa}%

2303 \ifcsname XINT_expr_var_\XINT_unvar_tmpa\endcsname

2304 \ifnum\expandafter\xintLength\expandafter{\XINT_unvar_tmpa}=\@ne

2305 \expandafter\xintnewdummy\XINT_unvar_tmpa

2306 \else

2307 \XINT_global\expandafter

2308 \let\csname XINT_expr_varvalue_\XINT_unvar_tmpa\endcsname\xint_undefined

2309 \XINT_global\expandafter

2310 \let\csname XINT_expr_var_\XINT_unvar_tmpa\endcsname\xint_undefined

2311 \XINT_global\expandafter

2312 \let\csname XINT_expr_var*_\XINT_unvar_tmpa\endcsname\xint_undefined

2313 \ifxintverbose\xintMessage {xintexpr}{Info}%

2314 {Variable \XINT_unvar_tmpa\space has been

2315 \ifxintglobaldefs globally \fi ``unassigned''.}%

2316 \fi

2317 \fi

2318 \else

2319 \xintMessage {xintexpr}{Warning}

2320 {Error: there was no such variable \XINT_unvar_tmpa\space to unassign.}%

2321 \fi

2322 }%

27.26. Support for dummy variables
27.26.1 \xintnewdummy . 627
27.26.2 \xintensuredummy, \xintrestorevariable . 628
27.26.3 Checking (without expansion) that a symbolic expression contains correctly nested paren-

theses . 629
27.26.4 Fetching balanced expressions E1, E2 and a variable name Name from E1, Name=E2) . 630
27.26.5 Fetching a balanced expression delimited by a semi-colon 630
27.26.6 Low-level support for omit and abort keywords, the break() function, the n++ construct

and the semi-colon as used in the syntax of seq(), add(), mul(), iter(), rseq(), iterr(),
rrseq(), subsm(), subsn(), ndseq(), ndmap() . 631
The n++ construct . 631
The break() function . 631
The omit and abort keywords . 631
The semi-colon . 632

27.26.7 Reserved dummy variables @, @1, @2, @3, @4, @@, @@(1), . . . , @@@, @@@(1), . . . for
recursions . 632

27.26.1. \xintnewdummy

Comments under reconstruction.

1.4 adds multi-letter names as usable dummy variables!

Modified at 1.4i (2021/06/11). s/onliteral/var*/ to fix the «seq renaming bug».

2323 \catcode`* 11

2324 \def\XINT_expr_makedummy #1%

2325 {%

2326 \edef\XINT_tmpa{\xint_zapspaces #1 \xint_gobble_i}%

2327 \ifcsname XINT_expr_var_\XINT_tmpa\endcsname

627

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2328 \XINT_global

2329 \expandafter\let\csname XINT_expr_var_\XINT_tmpa/old\expandafter\endcsname

2330 \csname XINT_expr_var_\XINT_tmpa\expandafter\endcsname

2331 \fi

2332 \ifcsname XINT_expr_var*_\XINT_tmpa\endcsname

2333 \XINT_global

2334 \expandafter\let\csname XINT_expr_var*_\XINT_tmpa/old\expandafter\endcsname

2335 \csname XINT_expr_var*_\XINT_tmpa\expandafter\endcsname

2336 \fi

2337 \expandafter\XINT_global

2338 \expanded

2339 {\edef\expandafter\noexpand

2340 \csname XINT_expr_var_\XINT_tmpa\endcsname ##1\relax !\XINT_tmpa##2}%

2341 {{##2}##1\relax !\XINT_tmpa{##2}}%

2342 \expandafter\XINT_global

2343 \expanded

2344 {\edef\expandafter\noexpand

2345 \csname XINT_expr_var*_\XINT_tmpa\endcsname ##1\relax !\XINT_tmpa##2}%

2346 {\XINT_expr_prec_tacit *{##2}(##1\relax !\XINT_tmpa{##2}}%)

2347 }%

2348 \xintApplyUnbraced \XINT_expr_makedummy {abcdefghijklmnopqrstuvwxyz}%

2349 \xintApplyUnbraced \XINT_expr_makedummy {ABCDEFGHIJKLMNOPQRSTUVWXYZ}%

2350 \def\xintnewdummy #1{%

2351 \XINT_expr_makedummy{#1}%

2352 \ifxintverbose\xintMessage {xintexpr}{Info}%

2353 {\XINT_tmpa\space now

2354 \ifxintglobaldefs globally \fi usable as dummy variable.}%

2355 \fi

2356 }%

2357 \catcode`* 12

The nil variable was need in xint < 1.4 (with some other meaning) in places the syntax could not

allow emptiness, such as ,,, and other things, but at 1.4 meaning as changed.

The other variables are new with 1.4. Don't use the None, it is tentative, and may be input as

[].

Refactored at 1.4i to define them as really genuine variables, i.e. also with associated var*
macros involved in tacit multiplication (even though it will be broken with nil, and with None in

\xintiiexpr). No real reason, because \XINT_expr_op__ managed them fine even in absence of var*
macros.

2358 \XINT_expr_defvar_one{nil}{}%

2359 \XINT_expr_defvar_one{None}{{}}% ? tentative

2360 \XINT_expr_defvar_one{false}{{0}}% Maple, TeX

2361 \XINT_expr_defvar_one{true}{{1}}%

2362 \XINT_expr_defvar_one{False}{{0}}% Python

2363 \XINT_expr_defvar_one{True}{{1}}%

27.26.2. \xintensuredummy, \xintrestorevariable

1.3e \xintensuredummy differs from \xintnewdummy only in the informational message... Attention

that this is not meant to be nested.

1.4 fixes that the message mentioned non-existent \xintrestoredummy (real name was \xintrest ⤸
orelettervar and renames the latter to \xintrestorevariable as it applies also to multi-letter

names.

628

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2364 \def\xintensuredummy #1{%

2365 \XINT_expr_makedummy{#1}%

2366 \ifxintverbose\xintMessage {xintexpr}{Info}%

2367 {\XINT_tmpa\space now

2368 \ifxintglobaldefs globally \fi usable as dummy variable.&&J

2369 Issue \string\xintrestorevariable{\XINT_tmpa} to restore former meaning.}%

2370 \fi

2371 }%

2372 \def\xintrestorevariablesilently #1{%

2373 \edef\XINT_tmpa{\xint_zapspaces #1 \xint_gobble_i}%

2374 \ifcsname XINT_expr_var_\XINT_tmpa/old\endcsname

2375 \XINT_global

2376 \expandafter\let\csname XINT_expr_var_\XINT_tmpa\expandafter\endcsname

2377 \csname XINT_expr_var_\XINT_tmpa/old\expandafter\endcsname

2378 \fi

2379 \ifcsname XINT_expr_var*_\XINT_tmpa/old\endcsname

2380 \XINT_global

2381 \expandafter\let\csname XINT_expr_var*_\XINT_tmpa\expandafter\endcsname

2382 \csname XINT_expr_var*_\XINT_tmpa/old\expandafter\endcsname

2383 \fi

2384 }%

2385 \def\xintrestorevariable #1{%

2386 \xintrestorevariablesilently {#1}%

2387 \ifxintverbose\xintMessage {xintexpr}{Info}%

2388 {\XINT_tmpa\space

2389 \ifxintglobaldefs globally \fi restored to its earlier status, if any.}%

2390 \fi

2391 }%

27.26.3. Checking (without expansion) that a symbolic expression contains correctly nested
parentheses

Expands to \xint_c_mone in case a closing) had no opening (matching it, to \@ne if opening (had

no closing) matching it, to \z@ if expression was balanced. Call it as:

\XINT_isbalanced_a \relax #1(\xint_bye)\xint_bye

This is legacy f-expandable code not using \expanded even at 1.4.

2392 \def\XINT_isbalanced_a #1({\XINT_isbalanced_b #1)\xint_bye }%

2393 \def\XINT_isbalanced_b #1)#2%

2394 {\xint_bye #2\XINT_isbalanced_c\xint_bye\XINT_isbalanced_error }%

if #2 is not \xint_bye, a) was found, but there was no (. Hence error -> -1

2395 \def\XINT_isbalanced_error #1)\xint_bye {\xint_c_mone}%

#2 was \xint_bye, was there a) in original #1?

2396 \def\XINT_isbalanced_c\xint_bye\XINT_isbalanced_error #1%

2397 {\xint_bye #1\XINT_isbalanced_yes\xint_bye\XINT_isbalanced_d #1}%

#1 is \xint_bye, there was never (nor) in original #1, hence OK.

2398 \def\XINT_isbalanced_yes\xint_bye\XINT_isbalanced_d\xint_bye)\xint_bye {\xint_c_ }%

#1 is not \xint_bye, there was indeed a (in original #1. We check if we see a). If we do, we then

loop until no (nor) is to be found.

2399 \def\XINT_isbalanced_d #1)#2%

2400 {\xint_bye #2\XINT_isbalanced_no\xint_bye\XINT_isbalanced_a #1#2}%

629

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

#2 was \xint_bye, we did not find a closing) in original #1. Error.

2401 \def\XINT_isbalanced_no\xint_bye #1\xint_bye\xint_bye {\xint_c_i }%

27.26.4. Fetching balanced expressions E1, E2 and a variable name Name from E1, Name=E2)

Multi-letter dummy variables added at 1.4.

2402 \def\XINT_expr_fetch_E_comma_V_equal_E_a #1#2,%

2403 {%

2404 \ifcase\XINT_isbalanced_a \relax #1#2(\xint_bye)\xint_bye

2405 \expandafter\XINT_expr_fetch_E_comma_V_equal_E_c

2406 \or\expandafter\XINT_expr_fetch_E_comma_V_equal_E_b

2407 \else\expandafter\xintError:noopening

2408 \fi {#1#2},%

2409 }%

2410 \def\XINT_expr_fetch_E_comma_V_equal_E_b #1,%

2411 {\XINT_expr_fetch_E_comma_V_equal_E_a {#1,}}%

2412 \def\XINT_expr_fetch_E_comma_V_equal_E_c #1,#2#3=%

2413 {%

2414 \expandafter\XINT_expr_fetch_E_comma_V_equal_E_d\expandafter

2415 {\expanded{{\xint_zapspaces #2#3 \xint_gobble_i}}{#1}}{}%

2416 }%

2417 \def\XINT_expr_fetch_E_comma_V_equal_E_d #1#2#3)%

2418 {%

2419 \ifcase\XINT_isbalanced_a \relax #2#3(\xint_bye)\xint_bye

2420 \or\expandafter\XINT_expr_fetch_E_comma_V_equal_E_e

2421 \else\expandafter\xintError:noopening

2422 \fi

2423 {#1}{#2#3}%

2424 }%

2425 \def\XINT_expr_fetch_E_comma_V_equal_E_e #1#2%

2426 {\XINT_expr_fetch_E_comma_V_equal_E_d {#1}{#2)}}%

27.26.5. Fetching a balanced expression delimited by a semi-colon

1.4. For subsn() leaner syntax of nested substitutions.

Will also serve to \xintdeffunc, to not have to hide inner semi-colons in for example an iter()

from \xintdeffunc.

Adding brace removal protection for no serious reason, anyhow the xintexpr parsers always re-

moves braces when moving forward, but well.

Trigger by \romannumeral\XINT_expr_fetch_to_semicolon upfront.

2427 \def\XINT_expr_fetch_to_semicolon {\XINT_expr_fetch_to_semicolon_a {}\empty}%

2428 \def\XINT_expr_fetch_to_semicolon_a #1#2;%

2429 {%

2430 \ifcase\XINT_isbalanced_a \relax #1#2(\xint_bye)\xint_bye

2431 \xint_dothis{\expandafter\XINT_expr_fetch_to_semicolon_c}%

2432 \or\xint_dothis{\expandafter\XINT_expr_fetch_to_semicolon_b}%

2433 \else\expandafter\xintError:noopening

2434 \fi\xint_orthat{}\expandafter{#2}{#1}%

2435 }%

2436 \def\XINT_expr_fetch_to_semicolon_b #1#2{\XINT_expr_fetch_to_semicolon_a {#2#1;}\empty}%

2437 \def\XINT_expr_fetch_to_semicolon_c #1#2{\xint_c_{#2#1}}%

630

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.26.6. Low-level support for omit and abort keywords, the break() function, the n++ construct
and the semi-colon as used in the syntax of seq(), add(), mul(), iter(), rseq(), iterr(),
rrseq(), subsm(), subsn(), ndseq(), ndmap()

There is some clever play simply based on setting suitable precedence levels combined with special

meanings given to op macros.

The special !? internal operator is a helper for omit and abort keywords in list generators.

Prior to 1.4 support for +[, *[, ...,]+,]*, had some elements here.

The n++ construct 1.1 2014/10/29 did \expandafter\.=+\xintiCeil which transformed it into \ ⤸
romannumeral0\xinticeil, which seems a bit weird. This exploited the fact that dummy variables

macros could back then pick braced material (which in the case at hand here ended being {\romann ⤸
umeral0\xinticeil...} and were submitted to two expansions. The result of this was to provide a

not value which got expanded only in the first loop of the :_A and following macros of seq, iter,

rseq, etc...

Anyhow with 1.2c I have changed the implementation of dummy variables which now need to fetch a

single locked token, which they do not expand.

The \xintiCeil appears a bit dispendious, but I need the starting value in a \numexpr compatible

form in the iteration loops.

2438 \expandafter\def\csname XINT_expr_itself_++\endcsname {++}%

2439 \expandafter\def\csname XINT_expr_itself_++)\endcsname {++)}%

2440 \expandafter\let\csname XINT_expr_precedence_++)\endcsname \xint_c_i

2441 \xintFor #1 in {expr,flexpr,iiexpr} \do {%

2442 \expandafter\def\csname XINT_#1_op_++)\endcsname ##1##2\relax

2443 {\expandafter\XINT_expr_foundend

2444 \expanded{{+{\XINT:NEhook:f:one:from:one:direct\xintiCeil##1}}}%

2445 }%

2446 }%

The break() function break is a true function, the parsing via expansion of the enclosed material

proceeds via _oparen macros as with any other function.

2447 \catcode`? 3

2448 \def\XINT_expr_func_break #1#2#3{#1#2{?#3}}%

2449 \catcode`? 11

2450 \let\XINT_flexpr_func_break \XINT_expr_func_break

2451 \let\XINT_iiexpr_func_break \XINT_expr_func_break

The omit and abort keywords Comments are currently undergoing reconstruction.

The mechanism is somewhat complex. The operator !? will fetch a dummy value ! or ^ which is then

recognized int the loops implementing the various seq etc... construct using dummy variables and

implement omit and abort.

In May 2021 I realized that the January 2020 1.4 had broken omit and abort if used inside a subs().

The definition

\edef\XINT_expr_var_omit #1\relax !{1\string !?!\relax !}

conflicted with the 1.4 refactoring of «subs» and similar things which had replaced formerly

clean-up macros (of ! and what's next, as in now defunct \def\XINT_expr_subx:_end #1!#2#3{#1}

which was involved in subs mechanism, and by the way would be incompatible with multi-letter dummy

variables) by usage of an \iffalse as in "\relax\iffalse\relax !" to delimite a sub-expression,

which was supposed to be clever (the "\relax !" being delimiter for dummy variables).

This \iffalse from subs mechanism ended up being gobbled by omit/abort thus inducing breakage.

Grabbing \relax #2! would be a fix but looks a bit dangerous, as there can be a subexpression

after the omit or abort bringing its own \relax, although this is very very unlikely.

631

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

I considered to modify the dummy variables delimiter from \relax ! to \xint_Bye ! for example but

got afraid from the ramifications, as all structures handling dummy variables would have needed

refactoring.

So finally things here remain unchanged and the refactoring to fix this breakage was done in

\XINT_allexpr_subsx (and also subsm). Done at 1.4h. See \XINT_allexpr_subsx for comments.

2452 \edef\XINT_expr_var_omit #1\relax !{1\string !?!\relax !}%

2453 \edef\XINT_expr_var_abort #1\relax !{1\string !?^\relax !}%

2454 \def\XINT_expr_itself_!? {!?}%

2455 \def\XINT_expr_op_!? #1#2\relax{\XINT_expr_foundend{#2}}%

2456 \let\XINT_iiexpr_op_!? \XINT_expr_op_!?

2457 \let\XINT_flexpr_op_!? \XINT_expr_op_!?

2458 \let\XINT_expr_precedence_!? \xint_c_iv

The semi-colon Obsolete comments undergoing re-construction

2459 \xintFor #1 in {expr,flexpr,iiexpr} \do {%

2460 \expandafter\def\csname XINT_#1_op_;\endcsname {\xint_c_i ;}%

2461 }%

2462 \expandafter\let\csname XINT_expr_precedence_;\endcsname\xint_c_i

2463 \expandafter\def\csname XINT_expr_itself_;)\endcsname {)}%

2464 \expandafter\let\csname XINT_expr_precedence_;)\endcsname\xint_c_i

27.26.7. Reserved dummy variables @, @1, @2, @3, @4, @@, @@(1), . . . , @@@, @@@(1), . . . for
recursions

Comments currently under reconstruction.

1.4 breaking change: @ and @1 behave differently and one can not use @ in place of @1 in iterr()

and rrseq(). Formerly @ and @1 had the same definition.

Brace stripping in \XINT_expr_func_@@ is prevented by some ending 0 or other token see iterr()

and rrseq() code.

For the record, the ~ and ? have catcode 3 in this code.

2465 \catcode`* 11

2466 \def\XINT_expr_var_@ #1~#2{{#2}#1~{#2}}%

2467 \def\XINT_expr_var*_@ #1~#2{\XINT_expr_prec_tacit *{#2}(#1~{#2}}%

2468 \expandafter

2469 \def\csname XINT_expr_var_@1\endcsname #1~#2{{{#2}}#1~{#2}}%

2470 \expandafter

2471 \def\csname XINT_expr_var_@2\endcsname #1~#2#3{{{#3}}#1~{#2}{#3}}%

2472 \expandafter

2473 \def\csname XINT_expr_var_@3\endcsname #1~#2#3#4{{{#4}}#1~{#2}{#3}{#4}}%

2474 \expandafter

2475 \def\csname XINT_expr_var_@4\endcsname #1~#2#3#4#5{{{#5}}#1~{#2}{#3}{#4}{#5}}%

2476 \expandafter\def\csname XINT_expr_var*_@1\endcsname #1~#2%

2477 {\XINT_expr_prec_tacit *{{#2}}(#1~{#2}}%

2478 \expandafter\def\csname XINT_expr_var*_@2\endcsname #1~#2#3%

2479 {\XINT_expr_prec_tacit *{{#3}}(#1~{#2}{#3}}%

2480 \expandafter\def\csname XINT_expr_var*_@3\endcsname #1~#2#3#4%

2481 {\XINT_expr_prec_tacit *{{#4}}(#1~{#2}{#3}{#4}}%

2482 \expandafter\def\csname XINT_expr_var*_@4\endcsname #1~#2#3#4#5%

2483 {\XINT_expr_prec_tacit *{{#5}}(#1~{#2}{#3}{#4}{#5}}%

2484 \catcode`* 12

2485 \catcode`? 3

2486 \def\XINT_expr_func_@@ #1#2#3#4~#5?%

632

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2487 {%

2488 \expandafter#1\expandafter#2\expandafter{\expandafter{%

2489 \romannumeral0\xintntheltnoexpand{\xintNum#3}{#5}}}#4~#5?%

2490 }%

2491 \def\XINT_expr_func_@@@ #1#2#3#4~#5~#6?%

2492 {%

2493 \expandafter#1\expandafter#2\expandafter{\expandafter{%

2494 \romannumeral0\xintntheltnoexpand{\xintNum#3}{#6}}}#4~#5~#6?%

2495 }%

2496 \def\XINT_expr_func_@@@@ #1#2#3#4~#5~#6~#7?%

2497 {%

2498 \expandafter#1\expandafter#2\expandafter{\expandafter{%

2499 \romannumeral0\xintntheltnoexpand{\xintNum#3}{#7}}}#4~#5~#6~#7?%

2500 }%

2501 \let\XINT_flexpr_func_@@\XINT_expr_func_@@

2502 \let\XINT_flexpr_func_@@@\XINT_expr_func_@@@

2503 \let\XINT_flexpr_func_@@@@\XINT_expr_func_@@@@

2504 \def\XINT_iiexpr_func_@@ #1#2#3#4~#5?%

2505 {%

2506 \expandafter#1\expandafter#2\expandafter{\expandafter{%

2507 \romannumeral0\xintntheltnoexpand{\xint_firstofone#3}{#5}}}#4~#5?%

2508 }%

2509 \def\XINT_iiexpr_func_@@@ #1#2#3#4~#5~#6?%

2510 {%

2511 \expandafter#1\expandafter#2\expandafter{\expandafter{%

2512 \romannumeral0\xintntheltnoexpand{\xint_firstofone#3}{#6}}}#4~#5~#6?%

2513 }%

2514 \def\XINT_iiexpr_func_@@@@ #1#2#3#4~#5~#6~#7?%

2515 {%

2516 \expandafter#1\expandafter#2\expandafter{\expandafter{%

2517 \romannumeral0\xintntheltnoexpand{\xint_firstofone#3}{#7}}}#4~#5~#6~#7?%

2518 }%

2519 \catcode`? 11

27.27. Pseudo-functions involving dummy variables and generating scalars or
sequences

27.27.1 Comments . 633
27.27.2 subs(): substitution of one variable . 635
27.27.3 subsm(): simultaneous independent substitutions . 636
27.27.4 subsn(): leaner syntax for nesting (possibly dependent) substitutions 637
27.27.5 seq(): sequences from assigning values to a dummy variable 639
27.27.6 iter() . 640
27.27.7 add(), mul() . 641
27.27.8 rseq() . 642
27.27.9 iterr() . 643
27.27.10 rrseq() . 644

27.27.1. Comments

Comments added 2020/01/16.

The mechanism for «seq» is the following. When the parser encounters «seq», which means it

parsed these letters and encountered (from expansion) an opening parenthesis, the \XINT_expr_func

633

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

mechanism triggers the «`» operator which realizes that «seq» is a pseudo-function (there is no

_func_seq) and thus spans the \XINT_expr_onliteral_seq macro (currently this means however that

the knowledge of which parser we are in is lost, see comments of \XINT_expr_op_` code). The lat-

ter will use delimited macros and parenthesis check to fetch (without any expansion), the symbolic

expression ExprSeq to evaluate, the Name (now possibly multi-letter) of the variable and the ex-

pression ExprValues to evaluate which will give the values to assign to the dummy variable Name. It

then positions upstream ExprValues suitably terminated (see next) and after it {{Name}{ExprSeq}}.

Then it inserts a second call to the «`» operator with now «seqx» as argument hence the appropri-

ate «{,fl,ii}expr_func_seqx» macros gets executed. The general way function macros work is that

first all their arguments are evaluated via a call not to \xintbare{,float,ii}eval but to the

suitable \XINT_{expr,flexpr,iiexpr}_oparen core macro which does almost same excepts it expects

a final closing parenthesis (of course allowing nested parenthesis in-between) and stops there.

Here, this closing parenthesis got positioned deliberately with a \relax after it, so the parser,

which always after having gathered a value looks ahead to find the next operator, thinks it has

hit the end of the expression and as result inserts a \xint_c_ (i.e. \z@) token for precedence

level and a dummy \relax token (place-holder for a non-existing operator). Generally speaking

«func_foo» macros expect to be executed with three parameters #1#2#3, #1 = precedence, #2 = op-

erator, #3 = values (call it «args») i.e. the fully evaluated list of all its arguments. The

special «func_seqx» and cousins know that the first two tokens are trash and they now proceed for-

ward, having thus lying before them upstream the values to loop over, now fully evaluated, and

{{Name}{ExprSeq}}. It then positions appropriately ExprSeq inside a sub-expression and after

it, following suitable delimiter, Name and the evaluated values to assign to Name.

Dummy variables are essentially simply delimited macros where the delimiter is the variable name

preceded by a \relax token and a catcode 11 exclamation point. Thus the various «subsx», «seqx»,

«iterx» position the tokens appropriately and launch suitable loops.

All of this nests well, inner «seq»'s (or more often in practice «subs»'s) being allowed to refer

to the dummy variables used by outer «seq»'s because the outer «seq»'s have the values to assign

to their variables evaluated first and their ExprSeq evaluated last. For inner dummy variables

to be able to refer to outer dummy variables the author must be careful of course to not use in the

implementation braces { and } which would break dummy variables to fetch values beyond the closing

brace.

The above «seq» mechanism was done around June 15-25th 2014 at the time of the transition from

1.09n to 1.1 but already in October 2014 I made a note that I had a hard time to understand it again:

« [START OF YEAR 2014 COMMENTS]

All of seq, add, mul, rseq, etc... (actually all of the extensive changes from xintexpr 1.09n

to 1.1) was done around June 15-25th 2014, but the problem is that I did not document the code

enough, and I had a hard time understanding in October what I had done in June. Despite the lesson,

again being short on time, I do not document enough my current understanding of the innards of the

beast...

I added subs, and iter in October (also the [:n], [n:] list extractors), proving I did at

least understand a bit (or rather could imitate) my earlier code (but don't ask me to explain

\xintNewExpr !)

The \XINT_expr_fetch_E_comma_V_equal_E_a parses: "expression, variable=list)" (when it is

called the opening (has been swallowed, and it looks for the ending one.) Both expression and list

may themselves contain parentheses and commas, we allow nesting. For example "x^2,x=1..10)", at

the end of seq_a we have {variable{expression}}{list}, in this example {x{x^2}}{1..10}, or more

complicated "seq(add(y,y=1..x),x=1..10)" will work too. The variable is a single lowercase Latin

letter.

The complications with \xint_c_ii^v in seq_f is for the recurrent thing that we don't know in

what type of expressions we are, hence we must move back up, with some loss of efficiency (su-

perfluous check for minus sign, etc...). But the code manages simultaneously expr, flexpr and

iiexpr.

634

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

[END OF YEAR 2014 OLD COMMENTS]»

On Jeudi 16 janvier 2020 à 15:13:32 I finally did the documentation as above.

The case of «iter», «rseq», «iterr», «rrseq» differs slightly because the initial values need

evaluation. This is done by genuine functions \XINT_<parser>_func_iter etc... (there was no \X ⤸
INT_<parser>_func_seq). The trick is via the semi-colon ; which is a genuine operator having the

precedence of a closing parenthesis and whose action is only to stop expansion. Thus this first

step of gathering the initial values is done as part of the reguler expansion job of the parser not

using delimited macros and the ; can be hidden in braces {;} because the three parsers when moving

forward remove one level of braces always. Thus \XINT_<parser>_func_seq simply hand over to \XINT ⤸
_allexpr_iter which will then trigger the fetching without expansion of ExprIter, Name=ExprValues

as described previously for «seq».

With 1.4, multi-letter names for dummy variables are allowed.

Also there is the additional 1.4 ambition to make the whole thing parsable by \xintNewExpr/\xintdeffunc.

This is done by checking if all is numerical, because the omit, abort and break() mechanisms have

no translation into macros, and the only solution for symbolic material is to simply keep it as is,

so that expansion will again activate the xintexpr parsers. At 1.4 this approach is fine although

the initial goals of \xintNewExpr/\xintdeffunc was to completely replace the parsers (whose stor-

age method hit the string pool formerly) by macros. Now that 1.4 does not impact the string pool

we can make \xintdeffunc much more powerful but it will not be a construct using only xintfrac

macros, it will still be partially the \xintexpr etc... parsers in such cases.

Got simpler with 1.2c as now the dummy variable fetches an already encapsulated value, which is

anyhow the form in which we get it.

Refactored at 1.4 using \expanded rather than \csname.

And support for multi-letter variables, which means function declarations can now use multi-

letter variables !

27.27.2. subs(): substitution of one variable

2520 \def\XINT_expr_onliteral_subs

2521 {%

2522 \expandafter\XINT_allexpr_subs_f

2523 \romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}%

2524 }%

2525 \def\XINT_allexpr_subs_f #1#2{\xint_c_ii^v `{subsx}#2)\relax #1}%

2526 \def\XINT_expr_func_subsx #1#2{\XINT_allexpr_subsx \xintbareeval }%

2527 \def\XINT_flexpr_func_subsx #1#2{\XINT_allexpr_subsx \xintbarefloateval}%

2528 \def\XINT_iiexpr_func_subsx #1#2{\XINT_allexpr_subsx \xintbareiieval }%

#2 is the value to assign to the dummy variable #3 is the dummy variable name (possibly multi-

letter), #4 is the expression to evaluate

1.4 was doing something clever to get rid of the ! and tokens following it, via an \iffalse...\fi

which erased them and propagated the expansion to trigger the getopt:

\expanded\bgroup\romannumeral0#1#4\relax \iffalse\relax !#3{#2}{\fi\expandafter}

But sadly, with a delay of more than one year later (right after having released 1.4g) I realized

that this had broken omit and abort if inside a subs. As omit and abort would clean all up to \r ⤸
elax !, this meant here swallowing in particular the above \iffalse, leaving a dangling \fi. I

had the files which show this bug already at time of 1.4 release but did not compile them, and they

were not included in my test suite.

I hesitated with modifying the delimiter from "\relax !<varname>" (catcode 11 !) to "\rel ⤸
ax \xint_Bye<varname>" for the dummy variables which would have allowed some trickery using

\xint_Bye...\xint_bye clean-up but got afraid from the breakage potential of such refactoring

with many induced changes.

A variant like this:

\def\XINT_allexpr_subsx #1#2#3#4

635

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

{

\expandafter\XINT_expr_clean_and_put_op_first

\expanded

{\romannumeral0#1#4\relax !#3{#2}\xint:\expandafter}\romannumeral`&&\XINT_expr_getop

}

\def\XINT_expr_clean_and_put_op_first #1#2\xint:#3#4{#3#4{#1}}

breaks nesting: the braces make variables encountered in #4 unable to match their definition.

This would work:

\def\XINT_allexpr_subsx #1#2#3#4

{

\expandafter\XINT_allexpr_subsx_clean\romannumeral0#1#4\relax !#3{#2}\xint:

}

\def\XINT_allexpr_subsx_clean #1#2\xint:

{

\expandafter\XINT_expr_put_op_first

\expanded{\xint_noxpd{{#1}}\expandafter}\romannumeral`&&@\XINT_expr_getop

}

(not tested).

But in the end I decided to simply fix the first envisioned code above. This accepts expansion

of supposedly inert #3{#2}. There is again the \iffalse but it is moved to the right. This change

limits possibly hacky future developments. Done at 1.4h (2021/01/27).

No need for the \expandafter's from \XINT_expr_put_op_first in \XINT_expr_clean_and_put_op_fi ⤸
rst.

2529 \def\XINT_allexpr_subsx #1#2#3#4%

2530 {%

2531 \expandafter\XINT_expr_clean_and_put_op_first

2532 \expanded

2533 \bgroup\romannumeral0#1#4\relax !#3{#2}\xint:\iffalse{\fi\expandafter}%

2534 \romannumeral`&&@\XINT_expr_getop

2535 }%

2536 \def\XINT_expr_clean_and_put_op_first #1#2\xint:#3#4{#3#4{#1}}%

27.27.3. subsm(): simultaneous independent substitutions

New with 1.4. Globally the var1=expr1; var2=expr2; var2=expr3;... part can arise from expansion,

except that once a semi-colon has been found (from expansion) the varK= thing following it must be

there. And as for subs() the final parenthesis must be there from the start.

2537 \def\XINT_expr_onliteral_subsm

2538 {%

2539 \expandafter\XINT_allexpr_subsm_f

2540 \romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}%

2541 }%

2542 \def\XINT_allexpr_subsm_f #1#2{\xint_c_ii^v `{subsmx}#2)\relax #1}%

2543 \def\XINT_expr_func_subsmx

2544 {%

2545 \expandafter\XINT_allexpr_subsmx\expandafter\xintbareeval

2546 \expanded\bgroup{\iffalse}\fi\XINT_allexpr_subsm_A\XINT_expr_oparen

2547 }%

2548 \def\XINT_flexpr_func_subsmx

2549 {%

2550 \expandafter\XINT_allexpr_subsmx\expandafter\xintbarefloateval

2551 \expanded\bgroup{\iffalse}\fi\XINT_allexpr_subsm_A\XINT_flexpr_oparen

636

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2552 }%

2553 \def\XINT_iiexpr_func_subsmx

2554 {%

2555 \expandafter\XINT_allexpr_subsmx\expandafter\xintbareiieval

2556 \expanded\bgroup{\iffalse}\fi\XINT_allexpr_subsm_A\XINT_iiexpr_oparen

2557 }%

2558 \def\XINT_allexpr_subsm_A #1#2#3%

2559 {%

2560 \ifx#2\xint_c_

2561 \expandafter\XINT_allexpr_subsm_done

2562 \else

2563 \expandafter\XINT_allexpr_subsm_B

2564 \fi #1%

2565 }%

2566 \def\XINT_allexpr_subsm_B #1#2#3#4=%

2567 {%

2568 {#2}\relax !\xint_zapspaces#3#4 \xint_gobble_i

2569 \expandafter\XINT_allexpr_subsm_A\expandafter#1\romannumeral`&&@#1%

2570 }%

#1 = \xintbareeval, or \xintbarefloateval or \xintbareiieval

#2 = evaluation of last variable assignment

2571 \def\XINT_allexpr_subsm_done #1#2{{#2}\iffalse{{\fi}}}%

#1 = \xintbareeval or \xintbarefloateval or \xintbareiieval

#2 = {value1}\relax !var2{value2}....\relax !varN{valueN} (value's may be oples)

#3 = {var1}

#4 = the expression to evaluate

Refactored at 1.4h as for \XINT_allexpr_subsx, see comments there related to the omit/abort co-

nundrum.

2572 \def\XINT_allexpr_subsmx #1#2#3#4%

2573 {%

2574 \expandafter\XINT_expr_clean_and_put_op_first

2575 \expanded

2576 \bgroup\romannumeral0#1#4\relax !#3#2\xint:\iffalse{\fi\expandafter}%

2577 \romannumeral`&&@\XINT_expr_getop

2578 }%

27.27.4. subsn(): leaner syntax for nesting (possibly dependent) substitutions

New with 1.4. 2020/01/24

2579 \def\XINT_expr_onliteral_subsn

2580 {%

2581 \expandafter\XINT_allexpr_subsn_f

2582 \romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}%

2583 }%

2584 \def\XINT_allexpr_subsn_f #1{\XINT_allexpr_subsn_g #1}%

#1 = Name1

#2 = Expression in all variables which is to evaluate

#3 = all the stuff after Name1 = and up to final parenthesis

This one needed no reactoring at 1.4h to fix the omit/abort problem, as there was no \iffalse..\fi

clean-up: the clean-up is done directly via \XINT_allexpr_subsnx_J.

637

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

I only added usage of \XINT_expr_put_op_first_noexpand. There may be other locations where it

could be used, but I can't afford now reviewing usage. For next release after 1.4h bugfix.

2585 \def\XINT_allexpr_subsn_g #1#2#3%

2586 {%

2587 \expandafter\XINT_allexpr_subsn_h

2588 \expanded\bgroup{\iffalse}\fi\expandafter\XINT_allexpr_subsn_B

2589 \romannumeral\XINT_expr_fetch_to_semicolon #1=#3;\hbox=;;^{#2}%

2590 }%

2591 \def\XINT_allexpr_subsn_B #1{\XINT_allexpr_subsn_C #1\vbox}%

2592 \def\XINT_allexpr_subsn_C #1#2=#3\vbox

2593 {%

2594 \ifx\hbox#1\iffalse{{\fi}\expandafter}\else

2595 {{\xint_zapspaces #1#2 \xint_gobble_i}};\xint_noxpd{{{#3}}}%

2596 \expandafter\XINT_allexpr_subsn_B

2597 \romannumeral\expandafter\XINT_expr_fetch_to_semicolon\fi

2598 }%

2599 \def\XINT_allexpr_subsn_h

2600 {%

2601 \xint_c_ii^v `{subsnx}\romannumeral0\xintreverseorder

2602 }%

2603 \def\XINT_expr_func_subsnx #1#2#3#4#5;#6%

2604 {%

2605 \xint_gob_til_^ #6\XINT_allexpr_subsnx_H ^%

2606 \expandafter\XINT_allexpr_subsnx\expandafter

2607 \xintbareeval\romannumeral0\xintbareeval #5\relax !#4{#3}\xintundefined

2608 {\relax !#4{#3}\relax !#6}%

2609 }%

2610 \def\XINT_iiexpr_func_subsnx #1#2#3#4#5;#6%

2611 {%

2612 \xint_gob_til_^ #6\XINT_allexpr_subsnx_H ^%

2613 \expandafter\XINT_allexpr_subsnx\expandafter

2614 \xintbareiieval\romannumeral0\xintbareiieval #5\relax !#4{#3}\xintundefined

2615 {\relax !#4{#3}\relax !#6}%

2616 }%

2617 \def\XINT_flexpr_func_subsnx #1#2#3#4#5;#6%

2618 {%

2619 \xint_gob_til_^ #6\XINT_allexpr_subsnx_H ^%

2620 \expandafter\XINT_allexpr_subsnx\expandafter

2621 \xintbarefloateval\romannumeral0\xintbarefloateval #5\relax !#4{#3}\xintundefined

2622 {\relax !#4{#3}\relax !#6}%

2623 }%

2624 \def\XINT_allexpr_subsnx #1#2!#3\xintundefined#4#5;#6%

2625 {%

2626 \xint_gob_til_^ #6\XINT_allexpr_subsnx_I ^%

2627 \expandafter\XINT_allexpr_subsnx\expandafter

2628 #1\romannumeral0#1#5\relax !#4{#2}\xintundefined

2629 {\relax !#4{#2}\relax !#6}%

2630 }%

2631 \def\XINT_allexpr_subsnx_H ^#1\romannumeral0#2#3!#4\xintundefined #5#6%

2632 {%

2633 \expandafter\XINT_allexpr_subsnx_J\romannumeral0#2#6#5%

2634 }%

638

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2635 \def\XINT_allexpr_subsnx_I ^#1\romannumeral0#2#3\xintundefined #4#5%

2636 {%

2637 \expandafter\XINT_allexpr_subsnx_J\romannumeral0#2#5#4%

2638 }%

2639 \def\XINT_allexpr_subsnx_J #1#2^%

2640 {%

2641 \expandafter\XINT_expr_put_op_first_noexpand

2642 \expanded{\xint_noxpd{{#1}}\expandafter}\romannumeral`&&@\XINT_expr_getop

2643 }%

2644 \def\XINT_expr_put_op_first_noexpand#1#2#3{#2#3{#1}}%

27.27.5. seq(): sequences from assigning values to a dummy variable

In seq_f, the #2 is the ExprValues expression which needs evaluation to provide the values to the

dummy variable and #1 is {Name}{ExprSeq} where Name is the name of dummy variable and {ExprSeq}

the expression which will have to be evaluated.

2645 \def\XINT_allexpr_seq_f #1#2{\xint_c_ii^v `{seqx}#2)\relax #1}%

2646 \def\XINT_expr_onliteral_seq

2647 {\expandafter\XINT_allexpr_seq_f\romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}}%

2648 \def\XINT_expr_func_seqx #1#2{\XINT:NEhook:seqx\XINT_allexpr_seqx\xintbareeval }%

2649 \def\XINT_flexpr_func_seqx #1#2{\XINT:NEhook:seqx\XINT_allexpr_seqx\xintbarefloateval}%

2650 \def\XINT_iiexpr_func_seqx #1#2{\XINT:NEhook:seqx\XINT_allexpr_seqx\xintbareiieval }%

2651 \def\XINT_allexpr_seqx #1#2#3#4%

2652 {%

2653 \expandafter\XINT_expr_put_op_first

2654 \expanded \bgroup {\iffalse}\fi\XINT_expr_seq:_b {#1#4\relax !#3}#2^%

2655 \XINT_expr_cb_and_getop

2656 }%

2657 \def\XINT_expr_cb_and_getop{\iffalse{\fi\expandafter}\romannumeral`&&@\XINT_expr_getop}%

Comments undergoing reconstruction.

2658 \catcode`? 3

2659 \def\XINT_expr_seq:_b #1#2%

2660 {%

2661 \ifx +#2\xint_dothis\XINT_expr_seq:_Ca\fi

2662 \ifx !#2!\xint_dothis\XINT_expr_seq:_noop\fi

2663 \ifx ^#2\xint_dothis\XINT_expr_seq:_end\fi

2664 \xint_orthat{\XINT_expr_seq:_c}{#2}{#1}%

2665 }%

2666 \def\XINT_expr_seq:_noop #1{\XINT_expr_seq:_b }%

2667 \def\XINT_expr_seq:_end #1#2{\iffalse{\fi}}%

2668 \def\XINT_expr_seq:_c #1#2{\expandafter\XINT_expr_seq:_d\romannumeral0#2{{#1}}{#2}}%

2669 \def\XINT_expr_seq:_d #1{\ifx ^#1\xint_dothis\XINT_expr_seq:_abort\fi

2670 \ifx ?#1\xint_dothis\XINT_expr_seq:_break\fi

2671 \ifx !#1\xint_dothis\XINT_expr_seq:_omit\fi

2672 \xint_orthat{\XINT_expr_seq:_goon {#1}}}%

2673 \def\XINT_expr_seq:_abort #1!#2^{\iffalse{\fi}}%

2674 \def\XINT_expr_seq:_break #1!#2^{#1\iffalse{\fi}}%

2675 \def\XINT_expr_seq:_omit #1!#2#{\expandafter\XINT_expr_seq:_b\xint_gobble_i}%

2676 \def\XINT_expr_seq:_goon #1!#2#{#1\expandafter\XINT_expr_seq:_b\xint_gobble_i}%

2677 \def\XINT_expr_seq:_Ca #1#2#3{\XINT_expr_seq:_Cc#3.{#2}}%

2678 \def\XINT_expr_seq:_Cb #1{\expandafter\XINT_expr_seq:_Cc\the\numexpr#1+\xint_c_i.}%

2679 \def\XINT_expr_seq:_Cc #1.#2{\expandafter\XINT_expr_seq:_D\romannumeral0#2{{#1}}{#1}{#2}}%

639

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2680 \def\XINT_expr_seq:_D #1{\ifx ^#1\xint_dothis\XINT_expr_seq:_abort\fi

2681 \ifx ?#1\xint_dothis\XINT_expr_seq:_break\fi

2682 \ifx !#1\xint_dothis\XINT_expr_seq:_Omit\fi

2683 \xint_orthat{\XINT_expr_seq:_Goon {#1}}}%

2684 \def\XINT_expr_seq:_Omit #1!#2#{\expandafter\XINT_expr_seq:_Cb\xint_gobble_i}%

2685 \def\XINT_expr_seq:_Goon #1!#2#{#1\expandafter\XINT_expr_seq:_Cb\xint_gobble_i}%

27.27.6. iter()

Prior to 1.2g, the iter keyword was what is now called iterr, analogous with rrseq. Somehow I

forgot an iter functioning like rseq with the sole difference of printing only the last iteration.

Both rseq and iter work well with list selectors, as @ refers to the whole comma separated sequence

of the initial values. I have thus deliberately done the backwards incompatible renaming of iter

to iterr, and the new iter.

To understand the tokens which are presented to \XINT_allexpr_iter it is needed to check else-

where in the source code how the ; hack is done.

The #2 in \XINT_allexpr_iter is \xint_c_i from the ; hack. Formerly (xint < 1.4) there was no

such token. The change is motivated to using ; also in subsm() syntax.

2686 \def\XINT_expr_func_iter {\XINT_allexpr_iter \xintbareeval }%

2687 \def\XINT_flexpr_func_iter {\XINT_allexpr_iter \xintbarefloateval }%

2688 \def\XINT_iiexpr_func_iter {\XINT_allexpr_iter \xintbareiieval }%

2689 \def\XINT_allexpr_iter #1#2#3#4%

2690 {%

2691 \expandafter\XINT_expr_iterx

2692 \expandafter#1\expanded{\xint_noxpd{{#4}}\expandafter}%

2693 \romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}%

2694 }%

2695 \def\XINT_expr_iterx #1#2#3#4%

2696 {%

2697 \XINT:NEhook:iter\XINT_expr_itery\romannumeral0#1(#4)\relax {#2}#3#1%

2698 }%

2699 \def\XINT_expr_itery #1#2#3#4#5%

2700 {%

2701 \expandafter\XINT_expr_put_op_first

2702 \expanded \bgroup {\iffalse}\fi

2703 \XINT_expr_iter:_b {#5#4\relax !#3}#1^~{#2}\XINT_expr_cb_and_getop

2704 }%

2705 \def\XINT_expr_iter:_b #1#2%

2706 {%

2707 \ifx +#2\xint_dothis\XINT_expr_iter:_Ca\fi

2708 \ifx !#2!\xint_dothis\XINT_expr_iter:_noop\fi

2709 \ifx ^#2\xint_dothis\XINT_expr_iter:_end\fi

2710 \xint_orthat{\XINT_expr_iter:_c}{#2}{#1}%

2711 }%

2712 \def\XINT_expr_iter:_noop #1{\XINT_expr_iter:_b }%

2713 \def\XINT_expr_iter:_end #1#2~#3{#3\iffalse{\fi}}%

2714 \def\XINT_expr_iter:_c #1#2{\expandafter\XINT_expr_iter:_d\romannumeral0#2{{#1}}{#2}}%

2715 \def\XINT_expr_iter:_d #1{\ifx ^#1\xint_dothis\XINT_expr_iter:_abort\fi

2716 \ifx ?#1\xint_dothis\XINT_expr_iter:_break\fi

2717 \ifx !#1\xint_dothis\XINT_expr_iter:_omit\fi

2718 \xint_orthat{\XINT_expr_iter:_goon {#1}}}%

2719 \def\XINT_expr_iter:_abort #1!#2^~#3{#3\iffalse{\fi}}%

2720 \def\XINT_expr_iter:_break #1!#2^~#3{#1\iffalse{\fi}}%

640

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2721 \def\XINT_expr_iter:_omit #1!#2#{\expandafter\XINT_expr_iter:_b\xint_gobble_i}%

2722 \def\XINT_expr_iter:_goon #1!#2#{\XINT_expr_iter:_goon_a {#1}}%

2723 \def\XINT_expr_iter:_goon_a #1#2#3~#4{\XINT_expr_iter:_b #3~{#1}}%

2724 \def\XINT_expr_iter:_Ca #1#2#3{\XINT_expr_iter:_Cc#3.{#2}}%

2725 \def\XINT_expr_iter:_Cb #1{\expandafter\XINT_expr_iter:_Cc\the\numexpr#1+\xint_c_i.}%

2726 \def\XINT_expr_iter:_Cc #1.#2{\expandafter\XINT_expr_iter:_D\romannumeral0#2{{#1}}{#1}{#2}}%

2727 \def\XINT_expr_iter:_D #1{\ifx ^#1\xint_dothis\XINT_expr_iter:_abort\fi

2728 \ifx ?#1\xint_dothis\XINT_expr_iter:_break\fi

2729 \ifx !#1\xint_dothis\XINT_expr_iter:_Omit\fi

2730 \xint_orthat{\XINT_expr_iter:_Goon {#1}}}%

2731 \def\XINT_expr_iter:_Omit #1!#2#{\expandafter\XINT_expr_iter:_Cb\xint_gobble_i}%

2732 \def\XINT_expr_iter:_Goon #1!#2#{\XINT_expr_iter:_Goon_a {#1}}%

2733 \def\XINT_expr_iter:_Goon_a #1#2#3~#4{\XINT_expr_iter:_Cb #3~{#1}}%

27.27.7. add(), mul()

Comments under reconstruction.

These were a bit anomalous as they did not implement omit and abort keyword and the break()

function (and per force then neither the n++ syntax).

At 1.4 they are simply mapped to using adequately iter(). Thus, there is small loss in effi-

ciency, but supporting omit, abort and break is important. Using dedicated macros here would

have caused also slight efficiency drop. Simpler to remove the old approach.

2734 \def\XINT_expr_onliteral_add

2735 {\expandafter\XINT_allexpr_add_f\romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}}%

2736 \def\XINT_allexpr_add_f #1#2{\xint_c_ii^v `{opx}#2)\relax #1{+}{0}}%

2737 \def\XINT_expr_onliteral_mul

2738 {\expandafter\XINT_allexpr_mul_f\romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}}%

2739 \def\XINT_allexpr_mul_f #1#2{\xint_c_ii^v `{opx}#2)\relax #1{*}{1}}%

2740 \def\XINT_expr_func_opx {\XINT:NEhook:opx \XINT_allexpr_opx \xintbareeval }%

2741 \def\XINT_flexpr_func_opx {\XINT:NEhook:opx \XINT_allexpr_opx \xintbarefloateval}%

2742 \def\XINT_iiexpr_func_opx {\XINT:NEhook:opx \XINT_allexpr_opx \xintbareiieval }%

1.4a In case of usage of omit (did I not test it? obviously I didn't as neither omit nor abort could

work; and break neither), 1.4 code using (#6) syntax caused a (somewhat misleading) «missing)»

error message which originated in the #6. This is non-obvious problem (perhaps explained why

prior to 1.4 I had not added support for omit and break() to add() and mul()...

Allowing () is not enough as it would have to be 0 or 1 depending on whether we are using add()

or mul(). Hence the somewhat complicated detour (relying on precise way var_omit and var_abort

work) via \XINT_allexpr_opx_ifnotomitted.

\break() has special meaning here as it is used as last operand, not as last value. The code is

very unsatisfactory and inefficient but this is hotfix for 1.4a.

2743 \def\XINT_allexpr_opx #1#2#3#4#5#6#7#8%

2744 {%

2745 \expandafter\XINT_expr_put_op_first

2746 \expanded \bgroup {\iffalse}\fi

2747 \XINT_expr_iter:_b {#1%

2748 \expandafter\XINT_allexpr_opx_ifnotomitted

2749 \romannumeral0#1#6\relax#7@\relax !#5}#4^~{{#8}}\XINT_expr_cb_and_getop

2750 }%

2751 \def\XINT_allexpr_opx_ifnotomitted #1%

2752 {%

2753 \ifx !#1\xint_dothis{@\relax}\fi

2754 \ifx ^#1\xint_dothis{\XINTfstop. ^\relax}\fi

641

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2755 \if ?\xintFirstItem{#1}\xint_dothis{\XINT_allexpr_opx_break{#1}}\fi

2756 \xint_orthat{\XINTfstop.{#1}}%

2757 }%

2758 \def\XINT_allexpr_opx_break #1#2\relax

2759 {%

2760 break(\expandafter\XINTfstop\expandafter.\expandafter{\xint_gobble_i#1}#2)\relax

2761 }%

27.27.8. rseq()

When func_rseq has its turn, initial segment has been scanned by oparen, the ; mimicking the rôle

of a closing parenthesis, and stopping further expansion (and leaving a \xint_c_i left-over token

since 1.4). The ; is discovered during standard parsing mode, it may be for example {;} or arise

from expansion as rseq does not use a delimited macro to locate it.

2762 \def\XINT_expr_func_rseq {\XINT_allexpr_rseq \xintbareeval }%

2763 \def\XINT_flexpr_func_rseq {\XINT_allexpr_rseq \xintbarefloateval }%

2764 \def\XINT_iiexpr_func_rseq {\XINT_allexpr_rseq \xintbareiieval }%

2765 \def\XINT_allexpr_rseq #1#2#3#4%

2766 {%

2767 \expandafter\XINT_expr_rseqx

2768 \expandafter #1\expanded{\xint_noxpd{{#4}}\expandafter}%

2769 \romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}%

2770 }%

2771 \def\XINT_expr_rseqx #1#2#3#4%

2772 {%

2773 \XINT:NEhook:rseq \XINT_expr_rseqy\romannumeral0#1(#4)\relax {#2}#3#1%

2774 }%

2775 \def\XINT_expr_rseqy #1#2#3#4#5%

2776 {%

2777 \expandafter\XINT_expr_put_op_first

2778 \expanded \bgroup {\iffalse}\fi

2779 #2%

2780 \XINT_expr_rseq:_b {#5#4\relax !#3}#1^~{#2}\XINT_expr_cb_and_getop

2781 }%

2782 \def\XINT_expr_rseq:_b #1#2%

2783 {%

2784 \ifx +#2\xint_dothis\XINT_expr_rseq:_Ca\fi

2785 \ifx !#2!\xint_dothis\XINT_expr_rseq:_noop\fi

2786 \ifx ^#2\xint_dothis\XINT_expr_rseq:_end\fi

2787 \xint_orthat{\XINT_expr_rseq:_c}{#2}{#1}%

2788 }%

2789 \def\XINT_expr_rseq:_noop #1{\XINT_expr_rseq:_b }%

2790 \def\XINT_expr_rseq:_end #1#2~#3{\iffalse{\fi}}%

2791 \def\XINT_expr_rseq:_c #1#2{\expandafter\XINT_expr_rseq:_d\romannumeral0#2{{#1}}{#2}}%

2792 \def\XINT_expr_rseq:_d #1{\ifx ^#1\xint_dothis\XINT_expr_rseq:_abort\fi

2793 \ifx ?#1\xint_dothis\XINT_expr_rseq:_break\fi

2794 \ifx !#1\xint_dothis\XINT_expr_rseq:_omit\fi

2795 \xint_orthat{\XINT_expr_rseq:_goon {#1}}}%

2796 \def\XINT_expr_rseq:_abort #1!#2^~#3{\iffalse{\fi}}%

2797 \def\XINT_expr_rseq:_break #1!#2^~#3{#1\iffalse{\fi}}%

2798 \def\XINT_expr_rseq:_omit #1!#2#{\expandafter\XINT_expr_rseq:_b\xint_gobble_i}%

2799 \def\XINT_expr_rseq:_goon #1!#2#{\XINT_expr_rseq:_goon_a {#1}}%

2800 \def\XINT_expr_rseq:_goon_a #1#2#3~#4{#1\XINT_expr_rseq:_b #3~{#1}}%

642

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2801 \def\XINT_expr_rseq:_Ca #1#2#3{\XINT_expr_rseq:_Cc#3.{#2}}%

2802 \def\XINT_expr_rseq:_Cb #1{\expandafter\XINT_expr_rseq:_Cc\the\numexpr#1+\xint_c_i.}%

2803 \def\XINT_expr_rseq:_Cc #1.#2{\expandafter\XINT_expr_rseq:_D\romannumeral0#2{{#1}}{#1}{#2}}%

2804 \def\XINT_expr_rseq:_D #1{\ifx ^#1\xint_dothis\XINT_expr_rseq:_abort\fi

2805 \ifx ?#1\xint_dothis\XINT_expr_rseq:_break\fi

2806 \ifx !#1\xint_dothis\XINT_expr_rseq:_Omit\fi

2807 \xint_orthat{\XINT_expr_rseq:_Goon {#1}}}%

2808 \def\XINT_expr_rseq:_Omit #1!#2#{\expandafter\XINT_expr_rseq:_Cb\xint_gobble_i}%

2809 \def\XINT_expr_rseq:_Goon #1!#2#{\XINT_expr_rseq:_Goon_a {#1}}%

2810 \def\XINT_expr_rseq:_Goon_a #1#2#3~#4{#1\XINT_expr_rseq:_Cb #3~{#1}}%

27.27.9. iterr()

ATTENTION! at 1.4 the @ and @1 are not synonymous anymore. One *must* use @1 in iterr() context.

2811 \def\XINT_expr_func_iterr {\XINT_allexpr_iterr \xintbareeval }%

2812 \def\XINT_flexpr_func_iterr {\XINT_allexpr_iterr \xintbarefloateval }%

2813 \def\XINT_iiexpr_func_iterr {\XINT_allexpr_iterr \xintbareiieval }%

2814 \def\XINT_allexpr_iterr #1#2#3#4%

2815 {%

2816 \expandafter\XINT_expr_iterrx

2817 \expandafter #1\expanded{{\xintRevWithBraces{#4}}\expandafter}%

2818 \romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}%

2819 }%

2820 \def\XINT_expr_iterrx #1#2#3#4%

2821 {%

2822 \XINT:NEhook:iterr\XINT_expr_iterry\romannumeral0#1(#4)\relax {#2}#3#1%

2823 }%

2824 \def\XINT_expr_iterry #1#2#3#4#5%

2825 {%

2826 \expandafter\XINT_expr_put_op_first

2827 \expanded \bgroup {\iffalse}\fi

2828 \XINT_expr_iterr:_b {#5#4\relax !#3}#1^~#20?\XINT_expr_cb_and_getop

2829 }%

2830 \def\XINT_expr_iterr:_b #1#2%

2831 {%

2832 \ifx +#2\xint_dothis\XINT_expr_iterr:_Ca\fi

2833 \ifx !#2!\xint_dothis\XINT_expr_iterr:_noop\fi

2834 \ifx ^#2\xint_dothis\XINT_expr_iterr:_end\fi

2835 \xint_orthat{\XINT_expr_iterr:_c}{#2}{#1}%

2836 }%

2837 \def\XINT_expr_iterr:_noop #1{\XINT_expr_iterr:_b }%

2838 \def\XINT_expr_iterr:_end #1#2~#3#4?{{#3}\iffalse{\fi}}%

2839 \def\XINT_expr_iterr:_c #1#2{\expandafter\XINT_expr_iterr:_d\romannumeral0#2{{#1}}{#2}}%

2840 \def\XINT_expr_iterr:_d #1{\ifx ^#1\xint_dothis\XINT_expr_iterr:_abort\fi

2841 \ifx ?#1\xint_dothis\XINT_expr_iterr:_break\fi

2842 \ifx !#1\xint_dothis\XINT_expr_iterr:_omit\fi

2843 \xint_orthat{\XINT_expr_iterr:_goon {#1}}}%

2844 \def\XINT_expr_iterr:_abort #1!#2^~#3?{\iffalse{\fi}}%

2845 \def\XINT_expr_iterr:_break #1!#2^~#3?{#1\iffalse{\fi}}%

2846 \def\XINT_expr_iterr:_omit #1!#2#{\expandafter\XINT_expr_iterr:_b\xint_gobble_i}%

2847 \def\XINT_expr_iterr:_goon #1!#2#{\XINT_expr_iterr:_goon_a{#1}}%

2848 \def\XINT_expr_iterr:_goon_a #1#2#3~#4?%

2849 {%

643

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2850 \expandafter\XINT_expr_iterr:_b \expanded{\xint_noxpd{#3~}\xintTrim{-2}{#1#4}}0?%

2851 }%

2852 \def\XINT_expr_iterr:_Ca #1#2#3{\XINT_expr_iterr:_Cc#3.{#2}}%

2853 \def\XINT_expr_iterr:_Cb #1{\expandafter\XINT_expr_iterr:_Cc\the\numexpr#1+\xint_c_i.}%

2854 \def\XINT_expr_iterr:_Cc #1.#2%

2855 {\expandafter\XINT_expr_iterr:_D\romannumeral0#2{{#1}}{#1}{#2}}%

2856 \def\XINT_expr_iterr:_D #1{\ifx ^#1\xint_dothis\XINT_expr_iterr:_abort\fi

2857 \ifx ?#1\xint_dothis\XINT_expr_iterr:_break\fi

2858 \ifx !#1\xint_dothis\XINT_expr_iterr:_Omit\fi

2859 \xint_orthat{\XINT_expr_iterr:_Goon {#1}}}%

2860 \def\XINT_expr_iterr:_Omit #1!#2#{\expandafter\XINT_expr_iterr:_Cb\xint_gooble_i}%

2861 \def\XINT_expr_iterr:_Goon #1!#2#{\XINT_expr_iterr:_Goon_a{#1}}%

2862 \def\XINT_expr_iterr:_Goon_a #1#2#3~#4?%

2863 {%

2864 \expandafter\XINT_expr_iterr:_Cb \expanded{\xint_noxpd{#3~}\xintTrim{-2}{#1#4}}0?%

2865 }%

27.27.10. rrseq()

When func_rrseq has its turn, initial segment has been scanned by oparen, the ; mimicking the rôle

of a closing parenthesis, and stopping further expansion. #2 = \xint_c_i and #3 are left-over

trash.

2866 \def\XINT_expr_func_rrseq {\XINT_allexpr_rrseq \xintbareeval }%

2867 \def\XINT_flexpr_func_rrseq {\XINT_allexpr_rrseq \xintbarefloateval }%

2868 \def\XINT_iiexpr_func_rrseq {\XINT_allexpr_rrseq \xintbareiieval }%

2869 \def\XINT_allexpr_rrseq #1#2#3#4%

2870 {%

2871 \expandafter\XINT_expr_rrseqx\expandafter#1\expanded

2872 {\xint_noxpd{{#4}}{\xintRevWithBraces{#4}}\expandafter}%

2873 \romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}%

2874 }%

2875 \def\XINT_expr_rrseqx #1#2#3#4#5%

2876 {%

2877 \XINT:NEhook:rrseq\XINT_expr_rrseqy\romannumeral0#1(#5)\relax {#2}{#3}#4#1%

2878 }%

2879 \def\XINT_expr_rrseqy #1#2#3#4#5#6%

2880 {%

2881 \expandafter\XINT_expr_put_op_first

2882 \expanded \bgroup {\iffalse}\fi

2883 #2\XINT_expr_rrseq:_b {#6#5\relax !#4}#1^~#30?\XINT_expr_cb_and_getop

2884 }%

2885 \def\XINT_expr_rrseq:_b #1#2%

2886 {%

2887 \ifx +#2\xint_dothis\XINT_expr_rrseq:_Ca\fi

2888 \ifx !#2!\xint_dothis\XINT_expr_rrseq:_noop\fi

2889 \ifx ^#2\xint_dothis\XINT_expr_rrseq:_end\fi

2890 \xint_orthat{\XINT_expr_rrseq:_c}{#2}{#1}%

2891 }%

2892 \def\XINT_expr_rrseq:_noop #1{\XINT_expr_rrseq:_b }%

2893 \def\XINT_expr_rrseq:_end #1#2~#3?{\iffalse{\fi}}%

2894 \def\XINT_expr_rrseq:_c #1#2{\expandafter\XINT_expr_rrseq:_d\romannumeral0#2{{#1}}{#2}}%

2895 \def\XINT_expr_rrseq:_d #1{\ifx ^#1\xint_dothis\XINT_expr_rrseq:_abort\fi

2896 \ifx ?#1\xint_dothis\XINT_expr_rrseq:_break\fi

644

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2897 \ifx !#1\xint_dothis\XINT_expr_rrseq:_omit\fi

2898 \xint_orthat{\XINT_expr_rrseq:_goon {#1}}}%

2899 \def\XINT_expr_rrseq:_abort #1!#2^~#3?{\iffalse{\fi}}%

2900 \def\XINT_expr_rrseq:_break #1!#2^~#3?{#1\iffalse{\fi}}%

2901 \def\XINT_expr_rrseq:_omit #1!#2#{\expandafter\XINT_expr_rrseq:_b\xint_gobble_i}%

2902 \def\XINT_expr_rrseq:_goon #1!#2#{\XINT_expr_rrseq:_goon_a {#1}}%

2903 \def\XINT_expr_rrseq:_goon_a #1#2#3~#4?%

2904 {%

2905 #1\expandafter\XINT_expr_rrseq:_b\expanded{\xint_noxpd{#3~}\xintTrim{-2}{#1#4}}0?%

2906 }%

2907 \def\XINT_expr_rrseq:_Ca #1#2#3{\XINT_expr_rrseq:_Cc#3.{#2}}%

2908 \def\XINT_expr_rrseq:_Cb #1{\expandafter\XINT_expr_rrseq:_Cc\the\numexpr#1+\xint_c_i.}%

2909 \def\XINT_expr_rrseq:_Cc #1.#2%

2910 {\expandafter\XINT_expr_rrseq:_D\romannumeral0#2{{#1}}{#1}{#2}}%

2911 \def\XINT_expr_rrseq:_D #1{\ifx ^#1\xint_dothis\XINT_expr_rrseq:_abort\fi

2912 \ifx ?#1\xint_dothis\XINT_expr_rrseq:_break\fi

2913 \ifx !#1\xint_dothis\XINT_expr_rrseq:_Omit\fi

2914 \xint_orthat{\XINT_expr_rrseq:_Goon {#1}}}%

2915 \def\XINT_expr_rrseq:_Omit #1!#2#{\expandafter\XINT_expr_rrseq:_Cb\xint_gobble_i}%

2916 \def\XINT_expr_rrseq:_Goon #1!#2#{\XINT_expr_rrseq:_Goon_a {#1}}%

2917 \def\XINT_expr_rrseq:_Goon_a #1#2#3~#4?%

2918 {%

2919 #1\expandafter\XINT_expr_rrseq:_Cb\expanded{\xint_noxpd{#3~}\xintTrim{-2}{#1#4}}0?%

2920 }%

2921 \catcode`? 11

27.28. Pseudo-functions related to N-dimensional hypercubic lists
27.28.1. ndseq()

New with 1.4. 2020/01/23. It is derived from subsm() but instead of evaluating one expression

according to one value per variable, it constructs a nested bracketed seq... this means the ex-

pression is parsed each time ! Anyway, proof of concept. Nota Bene : omit, abort, break() work

!

2922 \def\XINT_expr_onliteral_ndseq

2923 {%

2924 \expandafter\XINT_allexpr_ndseq_f

2925 \romannumeral`&&@\XINT_expr_fetch_E_comma_V_equal_E_a {}%

2926 }%

2927 \def\XINT_allexpr_ndseq_f #1#2{\xint_c_ii^v `{ndseqx}#2)\relax #1}%

2928 \def\XINT_expr_func_ndseqx

2929 {%

2930 \expandafter\XINT_allexpr_ndseqx\expandafter\xintbareeval

2931 \expandafter{\romannumeral0\expandafter\xint_gobble_i\string}%

2932 \expandafter\xintrevwithbraces

2933 \expanded\bgroup{\iffalse}\fi\XINT_allexpr_ndseq_A\XINT_expr_oparen

2934 }%

2935 \def\XINT_flexpr_func_ndseqx

2936 {%

2937 \expandafter\XINT_allexpr_ndseqx\expandafter\xintbarefloateval

2938 \expandafter{\romannumeral0\expandafter\xint_gobble_i\string}%

2939 \expandafter\xintrevwithbraces

2940 \expanded\bgroup{\iffalse}\fi\XINT_allexpr_ndseq_A\XINT_flexpr_oparen

645

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2941 }%

2942 \def\XINT_iiexpr_func_ndseqx

2943 {%

2944 \expandafter\XINT_allexpr_ndseqx\expandafter\xintbareiieval

2945 \expandafter{\romannumeral0\expandafter\xint_gobble_i\string}%

2946 \expandafter\xintrevwithbraces

2947 \expanded\bgroup{\iffalse}\fi\XINT_allexpr_ndseq_A\XINT_iiexpr_oparen

2948 }%

2949 \def\XINT_allexpr_ndseq_A #1#2#3%

2950 {%

2951 \ifx#2\xint_c_

2952 \expandafter\XINT_allexpr_ndseq_C

2953 \else

2954 \expandafter\XINT_allexpr_ndseq_B

2955 \fi #1%

2956 }%

2957 \def\XINT_allexpr_ndseq_B #1#2#3#4=%

2958 {%

2959 {#2}{\xint_zapspaces#3#4 \xint_gobble_i}%

2960 \expandafter\XINT_allexpr_ndseq_A\expandafter#1\romannumeral`&&@#1%

2961 }%

#1 = \xintbareeval, or \xintbarefloateval or \xintbareiieval #2 = values for last coordinate

2962 \def\XINT_allexpr_ndseq_C #1#2{{#2}\iffalse{{{\fi}}}}%

#1 = \xintbareeval or \xintbarefloateval or \xintbareiieval #2 = {valuesN}...{values2}{var2}{values1}

#3 = {var1} #4 = the expression to evaluate

2963 \def\XINT_allexpr_ndseqx #1#2#3#4%

2964 {%

2965 \expandafter\XINT_expr_put_op_first

2966 \expanded

2967 \bgroup

2968 \romannumeral0#1\empty

2969 \expanded{\xintReplicate{\xintLength{{#3}#2}/2}{[seq(}%

2970 \xint_noxpd{#4}%

2971 \XINT_allexpr_ndseqx_a #2{#3}^^%

2972 }%

2973 \relax

2974 \iffalse{\fi\expandafter}\romannumeral`&&@\XINT_expr_getop

2975 }%

2976 \def\XINT_allexpr_ndseqx_a #1#2%

2977 {%

2978 \xint_gob_til_^ #1\XINT_allexpr_ndseqx_e ^%

2979 \xint_noxpd{,#2=\XINTfstop.{#1})]}\XINT_allexpr_ndseqx_a

2980 }%

2981 \def\XINT_allexpr_ndseqx_e ^#1\XINT_allexpr_ndseqx_a{}%

27.28.2. ndmap()

New with 1.4. 2020/01/24.

2982 \def\XINT_expr_onliteral_ndmap #1,{\xint_c_ii^v `{ndmapx}\XINTfstop.{#1};}%

2983 \def\XINT_expr_func_ndmapx #1#2#3%

2984 {%

2985 \expandafter\XINT_allexpr_ndmapx

646

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

2986 \csname XINT_expr_func_\xint_zapspaces #3 \xint_gobble_i\endcsname

2987 \XINT_expr_oparen

2988 }%

2989 \def\XINT_flexpr_func_ndmapx #1#2#3%

2990 {%

2991 \expandafter\XINT_allexpr_ndmapx

2992 \csname XINT_flexpr_func_\xint_zapspaces #3 \xint_gobble_i\endcsname

2993 \XINT_flexpr_oparen

2994 }%

2995 \def\XINT_iiexpr_func_ndmapx #1#2#3%

2996 {%

2997 \expandafter\XINT_allexpr_ndmapx

2998 \csname XINT_iiexpr_func_\xint_zapspaces #3 \xint_gobble_i\endcsname

2999 \XINT_iiexpr_oparen

3000 }%

3001 \def\XINT_allexpr_ndmapx #1#2%

3002 {%

3003 \expandafter\XINT_expr_put_op_first

3004 \expanded\bgroup{\iffalse}\fi

3005 \expanded

3006 {\noexpand\XINT:NEhook:x:ndmapx

3007 \noexpand\XINT_allexpr_ndmapx_a

3008 \noexpand#1{}\expandafter}%

3009 \expanded\bgroup\expandafter\XINT_allexpr_ndmap_A

3010 \expandafter#2\romannumeral`&&@#2%

3011 }%

3012 \def\XINT_allexpr_ndmap_A #1#2#3%

3013 {%

3014 \ifx#3;%

3015 \expandafter\XINT_allexpr_ndmap_B

3016 \else

3017 \xint_afterfi{\XINT_allexpr_ndmap_C#2#3}%

3018 \fi #1%

3019 }%

3020 \def\XINT_allexpr_ndmap_B #1#2%

3021 {%

3022 {#2}\expandafter\XINT_allexpr_ndmap_A\expandafter#1\romannumeral`&&@#1%

3023 }%

3024 \def\XINT_allexpr_ndmap_C #1#2#3#4%

3025 {%

3026 {#4}^\relax\iffalse{{{\fi}}}#1#2%

3027 }%

3028 \def\XINT_allexpr_ndmapx_a #1#2#3%

3029 {%

3030 \xint_gob_til_^ #3\XINT_allexpr_ndmapx_l ^%

3031 \XINT_allexpr_ndmapx_b #1{#2}{#3}%

3032 }%

3033 \def\XINT_allexpr_ndmapx_l ^#1\XINT_allexpr_ndmapx_b #2#3#4\relax

3034 {%

3035 #2\empty\xint_firstofone{#3}%

3036 }%

3037 \def\XINT_allexpr_ndmapx_b #1#2#3#4\relax

647

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3038 {%

3039 {\iffalse}\fi\XINT_allexpr_ndmapx_c {#4\relax}#1{#2}#3^%

3040 }%

3041 \def\XINT_allexpr_ndmapx_c #1#2#3#4%

3042 {%

3043 \xint_gob_til_^ #4\XINT_allexpr_ndmapx_e ^%

3044 \XINT_allexpr_ndmapx_a #2{#3{#4}}#1%

3045 \XINT_allexpr_ndmapx_c {#1}#2{#3}%

3046 }%

3047 \def\XINT_allexpr_ndmapx_e ^#1\XINT_allexpr_ndmapx_c

3048 {\iffalse{\fi}\xint_gobble_iii}%

27.28.3. ndfillraw()

New with 1.4. 2020/01/24. J'hésite à autoriser un #1 quelconque, ou plutôt à le wrapper dans un \x ⤸
intbareval. Mais il faut alors distinguer les trois. De toute façon les variables ne marcheraient

pas donc j'hésite à mettre un wrapper automatique. Mais ce n'est pas bien d'autoriser l'injection

de choses quelconques.

Pour des choses comme ndfillraw(\xintRandomBit,[10,10]).

Je n'aime pas le nom !. Le changer. ndconst? Surtout je n'aime pas que dans le premier argument

il faut rajouter explicitement si nécessaire \xintiiexpr wrap.

3049 \def\XINT_expr_onliteral_ndfillraw #1,{\xint_c_ii^v `{ndfillrawx}\XINTfstop.{{#1}},}%

3050 \def\XINT_expr_func_ndfillrawx #1#2#3%

3051 {%

3052 \expandafter#1\expandafter#2\expanded{{{\XINT_allexpr_ndfillrawx_a #3}}}%

3053 }%

3054 \let\XINT_iiexpr_func_ndfillrawx\XINT_expr_func_ndfillrawx

3055 \let\XINT_flexpr_func_ndfillrawx\XINT_expr_func_ndfillrawx

3056 \def\XINT_allexpr_ndfillrawx_a #1#2%

3057 {%

3058 \expandafter\XINT_allexpr_ndfillrawx_b

3059 \romannumeral0\xintApply{\xintNum}{#2}^\relax {#1}%

3060 }%

3061 \def\XINT_allexpr_ndfillrawx_b #1#2\relax#3%

3062 {%

3063 \xint_gob_til_^ #1\XINT_allexpr_ndfillrawx_c ^%

3064 \xintReplicate{#1}{{\XINT_allexpr_ndfillrawx_b #2\relax {#3}}}%

3065 }%

3066 \def\XINT_allexpr_ndfillrawx_c ^\xintReplicate #1#2%

3067 {%

3068 \expandafter\XINT_allexpr_ndfillrawx_d\xint_firstofone #2%

3069 }%

3070 \def\XINT_allexpr_ndfillrawx_d\XINT_allexpr_ndfillrawx_b \relax #1{#1}%

27.29. Other pseudo-functions: bool(), togl(), protect(), qraw(), qint(),
qfrac(), qfloat(), qrand(), random(), rbit()

bool, togl and protect use delimited macros. They are not true functions, they turn off the parser

to gather their "variable".

Modified at 1.2 (2015/10/10). Adds qint(), qfrac(), qfloat().

Modified at 1.3c (2018/06/17). Adds qraw(). Useful to limit impact on TEX memory from abuse of

\csname's storage when generating many comma separated values from a loop.

648

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

Modified at 1.3e (2019/04/05). qfloat() keeps a short mantissa if possible.

They allow the user to hand over quickly a big number to the parser, spaces not immediately re-

moved but should be harmless in general. The qraw() does no post-processing at all apart complete

expansion, useful for comma-separated values, but must be obedient to (non really documented)

expected format. Each uses a delimited macro, the closing parenthesis can not emerge from expan-

sion.

1.3b. random(), qrand() Function-like syntax but with no argument currently, so let's use fast

parsing which requires though the closing parenthesis to be explicit.

Attention that qraw() which pre-supposes knowledge of internal storage model is fragile and may

break at any release.

1.4 adds rbit(). Short for random bit.

3071 \def\XINT_expr_onliteral_bool #1)%

3072 {\expandafter\XINT_expr_put_op_first\expanded{{{\xintBool{#1}}}\expandafter

3073 }\romannumeral`&&@\XINT_expr_getop}%

3074 \def\XINT_expr_onliteral_togl #1)%

3075 {\expandafter\XINT_expr_put_op_first\expanded{{{\xintToggle{#1}}}\expandafter

3076 }\romannumeral`&&@\XINT_expr_getop}%

3077 \def\XINT_expr_onliteral_protect #1)%

3078 {\expandafter\XINT_expr_put_op_first\expanded{{{\detokenize{#1}}}\expandafter

3079 }\romannumeral`&&@\XINT_expr_getop}%

3080 \def\XINT_expr_onliteral_qint #1)%

3081 {\expandafter\XINT_expr_put_op_first\expanded{{{\xintiNum{#1}}}\expandafter

3082 }\romannumeral`&&@\XINT_expr_getop}%

3083 \def\XINT_expr_onliteral_qfrac #1)%

3084 {\expandafter\XINT_expr_put_op_first\expanded{{{\xintRaw{#1}}}\expandafter

3085 }\romannumeral`&&@\XINT_expr_getop}%

3086 \def\XINT_expr_onliteral_qfloat #1)%

3087 {\expandafter\XINT_expr_put_op_first\expanded{{{\XINTinFloatSdigits{#1}}}\expandafter

3088 }\romannumeral`&&@\XINT_expr_getop}%

3089 \def\XINT_expr_onliteral_qraw #1)%

3090 {\expandafter\XINT_expr_put_op_first\expanded{{#1}\expandafter

3091 }\romannumeral`&&@\XINT_expr_getop}%

3092 \def\XINT_expr_onliteral_random #1)%

3093 {\expandafter\XINT_expr_put_op_first\expanded{{{\XINTinRandomFloatSdigits}}\expandafter

3094 }\romannumeral`&&@\XINT_expr_getop}%

3095 \def\XINT_expr_onliteral_qrand #1)%

3096 {\expandafter\XINT_expr_put_op_first\expanded{{{\XINTinRandomFloatSixteen}}\expandafter

3097 }\romannumeral`&&@\XINT_expr_getop}%

3098 \def\XINT_expr_onliteral_rbit #1)%

3099 {\expandafter\XINT_expr_put_op_first\expanded{{{\xintRandBit}}\expandafter

3100 }\romannumeral`&&@\XINT_expr_getop}%

27.30. Regular built-in functions: num(), reduce(), preduce(), abs(), sgn(),
frac(), floor(), ceil(), sqr(), ?(), !(), not(), odd(), even(), isint(),
isone(), factorial(), sqrt(), sqrtr(), inv(), round(), trunc(), float(),
sfloat(), ilog10(), divmod(), mod(), binomial(), pfactorial(),
randrange(), iquo(), irem(), gcd(), lcm(), max(), min(), `+`(), `*`(),
all(), any(), xor(), len(), first(), last(), reversed(), if(), ifint(),
ifone(), ifsgn(), nuple(), unpack(), flat() and zip()

3101 \def\XINT:expr:f:one:and:opt #1#2#3!#4#5%

649

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3102 {%

3103 \if\relax#3\relax\expandafter\xint_firstoftwo\else

3104 \expandafter\xint_secondoftwo\fi

3105 {#4}{#5[\xintNum{#2}]}{#1}%

3106 }%

3107 \def\XINT:expr:f:tacitzeroifone #1#2#3!#4#5%

3108 {%

3109 \if\relax#3\relax\expandafter\xint_firstoftwo\else

3110 \expandafter\xint_secondoftwo\fi

3111 {#4{0}}{#5{\xintNum{#2}}}{#1}%

3112 }%

3113 \def\XINT:expr:f:iitacitzeroifone #1#2#3!#4%

3114 {%

3115 \if\relax#3\relax\expandafter\xint_firstoftwo\else

3116 \expandafter\xint_secondoftwo\fi

3117 {#4{0}}{#4{#2}}{#1}%

3118 }%

3119 \def\XINT_expr_func_num #1#2#3%

3120 {%

3121 \expandafter #1\expandafter #2\expandafter{%

3122 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3123 {\romannumeral`&&@\xintNum#3}}%

3124 }%

3125 \let\XINT_flexpr_func_num\XINT_expr_func_num

3126 \let\XINT_iiexpr_func_num\XINT_expr_func_num

3127 \def\XINT_expr_func_reduce #1#2#3%

3128 {%

3129 \expandafter #1\expandafter #2\expandafter{%

3130 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3131 {\romannumeral`&&@\xintIrr#3}}%

3132 }%

3133 \let\XINT_flexpr_func_reduce\XINT_expr_func_reduce

3134 \def\XINT_expr_func_preduce #1#2#3%

3135 {%

3136 \expandafter #1\expandafter #2\expandafter{%

3137 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3138 {\romannumeral`&&@\xintPIrr#3}}%

3139 }%

3140 \let\XINT_flexpr_func_preduce\XINT_expr_func_preduce

3141 \def\XINT_expr_func_abs #1#2#3%

3142 {%

3143 \expandafter #1\expandafter #2\expandafter{%

3144 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3145 {\romannumeral`&&@\xintAbs#3}}%

3146 }%

3147 \let\XINT_flexpr_func_abs\XINT_expr_func_abs

3148 \def\XINT_iiexpr_func_abs #1#2#3%

3149 {%

3150 \expandafter #1\expandafter #2\expandafter{%

3151 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3152 {\romannumeral`&&@\xintiiAbs#3}}%

3153 }%

650

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3154 \def\XINT_expr_func_sgn #1#2#3%

3155 {%

3156 \expandafter #1\expandafter #2\expandafter{%

3157 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3158 {\romannumeral`&&@\xintSgn#3}}%

3159 }%

3160 \let\XINT_flexpr_func_sgn\XINT_expr_func_sgn

3161 \def\XINT_iiexpr_func_sgn #1#2#3%

3162 {%

3163 \expandafter #1\expandafter #2\expandafter{%

3164 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3165 {\romannumeral`&&@\xintiiSgn#3}}%

3166 }%

3167 \def\XINT_expr_func_frac #1#2#3%

3168 {%

3169 \expandafter #1\expandafter #2\expandafter{%

3170 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3171 {\romannumeral`&&@\xintTFrac#3}}%

3172 }%

3173 \def\XINT_flexpr_func_frac #1#2#3%

3174 {%

3175 \expandafter #1\expandafter #2\expandafter{%

3176 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3177 {\romannumeral`&&@\XINTinFloatFrac#3}}%

3178 }%

no \XINT_iiexpr_func_frac

3179 \def\XINT_expr_func_floor #1#2#3%

3180 {%

3181 \expandafter #1\expandafter #2\expandafter{%

3182 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3183 {\romannumeral`&&@\xintFloor#3}}%

3184 }%

3185 \let\XINT_flexpr_func_floor\XINT_expr_func_floor

The floor and ceil functions in \xintiiexpr require protect(a/b) or, better, \qfrac(a/b); else

the / will be executed first and do an integer rounded division.

3186 \def\XINT_iiexpr_func_floor #1#2#3%

3187 {%

3188 \expandafter #1\expandafter #2\expandafter{%

3189 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3190 {\romannumeral`&&@\xintiFloor#3}}%

3191 }%

3192 \def\XINT_expr_func_ceil #1#2#3%

3193 {%

3194 \expandafter #1\expandafter #2\expandafter{%

3195 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3196 {\romannumeral`&&@\xintCeil#3}}%

3197 }%

3198 \let\XINT_flexpr_func_ceil\XINT_expr_func_ceil

3199 \def\XINT_iiexpr_func_ceil #1#2#3%

3200 {%

3201 \expandafter #1\expandafter #2\expandafter{%

3202 \romannumeral`&&@\XINT:NEhook:f:one:from:one

651

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3203 {\romannumeral`&&@\xintiCeil#3}}%

3204 }%

3205 \def\XINT_expr_func_sqr #1#2#3%

3206 {%

3207 \expandafter #1\expandafter #2\expandafter{%

3208 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3209 {\romannumeral`&&@\xintSqr#3}}%

3210 }%

3211 \def\XINT_flexpr_func_sqr #1#2#3%

3212 {%

3213 \expandafter #1\expandafter #2\expandafter{%

3214 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3215 {\romannumeral`&&@\XINTinFloatSqr#3}}%

3216 }%

3217 \def\XINT_iiexpr_func_sqr #1#2#3%

3218 {%

3219 \expandafter #1\expandafter #2\expandafter{%

3220 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3221 {\romannumeral`&&@\xintiiSqr#3}}%

3222 }%

3223 \def\XINT_expr_func_? #1#2#3%

3224 {%

3225 \expandafter #1\expandafter #2\expandafter{%

3226 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3227 {\romannumeral`&&@\xintiiIsNotZero#3}}%

3228 }%

3229 \let\XINT_flexpr_func_? \XINT_expr_func_?

3230 \let\XINT_iiexpr_func_? \XINT_expr_func_?

3231 \def\XINT_expr_func_! #1#2#3%

3232 {%

3233 \expandafter #1\expandafter #2\expandafter{%

3234 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3235 {\romannumeral`&&@\xintiiIsZero#3}}%

3236 }%

3237 \let\XINT_flexpr_func_! \XINT_expr_func_!

3238 \let\XINT_iiexpr_func_! \XINT_expr_func_!

3239 \def\XINT_expr_func_not #1#2#3%

3240 {%

3241 \expandafter #1\expandafter #2\expandafter{%

3242 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3243 {\romannumeral`&&@\xintiiIsZero#3}}%

3244 }%

3245 \let\XINT_flexpr_func_not \XINT_expr_func_not

3246 \let\XINT_iiexpr_func_not \XINT_expr_func_not

3247 \def\XINT_expr_func_odd #1#2#3%

3248 {%

3249 \expandafter #1\expandafter #2\expandafter{%

3250 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3251 {\romannumeral`&&@\xintOdd#3}}%

3252 }%

3253 \let\XINT_flexpr_func_odd\XINT_expr_func_odd

3254 \def\XINT_iiexpr_func_odd #1#2#3%

652

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3255 {%

3256 \expandafter #1\expandafter #2\expandafter{%

3257 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3258 {\romannumeral`&&@\xintiiOdd#3}}%

3259 }%

3260 \def\XINT_expr_func_even #1#2#3%

3261 {%

3262 \expandafter #1\expandafter #2\expandafter{%

3263 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3264 {\romannumeral`&&@\xintEven#3}}%

3265 }%

3266 \let\XINT_flexpr_func_even\XINT_expr_func_even

3267 \def\XINT_iiexpr_func_even #1#2#3%

3268 {%

3269 \expandafter #1\expandafter #2\expandafter{%

3270 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3271 {\romannumeral`&&@\xintiiEven#3}}%

3272 }%

3273 \def\XINT_expr_func_isint #1#2#3%

3274 {%

3275 \expandafter #1\expandafter #2\expandafter{%

3276 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3277 {\romannumeral`&&@\xintIsInt#3}}%

3278 }%

3279 \def\XINT_flexpr_func_isint #1#2#3%

3280 {%

3281 \expandafter #1\expandafter #2\expandafter{%

3282 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3283 {\romannumeral`&&@\xintFloatIsInt#3}}%

3284 }%

3285 \let\XINT_iiexpr_func_isint\XINT_expr_func_isint % ? perhaps rather always 1

3286 \def\XINT_expr_func_isone #1#2#3%

3287 {%

3288 \expandafter #1\expandafter #2\expandafter{%

3289 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3290 {\romannumeral`&&@\xintIsOne#3}}%

3291 }%

3292 \let\XINT_flexpr_func_isone\XINT_expr_func_isone

3293 \def\XINT_iiexpr_func_isone #1#2#3%

3294 {%

3295 \expandafter #1\expandafter #2\expandafter{%

3296 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3297 {\romannumeral`&&@\xintiiIsOne#3}}%

3298 }%

3299 \def\XINT_expr_func_factorial #1#2#3%

3300 {%

3301 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3302 \romannumeral`&&@\XINT:NEhook:f:one:and:opt:direct

3303 \XINT:expr:f:one:and:opt #3,!\xintFac\XINTinFloatFac

3304 }}%

3305 }%

3306 \def\XINT_flexpr_func_factorial #1#2#3%

653

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3307 {%

3308 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3309 \romannumeral`&&@\XINT:NEhook:f:one:and:opt:direct

3310 \XINT:expr:f:one:and:opt#3,!\XINTinFloatFacdigits\XINTinFloatFac

3311 }}%

3312 }%

3313 \def\XINT_iiexpr_func_factorial #1#2#3%

3314 {%

3315 \expandafter #1\expandafter #2\expandafter{%

3316 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3317 {\romannumeral`&&@\xintiiFac#3}}%

3318 }%

3319 \def\XINT_expr_func_sqrt #1#2#3%

3320 {%

3321 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3322 \romannumeral`&&@\XINT:NEhook:f:one:and:opt:direct

3323 \XINT:expr:f:one:and:opt #3,!\XINTinFloatSqrtdigits\XINTinFloatSqrt

3324 }}%

3325 }%

3326 \let\XINT_flexpr_func_sqrt\XINT_expr_func_sqrt

3327 \def\XINT_iiexpr_func_sqrt #1#2#3%

3328 {%

3329 \expandafter #1\expandafter #2\expandafter{%

3330 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3331 {\romannumeral`&&@\xintiiSqrt#3}}%

3332 }%

3333 \def\XINT_iiexpr_func_sqrtr #1#2#3%

3334 {%

3335 \expandafter #1\expandafter #2\expandafter{%

3336 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3337 {\romannumeral`&&@\xintiiSqrtR#3}}%

3338 }%

3339 \def\XINT_expr_func_inv #1#2#3%

3340 {%

3341 \expandafter #1\expandafter #2\expandafter{%

3342 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3343 {\romannumeral`&&@\xintInv#3}}%

3344 }%

3345 \def\XINT_flexpr_func_inv #1#2#3%

3346 {%

3347 \expandafter #1\expandafter #2\expandafter{%

3348 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3349 {\romannumeral`&&@\XINTinFloatInv#3}}%

3350 }%

3351 \def\XINT_expr_func_round #1#2#3%

3352 {%

3353 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3354 \romannumeral`&&@\XINT:NEhook:f:tacitzeroifone:direct

3355 \XINT:expr:f:tacitzeroifone #3,!\xintiRound\xintRound

3356 }}%

3357 }%

3358 \let\XINT_flexpr_func_round\XINT_expr_func_round

654

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3359 \def\XINT_iiexpr_func_round #1#2#3%

3360 {%

3361 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3362 \romannumeral`&&@\XINT:NEhook:f:iitacitzeroifone:direct

3363 \XINT:expr:f:iitacitzeroifone #3,!\xintiRound

3364 }}%

3365 }%

3366 \def\XINT_expr_func_trunc #1#2#3%

3367 {%

3368 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3369 \romannumeral`&&@\XINT:NEhook:f:tacitzeroifone:direct

3370 \XINT:expr:f:tacitzeroifone #3,!\xintiTrunc\xintTrunc

3371 }}%

3372 }%

3373 \let\XINT_flexpr_func_trunc\XINT_expr_func_trunc

3374 \def\XINT_iiexpr_func_trunc #1#2#3%

3375 {%

3376 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3377 \romannumeral`&&@\XINT:NEhook:f:iitacitzeroifone:direct

3378 \XINT:expr:f:iitacitzeroifone #3,!\xintiTrunc

3379 }}%

3380 }%

Hesitation at 1.3e about using \XINTinFloatSdigits and \XINTinFloatS. Finally I add a sfloat()

function. It helps for xinttrig.sty.

3381 \def\XINT_expr_func_float #1#2#3%

3382 {%

3383 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3384 \romannumeral`&&@\XINT:NEhook:f:one:and:opt:direct

3385 \XINT:expr:f:one:and:opt #3,!\XINTinFloatdigits\XINTinFloat

3386 }}%

3387 }%

3388 \let\XINT_flexpr_func_float\XINT_expr_func_float

float_() was added at 1.4, as a shortcut alias to float() skipping the check for an optional second

argument. This is useful to transfer function definitions between \xintexpr and \xintfloatexpr

contexts.

No need for a similar shortcut for sfloat() as currently used in xinttrig.sty to go from float

to expr: as it is used there as sfloat(x) with dummy x, it sees there is no optional argument,

contrarily to for example float(\xintexpr...\relax) which has to allow for the inner expression

to expand to an ople with two items, so does not know in which branch it is at time of definiion.

After some hesitation at 1.4e regarding guard digits mechanism the float_() got renamed to

float_dgt(), but then renamed back to float_() to avoid a breaking change and having to document

it.

Nevertheless the documentation of 1.4e mentioned float_dgt()... but it was still float_()...

now changed into float_dgt() for real at 1.4f.

1.4f also adds private float_dgtormax and sfloat_dgtormax for matters of xinttrig.

3389 \def\XINT_expr_func_float_dgt #1#2#3%

3390 {%

3391 \expandafter #1\expandafter #2\expandafter{%

3392 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3393 {\romannumeral`&&@\XINTinFloatdigits#3}}%

3394 }%

3395 \let\XINT_flexpr_func_float_dgt\XINT_expr_func_float_dgt

655

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3396 % no \XINT_iiexpr_func_float_dgt

3397 \def\XINT_expr_func_float_dgtormax #1#2#3%

3398 {%

3399 \expandafter #1\expandafter #2\expandafter{%

3400 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3401 {\romannumeral`&&@\XINTinFloatdigitsormax#3}}%

3402 }%

3403 \let\XINT_flexpr_func_float_dgtormax\XINT_expr_func_float_dgtormax

3404 \def\XINT_expr_func_sfloat #1#2#3%

3405 {%

3406 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3407 \romannumeral`&&@\XINT:NEhook:f:one:and:opt:direct

3408 \XINT:expr:f:one:and:opt #3,!\XINTinFloatSdigits\XINTinFloatS

3409 }}%

3410 }%

3411 \let\XINT_flexpr_func_sfloat\XINT_expr_func_sfloat

3412 % no \XINT_iiexpr_func_sfloat

3413 \def\XINT_expr_func_sfloat_dgtormax #1#2#3%

3414 {%

3415 \expandafter #1\expandafter #2\expandafter{%

3416 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3417 {\romannumeral`&&@\XINTinFloatSdigitsormax#3}}%

3418 }%

3419 \let\XINT_flexpr_func_sfloat_dgtormax\XINT_expr_func_sfloat_dgtormax

3420 \expandafter\def\csname XINT_expr_func_ilog10\endcsname #1#2#3%

3421 {%

3422 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3423 \romannumeral`&&@\XINT:NEhook:f:one:and:opt:direct

3424 \XINT:expr:f:one:and:opt #3,!\xintiLogTen\XINTFloatiLogTen

3425 }}%

3426 }%

3427 \expandafter\def\csname XINT_flexpr_func_ilog10\endcsname #1#2#3%

3428 {%

3429 \expandafter #1\expandafter #2\expandafter{\expandafter{%

3430 \romannumeral`&&@\XINT:NEhook:f:one:and:opt:direct

3431 \XINT:expr:f:one:and:opt #3,!\XINTFloatiLogTendigits\XINTFloatiLogTen

3432 }}%

3433 }%

3434 \expandafter\def\csname XINT_iiexpr_func_ilog10\endcsname #1#2#3%

3435 {%

3436 \expandafter #1\expandafter #2\expandafter{%

3437 \romannumeral`&&@\XINT:NEhook:f:one:from:one

3438 {\romannumeral`&&@\xintiiLogTen#3}}%

3439 }%

3440 \def\XINT_expr_func_divmod #1#2#3%

3441 {%

3442 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3443 \XINT:NEhook:f:one:from:two

3444 {\romannumeral`&&@\xintDivMod #3}}%

3445 }%

3446 \def\XINT_flexpr_func_divmod #1#2#3%

3447 {%

656

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3448 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3449 \XINT:NEhook:f:one:from:two

3450 {\romannumeral`&&@\XINTinFloatDivMod #3}}%

3451 }%

3452 \def\XINT_iiexpr_func_divmod #1#2#3%

3453 {%

3454 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3455 \XINT:NEhook:f:one:from:two

3456 {\romannumeral`&&@\xintiiDivMod #3}}%

3457 }%

3458 \def\XINT_expr_func_mod #1#2#3%

3459 {%

3460 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3461 \XINT:NEhook:f:one:from:two

3462 {\romannumeral`&&@\xintMod#3}}%

3463 }%

3464 \def\XINT_flexpr_func_mod #1#2#3%

3465 {%

3466 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3467 \XINT:NEhook:f:one:from:two

3468 {\romannumeral`&&@\XINTinFloatMod#3}}%

3469 }%

3470 \def\XINT_iiexpr_func_mod #1#2#3%

3471 {%

3472 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3473 \XINT:NEhook:f:one:from:two

3474 {\romannumeral`&&@\xintiiMod#3}}%

3475 }%

3476 \def\XINT_expr_func_binomial #1#2#3%

3477 {%

3478 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3479 \XINT:NEhook:f:one:from:two

3480 {\romannumeral`&&@\xintBinomial #3}}%

3481 }%

3482 \def\XINT_flexpr_func_binomial #1#2#3%

3483 {%

3484 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3485 \XINT:NEhook:f:one:from:two

3486 {\romannumeral`&&@\XINTinFloatBinomial #3}}%

3487 }%

3488 \def\XINT_iiexpr_func_binomial #1#2#3%

3489 {%

3490 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3491 \XINT:NEhook:f:one:from:two

3492 {\romannumeral`&&@\xintiiBinomial #3}}%

3493 }%

3494 \def\XINT_expr_func_pfactorial #1#2#3%

3495 {%

3496 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3497 \XINT:NEhook:f:one:from:two

3498 {\romannumeral`&&@\xintPFactorial #3}}%

3499 }%

657

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3500 \def\XINT_flexpr_func_pfactorial #1#2#3%

3501 {%

3502 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3503 \XINT:NEhook:f:one:from:two

3504 {\romannumeral`&&@\XINTinFloatPFactorial #3}}%

3505 }%

3506 \def\XINT_iiexpr_func_pfactorial #1#2#3%

3507 {%

3508 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3509 \XINT:NEhook:f:one:from:two

3510 {\romannumeral`&&@\xintiiPFactorial #3}}%

3511 }%

3512 \def\XINT_expr_func_randrange #1#2#3%

3513 {%

3514 \expandafter #1\expandafter #2\expanded{{{%

3515 \XINT:expr:randrange #3,!%

3516 }}}%

3517 }%

3518 \let\XINT_flexpr_func_randrange\XINT_expr_func_randrange

3519 \def\XINT_iiexpr_func_randrange #1#2#3%

3520 {%

3521 \expandafter #1\expandafter #2\expanded{{{%

3522 \XINT:iiexpr:randrange #3,!%

3523 }}}%

3524 }%

3525 \def\XINT:expr:randrange #1#2#3!%

3526 {%

3527 \if\relax#3\relax\expandafter\xint_firstoftwo\else

3528 \expandafter\xint_secondoftwo\fi

3529 {\xintiiRandRange{\XINT:NEhook:f:one:from:one:direct\xintNum{#1}}}%

3530 {\xintiiRandRangeAtoB{\XINT:NEhook:f:one:from:one:direct\xintNum{#1}}%

3531 {\XINT:NEhook:f:one:from:one:direct\xintNum{#2}}%

3532 }%

3533 }%

3534 \def\XINT:iiexpr:randrange #1#2#3!%

3535 {%

3536 \if\relax#3\relax\expandafter\xint_firstoftwo\else

3537 \expandafter\xint_secondoftwo\fi

3538 {\xintiiRandRange{#1}}%

3539 {\xintiiRandRangeAtoB{#1}{#2}}%

3540 }%

3541 \def\XINT_iiexpr_func_iquo #1#2#3%

3542 {%

3543 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3544 \XINT:NEhook:f:one:from:two

3545 {\romannumeral`&&@\xintiiQuo #3}}%

3546 }%

3547 \def\XINT_iiexpr_func_irem #1#2#3%

3548 {%

3549 \expandafter #1\expandafter #2\expandafter{\romannumeral`&&@%

3550 \XINT:NEhook:f:one:from:two

3551 {\romannumeral`&&@\xintiiRem #3}}%

658

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3552 }%

3553 \def\XINT_expr_func_gcd #1#2#3%

3554 {%

3555 \expandafter #1\expandafter #2\expandafter{\expandafter

3556 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_GCDof#3^}}%

3557 }%

3558 \let\XINT_flexpr_func_gcd\XINT_expr_func_gcd

3559 \def\XINT_iiexpr_func_gcd #1#2#3%

3560 {%

3561 \expandafter #1\expandafter #2\expandafter{\expandafter

3562 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_iiGCDof#3^}}%

3563 }%

3564 \def\XINT_expr_func_lcm #1#2#3%

3565 {%

3566 \expandafter #1\expandafter #2\expandafter{\expandafter

3567 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_LCMof#3^}}%

3568 }%

3569 \let\XINT_flexpr_func_lcm\XINT_expr_func_lcm

3570 \def\XINT_iiexpr_func_lcm #1#2#3%

3571 {%

3572 \expandafter #1\expandafter #2\expandafter{\expandafter

3573 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_iiLCMof#3^}}%

3574 }%

3575 \def\XINT_expr_func_max #1#2#3%

3576 {%

3577 \expandafter #1\expandafter #2\expandafter{\expandafter

3578 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_Maxof#3^}}%

3579 }%

3580 \def\XINT_iiexpr_func_max #1#2#3%

3581 {%

3582 \expandafter #1\expandafter #2\expandafter{\expandafter

3583 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_iiMaxof#3^}}%

3584 }%

3585 \def\XINT_flexpr_func_max #1#2#3%

3586 {%

3587 \expandafter #1\expandafter #2\expandafter{\expandafter

3588 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINTinFloatMaxof#3^}}%

3589 }%

3590 \def\XINT_expr_func_min #1#2#3%

3591 {%

3592 \expandafter #1\expandafter #2\expandafter{\expandafter

3593 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_Minof#3^}}%

3594 }%

3595 \def\XINT_iiexpr_func_min #1#2#3%

3596 {%

3597 \expandafter #1\expandafter #2\expandafter{\expandafter

3598 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_iiMinof#3^}}%

3599 }%

3600 \def\XINT_flexpr_func_min #1#2#3%

3601 {%

3602 \expandafter #1\expandafter #2\expandafter{\expandafter

3603 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINTinFloatMinof#3^}}%

659

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3604 }%

3605 \expandafter

3606 \def\csname XINT_expr_func_+\endcsname #1#2#3%

3607 {%

3608 \expandafter #1\expandafter #2\expandafter{\expandafter

3609 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_Sum#3^}}%

3610 }%

3611 \expandafter

3612 \def\csname XINT_flexpr_func_+\endcsname #1#2#3%

3613 {%

3614 \expandafter #1\expandafter #2\expandafter{\expandafter

3615 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINTinFloatSum#3^}}%

3616 }%

3617 \expandafter

3618 \def\csname XINT_iiexpr_func_+\endcsname #1#2#3%

3619 {%

3620 \expandafter #1\expandafter #2\expandafter{\expandafter

3621 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_iiSum#3^}}%

3622 }%

3623 \expandafter

3624 \def\csname XINT_expr_func_*\endcsname #1#2#3%

3625 {%

3626 \expandafter #1\expandafter #2\expandafter{\expandafter

3627 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_Prd#3^}}%

3628 }%

3629 \expandafter

3630 \def\csname XINT_flexpr_func_*\endcsname #1#2#3%

3631 {%

3632 \expandafter #1\expandafter #2\expandafter{\expandafter

3633 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINTinFloatPrd#3^}}%

3634 }%

3635 \expandafter

3636 \def\csname XINT_iiexpr_func_*\endcsname #1#2#3%

3637 {%

3638 \expandafter #1\expandafter #2\expandafter{\expandafter

3639 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_iiPrd#3^}}%

3640 }%

3641 \def\XINT_expr_func_all #1#2#3%

3642 {%

3643 \expandafter #1\expandafter #2\expandafter{\expandafter

3644 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_ANDof#3^}}%

3645 }%

3646 \let\XINT_flexpr_func_all\XINT_expr_func_all

3647 \let\XINT_iiexpr_func_all\XINT_expr_func_all

3648 \def\XINT_expr_func_any #1#2#3%

3649 {%

3650 \expandafter #1\expandafter #2\expandafter{\expandafter

3651 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_ORof#3^}}%

3652 }%

3653 \let\XINT_flexpr_func_any\XINT_expr_func_any

3654 \let\XINT_iiexpr_func_any\XINT_expr_func_any

3655 \def\XINT_expr_func_xor #1#2#3%

660

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3656 {%

3657 \expandafter #1\expandafter #2\expandafter{\expandafter

3658 {\romannumeral`&&@\XINT:NEhook:f:from:delim:u\XINT_XORof#3^}}%

3659 }%

3660 \let\XINT_flexpr_func_xor\XINT_expr_func_xor

3661 \let\XINT_iiexpr_func_xor\XINT_expr_func_xor

3662 \def\XINT_expr_func_len #1#2#3%

3663 {%

3664 \expandafter#1\expandafter#2\expandafter{\expandafter{%

3665 \romannumeral`&&@\XINT:NEhook:f:LFL\xintLength

3666 {\romannumeral\XINT:NEhook:r:check#3^}%

3667 }}%

3668 }%

3669 \let\XINT_flexpr_func_len \XINT_expr_func_len

3670 \let\XINT_iiexpr_func_len \XINT_expr_func_len

3671 \def\XINT_expr_func_first #1#2#3%

3672 {%

3673 \expandafter #1\expandafter #2\expandafter{%

3674 \romannumeral`&&@\XINT:NEhook:f:LFL\xintFirstOne

3675 {\romannumeral\XINT:NEhook:r:check#3^}%

3676 }%

3677 }%

3678 \let\XINT_flexpr_func_first\XINT_expr_func_first

3679 \let\XINT_iiexpr_func_first\XINT_expr_func_first

3680 \def\XINT_expr_func_last #1#2#3%

3681 {%

3682 \expandafter #1\expandafter #2\expandafter{%

3683 \romannumeral`&&@\XINT:NEhook:f:LFL\xintLastOne

3684 {\romannumeral\XINT:NEhook:r:check#3^}%

3685 }%

3686 }%

3687 \let\XINT_flexpr_func_last\XINT_expr_func_last

3688 \let\XINT_iiexpr_func_last\XINT_expr_func_last

3689 \def\XINT_expr_func_reversed #1#2#3%

3690 {%

3691 \expandafter #1\expandafter #2\expandafter{%

3692 \romannumeral`&&@\XINT:NEhook:f:reverse\XINT_expr_reverse

3693 #3^^#3\xint:\xint:\xint:\xint:

3694 \xint:\xint:\xint:\xint:\xint_bye

3695 }%

3696 }%

3697 \def\XINT_expr_reverse #1#2%

3698 {%

3699 \if ^\noexpand#2%

3700 \expandafter\XINT_expr_reverse:_one_or_none\string#1.%

3701 \else

3702 \expandafter\XINT_expr_reverse:_at_least_two

3703 \fi

3704 }%

3705 \def\XINT_expr_reverse:_at_least_two #1^^{\XINT_revwbr_loop {}}%

3706 \def\XINT_expr_reverse:_one_or_none #1%

3707 {%

661

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3708 \if #1\bgroup\xint_dothis\XINT_expr_reverse:_nutple\fi

3709 \if #1^\xint_dothis\XINT_expr_reverse:_nil\fi

3710 \xint_orthat\XINT_expr_reverse:_leaf

3711 }%

3712 \edef\XINT_expr_reverse:_nil #1\xint_bye{\noexpand\fi\space}%

3713 \def\XINT_expr_reverse:_leaf#1\fi #2\xint:#3\xint_bye{\fi\xint_gob_andstop_i#2}%

3714 \def\XINT_expr_reverse:_nutple%

3715 {%

3716 \expandafter\XINT_expr_reverse:_nutple_a\expandafter{\string}%

3717 }%

3718 \def\XINT_expr_reverse:_nutple_a #1^#2\xint:#3\xint_bye

3719 {%

3720 \fi\expandafter

3721 {\romannumeral0\XINT_revwbr_loop{}#2\xint:#3\xint_bye}%

3722 }%

3723 \let\XINT_flexpr_func_reversed\XINT_expr_func_reversed

3724 \let\XINT_iiexpr_func_reversed\XINT_expr_func_reversed

3725 \def\XINT_expr_func_if #1#2#3%

3726 {%

3727 \expandafter #1\expandafter #2\expandafter{%

3728 \romannumeral`&&@\XINT:NEhook:branch{\romannumeral`&&@\xintiiifNotZero #3}}%

3729 }%

3730 \let\XINT_flexpr_func_if\XINT_expr_func_if

3731 \let\XINT_iiexpr_func_if\XINT_expr_func_if

3732 \def\XINT_expr_func_ifint #1#2#3%

3733 {%

3734 \expandafter #1\expandafter #2\expandafter{%

3735 \romannumeral`&&@\XINT:NEhook:branch{\romannumeral`&&@\xintifInt #3}}%

3736 }%

3737 \let\XINT_iiexpr_func_ifint\XINT_expr_func_ifint

3738 \def\XINT_flexpr_func_ifint #1#2#3%

3739 {%

3740 \expandafter #1\expandafter #2\expandafter{%

3741 \romannumeral`&&@\XINT:NEhook:branch{\romannumeral`&&@\xintifFloatInt #3}}%

3742 }%

3743 \def\XINT_expr_func_ifone #1#2#3%

3744 {%

3745 \expandafter #1\expandafter #2\expandafter{%

3746 \romannumeral`&&@\XINT:NEhook:branch{\romannumeral`&&@\xintifOne #3}}%

3747 }%

3748 \let\XINT_flexpr_func_ifone\XINT_expr_func_ifone

3749 \def\XINT_iiexpr_func_ifone #1#2#3%

3750 {%

3751 \expandafter #1\expandafter #2\expandafter{%

3752 \romannumeral`&&@\XINT:NEhook:branch{\romannumeral`&&@\xintiiifOne #3}}%

3753 }%

3754 \def\XINT_expr_func_ifsgn #1#2#3%

3755 {%

3756 \expandafter #1\expandafter #2\expandafter{%

3757 \romannumeral`&&@\XINT:NEhook:branch{\romannumeral`&&@\xintiiifSgn #3}}%

3758 }%

3759 \let\XINT_flexpr_func_ifsgn\XINT_expr_func_ifsgn

662

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3760 \let\XINT_iiexpr_func_ifsgn\XINT_expr_func_ifsgn

3761 \def\XINT_expr_func_nuple #1#2#3{#1#2{{#3}}}%

3762 \let\XINT_flexpr_func_nuple\XINT_expr_func_nuple

3763 \let\XINT_iiexpr_func_nuple\XINT_expr_func_nuple

3764 \def\XINT_expr_func_unpack #1#2%#3%

3765 {\expandafter#1\expandafter#2\romannumeral0\XINT:NEhook:unpack}%

3766 \let\XINT_flexpr_func_unpack\XINT_expr_func_unpack

3767 \let\XINT_iiexpr_func_unpack\XINT_expr_func_unpack

3768 \def\XINT_expr_func_flat #1#2%#3%

3769 {%

3770 \expandafter#1\expandafter#2\expanded

3771 \XINT:NEhook:x:flatten\XINT:expr:flatten

3772 }%

3773 \let\XINT_flexpr_func_flat\XINT_expr_func_flat

3774 \let\XINT_iiexpr_func_flat\XINT_expr_func_flat

3775 \let\XINT:NEhook:x:flatten\empty

3776 \def\XINT_expr_func_zip #1#2%#3%

3777 {%

3778 \expandafter#1\expandafter#2\romannumeral`&&@%

3779 \XINT:NEhook:x:zip\XINT:expr:zip

3780 }%

3781 \let\XINT_flexpr_func_zip\XINT_expr_func_zip

3782 \let\XINT_iiexpr_func_zip\XINT_expr_func_zip

3783 \let\XINT:NEhook:x:zip\empty

3784 \def\XINT:expr:zip#1{\expandafter{\expanded\XINT_zip_A#1\xint_bye\xint_bye}}%

27.31. User declared functions
It is possible that the author actually does understand at this time the \xintNewExpr/\xintdeffunc

refactored code and mechanisms for the first time since 2014: past evolutions such as the 2018 1.3

refactoring were done a bit in the fog (although they did accomplish a crucial step).

The 1.4 version of function and macro definitions is much more powerful than 1.3 one. But

the mechanisms such as «omit», «abort» and «break()» in iter() et al. can't be translated into

much else than their actual code when they potentially have to apply to non-numeric only con-

text. The 1.4 \xintdeffunc is thus apparently able to digest them but its pre-parsing benefits

are limited compared to simply assigning such parts of an expression to a mock-function created

by \xintNewFunction (which creates simply a TeX macro from its substitution expression in macro

parameters and add syntactic sugar to let it appear to \xintexpr as a genuine «function» although

nothing of the syntax has really been pre-parsed.)

At 1.4 fetching the expression up to final semi-colon is done using \XINT_expr_fetch_to_semico ⤸
lon, hence semi-colons arising in the syntax do not need to be hidden inside braces.

27.31.1 \xintdeffunc, \xintdefiifunc, \xintdeffloatfunc 664
27.31.2 \xintdefufunc, \xintdefiiufunc, \xintdeffloatufunc 667
27.31.3 \xintunassignexprfunc, \xintunassigniiexprfunc, \xintunassignfloatexprfunc . 668
27.31.4 \xintNewFunction . 668
27.31.5 Mysterious stuff . 670
27.31.6 \XINT_expr_redefinemacros . 682
27.31.7 \xintNewExpr, \xintNewIExpr, \xintNewFloatExpr, \xintNewIIExpr 683
27.31.8 \xintexprSafeCatcodes, \xintexprRestoreCatcodes 686

663

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.31.1. \xintdeffunc, \xintdefiifunc, \xintdeffloatfunc

Modified at 1.2c (2015/11/16). Note: it is possible to have same name assigned both to a variable

and a function: things such as add(f(f), f=1..10) are possible.

Modified at 1.2c (2015/11/16). Function names first expanded then detokenized and cleaned of

spaces.

Modified at 1.2e (2015/11/22). No \detokenize anymore on the function names. And #1(#2)#3=#4

parameter pattern to avoid to have to worry if a : is there and it is active.

Modified at 1.2f (2016/03/12). La macro associée à la fonction ne débute plus par un \romannumer ⤸
al, car de toute façon elle est pour emploi dans \csname..\endcsname.

Modified at 1.2f (2016/03/12). Comma separated expressions allowed (formerly this required using

parenthesis \xintdeffunc foo(x,..):=(.., .., ..);

Modified at 1.3c (2018/06/17). Usage of \xintexprSafeCatcodes to be compatible with an active

semi-colon at time of use; the colon was not a problem (see ##3) already.

Modified at 1.3e (2019/04/05). \xintdefefunc variant added for functions which will expand com-

pletely if used with numeric arguments in other function definitions. They can't be used for

recursive definitions.

Their functionality was merged into \xintdeffunc et al. at 1.4. The original macros were re-

moved at 1.4m.

Modified at 1.4 (2020/01/31). Multi-letter variables can be used (with no prior declaration)

Modified at 1.4 (2020/01/31). The new internal data model has caused many worries initially (such

as whether to allow functions with «ople» outputs in contrast to «numbers» or «nutples») but in

the end all is simpler again and the refactoring of ? and ?? in function definitions allows

to fuse inert functions (allowing recursive definitions) and expanding functions (expanding

completely if with numeric arguments) into a single entity.

A special situation is with functions of no variables. In that case it will be handled as an

inert entity, else they would not be different from variables.

Modified at 1.4 (2020/01/31). Addition de la syntaxe déclarative \xintdeffunc foo(a,b,...,*z) =

...;

Modified at 1.4m (2022/06/10). Removal of the \xintdefefunc et al.macros deprecated at 1.4.

3785 \def\XINT_tmpa #1#2#3#4#5%

3786 {%

3787 \def #1##1(##2)##3={%

3788 \edef\XINT_deffunc_tmpa {##1}%

3789 \edef\XINT_deffunc_tmpa {\xint_zapspaces_o \XINT_deffunc_tmpa}%

3790 \def\XINT_deffunc_tmpb {0}%

3791 \edef\XINT_deffunc_tmpd {##2}%

3792 \edef\XINT_deffunc_tmpd {\xint_zapspaces_o\XINT_deffunc_tmpd}%

3793 \def\XINT_deffunc_tmpe {0}%

3794 \expandafter#5\romannumeral\XINT_expr_fetch_to_semicolon

3795 }% end of \xintdeffunc_a definition

3796 \def#5##1{%

3797 \def\XINT_deffunc_tmpc{(##1)}%

3798 \ifnum\xintLength:f:csv{\XINT_deffunc_tmpd}>\xint_c_

3799 \xintFor ####1 in {\XINT_deffunc_tmpd}\do

3800 {%

3801 \xintifForFirst{\let\XINT_deffunc_tmpd\empty}{}%

3802 \def\XINT_deffunc_tmpf{####1}%

3803 \if*\xintFirstItem{####1}%

3804 \xintifForLast

664

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3805 {%

3806 \def\XINT_deffunc_tmpe{1}%

3807 \edef\XINT_deffunc_tmpf{\xintTrim{1}{####1}}%

3808 }%

3809 {%

3810 \edef\XINT_deffunc_tmpf{\xintTrim{1}{####1}}%

3811 \xintMessage{xintexpr}{Error}

3812 {Only the last positional argument can be variadic. Trimmed ####1 to

3813 \XINT_deffunc_tmpf}%

3814 }%

3815 \fi

3816 \XINT_expr_makedummy{\XINT_deffunc_tmpf}%

3817 \edef\XINT_deffunc_tmpd{\XINT_deffunc_tmpd{\XINT_deffunc_tmpf}}%

3818 \edef\XINT_deffunc_tmpb {\the\numexpr\XINT_deffunc_tmpb+\xint_c_i}%

3819 \edef\XINT_deffunc_tmpc {subs(\xint_noxpd\expandafter{\XINT_deffunc_tmpc},%

3820 \XINT_deffunc_tmpf=################\XINT_deffunc_tmpb)}%

3821 }%

3822 \fi

Logic at 1.4 is simplified here compared to earlier releases.

Modified at 1.4n (2025/09/05). Usage of \xintmeaning wrapper of engine's \meaning. See near

\XINT_NewExpr for explanations.

3823 \ifcase\XINT_deffunc_tmpb\space

3824 \expandafter\XINT_expr_defuserfunc_none\csname

3825 \else

3826 \expandafter\XINT_expr_defuserfunc\csname

3827 \fi

3828 XINT_#2_func_\XINT_deffunc_tmpa\expandafter\endcsname

3829 \csname XINT_#2_userfunc_\XINT_deffunc_tmpa\expandafter\endcsname

3830 \expandafter{\XINT_deffunc_tmpa}{#2}%

3831 \expandafter#3\csname XINT_#2_userfunc_\XINT_deffunc_tmpa\endcsname

3832 [\XINT_deffunc_tmpb]{\XINT_deffunc_tmpc}%

3833 \ifxintverbose\xintMessage {xintexpr}{Info}%

3834 {Function \XINT_deffunc_tmpa\space for \string\xint #4 parser

3835 associated to \string\XINT_#2_userfunc_\XINT_deffunc_tmpa\space

3836 with \ifxintglobaldefs global \fi meaning \expandafter\xintmeaning

3837 \csname XINT_#2_userfunc_\XINT_deffunc_tmpa\endcsname}%

3838 \fi

3839 \xintFor* ####1 in {\XINT_deffunc_tmpd}:{\xintrestorevariablesilently{####1}}%

3840 \xintexprRestoreCatcodes

3841 }% end of \xintdeffunc_b definition

3842 }%

3843 \def\xintdeffunc {\xintexprSafeCatcodes\xintdeffunc_a}%

3844 \def\xintdefiifunc {\xintexprSafeCatcodes\xintdefiifunc_a}%

3845 \def\xintdeffloatfunc {\xintexprSafeCatcodes\xintdeffloatfunc_a}%

3846 \XINT_tmpa\xintdeffunc_a {expr} \XINT_NewFunc {expr}\xintdeffunc_b

3847 \XINT_tmpa\xintdefiifunc_a {iiexpr}\XINT_NewIIFunc {iiexpr}\xintdefiifunc_b

3848 \XINT_tmpa\xintdeffloatfunc_a{flexpr}\XINT_NewFloatFunc{floatexpr}\xintdeffloatfunc_b

3849 \def\XINT_expr_defuserfunc_none #1#2#3#4%

3850 {%

3851 \XINT_global

3852 \def #1##1##2##3%

3853 {%

665

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3854 \expandafter##1\expandafter##2\expanded{%

3855 {\XINT:NEhook:usernoargfunc\csname XINT_#4_userfunc_#3\endcsname}%

3856 }%

3857 }%

3858 }%

3859 \let\XINT:NEhook:usernoargfunc \empty

3860 \def\XINT_expr_defuserfunc #1#2#3#4%

3861 {%

3862 \if0\XINT_deffunc_tmpe

3863 \XINT_global

3864 \def #1##1##2%##3%

3865 {%

3866 \expandafter ##1\expandafter##2\expanded\bgroup{\iffalse}\fi

3867 \XINT:NEhook:userfunc{XINT_#4_userfunc_#3}#2%##3%

3868 }%

3869 \else

Last argument in the call signature is variadic (was prefixed by *).

3870 \def #1##1{%

3871 \XINT_global\def #1####1####2%####3%

3872 {%

3873 \expandafter ####1\expandafter####2\expanded\bgroup{\iffalse}\fi

3874 \XINT:NEhook:userfunc:argv{##1}{XINT_#4_userfunc_#3}#2%####3%

3875 }}\expandafter#1\expandafter{\the\numexpr\XINT_deffunc_tmpb-1}%

3876 \fi

3877 }%

Deliberate brace stripping of #3 to reveal the elements of the ople, which may be atoms i.e. nu-

meric data such as {1}, or again oples, which means that the corresponding item was a nutple, for

example it came from input syntax such as foo(1, 2, [1, 2], 3), so (up to details of raw encoding)

{1}{2}{{1}{2}}{3}, which gives 4 braced arguments to macro #2.

3878 \def\XINT:NEhook:userfunc #1#2#3{#2#3\iffalse{{\fi}}}%

Here #1 indicates the number k-1 of standard positional arguments of the call signature, the kth

and last one having been declared of variadic type. The braces around \xintTrim{#1}{#4} have the

effect to gather all these remaining elements to provide a single one to the TeX macro.

For example input was foo(1,2,3,4,5) and call signature was foo(a,b,*z). Then #4 will fetch

{{1}{2}{3}{4}{5}}, with one level of brace removal. We will have \xintKeep{2}{{1}{2}{3}{4}{5}}

which produces {1}{2}. Then {\xintTrim{2}{{1}{2}{3}{4}{5}}} which produces {{3}{4}{5}}. So the

macro will be used as \macro{1}{2}{{3}{4}{5}} having been declared as a macro with 3 arguments.

The above comments were added in June 2021 but the code was done on January 19, 2020 for 1.4.

Note on June 10, 2021: at core level \XINT_NewFunc is used which is derived from \XINT_NewExpr

which has always prepared TeX macros with non-delimited parameters. A refactoring could add a

final delimiter, for example \relax. The macro with 3 arguments would be defined as \def\macr ⤸
o#1#2#3\relax{...} for example. Then we could transfer to TeX core processing what is achieved

here via \xintKeep/\xintTrim, of course adding efficiency, via insertion of the delimiter. In the

case of foo(1,2,3,4,5) we would have the #3 of delimited \macro fetch {3}{4}{5}, no brace removal,

which is equivalent to current situation fetching {{3}{4}{5}} with brace removal. But let's see

in case of foo(1,2,3) then. This would lead to delimited \macro{1}{2}{3}\relax and #3 will fetch

{3}, removing one brace pair. Whereas current non-delimited \macro is used as \macro{1}{2}{{3}}

from the Keep/Trim, then #3 fetches {{3}}, removing one brace pair. Not the same thing. So it

seems there is a stumbling-block here to adopt such an alternative method, in relation with brace

removal. Rather relieved in fact, as my head starts spinning in ople world. Seems better to

stop thinking about doing something like that, and what it would imply as consequences for user

666

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

declarative interface also. Oples are dangerous to mental health, let's stick with one-ples: «

named arguments in function body declaration must stand for one-ples », even the last one, although

a priori it could be envisioned if foo has been declared with call signature (x,y,z) and is used

with more items that z is mapped to the ople of extra elements beyond the first two ones. For my

sanity I stick with my January 2020 concept of (x,y,*z) which makes z stand for a nutple always and

having to be used as such in the function body (possibly unpacked there using *z).

3879 \def\XINT:NEhook:userfunc:argv #1#2#3#4%

3880 {\expandafter#3\expanded{\xintKeep{#1}{#4}{\xintTrim{#1}{#4}}}\iffalse{{\fi}}}%

27.31.2. \xintdefufunc, \xintdefiiufunc, \xintdeffloatufunc

Added at 1.4

Modified at 1.4k (2022/05/18). \xintexprRestoreCatcodes was in only one branch of \xint_defuf ⤸
unc_b, and as a result sanitization of catcodes via \xintexprSafeCatcodes was never reverted.

That the bug remained unseen and in particular did not break compilation of user manual (where

the | must be active), was a sort of unhappy miracle due to the | ending up recovering its active

catcode from some ulterior \xintdefiifunc whose Safe/Restore behaved as described in the user

manual, i.e. it did a restore to the state before the first unpaired Safe, and this miraculous

recovery happened before breakage had happened, by sheer luck, or rather lack of luck, else I

would have seen and solved the problem two years ago...

3881 \def\XINT_tmpa #1#2#3#4#5#6%

3882 {%

3883 \def #1##1(##2)##3={%

3884 \edef\XINT_defufunc_tmpa {##1}%

3885 \edef\XINT_defufunc_tmpa {\xint_zapspaces_o \XINT_defufunc_tmpa}%

3886 \edef\XINT_defufunc_tmpd {##2}%

3887 \edef\XINT_defufunc_tmpd {\xint_zapspaces_o\XINT_defufunc_tmpd}%

3888 \expandafter#5\romannumeral\XINT_expr_fetch_to_semicolon

3889 }% end of \xint_defufunc_a

3890 \def#5##1{%

3891 \def\XINT_defufunc_tmpc{(##1)}%

3892 \ifnum\xintLength:f:csv{\XINT_defufunc_tmpd}=\xint_c_i

3893 \expandafter#6%

3894 \else

3895 \xintMessage {xintexpr}{ERROR}

3896 {Universal functions must be functions of one argument only,

3897 but the declaration of \XINT_defufunc_tmpa\space

3898 has \xintLength:f:csv{\XINT_defufunc_tmpd} of them. Canceled.}%

3899 \xintexprRestoreCatcodes

3900 \fi

3901 }% end of \xint_defufunc_b

3902 \def #6{%

3903 \XINT_expr_makedummy{\XINT_defufunc_tmpd}%

3904 \edef\XINT_defufunc_tmpc {subs(\xint_noxpd\expandafter{\XINT_defufunc_tmpc},%

3905 \XINT_defufunc_tmpd=########1)}%

3906 \expandafter\XINT_expr_defuserufunc

3907 \csname XINT_#2_func_\XINT_defufunc_tmpa\expandafter\endcsname

3908 \csname XINT_#2_userufunc_\XINT_defufunc_tmpa\expandafter\endcsname

3909 \expandafter{\XINT_defufunc_tmpa}{#2}%

3910 \expandafter#3\csname XINT_#2_userufunc_\XINT_defufunc_tmpa\endcsname

3911 [1]{\XINT_defufunc_tmpc}%

3912 \ifxintverbose\xintMessage {xintexpr}{Info}%

667

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

3913 {Universal function \XINT_defufunc_tmpa\space for \string\xint #4 parser

3914 associated to \string\XINT_#2_userufunc_\XINT_defufunc_tmpa\space

3915 with \ifxintglobaldefs global \fi meaning \expandafter\xintmeaning

3916 \csname XINT_#2_userufunc_\XINT_defufunc_tmpa\endcsname}%

3917 \fi

3918 \xintexprRestoreCatcodes

3919 }% end of \xint_defufunc_c

3920 }%

3921 \def\xintdefufunc {\xintexprSafeCatcodes\xintdefufunc_a}%

3922 \def\xintdefiiufunc {\xintexprSafeCatcodes\xintdefiiufunc_a}%

3923 \def\xintdeffloatufunc {\xintexprSafeCatcodes\xintdeffloatufunc_a}%

3924 \XINT_tmpa\xintdefufunc_a {expr} \XINT_NewFunc {expr}%

3925 \xintdefufunc_b\xintdefufunc_c

3926 \XINT_tmpa\xintdefiiufunc_a {iiexpr}\XINT_NewIIFunc {iiexpr}%

3927 \xintdefiiufunc_b\xintdefiiufunc_c

3928 \XINT_tmpa\xintdeffloatufunc_a{flexpr}\XINT_NewFloatFunc{floatexpr}%

3929 \xintdeffloatufunc_b\xintdeffloatufunc_c

3930 \def\XINT_expr_defuserufunc #1#2#3#4%

3931 {%

3932 \XINT_global

3933 \def #1##1##2%##3%

3934 {%

3935 \expandafter ##1\expandafter##2\expanded

3936 \XINT:NEhook:userufunc{XINT_#4_userufunc_#3}#2%##3%

3937 }%

3938 }%

3939 \def\XINT:NEhook:userufunc #1{\XINT:expr:mapwithin}%

27.31.3. \xintunassignexprfunc, \xintunassigniiexprfunc, \xintunassignfloatexprfunc

See the \xintunassignvar for the embarrassing explanations why I had not done that earlier. A bit

lazy here, no warning if undefining something not defined, and attention no precaution respective

built-in functions.

3940 \def\XINT_tmpa #1{\expandafter\def\csname xintunassign#1func\endcsname ##1{%

3941 \edef\XINT_unfunc_tmpa{##1}%

3942 \edef\XINT_unfunc_tmpa {\xint_zapspaces_o\XINT_unfunc_tmpa}%

3943 \XINT_global\expandafter

3944 \let\csname XINT_#1_func_\XINT_unfunc_tmpa\endcsname\xint_undefined

3945 \XINT_global\expandafter

3946 \let\csname XINT_#1_userfunc_\XINT_unfunc_tmpa\endcsname\xint_undefined

3947 \XINT_global\expandafter

3948 \let\csname XINT_#1_userufunc_\XINT_unfunc_tmpa\endcsname\xint_undefined

3949 \ifxintverbose\xintMessage {xintexpr}{Info}%

3950 {Function \XINT_unfunc_tmpa\space for \string\xint #1 parser now

3951 \ifxintglobaldefs globally \fi undefined.}%

3952 \fi}}%

3953 \XINT_tmpa{expr}\XINT_tmpa{iiexpr}\XINT_tmpa{floatexpr}%

27.31.4. \xintNewFunction

1.2h (2016/11/20). Syntax is \xintNewFunction{<name>}[nb of arguments]{expression with #1,

#2,... as in \xintNewExpr}. This defines a function for all three parsers but the expression

668

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

parsing is delayed until function execution. Hence the expression admits all constructs, con-

trarily to \xintNewExpr or \xintdeffunc.

As the letters used for variables in \xintdeffunc, #1, #2, etc... can not stand for non numeric

«oples», because at time of function call f(a, b, c, ...) how to decide if #1 stands for a or a, b

etc... ? Or course «a» can be packed and thus the macro function can handle #1 as a «nutple» and

for this be defined with the * unpacking operator being applied to it.

3954 \def\xintNewFunction #1#2[#3]#4%

3955 {%

3956 \edef\XINT_newfunc_tmpa {#1}%

3957 \edef\XINT_newfunc_tmpa {\xint_zapspaces_o \XINT_newfunc_tmpa}%

3958 \def\XINT_newfunc_tmpb ##1##2##3##4##5##6##7##8##9{#4}%

3959 \begingroup

3960 \ifcase #3\relax

3961 \toks0{}%

3962 \or \toks0{##1}%

3963 \or \toks0{##1##2}%

3964 \or \toks0{##1##2##3}%

3965 \or \toks0{##1##2##3##4}%

3966 \or \toks0{##1##2##3##4##5}%

3967 \or \toks0{##1##2##3##4##5##6}%

3968 \or \toks0{##1##2##3##4##5##6##7}%

3969 \or \toks0{##1##2##3##4##5##6##7##8}%

3970 \else \toks0{##1##2##3##4##5##6##7##8##9}%

3971 \fi

3972 \expandafter

3973 \endgroup\expandafter

3974 \XINT_global\expandafter

3975 \def\csname XINT_expr_macrofunc_\XINT_newfunc_tmpa\expandafter\endcsname

3976 \the\toks0\expandafter{\XINT_newfunc_tmpb

3977 {\XINTfstop.{{##1}}}{\XINTfstop.{{##2}}}{\XINTfstop.{{##3}}}%

3978 {\XINTfstop.{{##4}}}{\XINTfstop.{{##5}}}{\XINTfstop.{{##6}}}%

3979 {\XINTfstop.{{##7}}}{\XINTfstop.{{##8}}}{\XINTfstop.{{##9}}}}%

3980 \expandafter\XINT_expr_newfunction

3981 \csname XINT_expr_func_\XINT_newfunc_tmpa\expandafter\endcsname

3982 \expandafter{\XINT_newfunc_tmpa}\xintbareeval

3983 \expandafter\XINT_expr_newfunction

3984 \csname XINT_iiexpr_func_\XINT_newfunc_tmpa\expandafter\endcsname

3985 \expandafter{\XINT_newfunc_tmpa}\xintbareiieval

3986 \expandafter\XINT_expr_newfunction

3987 \csname XINT_flexpr_func_\XINT_newfunc_tmpa\expandafter\endcsname

3988 \expandafter{\XINT_newfunc_tmpa}\xintbarefloateval

3989 \ifxintverbose

3990 \xintMessage {xintexpr}{Info}%

3991 {Function \XINT_newfunc_tmpa\space for the expression parsers is

3992 associated to \string\XINT_expr_macrofunc_\XINT_newfunc_tmpa\space

3993 with \ifxintglobaldefs global \fi meaning \expandafter\xintmeaning

3994 \csname XINT_expr_macrofunc_\XINT_newfunc_tmpa\endcsname}%

3995 \fi

3996 }%

3997 \def\XINT_expr_newfunction #1#2#3%

3998 {%

3999 \XINT_global

669

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4000 \def#1##1##2##3%

4001 {\expandafter ##1\expandafter ##2%

4002 \romannumeral0\XINT:NEhook:macrofunc

4003 #3{\csname XINT_expr_macrofunc_#2\endcsname##3}\relax

4004 }%

4005 }%

4006 \let\XINT:NEhook:macrofunc\empty

27.31.5. Mysterious stuff

There was an \xintNewExpr already in 1.07 from May 2013, which was modified in September 2013 to

work with the # macro parameter character, and then refactored into a more powerful version in

June 2014 for 1.1 release of 2014/10/28.

It is always too soon to try to comment and explain. In brief, this attempts to hack into the

purely numeric \xintexpr parsers to transform them into symbolic parsers, allowing to do once and

for all the parsing job and inherit a gigantic nested macro. Originally only f-expandable nesting.

The initial motivation was that the \csname encapsulation impacted the string pool memory. Later

this work proved to be the basis to provide support for implementing user-defined functions and

it is now its main purpose.

Deep refactorings happened at 1.3 and 1.4.

At 1.3 the crucial idea of the «hook» macros was introduced, reducing considerably the prepara-

tory work done by \xintNewExpr.

At 1.4 further considerable simplifications happened, and it is possible that the author cur-

rently does at long last understand the code!

The 1.3 code had serious complications with trying to identify would-be «list» arguments, dis-

tinguishing them from «single» arguments (things like parsing #2+[[#1..[#3]..#4][#5:#6]]*#7 and

convert it to a single nested f-exandable macro...)

The conversion at 1.4 is both more powerful and simpler, due in part to the new storage model

which from \csname encapsulated comma separated values up to 1.3f became simply a braced list

of braced values, and also crucially due to the possibilities opened up by usage of \expanded

primitive.

4007 \catcode`~ 12

4008 \def\XINT:NE:hastilde#1~#2#3\relax{\unless\if !#21\fi}%

4009 \def\XINT:NE:hashash#1{%

4010 \def\XINT:NE:hashash##1#1##2##3\relax{\unless\if !##21\fi}%

4011 }\expandafter\XINT:NE:hashash\string#%

4012 \def\XINT:NE:unpack #1{%

4013 \def\XINT:NE:unpack ##1%

4014 {%

4015 \if0\XINT:NE:hastilde ##1~!\relax

4016 \XINT:NE:hashash ##1#1!\relax 0\else

4017 \expandafter\XINT:NE:unpack:p\fi

4018 \xint_stop_atfirstofone{##1}%

4019 }}\expandafter\XINT:NE:unpack\string#%

4020 \def\XINT:NE:unpack:p#1#2%

4021 {{~romannumeral0~expandafter~xint_stop_atfirstofone~expanded{#2}}}%

4022 \def\XINT:NE:f:one:from:one #1{%

4023 \def\XINT:NE:f:one:from:one ##1%

4024 {%

4025 \if0\XINT:NE:hastilde ##1~!\relax

4026 \XINT:NE:hashash ##1#1!\relax 0\else

4027 \xint_dothis\XINT:NE:f:one:from:one_a\fi

4028 \xint_orthat\XINT:NE:f:one:from:one_b

670

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4029 ##1&&A%

4030 }}\expandafter\XINT:NE:f:one:from:one\string#%

4031 \def\XINT:NE:f:one:from:one_a\romannumeral`&&@#1#2&&A%

4032 {%

4033 \expandafter{\detokenize{\expandafter#1}#2}%

4034 }%

4035 \def\XINT:NE:f:one:from:one_b#1{%

4036 \def\XINT:NE:f:one:from:one_b\romannumeral`&&@##1##2&&A%

4037 {%

4038 \expandafter{\romannumeral`&&@%

4039 \if0\XINT:NE:hastilde ##2~!\relax

4040 \XINT:NE:hashash ##2#1!\relax 0\else

4041 \expandafter\string\fi

4042 ##1{##2}}%

4043 }}\expandafter\XINT:NE:f:one:from:one_b\string#%

4044 \def\XINT:NE:f:one:from:one:direct #1#2{\XINT:NE:f:one:from:one:direct_a #2&&A{#1}}%

4045 \def\XINT:NE:f:one:from:one:direct_a #1#2&&A#3%

4046 {%

4047 \if ###1\xint_dothis {\detokenize{#3}}\fi

4048 \if ~#1\xint_dothis {\detokenize{#3}}\fi

4049 \xint_orthat {#3}{#1#2}%

4050 }%

4051 \def\XINT:NE:f:one:from:two #1{%

4052 \def\XINT:NE:f:one:from:two ##1%

4053 {%

4054 \if0\XINT:NE:hastilde ##1~!\relax

4055 \XINT:NE:hashash ##1#1!\relax 0\else

4056 \xint_dothis\XINT:NE:f:one:from:two_a\fi

4057 \xint_orthat\XINT:NE:f:one:from:two_b ##1&&A%

4058 }}\expandafter\XINT:NE:f:one:from:two\string#%

4059 \def\XINT:NE:f:one:from:two_a\romannumeral`&&@#1#2&&A%

4060 {%

4061 \expandafter{\detokenize{\expandafter#1\expanded}{#2}}%

4062 }%

4063 \def\XINT:NE:f:one:from:two_b#1{%

4064 \def\XINT:NE:f:one:from:two_b\romannumeral`&&@##1##2##3&&A%

4065 {%

4066 \expandafter{\romannumeral`&&@%

4067 \if0\XINT:NE:hastilde ##2##3~!\relax

4068 \XINT:NE:hashash ##2##3#1!\relax 0\else

4069 \expandafter\string\fi

4070 ##1{##2}{##3}}%

4071 }}\expandafter\XINT:NE:f:one:from:two_b\string#%

4072 \def\XINT:NE:f:one:from:two:direct #1#2#3{\XINT:NE:two_fork #2&&A#3&&A#1{#2}{#3}}%

4073 \def\XINT:NE:two_fork #1#2&&A#3#4&&A{\XINT:NE:two_fork_nn#1#3}%

4074 \def\XINT:NE:two_fork_nn #1#2%

4075 {%

4076 \if #1##\xint_dothis\string\fi

4077 \if #1~\xint_dothis\string\fi

4078 \if #2##\xint_dothis\string\fi

4079 \if #2~\xint_dothis\string\fi

4080 \xint_orthat{}%

671

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4081 }%

4082 \def\XINT:NE:f:one:and:opt:direct#1{%

4083 \def\XINT:NE:f:one:and:opt:direct##1!%

4084 {%

4085 \if0\XINT:NE:hastilde ##1~!\relax

4086 \XINT:NE:hashash ##1#1!\relax 0\else

4087 \xint_dothis\XINT:NE:f:one:and:opt_a\fi

4088 \xint_orthat\XINT:NE:f:one:and:opt_b ##1&&A%

4089 }}\expandafter\XINT:NE:f:one:and:opt:direct\string#%

4090 \def\XINT:NE:f:one:and:opt_a #1#2&&A#3#4%

4091 {%

4092 \detokenize{\romannumeral-`0\expandafter#1\expanded{#2}$XINT_expr_exclam#3#4}%$

4093 }%

4094 \def\XINT:NE:f:one:and:opt_b\XINT:expr:f:one:and:opt #1#2#3&&A#4#5%

4095 {%

4096 \if\relax#3\relax\expandafter\xint_firstoftwo\else

4097 \expandafter\xint_secondoftwo\fi

4098 {\XINT:NE:f:one:from:one:direct#4}%

4099 {\expandafter\XINT:NE:f:onewithopttoone\expandafter#5%

4100 \expanded{{\XINT:NE:f:one:from:one:direct\xintNum{#2}}}}%

4101 {#1}%

4102 }%

4103 \def\XINT:NE:f:onewithopttoone#1#2#3{\XINT:NE:two_fork #2&&A#3&&A#1[#2]{#3}}%

4104 \def\XINT:NE:f:tacitzeroifone:direct#1{%

4105 \def\XINT:NE:f:tacitzeroifone:direct##1!%

4106 {%

4107 \if0\XINT:NE:hastilde ##1~!\relax

4108 \XINT:NE:hashash ##1#1!\relax 0\else

4109 \xint_dothis\XINT:NE:f:one:and:opt_a\fi

4110 \xint_orthat\XINT:NE:f:tacitzeroifone_b ##1&&A%

4111 }}\expandafter\XINT:NE:f:tacitzeroifone:direct\string#%

4112 \def\XINT:NE:f:tacitzeroifone_b\XINT:expr:f:tacitzeroifone #1#2#3&&A#4#5%

4113 {%

4114 \if\relax#3\relax\expandafter\xint_firstoftwo\else

4115 \expandafter\xint_secondoftwo\fi

4116 {\XINT:NE:f:one:from:two:direct#4{0}}%

4117 {\expandafter\XINT:NE:f:one:from:two:direct\expandafter#5%

4118 \expanded{{\XINT:NE:f:one:from:one:direct\xintNum{#2}}}}%

4119 {#1}%

4120 }%

4121 \def\XINT:NE:f:iitacitzeroifone:direct#1{%

4122 \def\XINT:NE:f:iitacitzeroifone:direct##1!%

4123 {%

4124 \if0\XINT:NE:hastilde ##1~!\relax

4125 \XINT:NE:hashash ##1#1!\relax 0\else

4126 \xint_dothis\XINT:NE:f:iitacitzeroifone_a\fi

4127 \xint_orthat\XINT:NE:f:iitacitzeroifone_b ##1&&A%

4128 }}\expandafter\XINT:NE:f:iitacitzeroifone:direct\string#%

4129 \def\XINT:NE:f:iitacitzeroifone_a #1#2&&A#3%

4130 {%

4131 \detokenize

4132 {\romannumeral`$XINT_expr_null\expandafter#1\expanded{#2}$XINT_expr_exclam#3}%

672

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4133 }%

4134 \def\XINT:NE:f:iitacitzeroifone_b\XINT:expr:f:iitacitzeroifone #1#2#3&&A#4%

4135 {%

4136 \if\relax#3\relax\expandafter\xint_firstoftwo\else

4137 \expandafter\xint_secondoftwo\fi

4138 {\XINT:NE:f:one:from:two:direct#4{0}}%

4139 {\XINT:NE:f:one:from:two:direct#4{#2}}%

4140 {#1}%

4141 }%

4142 \def\XINT:NE:x:one:from:two #1#2#3{\XINT:NE:x:one:from:two_fork #2&&A#3&&A#1{#2}{#3}}%

4143 \def\XINT:NE:x:one:from:two_fork #1{%

4144 \def\XINT:NE:x:one:from:two_fork ##1##2&&A##3##4&&A%

4145 {%

4146 \if0\XINT:NE:hastilde ##1##3~!\relax\XINT:NE:hashash ##1##3#1!\relax 0%

4147 \else

4148 \expandafter\XINT:NE:x:one:from:two:p

4149 \fi

4150 }}\expandafter\XINT:NE:x:one:from:two_fork\string#%

4151 \def\XINT:NE:x:one:from:two:p #1#2#3%

4152 {~expanded{\detokenize{\expandafter#1}~expanded{{#2}{#3}}}}%

4153 \def\XINT:NE:x:listsel #1{%

4154 \def\XINT:NE:x:listsel ##1##2&%

4155 {%

4156 \if0\expandafter\XINT:NE:hastilde\detokenize{##2}~!\relax

4157 \expandafter\XINT:NE:hashash\detokenize{##2}#1!\relax 0%

4158 \else

4159 \expandafter\XINT:NE:x:listsel:p

4160 \fi

4161 ##1##2&%

4162 }}\expandafter\XINT:NE:x:listsel\string#%

4163 \def\XINT:NE:x:listsel:p #1#2_#3&(#4%

4164 {%

4165 \detokenize{\expanded\XINT:expr:ListSel{{#3}{#4}}}%

4166 }%

4167 \def\XINT:expr:ListSel{\expandafter\XINT:expr:ListSel_i\expanded}%

4168 \def\XINT:expr:ListSel_i #1#2{{\XINT_ListSel_top #2_#1&({#2}}}%

4169 \def\XINT:NE:f:reverse #1{%

4170 \def\XINT:NE:f:reverse ##1^%

4171 {%

4172 \if0\expandafter\XINT:NE:hastilde\detokenize\expandafter{\xint_gobble_i##1}~!\relax

4173 \expandafter\XINT:NE:hashash\detokenize{##1}#1!\relax 0%

4174 \else

4175 \expandafter\XINT:NE:f:reverse:p

4176 \fi

4177 ##1^%

4178 }}\expandafter\XINT:NE:f:reverse\string#%

4179 \def\XINT:NE:f:reverse:p #1^#2\xint_bye

4180 {%

4181 \expandafter\XINT:NE:f:reverse:p_i\expandafter{\xint_gobble_i#1}%

4182 }%

4183 \def\XINT:NE:f:reverse:p_i #1%

4184 {%

673

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4185 \detokenize{\romannumeral0\XINT:expr:f:reverse{{#1}}}%

4186 }%

4187 \def\XINT:expr:f:reverse{\expandafter\XINT:expr:f:reverse_i\expanded}%

4188 \def\XINT:expr:f:reverse_i #1%

4189 {%

4190 \XINT_expr_reverse #1^^#1\xint:\xint:\xint:\xint:

4191 \xint:\xint:\xint:\xint:\xint_bye

4192 }%

4193 \def\XINT:NE:f:from:delim:u #1{%

4194 \def\XINT:NE:f:from:delim:u ##1##2^%

4195 {%

4196 \if0\expandafter\XINT:NE:hastilde\detokenize{##2}~!\relax

4197 \expandafter\XINT:NE:hashash\detokenize{##2}#1!\relax 0%

4198 \xint_afterfi{\expandafter\XINT_fooof_checkifnumber\expandafter##1\string}%

4199 \else

4200 \xint_afterfi{\XINT:NE:f:from:delim:u:p##1\empty}%

4201 \fi

4202 ##2^%

4203 }}\expandafter\XINT:NE:f:from:delim:u\string#%

4204 \def\XINT:NE:f:from:delim:u:p #1#2^%

4205 {%

4206 \detokenize

4207 {\expandafter\XINT:fooof:checkifnumber\expandafter#1}~expanded{#2}$XINT_expr_caret%$

4208 }%

4209 \def\XINT:fooof:checkifnumber#1{\expandafter\XINT_fooof_checkifnumber\expandafter#1\string}%

4210 \def\XINT:NE:f:LFL#1#2{\expandafter\XINT:NE:f:LFL_a\expandafter#1#2\XINT:NE:f:LFL_a}%

4211 \def\XINT:NE:f:LFL_a#1#2%

4212 {%

4213 \if#2i\else\expandafter\XINT:NE:f:LFL_p

4214 \fi #1%

4215 }%

4216 \def\XINT:NE:r:check#1{%

4217 \def\XINT:NE:r:check##1\XINT:NE:f:LFL_a

4218 {%

4219 \if0\expandafter\XINT:NE:hastilde\detokenize{##1}~!\relax%

4220 \expandafter\XINT:NE:hashash\detokenize{##1}#1!\relax 0%

4221 \else

4222 \expandafter\XINT:NE:r:check:p

4223 \fi

4224 1\expandafter{\romannumeral\XINT:NEsaved:r:check##1}%

4225 }}\expandafter\XINT:NE:r:check\string#%

4226 \def\XINT:NE:r:check:p 1\expandafter#1{\XINT:NE:r:check:p_i#1}%

4227 \def\XINT:NE:r:check:p_i\romannumeral\XINT:NEsaved:r:check{\XINT:NE:r:check:p_ii\empty}%

4228 \def\XINT:NE:r:check:p_ii#1^%

4229 {%

4230 5~expanded{{~romannumeral~XINT:NEsaved:r:check#1$XINT_expr_caret}}%$

4231 }%

4232 \def\XINT:NE:f:LFL_p#1%

4233 {%

4234 \detokenize{\romannumeral`$XINT_expr_null\expandafter#1}%$

4235 }%

4236 \catcode`- 11

674

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4237 \def\XINT:NE:exec_? #1#2%

4238 {%

4239 \XINT:NE:exec_?_b #2&&A#1{#2}%

4240 }%

4241 \def\XINT:NE:exec_?_b #1{%

4242 \def\XINT:NE:exec_?_b ##1&&A%

4243 {%

4244 \if0\XINT:NE:hastilde ##1~!\relax

4245 \XINT:NE:hashash ##1#1!\relax 0%

4246 \xint_dothis\XINT:NE:exec_?:x\fi

4247 \xint_orthat\XINT:NE:exec_?:p

4248 }}\expandafter\XINT:NE:exec_?_b\string#%

4249 \def\XINT:NE:exec_?:x #1#2#3%

4250 {%

4251 \expandafter\XINT_expr_check-_after?\expandafter#1%

4252 \romannumeral`&&@\expandafter\XINT_expr_getnext\romannumeral0\xintiiifnotzero#3%

4253 }%

4254 \def\XINT:NE:exec_?:p #1#2#3#4#5%

4255 {%

4256 \csname XINT_expr_func_*If\expandafter\endcsname

4257 \romannumeral`&&@#2\XINTfstop.{#3},[#4],[#5])%

4258 }%

4259 \expandafter\def\csname XINT_expr_func_*If\endcsname #1#2#3%

4260 {%

4261 #1#2{~expanded{~xintiiifNotZero#3}}%

4262 }%

4263 \def\XINT:NE:exec_?? #1#2#3%

4264 {%

4265 \XINT:NE:exec_??_b #2&&A#1{#2}%

4266 }%

4267 \def\XINT:NE:exec_??_b #1{%

4268 \def\XINT:NE:exec_??_b ##1&&A%

4269 {%

4270 \if0\XINT:NE:hastilde ##1~!\relax

4271 \XINT:NE:hashash ##1#1!\relax 0%

4272 \xint_dothis\XINT:NE:exec_??:x\fi

4273 \xint_orthat\XINT:NE:exec_??:p

4274 }}\expandafter\XINT:NE:exec_??_b\string#%

4275 \def\XINT:NE:exec_??:x #1#2#3%

4276 {%

4277 \expandafter\XINT_expr_check-_after?\expandafter#1%

4278 \romannumeral`&&@\expandafter\XINT_expr_getnext\romannumeral0\xintiiifsgn#3%

4279 }%

4280 \def\XINT:NE:exec_??:p #1#2#3#4#5#6%

4281 {%

4282 \csname XINT_expr_func_*IfSgn\expandafter\endcsname

4283 \romannumeral`&&@#2\XINTfstop.{#3},[#4],[#5],[#6])%

4284 }%

4285 \expandafter\def\csname XINT_expr_func_*IfSgn\endcsname #1#2#3%

4286 {%

4287 #1#2{~expanded{~xintiiifSgn#3}}%

4288 }%

675

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4289 \catcode`- 12

4290 \def\XINT:NE:branch #1%

4291 {%

4292 \if0\XINT:NE:hastilde #1~!\relax 0\else

4293 \xint_dothis\XINT:NE:branch_a\fi

4294 \xint_orthat\XINT:NE:branch_b #1&&A%

4295 }%

4296 \def\XINT:NE:branch_a\romannumeral`&&@#1#2&&A%

4297 {%

4298 \expandafter{\detokenize{\expandafter#1\expanded}{#2}}%

4299 }%

4300 \def\XINT:NE:branch_b#1{%

4301 \def\XINT:NE:branch_b\romannumeral`&&@##1##2##3&&A%

4302 {%

4303 \expandafter{\romannumeral`&&@%

4304 \if0\XINT:NE:hastilde ##2~!\relax

4305 \XINT:NE:hashash ##2#1!\relax 0\else

4306 \expandafter\string\fi

4307 ##1{##2}##3}%

4308 }}\expandafter\XINT:NE:branch_b\string#%

4309 \def\XINT:NE:seqx#1{%

4310 \def\XINT:NE:seqx\XINT_allexpr_seqx##1##2%

4311 {%

4312 \if 0\expandafter\XINT:NE:hastilde\detokenize{##2}~!\relax

4313 \expandafter\XINT:NE:hashash \detokenize{##2}#1!\relax 0%

4314 \else

4315 \expandafter\XINT:NE:seqx:p

4316 \fi \XINT_allexpr_seqx{##1}{##2}%

4317 }}\expandafter\XINT:NE:seqx\string#%

4318 \def\XINT:NE:seqx:p\XINT_allexpr_seqx #1#2#3#4%

4319 {%

4320 \expandafter\XINT_expr_put_op_first

4321 \expanded {%

4322 {%

4323 \detokenize

4324 {%

4325 \expanded\bgroup

4326 \expanded

4327 {\xint_noxpd{\XINT_expr_seq:_b{#1#4\relax $XINT_expr_exclam #3}}%

4328 #2$XINT_expr_caret}%

4329 }%

4330 }%

4331 \expandafter}\romannumeral`&&@\XINT_expr_getop

4332 }%

4333 \def\XINT:NE:opx#1{%

4334 \def\XINT:NE:opx\XINT_allexpr_opx ##1##2##3##4%##5##6##7##8%

4335 {%

4336 \if 0\expandafter\XINT:NE:hastilde\detokenize{##4}~!\relax

4337 \expandafter\XINT:NE:hashash \detokenize{##4}#1!\relax 0%

4338 \else

4339 \expandafter\XINT:NE:opx:p

4340 \fi \XINT_allexpr_opx ##1{##2}{##3}{##4}% en fait ##2 = \xint_c_, ##3 = \relax

676

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4341 }}\expandafter\XINT:NE:opx\string#%

4342 \def\XINT:NE:opx:p\XINT_allexpr_opx #1#2#3#4#5#6#7#8%

4343 {%

4344 \expandafter\XINT_expr_put_op_first

4345 \expanded {%

4346 {%

4347 \detokenize

4348 {%

4349 \expanded\bgroup

4350 \expanded{\xint_noxpd{\XINT_expr_iter:_b

4351 {#1\expandafter\XINT_allexpr_opx_ifnotomitted

4352 \romannumeral0#1#6\relax#7@\relax $XINT_expr_exclam #5}}%

4353 #4$XINT_expr_caret$XINT_expr_tilde{{#8}}}%$

4354 }%

4355 }%

4356 \expandafter}\romannumeral`&&@\XINT_expr_getop

4357 }%

4358 \def\XINT:NE:iter{\expandafter\XINT:NE:itery\expandafter}%

4359 \def\XINT:NE:itery#1{%

4360 \def\XINT:NE:itery\XINT_expr_itery##1##2%

4361 {%

4362 \if 0\expandafter\XINT:NE:hastilde\detokenize{##1##2}~!\relax

4363 \expandafter\XINT:NE:hashash \detokenize{##1##2}#1!\relax 0%

4364 \else

4365 \expandafter\XINT:NE:itery:p

4366 \fi \XINT_expr_itery{##1}{##2}%

4367 }}\expandafter\XINT:NE:itery\string#%

4368 \def\XINT:NE:itery:p\XINT_expr_itery #1#2#3#4#5%

4369 {%

4370 \expandafter\XINT_expr_put_op_first

4371 \expanded {%

4372 {%

4373 \detokenize

4374 {%

4375 \expanded\bgroup

4376 \expanded{\xint_noxpd{\XINT_expr_iter:_b {#5#4\relax $XINT_expr_exclam #3}}%

4377 #1$XINT_expr_caret$XINT_expr_tilde{#2}}%$

4378 }%

4379 }%

4380 \expandafter}\romannumeral`&&@\XINT_expr_getop

4381 }%

4382 \def\XINT:NE:rseq{\expandafter\XINT:NE:rseqy\expandafter}%

4383 \def\XINT:NE:rseqy#1{%

4384 \def\XINT:NE:rseqy\XINT_expr_rseqy##1##2%

4385 {%

4386 \if 0\expandafter\XINT:NE:hastilde\detokenize{##1##2}~!\relax

4387 \expandafter\XINT:NE:hashash \detokenize{##1##2}#1!\relax 0%

4388 \else

4389 \expandafter\XINT:NE:rseqy:p

4390 \fi \XINT_expr_rseqy{##1}{##2}%

4391 }}\expandafter\XINT:NE:rseqy\string#%

4392 \def\XINT:NE:rseqy:p\XINT_expr_rseqy #1#2#3#4#5%

677

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4393 {%

4394 \expandafter\XINT_expr_put_op_first

4395 \expanded {%

4396 {%

4397 \detokenize

4398 {%

4399 \expanded\bgroup

4400 \expanded{#2\xint_noxpd{\XINT_expr_rseq:_b {#5#4\relax $XINT_expr_exclam #3}}%

4401 #1$XINT_expr_caret$XINT_expr_tilde{#2}}%$

4402 }%

4403 }%

4404 \expandafter}\romannumeral`&&@\XINT_expr_getop

4405 }%

4406 \def\XINT:NE:iterr{\expandafter\XINT:NE:iterry\expandafter}%

4407 \def\XINT:NE:iterry#1{%

4408 \def\XINT:NE:iterry\XINT_expr_iterry##1##2%

4409 {%

4410 \if 0\expandafter\XINT:NE:hastilde\detokenize{##1##2}~!\relax

4411 \expandafter\XINT:NE:hashash \detokenize{##1##2}#1!\relax 0%

4412 \else

4413 \expandafter\XINT:NE:iterry:p

4414 \fi \XINT_expr_iterry{##1}{##2}%

4415 }}\expandafter\XINT:NE:iterry\string#%

4416 \def\XINT:NE:iterry:p\XINT_expr_iterry #1#2#3#4#5%

4417 {%

4418 \expandafter\XINT_expr_put_op_first

4419 \expanded {%

4420 {%

4421 \detokenize

4422 {%

4423 \expanded\bgroup

4424 \expanded{\xint_noxpd{\XINT_expr_iterr:_b {#5#4\relax $XINT_expr_exclam #3}}%

4425 #1$XINT_expr_caret$XINT_expr_tilde #20$XINT_expr_qmark}%

4426 }%

4427 }%

4428 \expandafter}\romannumeral`&&@\XINT_expr_getop

4429 }%

4430 \def\XINT:NE:rrseq{\expandafter\XINT:NE:rrseqy\expandafter}%

4431 \def\XINT:NE:rrseqy#1{%

4432 \def\XINT:NE:rrseqy\XINT_expr_rrseqy##1##2%

4433 {%

4434 \if 0\expandafter\XINT:NE:hastilde\detokenize{##1##2}~!\relax

4435 \expandafter\XINT:NE:hashash \detokenize{##1##2}#1!\relax 0%

4436 \else

4437 \expandafter\XINT:NE:rrseqy:p

4438 \fi \XINT_expr_rrseqy{##1}{##2}%

4439 }}\expandafter\XINT:NE:rrseqy\string#%

4440 \def\XINT:NE:rrseqy:p\XINT_expr_rrseqy #1#2#3#4#5#6%

4441 {%

4442 \expandafter\XINT_expr_put_op_first

4443 \expanded {%

4444 {%

678

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4445 \detokenize

4446 {%

4447 \expanded\bgroup

4448 \expanded{#2\xint_noxpd{\XINT_expr_rrseq:_b {#6#5\relax $XINT_expr_exclam #4}}%

4449 #1$XINT_expr_caret$XINT_expr_tilde #30$XINT_expr_qmark}%

4450 }%

4451 }%

4452 \expandafter}\romannumeral`&&@\XINT_expr_getop

4453 }%

4454 \def\XINT:NE:x:toblist#1{%

4455 \def\XINT:NE:x:toblist\XINT:expr:toblistwith##1##2%

4456 {%

4457 \if 0\expandafter\XINT:NE:hastilde\detokenize{##2}~!\relax

4458 \expandafter\XINT:NE:hashash \detokenize{##2}#1!\relax 0%

4459 \else

4460 \expandafter\XINT:NE:x:toblist:p

4461 \fi \XINT:expr:toblistwith{##1}{##2}%

4462 }}\expandafter\XINT:NE:x:toblist\string#%

4463 \def\XINT:NE:x:toblist:p\XINT:expr:toblistwith #1#2{{\XINTfstop.{#2}}}%

4464 \def\XINT:NE:x:flatten#1{%

4465 \def\XINT:NE:x:flatten\XINT:expr:flatten##1%

4466 {%

4467 \if 0\expandafter\XINT:NE:hastilde\detokenize{##1}~!\relax

4468 \expandafter\XINT:NE:hashash \detokenize{##1}#1!\relax 0%

4469 \else

4470 \expandafter\XINT:NE:x:flatten:p

4471 \fi \XINT:expr:flatten{##1}%

4472 }}\expandafter\XINT:NE:x:flatten\string#%

4473 \def\XINT:NE:x:flatten:p\XINT:expr:flatten #1%

4474 {%

4475 {{%

4476 \detokenize

4477 {%

4478 \expandafter\XINT:expr:flatten_checkempty

4479 \detokenize\expandafter{\expanded{#1}}$XINT_expr_caret%$

4480 }%

4481 }}%

4482 }%

4483 \def\XINT:NE:x:zip#1{%

4484 \def\XINT:NE:x:zip\XINT:expr:zip##1%

4485 {%

4486 \if 0\expandafter\XINT:NE:hastilde\detokenize{##1}~!\relax

4487 \expandafter\XINT:NE:hashash \detokenize{##1}#1!\relax 0%

4488 \else

4489 \expandafter\XINT:NE:x:zip:p

4490 \fi \XINT:expr:zip{##1}%

4491 }}\expandafter\XINT:NE:x:zip\string#%

4492 \def\XINT:NE:x:zip:p\XINT:expr:zip #1%

4493 {%

4494 \expandafter{%

4495 \detokenize

4496 {%

679

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4497 \expanded\expandafter\XINT_zip_A\expanded{#1}\xint_bye\xint_bye

4498 }%

4499 }%

4500 }%

4501 \def\XINT:NE:x:mapwithin#1{%

4502 \def\XINT:NE:x:mapwithin\XINT:expr:mapwithin ##1##2%

4503 {%

4504 \if 0\expandafter\XINT:NE:hastilde\detokenize{##2}~!\relax

4505 \expandafter\XINT:NE:hashash \detokenize{##2}#1!\relax 0%

4506 \else

4507 \expandafter\XINT:NE:x:mapwithin:p

4508 \fi \XINT:expr:mapwithin {##1}{##2}%

4509 }}\expandafter\XINT:NE:x:mapwithin\string#%

4510 \def\XINT:NE:x:mapwithin:p \XINT:expr:mapwithin #1#2%

4511 {%

4512 {{%

4513 \detokenize

4514 {%

Attention (2022/06/10) I do not remember why I left these two commented lines which docstrip will

not remove, I hope this is not a forgotten left=over from some debugging session.

4515 %% \expanded

4516 %% {%

4517 \expandafter\XINT:expr:mapwithin_checkempty

4518 \expanded{\noexpand#1$XINT_expr_exclam\expandafter}%$

4519 \detokenize\expandafter{\expanded{#2}}$XINT_expr_caret%$

This is is the matching one.

4520 %% }%

4521 }%

4522 }}%

4523 }%

4524 \def\XINT:NE:x:ndmapx#1{%

4525 \def\XINT:NE:x:ndmapx\XINT_allexpr_ndmapx_a ##1##2^%

4526 {%

4527 \if 0\expandafter\XINT:NE:hastilde\detokenize{##2}~!\relax

4528 \expandafter\XINT:NE:hashash \detokenize{##2}#1!\relax 0%

4529 \else

4530 \expandafter\XINT:NE:x:ndmapx:p

4531 \fi \XINT_allexpr_ndmapx_a ##1##2^%

4532 }}\expandafter\XINT:NE:x:ndmapx\string#%

4533 \def\XINT:NE:x:ndmapx:p #1#2#3^\relax

4534 {%

4535 \detokenize

4536 {%

4537 \expanded{%

4538 \expandafter#1\expandafter#2\expanded{#3}$XINT_expr_caret\relax %$

4539 }%

4540 }%

4541 }%

Attention here that user function names may contain digits, so we don't use a \detokenize or ~

approach.

This syntax means that a function defined by \xintdeffunc never expands when used in another

definition, so it can implement recursive definitions.

680

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

\XINT:NE:userefunc et al. added at 1.3e.

I added at \xintdefefunc, \xintdefiiefunc, \xintdeffloatefunc at 1.3e to on the contrary expand

if possible (i.e. if used only with numeric arguments) in another definition.

The \XINTusefunc uses \expanded. Its ancestor \xintExpandArgs (xinttools 1.3) had some more

primitive f-expansion technique.

4542 \def\XINTusenoargfunc #1%

4543 {%

4544 0\csname #1\endcsname

4545 }%

4546 \def\XINT:NE:usernoargfunc\csname #1\endcsname

4547 {%

4548 ~romannumeral~XINTusenoargfunc{#1}%

4549 }%

4550 \def\XINTusefunc #1%

4551 {%

4552 0\csname #1\expandafter\endcsname\expanded

4553 }%

4554 \def\XINT:NE:usefunc #1#2#3%

4555 {%

4556 ~romannumeral~XINTusefunc{#1}{#3}\iffalse{{\fi}}%

4557 }%

4558 \def\XINTuseufunc #1%

4559 {%

4560 \expanded\expandafter\XINT:expr:mapwithin\csname #1\expandafter\endcsname\expanded

4561 }%

4562 \def\XINT:NE:useufunc #1#2#3%

4563 {%

4564 {{~expanded~XINTuseufunc{#1}{#3}}}%

4565 }%

4566 \def\XINT:NE:userfunc #1{%

4567 \def\XINT:NE:userfunc ##1##2##3%

4568 {%

4569 \if0\expandafter\XINT:NE:hastilde\detokenize{##3}~!\relax

4570 \expandafter\XINT:NE:hashash\detokenize{##3}#1!\relax 0%

4571 \expandafter\XINT:NE:userfunc_x

4572 \else

4573 \expandafter\XINT:NE:usefunc

4574 \fi {##1}{##2}{##3}%

4575 }}\expandafter\XINT:NE:userfunc\string#%

4576 \def\XINT:NE:userfunc_x #1#2#3{#2#3\iffalse{{\fi}}}%

4577 \def\XINT:NE:userufunc #1{%

4578 \def\XINT:NE:userufunc ##1##2##3%

4579 {%

4580 \if0\expandafter\XINT:NE:hastilde\detokenize{##3}~!\relax

4581 \expandafter\XINT:NE:hashash\detokenize{##3}#1!\relax 0%

4582 \expandafter\XINT:NE:userufunc_x

4583 \else

4584 \expandafter\XINT:NE:useufunc

4585 \fi {##1}{##2}{##3}%

4586 }}\expandafter\XINT:NE:userufunc\string#%

4587 \def\XINT:NE:userufunc_x #1{\XINT:expr:mapwithin}%

4588 \def\XINT:NE:macrofunc #1#2%

681

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4589 {\expandafter\XINT:NE:macrofunc:a\string#1#2\empty&}%

4590 \def\XINT:NE:macrofunc:a#1\csname #2\endcsname#3&%

4591 {{~XINTusemacrofunc{#1}{#2}{#3}}}%

4592 \def\XINTusemacrofunc #1#2#3%

4593 {%

4594 \romannumeral0\expandafter\xint_stop_atfirstofone

4595 \romannumeral0#1\csname #2\endcsname#3\relax

4596 }%

27.31.6. \XINT_expr_redefinemacros

Completely refactored at 1.3.

Again refactored at 1.4. The availability of \expanded allows more powerful mechanisms and more

importantly I better thought out the root problems caused by the handling of list operations in

this context and this helped simplify considerably the code.

4597 \catcode`- 11

4598 \def\XINT_expr_redefinemacros {%

4599 \let\XINT:NEhook:unpack \XINT:NE:unpack

4600 \let\XINT:NEhook:f:one:from:one \XINT:NE:f:one:from:one

4601 \let\XINT:NEhook:f:one:from:one:direct \XINT:NE:f:one:from:one:direct

4602 \let\XINT:NEhook:f:one:from:two \XINT:NE:f:one:from:two

4603 \let\XINT:NEhook:f:one:from:two:direct \XINT:NE:f:one:from:two:direct

4604 \let\XINT:NEhook:x:one:from:two \XINT:NE:x:one:from:two

4605 \let\XINT:NEhook:f:one:and:opt:direct \XINT:NE:f:one:and:opt:direct

4606 \let\XINT:NEhook:f:tacitzeroifone:direct \XINT:NE:f:tacitzeroifone:direct

4607 \let\XINT:NEhook:f:iitacitzeroifone:direct \XINT:NE:f:iitacitzeroifone:direct

4608 \let\XINT:NEhook:x:listsel \XINT:NE:x:listsel

4609 \let\XINT:NEhook:f:reverse \XINT:NE:f:reverse

4610 \let\XINT:NEhook:f:from:delim:u \XINT:NE:f:from:delim:u

4611 \let\XINT:NEhook:f:LFL \XINT:NE:f:LFL

4612 \let\XINT:NEhook:r:check \XINT:NE:r:check

4613 \let\XINT:NEhook:branch \XINT:NE:branch

4614 \let\XINT:NEhook:seqx \XINT:NE:seqx

4615 \let\XINT:NEhook:opx \XINT:NE:opx

4616 \let\XINT:NEhook:rseq \XINT:NE:rseq

4617 \let\XINT:NEhook:iter \XINT:NE:iter

4618 \let\XINT:NEhook:rrseq \XINT:NE:rrseq

4619 \let\XINT:NEhook:iterr \XINT:NE:iterr

4620 \let\XINT:NEhook:x:toblist \XINT:NE:x:toblist

4621 \let\XINT:NEhook:x:flatten \XINT:NE:x:flatten

4622 \let\XINT:NEhook:x:zip \XINT:NE:x:zip

4623 \let\XINT:NEhook:x:mapwithin \XINT:NE:x:mapwithin

4624 \let\XINT:NEhook:x:ndmapx \XINT:NE:x:ndmapx

4625 \let\XINT:NEhook:userfunc \XINT:NE:userfunc

4626 \let\XINT:NEhook:userufunc \XINT:NE:userufunc

4627 \let\XINT:NEhook:usernoargfunc \XINT:NE:usernoargfunc

4628 \let\XINT:NEhook:macrofunc \XINT:NE:macrofunc

4629 \def\XINTinRandomFloatSdigits{~XINTinRandomFloatSdigits }%

4630 \def\XINTinRandomFloatSixteen{~XINTinRandomFloatSixteen }%

4631 \def\xintiiRandRange{~xintiiRandRange }%

4632 \def\xintiiRandRangeAtoB{~xintiiRandRangeAtoB }%

4633 \def\xintRandBit{~xintRandBit }%

4634 \let\XINT_expr_exec_? \XINT:NE:exec_?

682

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4635 \let\XINT_expr_exec_?? \XINT:NE:exec_??

4636 \def\XINT_expr_op_? {\XINT_expr_op__?{\XINT_expr_op_-xii\XINT_expr_oparen}}%

4637 \def\XINT_flexpr_op_?{\XINT_expr_op__?{\XINT_flexpr_op_-xii\XINT_flexpr_oparen}}%

4638 \def\XINT_iiexpr_op_?{\XINT_expr_op__?{\XINT_iiexpr_op_-xii\XINT_iiexpr_oparen}}%

4639 }%

4640 \catcode`- 12

27.31.7. \xintNewExpr, \xintNewIExpr, \xintNewFloatExpr, \xintNewIIExpr

1.2c modifications to accomodate \XINT_expr_deffunc_newexpr etc..

1.2f adds token \XINT_newexpr_clean to be able to have a different \XINT_newfunc_clean.

As \XINT_NewExpr always execute \XINT_expr_redefineprints since 1.3e whether with \xintNewExpr

or \XINT_NewFunc, it has been moved from argument to hardcoded in replacement text.

NO MORE \XINT_expr_redefineprints at 1.4 ! This allows better support for \xinteval, \xinttheexpr

as sub-entities inside an \xintNewExpr. And the «cleaning» will remove the new \XINTfstop , to

maintain backwards compatibility with former behaviour that created macros expand to explicit

digits and not an encapsulated result.

(obsolete:) The #2#3 in clean stands for \noexpand\XINTfstop.

Modified at 1.4n (2025/09/05). The #2#3 in previous paragraph is obsolete, the pattern used

for \XINT_newexpr_clean was formerly #1>#2#3 (not optimal, but legacy), but is now simply

#1\XINTfstop. This is simpler and allows compatibility with LuaMetaTeX whose \meaning out-

put differs from the one of other engines.

4641 \def\xintNewExpr {\XINT_NewExpr\xint_firstofone\xintexpr \XINT_newexpr_clean}%

4642 \def\xintNewFloatExpr{\XINT_NewExpr\xint_firstofone\xintfloatexpr\XINT_newexpr_clean}%
4643 \def\xintNewIExpr {\XINT_NewExpr\xint_firstofone\xintiexpr \XINT_newexpr_clean}%

4644 \def\xintNewIIExpr {\XINT_NewExpr\xint_firstofone\xintiiexpr \XINT_newexpr_clean}%

4645 \def\xintNewBoolExpr {\XINT_NewExpr\xint_firstofone\xintboolexpr \XINT_newexpr_clean}%

4646 \def\XINT_newexpr_clean #1\XINTfstop{\noexpand\expanded\noexpand\xintNEprinthook}%

4647 \def\xintNEprinthook#1.#2{\expanded{\xint_noxpd{#1.}{#2}}}%

1.2c for \xintdeffunc, \xintdefiifunc, \xintdeffloatfunc.

At 1.3, NewFunc does not use anymore a comma delimited pattern for the arguments to the macro

being defined.

At 1.4 we use \xintthebareeval, whose meaning now does not mean unlock from csname but firstofone

to remove a level of braces This is involved in functioning of expr:userfunc and expr:userefunc

4648 \def\XINT_NewFunc {\XINT_NewExpr\xint_gobble_i\xintthebareeval\XINT_newfunc_clean}%

4649 \def\XINT_NewFloatFunc{\XINT_NewExpr\xint_gobble_i\xintthebarefloateval\XINT_newfunc_clean}%

4650 \def\XINT_NewIIFunc {\XINT_NewExpr\xint_gobble_i\xintthebareiieval\XINT_newfunc_clean}%

4651 \def\XINT_newfunc_clean #1>{}%

4652 \ifdefined\notexpanded\let\XINT_newfunc_clean\xint_gobble_vi\fi%

1.2c adds optional logging. For this needed to pass to _NewExpr_a the macro name as parameter.

Up to and including 1.2c the definition was global. Starting with 1.2d it is done locally.

The \xintexprSafeCatcodes inserted here by \xintNewExpr is not paired with an \xintexprRestoreCatcodes,

but this happens within a scope limiting group so does not matter. At 1.3c, \XINT_NewFunc et al.

do not even execute the \xintexprSafeCatcodes, as it gets already done by \xintdeffunc prior to

arriving here.

4653 \def\XINT_NewExpr #1#2#3#4#5[#6]%

4654 {%

4655 \begingroup

4656 \ifcase #6\relax

4657 \toks0 {\endgroup\XINT_global\def#4}%

4658 \or \toks0 {\endgroup\XINT_global\def#4##1}%

683

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4659 \or \toks0 {\endgroup\XINT_global\def#4##1##2}%

4660 \or \toks0 {\endgroup\XINT_global\def#4##1##2##3}%

4661 \or \toks0 {\endgroup\XINT_global\def#4##1##2##3##4}%

4662 \or \toks0 {\endgroup\XINT_global\def#4##1##2##3##4##5}%

4663 \or \toks0 {\endgroup\XINT_global\def#4##1##2##3##4##5##6}%

4664 \or \toks0 {\endgroup\XINT_global\def#4##1##2##3##4##5##6##7}%

4665 \or \toks0 {\endgroup\XINT_global\def#4##1##2##3##4##5##6##7##8}%

4666 \or \toks0 {\endgroup\XINT_global\def#4##1##2##3##4##5##6##7##8##9}%

4667 \fi

4668 #1\xintexprSafeCatcodes

4669 \XINT_expr_redefinemacros

4670 \XINT_NewExpr_a #1#2#3#4%

4671 }%

1.2d's \xintNewExpr makes a local definition. In earlier releases, the definition was global.

\the\toks0 inserts the \endgroup, but this will happen after \XINT_tmpa has already been ex-

panded...

The %1 is \xint_firstofone for \xintNewExpr, \xint_gobble_i for \xintdeffunc.

Attention that at 1.4, there might be entire sub-xintexpressions embedded in detokenized form.

They are re-tokenized and the main thing is that the parser should not mis-interpret catcode 11

characters as starting variable names. As some macros use : in their names, the retokenization

must be done with : having catcode 11. To not break embedded non-evaluated sub-expressions, the

\XINT_expr_getop was extended to intercept the : (alternative would have been to never inject

any macro with : in its name... too late now). On the other hand the ! is not used in the macro

names potentially kept as is non expanded by the \xintNewExpr/\xintdeffunc process; it can thus

be retokenized with catcode 12. But the «hooks» of seq(), iter(), etc... if deciding they can't

evaluate immediately will inject a full sub-expression (possibly arbitrarily complicated) and

append to it for its delayed expansion a catcode 11 ! character (as well as possibly catcode 3 ~

and ? and catcode 11 caret ^ and even catcode 7 &). The macros \XINT_expr_tilde etc... below

serve for this injection (there are *two* successive \scantokens using different catcode regimes

and these macros remain detokenized during the first pass!) and as consequence the final meaning

may have characters such as ! or & present with both standard and special catcodes depending on

where they are located. It may thus not be possible to (easily) retokenize the meaning as printed

in the log file if \xintverbosetrue was issued.

If a defined function is used in another expression it would thus break things if its meaning

was included pre-expanded ; a mechanism exists which keeps only the name of the macro associated

to the function (this name may contain digits by the way), when the macro can not be immediately

fully expanded. Thus its meaning (with its possibly funny catcodes) is not exposed. And this

gives opportunity to pre-expand its arguments before actually expanding the macro.

There is a problem with xetex -8bit which will convert ^^@ possibly present in the meaning writ-

ten to log if \xintverbosetrue into a null byte. It surprises at first, but perhaps because I am

too much used to pdftex and luatex converting the zero byte perhaps produced meaning internally

to ^^@ notation at the "output" stage.

I observed that ConTeXt will spit out such null byte "as is", as does xetex -8bit. This is a

bit annoying because contrarily to xetex no option is needed, and such output lets some software

consider the output file is a binary one (for example git diff).

4672 \catcode`~ 3 \catcode`? 3

4673 \def\XINT_expr_tilde{~}\def\XINT_expr_qmark{?}% catcode 3

4674 \def\XINT_expr_caret{^}\def\XINT_expr_exclam{!}% catcode 11

4675 \def\XINT_expr_tab{&}% catcode 7

4676 \def\XINT_expr_null{&&@}%

Added at 1.4n (2025/09/05). Add \xintmeaning for matters of package test suite. At user level, a

priori simply expands to \meaning. It gets redefined during execution of the test suite to keep

684

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

logged expectations the same also with LMTX engine.

4677 \ifdefined\xintmeaning\else\def\xintmeaning{\meaning}\fi

Added at 1.4n (2025/09/05). Add \XINT_expr_set_tilde to address LuaMetaTEX specifics. We won't

need to restore because we will be in a group and \toks0 will bring the \endgroup.

When I observed that the whole \xintdeffunc thing was broken with ConTEXt due to what appeared

to be some weirdness during expansion, I realized much to my surprise that the active tilde was

not expanding inside \edef! I got lucky I could quickly find a then recent discussion precisely

about this on tex.sx, from which I picked up the \amcode workaround. Such a trick is quite hidden

in ConTEXt documentation, from which it is a long shot to deduce it behaves as it actually does.

Replacing about 130 occurrences of ~ in this file which are a core part of the mysterious deal-

ings underpinning \xintdeffunc is not really an option. I don't have that many available ascii

characters and I do not want to go into mass replacements and have to update unit tests sometimes

checking internals. What a relief there is the \amcode way! (and seemingly no other way...).

4678 \catcode`~ 13 \catcode`$ 11 %$

4679 \def\XINT_NewExpr_set_tilde{\def~{$noexpand$}}%

4680 \ifdefined\contextversion

4681 \ifdefined\amcode

4682 \def\XINT_NewExpr_set_tilde{\amcode`\~0\def~{$noexpand$}}%

4683 \else

4684 \xintMessage{xintexpr}{Error}{This ConTeXt is incompatible.}%

4685 \errhelp{xintexpr requires ConTeXt-LMTX to have its \string\amcode.}%

4686 \errmessage{The \noexpand\amcode primitive does not exist.}%

4687 \fi

4688 \fi

4689 \catcode`@ 14 \catcode`\% 6 \catcode`# 12

4690 \def\XINT_NewExpr_a %1%2%3%4%5@

4691 {@

4692 \def\XINT_tmpa %%1%%2%%3%%4%%5%%6%%7%%8%%9{%5}@

4693 \XINT_NewExpr_set_tilde

4694 \catcode`: 11 \catcode`_ 11 \catcode`\@ 11

4695 \catcode`# 12 \catcode`~ 13 \escapechar 126

4696 \endlinechar -1 \everyeof {\noexpand }@

4697 \edef\XINT_tmpb

4698 {\scantokens\expandafter{\romannumeral`&&@\expandafter

4699 %2\XINT_tmpa{#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}\relax}@

4700 }@

4701 \escapechar 92 \catcode`# 6 \catcode`$ 0 @ $

4702 \edef\XINT_tmpa %%1%%2%%3%%4%%5%%6%%7%%8%%9@

4703 {\scantokens\expandafter{\expandafter%3\meaning\XINT_tmpb}}@

4704 \the\toks0\expandafter

4705 {\XINT_tmpa{%%1}{%%2}{%%3}{%%4}{%%5}{%%6}{%%7}{%%8}{%%9}}@

4706 %1{\ifxintverbose

4707 \xintMessage{xintexpr}{Info}@

4708 {\string%4\space now with @

4709 \ifxintglobaldefs global \fi meaning \xintmeaning%4}@

4710 \fi}@

4711 }@

4712 \catcode`% 14

4713 \XINTsetcatcodes % clean up to avoid surprises if something changes

685

https://tex.stackexchange.com/q/749050

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

27.31.8. \xintexprSafeCatcodes, \xintexprRestoreCatcodes

Modified at 1.3c (2018/06/17). Added \ifxintexprsafecatcodes to allow nesting

Modified at 1.4k (2022/05/18). The "allow nesting" from the 2018 comment was strange, be-

cause the behaviour, as correctly documented in user manual, was that in case of a series of

\xintexprSafeCatcodes, the \xintexprRestoreCatcodes would set catcodes to what they were be-

fore the *first* sanitization. But as \xintdefvar and \xintdeffunc used such a pair this meant

that they would incomprehensibly for user reset catcodes to what they were before a possible

user \xintexprSafeCatcodes located before... very lame situation. Anyway. I finally fix at

1.4k that by removing the silly \ifxintexprsafecatcodes thing and replace it by some stack-like

method, avoiding extra macros thanks to the help of \unexpanded.

Modified at 1.4m (2022/06/10). Use \protected rather than \unexpanded mechanism, for lisibility.

4714 \protected\def\xintexprRestoreCatcodes{}%
4715 \def\xintexprSafeCatcodes
4716 {%

4717 \protected\edef\xintexprRestoreCatcodes{%

4718 \endlinechar=\the\endlinechar

4719 \catcode59=\the\catcode59 % ;

4720 \catcode34=\the\catcode34 % "

4721 \catcode63=\the\catcode63 % ?

4722 \catcode124=\the\catcode124 % |

4723 \catcode38=\the\catcode38 % &

4724 \catcode33=\the\catcode33 % !

4725 \catcode93=\the\catcode93 %]

4726 \catcode91=\the\catcode91 % [

4727 \catcode94=\the\catcode94 % ^

4728 \catcode95=\the\catcode95 % _

4729 \catcode47=\the\catcode47 % /

4730 \catcode41=\the\catcode41 %)

4731 \catcode40=\the\catcode40 % (

4732 \catcode42=\the\catcode42 % *
4733 \catcode43=\the\catcode43 % +

4734 \catcode62=\the\catcode62 % >

4735 \catcode60=\the\catcode60 % <

4736 \catcode58=\the\catcode58 % :

4737 \catcode46=\the\catcode46 % .

4738 \catcode45=\the\catcode45 % -

4739 \catcode44=\the\catcode44 % ,

4740 \catcode61=\the\catcode61 % =

4741 \catcode96=\the\catcode96 % `

4742 \catcode32=\the\catcode32\relax % space

4743 \protected\odef\xintexprRestoreCatcodes{\xintexprRestoreCatcodes}%

4744 }%

4745 \endlinechar=13 %

4746 \catcode59=12 % ;

4747 \catcode34=12 % "

4748 \catcode63=12 % ?

4749 \catcode124=12 % |

4750 \catcode38=4 % &

4751 \catcode33=12 % !

4752 \catcode93=12 %]

4753 \catcode91=12 % [

686

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4754 \catcode94=7 % ^

4755 \catcode95=8 % _

4756 \catcode47=12 % /

4757 \catcode41=12 %)

4758 \catcode40=12 % (

4759 \catcode42=12 % *
4760 \catcode43=12 % +

4761 \catcode62=12 % >

4762 \catcode60=12 % <

4763 \catcode58=12 % :

4764 \catcode46=12 % .

4765 \catcode45=12 % -

4766 \catcode44=12 % ,

4767 \catcode61=12 % =

4768 \catcode96=12 % `

4769 \catcode32=10 % space

4770 }%

4771 \let\XINT_tmpa\undefined \let\XINT_tmpb\undefined \let\XINT_tmpc\undefined

4772 \let\XINT_tmpd\undefined \let\XINT_tmpe\undefined

27.32. Matters related to loading log and trig libraries
1.4l makes a user level \usepackage{xintlog } (not the one done via \usepackage{xintexpr } attempt

to do the right thing (in place of aborting). We have to work-around the fact that LaTeX will

ignore a \usepackage here. Simpler for non-LaTeX.

In all cases, the input of xintlog.sty and xinttrig.sty is done with xintexpr catcodes in place.

And xintlog will sanitize catcodes at time of loading poormanlog. Attention also to not mix-up

things at time of restoring catcodes. This is reason why xintlog.sty and xinttrig.sty have their

own endinput wrappers. And that the rescue attempt of loading xintexpr (which will load xintlog)

from xintlog itself is done carefully.

4773 \ifdefined\RequirePackage

4774 \ifcsname ver@xinttrig.sty\endcsname

We end up here since 1.4l with LATEX if the user has issued \usepackage{xinttrig} or \RequirePack ⤸
age{xinttrig} with no prior loading of xintexpr. In such (not officially supported) case, the

loading of xintexpr was launched from this first instance of xinttrig. This first xinttrig will

abort itself, once this input concludes. But before that a second instance of xinttrig is \input

and will do all its macro definitions. We can not do \RequirePackage{xinttrig} or \usepackage{x ⤸
inttrig} as it has occurred already under the user responsability, so we use \@@input.

4775 \@@input xinttrig.sty\relax

4776 \else

Here this is either the normal case with LATEX (or other formats providing \RequirePackage) and

xintexpr requested by user directly, or some more exotic possibility such as 𝜀-TEX with the miniltx

loaded and then \input xintexpr.sty\relax was done. As \RequirePackage appears to be defined we

use it.

4777 \RequirePackage{xinttrig}%

4778 \fi

Same situation with xintlog.

4779 \ifcsname ver@xintlog.sty\endcsname

4780 \@@input xintlog.sty\relax

4781 \else

4782 \RequirePackage{xintlog}%

687

https://ctan.org/pkg/miniltx

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr , xinttrig, xintlog

4783 \fi

4784 \else

Here we are not with LATEX and not with miniltx either. Let's just use \input. Perhaps there was

an \input xinttrig.sty earlier which triggered \input xintexpr.sty after a warning to the user.

The second \input xinttrig.sty issued here will execute the macro definitions, and the former one

will abort its own input after that.

4785 \input xinttrig.sty

4786 \input xintlog.sty

4787 \fi

4788 \XINTrestorecatcodesendinput%

688

https://ctan.org/pkg/miniltx

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

28. Package xinttrig implementation

Contents
28.1 Catcodes, 𝜀-TEX and reload detection . 690
28.2 Library identification . 691
28.3 Ensure used letters are dummy letters . 692
28.4 \xintreloadxinttrig . 692
28.5 Auxiliary variables . 692

28.5.1 @twoPi, @threePiover2, @Pi, @Piover2 . 692
28.5.2 @oneDegree, @oneRadian . 692

28.6 Hack \xintdeffloatfunc for inserting usage of guard digits . 693
28.7 The sine and cosine series . 694

28.7.1 Support macros for the sine and cosine series . 694
28.7.2 The poor man approximate but speedier approach for Digits at most 8 697
28.7.3 Declarations of the @sin_aux() and @cos_aux() functions 698
28.7.4 @sin_series(), @cos_series() . 698

28.8 Range reduction for sine and cosine using degrees . 698
28.8.1 Low level modulo 360 helper macro \XINT_mod_ccclx_i 698
28.8.2 @sind_rr() function and its support macro \xintSind 699
28.8.3 @cosd_rr() function and its support macro \xintCosd 701

28.9 @sind(), @cosd() . 703
28.10 @sin(), @cos() . 703
28.11 @sinc() . 703
28.12 @tan(), @tand(), @cot(), @cotd() . 704
28.13 @sec(), @secd(), @csc(), @cscd() . 704
28.14 Core routine for inverse trigonometry . 704
28.15 @asin(), @asind() . 708
28.16 @acos(), @acosd() . 708
28.17 @atan(), @atand() . 708
28.18 @Arg(), @atan2(), @Argd(), @atan2d(), @pArg(), @pArgd() . 709
28.19 Restore \xintdeffloatfunc to its normal state, with no extra digits 710
28.20 Let the functions be known to the \xintexpr parser . 710
28.21 Synonyms: @tg(), @cotg() . 711
28.22 Final clean-up . 711

A preliminary implementation was done only late in the development of xintexpr, as an example of

the high level user interface, in January 2019. In March and April 2019 I improved the algorithm

for the inverse trigonometrical functions and included the whole as a new \xintexpr module. But,

as the high level interface provided no way to have intermediate steps executed with guard digits,

the whole scheme could only target say P-2 digits where P is the prevailing precision, and only

with a moderate requirement on what it means to have P-2 digits about correct.

Finally in April 2021, after having at long last added exponential and logarithm up to 62 digits

and at a rather strong precision requirement (something like, say with inputs in normal ranges:

targeting at most 0.505ulp distance to exact result), I revisited the code here.

We keep most of the high level usage of \xintdeffloatfunc, but hack into its process in order to

let it map the 4 operations and some functions such as square-root to macros using 4 extra digits.

This hack is enough to support the used syntax here, but is not usable generally. All functions

and their auxiliaries defined during the time the hack applies are named with @ as first letter.

Later the public functions, without the @, are defined as wrappers of the @-named ones, which

float-round to P digits on output.

Apart from that the sine and cosine series were implemented at macro level, bypassing the \xint-

deffloatfunc interface. This is done mainly for handling Digits at high value (24 or more) as it

689

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

then becomes beneficial to float-round the variable to less and less digits, the deeper one goes

into the series.

And regarding the arcsine I modified a bit my original idea in order to execute the first step

in a single \numexpr. It turns out that that for 16 digits the algorithm then ``only'' needs one

sine and one cosine evaluation (and a square-root), and there is no need for an arcsine series

auxiliary then. I am aware this is by far not the ``best'' approach but the problem is that I am a

bit enamored into the idea of the algorithm even though it is at least twice as costly than a sine

evaluation! Actually, for many digits, it turns out the arcsine is less costly than two random

sine evaluations, probably because the latter have the overhead of range reduction.

Speaking of this, the range reduction is rather naive and not extremely ambitious. I wrote

it initially having only sind() and cosd() in mind, and in 2019 reduced degrees to radians in

the most naive way possible. I have only slighly improved this for this 1.4e 2021 release, the

announced precision for inputs less than say 1e6, but at 1e8 and higher, one will start feeling

the gradual loss of precision compared to the task of computing the exact mathematical result

correctly rounded. Also, I do not worry here about what happens when the input is very near a big

multiple of π, and one computes a sine for example. Maybe I will improve in future this aspect but

I decided I was seriously running out of steam for the 1.4e release.

As commented in xintlog regarding exponential and logarithms, even though we have instilled

here some dose of lower level coding, the whole suffers from xintfrac not yet having made floating

point numbers a native type. Thus inefficiencies accumulate...

At 8 digits, the gain was only about 40% compared to 16 digits. So at the last minute, on the

day I was going to do the release I decided to implement a poorman way for sine and cosine, for

"speed". I transferred the idea from the arcsine numexpr to sine and cosine. Indeed there is an

interesting speed again of about 4X compared to applying the same approach as for higher values of

Digits. Correct rounding during random testing is still obtained reasonably often (at any rate

more than 95% of cases near 45 degrees and always faithful rounding), although at less than the 99%

reached for the main branch handling Digits up to 62. But the precision is more than enough for

usage in plots for example. I am keeping the guard digits, as removing then would add a further

speed gain of about 20% to 40% but the precision then would drop dramatically, and this is not

acceptable at the time of our 2021 standards (not a period of enlightenment generally speaking,

though).

28.1. Catcodes, 𝜺-TEX and reload detection

Modified at 1.4l (2022/05/29). Silly paranoid modification of \z in case { and } do not have

their normal catcodes when xinttrig.sty is reloaded (initial loading via xintexpr.sty does not

need this), to define \XINTtrigendinput there and not after the \endgroup from \z has already

restored possibly bad catcodes.

1.4l handles much better the situation with \usepackage{xinttrig} without previous loading of

xintexpr (or same with \input and etex). cf comments in xintlog.sty.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode35=6 % #

8 \catcode44=12 % ,

9 \catcode46=12 % .

10 \catcode58=12 % :

11 \catcode94=7 % ^

12 \def\empty{}\def\space{ }\newlinechar10

690

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

13 \def\z{\endgroup}%

14 \expandafter\let\expandafter\x\csname ver@xinttrig.sty\endcsname

15 \expandafter\let\expandafter\w\csname ver@xintexpr.sty\endcsname

16 \expandafter

17 \ifx\csname PackageWarningNoLine\endcsname\relax

18 \def\y#1#2{\immediate\write128{^^JPackage #1 Warning:^^J%

19 \space\space\space\space#2.^^J}}%

20 \else

21 \def\y#1#2{\PackageWarningNoLine{#1}{#2}}%

22 \fi

23 \expandafter

24 \ifx\csname numexpr\endcsname\relax

25 \y{xinttrig}{\numexpr not available, aborting input}%

26 \def\z{\endgroup\endinput}%

27 \else

28 \ifx\w\relax % xintexpr.sty not yet loaded.

29 \edef\MsgBrk{^^J\space\space\space\space}%

30 \y{xinttrig}%

31 {\ifx\x\empty

32 xinttrig should not be loaded directly\MessageBreak

33 The correct way is \string\usepackage{xintexpr}.\MessageBreak

34 Will try that now%

35 \else

36 First loading of xinttrig.sty should be via

37 \string\input\space xintexpr.sty\relax\MsgBrk

38 Will try that now%

39 \fi

40 }%

41 \ifx\x\empty

42 \def\z{\endgroup\RequirePackage{xintexpr}\endinput}%

43 \else

44 \def\z{\endgroup\input xintexpr.sty\relax\endinput}%

45 \fi

46 \else

47 \def\z{\endgroup\edef\XINTtrigendinput{\XINTrestorecatcodes\noexpand\endinput}}%

48 \fi

49 \fi

50 \z%

51 \XINTsetcatcodes%

52 \catcode`? 12

28.2. Library identification
If the file has already been loaded, let's skip the \ProvidesPackage. Else let's do it and set a

flag to indicate loading happened at least once already.

Modified at 1.4l (2022/05/29). Message also to Terminal not only log file.

53 \ifcsname xintlibver@trig\endcsname

54 \expandafter\xint_firstoftwo

55 \else

56 \expandafter\xint_secondoftwo

57 \fi

58 {\immediate\write128{Reloading xinttrig library using Digits=\xinttheDigits.}}%

691

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

59 {\expandafter\gdef\csname xintlibver@trig\endcsname{2025/09/06 v1.4o}%

60 \XINT_providespackage

61 \ProvidesPackage{xinttrig}%

62 [2025/09/06 v1.4o Trigonometrical functions for xintexpr (JFB)]%

63 }%

28.3. Ensure used letters are dummy letters
64 \xintFor* #1 in {iDTVtuwxyzX}\do{\xintensuredummy{#1}}%

28.4. \xintreloadxinttrig
Much simplified at 1.4e, from a modified catcode regime management.

65 \def\xintreloadxinttrig{\input xinttrig.sty }%

28.5. Auxiliary variables
The variables with private names have extra digits. Whether private or public, the variables can

all be redefined without impacting the defined functions, whose meanings will contain already the

variable values.

Formerly variables holding the 1/n! were defined, but this got removed at 1.4e.

28.5.1. @twoPi, @threePiover2, @Pi, @Piover2

At 1.4e we need more digits, also \xintdeffloatvar changed and always rounds to P=Digits precision

so we use another path to store values with extra digits.

66 \xintdefvar @twoPi :=

67 float(

68 6.2831853071795864769252867665590057683943387987502116419498891846156328125724180

69 ,\XINTdigitsormax+4);%

70 \xintdefvar @threePiover2 :=

71 float(

72 4.7123889803846898576939650749192543262957540990626587314624168884617246094293135

73 ,\XINTdigitsormax+4);%

74 \xintdefvar @Pi :=

75 float(

76 3.1415926535897932384626433832795028841971693993751058209749445923078164062862090

77 ,\XINTdigitsormax+4);%

78 \xintdefvar @Piover2 :=

79 float(

80 1.5707963267948966192313216916397514420985846996875529104874722961539082031431045

81 ,\XINTdigitsormax+4);%

28.5.2. @oneDegree, @oneRadian

Those are needed for range reduction, particularly @oneRadian. We define it with 12 extra digits.

But the whole process of range reduction in radians is very naive one.

82 \xintdefvar @oneDegree :=

83 float(

84 0.017453292519943295769236907684886127134428718885417254560971914401710091146034494

85 ,\XINTdigitsormax+4);%

86 \xintdefvar @oneRadian :=

87 float(

692

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

88 57.295779513082320876798154814105170332405472466564321549160243861202847148321553

89 ,\XINTdigitsormax+12);%

28.6. Hack \xintdeffloatfunc for inserting usage of guard digits
1.4e. This is not a general approach, but it sufficient for the limited use case done here of

\xintdeffloatfunc. What it does is to let \xintdeffloatfunc hardcode usage of macros which will

execute computations with an elevated number of digits. But for example if 5/3 is encountered in

a float expression it will remain unevaluated so one would have to use alternate input syntax for

efficiency (\xintexpr float(5/3,\xinttheDigits+4)\relax as a subexpression, for example).

90 \catcode`~ 12

91 \def\XINT_tmpa#1#2#3.#4.%

92 {%

93 \let #1#2%

94 \def #2##1##2##3##4%

95 {##2##3{{~expanded{~xint_noxpd{#4[#3]}~expandafter}~expanded{##1##4}}}}%

96 }%

97 \expandafter\XINT_tmpa

98 \csname XINT_flexpr_exec_+_\expandafter\endcsname

99 \csname XINT_flexpr_exec_+\expandafter\endcsname

100 \the\numexpr\XINTdigitsormax+4.~XINTinFloatAdd_wopt.%

101 \expandafter\XINT_tmpa

102 \csname XINT_flexpr_exec_-_\expandafter\endcsname

103 \csname XINT_flexpr_exec_-\expandafter\endcsname

104 \the\numexpr\XINTdigitsormax+4.~XINTinFloatSub_wopt.%

105 \expandafter\XINT_tmpa

106 \csname XINT_flexpr_exec_*_\expandafter\endcsname

107 \csname XINT_flexpr_exec_*\expandafter\endcsname

108 \the\numexpr\XINTdigitsormax+4.~XINTinFloatMul_wopt.%

109 \expandafter\XINT_tmpa

110 \csname XINT_flexpr_exec_/_\expandafter\endcsname

111 \csname XINT_flexpr_exec_/\expandafter\endcsname

112 \the\numexpr\XINTdigitsormax+4.~XINTinFloatDiv_wopt.%

113 \def\XINT_tmpa#1#2#3.#4.%

114 {%

115 \let #1#2%

116 \def #2##1##2##3{##1##2{{~expanded{~xint_noxpd{#4[#3]}~expandafter}##3}}}%

117 }%

118 \expandafter\XINT_tmpa

119 \csname XINT_flexpr_sqrfunc\expandafter\endcsname

120 \csname XINT_flexpr_func_sqr\expandafter\endcsname

121 \the\numexpr\XINTdigitsormax+4.~XINTinFloatSqr_wopt.%

122 \expandafter\XINT_tmpa

123 \csname XINT_flexpr_sqrtfunc\expandafter\endcsname

124 \csname XINT_flexpr_func_sqrt\expandafter\endcsname

125 \the\numexpr\XINTdigitsormax+4.~XINTinFloatSqrt.%

126 \expandafter\XINT_tmpa

127 \csname XINT_flexpr_invfunc\expandafter\endcsname

128 \csname XINT_flexpr_func_inv\expandafter\endcsname

129 \the\numexpr\XINTdigitsormax+4.~XINTinFloatInv_wopt.%

130 \catcode`~ 3

693

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

28.7. The sine and cosine series
Old pending question: should I rather use successive divisions by (2n+1)(2n), or rather multipli-

cation by their precomputed inverses, in a modified Horner scheme ? The \ifnum tests are executed

at time of definition.

Update at last minute: this is actually exactly what I do if Digits is at most 8.

Small values of the variable are very badly handled here because a much shorter truncation of

the series should be used.

At 1.4e the original \xintdeffloatfunc was converted into macros, whose principle can be seen

also at work in xintlog.sty. We prepare the input variables with shorter and shorter mantissas

for usage deep in the series.

This divided by about 3 the execution cost of the series for P about 60.

Originally, the thresholds were computed a priori with 0.79 as upper bound of the variable, but

then for 1.4e I developped enough test files to try to adjust heuristically with a target of say

99,5% of correct rounding, and always at most 1ulp error. The numerical analysis is not easy due

to the complications of the implementation...

Also, random testing never explores the weak spots...

The 0.79 (a bit more than Pi/4) upper bound induces a costly check of variable on input, if Digits

is big. Much faster would be to check if input is less than 10 degrees or 1 radian as done in xfp.

But using enough coefficients for allowing up to 1 radian, which is without pain for Digits=16

starts being annoying for higher values such as Digits=48.

But the main reason I don't do it now is that I spend too much time fine-tuning the table of

thresholds... maybe in next release.

28.7.1. Support macros for the sine and cosine series

Computing the 1/n! from n! then inverting would require costly divisions and significantly in-

crease the loading time.

So a method is employed to simply divide by 2k(2k-1) or (2k+1)(2k) step by step, with what we

hope are enough 8 security digits, and reducing the sizes of the mantissas at each step.

This whole section is conditional on Digits being at least nine.

131 \ifnum\XINTdigits>8

132 \edef\XINT_tmpG % 1/3!

133 {1\xintReplicate{\XINTdigitsormax+2}{6}7[\the\numexpr-\XINTdigitsormax-4]}%

134 \edef\XINT_tmpH % 1/5!

135 {8\xintReplicate{\XINTdigitsormax+1}{3}[\the\numexpr-\XINTdigitsormax-4]}%

136 \edef\XINT_tmpd % 1/5!

137 {8\xintReplicate{\XINTdigitsormax+9}{3}[\the\numexpr-\XINTdigitsormax-12]}%

138 \def\XINT_tmpe#1.#2.#3.#4.#5#6#7%

139 {%

140 \def#5##1\xint:

141 {%

142 \expandafter#6\romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

143 }%

144 \def#6##1\xint:

145 {%

146 \expandafter#7\romannumeral0\xintsub{#4}{\XINTinFloat[#2]{\xintMul{#3}{##1}}}\xint:

147 }%

148 \def#7##1\xint:##2\xint:

149 {%

150 \xintSub{1/1[0]}{\XINTinFloat[#1]{\xintMul{##1}{##2}}}%

151 }%

152 }%

694

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

153 \expandafter\XINT_tmpe

154 \the\numexpr\XINTdigitsormax+4\expandafter.%

155 \the\numexpr\XINTdigitsormax+2\expandafter.\expanded{%

156 \XINT_tmpH.% 1/5!

157 \XINT_tmpG.% 1/3!

158 \expandafter}%

159 \csname XINT_SinAux_series_a_iii\expandafter\endcsname

160 \csname XINT_SinAux_series_b\expandafter\endcsname

161 \csname XINT_SinAux_series_c_i\endcsname

162 \def\XINT_tmpa #1 #2 #3 #4 #5 #6 #7 #8 %

163 {%

164 \def\XINT_tmpb ##1##2##3##4##5%

165 {%

166 \def\XINT_tmpc####1.####2.####3.####4.####5.%

167 {%

168 \def##1########1\xint:

169 {%

170 \expandafter##2%

171 \romannumeral0\XINTinfloatS[####1]{########1}\xint:########1\xint:

172 }%

173 \def##2########1\xint:

174 {%

175 \expandafter##3%

176 \romannumeral0\XINTinfloatS[####2]{########1}\xint:########1\xint:

177 }%

178 \def##3########1\xint:

179 {%

180 \expandafter##4%

181 \romannumeral0\xintsub{####4}{\XINTinFloat[####2]{\xintMul{####3}{########1}}}\xint:

182 }%

183 \def##4########1\xint:########2\xint:

184 {%

185 \expandafter##5%

186 \romannumeral0\xintsub{####5}%

187 {\XINTinFloat[####1]{\xintMul{########1}{########2}}}\xint:

188 }%

189 }%

190 }%

191 \expandafter\XINT_tmpb

192 \csname XINT_#8Aux_series_a_\romannumeral\numexpr#1-1\expandafter\endcsname

193 \csname XINT_#8Aux_series_a_\romannumeral\numexpr#1\expandafter\endcsname

194 \csname XINT_#8Aux_series_b\expandafter\endcsname

195 \csname XINT_#8Aux_series_c_\romannumeral\numexpr#1-2\expandafter\endcsname

196 \csname XINT_#8Aux_series_c_\romannumeral\numexpr#1-3\endcsname

197 \edef\XINT_tmpd

198 {\XINTinFloat[\XINTdigitsormax-#2+8]{\xintDiv{\XINT_tmpd}{\the\numexpr#5*(#5-1)\relax}}}%

199 \let\XINT_tmpF\XINT_tmpG

200 \let\XINT_tmpG\XINT_tmpH

201 \edef\XINT_tmpH{\XINTinFloat[\XINTdigitsormax-#2]{\XINT_tmpd}}%

202 \expandafter\XINT_tmpc

203 \the\numexpr\XINTdigitsormax-#3\expandafter.%

204 \the\numexpr\XINTdigitsormax-#2\expandafter.\expanded{%

695

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

205 \XINT_tmpH.%

206 \XINT_tmpG.%

207 \XINT_tmpF.%

208 }%

209 }%

210 \XINT_tmpa 4 -1 -2 -4 7 5 3 Sin %

211 \ifnum\XINTdigits>3 \XINT_tmpa 5 1 -1 -2 9 7 5 Sin \fi

212 \ifnum\XINTdigits>5 \XINT_tmpa 6 3 1 -1 11 9 7 Sin \fi

213 \ifnum\XINTdigits>8 \XINT_tmpa 7 6 3 1 13 11 9 Sin \fi

214 \ifnum\XINTdigits>11 \XINT_tmpa 8 9 6 3 15 13 11 Sin \fi

215 \ifnum\XINTdigits>14 \XINT_tmpa 9 12 9 6 17 15 13 Sin \fi

216 \ifnum\XINTdigits>16 \XINT_tmpa 10 14 12 9 19 17 15 Sin \fi

217 \ifnum\XINTdigits>19 \XINT_tmpa 11 17 14 12 21 19 17 Sin \fi

218 \ifnum\XINTdigits>22 \XINT_tmpa 12 20 17 14 23 21 19 Sin \fi

219 \ifnum\XINTdigits>25 \XINT_tmpa 13 23 20 17 25 23 21 Sin \fi

220 \ifnum\XINTdigits>28 \XINT_tmpa 14 26 23 20 27 25 23 Sin \fi

221 \ifnum\XINTdigits>31 \XINT_tmpa 15 29 26 23 29 27 25 Sin \fi

222 \ifnum\XINTdigits>34 \XINT_tmpa 16 32 29 26 31 29 27 Sin \fi

223 \ifnum\XINTdigits>37 \XINT_tmpa 17 35 32 29 33 31 29 Sin \fi

224 \ifnum\XINTdigits>40 \XINT_tmpa 18 38 35 32 35 33 31 Sin \fi

225 \ifnum\XINTdigits>44 \XINT_tmpa 19 42 38 35 37 35 33 Sin \fi

226 \ifnum\XINTdigits>47 \XINT_tmpa 20 45 42 38 39 37 35 Sin \fi

227 \ifnum\XINTdigits>51 \XINT_tmpa 21 49 45 42 41 39 37 Sin \fi

228 \ifnum\XINTdigits>55 \XINT_tmpa 22 53 49 45 43 41 39 Sin \fi

229 \ifnum\XINTdigits>58 \XINT_tmpa 23 56 53 49 45 43 41 Sin \fi

230 \edef\XINT_tmpd % 1/4!

231 {41\xintReplicate{\XINTdigitsormax+8}{6}7[\the\numexpr-\XINTdigitsormax-12]}%

232 \edef\XINT_tmpH % 1/4!

233 {41\xintReplicate{\XINTdigitsormax}{6}7[\the\numexpr-\XINTdigitsormax-4]}%

234 \def\XINT_tmpG{5[-1]}% 1/2!

235 \expandafter\XINT_tmpe

236 \the\numexpr\XINTdigitsormax+4\expandafter.%

237 \the\numexpr\XINTdigitsormax+3\expandafter.\expanded{%

238 \XINT_tmpH.%

239 \XINT_tmpG.%

240 \expandafter}%

241 \csname XINT_CosAux_series_a_iii\expandafter\endcsname

242 \csname XINT_CosAux_series_b\expandafter\endcsname

243 \csname XINT_CosAux_series_c_i\endcsname

244 \XINT_tmpa 4 -2 -3 -4 6 4 2 Cos %

245 \ifnum\XINTdigits>2 \XINT_tmpa 5 0 -2 -3 8 6 4 Cos \fi

246 \ifnum\XINTdigits>4 \XINT_tmpa 6 2 0 -2 10 8 6 Cos \fi

247 \ifnum\XINTdigits>7 \XINT_tmpa 7 5 2 0 12 10 8 Cos \fi

248 \ifnum\XINTdigits>9 \XINT_tmpa 8 7 5 2 14 12 10 Cos \fi

249 \ifnum\XINTdigits>12 \XINT_tmpa 9 10 7 5 16 14 12 Cos \fi

250 \ifnum\XINTdigits>15 \XINT_tmpa 10 13 10 7 18 16 14 Cos \fi

251 \ifnum\XINTdigits>18 \XINT_tmpa 11 16 13 10 20 18 16 Cos \fi

252 \ifnum\XINTdigits>20 \XINT_tmpa 12 18 16 13 22 20 18 Cos \fi

253 \ifnum\XINTdigits>24 \XINT_tmpa 13 22 18 16 24 22 20 Cos \fi

254 \ifnum\XINTdigits>27 \XINT_tmpa 14 25 22 18 26 24 22 Cos \fi

255 \ifnum\XINTdigits>30 \XINT_tmpa 15 28 25 22 28 26 24 Cos \fi

256 \ifnum\XINTdigits>33 \XINT_tmpa 16 31 28 25 30 28 26 Cos \fi

696

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

257 \ifnum\XINTdigits>36 \XINT_tmpa 17 34 31 28 32 30 28 Cos \fi

258 \ifnum\XINTdigits>39 \XINT_tmpa 18 37 34 31 34 32 30 Cos \fi

259 \ifnum\XINTdigits>42 \XINT_tmpa 19 40 37 34 36 34 32 Cos \fi

260 \ifnum\XINTdigits>45 \XINT_tmpa 20 43 40 37 38 36 34 Cos \fi

261 \ifnum\XINTdigits>49 \XINT_tmpa 21 47 43 40 40 38 36 Cos \fi

262 \ifnum\XINTdigits>53 \XINT_tmpa 22 51 47 43 42 40 38 Cos \fi

263 \ifnum\XINTdigits>57 \XINT_tmpa 23 55 51 47 44 42 40 Cos \fi

264 \ifnum\XINTdigits>60 \XINT_tmpa 24 58 55 51 46 44 42 Cos \fi

265 \let\XINT_tmpH\xint_undefined\let\XINT_tmpG\xint_undefined\let\XINT_tmpF\xint_undefined

266 \let\XINT_tmpd\xint_undefined\let\XINT_tmpe\xint_undefined

267 \def\XINT_SinAux_series#1%

268 {%

269 \expandafter\XINT_SinAux_series_a_iii

270 \romannumeral0\XINTinfloatS[\XINTdigitsormax+4]{#1}\xint:

271 }%

272 \def\XINT_CosAux_series#1%

273 {%

274 \expandafter\XINT_CosAux_series_a_iii

275 \romannumeral0\XINTinfloatS[\XINTdigitsormax+4]{#1}\xint:

276 }%

277 \fi % end of \XINTdigits>8

28.7.2. The poor man approximate but speedier approach for Digits at most 8

278 \ifnum\XINTdigits<9

279 \def\XINT_SinAux_series#1%

280 {%

281 \the\numexpr\expandafter\XINT_SinAux_b\romannumeral0\xintiround9{#1}.[-9]%

282 }%

283 \def\XINT_SinAux_b#1.%

284 {%

285 ((((((((((((%(\xint_c_x^ix/-210)

286 -4761905*#1/\xint_c_x^ix+\xint_c_x^ix)/%

287 -156)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

288 -110)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

289 -72)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

290 -42)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

291 -20)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

292 -6)*#1/\xint_c_x^ix+\xint_c_x^ix

293 }%

294 \def\XINT_CosAux_series#1%

295 {%

296 \the\numexpr\expandafter\XINT_CosAux_b\romannumeral0\xintiround9{#1}.[-9]%

297 }%

298 \def\XINT_CosAux_b#1.%

299 {%

300 ((((((((((((((%(\xint_c_x^ix/-240)

301 -4166667*#1/\xint_c_x^ix+\xint_c_x^ix)/%

302 -182)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

303 -132)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

304 -90)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

305 -56)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

306 -30)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

697

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

307 -12)*#1/\xint_c_x^ix+\xint_c_x^ix)/%

308 -2)*#1/\xint_c_x^ix+\xint_c_x^ix

309 }%

310 \fi

28.7.3. Declarations of the @sin_aux() and @cos_aux() functions

311 \def\XINT_flexpr_func_@sin_aux#1#2#3%

312 {%

313 \expandafter #1\expandafter #2\expandafter{%

314 \romannumeral`&&@\XINT:NEhook:f:one:from:one

315 {\romannumeral`&&@\XINT_SinAux_series#3}}%

316 }%

317 \def\XINT_flexpr_func_@cos_aux#1#2#3%

318 {%

319 \expandafter #1\expandafter #2\expandafter{%

320 \romannumeral`&&@\XINT:NEhook:f:one:from:one

321 {\romannumeral`&&@\XINT_CosAux_series#3}}%

322 }%

28.7.4. @sin_series(), @cos_series()

323 \xintdeffloatfunc @sin_series(x) := x * @sin_aux(sqr(x));%

324 \xintdeffloatfunc @cos_series(x) := @cos_aux(sqr(x));%

28.8. Range reduction for sine and cosine using degrees
As commented in the package introduction, Range reduction is a demanding domain and we handle it

semi-satisfactorily. The main problem is that in January 2019 I had done only support for degrees,

and when I added radians I used the most naive approach. But one can find worse: in 2019 I was

surprised to observe important divergences with Maple's results at 16 digits near -π. Turns out

that Maple probably adds π in the floating point sense causing catastrophic loss of digits when

one is near -π. On the other hand even though the approach here is still naive, it behaves much

better.

The @sind_rr() and @cosd_rr() sine and cosine "doing range reduction" are coded directly at

macro level via \xintSind and \xintCosd which will dispatch to usage of the sine or cosine series,

depending on case.

Old note from 2019: attention that \xintSind and \xintCosd must be used with a positive argu-

ment.

We start with an auxiliary macro to reduce modulo 360 quickly.

28.8.1. Low level modulo 360 helper macro \XINT_mod_ccclx_i

input: \the\numexpr\XINT_mod_ccclx_i k.N. (delimited by dots)

output: (N times 10^k) modulo 360. (with a final dot)

Attention that N must be non-negative (I could make it accept negative but the fact that numexpr

/ is not periodical in numerator adds overhead).

360 divides 9000 hence 10^{k} is 280 for k at least 3 and the additive group generated by it

modulo 360 is the set of multiples of 40.

325 \def\XINT_mod_ccclx_i #1.%

326 {%

327 \expandafter\XINT_mod_ccclx_e\the\numexpr

328 \expandafter\XINT_mod_ccclx_j\the\numexpr1\ifcase#1 \or0\or00\else000\fi.%

698

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

329 }%

330 \def\XINT_mod_ccclx_j 1#1.#2.%

331 {%

332 (\XINT_mod_ccclx_ja {++}#2#1\XINT_mod_ccclx_jb 0000000\relax

333 }%

334 \def\XINT_mod_ccclx_ja #1#2#3#4#5#6#7#8#9%

335 {%

336 #9+#8+#7+#6+#5+#4+#3+#2\xint_firstoftwo{+\XINT_mod_ccclx_ja{+#9+#8+#7}}{#1}%

337 }%

338 \def\XINT_mod_ccclx_jb #1\xint_firstoftwo#2#3{#1+0)*280\XINT_mod_ccclx_jc #1#3}%

Attention that \XINT_cclcx_e wants non negative input because \numexpr division is not periodical

...

339 \def\XINT_mod_ccclx_jc +#1+#2+#3#4\relax{+80*(#3+#2+#1)+#3#2#1.}%

340 \def\XINT_mod_ccclx_e#1.{\expandafter\XINT_mod_ccclx_z\the\numexpr(#1+180)/360-1.#1.}%

341 \def\XINT_mod_ccclx_z#1.#2.{#2-360*#1.}%

28.8.2. @sind_rr() function and its support macro \xintSind

342 \def\XINT_flexpr_func_@sind_rr #1#2#3%

343 {%

344 \expandafter #1\expandafter #2\expandafter{%

345 \romannumeral`&&@\XINT:NEhook:f:one:from:one{\romannumeral`&&@\xintSind#3}}%

346 }%

old comment: Must be f-expandable for nesting macros from \xintNewExpr

This is where the prize of using the same macros for two distinct use cases has serious disad-

vantages. The reason of Digits+12 is only to support an input which contains a multiplication by

@oneRadian with its extended digits.

Then we do a somewhat strange truncation to a fixed point of fractional digits, which is ok in

the "Degrees" case, but causes issues of its own in the "Radians" case. Please consider this whole

thing as marked for future improvement, when times allows.

ATTENTION \xintSind ONLY FOR POSITIVE ARGUMENTS

347 \def\XINT_tmpa #1.{%

348 \def\xintSind##1%
349 {%

350 \romannumeral`&&@\expandafter\xintsind\romannumeral0\XINTinfloatS[#1]{##1}}%

351 }\expandafter\XINT_tmpa\the\numexpr\XINTdigitsormax+12.%

352 \def\xintsind #1[#2#3]%

353 {%

354 \xint_UDsignfork

355 #2\XINT_sind

356 -\XINT_sind_int

357 \krof#2#3.#1..%

358 }%

359 \def\XINT_tmpa #1.{%

360 \def\XINT_sind ##1.##2.%

361 {%

362 \expandafter\XINT_sind_a

363 \romannumeral0\xinttrunc{#1}{##2[##1]}%

364 }%

365 }\expandafter\XINT_tmpa\the\numexpr\XINTdigitsormax+5.%

366 \def\XINT_sind_a{\expandafter\XINT_sind_i\the\numexpr\XINT_mod_ccclx_i0.}%

367 \def\XINT_sind_int

699

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

368 {%

369 \expandafter\XINT_sind_i\the\numexpr\expandafter\XINT_mod_ccclx_i

370 }%

371 \def\XINT_sind_i #1.%

372 {%

373 \ifcase\numexpr#1/90\relax

374 \expandafter\XINT_sind_A

375 \or\expandafter\XINT_sind_B\the\numexpr-90+%

376 \or\expandafter\XINT_sind_C\the\numexpr-180+%

377 \or\expandafter\XINT_sind_D\the\numexpr-270+%

378 \else\expandafter\XINT_sind_E\the\numexpr-360+%

379 \fi#1.%

380 }%

381 \def\XINT_tmpa #1.#2.{%

382 \def\XINT_sind_A##1.##2.%

383 {%

384 \XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@sin_series\expandafter

385 {\romannumeral0\XINTinfloat[#1]{\xintMul{##1.##2}#2}}%

386 }%

387 \def\XINT_sind_B_n-##1.##2.%

388 {%

389 \XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@cos_series\expandafter

390 {\romannumeral0\XINTinfloat[#1]{\xintMul{\xintSub{##1[0]}{.##2}}#2}}%

391 }%

392 \def\XINT_sind_B_p##1.##2.%

393 {%

394 \XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@cos_series\expandafter

395 {\romannumeral0\XINTinfloat[#1]{\xintMul{##1.##2}#2}}%

396 }%

397 \def\XINT_sind_C_n-##1.##2.%

398 {%

399 \XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@sin_series\expandafter

400 {\romannumeral0\XINTinfloat[#1]{\xintMul{\xintSub{##1[0]}{.##2}}#2}}%

401 }%

402 \def\XINT_sind_C_p##1.##2.%

403 {%

404 \xintiiopp\XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@sin_series\expandafter

405 {\romannumeral0\XINTinfloat[#1]{\xintMul{##1.##2}#2}}%

406 }%

407 \def\XINT_sind_D_n-##1.##2.%

408 {%

409 \xintiiopp\XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@cos_series\expandafter

410 {\romannumeral0\XINTinfloat[#1]{\xintMul{\xintSub{##1[0]}{.##2}}#2}}%

411 }%

412 \def\XINT_sind_D_p##1.##2.%

413 {%

414 \xintiiopp\XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@cos_series\expandafter

415 {\romannumeral0\XINTinfloat[#1]{\xintMul{##1.##2}#2}}%

416 }%

417 \def\XINT_sind_E-##1.##2.%

418 {%

419 \xintiiopp\XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@sin_series\expandafter

700

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

420 {\romannumeral0\XINTinfloat[#1]{\xintMul{\xintSub{##1[0]}{.##2}}#2}}%

421 }%

422 }\expandafter\XINT_tmpa

423 \the\numexpr\XINTdigitsormax+4\expandafter.%

424 \romannumeral`&&@\xintbarefloateval @oneDegree\relax.%

425 \def\XINT_sind_B#1{\xint_UDsignfork#1\XINT_sind_B_n-\XINT_sind_B_p\krof #1}%

426 \def\XINT_sind_C#1{\xint_UDsignfork#1\XINT_sind_C_n-\XINT_sind_C_p\krof #1}%

427 \def\XINT_sind_D#1{\xint_UDsignfork#1\XINT_sind_D_n-\XINT_sind_D_p\krof #1}%

28.8.3. @cosd_rr() function and its support macro \xintCosd

428 \def\XINT_flexpr_func_@cosd_rr #1#2#3%

429 {%

430 \expandafter #1\expandafter #2\expandafter{%

431 \romannumeral`&&@\XINT:NEhook:f:one:from:one{\romannumeral`&&@\xintCosd#3}}%

432 }%

ATTENTION ONLY FOR POSITIVE ARGUMENTS

433 \def\XINT_tmpa #1.{%

434 \def\xintCosd##1%
435 {%

436 \romannumeral`&&@\expandafter\xintcosd\romannumeral0\XINTinfloatS[#1]{##1}}%

437 }\expandafter\XINT_tmpa\the\numexpr\XINTdigitsormax+12.%

438 \def\xintcosd #1[#2#3]%

439 {%

440 \xint_UDsignfork

441 #2\XINT_cosd

442 -\XINT_cosd_int

443 \krof#2#3.#1..%

444 }%

445 \def\XINT_tmpa #1.{%

446 \def\XINT_cosd ##1.##2.%

447 {%

448 \expandafter\XINT_cosd_a

449 \romannumeral0\xinttrunc{#1}{##2[##1]}%

450 }%

451 }\expandafter\XINT_tmpa\the\numexpr\XINTdigitsormax+5.%

452 \def\XINT_cosd_a{\expandafter\XINT_cosd_i\the\numexpr\XINT_mod_ccclx_i0.}%

453 \def\XINT_cosd_int

454 {%

455 \expandafter\XINT_cosd_i\the\numexpr\expandafter\XINT_mod_ccclx_i

456 }%

457 \def\XINT_cosd_i #1.%

458 {%

459 \ifcase\numexpr#1/90\relax

460 \expandafter\XINT_cosd_A

461 \or\expandafter\XINT_cosd_B\the\numexpr-90+%

462 \or\expandafter\XINT_cosd_C\the\numexpr-180+%

463 \or\expandafter\XINT_cosd_D\the\numexpr-270+%

464 \else\expandafter\XINT_cosd_E\the\numexpr-360+%

465 \fi#1.%

466 }%

#2 will be empty in the "integer" branch, but attention in general branch to handling of negative

701

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

integer part after the subtraction of 90, 180, 270, or 360.

467 \def\XINT_tmpa#1.#2.{%

468 \def\XINT_cosd_A##1.##2.%

469 {%

470 \XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@cos_series\expandafter

471 {\romannumeral0\XINTinfloat[#1]{\xintMul{##1.##2}#2}}%

472 }%

473 \def\XINT_cosd_B_n-##1.##2.%

474 {%

475 \XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@sin_series\expandafter

476 {\romannumeral0\XINTinfloat[#1]{\xintMul{\xintSub{##1[0]}{.##2}}#2}}%

477 }%

478 \def\XINT_cosd_B_p##1.##2.%

479 {%

480 \xintiiopp\XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@sin_series\expandafter

481 {\romannumeral0\XINTinfloat[#1]{\xintMul{##1.##2}#2}}%

482 }%

483 \def\XINT_cosd_C_n-##1.##2.%

484 {%

485 \xintiiopp\XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@cos_series\expandafter

486 {\romannumeral0\XINTinfloat[#1]{\xintMul{\xintSub{##1[0]}{.##2}}#2}}%

487 }%

488 \def\XINT_cosd_C_p##1.##2.%

489 {%

490 \xintiiopp\XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@cos_series\expandafter

491 {\romannumeral0\XINTinfloat[#1]{\xintMul{##1.##2}#2}}%

492 }%

493 \def\XINT_cosd_D_n-##1.##2.%

494 {%

495 \xintiiopp\XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@sin_series\expandafter

496 {\romannumeral0\XINTinfloat[#1]{\xintMul{\xintSub{##1[0]}{.##2}}#2}}%

497 }%

498 \def\XINT_cosd_D_p##1.##2.%

499 {%

500 \XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@sin_series\expandafter

501 {\romannumeral0\XINTinfloat[#1]{\xintMul{##1.##2}#2}}%

502 }%

503 \def\XINT_cosd_E-##1.##2.%

504 {%

505 \XINT_expr_unlock\expandafter\XINT_flexpr_userfunc_@cos_series\expandafter

506 {\romannumeral0\XINTinfloat[#1]{\xintMul{\xintSub{##1[0]}{.##2}}#2}}%

507 }%

508 }\expandafter\XINT_tmpa

509 \the\numexpr\XINTdigitsormax+4\expandafter.%

510 \romannumeral`&&@\xintbarefloateval @oneDegree\relax.%

511 \def\XINT_cosd_B#1{\xint_UDsignfork#1\XINT_cosd_B_n-\XINT_cosd_B_p\krof #1}%

512 \def\XINT_cosd_C#1{\xint_UDsignfork#1\XINT_cosd_C_n-\XINT_cosd_C_p\krof #1}%

513 \def\XINT_cosd_D#1{\xint_UDsignfork#1\XINT_cosd_D_n-\XINT_cosd_D_p\krof #1}%

702

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

28.9. @sind(), @cosd()
The -45 is stored internally as -45/1[0] from the action of the unary minus operator, which float

macros then parse faster. The 45e0 is to let it become 45[0] and not simply 45.

Here and below the \ifnum\XINTdigits>8 45\else60\fi will all be resolved at time of definition.

This is the charm and power of expandable parsers!

514 \xintdeffloatfunc @sind(x) := (x)??

515 {(x>=-\ifnum\XINTdigits>8 45\else60\fi)?

516 {@sin_series(x*@oneDegree)}

517 {-@sind_rr(-x)}

518 }

519 {0e0}

520 {(x<=\ifnum\XINTdigits>8 45\else60\fi e0)?

521 {@sin_series(x*@oneDegree)}

522 {@sind_rr(x)}

523 }

524 ;%

525 \xintdeffloatfunc @cosd(x) := (x)??

526 {(x>=-\ifnum\XINTdigits>8 45\else60\fi)?

527 {@cos_series(x*@oneDegree)}

528 {@cosd_rr(-x)}

529 }

530 {1e0}

531 {(x<=\ifnum\XINTdigits>8 45\else60\fi e0)?

532 {@cos_series(x*@oneDegree)}

533 {@cosd_rr(x)}

534 }

535 ;%

28.10. @sin(), @cos()
For some reason I did not define sin() and cos() in January 2019 ??

The sub \xintexpr x*@oneRadian\relax means that the multiplication will be done exactly @on-

eRadian having its 12 extra digits (and x its 4 extra digits), before being rounded in entrance of

\xintSind, respectively \xintCosd, to P+12 mantissa.

The strange 79e-2 could be 0.79 which would give 79[-2] internally too.

536 \xintdeffloatfunc @sin(x):= (abs(x)<\ifnum\XINTdigits>8 79e-2\else1e0\fi)?

537 {@sin_series(x)}

538 {(x)??

539 {-@sind_rr(-\xintexpr x*@oneRadian\relax)}

540 {0}

541 {@sind_rr(\xintexpr x*@oneRadian\relax)}

542 }

543 ;%

544 \xintdeffloatfunc @cos(x):= (abs(x)<\ifnum\XINTdigits>8 79e-2\else1e0\fi)?

545 {@cos_series(x)}

546 {@cosd_rr(abs(\xintexpr x*@oneRadian\relax))}

547 ;%

28.11. @sinc()
Should I also consider adding (1-cos(x))/(x^2/2) ? it is sinc^2(x/2) but avoids a square.

548 \xintdeffloatfunc @sinc(x):= (abs(x)<\ifnum\XINTdigits>8 79e-2\else1e0\fi) ?

703

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

549 {@sin_aux(sqr(x))}

550 {@sind_rr(\xintexpr abs(x)*@oneRadian\relax)/abs(x)}

551 ;%

28.12. @tan(), @tand(), @cot(), @cotd()
The 0 in cot(x) is a dummy place holder. We don't have a notion of Inf yet.

552 \xintdeffloatfunc @tand(x):= @sind(x)/@cosd(x);%

553 \xintdeffloatfunc @cotd(x):= @cosd(x)/@sind(x);%

554 \xintdeffloatfunc @tan(x) := (x)??

555 {(x>-\ifnum\XINTdigits>8 79e-2\else1e0\fi)?

556 {@sin(x)/@cos(x)}

557 {-@cotd(\xintexpr9e1+x*@oneRadian\relax)

558 }

559 }

560 {0e0}

561 {(x<\ifnum\XINTdigits>8 79e-2\else1e0\fi)?

562 {@sin(x)/@cos(x)}

563 {@cotd(\xintexpr9e1-x*@oneRadian\relax)}

564 }

565 ;%

566 \xintdeffloatfunc @cot(x) := (abs(x)<\ifnum\XINTdigits>8 79e-2\else1e0\fi)?

567 {@cos(x)/@sin(x)}

568 {(x)??

569 {-@tand(\xintexpr9e1+x*@oneRadian\relax)}

570 {0}

571 {@tand(\xintexpr9e1-x*@oneRadian\relax)}

572 };%

28.13. @sec(), @secd(), @csc(), @cscd()
573 \xintdeffloatfunc @sec(x) := inv(@cos(x));%

574 \xintdeffloatfunc @csc(x) := inv(@sin(x));%

575 \xintdeffloatfunc @secd(x):= inv(@cosd(x));%

576 \xintdeffloatfunc @cscd(x):= inv(@sind(x));%

28.14. Core routine for inverse trigonometry
I always liked very much the general algorithm whose idea I found in 2019. But it costs a square

root plus a sine plus a cosine all at target precision. For the arctangent the square root will

be avoided by a trick. (memo: it is replaced by a division and I am not so sure now this is

advantageous in fact)

And now I like it even more as I have re-done the first step entirely in a single \numexpr...

Thus the inverse trigonometry got a serious improvement at 1.4e...

Here is the idea. We have 0<t<sqrt(2)/2 and we want a = Arcsin t.

Imagine we have some very good approximation b = a - h. We know b, and don't know yet h. No

problem h is a-b so sin(h)=sin(a)cos(b)- cos(a)sin(b). And we know everything here: sin(a) is t,

cos(a) is u = sqrt(1-t^2), and we can compute cos(b) and sin(b).

I said h was small so the computation of sin(a)cos(b)-cos(a)sin(b) will involve a lot of can-

cellation, no problem with xint, as it knows how to compute exactly... and if we wanted to go very

low level we could do cos(a)sin(b) paying attention only on least significant digits.

Ok, so we have sin(h), but h is small, so the series of Arcsine can be used with few terms!

704

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

In fact h will be at most of the order of 1e-9, so it is no problem to simply replace sin(h) with

h if the target precision is 16 !

Ok, so how do we obtain b, the good approximation to Arcsin t ? Simply by using its Taylor series,

embedded in a single \numexpr working with nine digits numbers... I like this one! Notice that it

reminisces with my questioning about how to best do Horner like for sine and cosine. Here in \nu ⤸
mexpr we can only manipulate whole integers and simply can't do things such as ...)*x + 5/112)*x

+ 3/40)*x + 1/6)*x +1 But I found another way, see the code, which uses extensively the

"scaling" operations in \numexpr.

I have not proven rigorously that b-a is always less or equal in absolute value than 1e-9, but it

is possible for example in Python to program it and go through all possible (less than) 1e9 inputs

and check what happens.

Very small inputs will give b=0 (first step is a fixed point rounding of t to nine fractional

digits, so this rounding gives zero for input <0.5e-9, others will give b=t, because the arcsine

numexpr will end up with 1000000000 (last time I checked that was for t a bit less than 5e-5, the

latter gives 1000000001). All seems to work perfectly fine, in practice...

First we let the @sin_aux() and @cos_aux() functions be usable in exact \xintexpr context.

The @asin_II() function will be used only for Digits>16.

577 \expandafter\let\csname XINT_expr_func_@sin_aux\expandafter\endcsname

578 \csname XINT_flexpr_func_@sin_aux\endcsname

579 \expandafter\let\csname XINT_expr_func_@cos_aux\expandafter\endcsname

580 \csname XINT_flexpr_func_@cos_aux\endcsname

581 \ifnum\XINTdigits>16

582 \def\XINT_flexpr_func_@asin_II#1#2#3%

583 {%

584 \expandafter #1\expandafter #2\expandafter{%

585 \romannumeral`&&@\XINT:NEhook:f:one:from:one

586 {\romannumeral`&&@\XINT_Arcsin_II_a#3}}%

587 }%

588 \def\XINT_tmpc#1.%

589 {%

590 \def\XINT_Arcsin_II_a##1%

591 {%

592 \expandafter\XINT_Arcsin_II_c_i\romannumeral0\XINTinfloatS[#1]{##1}%

593 }%

594 \def\XINT_Arcsin_II_c_i##1[##2]%

595 {%

596 \xintAdd{1/1[0]}{##1/6[##2]}%

597 }%

598 }%

599 \expandafter\XINT_tmpc\the\numexpr\XINTdigitsormax-14.%

600 \fi

601 \ifnum\XINTdigits>34

602 \def\XINT_tmpc#1.#2.#3.#4.%

603 {%

604 \def\XINT_Arcsin_II_a##1%

605 {%

606 \expandafter\XINT_Arcsin_II_a_iii\romannumeral0\XINTinfloatS[#1]{##1}\xint:

607 }%

608 \def\XINT_Arcsin_II_a_iii##1\xint:

609 {%

610 \expandafter\XINT_Arcsin_II_b\romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

611 }%

705

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

612 \def\XINT_Arcsin_II_b##1\xint:

613 {%

614 \expandafter\XINT_Arcsin_II_c_i

615 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{#3}{##1}}}\xint:

616 }%

617 \def\XINT_Arcsin_II_c_i##1\xint:##2\xint:

618 {%

619 \xintAdd{1/1[0]}{\XINTinFloat[#1]{\xintMul{##1}{##2}}}%

620 }%

621 }%

622 \expandafter\XINT_tmpc

623 \the\numexpr\XINTdigitsormax-14\expandafter.%

624 \the\numexpr\XINTdigitsormax-32\expandafter.\expanded{%

625 \XINTinFloat[\XINTdigitsormax-32]{3/40[0]}.%

626 \XINTinFloat[\XINTdigitsormax-14]{1/6[0]}.%

627 }%

628 \fi

629 \ifnum\XINTdigits>52

630 \def\XINT_tmpc#1.#2.#3.#4.#5.%

631 {%

632 \def\XINT_Arcsin_II_a_iii##1\xint:

633 {%

634 \expandafter\XINT_Arcsin_II_a_iv\romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

635 }%

636 \def\XINT_Arcsin_II_a_iv##1\xint:

637 {%

638 \expandafter\XINT_Arcsin_II_b\romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

639 }%

640 \def\XINT_Arcsin_II_b##1\xint:

641 {%

642 \expandafter\XINT_Arcsin_II_c_ii

643 \romannumeral0\xintadd{#4}{\XINTinfloat[#2]{\xintMul{#3}{##1}}}\xint:

644 }%

645 \def\XINT_Arcsin_II_c_ii##1\xint:##2\xint:

646 {%

647 \expandafter\XINT_Arcsin_II_c_i

648 \romannumeral0\xintadd{#5}{\XINTinFloat[#1]{\xintMul{##1}{##2}}}\xint:

649 }%

650 }%

651 \expandafter\XINT_tmpc

652 \the\numexpr\XINTdigitsormax-32\expandafter.%

653 \the\numexpr\XINTdigitsormax-50\expandafter.\expanded{%

654 \XINTinFloat[\XINTdigitsormax-50]{5/112[0]}.%

655 \XINTinFloat[\XINTdigitsormax-32]{3/40[0]}.%

656 \XINTinFloat[\XINTdigitsormax-14]{1/6[0]}.%

657 }%

658 \fi

659 \def\XINT_flexpr_func_@asin_I#1#2#3%

660 {%

661 \expandafter #1\expandafter #2\expandafter{%

662 \romannumeral`&&@\XINT:NEhook:f:one:from:one

663 {\romannumeral`&&@\XINT_Arcsin_I#3}}%

706

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

664 }%

665 \def\XINT_Arcsin_I#1%

666 {%

667 \the\numexpr\expandafter\XINT_Arcsin_Ia\romannumeral0\xintiround9{#1}.%

668 }%

669 \def\XINT_Arcsin_Ia#1.%

670 {%

671 (\expandafter\XINT_Arcsin_Ib\the\numexpr#1*#1/\xint_c_x^ix.)*%

672 #1/\xint_c_x^ix[-9]%

673 }%

674 \def\XINT_Arcsin_Ib#1.%

675 {%((((((((((((((((

676 % 3481/3660)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

677 % 3249/3422)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

678 % 3025/3192)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

679 % 2809/2970)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

680 % 2601/2756)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

681 % 2401/2550)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

682 % 2209/2352)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

683 % 2025/2162)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

684 ((%

685 %(\xint_c_x^ix*1849/1980)*%

686 933838384*#1/\xint_c_x^ix+\xint_c_x^ix)*%

687 1681/1806)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

688 1521/1640)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

689 1369/1482)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

690 1225/1332)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

691 1089/1190)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

692 961/1056)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

693 841/930)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

694 729/812)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

695 625/702)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

696 529/600)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

697 441/506)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

698 361/420)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

699 289/342)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

700 225/272)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

701 169/210)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

702 121/156)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

703 81/110)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

704 49/72)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

705 25/42)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

706 9/20)*#1/\xint_c_x^ix+\xint_c_x^ix)*%

707 1/6)*#1/\xint_c_x^ix+\xint_c_x^ix

708 }%

709 \ifnum\XINTdigits>16

710 \xintdeffloatfunc @asin_o(D, T) := T + D*@asin_II(sqr(D));%

711 \xintdeffloatfunc @asin_n(V, T, t, u) :=%

712 @asin_o(\xintexpr t*@cos_aux(V) - u*T*@sin_aux(V)\relax, T);%

713 \else

714 \xintdeffloatfunc @asin_n(V, T, t, u) :=%

715 \xintexpr t*@cos_aux(V) - u*T*@sin_aux(V)\relax + T;%

707

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

716 \fi

717 \xintdeffloatfunc @asin_m(T, t, u) := @asin_n(sqr(T), T, t, u);%

718 \xintdeffloatfunc @asin_l(t, u) := @asin_m(@asin_I(t), t, u);%

28.15. @asin(), @asind()
Only non-negative arguments t and u for asin_a(t,u), and asind_a(t,u).

719 \xintdeffloatfunc @asin_a(t, u) := (t<u)?

720 {@asin_l(t, u)}

721 {@Piover2 - @asin_l(u, t)}

722 ;%

723 \xintdeffloatfunc @asind_a(t, u):= (t<u)?

724 {@asin_l(t, u) * @oneRadian}

725 {9e1 - @asin_l(u, t) * @oneRadian}

726 ;%

727 \xintdeffloatfunc @asin(t) := (t)??

728 {-@asin_a(-t, sqrt(1e0-sqr(t)))}

729 {0e0}

730 {@asin_a(t, sqrt(1e0-sqr(t)))}

731 ;%

732 \xintdeffloatfunc @asind(t) := (t)??

733 {-@asind_a(-t, sqrt(1e0-sqr(t)))}

734 {0e0}

735 {@asind_a(t, sqrt(1e0-sqr(t)))}

736 ;%

28.16. @acos(), @acosd()
737 \xintdeffloatfunc @acos(t) := @Piover2 - @asin(t);%

738 \xintdeffloatfunc @acosd(t):= 9e1 - @asind(t);%

28.17. @atan(), @atand()
Uses same core routine asin_l() as for asin(), but avoiding a square-root extraction in preparing

its arguments (to the cost of computing an inverse, rather).

radians

739 \xintdeffloatfunc @atan_b(t, w, z):= 5e-1 * (w< 0)?

740 {@Pi - @asin_a(2e0*z * t, -w*z)}

741 {@asin_a(2e0*z * t, w*z)}

742 ;%

743 \xintdeffloatfunc @atan_a(t, T) := @atan_b(t, 1e0-T, inv(1e0+T));%

744 \xintdeffloatfunc @atan(t):= (t)??

745 {-@atan_a(-t, sqr(t))}

746 {0}

747 {@atan_a(t, sqr(t))}

748 ;%

degrees

749 \xintdeffloatfunc @atand_b(t, w, z) := 5e-1 * (w< 0)?

750 {18e1 - @asind_a(2e0*z * t, -w*z)}

751 {@asind_a(2e0*z * t, w*z)}

752 ;%

753 \xintdeffloatfunc @atand_a(t, T) := @atand_b(t, 1e0-T, inv(1e0+T));%

708

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

754 \xintdeffloatfunc @atand(t) := (t)??

755 {-@atand_a(-t, sqr(t))}

756 {0}

757 {@atand_a(t, sqr(t))}

758 ;%

28.18. @Arg(), @atan2(), @Argd(), @atan2d(), @pArg(), @pArgd()
Arg(x,y) function from -π (excluded) to +π (included)

759 \xintdeffloatfunc @Arg(x, y):= (y>x)?

760 {(y>-x)?

761 {@Piover2 - @atan(x/y)}

762 {(y<0)?

763 {-@Pi + @atan(y/x)}

764 {@Pi + @atan(y/x)}

765 }

766 }

767 {(y>-x)?

768 {@atan(y/x)}

769 {-@Piover2 + @atan(x/-y)}

770 }

771 ;%

atan2(y,x) = Arg(x,y) ... (some people have atan2 with arguments reversed but the convention here

seems the most often encountered)

772 \xintdeffloatfunc @atan2(y,x) := @Arg(x, y);%

Argd(x,y) function from -180 (excluded) to +180 (included)

773 \xintdeffloatfunc @Argd(x, y):= (y>x)?

774 {(y>-x)?

775 {9e1 - @atand(x/y)}

776 {(y<0)?

777 {-18e1 + @atand(y/x)}

778 {18e1 + @atand(y/x)}

779 }

780 }

781 {(y>-x)?

782 {@atand(y/x)}

783 {-9e1 + @atand(x/-y)}

784 }

785 ;%

atan2d(y,x) = Argd(x,y)

786 \xintdeffloatfunc @atan2d(y,x) := @Argd(x, y);%

pArg(x,y) function from 0 (included) to 2π (excluded) I hesitated between pArg, Argpos, and Arg-

plus. Opting for pArg in the end.

787 \xintdeffloatfunc @pArg(x, y):= (y>x)?

788 {(y>-x)?

789 {@Piover2 - @atan(x/y)}

790 {@Pi + @atan(y/x)}

791 }

792 {(y>-x)?

793 {(y<0)?

794 {@twoPi + @atan(y/x)}

709

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

795 {@atan(y/x)}

796 }

797 {@threePiover2 + @atan(x/-y)}

798 }

799 ;%

pArgd(x,y) function from 0 (included) to 360 (excluded)

800 \xintdeffloatfunc @pArgd(x, y):=(y>x)?

801 {(y>-x)?

802 {9e1 - @atan(x/y)*@oneRadian}

803 {18e1 + @atan(y/x)*@oneRadian}

804 }

805 {(y>-x)?

806 {(y<0e0)?

807 {36e1 + @atan(y/x)*@oneRadian}

808 {@atan(y/x)*@oneRadian}

809 }

810 {27e1 + @atan(x/-y)*@oneRadian}

811 }

812 ;%

28.19. Restore \xintdeffloatfunc to its normal state, with no extra digits
813 \expandafter\let

814 \csname XINT_flexpr_exec_+\expandafter\endcsname

815 \csname XINT_flexpr_exec_+_\endcsname

816 \expandafter\let

817 \csname XINT_flexpr_exec_-\expandafter\endcsname

818 \csname XINT_flexpr_exec_-_\endcsname

819 \expandafter\let

820 \csname XINT_flexpr_exec_*\expandafter\endcsname

821 \csname XINT_flexpr_exec_*_\endcsname

822 \expandafter\let

823 \csname XINT_flexpr_exec_/\expandafter\endcsname

824 \csname XINT_flexpr_exec_/_\endcsname

825 \expandafter\let

826 \csname XINT_flexpr_func_sqr\expandafter\endcsname

827 \csname XINT_flexpr_sqrfunc\endcsname

828 \expandafter\let

829 \csname XINT_flexpr_func_sqrt\expandafter\endcsname

830 \csname XINT_flexpr_sqrtfunc\endcsname

831 \expandafter\let

832 \csname XINT_flexpr_func_inv\expandafter\endcsname

833 \csname XINT_flexpr_invfunc\endcsname

28.20. Let the functions be known to the \xintexpr parser
We use here float_dgtormax which uses the smaller of Digits and 64.

834 \edef\XINTinFloatdigitsormax{\noexpand\XINTinFloat[\the\numexpr\XINTdigitsormax]}%

835 \edef\XINTinFloatSdigitsormax{\noexpand\XINTinFloatS[\the\numexpr\XINTdigitsormax]}%

836 \xintFor #1 in {sin, cos, tan, sec, csc, cot,

837 asin, acos, atan}\do

838 {%

710

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig , xintlog

839 \xintdeffloatfunc #1(x) := float_dgtormax(@#1(x));%

840 \xintdeffloatfunc #1d(x) := float_dgtormax(@#1d(x));%

841 \xintdeffunc #1(x) := float_dgtormax(\xintfloatexpr @#1(sfloat_dgtormax(x))\relax);%

842 \xintdeffunc #1d(x):= float_dgtormax(\xintfloatexpr @#1d(sfloat_dgtormax(x))\relax);%

843 }%

844 \xintFor #1 in {Arg, pArg, atan2}\do

845 {%

846 \xintdeffloatfunc #1(x, y) := float_dgtormax(@#1(x, y));%

847 \xintdeffloatfunc #1d(x, y) := float_dgtormax(@#1d(x, y));%

848 \xintdeffunc #1(x, y) :=

849 float_dgtormax(\xintfloatexpr @#1(sfloat_dgtormax(x), sfloat_dgtormax(y))\relax);%

850 \xintdeffunc #1d(x, y):=

851 float_dgtormax(\xintfloatexpr @#1d(sfloat_dgtormax(x), sfloat_dgtormax(y))\relax);%

852 }%

853 \xintdeffloatfunc sinc(x):= float_dgtormax(@sinc(x));%

854 \xintdeffunc sinc(x):= float_dgtormax(\xintfloatexpr @sinc(sfloat_dgtormax(x))\relax);%

28.21. Synonyms: @tg(), @cotg()
These are my childhood notations and I am attached to them. In radians only, and for \xintfloateval

only. We skip some overhead here by using a \let at core level.

855 \expandafter\let\csname XINT_flexpr_func_tg\expandafter\endcsname

856 \csname XINT_flexpr_func_tan\endcsname

857 \expandafter\let\csname XINT_flexpr_func_cotg\expandafter\endcsname

858 \csname XINT_flexpr_func_cot\endcsname

28.22. Final clean-up
Restore used dummy variables to their status prior to the package reloading. On first loading

this is not needed, but I have not added a way to check here whether this a first loading or a

re-loading.

859 \xintdefvar twoPi := float_dgtormax(@twoPi);%

860 \xintdefvar threePiover2 := float_dgtormax(@threePiover2);%

861 \xintdefvar Pi := float_dgtormax(@Pi);%

862 \xintdefvar Piover2 := float_dgtormax(@Piover2);%

863 \xintdefvar oneDegree := float_dgtormax(@oneDegree);%

864 \xintdefvar oneRadian := float_dgtormax(@oneRadian);%

865 \xintunassignvar{@twoPi}\xintunassignvar{@threePiover2}%

866 \xintunassignvar{@Pi}\xintunassignvar{@Piover2}%

867 \xintunassignvar{@oneRadian}\xintunassignvar{@oneDegree}%

868 \xintFor* #1 in {iDTVtuwxyzX}\do{\xintrestorevariable{#1}}%

869 \XINTtrigendinput%

711

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

29. Package xintlog implementation

Contents
29.1 Catcodes, 𝜀-TEX and reload detection . 713
29.2 Library identification . 715
29.3 \xintreloadxintlog . 715
29.4 Loading the poormanlog package . 715
29.5 Macro layer on top of the poormanlog package . 715

29.5.1 \PoorManLogBaseTen, \PoorManLog . 716
29.5.2 \PoorManPowerOfTen, \PoorManExp . 716
29.5.3 Removed: \PoorManPower, see \XINTinFloatSciPow 717

29.6 Macro support for powers . 718
29.6.1 \XINTinFloatSciPow . 718
29.6.2 \xintPow . 720

29.7 Macro support for \xintexpr and \xintfloatexpr syntax . 722
29.7.1 The log10() and pow10() functions . 722
29.7.2 The log(), exp() functions . 722
29.7.3 The pow() function . 723

29.8 End of package loading for low Digits . 723
29.9 Stored constants . 724
29.10 April 2021: at last, \XINTinFloatPowTen, \XINTinFloatExp . 727

29.10.1 Exponential series . 730
29.11 April 2021: at last \XINTinFloagLogTen, \XINTinFloatLog . 733

29.11.1 Log series, case II . 738
29.11.2 Log series, case III . 743

In 2019, at 1.3e release I almost included extended precision for log() and exp() but the time

I could devote to xint expired. Finally, at long last, (and I had procrastinated far more than

the two years since 2019) the 1.4e release in April 2021 brings log10(), pow10(), log(), pow() to

P=Digits precision: up to 62 digits with at least (said roughly) 99% chances of correct rounding

(the design is targeting less than about 0.005ulp distance to mathematical value, before round-

ing).

Implementation is EXPERIMENTAL.

For up to Digits=8, it is simply based upon the poormanlog package. The probability of correct

rounding will be less than for Digits>8, especially in the cases of Digits=8 and to a lesser extent

Digits=7. And, for all Digits<=8, there is a systematic loss of rounding precision in the floating

point sense in the case of log10(x) for inputs close to 1:

Summary of limitations of log10() and pow10() in the case of Digits<=8:

- For log10(x) with x near 1, the precision of output as floating point will be mechanically

reduced from the fact that this is based on a fixed point result, for example log10(1.0011871) is

produced as 5.15245e-4, which stands for 0.000515145 having indeed 9 correct fractional digits,

but only 6 correct digits in the floating point sense.

This feature affects the entire range Digits<=8.

- Even if limiting to inputs x with 1.26<x<10 (1.26 is a bit more than 10^0.1 hence its choice

as lower bound), the poormanlog documentation mentions an absolute error possibly up to about 1e-

9. In practice a test of 10000 random inputs 1.26<x<10 revealed 9490 correctly rounded log10(x)

at 8 digits (and the 510 non-correctly rounded ones with an error of 1 in last digit compared to

correct rounding). So correct rounding achieved only in about 95% of cases here.

At 7 digits the same 10000 random inputs are correctly rounded in 99.4% of cases, and at 6 digits

it is 99.94% of cases.

Again with Digits=8, the log10(i) for i in 1..1000 are all correctly rounded to 8 digits with

two exceptions: log10(3) and log10(297) with a 1ulp error. And the log(i) in the same range are

712

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

correctly rounded to 8 digits with the 15 exceptions i= 99, 105, 130, 178, 224, 329, 446, 464, 564,

751, 772, 777, 886, 907, 962, whose natural logarithms are obtained with a 1ulp error.

- Regarding the computation of 10^x, I obtained for -1<x<1 the following with 10000 random

inputs: 518/10000 errors at 1ulp, 60/10000, and 8/10000, at respectively Digits = 8, 7, 6 so

chances of correct rounding are respectively about 95%, 99.4% and more than 99.9%.

Despite its limitations the poormanlog based approach used for Digits up to 8 has the advantage

of speed (at least 8X compared to working with 16 digits) and is largely precise enough for plots.

For 9 digits or more, the observed precision in some random tests appears to be at least of 99.9%

chances of correct rounding, and the log10(x) with x near 1 are correctly (if not really effi-

ciently) handled in the floating point sense for the output. The poormanlog approximate log10()

is still used to boot-strap the process, generally. The pow10() at Digits=9 or more is done inde-

pendently of poormanlog.

All of this is done on top of my 2013 structures for floating point computations which have always

been marked as provisory and rudimentary and instills intrinsic non-efficiency:

- no internal data format for a ``floating point number at P digits'',

- mantissa lengths are again and again computed,

- digits are not pre-organized say in blocks of 4 by 4 or 8 by 8,

- floating point multiplication is done via an *exact* multiplication, then rounding to P

digits!

This is legacy of the fact that the project was initially devoted to big integers only, but in

the weeks that followed its inception in March 2013 I added more and more functionalities without

a well laid out preliminary plan.

Anyway, for years I have felt a better foundation would help achieve at least something such as

2X gain (perhaps the last item by itself, if improved upon, would bring most of such 2X gain?)

I did not try to optimize for the default 16 digits, the goal being more of having a general

scalable structure in place and there is no difficulty to go up to 100 digits precision if one

stores extended pre-computed constants and increases the length of the ``series'' support.

Apart from log(10) and its inverse, no other logarithms are stored or pre-computed: the rest of

the stored data is the same for pow10() and log10() and consists of the fractional powers 10^ś0.i,

10^ś0.0i, ..., 10^ś0.00000i at P+5 and also at P+10 digits.

In order to reduce the loading time of the package the inverses are not computed internally (as

this would require costly divisions) but simply hard-coded with enough digits to cover the allowed

Digits range.

29.1. Catcodes, 𝜺-TEX and reload detection

Modified at 1.4l (2022/05/29). Silly paranoid modification of \z in case { and } do not have

their normal catcodes when xintlog.sty is reloaded (initial loading via xintexpr.sty does not

need this), to define \XINTlogendinput there and not after the \endgroup from \z has already

restored possibly bad catcodes.

1.4l handles much better the situation with \usepackage{xintlog} without previous loading of

xintexpr (or same with \input and etex). Instead of aborting with a message (which actually was

wrong with LaTeX since 1.4e, mentioning \input in place of \usepackage), it will initiate loading

xintexpr itself. This required an adaptation at end of xintexpr and some care to not leave bad

catcodes.

1 \begingroup\catcode61\catcode48\catcode32=10\relax%

2 \catcode13=5 % ^^M

3 \endlinechar=13 %

4 \catcode123=1 % {

5 \catcode125=2 % }

6 \catcode64=11 % @

7 \catcode35=6 % #

713

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

8 \catcode44=12 % ,

9 \catcode46=12 % .

10 \catcode58=12 % :

11 \catcode94=7 % ^

12 \def\empty{}\def\space{ }\newlinechar10

13 \def\z{\endgroup}%

14 \expandafter\let\expandafter\x\csname ver@xintlog.sty\endcsname

15 \expandafter\let\expandafter\w\csname ver@xintexpr.sty\endcsname

16 \expandafter

17 \ifx\csname PackageWarningNoLine\endcsname\relax

18 \def\y#1#2{\immediate\write128{^^JPackage #1 Warning:^^J%

19 \space\space\space\space#2.^^J}}%

20 \else

21 \def\y#1#2{\PackageWarningNoLine{#1}{#2}}%

22 \fi

23 \expandafter

24 \ifx\csname numexpr\endcsname\relax

25 \y{xintlog}{\numexpr not available, aborting input}%

26 \def\z{\endgroup\endinput}%

27 \else

28 \ifx\w\relax % xintexpr.sty not yet loaded.

29 \edef\MsgBrk{^^J\space\space\space\space}%

30 \y{xintlog}%

31 {\ifx\x\empty

32 xintlog should not be loaded directly\MessageBreak

33 The correct way is \string\usepackage{xintexpr}.\MessageBreak

34 Will try that now%

35 \else

36 First loading of xintlog.sty should be via

37 \string\input\space xintexpr.sty\relax\MsgBrk

38 Will try that now%

39 \fi

40 }%

41 \ifx\x\empty

42 \def\z{\endgroup\RequirePackage{xintexpr}\endinput}%

43 \else

44 \def\z{\endgroup\input xintexpr.sty\relax\endinput}%

45 \fi

46 \else

47 \def\z{\endgroup\edef\XINTlogendinput{\XINTrestorecatcodes\noexpand\endinput}}%

48 \fi

49 \fi

50 \z%

Here we set catcodes to the package values, the current settings having been saved in the \XIN ⤸
Tlogendinput macro. We arrive here only if xintlog is either loaded from xintexpr or is being

reloaded via an \input from \xintreloadxintlog. Else we aborted right before via \endinput and

do not modify catcodes. As xintexpr inputs xintlog.sty at a time the catcode configuration is

already the package one we pay attention to not use \XINTsetupcatcodes which would badly redefine

\XINTrestorecatcodesendinput as executed at end of xintexpr.sty. There is slight inefficiency

here to execute \XINTsetcatcodes when xintexpr initiated the xintlog loading, but let's live with

it.

51 \XINTsetcatcodes%

714

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

29.2. Library identification
If the file has already been loaded, let's skip the \ProvidesPackage. Else let's do it and set a

flag to indicate loading happened at least once already.

Modified at 1.4l (2022/05/29). Message also to Terminal not only log file.

52 \ifcsname xintlibver@log\endcsname

53 \expandafter\xint_firstoftwo

54 \else

55 \expandafter\xint_secondoftwo

56 \fi

57 {\immediate\write128{Reloading xintlog library using Digits=\xinttheDigits.}}%

58 {\expandafter\gdef\csname xintlibver@log\endcsname{2025/09/06 v1.4o}%

59 \XINT_providespackage

60 \ProvidesPackage{xintlog}%

61 [2025/09/06 v1.4o Logarithms and exponentials for xintexpr (JFB)]%

62 }%

29.3. \xintreloadxintlog
Now needed at 1.4e.

63 \def\xintreloadxintlog{\input xintlog.sty }%

29.4. Loading the poormanlog package
Attention to the catcode regime when loading poormanlog.

Also, for xintlog.sty to be multiple-times loadable, we need to avoid using LaTeX's \RequirePa ⤸
ckage twice.

64 \xintexprSafeCatcodes

65 \unless\ifdefined\XINTinFloatPowTen

66 \ifdefined\RequirePackage

67 \RequirePackage{poormanlog}%

68 \else

69 \input poormanlog.tex

70 \fi\fi

71 \xintexprRestoreCatcodes

29.5. Macro layer on top of the poormanlog package
This was moved here with some macro renames from xintfrac on occasion of 1.4e release.

Breaking changes at 1.4e:

- \poormanloghack now a no-op (removed at 1.4m),

- \xintLog was used for \xinteval and differed slightly from its counterpart used for \xintfloateval,

the latter float-rounded to P = Digits, the former did not and kept completly meaning-less digits

in output. Both macros now replaced by a \PoorManLog which will always float round the output to

P = Digits. Because xint does not really implement a fixed point interface anyhow.

- \xintExp (used in \xinteval) and another macro (used in \xintfloateval) did not use a suf-

ficiently long approximation to 1/log(10) to support precisely enough exp(x) if output of the or-

der of 10^10000 for example, (last two digits wrong then) and situation became worse for very high

values such as exp(1e8) which had only 4 digits correct.

The new \PoorManExp which replaces them is more careful... and for example exp(12345678) ob-

tains correct rounding (Digits=8).

715

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

- \XINTinFloatxintLog and \XINTinFloatxintExp were removed; they were used for log() and

exp() in \xintfloateval, and differed from \xintLog and \xintExp a bit, now renamed to \PoorManLog

and \PoorManExp.

- \PoorManPower has simply disappeared, see \XINTinFloatSciPow and \xintPow.

See the general xintlog introduction for some comments on the achieved precision and probabilities

of correct rounding.

29.5.1. \PoorManLogBaseTen, \PoorManLog

1.3f. Code originally in poormanlog v0.04 got transferred here. It produces the logarithm in

base 10 with an error (believed to be at most) of the order of 1 unit in the 9th (i.e. last, fixed

point) fractional digit. Testing seems to indicate the error is never exceeding 2 units in the

9th place, in worst cases.

These macros will still be the support macros for \xintfloatexpr log10(), pow10(), etc... up

to Digits=8 and the poormanlog logarithm is used as starting point for higher precision if Digits

is at least 9.

Notice that \PML@999999999. expands (in \numexpr) to 1000000000 (ten digits), which is the only

case with the output having ten digits. But there is no need here to treat this case especially,

it works fine in \PML@logbaseten.

Breaking change at 1.4e: for consistency with various considerations on floats, the output will

be float rounded to P=Digits.

One could envision the \xinteval variant to keep 9 fractional digits (it is known the last one

may very well be off by 1 unit). But this creates complications of principles.

All of this is very strange because the logarithm clearly shows the deficiencies of the whole

idea of floating point arithmetic, logarithm goes from floating point to fixed point, and coercing

it into pure floating point has moral costs. Anyway, I shall obide.

72 \def\PoorManLogBaseTen{\romannumeral0\poormanlogbaseten}%
73 \def\poormanlogbaseten #1%

74 {%

75 \XINTinfloat[\XINTdigits]%

76 {\romannumeral0\expandafter\PML@logbaseten\romannumeral0\XINTinfloat[9]{#1}}%

77 }%

78 \def\PoorManLogBaseTen_raw%#1

79 {%

80 \romannumeral0\expandafter\PML@logbaseten\romannumeral0\XINTinfloat[9]%{#1}%

81 }%

82 \def\PML@logbaseten#1[#2]%

83 {%

84 \xintiiadd{\xintDSx{-9}{\the\numexpr#2+8\relax}}{\the\numexpr\PML@#1.}[-9]%

85 }%

86 \def\PoorManLog#1%
87 {%

88 \XINTinFloat[\XINTdigits]{\xintMul{\PoorManLogBaseTen_raw{#1}}{23025850923[-10]}}%

89 }%

29.5.2. \PoorManPowerOfTen, \PoorManExp

Originally in poormanlog v0.04, got transferred into xintfrac.sty at 1.3f, then here into xint-

log.sty at 1.4e.

Produces 10^x with 9 digits of float precision, with an error (believed to be) at most 2 units

in the last place, when 0<x<1. Of course for this the input must be precise enough to have 9

fractional digits of **fixed point** precision.

Breaking change at 1.4e: output always float-rounded at P=Digits.

716

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

The 1.3f definition for \xintExp (now \PoorManExp) was not careful enough (see comments above)

for very large exponents. This has been corrected at 1.4e. Formerly exp(12345678) produced

shameful 6.3095734e5361659 where only the first digit (and exponent...) is correct! Now, with

\xintDigits*:=8;, exp(12345678) will produce 6.7725836e5361659 which is correct rounding to 8

digits. Sorry if your rover expedition to Mars ended in failure due to using my software. I was

not expecting anyone to use it so I did back then in 2019 a bit too expeditively the \xintExp thing

on top of 10^x.

The 1.4e \PoorManExp replaces and amends deceased \xintExp.

Before using \xintRound we screen out the case of zero as \xintRound in this case outputs no

fractional digits.

90 \def\PoorManPowerOfTen{\romannumeral0\poormanpoweroften}%
91 \def\poormanpoweroften #1%

92 {%

93 \expandafter\PML@powoften@out

94 \the\numexpr\expandafter\PML@powoften\romannumeral0\xintraw{#1}%

95 }%

96 \def\PML@powoften@out#1[#2]{\XINTinfloat[\XINTdigits]{#1[#2]}}%

97 \def\PML@powoften#1%

98 {%

99 \xint_UDzerominusfork

100 #1-\PML@powoften@zero

101 0#1\PML@powoften@neg

102 0-\PML@powoften@pos

103 \krof #1%

104 }%

105 \def\PML@powoften@zero 0/1[0]{1\relax/1[0]}%

106 \def\PML@powoften@pos#1[#2]%

107 {%

108 \expandafter\PML@powoften@pos@a\romannumeral0\xintround{9}{#1[#2]}.%

109 }%

110 \def\PML@powoften@pos@a#1.#2.{\PML@Pa#2.\expandafter[\the\numexpr-8+#1]}%

111 \def\PML@powoften@neg#1[#2]%

112 {%

113 \expandafter\PML@powoften@neg@a\romannumeral0\xintround{9}{#1[#2]}.%

114 }%

115 \def\PML@powoften@neg@a#1.#2.%

116 {%

117 \ifnum#2=\xint_c_ \xint_afterfi{1\relax/1[#1]}\else

118 \expandafter\expandafter\expandafter

119 \PML@Pa\expandafter\xint_gobble_i\the\numexpr2000000000-#2.%

120 \expandafter[\the\numexpr-9+#1\expandafter]\fi

121 }%

122 \def\PoorManExp#1{\PoorManPowerOfTen{\xintMul{#1}{43429448190325182765[-20]}}}%

29.5.3. Removed: \PoorManPower, see \XINTinFloatSciPow

Removed at 1.4e. See \XINTinFloatSciPow.

717

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

29.6. Macro support for powers
29.6.1. \XINTinFloatSciPow

This is the new name and extension of \XINTinFloatPowerH which was a non user-documented macro

used for a^b previously, and previously was located in xintfrac.

A check is done whether the exponent is integer or half-integer, and if positive, the legacy

\xintFloatPower/\xintFloatSqrt macros are used. The rationale is that:

- they give faster evaluations for integer exponent b < 10000 (and beyond)

- they operate at any value of Digits

- they keep accuracy even with gigantic exponents, whereas the pow10()/log10() path starts

losing accuracy for b about 1e8. In fact at 1.4e it was even for b about 1000, as log10(A) was not

computed with enough fractional digits, except for 0.8<A<1.26 (roughly), for this usage. At the

1.4f bugfix we compute log10(A) with enough accuracy for A^b to be safe with b as large as 1e7, and

show visible degradation only for b about 1e9.

The user documentation of \xintFloatPower mentions a 0.52 ulp(Z) error where Z is the computed

result, which seems not as good as the kind of accuracy we target for pow10() (for -1<x<1) and

log10() (for 1<x<10) which is more like about 0.505ulp. Perhaps in future I will examine if I need

to increase a bit the theoretical accuracy of \xintFloatPower but at time of 1.4e/1.4f release I

have left it standing as is.

The check whether exponent is integer or half-integer is not on the value but on the representa-

tion. Even in \xintfloatexpr, input such 10^\xintexpr4/2\relax is possible, and 4/2 will not be

recognized as integer to avoid costly overhead. 3/2 will not be recognized as half-integer. But

2.0 will be recognized as integer, 25e-1 as half-integer.

In the computation of A^b, A will be float-rounded to Digits, but the exponent b will be handled

"as is" until last minute. Recall that the \xintfloatexpr parser does not automatically float

round isolated inputs, this happens only once involved in computations.

In the Digits<=8 branch we do the same as for Digits>8 since 1.4f. At 1.4e I had strangely chosen

(for "speed", but that was anyhow questionable for integer exponents less than 10 for example) to

always use log10()/pow10()... But with only 9 fractional digits for the logarithms, exponents

such as 1000 naturally led to last 2 or 3 digits being wrong and let's not even mention when the

exponent was of the order or 1e6... now A^1000 and A^1000.5 are accurately computed and one can

handle a^1000.1 as a^1000*a^0.1

I wrote the code during 1.4e to 1.4f transition for doing this split of exponent automatically,

but it induced a very significant time penalty down the line for fractional exponents, whereas cur-

rently a^b is computed at Digits=8 with perfectly acceptable accuracy for fractional abs(b)<10,

and at high speed, and accuracy for big exponents can be obtained by manually splitting as above

(although the above has no user interface for keeping each contribution with its extra digits; a

single one for a^h, -1<h<1).

123 \def\XINTinFloatSciPow{\romannumeral0\XINTinfloatscipow}%
124 \def\XINTinfloatscipow#1#2%

125 {%

126 \expandafter\XINT_scipow_a\romannumeral0\xintrez{#2}\XINT_scipow_int{#1}%

127 }%

128 \def\XINT_scipow_a #1%

129 {%

130 \xint_gob_til_zero#1\XINT_scipow_Biszero0\XINT_scipow_b#1%

131 }%

132 \def\XINT_scipow_Biszero#1]#2#3{ 1[0]}%

133 \def\XINT_scipow_b #1#2/#3[#4]#5%

134 {%

135 \unless\if1\XINT_is_One#3XY\xint_dothis\XINT_scipow_c\fi

136 \ifnum#4<\xint_c_mone\xint_dothis\XINT_scipow_c\fi

718

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

137 \ifnum#4=\xint_c_mone

138 \if5\xintLDg{#1#2} %

139 \xint_afterfi{\xint_dothis\XINT_scipow_halfint}\else

140 \xint_afterfi{\xint_dothis\XINT_scipow_c}%

141 \fi

142 \fi

143 \xint_orthat#5#1#2/#3[#4]%

144 }%

145 \def\XINT_scipow_int #1/1[#2]#3%

146 {%

147 \expandafter\XINT_flpower_checkB_a

148 \romannumeral0\XINT_dsx_addzeros{#2}#1;.\XINTdigits.{#3}{\XINTinfloatS[\XINTdigits]}%

149 }%

The \XINT_flpowerh_finish is the sole remnant of \XINTinFloatPowerH which was formerly stitched

to \xintFloatPower and checked for half-integer exponent.

150 \def\XINT_scipow_halfint#1/1[#2]#3%

151 {%

152 \expandafter\XINT_flpower_checkB_a

153 \romannumeral0\xintdsr{\xintDouble{#1}}.\XINTdigits.{#3}\XINT_flpowerh_finish

154 }%

155 \def\XINT_flpowerh_finish #1%

156 {%

157 \XINTinfloatS[\XINTdigits]{\XINTinFloatSqrt[\XINTdigits+\xint_c_iii]{#1}}%

158 }%

159 \def\XINT_tmpa#1.{%

160 \def\XINT_scipow_c ##1[##2]##3%

161 {%

162 \expandafter\XINT_scipow_d\romannumeral0\XINTinfloatS[#1]{##3}\xint:##1[##2]\xint:

163 }%

164 }\expandafter\XINT_tmpa\the\numexpr\XINTdigits.%

165 \def\XINT_scipow_d #1%

166 {%

167 \xint_UDzerominusfork

168 #1-\XINT_scipow_Aiszero

169 0#1\XINT_scipow_Aisneg

170 0-\XINT_scipow_Aispos

171 \krof #1%

172 }%

173 \def\XINT_scipow_Aiszero #1\xint:#2#3\xint:

174 {%

Missing NaN and Infinity causes problems. Inserting something like 1["7FFF8000] is risky as cer-

tain macros convert [N] into N zeros... so the run can appear to stall and will crash possibly

badly if we do that. There is some usage in relation to ilog10 in xint.sty and xintfrac.sty of

"7FFF8000 but here I will stay prudent and insert the usual 0 value (changed at 1.4g)

175 \if-#2\xint_dothis

176 {\XINT_signalcondition{InvalidOperation}{0 raised to power #2#3.}{}{ 0[0]}}\fi

177 \xint_orthat{ 0[0]}%

178 }%

179 \def\XINT_scipow_Aispos #1\xint:#2\xint:

180 {%

181 \XINTinfloatpowten{\xintMul{#2}{\XINTinFloatLogTen_xdgout#1}}%

182 }%

719

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

If a^b with a<0, we arrive here only if b was not considered to be an integer exponent. So let's

raise an error.

183 \def\XINT_scipow_Aisneg #1#2\xint:#3\xint:

184 {%

185 \XINT_signalcondition{InvalidOperation}%

186 {Fractional power #3 of negative #1#2.}{}{ 0[0]}%

187 }%

188 \ifnum\XINTdigits<9

At 1.4f we only need for Digits up to 8 to insert usage of poormanlog for non integer, non half-

integer exponents. At 1.4e the code was more complicated because I had strangely opted for using

always the log10() path. However we have to be careful to use \PML@logbaseten with 9 digits always.

As the legacy macros used for integer and half-integer exponents float-round the input to Digits

digits, we must do the same here for coherence. Which induces some small complications here.

189 \def\XINT_tmpa#1.#2.#3.{%

190 \def\XINT_scipow_c ##1[##2]##3%

191 {%

192 \expandafter\XINT_scipow_d

193 \romannumeral0\expandafter\XINT_scipow_c_i

194 \romannumeral0\XINTinfloat[#1]{##3}\xint:##1[##2]\xint:

195 }%

196 \def\XINT_scipow_c_i##1[##2]{ ##1#3[##2-#2]}%

197 }\expandafter\XINT_tmpa\the\numexpr\XINTdigits\expandafter.%

198 \the\numexpr9-\XINTdigits\expandafter.%

199 \romannumeral\xintreplicate{9-\XINTdigits}0.%

200 \def\XINT_scipow_Aispos #1\xint:#2\xint:

201 {%

202 \poormanpoweroften{\xintMul{#2}{\romannumeral0\expandafter\PML@logbaseten#1}}%

203 }%

204 \fi

29.6.2. \xintPow

Support macro for a^b in \xinteval. This overloads the original xintfrac macro, keeping its orig-

inal meaning only for integer exponents, which are not too big: for exact evaluation of A^b, we

want the output to not have more than about 10000 digits (separately for numerator and denomina-

tor). For this we limit b depending on the length of A, simply we want b to be smaller than the

rounded value of 10000 divided by the length of A. For one-digit A, this would give 10000 as maximal

exponent but due to organization of code related to avoir arithmetic overflow (we can't immedi-

ately operate in \numexpr with b as it is authorized to be beyond TeX bound), the maximal exponent

is 9999.

The criterion, which guarantees output (numerator and denominator separately) does not exceed

by much 10000 digits if at all is that the exponent should be less than the (rounded in the sense

of \numexpr) quotient of 10000 by the number of digits of a (considering separately numerator and

denominator).

The decision whether to compute A^b exactly depends on the length of internal representation

of A. So 9^9999 is evaluated exactly (in \xinteval) but for 9.0 it is 9.0^5000 the maximal power.

This may change in future.

1.4e had the following bug (for Digits>8): big integer exponents used the log10()/pow10()

based approach rather than the legacy macro path which goes via \xintFloatPower, as done by

\xintfloateval! As a result powers with very large integer exponents were more precise in

\xintfloateval than in \xinteval!

1.4f fixes this. Also, it handles Digits<=8 as Digits>8, bringing much simplification here.

720

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

205 \def\xintPow{\romannumeral0\xintpow}%

206 \def\xintpow#1#2%

207 {%

208 \expandafter\XINT_scipow_a\romannumeral0\xintrez{#2}\XINT_pow_int{#1}%

209 }%

In case of half-integer exponent the \XINT_scipow_a will have triggered usage of the (new incar-

nation) of \XINTinFloatPowerH which combines \xintFloatPower and square root extraction. So we

only have to handle here the case of integer exponents which will trigger execution of this \XINT ⤸
_pow_int macro passed as parameter to \xintpow.

210 \def\XINT_pow_int #1/1[#2]%

211 {%

212 \expandafter\XINT_pow_int_a\romannumeral0\XINT_dsx_addzeros{#2}#1;.%

213 }%

1.4e had a bug here for integer exponents >= 10000: they triggered going back to the floating

point routine but at a late location where the log10()/pow10() approach is used.

214 \def\XINT_pow_int_a #1#2.%

215 {%

216 \ifnum\if-#1\xintLength{#2}\else\xintLength{#1#2}\fi>\xint_c_iv

217 \expandafter\XINT_pow_bigint

218 \else\expandafter\XINT_pow_int_b

219 \fi #1#2.%

220 }%

At 1.4f we correctly jump to the appropriate entry point into the \xintFloatPower routine of xint-

frac, in case of a big integer exponent.

221 \def\XINT_pow_bigint #1.#2%

222 {%

223 \XINT_flpower_checkB_a#1.\XINTdigits.{#2}{\XINTinfloatS[\XINTdigits]}%

224 }%

225 \def\XINT_pow_int_b #1.#2%

226 {%

We now check if the output will not be too bulky. We use here (on the a of a^b) \xintraw, not \ ⤸
xintrez, on purpose so that for example 9.0^9999 is computed in floating point sense but 9^9999

is computed exactly. However 9.0^5000 will be computed exactly. And if I used \xintrez here

\xinteval{100^2} would print 10000.0 and \xinteval{100^3} would print 1.0e6. Thus situation is

complex.

By the way I am happy to see that 9.0*9.0 in \xinteval does print 81.0 but the truth is that

internally it does have the more bulky 8100/1[-2] maybe I should make some revision of this, i.e.

use rather systematically \xintREZ on input rather than \xintRaw (note taken on 2021/05/08 at time

of doing 1.4f bugfix release).

227 \expandafter\XINT_pow_int_c\romannumeral0\xintraw{#2}\xint:#1\xint:

228 }%

The \XINT_fpow_fork is (quasi top level) entry point we have found into the legacy \xintPow routine

of xintfrac. Its interface is a bit weird, but let's not worry about this now.

229 \def\XINT_pow_int_c#1#2/#3[#4]\xint:#5\xint:

230 {%

231 \if0\ifnum\numexpr\xint_c_x^iv/%

232 (\xintLength{#1#2}\if-#1-\xint_c_i\fi)<\XINT_Abs#5 %

233 1\else

234 \ifnum\numexpr\xint_c_x^iv/\xintLength{#3}<\XINT_Abs#5 %

235 1\else

721

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

236 0\fi\fi

237 \expandafter\XINT_fpow_fork\else\expandafter\XINT_pow_bigint_i

238 \fi

239 #5\Z{#4}{#1#2}{#3}%

240 }%

\XINT_pow_bigint_i is like \XINT_pow_bigint but has its parameters organized differently.

241 \def\XINT_pow_bigint_i#1\Z#2#3#4%

242 {%

243 \XINT_flpower_checkB_a#1.\XINTdigits.{#3/#4[#2]}{\XINTinfloatS[\XINTdigits]}%

244 }%

29.7. Macro support for \xintexpr and \xintfloatexpr syntax
29.7.1. The log10() and pow10() functions

Up to 8 digits included we use the poormanlog based ones.

245 \ifnum\XINTdigits<9

246 \expandafter\def\csname XINT_expr_func_log10\endcsname#1#2#3%

247 {%

248 \expandafter #1\expandafter #2\expandafter{%

249 \romannumeral`&&@\XINT:NEhook:f:one:from:one

250 {\romannumeral`&&@\PoorManLogBaseTen#3}}%

251 }%

252 \expandafter\def\csname XINT_expr_func_pow10\endcsname#1#2#3%

253 {%

254 \expandafter #1\expandafter #2\expandafter{%

255 \romannumeral`&&@\XINT:NEhook:f:one:from:one

256 {\romannumeral`&&@\PoorManPowerOfTen#3}}%

257 }%

258 \else

259 \expandafter\def\csname XINT_expr_func_log10\endcsname#1#2#3%

260 {%

261 \expandafter #1\expandafter #2\expandafter{%

262 \romannumeral`&&@\XINT:NEhook:f:one:from:one

263 {\romannumeral`&&@\XINTinFloatLogTen#3}}%

264 }%

265 \expandafter\def\csname XINT_expr_func_pow10\endcsname#1#2#3%

266 {%

267 \expandafter #1\expandafter #2\expandafter{%

268 \romannumeral`&&@\XINT:NEhook:f:one:from:one

269 {\romannumeral`&&@\XINTinFloatPowTen#3}}%

270 }%

271 \fi

272 \expandafter\let\csname XINT_flexpr_func_log10\expandafter\endcsname

273 \csname XINT_expr_func_log10\endcsname

274 \expandafter\let\csname XINT_flexpr_func_pow10\expandafter\endcsname

275 \csname XINT_expr_func_pow10\endcsname

29.7.2. The log(), exp() functions

276 \ifnum\XINTdigits<9

277 \def\XINT_expr_func_log #1#2#3%

278 {%

722

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

279 \expandafter #1\expandafter #2\expandafter{%

280 \romannumeral`&&@\XINT:NEhook:f:one:from:one

281 {\romannumeral`&&@\PoorManLog#3}}%

282 }%

283 \def\XINT_expr_func_exp #1#2#3%

284 {%

285 \expandafter #1\expandafter #2\expandafter{%

286 \romannumeral`&&@\XINT:NEhook:f:one:from:one

287 {\romannumeral`&&@\PoorManExp#3}}%

288 }%

289 \let\XINT_flexpr_func_log\XINT_expr_func_log

290 \let\XINT_flexpr_func_exp\XINT_expr_func_exp

291 \else

292 \def\XINT_expr_func_log #1#2#3%

293 {%

294 \expandafter #1\expandafter #2\expandafter{%

295 \romannumeral`&&@\XINT:NEhook:f:one:from:one

296 {\romannumeral`&&@\XINTinFloatLog#3}}%

297 }%

298 \def\XINT_expr_func_exp #1#2#3%

299 {%

300 \expandafter #1\expandafter #2\expandafter{%

301 \romannumeral`&&@\XINT:NEhook:f:one:from:one

302 {\romannumeral`&&@\XINTinFloatExp#3}}%

303 }%

304 \let\XINT_flexpr_func_log\XINT_expr_func_log

305 \let\XINT_flexpr_func_exp\XINT_expr_func_exp

306 \fi

29.7.3. The pow() function

The mapping of ** and ^ to \XINTinFloatSciPow (in \xintfloatexpr context) and \xintPow (in

\xintexpr context), is done in xintexpr.

307 \def\XINT_expr_func_pow #1#2#3%

308 {%

309 \expandafter #1\expandafter #2\expandafter{%

310 \romannumeral`&&@\XINT:NEhook:f:one:from:two

311 {\romannumeral`&&@\xintPow#3}}%

312 }%

313 \def\XINT_flexpr_func_pow #1#2#3%

314 {%

315 \expandafter #1\expandafter #2\expandafter{%

316 \romannumeral`&&@\XINT:NEhook:f:one:from:two

317 {\romannumeral`&&@\XINTinFloatSciPow#3}}%

318 }%

29.8. End of package loading for low Digits
319 \ifnum\XINTdigits<9 \expandafter\XINTlogendinput\fi%

723

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

29.9. Stored constants
The constants were obtained from Maple at 80 digits: fractional power of 10, but only one loga-

rithm log(10).

Currently the code whether for exponential or logarihm will not screen out 0 digits and even will

do silly multiplication by 10^0 = 1 in that case, and we need to store such silly values.

We add the data for the 10^-0.i etc... because pre-computing them on the fly significantly adds

overhead to the package loading.

The fractional powers of ten with D+5 digits are used to compute pow10() function, those with

D+10 digits are used to compute log10() function. This is done with an elevated precision for two

reasons:

- handling of inputs near 1,

- in order for a^b = pow10(b*log10(a)) to keep accuracy even with large exponents, say in

absolute value up to 1e7, degradation beginning to show-up at 1e8.

320 \def\XINT_tmpa{1[0]}%

321 \expandafter\let\csname XINT_c_1_0\endcsname\XINT_tmpa

322 \expandafter\let\csname XINT_c_2_0\endcsname\XINT_tmpa

323 \expandafter\let\csname XINT_c_3_0\endcsname\XINT_tmpa

324 \expandafter\let\csname XINT_c_4_0\endcsname\XINT_tmpa

325 \expandafter\let\csname XINT_c_5_0\endcsname\XINT_tmpa

326 \expandafter\let\csname XINT_c_6_0\endcsname\XINT_tmpa

327 \expandafter\let\csname XINT_c_1_0_x\endcsname\XINT_tmpa

328 \expandafter\let\csname XINT_c_2_0_x\endcsname\XINT_tmpa

329 \expandafter\let\csname XINT_c_3_0_x\endcsname\XINT_tmpa

330 \expandafter\let\csname XINT_c_4_0_x\endcsname\XINT_tmpa

331 \expandafter\let\csname XINT_c_5_0_x\endcsname\XINT_tmpa

332 \expandafter\let\csname XINT_c_6_0_x\endcsname\XINT_tmpa

333 \expandafter\let\csname XINT_c_1_0_inv\endcsname\XINT_tmpa

334 \expandafter\let\csname XINT_c_2_0_inv\endcsname\XINT_tmpa

335 \expandafter\let\csname XINT_c_3_0_inv\endcsname\XINT_tmpa

336 \expandafter\let\csname XINT_c_4_0_inv\endcsname\XINT_tmpa

337 \expandafter\let\csname XINT_c_5_0_inv\endcsname\XINT_tmpa

338 \expandafter\let\csname XINT_c_6_0_inv\endcsname\XINT_tmpa

339 \expandafter\let\csname XINT_c_1_0_inv_x\endcsname\XINT_tmpa

340 \expandafter\let\csname XINT_c_2_0_inv_x\endcsname\XINT_tmpa

341 \expandafter\let\csname XINT_c_3_0_inv_x\endcsname\XINT_tmpa

342 \expandafter\let\csname XINT_c_4_0_inv_x\endcsname\XINT_tmpa

343 \expandafter\let\csname XINT_c_5_0_inv_x\endcsname\XINT_tmpa

344 \expandafter\let\csname XINT_c_6_0_inv_x\endcsname\XINT_tmpa

345 \def\XINT_tmpa#1#2#3#4;%

346 {\expandafter\edef\csname XINT_c_#1_#2\endcsname

347 {\XINTinFloat[\XINTdigitsormax+5]{#3#4[-79]}}%

348 \expandafter\edef\csname XINT_c_#1_#2_x\endcsname

349 {\XINTinFloat[\XINTdigitsormax+10]{#3#4[-79]}}%

350 }%

351 % 10^0.i

352 \XINT_tmpa 1 1 12589254117941672104239541063958006060936174094669310691079230195266476157825020;%

353 \XINT_tmpa 1 2 15848931924611134852021013733915070132694421338250390683162968123166568636684540;%

354 \XINT_tmpa 1 3 19952623149688796013524553967395355579862743154053460992299136670049309106980490;%

355 \XINT_tmpa 1 4 25118864315095801110850320677993273941585181007824754286798884209082432477235613;%

356 \XINT_tmpa 1 5 31622776601683793319988935444327185337195551393252168268575048527925944386392382;%

357 \XINT_tmpa 1 6 39810717055349725077025230508775204348767703729738044686528414806022485386945804;%

358 \XINT_tmpa 1 7 50118723362727228500155418688494576806047198983281926392969745588901125568883069;%

724

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

359 \XINT_tmpa 1 8 63095734448019324943436013662234386467294525718822872452772952883349494329768681;%

360 \XINT_tmpa 1 9 79432823472428150206591828283638793258896063175548433209232392931695569719148754;%

361 % 10^0.0i

362 \XINT_tmpa 2 1 10232929922807541309662751748198778273411640572379813085994255856738296458625172;%

363 \XINT_tmpa 2 2 10471285480508995334645020315281400790567914715039292120056525299012577641023719;%

364 \XINT_tmpa 2 3 10715193052376064174083022246945087339158659633422172707894501914136771607653870;%

365 \XINT_tmpa 2 4 10964781961431850131437136061411270464271158762483023169080841607885740984711300;%

366 \XINT_tmpa 2 5 11220184543019634355910389464779057367223085073605529624450744481701033026862244;%

367 \XINT_tmpa 2 6 11481536214968827515462246116628360182562102373996119340874991068894793593040890;%

368 \XINT_tmpa 2 7 11748975549395295417220677651268442278134317971793124791953875805007912852226246;%

369 \XINT_tmpa 2 8 12022644346174129058326127151935204486942664354881189151104892745683155052368222;%

370 \XINT_tmpa 2 9 12302687708123815342415404364750907389955639574572144413097319170011637639124482;%

371 % 10^0.00i

372 \XINT_tmpa 3 1 10023052380778996719154048893281105540536684535421606464116348523047431367720401;%

373 \XINT_tmpa 3 2 10046157902783951424046519858132787392010166060319618489538315083825599423438638;%

374 \XINT_tmpa 3 3 10069316688518041699296607872661381368099438247964820601930206419324524707606686;%

375 \XINT_tmpa 3 4 10092528860766844119155277641202580844111492027373621434478800545314309618714957;%

376 \XINT_tmpa 3 5 10115794542598985244409323144543146957419235215102899054703546688078254946034250;%

377 \XINT_tmpa 3 6 10139113857366794119988279023017296985954042032867436525450889437280417044987125;%

378 \XINT_tmpa 3 7 10162486928706956276733661150135543062420167220622552197768982666050994284378619;%

379 \XINT_tmpa 3 8 10185913880541169240797988673338257820431768224957171297560936579346433061037662;%

380 \XINT_tmpa 3 9 10209394837076799554149033101487543990018213667630072574873723356334069913329713;%

381 % 10^0.000i

382 \XINT_tmpa 4 1 10002302850208247526835942556719413318678216124626534526963475845228205382579041;%

383 \XINT_tmpa 4 2 10004606230728403216239656646745503559081482371024284871882409614422496765669196;%

384 \XINT_tmpa 4 3 10006910141682589957025973521996241909035914023642264228577379693841345823180462;%

385 \XINT_tmpa 4 4 10009214583192958761081718336761022426385537997384755843291864010938378093197023;%

386 \XINT_tmpa 4 5 10011519555381688769842032367472488618040778885656970999331288116685029387850446;%

387 \XINT_tmpa 4 6 10013825058370987260768186632475607982636715641432550952229573271596547716373358;%

388 \XINT_tmpa 4 7 10016131092283089653826887255241073941084503769368844606021481400409002185558343;%

389 \XINT_tmpa 4 8 10018437657240259517971072914549205297136779497498835020699531587537662833033174;%

390 \XINT_tmpa 4 9 10020744753364788577622204725249622301332888222801030351604197113557132455165040;%

391 % 10^0.0000i

392 \XINT_tmpa 5 1 10000230261160268806710649793464495797824846841503180050673957122443571394978721;%

393 \XINT_tmpa 5 2 10000460527622557806255008596155855743730116854295068547616656160734125748005947;%

394 \XINT_tmpa 5 3 10000690799386989083565213461287219981856579552059660369243804541364501659468630;%

395 \XINT_tmpa 5 4 10000921076453684726384543254593368743049141124080210677706489564626675960578367;%

396 \XINT_tmpa 5 5 10001151358822766825267483384008265483772370538793312970508590203623535763866465;%

397 \XINT_tmpa 5 6 10001381646494357473579790530833073090516914490540536234536867917078761046656260;%

398 \XINT_tmpa 5 7 10001611939468578767498557382394677469502542123237272447312733350028467607076918;%

399 \XINT_tmpa 5 8 10001842237745552806012277366194752842273812293689190856411757410911882303011468;%

400 \XINT_tmpa 5 9 10002072541325401690920909385549403068574626162727745910217443397959031898734024;%

401 % 10^0.00000i

402 \XINT_tmpa 6 1 10000023025877439451356029805459000097926504781151663770980171880313737943886754;%

403 \XINT_tmpa 6 2 10000046051807898005897723104514851394069452605882077809669546315010724085277647;%

404 \XINT_tmpa 6 3 10000069077791375785706217087438809625967243923218032821061587553353589726808164;%

405 \XINT_tmpa 6 4 10000092103827872912862930047032391734439796534302560512742030066798473305401477;%

406 \XINT_tmpa 6 5 10000115129917389509449561379274639104559958866285946533811801963402821672829477;%

407 \XINT_tmpa 6 6 10000138156059925697548091583969382297005329013199894805417325991907389143667949;%

408 \XINT_tmpa 6 7 10000161182255481599240782265392507269793911275470978276390154932321984777772469;%

409 \XINT_tmpa 6 8 10000184208504057336610176132939223090407041937631374389422968832433217547184883;%

410 \XINT_tmpa 6 9 10000207234805653031739097001771331138303016031686764989867510425362339583809842;%

725

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

411 \def\XINT_tmpa#1#2#3#4;%

412 {\expandafter\edef

413 \csname XINT_c_#1_#2_inv\endcsname{\XINTinFloat[\XINTdigitsormax+5]{#3#4[-80]}}%

414 \expandafter\edef

415 \csname XINT_c_#1_#2_inv_x\endcsname{\XINTinFloat[\XINTdigitsormax+10]{#3#4[-80]}}%

416 }%

417 % 10^-0.i

418 \XINT_tmpa 1 1 79432823472428150206591828283638793258896063175548433209232392931695569719148754;%

419 \XINT_tmpa 1 2 63095734448019324943436013662234386467294525718822872452772952883349494329768681;%

420 \XINT_tmpa 1 3 50118723362727228500155418688494576806047198983281926392969745588901125568883069;%

421 \XINT_tmpa 1 4 39810717055349725077025230508775204348767703729738044686528414806022485386945804;%

422 \XINT_tmpa 1 5 31622776601683793319988935444327185337195551393252168268575048527925944386392382;%

423 \XINT_tmpa 1 6 25118864315095801110850320677993273941585181007824754286798884209082432477235613;%

424 \XINT_tmpa 1 7 19952623149688796013524553967395355579862743154053460992299136670049309106980490;%

425 \XINT_tmpa 1 8 15848931924611134852021013733915070132694421338250390683162968123166568636684540;%

426 \XINT_tmpa 1 9 12589254117941672104239541063958006060936174094669310691079230195266476157825020;%

427 % 10^-0.0i

428 \XINT_tmpa 2 1 97723722095581068269707600696156123863427170069897801526639004097175507042084888;%

429 \XINT_tmpa 2 2 95499258602143594972395937950148401513087269708053320302465127242741421479104601;%

430 \XINT_tmpa 2 3 93325430079699104353209661168364840720225485199736026149257155811788093771138272;%

431 \XINT_tmpa 2 4 91201083935590974212095940791872333509323858755696109214760361851771695487999100;%

432 \XINT_tmpa 2 5 89125093813374552995310868107829696398587478293004836994794349506746891059190135;%

433 \XINT_tmpa 2 6 87096358995608063751082742520877054774747128501284704090761796673224328569285177;%

434 \XINT_tmpa 2 7 85113803820237646781712631859248682794521725442067093899553745086385146367436049;%

435 \XINT_tmpa 2 8 83176377110267100616669140273840405263880767161887438462740286611379995442629360;%

436 \XINT_tmpa 2 9 81283051616409924654127879773132980187568851100062454636602325121954484722491710;%

437 % 10^-0.00i

438 \XINT_tmpa 3 1 99770006382255331719442194285376231055211861394573154624878230890945476532432225;%

439 \XINT_tmpa 3 2 99540541735152696244806147089510943107144177264574823668081299845609359857038344;%

440 \XINT_tmpa 3 3 99311604842093377157642607688515474663519162181123336122073822476734517364853150;%

441 \XINT_tmpa 3 4 99083194489276757440828314388392035249938006860819409201135652190410238171119287;%

442 \XINT_tmpa 3 5 98855309465693884028524792978202683686410726723055209558576898759166522286083202;%

443 \XINT_tmpa 3 6 98627948563121047157261523093421290951784086730437722805070296627452491731402556;%

444 \XINT_tmpa 3 7 98401110576113374484101831088824192144756194053451911515003663381199842081528019;%

445 \XINT_tmpa 3 8 98174794301998439937928161622872240632362817134775142288598128693131032909278350;%

446 \XINT_tmpa 3 9 97948998540869887269961493687844910565420716785032030061251916654655049965062649;%

447 % 10^-0.000i

448 \XINT_tmpa 4 1 99976976799815658635141604638981297541396466984477711459083930684685186989697929;%

449 \XINT_tmpa 4 2 99953958900308784552845777251512089759003230012954649234748668826546533498169555;%

450 \XINT_tmpa 4 3 99930946300258992168693777702512591351888960684418033717545524043693899420866954;%

451 \XINT_tmpa 4 4 99907938998446176870082987427724649318531547584410414997787083472394558389284098;%

452 \XINT_tmpa 4 5 99884936993650514951538205746462968844845952521633937925370747725933629958238429;%

453 \XINT_tmpa 4 6 99861940284652463550037839584112909891259691850983307437097305856727153967481065;%

454 \XINT_tmpa 4 7 99838948870232760580354983175435314251655958968480344701699631967048474751069525;%

455 \XINT_tmpa 4 8 99815962749172424670413384320528274471550942114263604264788586703624513163664479;%

456 \XINT_tmpa 4 9 99792981920252755096658293766085025870392854106037465990011216356523334125368417;%

457 % 10^-0.0000i

458 \XINT_tmpa 5 1 99997697441416293040019992468837639003787989306240470048763511538639048400765328;%

459 \XINT_tmpa 5 2 99995394935850346394065999228750187791584034668237852053859761641089829514536011;%

460 \XINT_tmpa 5 3 99993092483300939297147020491645017932348508508297743745039515152378182676736684;%

461 \XINT_tmpa 5 4 99990790083766851012380885556584619169980753943113396677545915245611923361705686;%

462 \XINT_tmpa 5 5 99988487737246860830993605587529673614422529030613405900998412734419982883669223;%

726

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

463 \XINT_tmpa 5 6 99986185443739748072318726405984801565268578044798475766025647187221659622450651;%

464 \XINT_tmpa 5 7 99983883203244292083796681298546635825139453823571398432959235283529730820181019;%

465 \XINT_tmpa 5 8 99981581015759272240974143839353881367972777961073357987943600347058023396510672;%

466 \XINT_tmpa 5 9 99979278881283467947503380727439017235290006415950636109257677645557027950744160;%

467 % 10^-0.00000i

468 \XINT_tmpa 6 1 99999769741755795297487775997495948154386159348543852707438213487494386559762090;%

469 \XINT_tmpa 6 2 99999539484041779185217876175552674518572114763104546143049036309870762496098218;%

470 \XINT_tmpa 6 3 99999309226857950442387361668529812394860404492721699528707852590634886516924591;%

471 \XINT_tmpa 6 4 99999078970204307848196104610199226516866442484686906173860803560254163287393673;%

472 \XINT_tmpa 6 5 99998848714080850181846788127272455158309917012010320554498356105168896062430977;%

473 \XINT_tmpa 6 6 99998618458487576222544906332928167145404344730731751204389698696345970645201375;%

474 \XINT_tmpa 6 7 99998388203424484749498764320339633772810463403640242228131015918494067456365331;%

475 \XINT_tmpa 6 8 99998157948891574541919478156202215623119146605983303201215215949834619332550929;%

476 \XINT_tmpa 6 9 99997927694888844379020974874260864289829523807763942234420930258187873904191138;%

477 % log(10)

478 \edef\XINT_c_logten

479 {\XINTinFloat[\XINTdigitsormax+4]

480 {23025850929940456840179914546843642076011014886287729760333279009675726096773525[-79]}}%

481 \edef\XINT_c_oneoverlogten

482 {\XINTinFloat[\XINTdigitsormax+4]

483 {43429448190325182765112891891660508229439700580366656611445378316586464920887077[-80]}}%

484 \edef\XINT_c_oneoverlogten_xx

485 {\XINTinFloat[\XINTdigitsormax+14]

486 {43429448190325182765112891891660508229439700580366656611445378316586464920887077[-80]}}%

29.10. April 2021: at last, \XINTinFloatPowTen, \XINTinFloatExp
Done April 2021. I have procrastinated (or did not have time to devote to this) at least 5 years,

even more.

Speed improvements will have to wait to long delayed refactoring of core floating point support

which is still in the 2013 primitive state !

I did not try to optimize for say 16 digits, as I was more focused on reaching 60 digits in a

reasonably efficient manner (trigonometric functions achieved this since 2019) in the same coding

framework. Finally, up to 62 digits.

The stored constants are log(10) at P+4 digits and the powers 10^0.d, 10^0.0d, etc, up to

10^0.00000d for d=1..9, as well as their inverses, at P+5 and P+10 digits. The constants were

obtained from Maple at 80 digits.

Initially I constructed the exponential series exp(h) as one big unique nested macro. It con-

tained pre-rounded values of the 1/i! but would float-round h to various numbers of digits, with

always the full initial h as input.

After having experimented with the logarithm, I redid exp(h) = 1 + h(1 + h(1/2 + ...)) with many

macros in order to have more readable code, and to dynamically cut-off more and more digits from h

the deeper it is used. See the logarithm code for (perhaps) more comments.

The thresholds have been obtained from considerations including an hmax (a bit more than 0.5

log(10) 10^-6). Here is the table:

- maximal value of P: 8, 15, 21, 28, 35, 42, 48, 55, 62

- last included term: /1, /2, /6, /4!, /5!, /6!, /7!, /8!, /9!

Computations are done morally targeting P+4 fractional fixed point digits, with a stopping cri-

teria at say about 5e(-P-4), which was used for the table above using only the worst case. As the

used macros are a mix of exact operations and floating point reductions this is in practice a bit

different. The h will be initially float rounded to P-1 digits. It is cut-off more and more, the

deeper nested it is used.

727

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

The code for this evaluation of 10^x is very poor with x very near zero: it does silly multipli-

cation by 1, and uses more terms of exponential series than would then be necessary.

For the computation of exp(x) as 10^(c*x) with c=log(10)^-1, we need more precise c the larger

abs(x) is. For abs(x)<1 (or 2), the c with P+4 fractional digits is sufficient. But decimal

exponents are more or less allowed to be near the TeX maximum 2^31-1, which means that abs(x)

could be as big as 0.5e10, and we then need c with P+14 digits to cover that range.

I am hesitating whether to first examine integral part of abs(x) and for example to use c with

either P+4, P+9 or P+14 digits, and also take this opportunity to inject an error message if x is

too big before TeX arithmetic overflow happens later on. For time being I will use overhead of

oneoverlogten having ample enough digits...

The exponent received as input is float rounded to P + 14 digits. In practice the input will

be already a P-digits float. The motivation here is for low Digits situation: but this done so

that for example with Digits=4, we want exp(12345) not to be evaluated as exp(12350) which would

have no meaning at all. The +14 is because we have prepared 1/log(10) with that many significant

digits. This conundrum is due to the inadequation of the world of floating point numbers with

exp() and log(): clearly exp() goes from fixed point to floating point and log() goes from float-

ing point to fixed point, and coercing them to work inside the sole floating point domain is not

mathematically natural. Although admittedly it does create interesting mathematical questions!

A similar situation applies to functions such as cos() and sin(), what sense is there in the ex-

pression cos(exp(50)) for example with 16 digits precision? My opinion is that it does not make

ANY sense. Anyway, I shall obide.

As \XINTinFloatS will not add unnecessarily trailing zeros, the \XINTdigits+14 is not really an

enormous overhead for integer exponents, such as in the example above the 12345, or more realisti-

cally small integer exponents, and if the input is already float rounded to P digits, the overhead

is also not enormous (float-rounding is costly when the input is a fraction).

\XINTinfloatpowten will receive an input with at least P+14 and up to 2P+28 digits... fortunal-

tely with no fraction part and will start rounding it in the fixed point sense of its input to P+4

digits after decimal point, which is not enormously costly.

Of course all these things pile up...

487 \def\XINTinFloatExp{\romannumeral0\XINTinfloatexp}%
488 \def\XINT_tmpa#1.{%

489 \def\XINTinfloatexp##1%

490 {%

491 \XINTinfloatpowten

492 {\xintMul{\XINT_c_oneoverlogten_xx}{\XINTinFloatS[#1]{##1}}}%

493 }%

494 }\expandafter\XINT_tmpa\the\numexpr\XINTdigitsormax+14.%

Here is how the reduction to computations of an exp(h) via series is done.

Starting from x, after initial argument normalization, it is fixed-point rounded to 6 fractional

digits giving x'' = śn.d_1...d_6 (which may be 0).

I have to resist temptation using very low level routines here and wisely will employ the avail-

able user-level stuff. One computes then the difference x-x'' which gives some eta, and the h

will be log(10).eta. The subtraction and multiplication are done exactly then float rounded to

P-1 digits to obtain the h.

Then exp(h) is computed. And to finish it is multiplied with the stored 10^ś0.d_1, 10^ś0.0d_2,

etc...., constants and its decimal exponent is increased by śn. These operations are done at P+5

floating point digits. The final result is then float-rounded to the target P digits.

Currently I may use nested macros for some operations but will perhaps revise in future (it makes

tracing very complicated if one does not have intermediate macros). The exponential series itself

was initially only one single macro, but as commented above I have now modified it.

495 \def\XINTinFloatPowTen{\romannumeral0\XINTinfloatpowten}%
496 \def\XINT_tmpa#1.{%

728

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

497 \def\XINTinfloatpowten##1%

498 {%

499 \expandafter\XINT_powten_fork

500 \romannumeral0\xintiround{#1}{##1}[-#1]%

501 }%

502 }\expandafter\XINT_tmpa\the\numexpr\XINTdigitsormax+4.%

503 \def\XINT_powten_fork#1%

504 {%

505 \xint_UDzerominusfork

506 #1-\XINT_powten_zero

507 0#1\XINT_powten_neg

508 0-\XINT_powten_pos

509 \krof #1%

510 }%

511 \def\XINT_powten_zero #1[#2]{ 1[0]}%

This rounding may produce 0.000000 but will always have 6 exactly fractional digits, because the

special case of a zero input was filtered out preventively.

512 \def\XINT_powten_pos#1[#2]%

513 {%

514 \expandafter\XINT_powten_pos_a\romannumeral0\xintround{6}{#1[#2]}#1[#2]%

515 }%

516 \def\XINT_tmpa #1.#2.#3.{%

517 \def\XINT_powten_pos_a ##1.##2##3##4##5##6##7##8[##9]%

518 {%

519 \expandafter\XINT_infloate

520 \romannumeral0\XINTinfloat[#3]{%

521 \xintMul{\csname XINT_c_1_##2\endcsname}{%

522 \XINTinFloat[#1]{%

523 \xintMul{\csname XINT_c_2_##3\endcsname}{%

524 \XINTinFloat[#1]{%

525 \xintMul{\csname XINT_c_3_##4\endcsname}{%

526 \XINTinFloat[#1]{%

527 \xintMul{\csname XINT_c_4_##5\endcsname}{%

528 \XINTinFloat[#1]{%

529 \xintMul{\csname XINT_c_5_##6\endcsname}{%

530 \XINTinFloat[#1]{%

531 \xintMul{\csname XINT_c_6_##7\endcsname}{%

532 \xintAdd{1[0]}{%

533 \expandafter\XINT_Exp_series_a_ii

534 \romannumeral0\XINTinfloat[#2]{%

535 \xintMul{\XINT_c_logten}%

536 {\xintAdd{-##1.##2##3##4##5##6##7}{##8[##9]}}%

537 }%

538 \xint:

539 }%

540 }}}}}}}}}}}}{##1}%

541 }}\expandafter\XINT_tmpa

542 \the\numexpr\XINTdigitsormax+5\expandafter.%

543 \the\numexpr\XINTdigitsormax-1\expandafter.%

544 \the\numexpr\XINTdigitsormax.%

This rounding may produce -0.000000 but will always have 6 exactly fractional digits and a leading

minus sign.

729

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

545 \def\XINT_powten_neg#1[#2]%

546 {%

547 \expandafter\XINT_powten_neg_a\romannumeral0\xintround{6}{#1[#2]}#1[#2]%

548 }%

549 \def\XINT_tmpa #1.#2.#3.{%

550 \def\XINT_powten_neg_a -##1.##2##3##4##5##6##7##8[##9]%

551 {%

552 \expandafter\XINT_infloate

553 \romannumeral0\XINTinfloat[#3]{%

554 \xintMul{\csname XINT_c_1_##2_inv\endcsname}{%

555 \XINTinFloat[#1]{%

556 \xintMul{\csname XINT_c_2_##3_inv\endcsname}{%

557 \XINTinFloat[#1]{%

558 \xintMul{\csname XINT_c_3_##4_inv\endcsname}{%

559 \XINTinFloat[#1]{%

560 \xintMul{\csname XINT_c_4_##5_inv\endcsname}{%

561 \XINTinFloat[#1]{%

562 \xintMul{\csname XINT_c_5_##6_inv\endcsname}{%

563 \XINTinFloat[#1]{%

564 \xintMul{\csname XINT_c_6_##7_inv\endcsname}{%

565 \xintAdd{1[0]}{%

566 \expandafter\XINT_Exp_series_a_ii

567 \romannumeral0\XINTinfloat[#2]{%

568 \xintMul{\XINT_c_logten}%

569 {\xintAdd{##1.##2##3##4##5##6##7}{##8[##9]}}%

570 }%

571 \xint:

572 }%

573 }}}}}}}}}}}}{-##1}%

574 }}\expandafter\XINT_tmpa

575 \the\numexpr\XINTdigitsormax+5\expandafter.%

576 \the\numexpr\XINTdigitsormax-1\expandafter.%

577 \the\numexpr\XINTdigitsormax.%

29.10.1. Exponential series

Or rather here h(1 + h(1/2 + h (1/6 +))). Upto at most h^9/9! term.

The used initial h has been float rounded to P-1 digits.

578 \def\XINT_tmpa#1.#2.{%

579 \def\XINT_Exp_series_a_ii##1\xint:

580 {%

581 \expandafter\XINT_Exp_series_b

582 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

583 }%

584 \def\XINT_Exp_series_b##1[##2]\xint:

585 {%

586 \expandafter\XINT_Exp_series_c_

587 \romannumeral0\xintadd{1}{\xintHalf{##10}[##2-1]}\xint:

588 }%

589 \def\XINT_Exp_series_c_##1\xint:##2\xint:

590 {%

591 \XINTinFloat[#2]{\xintMul{##1}{##2}}%

592 }%

730

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

593 }%

594 \expandafter\XINT_tmpa

595 \the\numexpr\XINTdigitsormax-6\expandafter.%

596 \the\numexpr\XINTdigitsormax-1.%

597 \ifnum\XINTdigits>15

598 \def\XINT_tmpa#1.#2.#3.#4.{%

599 \def\XINT_Exp_series_a_ii##1\xint:

600 {%

601 \expandafter\XINT_Exp_series_a_iii

602 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

603 }%

604 \def\XINT_Exp_series_a_iii##1\xint:

605 {%

606 \expandafter\XINT_Exp_series_b

607 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

608 }%

609 \def\XINT_Exp_series_b##1[##2]\xint:

610 {%

611 \expandafter\XINT_Exp_series_c_i

612 \romannumeral0\xintadd{#3}{##1/6[##2]}\xint:

613 }%

614 \def\XINT_Exp_series_c_i##1\xint:##2\xint:

615 {%

616 \expandafter\XINT_Exp_series_c_

617 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

618 }%

619 }\expandafter\XINT_tmpa

620 \the\numexpr\XINTdigitsormax-13\expandafter.%

621 \the\numexpr\XINTdigitsormax-6.%

622 {5[-1]}.%

623 {1[0]}.%

624 \fi

625 \ifnum\XINTdigits>21

626 \def\XINT_tmpa#1.#2.#3.#4.{%

627 \def\XINT_Exp_series_a_iii##1\xint:

628 {%

629 \expandafter\XINT_Exp_series_a_iv

630 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

631 }%

632 \def\XINT_Exp_series_a_iv##1\xint:

633 {%

634 \expandafter\XINT_Exp_series_b

635 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

636 }%

637 \def\XINT_Exp_series_b##1[##2]\xint:

638 {%

639 \expandafter\XINT_Exp_series_c_ii

640 \romannumeral0\xintadd{#3}{##1/24[##2]}\xint:

641 }%

642 \def\XINT_Exp_series_c_ii##1\xint:##2\xint:

643 {%

644 \expandafter\XINT_Exp_series_c_i

731

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

645 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

646 }%

647 }\expandafter\XINT_tmpa

648 \the\numexpr\XINTdigitsormax-19\expandafter.%

649 \the\numexpr\XINTdigitsormax-13\expandafter.%

650 \romannumeral0\XINTinfloat[\XINTdigitsormax-13]{1/6[0]}.%

651 {5[-1]}.%

652 \fi

653 \ifnum\XINTdigits>28

654 \def\XINT_tmpa #1 #2 #3 #4 #5 #6 #7 %

655 {%

656 \def\XINT_tmpb ##1##2##3##4%

657 {%

658 \def\XINT_tmpc####1.####2.####3.####4.%

659 {%

660 \def##2########1\xint:

661 {%

662 \expandafter##1%

663 \romannumeral0\XINTinfloatS[####2]{########1}\xint:########1\xint:

664 }%

665 \def##1########1\xint:

666 {%

667 \expandafter\XINT_Exp_series_b

668 \romannumeral0\XINTinfloatS[####1]{########1}\xint:########1\xint:

669 }%

670 \def\XINT_Exp_series_b########1[########2]\xint:

671 {%

672 \expandafter##3%

673 \romannumeral0\xintadd{####3}{########1/#5[########2]}\xint:

674 }%

675 \def##3########1\xint:########2\xint:

676 {%

677 \expandafter##4%

678 \romannumeral0\xintadd{####4}%

679 {\XINTinFloat[####2]{\xintMul{########1}{########2}}}\xint:

680 }%

681 }%

682 }%

683 \expandafter\XINT_tmpb

684 \csname XINT_Exp_series_a_\romannumeral\numexpr#1\expandafter\endcsname

685 \csname XINT_Exp_series_a_\romannumeral\numexpr#1-1\expandafter\endcsname

686 \csname XINT_Exp_series_c_\romannumeral\numexpr#1-2\expandafter\endcsname

687 \csname XINT_Exp_series_c_\romannumeral\numexpr#1-3\endcsname

688 \expandafter\XINT_tmpc

689 \the\numexpr\XINTdigitsormax-#2\expandafter.%

690 \the\numexpr\XINTdigitsormax-#3\expandafter.\expanded{%

691 \XINTinFloat[\XINTdigitsormax-#3]{1/#6[0]}.%

692 \XINTinFloat[\XINTdigitsormax-#4]{1/#7[0]}.%

693 }%

694 }%

695 \XINT_tmpa 5 26 19 13 120 24 6 %<-- keep space

696 \ifnum\XINTdigits>35 \XINT_tmpa 6 33 26 19 720 120 24 \fi

732

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

697 \ifnum\XINTdigits>42 \XINT_tmpa 7 40 33 26 5040 720 120 \fi

698 \ifnum\XINTdigits>48 \XINT_tmpa 8 46 40 33 40320 5040 720 \fi

699 \ifnum\XINTdigits>55 \XINT_tmpa 9 53 46 40 362880 40320 5040 \fi

700 \fi

29.11. April 2021: at last \XINTinFloagLogTen, \XINTinFloatLog
Attention that this is not supposed to be used with \XINTdigits at 8 or less, it will crash if

that is the case. The log10() and log() functions in case \XINTdigits is at most 8 are mapped to

\PoormanLogBaseTen respectively \PoormanLog macros.

In the explications here I use the function names rather than the macro names.

Both log(x) and log10(x) are on top of an underlying macro which will produce z and h such that

x is about 10^z e^h (with h being small is obtained via a log series). Then log(x) computes

log(10)z+h whereas log10(x) computes as z+h/log(10).

There will be three branches [NO FINALLY ONLY TWO BRANCHES SINCE 1.4f] according to situation of

x relative to 1. Let y be the math value log10(x) that we want to approximate to target precision

P digits. P is assumed at least 9.

I will describe the algorithm roughly, but skip its underlying support analysis; at some point I

mention "fixed point calculations", but in practice it is not done exactly that way, but describing

it would be complicated so look at the code which is very readable (by the author, at the present

time).

First we compute z = śn.d_1d_2...d_6 as the rounded to 6 fractional digits approximation of

y=log10(x) obtained by first using the poormanlog macros on x (float rounded to 9 digits) then

rounding as above.

Warning: this description is not in sync with the code, now the case where d_1d_2...d_6 is

000000 is filtered out and one jumps directly either to case I if n≠0 or to case III if n=0. The

case when rounding produces a z equal to zero is also handled especially.

WARNING: at 1.4f, the CASE I was REMOVED. Everything is handled as CASE II or exceptionally case

III. Indeed this removal was observed to simply cost about 10% extra time at D=16 digits, which was

deemed an acceptable cost. The cost is certainly higher at D=9 but also relatively lower at high

D's. It means that logarithms are always computed with 9, not 4, safety **fractional** digits,

and this allows to compute powers accurately with exponents say up to 1e7, degradation starting to

show at 1e8 and for sure at 1e9. However for integer and half-integer exponents the old routine

\xintFloatPower will still be used, and perhaps it will need some increased precision update as

the documented 0.52ulp error bound is higher than our more stringent standards of 2021.

CASE I: [removed at 1.4f!] either n is NOT zero or d_1d_2....d_6 is at least 100001. Then we

compute X = 10^(-z)*x which is near 1, by using the table of powers of 10, using P+5 digits signif-

icands. Then we compute (exactly) eta = X-1, (which is in absolute value less than 0.0000012) and

obtain y as z + log(10)^(-1) times log(1+eta) where log(1+eta) = eta - eta^2/2 + eta^3/3- ... is

"computed with P+4 fractional fixed point digits" [1]_ according to the following table:

- maximal value of P: 9, 15, 21, 27, 33, 39, 45, 51, 57, 63

- last included term: /1, /2, /3, /4, /5, /6, /7, /8, /9, /10

.. [1] this "P+4" includes leading fractional zeroes so in practice it will rather be done as

eta(1 - eta(1/2 + eta(1/3-...))), and the inner sums will be done in various precisions, the top

level (external) eta probably at P-1 digits, the first inner eta at P-7 digits, the next at P-13,

something in this style. The heuristics is simple: at P=9 we don't need the first inner eta, so

let's use there P-9 or rather P-7 digits by security. Similarly at P=3 we would not need at all

the eta, so let's use the top level one rounded at P-3+2 = P-1 digits. And there is a shift by 6

less digits at each inner level. RÉFLÉCHIR SI C'EST PAS PLUTÔT P-2 ICI, suffisant au regard de la

précision par ailleurs pour la réduction près de 1.

The sequence of maximal P's is simply an arithmetic progression.

The addition of z will trigger the final rounding to P digits. The inverse of log(10) is pre-

computed with P+4 digits.

733

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

This case I essentially handles x such as max(x,1/x)>10^0.1=1.2589...

CASE II: n is zero and d_1d_2....d_6 is not zero. We operate as in CASE I, up to the following

differences:

- the table of fractional powers of 10 is used with P+10 significands.

- the X is also computed with P+10 digits, i.e. eta = X-1 (which obeys the given estimate)

is estimated with P+9 [2]_ fractional fixed points digits and the log series will be evaluated in

this sense.

- the constant log(10)^(-1) is still used with only P+4 digits

The log series is terminated according to the following table:

- maximal value of P: 4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64

- last included term: /1, /2, /3, /4, /5, /6, /7, /8, /9, /10

Again the P's are in arithmetic progression, the same as before shifted by 5.

.. [2] same remark as above. The top level eta in eta(1 - eta(1/2 - eta(...))) will use P+4

significant digits, but the first inner eta will be used with only P-2 digits, the next inner one

with P-8 digits etc...

This case II handles the x which are near 1, but not as close as 10^ś0.000001.

CASE III: z=0. In this case X = x = 1+eta and we use the log series in this sense : log(10)^(-

1)*eta*(1 - eta/2 + eta^2/3-....) where again log(10)^(-1) has been precomputed with P+4 digits

and morally the series uses P+4 fractional digits (P+3 would probably be enough for the precision

I want, need to check my notes) and the thresholds table is:

- maximal value of P: 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63

- last included term: /1, /2, /3, /4, /5, /6, /7, /8, /9, /10, /11

This is same progression but shifted by one.

To summarize some relevant aspects:

- this algorithm uses only log(10)^(-1) as precomputed logarithm

- in particular the logarithms of small integers 2, 3, 5,... are not pre-computed. Added

note: I have now tested at 16, 32, 48 and 62 digits that all of the log10(n), for n = 1..1000,

are computed with correct rounding. In fact, generally speaking, random testing of a about 20000

inputs has failed to reveal a single non-correct rounding. Naturally, randomly testing is not the

way to corner the software into its weak points...

- it uses two tables of fractional powers of ten: one with P+5 digits and another one with

extended precision at P+10 digits.

- it needs three distinct implementations of the log series.

- it does not use the well-known trick reducing to using only odd powers in the log series

(somehow I have come to dread divisions, even though here as is well-known it could be replaced

with some product, my impression was that what is gained on one side is lost on the other, for the

range of P I am targeting, i.e. P up to about 60.)

- all of this is experimental (in particular the previous item was not done perhaps out of

sheer laziness)

Absolutely no error check is done whether the input x is really positive. As seen above the maximal

target precision is 63 (not 64).

Update for 1.4f: when the logarithm is computed via case I, i.e. basically always except

roughly for 0.8<a<1.26, its fractional part has only about 4 safety digits. This is barely enough

for a^b with b near 1000 and certainly not enough for a^b with b of the order 10000.

I hesitated with the option to always handle b as N+h with N integer for which we can use old

\xintFloatPower (which perhaps I will have to update to ensure better than the 0.52ulp it mentions

in its documentation). But in the end, I decided to simply add a variant where case I is handled

as case II, i.e. with 9 not 4 safety fractional digits for the logarithm. This variant will be

the one used by the power function for fractional exponents (non integer, non half-integer).

701 \def\XINT_tmpa#1.{%

702 \def\XINTinFloatLog{\romannumeral0\XINTinfloatlog}%
703 \def\XINTinfloatlog

734

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

704 {%

705 \expandafter\XINT_log_out

706 \romannumeral0\expandafter\XINT_logtenxdg_a

707 \romannumeral0\XINTinfloat[#1]%{##1}

708 }%

709 \def\XINT_log_out ##1\xint:##2\xint:

710 {%

711 \XINTinfloat[#1]%

712 {\xintAdd{\xintMul{\XINT_c_logten}{##1}}{##2}}%

713 }%

714 \def\XINTinFloatLogTen{\romannumeral0\XINTinfloatlogten}%

715 \def\XINTinfloatlogten

716 {%

717 \expandafter\XINT_logten_out

718 \romannumeral0\expandafter\XINT_logtenxdg_a

719 \romannumeral0\XINTinfloat[#1]%{##1}

720 }%

721 \def\XINT_logten_out ##1\xint:##2\xint:

722 {%

723 \XINTinfloat[#1]%

724 {\xintAdd{##1}{\xintMul{\XINT_c_oneoverlogten}{##2}}}%

725 }%

726 }\expandafter\XINT_tmpa\the\numexpr\XINTdigitsormax.%

727 \def\XINTinFloatLogTen_xdgout%#1[#2]

728 {%

729 \romannumeral0\expandafter\XINT_logten_xdgout\romannumeral0\XINT_logtenxdg_a

730 }%

731 \def\XINT_logten_xdgout #1\xint:#2\xint:

732 {%

733 \xintadd{#1}{\xintMul{\XINT_c_oneoverlogten_xx}{#2}}%

734 }%

No check is done whether input is negative or vanishes. We apply \XINTinfloat[9] which if input

is not zero always produces 9 digits (and perhaps a minus sign) the first digit is non-zero. This

is the expected input to \numexpr\PML@<digits><dot>.\relax

The variants xdg_a, xdg_b, xdg_c, xdg_d were added at 1.4f to always go via II or III, ensuring

more fractional digits to the logarithm for accuracy of fractional powers with big exponents.

"Old" 1.4e routines were removed.

735 \def\XINT_logtenxdg_a#1[#2]%

736 {%

737 \expandafter\XINT_logtenxdg_b

738 \romannumeral0\XINTinfloat[9]{#1[#2]}#1[#2]%

739 }%

740 \def\XINT_logtenxdg_b#1[#2]%

741 {%

742 \expandafter\XINT_logtenxdg_c

743 \romannumeral0\xintround{6}%

744 {\xintiiAdd{\xintDSx{-9}{\the\numexpr#2+8\relax}}%

745 {\the\numexpr\PML@#1.\relax}%

746 [-9]}%

747 \xint:

748 }%

If we were either in 100000000[0] or 999999999[-1] for the #1[#2] \XINT_logten_b input, and only

735

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

in those cases, the \xintRound{6} produced "0". We are very near 1 and will treat this as case

III, but this is sub-optimal.

749 \def\XINT_logtenxdg_c #1#2%

750 {%

751 \xint_gob_til_xint:#2\XINT_logten_IV\xint:

752 \XINT_logtenxdg_d #1#2%

753 }%

754 \def\XINT_logten_IV\xint:\XINT_logtenxdg_d0{\XINT_logten_f_III}%

Here we are certain that \xintRound{6} produced a decimal point and 6 fractional digit tokens #2,

but they can be zeros and also -0.000000 is possible.

If #1 vanishes and #2>100000 we are in case I.

If #1 vanishes and 100000>=#2>0 we are in case II.

If #1 and #2 vanish we are in case III.

If #1 does not vanish we are in case I with a direct quicker access if #2 vanishes.

Attention to the sign of #1, it is checked later on.

At 1.4f, we handle the case I with as many digits as case II (and exceptionnally case III).

755 \def\XINT_logtenxdg_d #1.#2\xint:

756 {%

757 \ifcase

758 \ifnum#1=\xint_c_

759 \ifnum #2=\xint_c_ \xint_c_iii\else \xint_c_ii\fi

760 \else

761 \ifnum#2>\xint_c_ \xint_c_ii\else \xint_c_\fi

762 \fi

763 \expandafter\XINT_logten_f_Isp

764 \or% never

765 \or\expandafter\XINT_logten_f_IorII

766 \else\expandafter\XINT_logten_f_III

767 \fi

768 #1.#2\xint:

769 }%

770 \def\XINT_logten_f_IorII#1%

771 {%

772 \xint_UDsignfork

773 #1\XINT_logten_f_IorII_neg

774 -\XINT_logten_f_IorII_pos

775 \krof #1%

776 }%

We are here only with a non-zero ##1, so no risk of a -0[0] which would be illegal usage of A[N] raw

format. A negative ##1 is no trouble in ##3-##1.

777 \def\XINT_tmpa#1.{%

778 \def\XINT_logten_f_Isp##1.000000\xint:##2[##3]%

779 {%

780 {##1[0]}\xint:

781 {\expandafter\XINT_LogTen_serII_a_ii

782 \romannumeral0\XINTinfloatS[#1]{\xintAdd{##2[##3-##1]}{-1[0]}}%

783 \xint:

784 }\xint:

785 }%

786 }\expandafter\XINT_tmpa\the\numexpr\XINTdigitsormax.%

787 \def\XINT_tmpa#1.{%

736

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

788 \def\XINT_logten_f_III##1\xint:##2[##3]%

789 {%

790 {0[0]}\xint:

791 {\expandafter\XINT_LogTen_serIII_a_ii

792 \romannumeral0\XINTinfloatS[#1]{\xintAdd{##2[##3]}{-1[0]}}%

793 \xint:

794 }\xint:

795 }}\expandafter\XINT_tmpa\the\numexpr\XINTdigitsormax+4.%

796 \def\XINT_tmpa#1.#2.{%

797 \def\XINT_logten_f_IorII_pos##1.##2##3##4##5##6##7\xint:##8[##9]%

798 {%

799 {\the\numexpr##1##2##3##4##5##6##7[-6]}\xint:

800 {\expandafter\XINT_LogTen_serII_a_ii

801 \romannumeral0\XINTinfloat[#2]%

802 {\xintAdd{-1[0]}%

803 {\xintMul{\csname XINT_c_1_##2_inv_x\endcsname}{%

804 \XINTinFloat[#1]{%

805 \xintMul{\csname XINT_c_2_##3_inv_x\endcsname}{%

806 \XINTinFloat[#1]{%

807 \xintMul{\csname XINT_c_3_##4_inv_x\endcsname}{%

808 \XINTinFloat[#1]{%

809 \xintMul{\csname XINT_c_4_##5_inv_x\endcsname}{%

810 \XINTinFloat[#1]{%

811 \xintMul{\csname XINT_c_5_##6_inv_x\endcsname}{%

812 \XINTinFloat[#1]{%

813 \xintMul{\csname XINT_c_6_##7_inv_x\endcsname}

814 {##8[##9-##1]}%

815 }}}}}}}}}}%

816 }%

817 }\xint:

818 }\xint:

819 }%

820 \def\XINT_logten_f_IorII_neg##1.##2##3##4##5##6##7\xint:##8[##9]%

821 {%

822 {\the\numexpr##1##2##3##4##5##6##7[-6]}\xint:

823 {\expandafter\XINT_LogTen_serII_a_ii

824 \romannumeral0\XINTinfloat[#2]%

825 {\xintAdd{-1[0]}%

826 {\xintMul{\csname XINT_c_1_##2_x\endcsname}{%

827 \XINTinFloat[#1]{%

828 \xintMul{\csname XINT_c_2_##3_x\endcsname}{%

829 \XINTinFloat[#1]{%

830 \xintMul{\csname XINT_c_3_##4_x\endcsname}{%

831 \XINTinFloat[#1]{%

832 \xintMul{\csname XINT_c_4_##5_x\endcsname}{%

833 \XINTinFloat[#1]{%

834 \xintMul{\csname XINT_c_5_##6_x\endcsname}{%

835 \XINTinFloat[#1]{%

836 \xintMul{\csname XINT_c_6_##7_x\endcsname}

837 {##8[##9-##1]}%

838 }}}}}}}}}}%

839 }%

737

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

840 }\xint:

841 }\xint:

842 }%

843 }\expandafter\XINT_tmpa

844 \the\numexpr\XINTdigitsormax+10\expandafter.\the\numexpr\XINTdigitsormax+4.%

Initially all of this was done in a single big nested macro but the float-rounding of argument to

less digits worked again each time from initial long input; the advantage on the other hand was

that the 1/i constants were all pre-computed and rounded.

Pre-coding the successive rounding to six digits less at each stage could be done via a single

loop which would then walk back up inserting coeffs like 1/#1 having no special optimizing tricks.

Pre-computing the 1/#1 too is possible but then one would have to copy the full set of such con-

stants (which would be pre-computed depending on P), and this will add grabbing overhead in the

loop expansion. Or one defines macros to hold the pre-rounded constants.

Finally I do define macros, not only to hold the constants but to hold the whole build-up. Sac-

rificing brevity of code to benefit of expansion "speed".

Firts one prepares eta, with P+4 digits for mantissa, and then hands it over to the log series.

This will proceed via first preparing eta\xint: eta\xint: eta\xint:, the leftmost ones being

more and more reduced in number of digits. Finally one goes back up to the right, the hard-coded

number of steps depending on value of P=\XINTdigits at time of reloading of package. This number

of steps is hard-coded in the number of macros which get defined.

Descending (leftwards) chain: _a, Turning point: _b, Ascending: _c.

As it is very easy to make silly typing mistakes in the numerous macros I have refactored a number

of times the set-up to make manual verification straightforward. Automatization is possible but

the _b macros complicate things, each one is its own special case. In the end the set-up will

define then redefine some _a and the (finally unique) _b macro, this allows easier to read code,

with no nesting of conditionals or else branches.

Actually series III and series II differ by only a shift by and we could use always the slightly

more costly series III in place of series II. But that would add one un-needed term and a bit

overhead to the default P which is 16...

(1.4f: hesitation on 2021/05/09 after removal or case I log series should I not follow the

simplifying logic and use always the slightly more costly III?)

29.11.1. Log series, case II

845 \def\XINT_tmpa#1.#2.{%

846 \def\XINT_LogTen_serII_a_ii##1\xint:

847 {%

848 \expandafter\XINT_LogTen_serII_b

849 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

850 }%

851 \def\XINT_LogTen_serII_b#1[#2]\xint:

852 {%

853 \expandafter\XINT_LogTen_serII_c_

854 \romannumeral0\xintadd{1}{\xintiiOpp\xintHalf{#10}[#2-1]}\xint:

855 }%

856 \def\XINT_LogTen_serII_c_##1\xint:##2\xint:

857 {%

858 \XINTinFloat[#2]{\xintMul{##1}{##2}}%

859 }%

860 }%

861 \expandafter\XINT_tmpa

862 \the\numexpr\XINTdigitsormax-2\expandafter.%

863 \the\numexpr\XINTdigitsormax+4.%

738

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

864 \ifnum\XINTdigits>10

865 \def\XINT_tmpa#1.#2.#3.#4.{%

866 \def\XINT_LogTen_serII_a_ii##1\xint:

867 {%

868 \expandafter\XINT_LogTen_serII_a_iii

869 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

870 }%

871 \def\XINT_LogTen_serII_a_iii##1\xint:

872 {%

873 \expandafter\XINT_LogTen_serII_b

874 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

875 }%

876 \def\XINT_LogTen_serII_b##1[##2]\xint:

877 {%

878 \expandafter\XINT_LogTen_serII_c_i

879 \romannumeral0\xintadd{#3}{##1/3[##2]}\xint:

880 }%

881 \def\XINT_LogTen_serII_c_i##1\xint:##2\xint:

882 {%

883 \expandafter\XINT_LogTen_serII_c_

884 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

885 }%

886 }\expandafter\XINT_tmpa

887 \the\numexpr\XINTdigitsormax-8\expandafter.%

888 \the\numexpr\XINTdigitsormax-2.%

889 {-5[-1]}.%

890 {1[0]}.%

891 \fi

892 \ifnum\XINTdigits>16

893 \def\XINT_tmpa#1.#2.#3.#4.{%

894 \def\XINT_LogTen_serII_a_iii##1\xint:

895 {%

896 \expandafter\XINT_LogTen_serII_a_iv

897 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

898 }%

899 \def\XINT_LogTen_serII_a_iv##1\xint:

900 {%

901 \expandafter\XINT_LogTen_serII_b

902 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

903 }%

904 \def\XINT_LogTen_serII_b##1[##2]\xint:

905 {%

906 \expandafter\XINT_LogTen_serII_c_ii

907 \romannumeral0\xintadd{#3}{\xintiiMul{-25}{##1}[##2-2]}\xint:

908 }%

909 \def\XINT_LogTen_serII_c_ii##1\xint:##2\xint:

910 {%

911 \expandafter\XINT_LogTen_serII_c_i

912 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

913 }%

914 }\expandafter\XINT_tmpa

915 \the\numexpr\XINTdigitsormax-14\expandafter.%

739

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

916 \the\numexpr\XINTdigitsormax-8\expandafter.%

917 \romannumeral0\XINTinfloat[\XINTdigitsormax-8]{1/3[0]}.%

918 {-5[-1]}.%

919 \fi

920 \ifnum\XINTdigits>22

921 \def\XINT_tmpa#1.#2.#3.#4.{%

922 \def\XINT_LogTen_serII_a_iv##1\xint:

923 {%

924 \expandafter\XINT_LogTen_serII_a_v

925 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

926 }%

927 \def\XINT_LogTen_serII_a_v##1\xint:

928 {%

929 \expandafter\XINT_LogTen_serII_b

930 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

931 }%

932 \def\XINT_LogTen_serII_b##1[##2]\xint:

933 {%

934 \expandafter\XINT_LogTen_serII_c_iii

935 \romannumeral0\xintadd{#3}{\xintDouble{##1}[##2-1]}\xint:

936 }%

937 \def\XINT_LogTen_serII_c_iii##1\xint:##2\xint:

938 {%

939 \expandafter\XINT_LogTen_serII_c_ii

940 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

941 }%

942 }\expandafter\XINT_tmpa

943 \the\numexpr\XINTdigitsormax-20\expandafter.%

944 \the\numexpr\XINTdigitsormax-14\expandafter.\expanded{%

945 {-25[-2]}.%

946 \XINTinFloat[\XINTdigitsormax-8]{1/3[0]}.%

947 }%

948 \fi

949 \ifnum\XINTdigits>28

950 \def\XINT_tmpa#1.#2.#3.#4.{%

951 \def\XINT_LogTen_serII_a_v##1\xint:

952 {%

953 \expandafter\XINT_LogTen_serII_a_vi

954 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

955 }%

956 \def\XINT_LogTen_serII_a_vi##1\xint:

957 {%

958 \expandafter\XINT_LogTen_serII_b

959 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

960 }%

961 \def\XINT_LogTen_serII_b##1[##2]\xint:

962 {%

963 \expandafter\XINT_LogTen_serII_c_iv

964 \romannumeral0\xintadd{#3}{\xintiiOpp##1/6[##2]}\xint:

965 }%

966 \def\XINT_LogTen_serII_c_iv##1\xint:##2\xint:

967 {%

740

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

968 \expandafter\XINT_LogTen_serII_c_iii

969 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

970 }%

971 }\expandafter\XINT_tmpa

972 \the\numexpr\XINTdigitsormax-26\expandafter.%

973 \the\numexpr\XINTdigitsormax-20.%

974 {2[-1]}.%

975 {-25[-2]}.%

976 \fi

977 \ifnum\XINTdigits>34

978 \def\XINT_tmpa#1.#2.#3.#4.{%

979 \def\XINT_LogTen_serII_a_vi##1\xint:

980 {%

981 \expandafter\XINT_LogTen_serII_a_vii

982 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

983 }%

984 \def\XINT_LogTen_serII_a_vii##1\xint:

985 {%

986 \expandafter\XINT_LogTen_serII_b

987 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

988 }%

989 \def\XINT_LogTen_serII_b##1[##2]\xint:

990 {%

991 \expandafter\XINT_LogTen_serII_c_v

992 \romannumeral0\xintadd{#3}{##1/7[##2]}\xint:

993 }%

994 \def\XINT_LogTen_serII_c_v##1\xint:##2\xint:

995 {%

996 \expandafter\XINT_LogTen_serII_c_iv

997 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

998 }%

999 }\expandafter\XINT_tmpa

1000 \the\numexpr\XINTdigitsormax-32\expandafter.%

1001 \the\numexpr\XINTdigitsormax-26\expandafter.%

1002 \romannumeral0\XINTinfloatS[\XINTdigitsormax-26]{-1/6[0]}.%

1003 {2[-1]}.%

1004 \fi

1005 \ifnum\XINTdigits>40

1006 \def\XINT_tmpa#1.#2.#3.#4.{%

1007 \def\XINT_LogTen_serII_a_vii##1\xint:

1008 {%

1009 \expandafter\XINT_LogTen_serII_a_viii

1010 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1011 }%

1012 \def\XINT_LogTen_serII_a_viii##1\xint:

1013 {%

1014 \expandafter\XINT_LogTen_serII_b

1015 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1016 }%

1017 \def\XINT_LogTen_serII_b##1[##2]\xint:

1018 {%

1019 \expandafter\XINT_LogTen_serII_c_vi

741

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1020 \romannumeral0\xintadd{#3}{\xintiiMul{-125}{##1}[##2-3]}\xint:

1021 }%

1022 \def\XINT_LogTen_serII_c_vi##1\xint:##2\xint:

1023 {%

1024 \expandafter\XINT_LogTen_serII_c_v

1025 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1026 }%

1027 }\expandafter\XINT_tmpa

1028 \the\numexpr\XINTdigitsormax-38\expandafter.%

1029 \the\numexpr\XINTdigitsormax-32\expandafter.\expanded{%

1030 \XINTinFloat[\XINTdigitsormax-32]{1/7[0]}.%

1031 \XINTinFloat[\XINTdigitsormax-26]{-1/6[0]}.%

1032 }%

1033 \fi

1034 \ifnum\XINTdigits>46

1035 \def\XINT_tmpa#1.#2.#3.#4.{%

1036 \def\XINT_LogTen_serII_a_viii##1\xint:

1037 {%

1038 \expandafter\XINT_LogTen_serII_a_ix

1039 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1040 }%

1041 \def\XINT_LogTen_serII_a_ix##1\xint:

1042 {%

1043 \expandafter\XINT_LogTen_serII_b

1044 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1045 }%

1046 \def\XINT_LogTen_serII_b##1[##2]\xint:

1047 {%

1048 \expandafter\XINT_LogTen_serII_c_vii

1049 \romannumeral0\xintadd{#3}{##1/9[##2]}\xint:

1050 }%

1051 \def\XINT_LogTen_serII_c_vii##1\xint:##2\xint:

1052 {%

1053 \expandafter\XINT_LogTen_serII_c_vi

1054 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1055 }%

1056 }\expandafter\XINT_tmpa

1057 \the\numexpr\XINTdigitsormax-44\expandafter.%

1058 \the\numexpr\XINTdigitsormax-38\expandafter.\expanded{%

1059 {-125[-3]}.%

1060 \XINTinFloat[\XINTdigitsormax-32]{1/7[0]}.%

1061 }%

1062 \fi

1063 \ifnum\XINTdigits>52

1064 \def\XINT_tmpa#1.#2.#3.#4.{%

1065 \def\XINT_LogTen_serII_a_ix##1\xint:

1066 {%

1067 \expandafter\XINT_LogTen_serII_a_x

1068 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1069 }%

1070 \def\XINT_LogTen_serII_a_x##1\xint:

1071 {%

742

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1072 \expandafter\XINT_LogTen_serII_b

1073 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1074 }%

1075 \def\XINT_LogTen_serII_b##1[##2]\xint:

1076 {%

1077 \expandafter\XINT_LogTen_serII_c_viii

1078 \romannumeral0\xintadd{#3}{\xintiiOpp##1[##2-1]}\xint:

1079 }%

1080 \def\XINT_LogTen_serII_c_viii##1\xint:##2\xint:

1081 {%

1082 \expandafter\XINT_LogTen_serII_c_vii

1083 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1084 }%

1085 }\expandafter\XINT_tmpa

1086 \the\numexpr\XINTdigitsormax-50\expandafter.%

1087 \the\numexpr\XINTdigitsormax-44\expandafter.%

1088 \romannumeral0\XINTinfloat[\XINTdigitsormax-44]{1/9[0]}.%

1089 {-125[-3]}.%

1090 \fi

1091 \ifnum\XINTdigits>58

1092 \def\XINT_tmpa#1.#2.#3.#4.{%

1093 \def\XINT_LogTen_serII_a_x##1\xint:

1094 {%

1095 \expandafter\XINT_LogTen_serII_a_xi

1096 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1097 }%

1098 \def\XINT_LogTen_serII_a_xi##1\xint:

1099 {%

1100 \expandafter\XINT_LogTen_serII_b

1101 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1102 }%

1103 \def\XINT_LogTen_serII_b##1[##2]\xint:

1104 {%

1105 \expandafter\XINT_LogTen_serII_c_ix

1106 \romannumeral0\xintadd{#3}{##1/11[##2]}\xint:

1107 }%

1108 \def\XINT_LogTen_serII_c_ix##1\xint:##2\xint:

1109 {%

1110 \expandafter\XINT_LogTen_serII_c_viii

1111 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1112 }%

1113 }\expandafter\XINT_tmpa

1114 \the\numexpr\XINTdigitsormax-56\expandafter.%

1115 \the\numexpr\XINTdigitsormax-50\expandafter.\expanded{%

1116 {-1[-1]}.%

1117 \XINTinFloat[\XINTdigitsormax-44]{1/9[0]}.%

1118 }%

1119 \fi

29.11.2. Log series, case III

1120 \def\XINT_tmpa#1.#2.{%

1121 \def\XINT_LogTen_serIII_a_ii##1\xint:

743

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1122 {%

1123 \expandafter\XINT_LogTen_serIII_b

1124 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1125 }%

1126 \def\XINT_LogTen_serIII_b#1[#2]\xint:

1127 {%

1128 \expandafter\XINT_LogTen_serIII_c_

1129 \romannumeral0\xintadd{1}{\xintiiOpp\xintHalf{#10}[#2-1]}\xint:

1130 }%

1131 \def\XINT_LogTen_serIII_c_##1\xint:##2\xint:

1132 {%

1133 \XINTinFloat[#2]{\xintMul{##1}{##2}}%

1134 }%

1135 }%

1136 \expandafter\XINT_tmpa

1137 \the\numexpr\XINTdigitsormax-1\expandafter.%

1138 \the\numexpr\XINTdigitsormax+4.%

1139 \ifnum\XINTdigits>9

1140 \def\XINT_tmpa#1.#2.#3.#4.{%

1141 \def\XINT_LogTen_serIII_a_ii##1\xint:

1142 {%

1143 \expandafter\XINT_LogTen_serIII_a_iii

1144 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1145 }%

1146 \def\XINT_LogTen_serIII_a_iii##1\xint:

1147 {%

1148 \expandafter\XINT_LogTen_serIII_b

1149 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1150 }%

1151 \def\XINT_LogTen_serIII_b##1[##2]\xint:

1152 {%

1153 \expandafter\XINT_LogTen_serIII_c_i

1154 \romannumeral0\xintadd{#3}{##1/3[##2]}\xint:

1155 }%

1156 \def\XINT_LogTen_serIII_c_i##1\xint:##2\xint:

1157 {%

1158 \expandafter\XINT_LogTen_serIII_c_

1159 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1160 }%

1161 }\expandafter\XINT_tmpa

1162 \the\numexpr\XINTdigitsormax-7\expandafter.%

1163 \the\numexpr\XINTdigitsormax-1.%

1164 {-5[-1]}.%

1165 {1[0]}.%

1166 \fi

1167 \ifnum\XINTdigits>15

1168 \def\XINT_tmpa#1.#2.#3.#4.{%

1169 \def\XINT_LogTen_serIII_a_iii##1\xint:

1170 {%

1171 \expandafter\XINT_LogTen_serIII_a_iv

1172 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1173 }%

744

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1174 \def\XINT_LogTen_serIII_a_iv##1\xint:

1175 {%

1176 \expandafter\XINT_LogTen_serIII_b

1177 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1178 }%

1179 \def\XINT_LogTen_serIII_b##1[##2]\xint:

1180 {%

1181 \expandafter\XINT_LogTen_serIII_c_ii

1182 \romannumeral0\xintadd{#3}{\xintiiMul{-25}{##1}[##2-2]}\xint:

1183 }%

1184 \def\XINT_LogTen_serIII_c_ii##1\xint:##2\xint:

1185 {%

1186 \expandafter\XINT_LogTen_serIII_c_i

1187 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1188 }%

1189 }\expandafter\XINT_tmpa

1190 \the\numexpr\XINTdigitsormax-13\expandafter.%

1191 \the\numexpr\XINTdigitsormax-7\expandafter.%

1192 \romannumeral0\XINTinfloat[\XINTdigitsormax-7]{1/3[0]}.%

1193 {-5[-1]}.%

1194 \fi

1195 \ifnum\XINTdigits>21

1196 \def\XINT_tmpa#1.#2.#3.#4.{%

1197 \def\XINT_LogTen_serIII_a_iv##1\xint:

1198 {%

1199 \expandafter\XINT_LogTen_serIII_a_v

1200 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1201 }%

1202 \def\XINT_LogTen_serIII_a_v##1\xint:

1203 {%

1204 \expandafter\XINT_LogTen_serIII_b

1205 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1206 }%

1207 \def\XINT_LogTen_serIII_b##1[##2]\xint:

1208 {%

1209 \expandafter\XINT_LogTen_serIII_c_iii

1210 \romannumeral0\xintadd{#3}{\xintDouble{##1}[##2-1]}\xint:

1211 }%

1212 \def\XINT_LogTen_serIII_c_iii##1\xint:##2\xint:

1213 {%

1214 \expandafter\XINT_LogTen_serIII_c_ii

1215 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1216 }%

1217 }\expandafter\XINT_tmpa

1218 \the\numexpr\XINTdigitsormax-19\expandafter.%

1219 \the\numexpr\XINTdigitsormax-13\expandafter.\expanded{%

1220 {-25[-2]}.%

1221 \XINTinFloat[\XINTdigitsormax-7]{1/3[0]}.%

1222 }%

1223 \fi

1224 \ifnum\XINTdigits>27

1225 \def\XINT_tmpa#1.#2.#3.#4.{%

745

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1226 \def\XINT_LogTen_serIII_a_v##1\xint:

1227 {%

1228 \expandafter\XINT_LogTen_serIII_a_vi

1229 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1230 }%

1231 \def\XINT_LogTen_serIII_a_vi##1\xint:

1232 {%

1233 \expandafter\XINT_LogTen_serIII_b

1234 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1235 }%

1236 \def\XINT_LogTen_serIII_b##1[##2]\xint:

1237 {%

1238 \expandafter\XINT_LogTen_serIII_c_iv

1239 \romannumeral0\xintadd{#3}{\xintiiOpp##1/6[##2]}\xint:

1240 }%

1241 \def\XINT_LogTen_serIII_c_iv##1\xint:##2\xint:

1242 {%

1243 \expandafter\XINT_LogTen_serIII_c_iii

1244 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1245 }%

1246 }\expandafter\XINT_tmpa

1247 \the\numexpr\XINTdigitsormax-25\expandafter.%

1248 \the\numexpr\XINTdigitsormax-19.%

1249 {2[-1]}.%

1250 {-25[-2]}.%

1251 \fi

1252 \ifnum\XINTdigits>33

1253 \def\XINT_tmpa#1.#2.#3.#4.{%

1254 \def\XINT_LogTen_serIII_a_vi##1\xint:

1255 {%

1256 \expandafter\XINT_LogTen_serIII_a_vii

1257 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1258 }%

1259 \def\XINT_LogTen_serIII_a_vii##1\xint:

1260 {%

1261 \expandafter\XINT_LogTen_serIII_b

1262 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1263 }%

1264 \def\XINT_LogTen_serIII_b##1[##2]\xint:

1265 {%

1266 \expandafter\XINT_LogTen_serIII_c_v

1267 \romannumeral0\xintadd{#3}{##1/7[##2]}\xint:

1268 }%

1269 \def\XINT_LogTen_serIII_c_v##1\xint:##2\xint:

1270 {%

1271 \expandafter\XINT_LogTen_serIII_c_iv

1272 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1273 }%

1274 }\expandafter\XINT_tmpa

1275 \the\numexpr\XINTdigitsormax-31\expandafter.%

1276 \the\numexpr\XINTdigitsormax-25\expandafter.%

1277 \romannumeral0\XINTinfloatS[\XINTdigitsormax-25]{-1/6[0]}.%

746

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1278 {2[-1]}.%

1279 \fi

1280 \ifnum\XINTdigits>39

1281 \def\XINT_tmpa#1.#2.#3.#4.{%

1282 \def\XINT_LogTen_serIII_a_vii##1\xint:

1283 {%

1284 \expandafter\XINT_LogTen_serIII_a_viii

1285 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1286 }%

1287 \def\XINT_LogTen_serIII_a_viii##1\xint:

1288 {%

1289 \expandafter\XINT_LogTen_serIII_b

1290 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1291 }%

1292 \def\XINT_LogTen_serIII_b##1[##2]\xint:

1293 {%

1294 \expandafter\XINT_LogTen_serIII_c_vi

1295 \romannumeral0\xintadd{#3}{\xintiiMul{-125}{##1}[##2-3]}\xint:

1296 }%

1297 \def\XINT_LogTen_serIII_c_vi##1\xint:##2\xint:

1298 {%

1299 \expandafter\XINT_LogTen_serIII_c_v

1300 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1301 }%

1302 }\expandafter\XINT_tmpa

1303 \the\numexpr\XINTdigitsormax-37\expandafter.%

1304 \the\numexpr\XINTdigitsormax-31\expandafter.\expanded{%

1305 \XINTinFloat[\XINTdigitsormax-31]{1/7[0]}.%

1306 \XINTinFloat[\XINTdigitsormax-25]{-1/6[0]}.%

1307 }%

1308 \fi

1309 \ifnum\XINTdigits>45

1310 \def\XINT_tmpa#1.#2.#3.#4.{%

1311 \def\XINT_LogTen_serIII_a_viii##1\xint:

1312 {%

1313 \expandafter\XINT_LogTen_serIII_a_ix

1314 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1315 }%

1316 \def\XINT_LogTen_serIII_a_ix##1\xint:

1317 {%

1318 \expandafter\XINT_LogTen_serIII_b

1319 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1320 }%

1321 \def\XINT_LogTen_serIII_b##1[##2]\xint:

1322 {%

1323 \expandafter\XINT_LogTen_serIII_c_vii

1324 \romannumeral0\xintadd{#3}{##1/9[##2]}\xint:

1325 }%

1326 \def\XINT_LogTen_serIII_c_vii##1\xint:##2\xint:

1327 {%

1328 \expandafter\XINT_LogTen_serIII_c_vi

1329 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

747

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1330 }%

1331 }\expandafter\XINT_tmpa

1332 \the\numexpr\XINTdigitsormax-43\expandafter.%

1333 \the\numexpr\XINTdigitsormax-37\expandafter.\expanded{%

1334 {-125[-3]}.%

1335 \XINTinFloat[\XINTdigitsormax-31]{1/7[0]}.%

1336 }%

1337 \fi

1338 \ifnum\XINTdigits>51

1339 \def\XINT_tmpa#1.#2.#3.#4.{%

1340 \def\XINT_LogTen_serIII_a_ix##1\xint:

1341 {%

1342 \expandafter\XINT_LogTen_serIII_a_x

1343 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1344 }%

1345 \def\XINT_LogTen_serIII_a_x##1\xint:

1346 {%

1347 \expandafter\XINT_LogTen_serIII_b

1348 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1349 }%

1350 \def\XINT_LogTen_serIII_b##1[##2]\xint:

1351 {%

1352 \expandafter\XINT_LogTen_serIII_c_viii

1353 \romannumeral0\xintadd{#3}{\xintiiOpp##1[##2-1]}\xint:

1354 }%

1355 \def\XINT_LogTen_serIII_c_viii##1\xint:##2\xint:

1356 {%

1357 \expandafter\XINT_LogTen_serIII_c_vii

1358 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1359 }%

1360 }\expandafter\XINT_tmpa

1361 \the\numexpr\XINTdigitsormax-49\expandafter.%

1362 \the\numexpr\XINTdigitsormax-43\expandafter.%

1363 \romannumeral0\XINTinfloat[\XINTdigitsormax-43]{1/9[0]}.%

1364 {-125[-3]}.%

1365 \fi

1366 \ifnum\XINTdigits>57

1367 \def\XINT_tmpa#1.#2.#3.#4.{%

1368 \def\XINT_LogTen_serIII_a_x##1\xint:

1369 {%

1370 \expandafter\XINT_LogTen_serIII_a_xi

1371 \romannumeral0\XINTinfloatS[#2]{##1}\xint:##1\xint:

1372 }%

1373 \def\XINT_LogTen_serIII_a_xi##1\xint:

1374 {%

1375 \expandafter\XINT_LogTen_serIII_b

1376 \romannumeral0\XINTinfloatS[#1]{##1}\xint:##1\xint:

1377 }%

1378 \def\XINT_LogTen_serIII_b##1[##2]\xint:

1379 {%

1380 \expandafter\XINT_LogTen_serIII_c_ix

1381 \romannumeral0\xintadd{#3}{##1/11[##2]}\xint:

748

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

1382 }%

1383 \def\XINT_LogTen_serIII_c_ix##1\xint:##2\xint:

1384 {%

1385 \expandafter\XINT_LogTen_serIII_c_viii

1386 \romannumeral0\xintadd{#4}{\XINTinFloat[#2]{\xintMul{##1}{##2}}}\xint:

1387 }%

1388 }\expandafter\XINT_tmpa

1389 \the\numexpr\XINTdigitsormax-55\expandafter.%

1390 \the\numexpr\XINTdigitsormax-49\expandafter.\expanded{%

1391 {-1[-1]}.%

1392 \XINTinFloat[\XINTdigitsormax-43]{1/9[0]}.%

1393 }%

1394 \fi

1395 \XINTlogendinput%

749

TOC
TOC, xintkernel, xinttools, xintcore, xint, xintbinhex, xintgcd, xintfrac, xintseries, xintcfrac, xintexpr, xinttrig, xintlog

30. Cumulative line and macro count
module lines macros

xintkernel 701 (160)

xinttools 1625 (376)

xintcore 2104 (525)

xint 1611 (405)

xintbinhex 783 (157)

xintgcd 366 (63)

xintfrac 3683 (988)

xintseries 384 (66)

xintcfrac 1038 (257)

xintexpr 4788 (1407)

xinttrig 869 (68)

xintlog 1395 (123)

Total number of code lines: 19347. (but 4473 lines among

them start either with {% or with }%). Each package starts

with circa 50 lines dealing with catcodes, package identifi-

cation and reloading management, also for Plain TEX.

Total number of def'ed (or let'ed) macros: 4595. This is

an approximation as some macros are def'ed in a way escap-

ing the automated detection, in particular this applies to

xintexpr macros associated to infix operators and syntax el-

ements, whose construction uses \csname-based definitions

with a template and auxiliary macros. Their number has been

evaluated manually at being at least about 452 (this is in-

corporated into the xintexpr count shown left, and the total

above.)

Version 1.4o of 2025/09/06.

750

	Title page
	Dependency graph
	The xintexpr package
	Introduction
	Contents
	Compatible engines and formats
	Usage
	xintsession
	polexpr
	bnumexpr
	Printing big numbers on the page
	Repository
	License and installation instructions

	Syntax reference and user guide
	Contents
	The three parsers
	Output customization
	Built-in operators and their precedences
	Built-in functions
	Contents
	Generators of arithmetic progressions
	Python slicing and indexing of one-dimensional sequences
	NumPy like nested slicing and indexing for arbitrary oples and nutples
	Tacit multiplication
	User defined variables
	User defined functions
	Contents
	Examples of user defined functions
	Links to some (old) examples within this document
	Oples and nutples: the 1.4 terminology
	Contents
	Expansion (for geeks only)
	Known bugs/features (last updated at 1.4n)

	The macros of xintexpr (ancient documentation, mostly)
	Contents
	The \xintexpr expressions
	\numexpr or \dimexpr expressions, count and dimension registers and variables
	Catcodes and spaces
	Expandability, \xintexpro
	\xintDigits*, \xintSetDigits*
	\xintiexpr, \xinttheiexpr
	\xintiiexpr, \xinttheiiexpr
	\xintboolexpr, \xinttheboolexpr
	\xintfloatexpr, \xintthefloatexpr
	\xinteval, \xintieval, \xintiieval, \xintfloateval
	Using an expression parser within another one
	The \xintthecoords macro
	The \xintthespaceseparated macro
	\xintifboolexpr, \xintifboolfloatexpr, \xintifbooliiexpr
	\xintifsgnexpr, \xintifsgnfloatexpr, \xintifsgniiexpr
	The \xintNewExpr, \xintNewIIExpr, \xintNewFloatExpr, \xintNewIExpr, and \xintNewBoolExpr macros
	Analogies and differences of \xintiiexpr with \numexpr
	Chaining expressions for expandable algorithmics
	When expandability is too much
	Acknowledgements (2013/05/25)

	The xinttrig package
	Contents
	\xintreloadxinttrig
	Constants
	Functions
	Important implementation notes
	Some example evaluations

	The xintlog package
	Contents
	\xintreloadxintlog
	Functions
	Some information on how powers are computed

	Macros of the xinttools package
	Contents
	\xintRevWithBraces
	\xintZapFirstSpaces, \xintZapLastSpaces, \xintZapSpaces, \xintZapSpacesB
	\xintCSVtoList
	\xintNthElt
	\xintNthOnePy
	\xintKeep
	\xintKeepUnbraced
	\xintTrim
	\xintTrimUnbraced
	\xintListWithSep
	\xintApply
	\xintApplyUnbraced
	\xintSeq
	\xintloop, \xintbreakloop, \xintbreakloopanddo, \xintloopskiptonext
	\xintiloop, \xintiloopindex, \xintouteriloopindex, \xintbreakiloop, \xintbreakiloopanddo, \xintiloopskiptonext, \xintiloopskipandredo
	\xintApplyInline
	\xintFor, \xintFor*
	\xintifForFirst, \xintifForLast
	\xintBreakFor, \xintBreakForAndDo
	\xintintegers, \xintdimensions, \xintrationals
	\xintForpair, \xintForthree, \xintForfour
	\xintAssign
	\xintAssignArray
	\xintDigitsOf
	\xintRelaxArray

	Additional (old) examples with xinttools or xintexpr or both
	Contents
	More examples with dummy variables
	Completely expandable prime test
	Another completely expandable prime test
	Miller-Rabin Pseudo-Primality expandably
	A table of factorizations
	Another table of primes
	Factorizing again
	The Quick Sort algorithm illustrated

	The macro layer for expandable computations: xintcore, xint, xintfrac, and some extras
	The xint bundle
	Contents
	Characteristics
	Floating point evaluations
	Expansion matters
	Input formats for macros
	Output formats of macros
	Count registers and variables
	Dimension registers and variables
	\ifcase, \ifnum, ... constructs
	No variable declarations are needed
	Possible syntax errors to avoid
	Error messages
	Package namespace, catcodes
	Origins of the package

	Macros of the xintkernel package
	Contents
	\odef, \oodef, \fdef
	\xintReverseOrder
	\xintLength
	\xintFirstItem
	\xintLastItem
	\xintFirstOne
	\xintLastOne
	\xintReplicate, \xintreplicate
	\xintGobble, \xintgobble
	(WIP) \xintUniformDeviate

	Macros of the xintcore package
	Contents
	\xintiNum
	\xintDouble
	\xintHalf
	\xintInc
	\xintDec
	\xintDSL
	\xintDSR
	\xintDSRr
	\xintFDg
	\xintLDg
	\xintiiSgn
	\xintiiOpp
	\xintiiAbs
	\xintiiAdd
	\xintiiCmp
	\xintiiSub
	\xintiiMul
	\xintiiSqr
	\xintiiPow
	\xintiiFac
	\xintiiDivision
	\xintiiQuo
	\xintiiRem
	\xintiiDivRound
	\xintiiDivTrunc
	\xintiiDivFloor
	\xintiiMod
	\xintNum

	Macros of the xint package
	Contents
	\xintiLen
	\xintReverseDigits
	\xintDecSplit
	\xintDecSplitL, \xintDecSplitR
	\xintiiE
	\xintDSH
	\xintDSHr, \xintDSx
	\xintiiEq
	\xintiiNotEq
	\xintiiGeq
	\xintiiGt
	\xintiiLt
	\xintiiGtorEq
	\xintiiLtorEq
	\xintiiIsZero
	\xintiiIsNotZero
	\xintiiIsOne
	\xintiiOdd
	\xintiiEven
	\xintiiMON
	\xintiiMMON
	\xintiiifSgn
	\xintiiifZero
	\xintiiifNotZero
	\xintiiifOne
	\xintiiifCmp
	\xintiiifEq
	\xintiiifGt
	\xintiiifLt
	\xintiiifOdd
	\xintiiSum
	\xintiiPrd
	\xintiiSquareRoot
	\xintiiSqrt, \xintiiSqrtR
	\xintiiBinomial
	\xintiiPFactorial
	\xintiiMax
	\xintiiMin
	\xintiiMaxof
	\xintiiMinof
	\xintifTrueAelseB
	\xintifFalseAelseB
	\xintNOT
	\xintAND
	\xintOR
	\xintXOR
	\xintANDof
	\xintORof
	\xintXORof
	\xintiiGCD
	\xintiiLCM
	\xintiiGCDof
	\xintiiLCMof
	\xintLen
	(WIP) \xintRandomDigits
	(WIP) \xintXRandomDigits
	(WIP) \xintiiRandRange
	(WIP) \xintiiRandRangeAtoB

	Macros of the xintfrac package
	Contents
	\xintTeXFromSci
	\xintTeXFrac
	\xintTeXsignedFrac
	\xintTeXOver
	\xintTeXsignedOver
	\xintLen
	\xintNum
	\xintRaw
	\xintRawBraced
	\xintNumerator
	\xintDenominator
	\xintRawWithZeros
	\xintREZ
	\xintIrr
	\xintPIrr
	\xintJrr
	\xintPRaw
	\xintDecToStringREZ
	\xintDecToString
	\xintFracToSci
	\xintFracToDecimal
	\xintTrunc
	\xintXTrunc
	\xintTFrac
	\xintRound
	\xintFloor
	\xintCeil
	\xintiTrunc
	\xintTTrunc
	\xintiRound
	\xintiFloor
	\xintiCeil
	\xintE
	\xintCmp
	\xintEq
	\xintNotEq
	\xintGeq
	\xintGt
	\xintLt
	\xintGtorEq
	\xintLtorEq
	\xintIsZero
	\xintIsNotZero
	\xintIsOne
	\xintOdd
	\xintEven
	\xintifSgn
	\xintifZero
	\xintifNotZero
	\xintifOne
	\xintifOdd
	\xintifCmp
	\xintifEq
	\xintifGt
	\xintifLt
	\xintifInt
	\xintSgn
	\xintSignBit
	\xintOpp
	\xintAbs
	\xintAdd
	\xintSub
	\xintMul
	\xintDiv
	\xintDivFloor
	\xintMod
	\xintDivMod
	\xintDivTrunc
	\xintModTrunc
	\xintDivRound
	\xintSqr
	\xintPow
	\xintFac
	\xintBinomial
	\xintPFactorial
	\xintMax
	\xintMin
	\xintMaxof
	\xintMinof
	\xintSum
	\xintPrd
	\xintGCD
	\xintLCM
	\xintGCDof
	\xintLCMof
	\xintDigits, \xinttheDigits
	\xintSetDigits
	\xintFloat
	\xintFloatBraced
	\xintFloatToDecimal
	\xintPFloat
	\xintFloatAdd
	\xintFloatSub
	\xintFloatMul
	\xintFloatDiv
	\xintFloatPow
	\xintFloatPower
	\xintFloatSqrt
	\xintFloatFac
	\xintFloatBinomial
	\xintFloatPFactorial

	Macros of the xintbinhex package
	Contents
	xintexpr-essions
	\xintHexToDec
	\xintHexToOct
	\xintHexToBin
	\xintCHexToBin
	\xintDecToHex
	\xintDecToOct
	\xintDecToBin
	\xintOctToHex
	\xintOctToDec
	\xintOctToBin
	\xintCOctToBin
	\xintBinToHex
	\xintBinToDec
	\xintBinToOct
	Maximal sizes of inputs

	Macros of the xintgcd package
	Contents
	\xintBezout
	\xintEuclideAlgorithm
	\xintBezoutAlgorithm
	\xintTypesetEuclideAlgorithm
	\xintTypesetBezoutAlgorithm

	Macros of the xintseries package
	Contents
	\xintSeries
	\xintiSeries
	\xintRationalSeries
	\xintRationalSeriesX
	\xintPowerSeries
	\xintPowerSeriesX
	\xintFxPtPowerSeries
	\xintFxPtPowerSeriesX
	\xintFloatPowerSeries
	\xintFloatPowerSeriesX
	Computing log(2) and pi

	Macros of the xintcfrac package
	Contents
	Package overview
	\xintCFrac
	\xintGCFrac
	\xintGGCFrac
	\xintGCtoGCx
	\xintFtoC
	\xintFtoCs
	\xintFtoCx
	\xintFtoGC
	\xintFGtoC
	\xintFtoCC
	\xintCstoF
	\xintCtoF
	\xintGCtoF
	\xintCstoCv
	\xintCtoCv
	\xintGCtoCv
	\xintFtoCv
	\xintFtoCCv
	\xintCntoF
	\xintGCntoF
	\xintCntoCs
	\xintCntoGC
	\xintGCntoGC
	\xintCstoGC
	\xintiCstoF, \xintiGCtoF, \xintiCstoCv, \xintiGCtoCv
	\xintGCtoGC
	Euler's number e

	Implementation
	The xintexpr and allied packages source code
	An introduction and a brief timeline
	Package xintkernel implementation
	Catcodes, ε-TeX and reload detection
	\XINTrestorecatcodes, \XINTsetcatcodes, \XINTrestorecatcodesendinput

	Package identification
	Constants
	Token management utilities
	``gob til'' macros and UD style fork
	\xint_afterfi
	\xint_bye, \xint_Bye
	\xintdothis, \xintorthat
	\xint_zapspaces
	\odef, \oodef, \fdef
	\xintMessage, \ifxintverbose
	\ifxintglobaldefs, \XINT_global
	(WIP) Expandable error message
	\xint_noxpd (for contex-mkxl compatibility)
	\xintstrcmp
	\xintresettimer, \xintelapsedtime, \xinttheseconds
	\xintReverseOrder
	\xintLength
	\xintLastItem
	\xintFirstItem
	\xintLastOne
	\xintFirstOne
	\xintLengthUpTo
	\xintreplicate, \xintReplicate
	\xintgobble, \xintGobble
	Random number generation
	\xint_texuniformdeviate
	\xint_texuniformdeviate_dgts
	\xintUniformDeviate

	Package xinttools implementation
	Catcodes, ε-TeX and reload detection
	Package identification
	\xintgodef, \xintgoodef, \xintgfdef
	\xintRevWithBraces
	\xintZapFirstSpaces
	\xintZapLastSpaces
	\xintZapSpaces
	\xintZapSpacesB
	\xintCSVtoList, \xintCSVtoListNonStripped
	\xintListWithSep
	\xintNthElt
	\xintNthOnePy
	\xintKeep
	\xintKeepUnbraced
	\xintTrim
	\xintTrimUnbraced
	\xintApply
	\xintApply:x (WIP, commented-out)
	\xintApplyUnbraced
	\xintApplyUnbraced:x (WIP, commented-out)
	\xintZip (WIP, not public)
	\xintSeq
	\xintloop, \xintbreakloop, \xintbreakloopanddo, \xintloopskiptonext
	\xintiloop, \xintiloopindex, \xintbracediloopindex, \xintouteriloopindex, \xintbracedouteriloopindex, \xintbreakiloop, \xintbreakiloopanddo, \xintiloopskiptonext, \xintiloopskipandredo
	\XINT_xflet
	\xintApplyInline
	\xintFor, \xintFor*, \xintBreakFor, \xintBreakForAndDo
	\XINT_forever, \xintintegers, \xintdimensions, \xintrationals
	\xintForpair, \xintForthree, \xintForfour
	\xintAssign, \xintAssignArray, \xintDigitsOf
	CSV (non user documented) variants of Length, Keep, Trim, NthElt, Reverse
	\xintLength:f:csv
	\xintLengthUpTo:f:csv
	\xintKeep:f:csv
	\xintTrim:f:csv
	\xintNthEltPy:f:csv
	\xintReverse:f:csv
	\xintFirstItem:f:csv
	\xintLastItem:f:csv
	\xintKeep:x:csv
	Public names for the undocumented csv macros: \xintCSVLength, \xintCSVKeep, \xintCSVKeepx, \xintCSVTrim, \xintCSVNthEltPy, \xintCSVReverse, \xintCSVFirstItem, \xintCSVLastItem

	Package xintcore implementation
	Catcodes, ε-TeX and reload detection
	Package identification
	(WIP!) Error conditions and exceptions
	Routines handling integers as lists of token digits
	\XINT_cuz_small
	\xintNum, \xintiNum
	\xintiiSgn
	\xintiiOpp
	\xintiiAbs
	\xintFDg
	\xintLDg
	\xintDouble
	\xintHalf
	\xintInc
	\xintDec
	\xintDSL
	\xintDSR
	\xintDSRr
	Blocks of eight digits
	\XINT_cuz
	\XINT_cuz_byviii
	\XINT_unsep_loop
	\XINT_unsep_cuzsmall
	\XINT_div_unsepQ
	\XINT_div_unsepR
	\XINT_zeroes_forviii
	\XINT_sepbyviii_Z
	\XINT_sepbyviii_andcount
	\XINT_rsepbyviii
	\XINT_sepandrev
	\XINT_sepandrev_andcount
	\XINT_rev_nounsep
	\XINT_unrevbyviii
	Core arithmetic
	\xintiiAdd
	\xintiiCmp
	\xintiiSub
	\xintiiMul
	\xintiiDivision
	Derived arithmetic
	\xintiiQuo, \xintiiRem
	\xintiiDivRound
	\xintiiDivTrunc
	\xintiiModTrunc
	\xintiiDivMod
	\xintiiDivFloor
	\xintiiMod
	\xintiiSqr
	\xintiiPow
	\xintiiFac
	\XINT_useiimessage

	Package xint implementation
	Package identification
	\xintLen, \xintiLen
	\xintiiLogTen
	\xintReverseDigits
	\xintiiE
	\xintDecSplit
	\xintDecSplitL
	\xintDecSplitR
	\xintDSHr
	\xintDSH
	\xintDSx
	\xintiiEq
	\xintiiNotEq
	\xintiiGeq
	\xintiiGt
	\xintiiLt
	\xintiiGtorEq
	\xintiiLtorEq
	\xintiiIsZero
	\xintiiIsNotZero
	\xintiiIsOne
	\xintiiOdd
	\xintiiEven
	\xintiiMON
	\xintiiMMON
	\xintSgnFork
	\xintiiifSgn
	\xintiiifCmp
	\xintiiifEq
	\xintiiifGt
	\xintiiifLt
	\xintiiifZero
	\xintiiifNotZero
	\xintiiifOne
	\xintiiifOdd
	\xintifTrueAelseB, \xintifFalseAelseB
	\xintIsTrue, \xintIsFalse
	\xintNOT
	\xintAND, \xintOR, \xintXOR
	\xintANDof
	\xintORof
	\xintXORof
	\xintiiMax
	\xintiiMin
	\xintiiMaxof
	\xintiiMinof
	\xintiiSum
	\xintiiPrd
	\xintiiSquareRoot
	\xintiiSqrt, \xintiiSqrtR
	\xintiiBinomial
	\xintiiPFactorial
	\xintBool, \xintToggle
	\xintiiGCD
	\xintiiGCDof
	\xintiiLCM
	\xintiiLCMof
	(WIP) \xintRandomDigits
	(WIP) \XINT_eightrandomdigits, \xintEightRandomDigits
	(WIP) \xintRandBit
	(WIP) \xintXRandomDigits
	(WIP) \xintiiRandRangeAtoB
	(WIP) \xintiiRandRange
	(WIP) Adjustments for engines without uniformdeviate primitive

	Package xintbinhex implementation
	Catcodes, ε-TeX and reload detection
	Package identification
	Storage macros
	Helper macros
	\XINT_zeroes_foriv
	\XINT_zeroes_foriii

	\xintDecToHex
	\xintDecToOct
	\xintDecToBin
	\xintHexToDec
	\xintOctToDec
	\xintBinToDec
	\xintHexToOct
	\xintHexToBin
	\xintCHexToBin
	\xintOctToHex
	\xintBinToHex
	\xintOctToBin
	\xintCOctToBin
	\xintBinToOct

	Package xintgcd implementation
	Catcodes, ε-TeX and reload detection
	Package identification
	\xintBezout
	\xintEuclideAlgorithm
	\xintBezoutAlgorithm
	\xintTypesetEuclideAlgorithm
	\xintTypesetBezoutAlgorithm

	Package xintfrac implementation
	Catcodes, ε-TeX and reload detection
	Package identification
	\XINT_cntSgnFork
	\xintLen
	\XINT_outfrac
	\XINT_infrac
	\XINT_frac_gen
	\XINT_factortens
	\xintEq, \xintNotEq, \xintGt, \xintLt, \xintGtorEq, \xintLtorEq, \xintIsZero, \xintIsNotZero, \xintOdd, \xintEven, \xintifSgn, \xintifCmp, \xintifEq, \xintifGt, \xintifLt, \xintifZero, \xintifNotZero, \xintifOne, \xintifOdd
	\xintRaw
	\xintRawBraced
	\xintiLogTen
	\xintPRaw
	\xintSPRaw
	\xintFracToSci
	\xintFracToDecimal
	\xintRawWithZeros
	\xintDecToString
	\xintDecToStringREZ
	\xintFloor, \xintiFloor
	\xintCeil, \xintiCeil
	\xintNumerator
	\xintDenominator
	\xintTeXFrac
	\xintTeXsignedFrac
	\xintTeXFromSci
	\xintTeXOver
	\xintTeXsignedOver
	\xintREZ
	\xintE
	\xintIrr, \xintPIrr
	\xintifInt
	\xintIsInt
	\xintJrr
	\xintTFrac
	\xintTrunc, \xintiTrunc
	\xintTTrunc
	\xintNum, \xintnum
	\xintRound, \xintiRound
	\xintXTrunc
	\xintAdd
	\xintSub
	\xintSum
	\xintMul
	\xintSqr
	\xintPow
	\xintFac
	\xintBinomial
	\xintPFactorial
	\xintPrd
	\xintDiv
	\xintDivFloor
	\xintDivTrunc
	\xintDivRound
	\xintModTrunc
	\xintDivMod
	\xintMod
	\xintIsOne
	\xintGeq
	\xintMax
	\xintMaxof
	\xintMin
	\xintMinof
	\xintCmp
	\xintAbs
	\xintOpp
	\xintInv
	\xintSgn
	\xintSignBit
	\xintGCD
	\xintGCDof
	\xintLCM
	\xintLCMof
	Floating point macros
	\xintDigits, \xintSetDigits
	\xintFloat, \xintFloatZero
	\xintFloatBraced
	\XINTinFloat, \XINTinFloatS
	\XINTFloatiLogTen
	\xintPFloat
	\xintFloatToDecimal
	\XINTinFloatFrac
	\xintFloatAdd, \XINTinFloatAdd
	\xintFloatSub, \XINTinFloatSub
	\xintFloatMul, \XINTinFloatMul
	\xintFloatSqr, \XINTinFloatSqr
	\XINTinFloatInv
	\xintFloatDiv, \XINTinFloatDiv
	\xintFloatPow, \XINTinFloatPow
	\xintFloatPower, \XINTinFloatPower
	\xintFloatFac, \XINTFloatFac
	\xintFloatPFactorial, \XINTinFloatPFactorial
	\xintFloatBinomial, \XINTinFloatBinomial
	\xintFloatSqrt, \XINTinFloatSqrt
	\xintFloatE, \XINTinFloatE
	\XINTinFloatMod
	\XINTinFloatDivFloor
	\XINTinFloatDivMod
	\xintifFloatInt
	\xintFloatIsInt
	\xintFloatIntType
	\XINTinFloatdigits, \XINTinFloatSdigits
	(WIP) \XINTinRandomFloatS, \XINTinRandomFloatSdigits
	(WIP) \XINTinRandomFloatSixteen

	Package xintseries implementation
	Catcodes, ε-TeX and reload detection
	Package identification
	\xintSeries
	\xintiSeries
	\xintPowerSeries
	\xintPowerSeriesX
	\xintRationalSeries
	\xintRationalSeriesX
	\xintFxPtPowerSeries
	\xintFxPtPowerSeriesX
	\xintFloatPowerSeries
	\xintFloatPowerSeriesX

	Package xintcfrac implementation
	Catcodes, ε-TeX and reload detection
	Package identification
	\xintCFrac
	\xintGCFrac
	\xintGGCFrac
	\xintGCtoGCx
	\xintFtoCs
	\xintFtoCx
	\xintFtoC
	\xintFtoGC
	\xintFGtoC
	\xintFtoCC
	\xintCtoF, \xintCstoF
	\xintiCstoF
	\xintGCtoF
	\xintiGCtoF
	\xintCtoCv, \xintCstoCv
	\xintiCstoCv
	\xintGCtoCv
	\xintiGCtoCv
	\xintFtoCv
	\xintFtoCCv
	\xintCntoF
	\xintGCntoF
	\xintCntoCs
	\xintCntoGC
	\xintGCntoGC
	\xintCstoGC
	\xintGCtoGC

	Package xintexpr implementation
	READ ME! Important warnings and explanations relative to the status of the code source at the time of the 1.4 release
	Old comments
	Catcodes, ε-TeX and reload detection
	Package identification
	\XINTfstop
	\xintDigits*, \xintSetDigits*, \xintreloadscilibs
	\XINTdigitsormax
	Support for output and transform of nested braced contents as core data type
	Bracketed list rendering with prettifying of leaves from nested braced contents
	Flattening nested braced contents
	Braced contents rendering via a TeX alignment with prettifying of leaves
	Transforming all leaves within nested braced contents

	Top level user TeX interface: \xinteval, \xintfloateval, \xintiieval
	\xintexpr, \xintiexpr, \xintfloatexpr, \xintiiexpr
	\XINT_expr_wrap, \XINT_iiexpr_wrap, \XINT_flexpr_wrap
	\XINTexprprint, \XINTiexprprint, \XINTiiexprprint, \XINTflexprprint
	\xintthe, \xintthealign, \xinttheexpr, \xinttheiexpr, \xintthefloatexpr, \xinttheiiexpr
	\xintbareeval, \xintbarefloateval, \xintbareiieval
	\xintthebareeval, \xintthebarefloateval, \xintthebareiieval
	\xinteval, \xintieval, \xintfloateval, \xintiieval
	\xintboolexpr, \XINT_boolexpr_print, \xinttheboolexpr
	\xintifboolexpr, \xintifboolfloatexpr, \xintifbooliiexpr
	\xintifsgnexpr, \xintifsgnfloatexpr, \xintifsgniiexpr
	\xint_FracToSci_x
	Small bits we have to put somewhere
	\xintthecoords
	\xintthespaceseparated

	Hooks into the numeric parser for usage by the \xintdeffunc symbolic parser
	\XINT_expr_getnext: fetch some value then an operator and present them to last waiter with the found operator precedence, then the operator, then the value
	\XINT_expr_startint
	Integral part (skipping zeroes)
	Fractional part
	Scientific notation
	Hexadecimal numbers
	Octal numbers
	Binary numbers
	\XINT_expr_startfunc: collecting names of functions and variables
	\XINT_expr_func: dispatch to variable replacement or to function execution

	\XINT_expr_op_`: launch function or pseudo-function, or evaluate variable and insert operator of multiplication in front of parenthesized contents
	\XINT_expr_op__: replace a variable by its value and then fetch next operator
	\XINT_expr_getop: fetch the next operator or closing parenthesis or end of expression
	Expansion spanning; opening and closing parentheses
	The comma as binary operator
	The minus as prefix operator of variable precedence level
	The * as Python-like «unpacking» prefix operator
	Infix operators
	&&, ||, //, /:, +, –, *, /, ^, **, 'and', 'or', 'xor', and 'mod'
	.., ..[, and].. for a..b and a..[b]..c syntax
	<, >, ==, <=, >=, != with Python-like chaining
	Support macros for .., ..[and]..
	\xintSeq:tl:x
	\xintiiSeq:tl:x
	\xintSeqA, \xintiiSeqA
	\xintSeqB:tl:x
	\xintiiSeqB:tl:x

	Square brackets [] both as a container and a Python slicer
	[...] as «oneple» constructor
	[...] brackets and : operator for NumPy-like slicing and item indexing syntax
	Macro layer implementing indexing and slicing

	Support for raw A/B[N]
	? as two-way and ?? as three-way «short-circuit» conditionals
	! as postfix factorial operator
	User defined variables
	\xintdefvar, \xintdefiivar, \xintdeffloatvar
	\xintunassignvar

	Support for dummy variables
	\xintnewdummy
	\xintensuredummy, \xintrestorevariable
	Checking (without expansion) that a symbolic expression contains correctly nested parentheses
	Fetching balanced expressions E1, E2 and a variable name Name from E1, Name=E2)
	Fetching a balanced expression delimited by a semi-colon
	Low-level support for omit and abort keywords, the break() function, the n++ construct and the semi-colon as used in the syntax of seq(), add(), mul(), iter(), rseq(), iterr(), rrseq(), subsm(), subsn(), ndseq(), ndmap()
	The n++ construct
	The break() function
	The omit and abort keywords
	The semi-colon

	Reserved dummy variables @, @1, @2, @3, @4, @@, @@(1), …, @@@, @@@(1), … for recursions

	Pseudo-functions involving dummy variables and generating scalars or sequences
	Comments
	subs(): substitution of one variable
	subsm(): simultaneous independent substitutions
	subsn(): leaner syntax for nesting (possibly dependent) substitutions
	seq(): sequences from assigning values to a dummy variable
	iter()
	add(), mul()
	rseq()
	iterr()
	rrseq()

	Pseudo-functions related to N-dimensional hypercubic lists
	ndseq()
	ndmap()
	ndfillraw()

	Other pseudo-functions: bool(), togl(), protect(), qraw(), qint(), qfrac(), qfloat(), qrand(), random(), rbit()
	Regular built-in functions: num(), reduce(), preduce(), abs(), sgn(), frac(), floor(), ceil(), sqr(), ?(), !(), not(), odd(), even(), isint(), isone(), factorial(), sqrt(), sqrtr(), inv(), round(), trunc(), float(), sfloat(), ilog10(), divmod(), mod(), binomial(), pfactorial(), randrange(), iquo(), irem(), gcd(), lcm(), max(), min(), `+`(), `*`(), all(), any(), xor(), len(), first(), last(), reversed(), if(), ifint(), ifone(), ifsgn(), nuple(), unpack(), flat() and zip()
	User declared functions
	\xintdeffunc, \xintdefiifunc, \xintdeffloatfunc
	\xintdefufunc, \xintdefiiufunc, \xintdeffloatufunc
	\xintunassignexprfunc, \xintunassigniiexprfunc, \xintunassignfloatexprfunc
	\xintNewFunction
	Mysterious stuff
	\XINT_expr_redefinemacros
	\xintNewExpr, \xintNewIExpr, \xintNewFloatExpr, \xintNewIIExpr
	\xintexprSafeCatcodes, \xintexprRestoreCatcodes

	Matters related to loading log and trig libraries

	Package xinttrig implementation
	Catcodes, ε-TeX and reload detection
	Library identification
	Ensure used letters are dummy letters
	\xintreloadxinttrig
	Auxiliary variables
	@twoPi, @threePiover2, @Pi, @Piover2
	@oneDegree, @oneRadian

	Hack xintdeffloatfunc for inserting usage of guard digits
	The sine and cosine series
	Support macros for the sine and cosine series
	The poor man approximate but speedier approach for Digits at most 8
	Declarations of the @sin_aux() and @cos_aux() functions
	@sin_series(), @cos_series()

	Range reduction for sine and cosine using degrees
	Low level modulo 360 helper macro \XINT_mod_ccclx_i
	@sind_rr() function and its support macro \xintSind
	@cosd_rr() function and its support macro \xintCosd

	@sind(), @cosd()
	@sin(), @cos()
	@sinc()
	@tan(), @tand(), @cot(), @cotd()
	@sec(), @secd(), @csc(), @cscd()
	Core routine for inverse trigonometry
	@asin(), @asind()
	@acos(), @acosd()
	@atan(), @atand()
	@Arg(), @atan2(), @Argd(), @atan2d(), @pArg(), @pArgd()
	Restore xintdeffloatfunc to its normal state, with no extra digits
	Let the functions be known to the \xintexpr parser
	Synonyms: @tg(), @cotg()
	Final clean-up

	Package xintlog implementation
	Catcodes, ε-TeX and reload detection
	Library identification
	\xintreloadxintlog
	Loading the poormanlog package
	Macro layer on top of the poormanlog package
	\PoorManLogBaseTen, \PoorManLog
	\PoorManPowerOfTen, \PoorManExp
	Removed: \PoorManPower, see \XINTinFloatSciPow

	Macro support for powers
	\XINTinFloatSciPow
	\xintPow

	Macro support for \xintexpr and \xintfloatexpr syntax
	The log10() and pow10() functions
	The log(), exp() functions
	The pow() function

	End of package loading for low Digits
	Stored constants
	April 2021: at last, \XINTinFloatPowTen, \XINTinFloatExp
	Exponential series

	April 2021: at last \XINTinFloagLogTen, \XINTinFloatLog
	Log series, case II
	Log series, case III

	Cumulative line and macro count

