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Abstract lacking in precision, and impractical when applied to long image
sequences. Further, due to the wide variety of image types and con-

which we use for image segmentation and composition. Fully auto-tent, most current computer based segmentation techniques are

mated segmentation is an unsolved problem, while manual tracingS|0W' inaccurate, and‘requwe significant user input to initialize or
is inaccurate and laboriously unacceptable. However, Intelligent cONtro! the segmentation process.

Scissors allow objects within digital images to be extracted quickly ~ This paper describes a new, interactive, digital image segmenta-
and accurately using simple gesture motions with a mouse. Whertion tool called “Intelligent Scissors” which allows rapid object
the gestured mouse position comes in proximity to an object edge gxtraction from arbitrarily complex backgrounds. Intelligent Scis-
a live-wire boundary‘snaps” to, and wraps around the object of sors boundary detection formulates discrete dynamic programming
interest. (DP) as a two-dimensional graph searching problem. Presented as
part of this tool aréoundary coolingandon-the-fly trainingwhich
reduce user input and dynamically adapt the tool to specific types
of edges. Finally, we presefive-wire maskingand spatial fre-
quency equivalencinfpr convincing image compositions.

We present a new, interactive tool calledelligent Scissors

Live-wire boundary detection formulates discrete dynamic pro-
gramming (DP) as a two-dimensional graph searching problem.
DP provides mathematically optimal boundaries while greatly
reducing sensitivity to local noise or other intervening structures.
Robustness is further enhanced wéh-the-fly trainingwhich
causes the boundary to adhere to the specific type of edge currently. Background

being followed, rather than simply the strongest edge in the neigh-  pigital image segmentation techniques are used to extract image
borhood. Boundary coolingautomatically freezes unchanging seg- components from their surrounding natural background. However,
ments and automates input of additional seed points. Cooling alsqyrrently available computer based segmentation tools are typically
allows the user to be much more free with the gesture path, therebyyrimitive and often offer little more advantage than manual tracing.
increasing the efficiency and finesse with which boundaries can be Region based magic wands, provided in many desktop applica-

extracted. . > / i > . X
) ) ~ tions, use an interactively selected seed point to “grow” a region by
Extracted objects can be scaled, rotated, and composited usingdding adjacent neighboring pixels. Since this type of region grow-
live-wire masks andspatial frequency equivalencingrequency  ing does not provide interactive visual feedback, resulting region
equivalencing is performed by applying a Butterworth filter which poundaries must usually be edited or modified.
matches the lowest frequency spectra to all other image compo- . .
nents. Intelligent Scissors allow creation of convincing composi- org;giregolpgag beU ntgﬁ%/ ?gcg'gorgamnﬁgfdgn?:gs(;%e ﬁgmor%rxs_
tions from existing images while dramatically increasing the speed 2" S1akes(L, 5, 8, 15] to improve Y gh app
and precision with which objects can be extracted. imation. After being initialized with a rough boundary approxima-
tion, snakes iteratively adjust the boundary points in parallel in an
. attempt to minimize an energy functional and achieve an optimal
1. Introduction boundary. The energy functional is a combination of internal forces,
Digital image composition has recently received much attention such as boundary curvature, and external forces, like image gradi-
for special effects in movies and in a variety of desktop applica- ent magnitude. Snakes can track frame-to-frame boundary motion
tions. In movies, image composition, combined with other digital provided the boundary hasn’t moved drastically. However, active
manipulation techniques, has also been used to realistically blendcontours follow a pattern of initialization followed by energy mini-
old film into a new script. The goal of image composition is to com- mization; as a result, the user does not know what the final bound-
bine objects or regions from various still photographs or movie ary will look like when the rough approximation is input. If the
frames to create a seamless, believable, image or image sequendgesulting boundary is not satisfactory, the process must be repeated
which appears convincing and real. Fig. 9(d) shows a believableor the boundary must be manually edited. We provide a detailed
composition created by combining objects extracted from three comparison of snakes and Intelligent Scissors in section 3.6.

images, Fig. 9(a-c). These objects were digitally extracted and com- Another class of image segmentation techniques use a graph
bined in a few minutes using a new, interactive tool catieelli- searching formulation of DP (or similar concepts) to find globally
gent Scissors optimal boundaries [2, 4, 10, 11, 14]. These techniques differ from

When using existing images, objects of interest must be extractedsnakes in that boundary points are generated in a stage-wise optimal
and segmented from a surrounding background of unpredictablecost fashion whereas snakes iteratively minimize an energy func-
complexity. Manual segmentation is tedious and time consuming,tional for all points on a contour in parallel (giving the appearance
of wiggling). However, like snakes, these graph searching tech-
niques typically require a boundary template--in the form of a man-
ually entered rough approximation, a figure of merit, etc.--which is
used to impose directional sampling and/or searching constraints.
This limits these techniques to a boundary search with one degree
of freedom within a window about the two-dimensional boundary
template. Thus, boundary extraction using previous graph search-
ing techniques is non-interactive (beyond template specification),
losing the benefits of further human guidance and expertise.
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The most important difference between previous boundary find-  Since the laplacian zero-crossing creates a binary fed(og,
ing techniques and Intelligent Scissors presented here lies not in theloes not distinguish between strong, high gradient edges and weak,
boundary defining criteria per se”, but in thethodof interaction. low gradient edges. However, gradient magnitude provides a direct
Namely, previous methods exhibit a pattern of boundary approxi- correlation between edge strength and local cosf. atidl, repre-
mation followed by boundary refinement, whereas Intelligent Scis- sent the partials of an imagén x andy respectively, then the gra-
sors allow the user fateractively seledhe most suitable boundary  dient magnitud&s is approximated with
from a set ofall optimal boundaries emanating from a seed point.
In addition, previous approaches do not incorporate on-the-fly G = 1%+ (3)
training or cooling, and are not as computationally efficient. Finally, o

it appears that the problem of automated matching of spatial fré-tpe gradient is scaled and inverted so high gradients produce low
3%%’;%'/‘93 for digital image composition has not been addressed préggsts and vice-versa. Thus, the gradient component function is
f= maxG) -G _ 1 G
3. Intelligent Scissors G max(G) max(G)
Boundary definition via dynamic programming can be formu- . . . . . .
lated as a graph searching problem [10] where the goal is to find th@Ving an inverse linear ramp function. Finally, gradient magnitude
optimal path between a start node and a set of goal nodes. A§Osts are scaled by Euclidean distance. To keep the resulting max-
applied to image boundary finding, the graph search consists ofMuUm gradient at unitf(q) is scaled by 1 ig is a diagonal neigh-
finding the globally optimal path from a start pixel to a goal pixel-- PO topand by W2 if g is a horizontal or vertical neighbor.
in particular, pixels represent nodes and edges are created between The gradient direction adds a smoothness constraint to the
each pixel and its 8 neighbors. For this paper, optimality is definedboundary by associating a high cost for sharp changes in boundary
as the minimum cumulative cost path from a start pixel to a goal direction. The gradient direction is the unit vector definet} layd
pixel where the cumulative cost of a path is the sum of the locally. LettingD(p) be the unit vector perpendicular (rotated 90 degrees
edge (or link) costs on the path. clockwise) to the gradient direction at pgiri.e., forD(p) = (I(p),
-14(p))). the formulation of the gradient direction feature cost is

@)

3.1. Local Costs

Since a minimum cost path should correspond to an image com- fo(p, q) = 33{ acos{dp(p, Q)]+ acos[dq(p, a)l} (4)
ponent boundary, pixels (or more accurately, links between neigh- n
boring pixels) that exhibit strong edge features should have low
local costs and vice-versa. Thus, local component costs are create\f?fhere
from the various edge features: dy(p. @) = D(p) LL(p, q)

®3)
Image Feature Formulation dq(P. @) = L(p, @) (D(@)
Laplacian Zero-Crossing fz are vector dot products and
Gradient Magnitude f )
Gradient Direction fo L(p,q) = %q_ P if D(p)Ha-p)20 (5)

op—q; if D(p) {q—p)<0
The local costs are computed as a weighted sum of these component
functionals. Lettind(p,q) represents the local cost on the directed is the bidirectional link or edge vector between pigeisdg. Links
link from pixel p to a neighboring pixed, the local cost functionis  are either horizontal, vertical, or diagonal (relative to the position of
_ g in p's neighborhood) and point such that the dot produx(pj
I(p, Q) = 0oz Uf 7(a) + 00 L (@) + wp Lf p(p. @) @ andL (p, q) is positive, as noted in (5). The neighborhood link direc-

) ) ) ) tion associates a high cost to an edge or link between two pixels that
where eactw is the weight of the corresponding feature function. have similar gradient directions but are perpendicular, or near per-
(Empirically, weights otoz = 0.43,wg = 0.43, andop = 0.14 seem  pendicular, to the link between them. Therefore, the direction fea-
to work well in a wide range of images.) ture cost is low when the gradient direction of the two pixels are

The laplacian zero-crossing is a binary edge feature used for edgsimilar to each other and the link between them.
localization [7, 9]. Convolution of an image with a laplacian kernel
approximates the" partial derivative of the image. The laplacian 3.2. Two-Dimensional Dynamic Programming
image zero-crossing corresponds to points of maximal (or minimal) ~ As mentioned, dynamic programming can be formulated as a
gradient magnitude. Thus, laplacian zero-crossings representirected graph search for an optimal path. This paper utilizes an
“good” edge properties and should therefore have a low local cost.optimal graph search similar to that presented by Dijkstra [6] and

If 1.(q) is the laplacian of an imadet pixelq, then extended by Nilsson [13]; further, this technique builds on and
0; if1.(q) =0 extends previous boundary tracking methods in 4 important ways:

fo(a) = O '_ ) L 2 1. Itimposes no directional sampling or searching constraints.

DL il (q)#0 2. It utilizes a new set of edge features and costs: laplacian

_ . . o zero-crossing, multiple gradient kernels.
However, application of a discrete laplacian kernel to a digital 9 Pie g

image produces very few zero-valued pixels. Rather, a zero-cross- 3. The active listis sorted with ani)(sort forN nodes/pixels.

ing is represented by two neighboring pixels that change from pos- 4. No a priori goal nodes/pixels are specified.

itive to negative. Of the two pixels, the one closest to zero is used

to represent the zero-crossing. The resulting feature cost containgirst, formulation of boundary finding as a 2-D graph search elimi-

single-pixel wide cost “canyons” used for boundary localization.  nates the directed sampling and searching restrictions of previous
implementations, thereby allowing boundaries of arbitrary com-



plexity to be extracted. Second, the edge features used here are 11 13 12 9 5 8 3 1 2 4 10
more robust and comprehensive than previous implementations: we @ 11 7 4 2 5 8 4 6 3 8
maximize over different gradient kernels sizes to encompass the
various edge types and scales while simultaneously attempting to 6 3 5 7 9 1211107 4
balance edge detail with noise suppression [7], and we use the 7 4 6 11 13 18 17 14 8 5 2
laplacian zero-crossing for boundary localization and fine detail 6 2 7 10 15 15 21 19 8 3 5
live-wire “snapping”. Third, the discrete, bounded nature of the
local edge costs permit the use of a specialized sorting algorithm 8 3 4 7 9 131415 9 5 6
that inserts points into a sorted list (called the active list) in constant 1 5 2 8 3 4 5 7 2 5 9
time. Fourth, the live-wire tool is free to define a goal pixel interac- 24 @15 6 3 2 4 8 12
tively, at any “free” point in the image, after minimum cost paths
are computed tall pixels. The latter happens fast enough that the v e 8 8 s 3 T8
free point almost always falls within an expanding cost wavefront @
and interactivity is not impeded. 6\?/12 13 /23
The Live-Wire 2-D dynamic programming (DP) graph search 7.2 11 7.2 9 5|20 7_2 9 5 =9
algorithm is as follows: 4%1 4%‘ f ge 16;4 %):)«fge \13
i *
Algorithm: Live-Wire 2-D DP graph search. B 77 18 7 6 14])18 13 7 6 14
(b) (©) (d)
Input:
S {Start (or seed) pixel.} “G 50
I( q,r) {Local cost function for link between pixels q and r.} 38 29 23 22«24 :\29
28 18 16=21 =28 37
Data Structures:
L {List of active pixels sorted by total cost (initially empty).} 18 12 16=27 38
N(q) {Neighborhood set of g (contains 8 neighbors of pixel).} 14 8 13 20 29 35 52 35 28 32
e(q) {Boolean function indicating if g has been expanded/processed.} 14;\3 3/12 2 02%08 35 27 25 %1
g(q) {Total cost function from seed point to g.} NP4 YoV v
187 2 9 5 =9 =14 =21 18 =23 <32
Output: 16-=4 1+ ie <12 \13 <15 <19 =7 >0
p {Pointers from each pixel indicating the minimum cost path.} [ NN AN AN
18 13 7 6 14 17 18 17 =4 30
Algorithm: (e)
g(;) <0; L «s; _ {Initiglize_acti\_/e list with zero cost seed pixel.} 25 21 35 31 29 35 W <0 %0
while L #0 do begin {While still points to expand:} NNy <
g —min(L); {Remove minimum cost pixel q from active list.} 38 20 23 (2ifa)<f9)<37 38 ‘@3643
e(q) -« TRUE; {Mark q as expanded (i.e., processed).} 28 18 1 =28 \37 ‘}6 49* 47 40 3
for each rON(q) such that note( r) do begin
Itmp ~9(AN+( a, 1); {Compute total cost to neighbor.} 18 (2 16~27 38 53 59 53 89 33 3
if rOL and g ymp<g(r) then {RfemO\Ilgth}igher cost neighbor’s } 14 @ 13 20 29 35 49 54 35 28 V32
r—L; rom list.
if rOL then begin ilf neighbor not on list, } 14 a 8 /12 14 22 28+ ;5 2 )3/1
g(r) «9mp; { assign neighbor’s total cost, } 187 Q 9 Q @ 4 =21 3 =
p(r) <q; { set (or reset) back pointer, } 16om4 @ a 6 <12 o <7 9
Ler; { and place on (or return to) }
end { active list.} 18 13 7 6 14 17 18 17 =4 30 =45
end
end ®

Figure 1: (a) Initial local cost matrix. (b) Seed point (shaded)

. . T expanded. (c) 2 points (shaded) expanded. (d) 5 points (shaded)
Notice that since the active list is sorted, when a new, lower cumu- expanded. (e) 47 points expanded. (f) Finished total cost and path

lative cost is computed for a_pixel already on the list then that poi_nt matrix with two of many paths (free points shaded) indicated.

must be removed from the list in order to be added back to the list

with the new lower cost. Similar to adding a point to the sorted list, have now been expanded--the seed point and the next lowest cumu-
this operation is also performed in constant time. lative cost point on the active list. Notice how the points diagonal to

Figure 1 demonstrates the use of the 2-D DP graph search algothe seed point have changed cumulative cost and direction pointers.
rithm to create a minimum cumulative cost path map (with corre- The Euclidean weighting between the seed and diagonal points
sponding optimal path pointers). Figure 1(a) is the initial local cost Makes them more costly than non-diagonal paths. Figures 1(d),
map with the seed point circled. For simplicity of demonstration the 1(€), and 1(f) show the cumulative cost/direction pointer map at
local costs in this example are pixel based rather than link based aniarious stages of completion. Note how the algorithm produces a
can be thought of as representing the gradient magnitude cost feaWwavefront” of active points emanating from the initial start point,
ture. Figure 1(b) shows a portion of the cumulative cost and pointercalled the seed point, and that the wavefront grows out faster where
map after expanding the seed point (with a cumulative cost of zero) there are lower costs.

Notice how the diagonal local costs have been scaled by Euclidean ] ] ) )

distance (consistent with the gradient magnitude cost feature3.3. Interactive “Live-Wire” Segmentation Tool

described previously). Though complicating the example, weighing  Once the optimal path pointers are generated, a desired boundary
by Euclidean distance is necessary to demonstrate that the cumulesegment can be chosen dynamically via a “free” point. Interactive
tive costs to points currently on the active list can change if evenmovement of the free point by the mouse cursor causes the bound-
lower cumulative costs are computed from as yet unexpandedary to behave like a live-wire as it adapts to the new minimum cost
neighbors. This is demonstrated in Figure 1(c) where two points path by following the optimal path pointers from the free point back
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Figure 2: Image demonstrating how the live-wire segment adapts and
snaps to an object boundary as the free point moves (via cursor move-
ment). The path of the free point is shown in white. Live-wire segments
from previous free point positiong,(t;, and ) are shown in green.

to the seed point. By constraining the seed point and free points to
lie near a given edge, the user is able to interactively “snap” and
“wrap” the live-wire boundary around the object of interest. Figure
2 demonstrates how a live-wire boundary segment adapts to
changes in the free point (cursor position) by latching onto more
and more of an object boundary. Specifically, note the live-wire seg-
ments corresponding to user-specified free point positions at times
to, t1, andt,. Although Fig. 2 only shows live-wire segments for
three discrete time instances, live-wire segments are actually
updated dynamically and interactively (on-the-fly) with each move-
ment of the free point.

When movement of the free point causes the boundary to digress
from the desired object edge, interactive input of a new seed point
prior to the point of departure reinitiates the 2-D DP boundary
detection. This causes potential paths to be recomputed from the
new seed point while effectively “tying off” the boundary computed
up to the new seed point.

Note again that optimal paths are computed from the seed point
to all points in the image (since the 2-D DP graph search produces
a minimum cost spanning tree of the image [6]). Thus, by selecting
a free point with the mouse cursor, the interactive live-wire tool is
simply selecting an optimal boundary segment from a large collec-
tion of optimal paths.

Static Cost Map Dynamic Cost Map

Gradient Magnitude Gradient Magnitude

© (d)

Figure 4: Comparison of live-wire (a) without and (b) with dynamic
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Since each pixel (or free point) defines only one optimal path to
a seed point, a minimum of two seed points must be placed to
ensure a closed object boundary. The path map from the first see
point of every object is maintained during the course of an object’s
boundary definition to provide a closing boundary path from the
free point. The closing boundary segment from the free point to the

training. (a) Without training, the live-wire segment snaps to nearby
strong edges. (b) With training, it favors edges with similar characteris-
tics as those just learned. (c) The static gradient magnitude cost map
shows that without training, high gradients are favored since they map
to low costs. However, with training, the dynamic cost map (d) favors
gradients similar to those sampled from the previous boundary segment.

first seed point expedites boundary closure. the boundary is forced to pass through the seed points). To facilitate
Placing seed points directly on an object's edge is often difficult seed point placement, a cursor snap is available which forces the

and tedious. If a seed point is not localized to an object edge themmouse pointer to the maximum gradient magnitude pixel within a

spikes results on the segmented boundary at those seed points (singger specified neighborhood. The neighborhood can be anywhere

' v ' v from 1x1 (resulting in no cursor snap) toX% (where the cursor
ranual

can snap as much as 7 pixels in botindy). Thus, as the mouse
cursor is moved by the user, it snaps or jumps to a neighborhood
pixel representing a “good” static edge point.
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Figure 3: Comparison of live-wire without (a) and with (b) cooling.
Without cooling (a), all seed points must be placed manually on the
object edge. With cooling (b), seed points are generated automatically
as the live-wire segment freezes.

(b)

3.4. Path Cooling

Generating closed boundaries around objects of interest can
require as few as two seed points (for reasons given previously).
Simple objects typically require two to five seed points but complex
objects may require many more. Even with cursor snap, manual
placement of seed points can be tedious and often requires a large
portion of the overall boundary definition time.



Automatic seed point generation relieves the user from preciseclosest portion of the current defined object boundary. A training
manual placement of seed points by automatically selecting a pixellength,t, specifies how many of the most recent boundary pixels are
on the current active boundary segment to be a new seed pointused to generate the training statistics. A monotonically decreasing
Selection is based on “path cooling” which in turn relies on path weight function (either linearly or Gaussian based) determines the
coalescence. Though a single minimum cost path exists from eactcontribution from each of the closegtixels. This permits adaptive
pixel to a given seed point, many paths “coalesce” and share portraining with local dependence to prevent trained feature from
tions of their optimal path with paths from other pixels. Due to Bell- being too subject to old edge characteristics. The closest pixel (i.e.,
man’s Principle of Optimality [3], if any two optimal paths from the current active boundary segment end point) gets a weight of 1
two distinct pixels share a common point or pixel, then the two and the point that ispixels away, along the boundary from the cur-
paths are identical from that pixel back to the seed point. This is par+ent active end point, gets a minimal weight (which can be deter-
ticularly noticeable if the seed point is placed near an object edgemined by the user). The training algorithm samples the
and the free point is moved away from the seed point but remains irprecomputed feature maps along the clagaigels of the edge seg-
the vicinity of the object edge. Though a new optimal path is ment and increments the feature histogram element by the corre-
selected and displayed every time the mouse cursor moves, theponding pixel weight to generate a histogram for each feature
paths are typically identical near the seed point and object edgesnvolved in training.

and only change local to the free point. As the free point moves ffar- After sampling and smoothing, each feature histogram is then
ther and farther away from the seed point, the portion of the activegcgied and inverted (by subtracting the scaled histogram values

live-wire boundary segment that does not change becomes longekyom its maximum value) to create the feature cost map needed to
New seed points are generated at the end of a stable segment (i.€.gnvert feature values to trained cost functions.

that has not changed recently). Stability is measured by time (in

milliseconds) on the active boundary and path coalescence (number_SiNce training is based on learned edge characteristics from the
of times the path has been redrawn from distinct free points). most recent portion of an object's boun_dary, training Is most effep-
tive for those objects with edge properties that are relatively consis-

This measure of stability provides the live-wire segment with a (g along the object boundary (or, if changing, at least change
sense of “cooling”. The longer a pixel is on a stable section of the gmqothly enough for the training algorithm to adapt). In fact, train-
live-wire boundary, the cooler it becomes until it eventually freezes ing can be counter-productive for objects with sudden and/or dra-
and automatically produces a new seed point. matic changes in edge features. However, training can be turned on

Figure 3 illustrates the benefit of path cooling. In Fig. 3(a), the and off interactively throughout the definition of an object boundary
user must place each seed point manually on the object boundaryso that it can be used (if needed) in a section of the boundary with
However, with cooling (Fig. 3(b)), only the first seed point (and last similar edge characteristics and then turned off before a drastic
free point) need to be specified manually; the other seed points werehange occurs.
generated automatically via cooling.

3.6 Comparison with Snakes

3.5. Interactive Dynamic Training Due to the recent popularity of snakes and other active contours
On occasion, a section of the desired object boundary may havenodels and since the interactive boundary wrapping of the live-wire

a weak gradient magnitude relative to a nearby strong gradientmay seem similar to the “wiggling” of snakes, we highlight what

edge. Since the nearby strong edge has a relatively lower cost, theve feel are the similarities and their corresponding differences

live-wire segment snaps to the strong edge rather than the desireletween snakes and Intelligent Scissors.

weaker edge. This can be seen in Fig. 4(a). The desired boundary is

the woman’s (Harriet's) cheek. However, since part of it is so close Similarities (compare with correspondingfdiences belw):

to the high contrast shoulder of the man (Ozzie), the live-wire snapsy . The gradient magnitude cost in Intelligent Scissors is similar to
to the shoulder. the edge energy functional used in snakes.

Training allows dynamic adaptation of the cost function based on2_Both methods employ a smoothing term to minimize the effects
a sample boundary segment. Training exploits an object's bound- of noise in the boundary.

ary segment that is already considered to be good and is performe . . .

dynamically as part of the boundary segmentation process. As a?' Snakes and live-wire boundaries are both attracted towards
- ; . . strong edge features.

result, trained features are updated interactively as an object bound- i ) ) ]

ary is being defined. On-the-fly training eliminates the need for a4. Both techniques attempt to find globally optimal boundaries to

separate training phase and allows the trained feature cost functions try to overcome the effects of noise and edge dropout.

to adaptwithin the object being segmented as well as between 5. Snakes and Intelligent Scissors both require interaction as part of

objects in the image. Fig. 4(b) demonstrates how a trained live-wire the boundary segmentation process.

segment latches onto the edge that is similar to the previous training

segment rather that the nearby stronger edge. Differences (compare with corresponding similaritiesvajio

To facilitate training and trained cost computation, a gradient 1. The laplacian zero-crossing binary cost feature seems to have not
magnitude feature map or image is precomputed by scaling the been used previously in active contours mode@s DP bound-
minimized gradient magnitude imad®', into an integer range of ary tracking methods for that matter).

sizeng (i-e., from 0 tag - 1). The actual feature cost is determined 5 The active contour smoothing term is internal (i.e., based on the
by mapping these feature values through a look-up table which con- ¢ontour's point positions) whereas the smoothing term for live-

tains the scaled (weighted) cost for each value. Fig 4(c) illustrates yire houndaries is computed from external image gradient direc-
edge cost based on gradient magnitude without training. Note that  5,2(next page)

with training (Fig. 4(d)) edge cost plummets for gradients that are
specific to the object of interest’s edges.

i Selec_tlon of _a “QOOd_” bou_ndary segment for _tr_ammg is made 1. Kass et al. [8] did use a squared laplacian energy functional to show the rela-
interactively using the live-wire tool. To allow training to adapt to tionship of scale-space continuation to the Marr-Hildreth edge detection theory. How-

i ot ; iever, the squared laplacian does not represent a binary condition, nor could it since the
slow (OI’ SmOOth) Changes, n gdge characteristics, the trained gradlvariational calculus minimization used in [8] required that all functionals be differen-
ent magnitude cost function is based only on the most recent otiable.




3. Snakes are typically attracted to edge features only within thelution of the image. This may produce jaggies along object bound-
gravity of an edge’s gradient energy valley whereas the live-wire aries in a resulting composition. However, subpixel accuracy can be
boundary can snap to strong edge features from arbitrary dis-obtained by exploiting the signed output of the laplacian operator.
tances (since the 2-D DP’s search window is the entire image). That is, the position of the object edge can be estimated to subpixel

4. Snakes are globally optimal over the entire contour whereas live-2cCuracy by using a (linearly) weighted combination of the lapla-
wire boundaries are piece-wise optimal (i.e., optimal between cian pixel values on either side of the zero-crossings.
seed points). We feel this creates a desirable balance between Since the live-wire boundary will not always correspond to a
global optimality and local control. This piece-wise optimality zero-crossing, jaggies can also be reduced by appropriate edge fil-
also allows for path cooling and intra-object on-the-fly training. tering, similar to anti-aliasing. Edge filtering is also desirable

5. Finally, snakes refine (and interactively “nudge” by placing because real world images are acquired using finite image detectors
springs, etc.) a single rough boundary approximation where thee_md, asa result, pixels on or near an object boundary share informa-
live-wire tool interactivelyselectsan optimal boundary segment  tion (i.e., color) from the object and the background.
from potentiallyall possible minimum cost paths. One approach to edge filtering is to perform a local post-smooth-

ing of the image around the pasted object boundary. However, this

Interactive optimal 2-D path selection is what makes Intelligent does not account for the fact that the edge pixels of the cut object

Scissors work and is the key difference between Intelligent Scissorsyery likely contain some background information from the original

and all previous techniques. Snakes are interactively initialized withimage. This is most noticeable when an object is composited into a

an approximate boundary contour (often requiring several manuallyscene with a different background color than the object’s original

placed points); this single contour is then iteratively adjusted in anbackground color. A more general solution would determine how
attempt to minimize an energy functional. The live-wire tool, on the much of each edge pixel corresponds to the actual object color and
other hand, is interactively initialized with just a single seed point weight them accordingly when combining into another image.

and it then generates, at interactive speeds, all possible optimal

paths from the seed point éweryother point in the image, thus, 4.2. Spatial Frequency and Contrast Matching

allowing the user to interactively select the desired optimal bound-  gnce the object of interest has been segmented from the sur-

ary segment. As a result, Intelligent Scissors typically require 1€sSyq nging background we can scale it, rotate it, color it, or paste it

time and effort to segment an object than it takes to manually inputonto another (destination) image. When pasting, it is desirable to
an initial approximation to the object boundary. perform image composition “seamlessly” in order to make it believ-
Actually, the live-wire tool is much more similar to previous able. That is, we should not be able to detect where the paste
stage-wise optimal boundary tracking approaches than it is tooccurred. However, the source and the destination images will often
snakes, since Intelligent Scissors were developed as an interactiveave differing spatial frequencies or contrast due to differences in
2-D extension to previous optimal edge tracking methods ratherfocus or lighting when the images were acquired. Thus, equivalenc-

than an improvement on active contours. ing of spatial frequencies and normalization of contrast is some-
times desirable in order to produce a convincing composition.
4. Image Composition with Intelligent Scissors Equivalencing of spatial frequencies is performed by matching

As mentioned, composition artists need an intelligent, interactive the spectral content of the cut piece and the destination image in the
tool to facilitate image component boundary definition. Since Intel- Vicinity where it is to be pasted. Convincing composition often
ligent Scissors can quickly segment object from an image, it served€duires the spectra of the object and the destination image to
as a tool for cut and paste operations. After object boundaries hav&atch. This is accomplished by low-pass filtering the spectrum
been extracted, object can be copied from the image and placed int¥/ith the higher frequency content to match that of the other. The

a buffer (i.e., clipboard) for future processing and placement into SPectrum with the higher frequency content is determined by
another image, or the same image if desired. parameter fitting of a Butterworth low-pass filter (BLPF) to both

pectra. Parameters corresponding to the spectrum with the lower
requency content are used to low-pass filter the spectrum of the
other image.

The cut object can be transformed--i.e., rotated, scaled, an
translated, (RST)--before combination with the destination image.
This is done using an interactive graphical tool with “handles” for L
RST control. The tool specifies a 2-D RST transformation matrix, The BLPFB(u, v, do, n) is given by

M. The source image is then bilinearly interpolated through the 1
matrix to paste the cut object into the destination image. B(u v ¢ n) = — (3)
Image composition often requires blending an object from one 1+ [—““;q
0

image into another image such that the cut-out object is not in the
foreground. This requires the composition artist to “slip” the cut-
out object behind some scene components while leaving it in frontwheredy is the distance of the cutoff frequency from the origin and
of other components. This operation can again be performed using is the filter order.

the live-wire tool to create a composition maskcene components  Equivalencing of spatial frequencies is performed by first com-
can be cut out of an image to create a mask such that any additionguting the Fourier transform&(u, v) andl(u, v) of the source image
or changes to the scene will not affect masked pixels. S(x, y) and the destination imagg, y). We then compute the log
o power spectra(u, v) andi(u, v):
4.1. Edge Filtering 5
As described, live-wire boundaries are limited by the pixel reso- s(u V) = log[S(u V] 3)
. 2
i(u,v) = log[l(u, V)]

2. Admittedly, the gradient direction cost used in Intelligent Scissors is more ; ;
susceptible to noise in areas of low contrast (since it computes a smoothness cost By varying the two parameted@ andn, a least squares fit can be

based only on two points and one link). However, it is possible to extend the gradient used to create a normalized Butterworth figéu, v, dy', n') (where
direction term to include 3 pixels and 2 links without significant loss of computational dO' andn' are the fit parameters) matched to the spatial frequency
efficiency. - . . .

1. Similar in concept to an optical mask used in motion picture special effects. Characteristics of(u, v). If i(u, v) demonstrates lower spatial fre-



guency content thasfu, v), the spatial frequencies between the two
images can be equivalenced by fittB@, v, dy’, n") to s(u, v). The
equivalenced result using the inverse Fourier transform

S(xy) = FB(u v dy, n') (5(u V]

Previously, dynamic programming approaches to boundary
detection were typically computationally expensive. However, by
formulating DP as a graph search and restricting the local costs to
integer values within a range, the 2-D DP algorithm can take advan-
tage of an QX)) sort forN points. As mentioned, adding points to
the sorted active list and removing points from it requires constant
time. As a result, the algorithm’s computational complexityNor
image pixels is QX). This can be seen by examining the algorithm

®)

is then pasted onigx, y). Prior to pasting, the colors in the source
image are scaled to the rangd(@fy) to account for differences in

contrast. in a worst case situation. As a pixel is removed from the active list,
it is expanded by computing the cumulative cost to all of its neigh-
5. Results bors that have not already been expanded. In the worst case, a pixel

) . . ) ) has its cumulative cost computed by all of its 8 neighbors, resulting
Figures 5, 6, and 7 show the boundaries defined using Intelligent, g cymulative cost computations fot pixels. Obviously, not
Scissors on a variety of image types. Fig. 5 is an artificial test imagegyery point can be expanded after all of its neighbors have. Except
that exhibits gaussian edge blurring and point noise typical of SOmeq the seed point, every point that has a cumulative cost must have
imaging hardware. Fig. 6 is the desktop scene used in Figures 2t |ga5t one neighboring point that has already been expanded. Thus
and 3. Fig. 7 (a CT image of a lumbar spine) demonstrates the livene cymulative cost is not recomputed for those neighbors. In short,

wire's application to medical imaging. The boundary definition

times (for a trained user) for each displayed object boundary are;

given in the caption of each respective figure.
Figure 8 graphically compares the live-wire boundary definition

times and boundary accuracy with manual tracing. These results
show the average time and accuracy from a study where 8 untraine
users were asked to define the boundaries of five objects (the two

objects in Fig. 5, the paper clip holder and pocket knife in Fig. 6,
and the outer boundary of the spinal vertebrae in Fig. 7).

Figures 9(a-c) demonstrates Intelligent Scissors application to

it can be shown that at most onl{ 4umulative cost computations
re performed, resulting in ang)(algorithm.

6.Conclusions and Future Work

g Intelligent Scissors provide an accurate and efficient interactive
tool for object extraction and image composition. In fact, and in
sharp contrast to tedious manual boundary definition, object extrac-
tion using the live-wire is almost as much fun as the final result (the
composition). Intelligent Scissors are intuitive to use and can be
applied to existing black and white or color images of arbitrary

color images and show the boundaries defined using Intelligent;qmpexity. There are many rich extensions of this work, including:
Scissors for the image composition in Fig. 9(d). Objects were (1) making use of the weighted zero-crossings in the Laplacian to
scaled, rotated, and (in the case of Fig. 9(a)) flipped to produce thgyerform subpixel edge filtering and anti-aliasing, (2) use of multiple
final composition in Fig. 9(d). Note also that live-wire masking was layered (multiplane) masks, (3) making spatial frequency equiva-

performed on some of the foreground (grass).

Preprocessing requires 36 convolutions for color images (from
3x3, 5x5, 77, and %9 kernels), a gradient orientation calculation,

lencing locally adaptive, (4) varying the light source over the object
using directional gradient shading (artificial or borrowed) to pro-
vide consistent lighting in the composition, and, most importantly

a maximum gradient neighborhood search, and creation of a local5) extension of the 2-D DP graph search and application of the
cost map. For color images, we maximize feature values over theive-wire snap and training tools to moving objects and moving,

three color bands rather than averaging.
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Figure 8: Average timing and accuracy comparison between manually
traced and live-wire boundaries for 8 users. Boundary times are for
individual objects where accuracy measurements are over all objects.
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1. Each user spent a few minutes becoming familiar with the live-wire tool as
well as a manual tracing tool and then were asked to define the boundary of 5 objects
Each boundary was defined multiple times by each user with both Intelligent Scissors
and manual tracing (to also measure intra- and inter-user reproducibility--not shown).

multiplane masks for composition of image sequences.
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