
Developing with GTK+

Owen Taylor

Red Hat Software

otaylor@redhat.com

August 22, 1999

1

Outline

� Introducing GTK+

An introduction to GTK+ and a look at a simple program.

� Principles of GTK+

The ideas you need to know to build a GTK+ pprogram.

� Building an Application
Applying what we’ve learned to a real program.

� Beyond GTK+

Related libraries, language bindings, extending GTK+.

2

Part I: GTK+ Basics

History
Background
Hello World

Basic Concepts
Compiling a GTK+ program

3

History of GTK+

Fall 1996 GTK+ started as part of the GIMP project by Spencer Kimball
and Peter Mattis.

Spring 1998 GTK+ version 1.0 released.
GIMP version 1.0 released

Winter 1999 GTK+ version 1.2 released

Spring 1999 GNOME version 1.0 released

Summer 1999 Development of version 1.4 of GTK+

4

Some projects using GTK+

� GIMP (of course...)

� GNOME

� Mozilla

� AbiWord

� Approx. 500 other free and commercial software projects

5

Benefits of GTK+

� Convenient but powerful programming interface

� Widespread portability and availability

� Modern appearance, customizable with themes

� Unrestrictive Licensing (LGPL)

� Availability of Language Bindings

6

Architecture of X

Requests

Events
Server

Client

Xlib

Toolkit

Application

7

What is a widget?

� User interface component.

� May:

– Display information.

– Take input from user.

– Arrange other widgets.

Button Entry FileSelection Label
List Menu MenuItem Notebook

Scrollbar SpinButton Table Window

8

The GTK+ Libraries

Other X librariesXlib

libgdk libglib

libgtk

Application

9

The GTK+ Libraries

libgtk The widget system and widgets

� GTK+ object model

� Core code for managing, arranging widgets

� 80 types of widgets

libgdk Portability layer for drawing

� Provides basic drawing operations

� A Wrapper around Xlib

� Can be ported to other windowing systems (Win32, BeOS)

libglib Convenient C routines.

� Portable replacements for non-portable C library functions.

� High-level data types.

� Main loop abstraction.

10

Hello World

#include <gtk/gtk.h>

int main (int argc, char **argv)
{

GtkWidget *window, *button;

gtk_init (&argc, &argv);

window = gtk_window_new (GTK_WINDOW_TOPLEVEL);

button = gtk_button_new_with_label ("Hello World");
gtk_container_add (GTK_CONTAINER (window), button);

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (clicked), NULL);

gtk_widget_show_all (window);

gtk_main();

return 0;
}

11

Hello World (cont)

Callbacks:

void clicked (GtkWidget *widget, gpointer data)
{

gtk_main_quit();
}

12

Object Orientation

GtkWidget *window, *button;

gtk_container_add (GTK_CONTAINER (window), button);

� “Objects” represented as structures.

� “Methods” take pointer to object structure as first parameter

� Polymorphism - can call methods for parent classes as well as for
object’s own class.

13

Containers

gtk_container_add (GTK_CONTAINER (window), button);

� container widgets contain other widgets.

� Can have one child (Window widget) or many children (Table widget).

� Even a button is a container that contains the label (or pixmap).

� All layout intelligence lives in container widgets - a container knows
how to arrange its children.

14

Event Driven Programming

gtk_main();

� All actions done within “main loop”

� Receive events from user, dispatch to program

� Callbacks by signals

15

Signals

gtk_signal_connect (GTK_OBJECT (button), "clicked",
GTK_SIGNAL_FUNC (clicked), NULL);

void clicked (GtkWidget *widget, gpointer data)
{

gtk_main_quit();
}

� For notification and customization

� Callback types identified by strings.

� Different prototypes callbacks possible.

� Pass in data to the callback as last argument.

16

Visibility

gtk_widget_show_all (window);

� Each widget can be visible or not visible.

� Widgets start off not visible.

� gtk_widget_show() shows one widget.

� gtk_widget_show_all() shows entire hierarchy.

17

Compiling a GTK+ program

� Use gtk-config to get options

$ gtk-config --cflags

-I/usr/X11R6/include -I/opt/gnome/lib/glib/include
-I/opt/gnome/include

$ gtk-config --libs

-L/opt/gnome/lib -L/usr/X11R6/lib -lgtk -lgdk
-rdynamic -lgmodule -lglib -ldl -lXi -lXext -lX11 -lm

$ cc -o helloworld ‘gtk-config --cflags‘ helloworld.c \
‘gtk-config --libs‘

18

Part II: Principles of GTK+

Object System
Geometry Management

Signals and Events
Reference Counting

19

Object System

� Built in straight C

� Supports conventional object-oriented features

– Encapsulation

– Inheritance

– Polymorphism

� Tuned to needs of GUI programming

– Introspection

– Signal system for callbacks

– Argument system for setting properties via a GUI builder

– Types can be registered dynamically at run time

20

Inheritance

� An object can also be used as any of its parent classes.

� Inheritance done by nesting classes.

Pointer

typedef struct {
 GtkContainer container
 [...]
} GtkWindow;

GtkObject

GtkWidget

GtkContainer

GtkWindow

21

Widget inheritance tree

Container with
only one child widget

GtkObject

GtkWidget
GtkAdjustment

GtkData

GtkContainer

GtkWindowGtkButton

GtkBin

GtkMisc

GtkLabel

22

Hierarchy vs. Hierarchy

� Class Hierarchy

– parent: base class

– child: class inheriting from parent

� Widget Hierarchy

– parent: container

– child: containee

23

Casting Macros

GtkWidget *window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_title (GTK_WINDOW (window), "My Application");

� Typically, pointers to widgets stored as type GtkWidget * .

� Each class has standard macros for converting to that class

� GTK_WINDOW(window) casts to a GtkWindow * but with checking.

� GTK_WINDOW(button) will producing warning

Gtk-WARNING **: invalid cast from ‘GtkButton’ to ‘GtkWindow’

� Checks are efficient but can be disabled at compile time

24

Polymorphism
gtk_widget_draw()

GtkButton GtkEntry

gtk_entry_draw()gtk_button_draw()

25

Geometry Negotiation

� requisition is amount of space widget needs based on its contents

� Containers request space based on size of children. (VBox’s request-
ed height is sum of height of all children, plus padding.)

� Each child then assigned an allocation.

� allocation never smaller than requisition, but may be larger.

26

Geometry Example

This is a very long label

Short label

This is a very long label

Short label
Allocation

Requisition

� Allocation will generally be at least as big as requisition, may be bigger.

27

Packing Boxes

void
gtk_hbox_new (gboolean homogeneous, guint spacing);

void
gtk_box_pack_start (GtkBox *box, GtkWidget *child,

gboolean expand, gboolean fill, guint padding);

� Arrange child horizontally (HBox) or vertically (VBox).

� Per-box homogeneous and spacing options.

� Each child has expand , fill , and paddding options.

28

Packing Boxes (cont)

Box Expand Fill
1 NO NO
2 YES YES
3 YES NO

Expanded by User

Child 3 Padding

1
Child

1
Child Child Child

2 3

Child Child
2 3

Normal Size
Spacing

29

Main Loop

� Events retrieved from event sources

� Standard event sources:
Glib: Timeouts, IO Handlers, Idle Handlers
GDK: X events

� Additional source types can be created.

� Sources prioritized

1. Incoming X Events

2. GTK+’s redraw, resize queues

3. Application’s idle handlers.

� Lower priority sources not serviced until high priority sources finished.

30

Main Loop (cont)

Idle Functions
g_main_iterate()

Redraw
Resize

Events

Timeouts
IO Handlers

31

Events and Signals

GTK

GDK

Application

X Server

GtkButton Widget
"clicked"

"button_press_event"

GdkEventButton

XButtonEvent

32

Events and Signals

� Lowlevel events sent from X server

� Corresponding signals sent to appropriate widget

� Widgets generate highlevel events

� Event signals have a distinct signature

� Return value determines propagation. TRUE =>handled.

33

Reference Counting

� Need to know when objects are unused (garbage collection)

� Explicit ownership works badly for GUIs.

� Keep a reference count

– Create an item, refcount is 1.

– Begin using item, increase refcount by 1 - ref()

– Finish using item, decrease refcount by 1 - unref()

– When reference count drops to zero, free object

34

Reference Counting example

� Parent keeps reference count on children

� Removing child from parent causes it to be freed

� So, to move child from one to other, need to do:

gtk_object_ref (GTK_OBJECT (child));
gtk_container_remove (GTK_CONTAINER (old_parent), child);
gtk_container_add (GTK_CONTAINER (new_parent), child);
gtk_object_unref (GTK_OBJECT (child));

35

Reference Counting example (cont)

� If you forget to refcount...

36

Floating and Sinking

� Reference counting for GtkObject not quite so simple

� Don’t want to have to write:

button = gtk_button_new_with_label ("Hello World");

gtk_container_add (GTK_CONTAINER (window), button);

gtk_widget_unref (button);

� So, container assumes reference count of child.

� GtkObject initially created and marked floating. (Reference count can
be assumed)

� Parent calls gtk_widget_sink() to remove flag.

37

The Life Cycle of a Widget

Create gtk_label_new()
Parenting gtk_container_add()

Show gtk_widget_show()
Size Request "size_request"
Size Allocate "size_allocate"

Realize "realize"
Map "map"

Expose "expose"

Destroy gtk_widget_destroy() "destroy"
Unmap "unmap"

Unrealize "unrealize"
Unparent

Finalize

38

Widget Destruction

Hello World

Again, World

Window
"destroy"

"destroy" "destroy"
ButtonButton

"destroy""destroy"
VBox

LabelLabel

� Reference counting vulnerable to cycles.

� Explicit destruction helps.

� Triggered by user closing window, or app calling gtk_widget_destroy()

� Destruction propagates recursively to children.

39

Life cycle of GdkWindow

� GdkWindow is server side object. Used to receive events and clip
drawing.

� Includes toplevel windows, but also children of those windows.

� Realization GDK/X Window for widget is created.

Map GdkWindow is made visible.

Expose X asks toolkit to refresh the widget’s display.

Unrealize widget removed from the screen.

� Generally these steps occur automatically. Only time you have to wor-
ry about realization is when you want to make GDK calls and need the
GdkWindow for a widget.

40

Widgets and GdkWindows

Button
Label

Button
Label

Window
Frame

VBox

Window

Button

Button

Widget Hierarchy Window Hierarchy

� GdkWindows used for delivering events

� Many widgets do not have corresponding GdkWindow
Frame, VBox, Label: NO_WINDOWwidgets.
These widgets draw on parent widget’s window.

� Other widgets have windows: Window, Button, etc.

41

Part III: Building an application

The Application
Widget tour

Geometry management in detail
Using GLib

42

The example

43

Widgets in an addressbook

Combo

Entry

Label

Frame

Text

Spinbutton

VPaned

44

More widgets in an addressbook

Menu CList

Toolbar
Button

PixmapMenuItem
MenuBar

45

Complex Geometry Management

VBox

Hbox HBox

HBox

HBox HBox

HBox
HBox HBox

Table

Alignment

46

Using a GtkAlignment
� Want widget to take up only part of space

� Solution: use a GtkAlignment

GtkWidget *gtk_alignment_new (gfloat xalign, gfloat yalign,
gfloat xscale, gfloat yscale);

xscale: 0.0 (no expansion) xalign: 0.0 (left)
Alignment

HBoxHBox

HBox

47

Enforcing a 2:1 ratio between elements
� Want email twice as wide as phone number

� Solution: use a homogeneous GtkTable

GtkWidget *gtk_table_new (guint rows, guint columns,
gboolean homogeneous);

rows: 1 columns: 3 homogeneous: TRUE

Hbox HBox

Table

48

Using signals for behavior modification

� Many methods routed through signals; allow modifying behavior with-
out inheriting and overriding the methods.

� Example: create an entry that only accepts [0-9-] .

� GtkEditable (parent class of GtkText and GtkEntry) has "insert_text"

signal.

� Connect to this signal, and in signal handler

1. Modify text as desired

2. Insert this text (being careful not to recurse)

3. Stop the default handler from running

gtk_signal_connect (GTK_OBJECT (phone_entry), "insert_text",
GTK_SIGNAL_FUNC (insert_text_handler),
NULL);

49

Using signals for behavior modification (cont)

void
insert_text_handler (GtkEditable *editable, const gchar *text,

gint length, gint *position, gpointer data)
{

int i, j;
gchar *result = g_new (gchar, length);

[copy text into result, stripping out unwanted characters]

/* Block ourselves, and insert modified text */
gtk_signal_handler_block_by_func (GTK_OBJECT (editable),

GTK_SIGNAL_FUNC (insert_text_handler)
data);

gtk_editable_insert_text (editable, result, length, position);
gtk_signal_handler_unblock_by_func (GTK_OBJECT (editable),

GTK_SIGNAL_FUNC (insert_text_handl e
data);

/* Keep default handler from being run */
gtk_signal_emit_stop_by_name (GTK_OBJECT (editable), "insert_text");

g_free (result);
}

50

Item Factory

� Menus normal containers

� Creating menus and menu items by hand repetition

� Solution: automatic creation from an array

static GtkItemFactoryEntry menu_items[] =
{

/* menu-path accelerator callback + action item-type */
{ "/_File", NULL, NULL, 0, "<Branch>" },
{ "/File/_Open", "<control>O", do_open, 0, NULL },
{ "/File/_Save", "<control>S", do_save, 0, NULL },
{ "/File/sep1", NULL, NULL, 0, "<Separator>" },
{ "/File/_Quit", "<control>Q", do_quit, 0, NULL

};
static int nmenu_items = sizeof (menu_items) / sizeof (menu_items[0]);

gtk_item_factory_create_items (item_factory,
nmenu_items, menu_items, NULL);

51

GLib

� Main loop

� Portability functions
g_strcasecmp() , g_snprintf()

� Convenience functions
g_strsplit() , g_get_home_dir()

� Data types

GList linked lists

GHashTable hash tables

GTree balanced trees

GString string type

� GScanner - run-time configurable tokenizer

52

GString

� automatically handles memory allocation, reallocation

GString *string = g_string_new (NULL);

g_string_append (string, "Goodbye");
g_string_append_c (string, ’,’);
g_string_append (string, " Old Paint");

printf(string->str);
g_string_free (string, TRUE);

53

GList

� Doubly-linked list

� Also GSList - singly linked list

� NULL represents empty list

GList *word_list, *result = NULL;
for (i=0; i<n_words; i++)

word_list = g_list_prepend (word_list, g_strdup (word));
[...]
result = g_list_find_custom (word_list, "blue", g_str_equal);
if (result)
{

word_list = g_list_remove_link (word_list, result);
g_free (result->data);
g_list_free_1 (result);

}

54

Part IV: Beyond GTK+

Extending GTK+

Language Bindings
GNOME

Future Directions

55

Creating custom user interface elements

� If needs are light, can use GtkDrawingArea.

– Receive low-level events:
"button_press_event" , "key_press_event" .

– Get notified to size changes by "size_allocate" .

– In response to "expose" , draw on widget’s window with GDK
drawing calls.

� May be better to use GnomeCanvas widget. (see later)

� For heavier applications, can derive own widget types. (code reuse).

56

Creating widgets

� Define object and class structures for new type.

� class structure

– Pointed to from object structure.

– Contains function pointers to the virtual functions of the widget.

– Nested like object structures.

– Usually widgets will override virtual functions from GtkWidget like
size_request() , size_alllocate() , and expose() .

� Register type with init() and class_init() functions.

� init() function initializes newly created object structures.

� class_init() function initializes class structure, creates signal and
argument types for class.

57

Language Bindings

� GTK+’s object orientation maps well onto languages with native OO
features.

� Languages with OO features often make using GTK+ more concise.

� Ability to query types at runtimes simplifies creating language bind-
ings.

� Many language bindings exist:
C++, Perl, Python, Ada, Dylan, Eiffel, Guile, Haskell, JavaScript, Ob-
jective C, Camel, Label, Pascal, Pike, TOM: : :

58

Perl/GTK

use Gtk;

Gtk::init();

$window = new Gtk::Window;

$button = new Gtk::Button "Hello World";

$window->add($button);

$button->signal_connect("clicked",

sub { Gtk::main_quit() });

$window->show_all;

Gtk::main();

59

PyGtk

from _gtk import *

from GTK import *

def clicked(*args):

mainquit()

window = GtkWindow()

button = GtkButton(’Hello World’)

window.add(button)

button.connect(’clicked’, clicked)

window.show_all

mainloop()

60

GLADE
� GUI builder

� Graphically build widget tree

� Write out code (C, C++, Ada), or XML

� Rebuild widget tree in application
from XML (libglade)

61

GNOME

� Layer between GTK+ and application.

� Provides high-level functionality, more widgets.

� Enforces consistency.

� See http://developer.gnome.org for more info.

62

GNOME Widgets

� GnomeMessageBox - easy to display error messages

� GnomeIconList - file-manager-style icon display

� GnomeColorPicker, GnomeFontPicker – standard interfaces for a color
or font selection button.

� GnomeDruid – Wizard(tm) style setup dialogs.

� Many more...

63

GnomeCanvas

� Structured graphics - hierarchy of graphics objects much like widget
hierarchy.

� Easy to make complex, user-manipulatible displays.

� Flicker-free.

� Standard items:
rectangle, circle, text, image...

� Can implement custom items.

� Can render anti-aliased

64

GNOME High-level Functionality

� Configuration data storage.

� Session-management.

� Application framework.

� Help System.

� Mime-type support.

65

Unicode and enhanced internationalization support

� GTK+ currently supports Asian double-byte languages and input meth-
ods.

� Move to Unicode - 1 encoding for all languages.

� Support right-to-left languages like Hebrew.

� Support complex-text languages like Hindi.

� Use “pango” - a toolkit independent framework for rendering with Uni-
code.

T RA I++ I+TRA TRI

Cluster Formation Reordering

66

Enhanced Object Model

� Mostly single inheritance works well for GTK+, but sometimes clumsy.

� Java-style multiple interfaces will be added 1.4 - GtkRadioButton and
GtkRadioMenuItem would both export a GtkRadio interface.

� Improvements to argument system to better support GUI builders, themes.

– Notification on changes.

– Ability to set arguments from an RC file.

67

Win32 Port

� Only GDK layer needs to be ported.

� Done by Tor Lillqvist.

� Has been functioning for 6 months to the point of running the GIMP.

� Will be integrated in with main line of GTK+ for 1.4.

68

Acknowledgements

� Original Authors of GTK+

Peter Mattis Spencer Kimball Josh Macdonald

� The GTK+ Team
Shawn Amundson Jerome Bolliet Damon Chaplin
Tony Gale Jeff Garzik Lars Hamann
Raja Harinath Carsten Haitzler Akira Higuchi
Tim Janik Stefan Jeske Elliot Lee
Raph Levien Ian Main Takashi Matsuda
Frederico Meña Paolo Molaro Jay Painter
Manish Singh

69

