
Abstract
We present a new, interactive tool calledIntelligent Scissors

which we use for image segmentation and composition. Fully auto-
mated segmentation is an unsolved problem, while manual tracing
is inaccurate and laboriously unacceptable. However, Intelligent
Scissors allow objects within digital images to be extracted quickly
and accurately using simple gesture motions with a mouse. When
the gestured mouse position comes in proximity to an object edge,
a live-wire boundary “snaps” to, and wraps around the object of
interest.

Live-wire boundary detection formulates discrete dynamic pro-
gramming (DP) as a two-dimensional graph searching problem.
DP provides mathematically optimal boundaries while greatly
reducing sensitivity to local noise or other intervening structures.
Robustness is further enhanced withon-the-fly training which
causes the boundary to adhere to the specific type of edge currently
being followed, rather than simply the strongest edge in the neigh-
borhood.Boundary cooling automatically freezes unchanging seg-
ments and automates input of additional seed points. Cooling also
allows the user to be much more free with the gesture path, thereby
increasing the efficiency and finesse with which boundaries can be
extracted.

Extracted objects can be scaled, rotated, and composited using
live-wire masks andspatial frequency equivalencing. Frequency
equivalencing is performed by applying a Butterworth filter which
matches the lowest frequency spectra to all other image compo-
nents. Intelligent Scissors allow creation of convincing composi-
tions from existing images while dramatically increasing the speed
and precision with which objects can be extracted.

1. Introduction
Digital image composition has recently received much attention

for special effects in movies and in a variety of desktop applica-
tions. In movies, image composition, combined with other digital
manipulation techniques, has also been used to realistically blend
old film into a new script. The goal of image composition is to com-
bine objects or regions from various still photographs or movie
frames to create a seamless, believable, image or image sequence
which appears convincing and real. Fig. 9(d) shows a believable
composition created by combining objects extracted from three
images, Fig. 9(a-c). These objects were digitally extracted and com-
bined in a few minutes using a new, interactive tool calledIntelli-
gent Scissors.

When using existing images, objects of interest must be extracted
and segmented from a surrounding background of unpredictable
complexity. Manual segmentation is tedious and time consuming,

lacking in precision, and impractical when applied to long image
sequences. Further, due to the wide variety of image types and con-
tent, most current computer based segmentation techniques are
slow, inaccurate, and require significant user input to initialize or
control the segmentation process.

This paper describes a new, interactive, digital image segmenta-
tion tool called “Intelligent Scissors” which allows rapid object
extraction from arbitrarily complex backgrounds. Intelligent Scis-
sors boundary detection formulates discrete dynamic programming
(DP) as a two-dimensional graph searching problem. Presented as
part of this tool areboundary cooling andon-the-fly training, which
reduce user input and dynamically adapt the tool to specific types
of edges. Finally, we presentlive-wire masking and spatial fre-
quency equivalencing for convincing image compositions.

2. Background
Digital image segmentation techniques are used to extract image

components from their surrounding natural background. However,
currently available computer based segmentation tools are typically
primitive and often offer little more advantage than manual tracing.

Region based magic wands, provided in many desktop applica-
tions, use an interactively selected seed point to “grow” a region by
adding adjacent neighboring pixels. Since this type of region grow-
ing does not provide interactive visual feedback, resulting region
boundaries must usually be edited or modified.

Other popular boundary definition methods use active contours
or snakes[1, 5, 8, 15] to improve a manually entered rough approx-
imation. After being initialized with a rough boundary approxima-
tion, snakes iteratively adjust the boundary points in parallel in an
attempt to minimize an energy functional and achieve an optimal
boundary. The energy functional is a combination of internal forces,
such as boundary curvature, and external forces, like image gradi-
ent magnitude. Snakes can track frame-to-frame boundary motion
provided the boundary hasn’t moved drastically. However, active
contours follow a pattern of initialization followed by energy mini-
mization; as a result, the user does not know what the final bound-
ary will look like when the rough approximation is input. If the
resulting boundary is not satisfactory, the process must be repeated
or the boundary must be manually edited. We provide a detailed
comparison of snakes and Intelligent Scissors in section 3.6.

Another class of image segmentation techniques use a graph
searching formulation of DP (or similar concepts) to find globally
optimal boundaries [2, 4, 10, 11, 14]. These techniques differ from
snakes in that boundary points are generated in a stage-wise optimal
cost fashion whereas snakes iteratively minimize an energy func-
tional for all points on a contour in parallel (giving the appearance
of wiggling). However, like snakes, these graph searching tech-
niques typically require a boundary template--in the form of a man-
ually entered rough approximation, a figure of merit, etc.--which is
used to impose directional sampling and/or searching constraints.
This limits these techniques to a boundary search with one degree
of freedom within a window about the two-dimensional boundary
template. Thus, boundary extraction using previous graph search-
ing techniques is non-interactive (beyond template specification),
losing the benefits of further human guidance and expertise.

Intelligent Scissors for Image Composition

Eric N. Mortensen1 William A. Barrett2

Brigham Young University

1enm@cs.byu.edu, Dept. of Comp. Sci., BYU, Provo, UT 84602 (801)378-7605
2barrett@cs.byu.edu, Dept. of Comp. Sci., BYU, Provo, UT 84602 (801)378-7430

The most important difference between previous boundary find-
ing techniques and Intelligent Scissors presented here lies not in the
boundary defining criteria per se´, but in themethod of interaction.
Namely, previous methods exhibit a pattern of boundary approxi-
mation followed by boundary refinement, whereas Intelligent Scis-
sors allow the user tointeractively select the most suitable boundary
from a set ofall optimal boundaries emanating from a seed point.
In addition, previous approaches do not incorporate on-the-fly
training or cooling, and are not as computationally efficient. Finally,
it appears that the problem of automated matching of spatial fre-
quencies for digital image composition has not been addressed pre-
viously.

3. Intelligent Scissors
Boundary definition via dynamic programming can be formu-

lated as a graph searching problem [10] where the goal is to find the
optimal path between a start node and a set of goal nodes. As
applied to image boundary finding, the graph search consists of
finding the globally optimal path from a start pixel to a goal pixel--
in particular, pixels represent nodes and edges are created between
each pixel and its 8 neighbors. For this paper, optimality is defined
as the minimum cumulative cost path from a start pixel to a goal
pixel where the cumulative cost of a path is the sum of the local
edge (or link) costs on the path.

3.1. Local Costs
Since a minimum cost path should correspond to an image com-

ponent boundary, pixels (or more accurately, links between neigh-
boring pixels) that exhibit strong edge features should have low
local costs and vice-versa. Thus, local component costs are created
from the various edge features:

The local costs are computed as a weighted sum of these component
functionals. Lettingl(p,q) represents the local cost on the directed
link from pixelp to a neighboring pixelq, the local cost function is

(1)

where eachω is the weight of the corresponding feature function.
(Empirically, weights ofωZ = 0.43,ωG = 0.43, andωD = 0.14 seem
to work well in a wide range of images.)

The laplacian zero-crossing is a binary edge feature used for edge
localization [7, 9]. Convolution of an image with a laplacian kernel
approximates the 2nd partial derivative of the image. The laplacian
image zero-crossing corresponds to points of maximal (or minimal)
gradient magnitude. Thus, laplacian zero-crossings represent
“good” edge properties and should therefore have a low local cost.
If IL(q) is the laplacian of an imageI at pixelq, then

(2)

However, application of a discrete laplacian kernel to a digital
image produces very few zero-valued pixels. Rather, a zero-cross-
ing is represented by two neighboring pixels that change from pos-
itive to negative. Of the two pixels, the one closest to zero is used
to represent the zero-crossing. The resulting feature cost contains
single-pixel wide cost “canyons” used for boundary localization.

Since the laplacian zero-crossing creates a binary feature,fZ(q)
does not distinguish between strong, high gradient edges and weak,
low gradient edges. However, gradient magnitude provides a direct
correlation between edge strength and local cost. IfIx andIy repre-
sent the partials of an imageI in x andy respectively, then the gra-
dient magnitudeG is approximated with

. (3)

The gradient is scaled and inverted so high gradients produce low
costs and vice-versa. Thus, the gradient component function is

(3)

giving an inverse linear ramp function. Finally, gradient magnitude
costs are scaled by Euclidean distance. To keep the resulting max-
imum gradient at unity,fG(q) is scaled by 1 ifq is a diagonal neigh-
bor top and by 1/√2 if q is a horizontal or vertical neighbor.

The gradient direction adds a smoothness constraint to the
boundary by associating a high cost for sharp changes in boundary
direction. The gradient direction is the unit vector defined byIx and
Iy. LettingD(p) be the unit vector perpendicular (rotated 90 degrees
clockwise) to the gradient direction at pointp (i.e., forD(p) = (Iy(p),
-Ix(p))), the formulation of the gradient direction feature cost is

(4)

where

(3)

are vector dot products and

(5)

is the bidirectional link or edge vector between pixelsp andq. Links
are either horizontal, vertical, or diagonal (relative to the position of
q in p’s neighborhood) and point such that the dot product ofD(p)
andL(p, q) is positive, as noted in (5). The neighborhood link direc-
tion associates a high cost to an edge or link between two pixels that
have similar gradient directions but are perpendicular, or near per-
pendicular, to the link between them. Therefore, the direction fea-
ture cost is low when the gradient direction of the two pixels are
similar to each other and the link between them.

3.2. Two-Dimensional Dynamic Programming
As mentioned, dynamic programming can be formulated as a

directed graph search for an optimal path. This paper utilizes an
optimal graph search similar to that presented by Dijkstra [6] and
extended by Nilsson [13]; further, this technique builds on and
extends previous boundary tracking methods in 4 important ways:

1. It imposes no directional sampling or searching constraints.

2. It utilizes a new set of edge features and costs: laplacian
zero-crossing, multiple gradient kernels.

3. The active list is sorted with an O(N) sort forN nodes/pixels.

4. No a priori goal nodes/pixels are specified.

First, formulation of boundary finding as a 2-D graph search elimi-
nates the directed sampling and searching restrictions of previous
implementations, thereby allowing boundaries of arbitrary com-

Image Feature Formulation

Laplacian Zero-Crossing fZ
Gradient Magnitude fG
Gradient Direction fD

l p q,() ωZ f Z q()⋅ ωG f G q() ωD f D p q,()⋅+⋅+=

f Z q()
0; if I L q() 0=

1; if I L q() 0≠



=

G Ix
2

I y
2

+=

f G
max G() G–

max G()
------------------------------ 1 G

max G()
-------------------–= =

f D p q,() 2
3π
------ dp p q,()[]acos dq p q,()[]acos+{ }=

dp p q,() D p() L p q,()⋅=

dq p q,() L p q,() D q()⋅=

L p q,()
q p if D p() q p–() 0≥⋅;–

p q if D p() q p–() 0<⋅;–



=

plexity to be extracted. Second, the edge features used here are
more robust and comprehensive than previous implementations: we
maximize over different gradient kernels sizes to encompass the
various edge types and scales while simultaneously attempting to
balance edge detail with noise suppression [7], and we use the
laplacian zero-crossing for boundary localization and fine detail
live-wire “snapping”. Third, the discrete, bounded nature of the
local edge costs permit the use of a specialized sorting algorithm
that inserts points into a sorted list (called the active list) in constant
time. Fourth, the live-wire tool is free to define a goal pixel interac-
tively, at any “free” point in the image, after minimum cost paths
are computed toall pixels. The latter happens fast enough that the
free point almost always falls within an expanding cost wavefront
and interactivity is not impeded.

The Live-Wire 2-D dynamic programming (DP) graph search
algorithm is as follows:

Algorithm: Live-Wire 2-D DP graph search.

Input:
s {Start (or seed) pixel.}
l(q, r) {Local cost function for link between pixels q and r.}

Data Structures:
L {List of active pixels sorted by total cost (initially empty).}
N(q) {Neighborhood set of q (contains 8 neighbors of pixel).}
e(q) {Boolean function indicating if q has been expanded/processed.}
g(q) {Total cost function from seed point to q.}

Output:
p {Pointers from each pixel indicating the minimum cost path.}

Algorithm:
g(s) ←0; L ←s ; {Initialize active list with zero cost seed pixel.}
while L ≠∅ do begin {While still points to expand:}

q←min(L); {Remove minimum cost pixel q from active list.}
e(q) ←TRUE; {Mark q as expanded (i.e., processed).}
for each r ∈N(q) such that not e(r) do begin

gtmp←g(q)+l(q, r); {Compute total cost to neighbor.}
if r ∈L and g tmp<g(r) then {Remove higher cost neighbor’s }

r ←L; { from list.}
if r ∉L then begin {If neighbor not on list, }

g(r) ←gtmp; { assign neighbor’s total cost, }
p(r) ←q; { set (or reset) back pointer, }
L←r ; { and place on (or return to) }

end { active list.}
end

end

Notice that since the active list is sorted, when a new, lower cumu-
lative cost is computed for a pixel already on the list then that point
must be removed from the list in order to be added back to the list
with the new lower cost. Similar to adding a point to the sorted list,
this operation is also performed in constant time.

Figure 1 demonstrates the use of the 2-D DP graph search algo-
rithm to create a minimum cumulative cost path map (with corre-
sponding optimal path pointers). Figure 1(a) is the initial local cost
map with the seed point circled. For simplicity of demonstration the
local costs in this example are pixel based rather than link based and
can be thought of as representing the gradient magnitude cost fea-
ture. Figure 1(b) shows a portion of the cumulative cost and pointer
map after expanding the seed point (with a cumulative cost of zero).
Notice how the diagonal local costs have been scaled by Euclidean
distance (consistent with the gradient magnitude cost feature
described previously). Though complicating the example, weighing
by Euclidean distance is necessary to demonstrate that the cumula-
tive costs to points currently on the active list can change if even
lower cumulative costs are computed from as yet unexpanded
neighbors. This is demonstrated in Figure 1(c) where two points

have now been expanded--the seed point and the next lowest cumu-
lative cost point on the active list. Notice how the points diagonal to
the seed point have changed cumulative cost and direction pointers.
The Euclidean weighting between the seed and diagonal points
makes them more costly than non-diagonal paths. Figures 1(d),
1(e), and 1(f) show the cumulative cost/direction pointer map at
various stages of completion. Note how the algorithm produces a
“wavefront” of active points emanating from the initial start point,
called the seed point, and that the wavefront grows out faster where
there are lower costs.

3.3. Interactive “Live-Wire” Segmentation Tool
Once the optimal path pointers are generated, a desired boundary

segment can be chosen dynamically via a “free” point. Interactive
movement of the free point by the mouse cursor causes the bound-
ary to behave like a live-wire as it adapts to the new minimum cost
path by following the optimal path pointers from the free point back

45 41 35 31 29 35 33 34 36 40 50

38 29 23 22 24 29 37 38 42 39 43

28 18 16 21 28 37 46 49 47 40 35

18 12 16 27 38 53 59 53 39 33 31

14 8 13 20 29 35 49 54 35 28 32

14 6 6 12 14 22 28 35 27 25 31

18 7 2 9 5 9 14 21 18 23 32

16 4 0 1 6 12 13 15 19 27 39

18 13 7 6 14 17 18 17 24 30 45

11 13 12 9 5 8 3 1 2 4 10

14 11 7 4 2 5 8 4 6 3 8

11 6 3 5 7 9 12 11 10 7 4

7 4 6 11 13 18 17 14 8 5 2

6 2 7 10 15 15 21 19 8 3 5

8 3 4 7 9 13 14 15 9 5 6

11 5 2 8 3 4 5 7 2 5 9

12 4 2 1 5 6 3 2 4 8 12

10 9 7 5 9 8 5 3 7 8 15

(a)

(e)

(f)

Figure 1: (a) Initial local cost matrix. (b) Seed point (shaded)
expanded. (c) 2 points (shaded) expanded. (d) 5 points (shaded)
expanded. (e) 47 points expanded. (f) Finished total cost and path
matrix with two of many paths (free points shaded) indicated.

(c) (d)

41 35 31 29 35

38 29 23 22 24 29

28 18 16 21 28 37

18 12 16 27 38

14 8 13 20 29 35 52 35 28 32

14 6 6 12 14 22 28 35 27 25 31

18 7 2 9 5 9 14 21 18 23 32

16 4 0 1 6 12 13 15 19 27 40

18 13 7 6 14 17 18 17 24 30

(b)

7 2 9 5

4 0 1 6

13 7 6 14

7 2 11

4 0 1

13 7 7

6 6 12 14 23

20 7 2 9 5 9

16 4 0 1 6 13

18 13 7 6 14

to the seed point. By constraining the seed point and free points to
lie near a given edge, the user is able to interactively “snap” and
“wrap” the live-wire boundary around the object of interest. Figure
2 demonstrates how a live-wire boundary segment adapts to
changes in the free point (cursor position) by latching onto more
and more of an object boundary. Specifically, note the live-wire seg-
ments corresponding to user-specified free point positions at times
t0, t1, andt2. Although Fig. 2 only shows live-wire segments for
three discrete time instances, live-wire segments are actually
updated dynamically and interactively (on-the-fly) with each move-
ment of the free point.

When movement of the free point causes the boundary to digress
from the desired object edge, interactive input of a new seed point
prior to the point of departure reinitiates the 2-D DP boundary
detection. This causes potential paths to be recomputed from the
new seed point while effectively “tying off” the boundary computed
up to the new seed point.

Note again that optimal paths are computed from the seed point
to all points in the image (since the 2-D DP graph search produces
a minimum cost spanning tree of the image [6]). Thus, by selecting
a free point with the mouse cursor, the interactive live-wire tool is
simply selecting an optimal boundary segment from a large collec-
tion of optimal paths.

Since each pixel (or free point) defines only one optimal path to
a seed point, a minimum of two seed points must be placed to
ensure a closed object boundary. The path map from the first seed
point of every object is maintained during the course of an object’s
boundary definition to provide a closing boundary path from the
free point. The closing boundary segment from the free point to the
first seed point expedites boundary closure.

Placing seed points directly on an object’s edge is often difficult
and tedious. If a seed point is not localized to an object edge then
spikes results on the segmented boundary at those seed points (since

the boundary is forced to pass through the seed points). To facilitate
seed point placement, a cursor snap is available which forces the
mouse pointer to the maximum gradient magnitude pixel within a
user specified neighborhood. The neighborhood can be anywhere
from 1×1 (resulting in no cursor snap) to 15×15 (where the cursor
can snap as much as 7 pixels in bothx andy). Thus, as the mouse
cursor is moved by the user, it snaps or jumps to a neighborhood
pixel representing a “good” static edge point.

3.4. Path Cooling
Generating closed boundaries around objects of interest can

require as few as two seed points (for reasons given previously).
Simple objects typically require two to five seed points but complex
objects may require many more. Even with cursor snap, manual
placement of seed points can be tedious and often requires a large
portion of the overall boundary definition time.

Figure 2: Image demonstrating how the live-wire segment adapts and
snaps to an object boundary as the free point moves (via cursor move-
ment). The path of the free point is shown in white. Live-wire segments
from previous free point positions (t0, t1, and t2) are shown in green.

(a) (b)
Figure 3: Comparison of live-wire without (a) and with (b) cooling.
Without cooling (a), all seed points must be placed manually on the
object edge. With cooling (b), seed points are generated automatically
as the live-wire segment freezes.

(a)

(b)

Figure 4: Comparison of live-wire (a) without and (b) with dynamic
training. (a) Without training, the live-wire segment snaps to nearby
strong edges. (b) With training, it favors edges with similar characteris-
tics as those just learned. (c) The static gradient magnitude cost map
shows that without training, high gradients are favored since they map
to low costs. However, with training, the dynamic cost map (d) favors
gradients similar to those sampled from the previous boundary segment.

MG

nG
0

0

C
os

t

Gradient Magnitude

MG

nG
0

0

C
os

t

Gradient Magnitude

Static Cost Map Dynamic Cost Map

(c) (d)

Automatic seed point generation relieves the user from precise
manual placement of seed points by automatically selecting a pixel
on the current active boundary segment to be a new seed point.
Selection is based on “path cooling” which in turn relies on path
coalescence. Though a single minimum cost path exists from each
pixel to a given seed point, many paths “coalesce” and share por-
tions of their optimal path with paths from other pixels. Due to Bell-
man’s Principle of Optimality [3], if any two optimal paths from
two distinct pixels share a common point or pixel, then the two
paths are identical from that pixel back to the seed point. This is par-
ticularly noticeable if the seed point is placed near an object edge
and the free point is moved away from the seed point but remains in
the vicinity of the object edge. Though a new optimal path is
selected and displayed every time the mouse cursor moves, the
paths are typically identical near the seed point and object edges
and only change local to the free point. As the free point moves far-
ther and farther away from the seed point, the portion of the active
live-wire boundary segment that does not change becomes longer.
New seed points are generated at the end of a stable segment (i.e.,
that has not changed recently). Stability is measured by time (in
milliseconds) on the active boundary and path coalescence (number
of times the path has been redrawn from distinct free points).

This measure of stability provides the live-wire segment with a
sense of “cooling”. The longer a pixel is on a stable section of the
live-wire boundary, the cooler it becomes until it eventually freezes
and automatically produces a new seed point.

Figure 3 illustrates the benefit of path cooling. In Fig. 3(a), the
user must place each seed point manually on the object boundary.
However, with cooling (Fig. 3(b)), only the first seed point (and last
free point) need to be specified manually; the other seed points were
generated automatically via cooling.

3.5. Interactive Dynamic Training
On occasion, a section of the desired object boundary may have

a weak gradient magnitude relative to a nearby strong gradient
edge. Since the nearby strong edge has a relatively lower cost, the
live-wire segment snaps to the strong edge rather than the desired
weaker edge. This can be seen in Fig. 4(a). The desired boundary is
the woman’s (Harriet’s) cheek. However, since part of it is so close
to the high contrast shoulder of the man (Ozzie), the live-wire snaps
to the shoulder.

Training allows dynamic adaptation of the cost function based on
a sample boundary segment. Training exploits an object’s bound-
ary segment that is already considered to be good and is performed
dynamically as part of the boundary segmentation process. As a
result, trained features are updated interactively as an object bound-
ary is being defined. On-the-fly training eliminates the need for a
separate training phase and allows the trained feature cost functions
to adaptwithin the object being segmented as well as between
objects in the image. Fig. 4(b) demonstrates how a trained live-wire
segment latches onto the edge that is similar to the previous training
segment rather that the nearby stronger edge.

To facilitate training and trained cost computation, a gradient
magnitude feature map or image is precomputed by scaling the
minimized gradient magnitude image,G', into an integer range of
sizenG (i.e., from 0 tonG - 1). The actual feature cost is determined
by mapping these feature values through a look-up table which con-
tains the scaled (weighted) cost for each value. Fig 4(c) illustrates
edge cost based on gradient magnitude without training. Note that
with training (Fig. 4(d)) edge cost plummets for gradients that are
specific to the object of interest’s edges.

Selection of a “good” boundary segment for training is made
interactively using the live-wire tool. To allow training to adapt to
slow (or smooth) changes in edge characteristics, the trained gradi-
ent magnitude cost function is based only on the most recent or

closest portion of the current defined object boundary. A training
length,t, specifies how many of the most recent boundary pixels are
used to generate the training statistics. A monotonically decreasing
weight function (either linearly or Gaussian based) determines the
contribution from each of the closestt pixels. This permits adaptive
training with local dependence to prevent trained feature from
being too subject to old edge characteristics. The closest pixel (i.e.,
the current active boundary segment end point) gets a weight of 1
and the point that ist pixels away, along the boundary from the cur-
rent active end point, gets a minimal weight (which can be deter-
mined by the user). The training algorithm samples the
precomputed feature maps along the closestt pixels of the edge seg-
ment and increments the feature histogram element by the corre-
sponding pixel weight to generate a histogram for each feature
involved in training.

After sampling and smoothing, each feature histogram is then
scaled and inverted (by subtracting the scaled histogram values
from its maximum value) to create the feature cost map needed to
convert feature values to trained cost functions.

Since training is based on learned edge characteristics from the
most recent portion of an object’s boundary, training is most effec-
tive for those objects with edge properties that are relatively consis-
tent along the object boundary (or, if changing, at least change
smoothly enough for the training algorithm to adapt). In fact, train-
ing can be counter-productive for objects with sudden and/or dra-
matic changes in edge features. However, training can be turned on
and off interactively throughout the definition of an object boundary
so that it can be used (if needed) in a section of the boundary with
similar edge characteristics and then turned off before a drastic
change occurs.

3.6 Comparison with Snakes
Due to the recent popularity of snakes and other active contours

models and since the interactive boundary wrapping of the live-wire
may seem similar to the “wiggling” of snakes, we highlight what
we feel are the similarities and their corresponding differences
between snakes and Intelligent Scissors.

Similarities (compare with corresponding differences below):

1. The gradient magnitude cost in Intelligent Scissors is similar to
the edge energy functional used in snakes.

2. Both methods employ a smoothing term to minimize the effects
of noise in the boundary.

3. Snakes and live-wire boundaries are both attracted towards
strong edge features.

4. Both techniques attempt to find globally optimal boundaries to
try to overcome the effects of noise and edge dropout.

5. Snakes and Intelligent Scissors both require interaction as part of
the boundary segmentation process.

Differences (compare with corresponding similarities above):

1. The laplacian zero-crossing binary cost feature seems to have not
been used previously in active contours models1 (or DP bound-
ary tracking methods for that matter).

2. The active contour smoothing term is internal (i.e., based on the
contour’s point positions) whereas the smoothing term for live-
wire boundaries is computed from external image gradient direc-
tions2(next page).

1. Kass et al. [8] did use a squared laplacian energy functional to show the rela-
tionship of scale-space continuation to the Marr-Hildreth edge detection theory. How-
ever, the squared laplacian does not represent a binary condition, nor could it since the
variational calculus minimization used in [8] required that all functionals be differen-
tiable.

3. Snakes are typically attracted to edge features only within the
gravity of an edge’s gradient energy valley whereas the live-wire
boundary can snap to strong edge features from arbitrary dis-
tances (since the 2-D DP’s search window is the entire image).

4. Snakes are globally optimal over the entire contour whereas live-
wire boundaries are piece-wise optimal (i.e., optimal between
seed points). We feel this creates a desirable balance between
global optimality and local control. This piece-wise optimality
also allows for path cooling and intra-object on-the-fly training.

5. Finally, snakes refine (and interactively “nudge” by placing
springs, etc.) a single rough boundary approximation where the
live-wire tool interactivelyselects an optimal boundary segment
from potentiallyall possible minimum cost paths.

Interactive optimal 2-D path selection is what makes Intelligent
Scissors work and is the key difference between Intelligent Scissors
and all previous techniques. Snakes are interactively initialized with
an approximate boundary contour (often requiring several manually
placed points); this single contour is then iteratively adjusted in an
attempt to minimize an energy functional. The live-wire tool, on the
other hand, is interactively initialized with just a single seed point
and it then generates, at interactive speeds, all possible optimal
paths from the seed point toevery other point in the image, thus,
allowing the user to interactively select the desired optimal bound-
ary segment. As a result, Intelligent Scissors typically require less
time and effort to segment an object than it takes to manually input
an initial approximation to the object boundary.

Actually, the live-wire tool is much more similar to previous
stage-wise optimal boundary tracking approaches than it is to
snakes, since Intelligent Scissors were developed as an interactive
2-D extension to previous optimal edge tracking methods rather
than an improvement on active contours.

4. Image Composition with Intelligent Scissors
As mentioned, composition artists need an intelligent, interactive

tool to facilitate image component boundary definition. Since Intel-
ligent Scissors can quickly segment object from an image, it serves
as a tool for cut and paste operations. After object boundaries have
been extracted, object can be copied from the image and placed into
a buffer (i.e., clipboard) for future processing and placement into
another image, or the same image if desired.

The cut object can be transformed--i.e., rotated, scaled, and
translated, (RST)--before combination with the destination image.
This is done using an interactive graphical tool with “handles” for
RST control. The tool specifies a 2-D RST transformation matrix,
M. The source image is then bilinearly interpolated through the
matrix to paste the cut object into the destination image.

Image composition often requires blending an object from one
image into another image such that the cut-out object is not in the
foreground. This requires the composition artist to “slip” the cut-
out object behind some scene components while leaving it in front
of other components. This operation can again be performed using
the live-wire tool to create a composition mask1. Scene components
can be cut out of an image to create a mask such that any additions
or changes to the scene will not affect masked pixels.

4.1. Edge Filtering
As described, live-wire boundaries are limited by the pixel reso-

2. Admittedly, the gradient direction cost used in Intelligent Scissors is more
susceptible to noise in areas of low contrast (since it computes a smoothness cost
based only on two points and one link). However, it is possible to extend the gradient
direction term to include 3 pixels and 2 links without significant loss of computational
efficiency.

1. Similar in concept to an optical mask used in motion picture special effects.

lution of the image. This may produce jaggies along object bound-
aries in a resulting composition. However, subpixel accuracy can be
obtained by exploiting the signed output of the laplacian operator.
That is, the position of the object edge can be estimated to subpixel
accuracy by using a (linearly) weighted combination of the lapla-
cian pixel values on either side of the zero-crossings.

Since the live-wire boundary will not always correspond to a
zero-crossing, jaggies can also be reduced by appropriate edge fil-
tering, similar to anti-aliasing. Edge filtering is also desirable
because real world images are acquired using finite image detectors
and, as a result, pixels on or near an object boundary share informa-
tion (i.e., color) from the object and the background.

One approach to edge filtering is to perform a local post-smooth-
ing of the image around the pasted object boundary. However, this
does not account for the fact that the edge pixels of the cut object
very likely contain some background information from the original
image. This is most noticeable when an object is composited into a
scene with a different background color than the object’s original
background color. A more general solution would determine how
much of each edge pixel corresponds to the actual object color and
weight them accordingly when combining into another image.

4.2. Spatial Frequency and Contrast Matching
Once the object of interest has been segmented from the sur-

rounding background we can scale it, rotate it, color it, or paste it
onto another (destination) image. When pasting, it is desirable to
perform image composition “seamlessly” in order to make it believ-
able. That is, we should not be able to detect where the paste
occurred. However, the source and the destination images will often
have differing spatial frequencies or contrast due to differences in
focus or lighting when the images were acquired. Thus, equivalenc-
ing of spatial frequencies and normalization of contrast is some-
times desirable in order to produce a convincing composition.

Equivalencing of spatial frequencies is performed by matching
the spectral content of the cut piece and the destination image in the
vicinity where it is to be pasted. Convincing composition often
requires the spectra of the object and the destination image to
match. This is accomplished by low-pass filtering the spectrum
with the higher frequency content to match that of the other. The
spectrum with the higher frequency content is determined by
parameter fitting of a Butterworth low-pass filter (BLPF) to both
spectra. Parameters corresponding to the spectrum with the lower
frequency content are used to low-pass filter the spectrum of the
other image.

The BLPFB(u, v, d0, n) is given by

(3)

whered0 is the distance of the cutoff frequency from the origin and
n is the filter order.

Equivalencing of spatial frequencies is performed by first com-
puting the Fourier transforms,S(u, v) andI(u, v) of the source image
S(x, y) and the destination imageI(x, y). We then compute the log
power spectras(u, v) andi(u, v):

(3)

By varying the two parametersd0 andn, a least squares fit can be
used to create a normalized Butterworth filterB(u, v, d0', n') (where
d0' andn' are the fit parameters) matched to the spatial frequency
characteristics ofi(u, v). If i(u, v) demonstrates lower spatial fre-

B u v d0 n, , ,() 1

1
u

2
v

2+
d0

2n

+

---------------------------------------=

s u v,() S u v,()[]log
2

=

i u v,() I u v,()[]log
2

=

quency content thans(u, v), the spatial frequencies between the two
images can be equivalenced by fittingB(u, v, d0', n') to s(u, v). The
equivalenced result using the inverse Fourier transform

(3)

is then pasted ontoI(x, y). Prior to pasting, the colors in the source
image are scaled to the range ofI(x, y) to account for differences in
contrast.

5. Results
Figures 5, 6, and 7 show the boundaries defined using Intelligent

Scissors on a variety of image types. Fig. 5 is an artificial test image
that exhibits gaussian edge blurring and point noise typical of some
imaging hardware. Fig. 6 is the desktop scene used in Figures 2
and 3. Fig. 7 (a CT image of a lumbar spine) demonstrates the live-
wire’s application to medical imaging. The boundary definition
times (for a trained user) for each displayed object boundary are
given in the caption of each respective figure.

Figure 8 graphically compares the live-wire boundary definition
times and boundary accuracy with manual tracing. These results
show the average time and accuracy from a study where 8 untrained
users1 were asked to define the boundaries of five objects (the two
objects in Fig. 5, the paper clip holder and pocket knife in Fig. 6,
and the outer boundary of the spinal vertebrae in Fig. 7).

Figures 9(a-c) demonstrates Intelligent Scissors application to
color images and show the boundaries defined using Intelligent
Scissors for the image composition in Fig. 9(d). Objects were
scaled, rotated, and (in the case of Fig. 9(a)) flipped to produce the
final composition in Fig. 9(d). Note also that live-wire masking was
performed on some of the foreground (grass).

Preprocessing requires 36 convolutions for color images (from
3×3, 5×5, 7×7, and 9×9 kernels), a gradient orientation calculation,
a maximum gradient neighborhood search, and creation of a local
cost map. For color images, we maximize feature values over the
three color bands rather than averaging.

1. Each user spent a few minutes becoming familiar with the live-wire tool as
well as a manual tracing tool and then were asked to define the boundary of 5 objects
Each boundary was defined multiple times by each user with both Intelligent Scissors
and manual tracing (to also measure intra- and inter-user reproducibility--not shown).

Previously, dynamic programming approaches to boundary
detection were typically computationally expensive. However, by
formulating DP as a graph search and restricting the local costs to
integer values within a range, the 2-D DP algorithm can take advan-
tage of an O(N) sort forN points. As mentioned, adding points to
the sorted active list and removing points from it requires constant
time. As a result, the algorithm’s computational complexity forN
image pixels is O(N). This can be seen by examining the algorithm
in a worst case situation. As a pixel is removed from the active list,
it is expanded by computing the cumulative cost to all of its neigh-
bors that have not already been expanded. In the worst case, a pixel
has its cumulative cost computed by all of its 8 neighbors, resulting
in 8N cumulative cost computations forN pixels. Obviously, not
every point can be expanded after all of its neighbors have. Except
for the seed point, every point that has a cumulative cost must have
at least one neighboring point that has already been expanded. Thus
the cumulative cost is not recomputed for those neighbors. In short,
it can be shown that at most only 4N cumulative cost computations
are performed, resulting in an O(N) algorithm.

6.Conclusions and Future Work
Intelligent Scissors provide an accurate and efficient interactive

tool for object extraction and image composition. In fact, and in
sharp contrast to tedious manual boundary definition, object extrac-
tion using the live-wire is almost as much fun as the final result (the
composition). Intelligent Scissors are intuitive to use and can be
applied to existing black and white or color images of arbitrary
complexity. There are many rich extensions of this work, including:
(1) making use of the weighted zero-crossings in the Laplacian to
perform subpixel edge filtering and anti-aliasing, (2) use of multiple
layered (multiplane) masks, (3) making spatial frequency equiva-
lencing locally adaptive, (4) varying the light source over the object
using directional gradient shading (artificial or borrowed) to pro-
vide consistent lighting in the composition, and, most importantly
(5) extension of the 2-D DP graph search and application of the
live-wire snap and training tools to moving objects and moving,
multiplane masks for composition of image sequences.

References
[1] A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using

Dynamic Programming for Solving Variational Problems in
Vision,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 12, no. 2, pp. 855-866, Sept. 1990.

[2] D. H. Ballard, and C. M. Brown,Computer Vision. Englewood
Cliffs, NJ: Prentice Hall, 1982.

[3] R. Bellman and S. Dreyfus,Applied Dynamic Programming.
Princeton, NJ: Princeton University Press, 1962.

[4] Y. P. Chien and K. S. Fu, “A Decision Function Method for
Boundary Detection,”Computer Graphics and Image Pro-
cessing, vol. 3, no. 2, pp. 125-140, June 1974.

[5] D. Daneels, et al., “Interactive Outlining: An Improved
Approach Using Active Contours,” inSPIE Proceedings of
Storage and Retrieval for Image and Video Databases, vol
1908, pp. 226-233, Feb. 1993.

[6] E. W. Dijkstra, “A Note on Two Problems in Connexion with
Graphs,”Numerische Mathematik, vol. 1, pp. 269-270, 1959.

[7] M. M. Fleck, “Multiple Widths Yield Reliable Finite Differ-
ences,”IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 4, pp. 412-429, April 1992.

[8] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active
Contour Models,” inProc. of the First Int. Conf. on Computer
Vision, London, England, pp. 259-68, June 1987.

S′ x y,() F
1–

B u v d0′ n′,, ,() S u v,()⋅[]=

Figure 8: Average timing and accuracy comparison between manually
traced and live-wire boundaries for 8 users. Boundary times are for
individual objects where accuracy measurements are over all objects.

0

5

10

15

20

25

Av
er

ag
e

T
im

e
(in

 s
ec

on
ds

)

30

40

50

60

35

45

55

65

Polygon Curve Holder Knife Spine
Object

Boundary Definition Time

Legend
Live-Wire

Hand Traced

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4
Distance(in Pixels)

Legend

Live-Wire

Hand Traced

P
er

ce
nt

ag
e(

of
 P

ix
el

s≤
 D

is
ta

nc
e

fr
om

 “
Id

ea
l”

B
ou

nd
ar

y)

Accuracy

[9] D. Marr and E. Hildreth, “A Theory of Edge Detection,” in
Proceedings of the Royal Society of London--Series B: Biolog-
ical Sciences, vol. 207, no. 1167, pp. 187-217, Feb. 1980.

[10] A. Martelli, “An Application of Heuristic Search Methods to
Edge and Contour Detection,”Communications of the ACM,
vol. 19, no. 2, pp. 73-83, Feb. 1976.

[11] U. Montanari, “On the Optimal Detection of Curves in Noisy
Pictures,”Communications of the ACM, vol. 14, no. 5, pp. 335-
45, May 1971.

[12] E. N. Mortensen, B. S. Morse, W. A. Barrett, and J. K. Udupa,
“Adaptive Boundary Detection Using ‘Live-Wire’ Two-
Dimensional Dynamic Programming,” inIEEE Proceedings
of Computers in Cardiology, pp. 635-638, Oct. 1992.

[13] N. J. Nilsson,Principles of Artificial Intelligence. Palo Alto,
CA: Tioga, 1980.

[14] D. L. Pope, D. L. Parker, D. E. Gustafson, and P. D. Clayton,
“Dynamic Search Algorithms in Left Ventricular Border Rec-
ognition and Analysis of Coronary Arteries,” inIEEE Pro-
ceedings of Computers in Cardiology, pp. 71-75, Sept. 1984.

[15] D. J. Williams and M. Shah, “A Fast Algorithm for Active
Contours and Curvature Estimation,”CVGIP: Image Under-
standing, vol. 55, no. 1, pp. 14-26, Jan. 1992.

Figure 5: Test image exhibiting edge blurring and point noise. Bound-
ary definition times--polygon: 4.3 sec and curve: 8.3 sec.

Figure 6: Desktop scene. Boundary definition times--block: 2.4 sec;
paper clip holder: 3.6 sec; pocket knife: 4.6 sec; liquid paper bottle: 5.1
sec; and spoon: 9.8 sec.

Figure 7: Spinal vertebrae. Boundary definition time--5.9 sec.

(a)

(b)

(c)

(d)
Figure 9: Images used in a composition. (a-c) Live-wire boundaries
used for segmentation. (d) Final composition: “Millennium.”

