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Outline

� Introducing GTK+

An introduction to GTK+ and a look at a simple program.

� Principles of GTK+

The ideas you need to know to build a GTK+ pprogram.

� Building an Application
Applying what we’ve learned to a real program.

� Beyond GTK+

Related libraries, language bindings, extending GTK+.
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Part I: GTK+ Basics

History
Background
Hello World

Basic Concepts
Compiling a GTK+ program
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History of GTK+

Fall 1996 GTK+ started as part of the GIMP project by Spencer Kimball
and Peter Mattis.

Spring 1998 GTK+ version 1.0 released.
GIMP version 1.0 released

Winter 1999 GTK+ version 1.2 released

Spring 1999 GNOME version 1.0 released

Summer 1999 Development of version 1.4 of GTK+
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Some projects using GTK+

� GIMP (of course...)

� GNOME

� Mozilla

� AbiWord

� Approx. 500 other free and commercial software projects
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Benefits of GTK+

� Convenient but powerful programming interface

� Widespread portability and availability

� Modern appearance, customizable with themes

� Unrestrictive Licensing (LGPL)

� Availability of Language Bindings
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Architecture of X

Requests

Events
Server

Client

Xlib

Toolkit

Application
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What is a widget?

� User interface component.

� May:

– Display information.

– Take input from user.

– Arrange other widgets.

Button Entry FileSelection Label
List Menu MenuItem Notebook

Scrollbar SpinButton Table Window
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The GTK+ Libraries

Other X librariesXlib

libgdk libglib

libgtk

Application
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The GTK+ Libraries

libgtk The widget system and widgets

� GTK+ object model

� Core code for managing, arranging widgets

� 80 types of widgets

libgdk Portability layer for drawing

� Provides basic drawing operations

� A Wrapper around Xlib

� Can be ported to other windowing systems (Win32, BeOS)

libglib Convenient C routines.

� Portable replacements for non-portable C library functions.

� High-level data types.

� Main loop abstraction.
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Hello World

#include <gtk/gtk.h>

int main (int argc, char **argv)
{

GtkWidget *window, *button;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

button = gtk_button_new_with_label ("Hello World");
gtk_container_add (GTK_CONTAINER (window), button);

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (clicked), NULL);

gtk_widget_show_all (window);

gtk_main();

return 0;
}
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Hello World (cont)

Callbacks:

void clicked (GtkWidget *widget, gpointer data)
{

gtk_main_quit();
}
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Object Orientation

GtkWidget *window, *button;

gtk_container_add (GTK_CONTAINER (window), button);

� “Objects” represented as structures.

� “Methods” take pointer to object structure as first parameter

� Polymorphism - can call methods for parent classes as well as for
object’s own class.

13



Containers

gtk_container_add (GTK_CONTAINER (window), button);

� container widgets contain other widgets.

� Can have one child (Window widget) or many children (Table widget).

� Even a button is a container that contains the label (or pixmap).

� All layout intelligence lives in container widgets - a container knows
how to arrange its children.
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Event Driven Programming

gtk_main();

� All actions done within “main loop”

� Receive events from user, dispatch to program

� Callbacks by signals
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Signals

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (clicked), NULL);

void clicked (GtkWidget *widget, gpointer data)
{

gtk_main_quit();
}

� For notification and customization

� Callback types identified by strings.

� Different prototypes callbacks possible.

� Pass in data to the callback as last argument.
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Visibility

gtk_widget_show_all (window);

� Each widget can be visible or not visible.

� Widgets start off not visible.

� gtk_widget_show() shows one widget.

� gtk_widget_show_all() shows entire hierarchy.
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Compiling a GTK+ program

� Use gtk-config to get options

$ gtk-config --cflags

-I/usr/X11R6/include -I/opt/gnome/lib/glib/include
-I/opt/gnome/include

$ gtk-config --libs

-L/opt/gnome/lib -L/usr/X11R6/lib -lgtk -lgdk
-rdynamic -lgmodule -lglib -ldl -lXi -lXext -lX11 -lm

$ cc -o helloworld ‘gtk-config --cflags‘ helloworld.c \
‘gtk-config --libs‘
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Part II: Principles of GTK+

Object System
Geometry Management

Signals and Events
Reference Counting
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Object System

� Built in straight C

� Supports conventional object-oriented features

– Encapsulation

– Inheritance

– Polymorphism

� Tuned to needs of GUI programming

– Introspection

– Signal system for callbacks

– Argument system for setting properties via a GUI builder

– Types can be registered dynamically at run time
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Inheritance

� An object can also be used as any of its parent classes.

� Inheritance done by nesting classes.

Pointer

typedef struct {
  GtkContainer container
   [...]
} GtkWindow;

GtkObject

GtkWidget

GtkContainer

GtkWindow
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Widget inheritance tree

Container with
only one child widget

GtkObject

GtkWidget
GtkAdjustment

GtkData

GtkContainer

GtkWindowGtkButton

GtkBin

GtkMisc

GtkLabel
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Hierarchy vs. Hierarchy

� Class Hierarchy

– parent: base class

– child: class inheriting from parent

� Widget Hierarchy

– parent: container

– child: containee
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Casting Macros

GtkWidget *window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "My Application");

� Typically, pointers to widgets stored as type GtkWidget * .

� Each class has standard macros for converting to that class

� GTK_WINDOW(window) casts to a GtkWindow * but with checking.

� GTK_WINDOW(button) will producing warning

Gtk-WARNING **: invalid cast from ‘GtkButton’ to ‘GtkWindow’

� Checks are efficient but can be disabled at compile time
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Polymorphism
gtk_widget_draw()

GtkButton GtkEntry

gtk_entry_draw()gtk_button_draw()
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Geometry Negotiation

� requisition is amount of space widget needs based on its contents

� Containers request space based on size of children. (VBox’s request-
ed height is sum of height of all children, plus padding.)

� Each child then assigned an allocation.

� allocation never smaller than requisition, but may be larger.

26



Geometry Example

This is a very long label

Short label

This is a very long label

Short label
Allocation

Requisition

� Allocation will generally be at least as big as requisition, may be bigger.
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Packing Boxes

void
gtk_hbox_new (gboolean homogeneous, guint spacing);

void
gtk_box_pack_start (GtkBox *box, GtkWidget *child,

gboolean expand, gboolean fill, guint padding);

� Arrange child horizontally (HBox) or vertically (VBox).

� Per-box homogeneous and spacing options.

� Each child has expand , fill , and paddding options.
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Packing Boxes (cont)

Box Expand Fill
1 NO NO
2 YES YES
3 YES NO

Expanded by User

Child 3 Padding

1
Child

1
Child Child Child

2  3

Child Child
2 3

Normal Size
Spacing

29



Main Loop

� Events retrieved from event sources

� Standard event sources:
Glib: Timeouts, IO Handlers, Idle Handlers
GDK: X events

� Additional source types can be created.

� Sources prioritized

1. Incoming X Events

2. GTK+’s redraw, resize queues

3. Application’s idle handlers.

� Lower priority sources not serviced until high priority sources finished.
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Main Loop (cont)

Idle Functions
g_main_iterate()

Redraw
Resize

Events

Timeouts
IO Handlers

31



Events and Signals

GTK

GDK

Application

X Server

GtkButton Widget
"clicked"

"button_press_event"

GdkEventButton

XButtonEvent
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Events and Signals

� Lowlevel events sent from X server

� Corresponding signals sent to appropriate widget

� Widgets generate highlevel events

� Event signals have a distinct signature

� Return value determines propagation. TRUE =>handled.
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Reference Counting

� Need to know when objects are unused (garbage collection)

� Explicit ownership works badly for GUIs.

� Keep a reference count

– Create an item, refcount is 1.

– Begin using item, increase refcount by 1 - ref()

– Finish using item, decrease refcount by 1 - unref()

– When reference count drops to zero, free object
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Reference Counting example

� Parent keeps reference count on children

� Removing child from parent causes it to be freed

� So, to move child from one to other, need to do:

gtk_object_ref (GTK_OBJECT (child));
gtk_container_remove (GTK_CONTAINER (old_parent), child);
gtk_container_add (GTK_CONTAINER (new_parent), child);
gtk_object_unref (GTK_OBJECT (child));
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Reference Counting example (cont)

� If you forget to refcount...
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Floating and Sinking

� Reference counting for GtkObject not quite so simple

� Don’t want to have to write:

button = gtk_button_new_with_label ("Hello World");

gtk_container_add (GTK_CONTAINER (window), button);

gtk_widget_unref (button);

� So, container assumes reference count of child.

� GtkObject initially created and marked floating. (Reference count can
be assumed)

� Parent calls gtk_widget_sink() to remove flag.
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The Life Cycle of a Widget

Create gtk_label_new()
Parenting gtk_container_add()

Show gtk_widget_show()
Size Request "size_request"
Size Allocate "size_allocate"

Realize "realize"
Map "map"

Expose "expose"

Destroy gtk_widget_destroy() "destroy"
Unmap "unmap"

Unrealize "unrealize"
Unparent

Finalize
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Widget Destruction

Hello World

Again, World

Window
"destroy"

"destroy" "destroy"
ButtonButton

"destroy""destroy"
VBox

LabelLabel

� Reference counting vulnerable to cycles.

� Explicit destruction helps.

� Triggered by user closing window, or app calling gtk_widget_destroy()

� Destruction propagates recursively to children.
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Life cycle of GdkWindow

� GdkWindow is server side object. Used to receive events and clip
drawing.

� Includes toplevel windows, but also children of those windows.

� Realization GDK/X Window for widget is created.

Map GdkWindow is made visible.

Expose X asks toolkit to refresh the widget’s display.

Unrealize widget removed from the screen.

� Generally these steps occur automatically. Only time you have to wor-
ry about realization is when you want to make GDK calls and need the
GdkWindow for a widget.
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Widgets and GdkWindows

Button
Label

Button
Label

Window
Frame

VBox

Window

Button

Button

Widget Hierarchy Window Hierarchy

� GdkWindows used for delivering events

� Many widgets do not have corresponding GdkWindow
Frame, VBox, Label: NO_WINDOWwidgets.
These widgets draw on parent widget’s window.

� Other widgets have windows: Window, Button, etc.

41



Part III: Building an application

The Application
Widget tour

Geometry management in detail
Using GLib
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The example
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Widgets in an addressbook

Combo

Entry

Label

Frame

Text

Spinbutton

VPaned
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More widgets in an addressbook

Menu CList

Toolbar
Button

PixmapMenuItem
MenuBar
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Complex Geometry Management

VBox

Hbox HBox

HBox

HBox HBox

HBox
HBox HBox

Table

Alignment
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Using a GtkAlignment
� Want widget to take up only part of space

� Solution: use a GtkAlignment

GtkWidget *gtk_alignment_new (gfloat xalign, gfloat yalign,
gfloat xscale, gfloat yscale);

xscale: 0.0 (no expansion) xalign: 0.0 (left)
Alignment

HBoxHBox

HBox
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Enforcing a 2:1 ratio between elements
� Want email twice as wide as phone number

� Solution: use a homogeneous GtkTable

GtkWidget *gtk_table_new (guint rows, guint columns,
gboolean homogeneous);

rows: 1 columns: 3 homogeneous: TRUE

Hbox HBox

Table
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Using signals for behavior modification

� Many methods routed through signals; allow modifying behavior with-
out inheriting and overriding the methods.

� Example: create an entry that only accepts [0-9- ] .

� GtkEditable (parent class of GtkText and GtkEntry) has "insert_text"

signal.

� Connect to this signal, and in signal handler

1. Modify text as desired

2. Insert this text (being careful not to recurse)

3. Stop the default handler from running

gtk_signal_connect (GTK_OBJECT (phone_entry), "insert_text",
GTK_SIGNAL_FUNC (insert_text_handler),
NULL);
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Using signals for behavior modification (cont)

void
insert_text_handler (GtkEditable *editable, const gchar *text,

gint length, gint *position, gpointer data)
{

int i, j;
gchar *result = g_new (gchar, length);

[ copy text into result, stripping out unwanted characters ]

/* Block ourselves, and insert modified text */
gtk_signal_handler_block_by_func (GTK_OBJECT (editable),

GTK_SIGNAL_FUNC (insert_text_handler )
data);

gtk_editable_insert_text (editable, result, length, position);
gtk_signal_handler_unblock_by_func (GTK_OBJECT (editable),

GTK_SIGNAL_FUNC (insert_text_handl e
data);

/* Keep default handler from being run */
gtk_signal_emit_stop_by_name (GTK_OBJECT (editable), "insert_text");

g_free (result);
}
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Item Factory

� Menus normal containers

� Creating menus and menu items by hand repetition

� Solution: automatic creation from an array

static GtkItemFactoryEntry menu_items[] =
{

/* menu-path accelerator callback + action item-type */
{ "/_File", NULL, NULL, 0, "<Branch>" },
{ "/File/_Open", "<control>O", do_open, 0, NULL },
{ "/File/_Save", "<control>S", do_save, 0, NULL },
{ "/File/sep1", NULL, NULL, 0, "<Separator>" },
{ "/File/_Quit", "<control>Q", do_quit, 0, NULL

};
static int nmenu_items = sizeof (menu_items) / sizeof (menu_items[0]);

gtk_item_factory_create_items (item_factory,
nmenu_items, menu_items, NULL);
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GLib

� Main loop

� Portability functions
g_strcasecmp() , g_snprintf()

� Convenience functions
g_strsplit() , g_get_home_dir()

� Data types

GList linked lists

GHashTable hash tables

GTree balanced trees

GString string type

� GScanner - run-time configurable tokenizer
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GString

� automatically handles memory allocation, reallocation

GString *string = g_string_new (NULL);

g_string_append (string, "Goodbye");
g_string_append_c (string, ’,’);
g_string_append (string, " Old Paint");

printf(string->str);
g_string_free (string, TRUE);
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GList

� Doubly-linked list

� Also GSList - singly linked list

� NULL represents empty list

GList *word_list, *result = NULL;
for (i=0; i<n_words; i++)

word_list = g_list_prepend (word_list, g_strdup (word));
[...]
result = g_list_find_custom (word_list, "blue", g_str_equal);
if (result)
{

word_list = g_list_remove_link (word_list, result);
g_free (result->data);
g_list_free_1 (result);

}
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Part IV: Beyond GTK+

Extending GTK+

Language Bindings
GNOME

Future Directions
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Creating custom user interface elements

� If needs are light, can use GtkDrawingArea.

– Receive low-level events:
"button_press_event" , "key_press_event" .

– Get notified to size changes by "size_allocate" .

– In response to "expose" , draw on widget’s window with GDK
drawing calls.

� May be better to use GnomeCanvas widget. (see later)

� For heavier applications, can derive own widget types. (code reuse).
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Creating widgets

� Define object and class structures for new type.

� class structure

– Pointed to from object structure.

– Contains function pointers to the virtual functions of the widget.

– Nested like object structures.

– Usually widgets will override virtual functions from GtkWidget like
size_request() , size_alllocate() , and expose() .

� Register type with init() and class_init() functions.

� init() function initializes newly created object structures.

� class_init() function initializes class structure, creates signal and
argument types for class.
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Language Bindings

� GTK+’s object orientation maps well onto languages with native OO
features.

� Languages with OO features often make using GTK+ more concise.

� Ability to query types at runtimes simplifies creating language bind-
ings.

� Many language bindings exist:
C++, Perl, Python, Ada, Dylan, Eiffel, Guile, Haskell, JavaScript, Ob-
jective C, Camel, Label, Pascal, Pike, TOM: : :
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Perl/GTK

use Gtk;

Gtk::init();

$window = new Gtk::Window;

$button = new Gtk::Button "Hello World";

$window->add($button);

$button->signal_connect("clicked",

sub { Gtk::main_quit() });

$window->show_all;

Gtk::main();
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PyGtk

from _gtk import *

from GTK import *

def clicked(*args):

mainquit()

window = GtkWindow()

button = GtkButton(’Hello World’)

window.add(button)

button.connect(’clicked’, clicked)

window.show_all

mainloop()
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GLADE
� GUI builder

� Graphically build widget tree

� Write out code (C, C++, Ada), or XML

� Rebuild widget tree in application
from XML (libglade)
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GNOME

� Layer between GTK+ and application.

� Provides high-level functionality, more widgets.

� Enforces consistency.

� See http://developer.gnome.org for more info.
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GNOME Widgets

� GnomeMessageBox - easy to display error messages

� GnomeIconList - file-manager-style icon display

� GnomeColorPicker, GnomeFontPicker – standard interfaces for a color
or font selection button.

� GnomeDruid – Wizard(tm) style setup dialogs.

� Many more...
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GnomeCanvas

� Structured graphics - hierarchy of graphics objects much like widget
hierarchy.

� Easy to make complex, user-manipulatible displays.

� Flicker-free.

� Standard items:
rectangle, circle, text, image...

� Can implement custom items.

� Can render anti-aliased
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GNOME High-level Functionality

� Configuration data storage.

� Session-management.

� Application framework.

� Help System.

� Mime-type support.
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Unicode and enhanced internationalization support

� GTK+ currently supports Asian double-byte languages and input meth-
ods.

� Move to Unicode - 1 encoding for all languages.

� Support right-to-left languages like Hebrew.

� Support complex-text languages like Hindi.

� Use “pango” - a toolkit independent framework for rendering with Uni-
code.

T RA I++ I+TRA TRI

Cluster Formation Reordering
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Enhanced Object Model

� Mostly single inheritance works well for GTK+, but sometimes clumsy.

� Java-style multiple interfaces will be added 1.4 - GtkRadioButton and
GtkRadioMenuItem would both export a GtkRadio interface.

� Improvements to argument system to better support GUI builders, themes.

– Notification on changes.

– Ability to set arguments from an RC file.
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Win32 Port

� Only GDK layer needs to be ported.

� Done by Tor Lillqvist.

� Has been functioning for 6 months to the point of running the GIMP.

� Will be integrated in with main line of GTK+ for 1.4.
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