
The spalign package∗

Joseph Rabinoff
rabinoff@math.gatech.edu

October 5, 2016

1 Introduction

The purpose of this package is to decrease the number of keystrokes needed to typeset
small amounts of aligned material (matrices, arrays, etc.). For instance, it is inconve-
nient to type (using the amsmath package)

\[\begin{matrix}
1 & 12 & -3 \\
24 & -2 & 2 \\
0 & 0 & 1

\end{matrix} \]

in a document where several hundred such matrices must be typeset. Of course one
can always define a macro \mat which puts its argument inside a matrix environ-
ment, but it is still necessary to type the align character & and the end-of-row control
sequence \\ many times for each matrix.

This package provides a facility for typesetting matrices, and using other alignment
environments and macros, with spaces as the alignment delimiter and semicolons (by
default) as the end-of-row indicator. So the above matrix could be produced using the
command:

\[\spalignmat{1 12 -3; 24 -2 2; 0 0 1} \]

This package also contains utility macros for typesetting augmented matrices, vectors,
arrays, and more, and is easily extendable to other situations that use alignments.

2 Usage

In §2.1 the simplified alignment format used by arguments to macros in this package is
described. In §2.2 the utility macros provided by the spalign package are presented;
these are the macros that most users will need. Section 2.3 contains the package
options. The macros designed to allow the user to adapt the spalign package to other
situations are presented in §2.4.
∗This document corresponds to the version of spalign dated 2016/10/05.

1

2.1 Alignment format

The core functionality of the spalign package is to convert spaces to alignment char-
acters ‘&’ and semicolons to end-of-row control sequences ‘\\’. This process is called
retokenization. The retokenization procedure is designed to work more or less how
one would expect. Retokenization of a string 〈text〉 proceeds as follows.

1. Spaces at the beginning and end of 〈text〉 are ignored, as are spaces at the be-
ginning and end of a line, and spaces before and after a semicolon or a comma.

2. Multiple spaces are combined into one space.

3. Spaces between non-space characters are converted to & (really, to the contents
of \spalignaligntab).

4. Commas (really, the contents of \spalignseparator) are also converted to
&.

5. Semicolons (really, the contents of \spalignendofrow) are converted to \\
(really, to the contents of \spalignendline).

6. Text in braces {...} is treated as a unit: the contents are not retokenized, and
the braces are preserved.

These rules are best understood by example.

Example. The command

\[\spalignmat{ 1
-2 3 ; 4
55 2^3;
\frac{1 1}2 {1
3} {1 0 1} } \]

produces




1 −2 3
4 55 23

11
2 13 101



 .

Example. The command

\[\spalignmat{ \cos\theta, \sin\theta;
-\sin\theta, \cos\theta} \]

produces
�

cosθ sinθ
− sinθ cosθ

�

.

Here the commas are necessary: TEX will not tokenize spaces following a command
sequence, so

\[\spalignmat{ \cos\theta \sin\theta;
-\sin\theta \cos\theta} \]

2

produces the (presumably unexpected) result

�

cosθ sinθ
− sinθ cosθ

�

.

Instead of commas, one could also type, for instance,

\[\spalignmat{ \cos\theta{} \sin\theta;
-\sin{\theta} \cos\theta} \]

Example. The fact that expressions between braces {...} are not retokenized allows
for arbitrarily complex entries in spalign macros—although these macros are probably
not terribly useful in such cases. The spalign macros can even be nested: for instance,

\[\spalignmat{ \spalignmat{a b; c d} \spalignmat{a' b'; c' d'};
\spalignmat{d e; f g} \spalignmat{d' e'; f' g'} } \]

produces






�

a b
c d

� �

a′ b′

c′ d ′

�

�

d e
f g

� �

d ′ e′

f ′ g ′

�






.

2.2 Utility macros

Most math-mode utility macros use the array environment internally. This can be
the vanilla LATEX array environment, or the one from the array package; it makes no
difference. All math-mode utility macros have an un-starred version and a starred
version. The un-starred version produces arrays with the delimiters defined by the
package options (see 2.3), and the starred version omits the delimiters (and the glue
between the delimiters and the array).

As the only purpose of this package is to save keystrokes, the user may want to put

\let\mat=\spalignmat
\let\amat=\spalignaugmat
\let\vec=\spalignvector

or something similar after \usepackage{spalign}. Note that \mat* will now also
be synonymous with \spalignmat*, etc.

Usage: \spalignarray {〈alignment specifier〉}{〈text〉}\spalignarray

\spalignarray* Produces a (potentially delimited) array environment, passing it 〈alignment specifier〉,
after retokenizing 〈text〉. This is exactly like the matrix environments below, except
that it is possible to specify the alignment of each column separately, add vertical bars,
etc. For example,

\[\spalignarray{l|c|r}{1 1 1; 100 100 100} \]

3

produces
�

1 1 1
100 100 100

�

.

Note that \spalignarray* simply produces an array environment surrounding the
retokenized 〈text〉.

Usage: \spalignmat [〈column alignment〉]{〈text〉}\spalignmat

\spalignmat* Produces a matrix whose columns are aligned according to the 〈column alignment〉,
after retokenizing 〈text〉. The 〈column alignment〉 is an array environment alignment
specifier for a single column (usually l, c, or r), which is used for each column. The
default is c. For example,

\[\spalignmat[l]{1 1 1; 100 100 100} \]

produces
�

1 1 1
100 100 100

�

.

Usage: \spalignvector [〈column alignment〉]{〈text〉}\spalignvector

\spalignvector* Produces a matrix with one column. Spaces, commas, and semicolons are all retok-
enized to the end-of-row control sequence ‘\\’. The 〈column alignment〉 is interpreted
as in \spalignmat; the default is c. For example,

\[\spalignvector[r]{1 100 1000} \]

produces




1
100

1000



 .

Usage: \spalignaugmatn [〈column alignment〉]{〈augmented columns〉}{〈text〉}\spalignaugmatn

\spalignaugmatn* Produces a matrix with a vertical divider located 〈augmented columns〉 from the right
side of the matrix. The 〈column alignment〉 is interpreted as in \spalignmat; the
default is r. For example,

\[\spalignaugmatn[c]{3}{1 2 3 4; 10 20 30 40} \]

produces
�

1 2 3 4
10 20 30 40

�

.

Usage: \spalignaugmat [〈column alignment〉]{〈text〉}\spalignaugmat

\spalignaugmat* This is the same as \spalignaugmatn, with 〈augmented columns〉 equal to 1. For
example,

\[\spalignaugmat{1 2 3 4; 10 20 30 40} \]

4

produces
�

1 2 3 4
10 20 30 40

�

.

Usage: \spalignaugmathalf [〈column alignment〉]{〈text〉}\spalignaugmathalf

\spalignaugmathalf* This is the same as \spalignaugmatn, with 〈augmented columns〉 equal to the largest
integer less or equal to half of the total number of columns parsed from 〈text〉. For
example,

\[\spalignaugmathalf[l]{1 2 3 4; 10 20 30 40} \]

produces
�

1 2 3 4
10 20 30 40

�

.

Usage: \spalignsys {〈text〉}\spalignsys

\spalignsys* Typesets systems of simple equations so that binary operators and relations are aligned
vertically, and variables are right-justified. This macro assumes that variables are in
odd columns and that binary operators and relations are in even columns. For exam-
ple,

\[\spalignsys{2x + y = 4; x - 3y = -17} \]

produces
§

2x + y = 4
x − 3y = −17.

Within {〈text〉} the macro \+ is defined to be an empty box with the size and spacing
of a binary operator, the macro \= is defined to be an empty box with the size and
spacing of a relation, and the macro \. is defined to be empty. (Ordinarily, the latter
two macros produce thēse accėnts, but they cannot be used in math mode.) This
allows one to deal with empty columns in an easy-to-read way: for example,

\[\spalignsys{
2x \+ \. - 3z = 1;
\. \+ 4y + z = -4}

\]

produces
§

2x − 3z = 1
4y + z = −4.

As with the matrix macros, delimiters can be changed with the package options.

Usage: \spaligntabular {〈alignment specifier〉}{〈text〉}\spaligntabular

Produces an (undelimited) tabular environment, passing it 〈alignment specifier〉,
after retokenizing 〈text〉. This macro may be used outside of math mode, and therefore
is undelimited. For example,

\spaligntabular{lrc}{a b c; aa bb cc}

5

produces
a b c
aa bb cc

2.3 Package options

The following package options can be specified as key-value pairs when the package
is loaded, as in

\usepackage[sep={,},endofrow=;]{spalign}

They can also be set directly with macros, which are described as well.

Use: Specifies the delimiters used by all matrix macros.delims

\spaligndelims Format: Must contain exactly two delimiter tokens, the first for the left delimiter, the
second for the right.

Default: delims=()

Macro: \spaligndelims{〈left-delim〉}{〈right-delim〉}

It is easier to specify \{\} as delimiters using the macro form. For example,

\[\spaligndelims\vert\vert \spalignmat{a b; c d} \]

produces
�

�

�

�

a b
c d

�

�

�

�

.

These function the same way as delims and \spaligndelims, except they applysysdelims

\spalignsysdelims only to the \spalignsys macro. The default is \spalignsysdelims\{., i.e., left
brace and no right delimiter.

Use: Specifies the glue to insert between delimiters and the internal array en-matdelimskip

\spalignmatdelimskip vironment in (un-starred) math-mode matrix macros, i.e., all math-mode
utility macros except \spalignvector.

Format: Should either be empty, or expand to a legal \hskip, \mskip, or \kern
command. (Really any sequence of tokens can be specified; they will duti-
fully be inserted between the delimiters and the array, but this behavior
may change in future versions.)

Default: matdelimskip=\,

Macro: \def\spalignmatdelimskip{〈skip〉}

Actually, an additional skip of \hskip-\arraycolsep is always added; the
effect is that if matdimskip is empty, then there is no extra space between the
outer columns of the array and the delimiters. This is how the amsmath pack-
age’s matrix environment is defined. It is this package author’s opinion that ma-
trices look better when a thin space is added between the outer columns of the array
and the delimiters. To keep the original array spacing inside the delimiters, specify
matdelimskip=\hskip\arraycolsep.

6

Here are four matrices typeset, respectively, with matdelimskip set to {}, \,,
\;, and {\hskip\arraycolsep}.

�

10 20
30 40

� �

10 20
30 40

� �

10 20
30 40

� �

10 20
30 40

�

These function the same way as matdelimskip and \spalignmatdelimskip, ex-vecdelimskip

\spalignvecdelimskip cept they apply only to the \spalignvector macro. The default is no extra skip in
vectors, i.e., vecdelimskip={}.

These function the same way as matdelimskip and \spalignmatdelimskip, ex-sysdelimskip

\spalignsysdelimskip cept they apply only to the \spalignsys macro. The default is sysdelimskip=\,.
Actually there is a slight difference: the \halign primitive used in the \spalignsys

macro does not put glue on the outsides of the columns, so that it is unnecessary to
subtract any \arraycolsep glue.

Use: Specifies the amount of glue between columns in \spsysalign.systabspace

\spalignsystabspace Format: Must be a legal glue specification.
Default: systabspace=1pt

Macro: \spalignsystabspace=〈glue〉

Equations with operators, relations, and variables all aligned look a better with
a bit of extra spacing between these three. Setting systabspace to zero will cause
the equations to use their natural spacing, subject to the alignment. For example, the
following systems of equations were typeset, respectively, with systabspace set to
0pt, 1pt, and 5pt.

§

2x + y = 4
x − 3y = −17

§

2x + y = 4
x − 3y = −17

§

2x + y = 4
x − 3y = −17.

Use: Specifies the token to convert into the end-of-row control sequence \\ (re-endofrow

\spalignendofrow ally into the contents of \spalignendline) during retokenization.
Format: Must consist of a single token.
Default: endofrow=;

Macro: \def\spalignendofrow{〈token〉}

For example,

\[\def\spalignendofrow{|}
\spalignmat{1;2 3;4 | 5;6 7;8} \]

produces
�

1; 2 3; 4
5; 6 7; 8

�

.

Use: Specifies a token (in addition to space tokens) to convert into the alignmentseparator

\spalignseparator

7

character ‘&’ (really the contents of \spalignseparator) during retok-
enization.

Format: Must consist of a single token.
Default: separator={,}

Macro: \def\spalignseparator{〈token〉}

For example,

\[\def\spalignseparator{|}
\spalignmat{(1,2)|(3,4);(5,6)|(7,8)} \]

produces
�

(1,2) (3, 4)
(5,6) (7, 8)

�

.

The following commands can be redefined to affect the behavior of the package,
but cannot be specified as key-value pairs when the package is loaded.

Use: The end-of-row token is replaced by the top-level expansion of this macro\spalignendline

during retokenization.
Format: May contain any tokens.
Default: \def\spalignendline{\\}

This is useful, for instance, when using spalign in conjunction with plain TEX-style
alignment macros that use \cr as the end-of-row token. See the documentation for
\spalignrun in §2.4 and the implementation of \spalignsys for examples.

Use: Spaces and the contents of \spalignseparator are replaced by the top-\spalignaligntab

level expansion of this macro during retokenization.
Format: May contain any tokens.
Default: \def\spalignaligntab{&}

This is useful, for instance, in one-column alignments. For example,

\[\def\spalignaligntab{\\} \spalignmat{12 1 2 13} \]

produces






12
1
2

13






.

The \spalignvector macro is defined in this way.

8

2.4 General macros

The following macros are meant to make it easy to make new utility macros in different
situations using spalign.

Usage: \spalignretokenize {〈text〉}\spalignretokenize

Applies the retokenization procedure to 〈text〉, and expands to the retokenized ver-
sion. For instance, \spalignretokenize{1 2; 3 4} expands to 1&2\\3&4. For
example, using the split environment from the amsmath package,

\[\begin{split}
\spalignretokenize{f_0 =1; f_1 =1; f_{n+2} =f_n+f_{n+1}}

\end{split} \]

produces

f0 = 1

f1 = 1

fn+2 = fn + fn+1.

Usage: \spalignrun {〈tokens〉}{〈text〉}\spalignrun

Applies the retokenization procedure to 〈text〉, saving the result into the token reg-
ister \spaligntoks (see below). Then executes 〈tokens〉, which presumably makes
reference to \spaligntoks. For example,

\[\def\spalignendline{\cr}
\spalignrun{\bordermatrix{\the\spaligntoks}}

{, x y; u 1 2; v 3 4} \]

produces

�

x y
u 1 2
v 3 4

�

.

Usage: \spalignenv {〈before-tokens〉}{〈after-tokens〉}{〈text〉}\spalignenv

Convenience macro that expands to

\spalignrun{〈before-tokens〉 \the\spaligntoks 〈after-tokens〉}{〈text〉}.

For example, using the align* environment from the amsmath package,

\spalignenv{\begin{align*}}{\end{align*}}%
{x =y x' =y'; z =w z' =w'.}

9

produces

x = y x ′ = y ′

z = w z′ = w′.

The 〈tokens〉 arguments of \spalignrun and \spalignenv have access to the
following registers, which are defined locally in a group inside \spalignrun and
\spalignenv.

A tokens register that contains the result of the retokenizing procedure.\spaligntoks

A count register that contains the maximum number of columns in any given row, as\spalignmaxcols

parsed by the retokenizer. This is used in \spalignmat and in the \spalignaugmat
family of macros.

3 Implementation

3.1 Options processing

1 \makeatletter
2

3 \RequirePackage{kvoptions}

With the following options, the key foo gets stored as \spalign@foo.
4 \SetupKeyvalOptions{family=spalign,prefix=spalign@}
5

6 \DeclareStringOption[()]{delims}
7 \DeclareStringOption[\{.]{sysdelims}
8 \DeclareStringOption[\,]{matdelimskip}
9 \DeclareStringOption[]{vecdelimskip}

10 \DeclareStringOption[\,]{sysdelimskip}
11 \DeclareStringOption[1pt]{systabspace}
12 \DeclareStringOption[;]{endofrow}
13 \DeclareStringOption[,]{separator}
14

15 \ProcessLocalKeyvalOptions*
16

17 \def\spaligndelims#1#2{%
18 \def\spalign@leftdelim{#1}\def\spalign@rightdelim{#2}}
19 \expandafter\spaligndelims\spalign@delims
20 \def\spalignsysdelims#1#2{%
21 \def\spalign@sysleftdelim{#1}\def\spalign@sysrightdelim{#2}}
22 \expandafter\spalignsysdelims\spalign@sysdelims
23 \let\spalignmatdelimskip=\spalign@matdelimskip
24 \let\spalignvecdelimskip=\spalign@vecdelimskip
25 \let\spalignsysdelimskip=\spalign@sysdelimskip

10

26 \newdimen\spalignsystabspace
27 \spalignsystabspace=\spalign@systabspace
28 \let\spalignendofrow=\spalign@endofrow
29 \let\spalignseparator=\spalign@separator
30 \def\spalignendline{\\}
31 \def\spalignaligntab{&}

3.2 Main retokenizing code

The retokenizer processes the input token list one “item” at a time, performing re-
placements as necessary, and saving the resulting tokens in \spaligntoks. The
difficulties arise because of the special treatment that TEX gives to spaces and braces.
First let’s review the rules of the game:

1. Spaces after a control sequence are not tokenized.

2. Multiple spaces are tokenized into a single space.

3. Space tokens between a control sequence and its argument are ignored: unde-
limited spaces are never interpreted as a macro argument.

4. Braces around a macro argument are stripped.

5. The \futurelet〈control sequence〉〈token1〉〈token2〉 syntax will \let the spec-
ified 〈control sequence〉 be 〈token2〉, nomatter what kind of token 〈token2〉 is.

Consider then a macro \retokenize#1{...} and the token sequence

\retokenize {\bf a}b

The \retokenize macro needs to recognize both the space (as it should be replaced
by an align token, if other non-space tokens have just been processed), and the braces
(so {\bf a}b is not replaced by \bf ab). However, the argument to \retokenize
will be \bf a; the space and braces are ignored.

The solution, of course, is judicious use of \futurelet. (One could conceivably
use \let and \futurelet exclusively, except then one would have the opposite
problem: we want the retokenizer to swallow whole arguments in braces.) This is
still somewhat tricky:

\futurelet\next\retokenize {\bf a}b

will expand \retokenize with the argument set to \bf a and \next behaving like
, but the braces will still disappear. Hence one has to use the \futurelet in a

macro which does not take any arguments.
Here is the outline of the solution to the problem used in this package. The

\spalign@gobble@spaces macro has the effect of deleting the subsequent se-
quence of space tokens and replacing them with the token \spalign@parsetoks. It
sets \spalign@saw@spacetrue if it ate at least one space token, and in any case it
sets \spalign@nexttok to the following token. The \spalign@parsetoks macro
takes one argument. When it is executed, \spalign@nexttok represents a non-
space token. Now \spalign@parsetoks knows if the token beginning its argu-
ment is a brace, and it knows if there was a space preceding the brace as well, using

11

\ifspalign@saw@space. It can proceed to parse its argument in a straightforward
manner, eventually expanding back into \splign@gobble@spaces, unless it sees
\spalign@end, which signifies the end of input.

See Appendix D in the TEXbook for a discussion of these kinds of tricks.

\spalign@makespace This macro expands to a single space token. It is mildly tricky to construct, since TEX
allows one optional space token after \let\foo or \let\foo=, but multiple spaces
are combined into one space token. Here is one trick for producing two consecutive
space tokens. See Exercise 24.6 in the TEXbook.
32 \begingroup
33 \def\\{\global\let\spalign@space= } \\ %
34 \endgroup

\spalign@end Sentinel macro that is used to mark the end-of-input for \spalign@parsetoks.
Defining it recursively like this has the disadvantage that LATEX will hang if it tries
to expand \spalign@end. On the other hand, one can test whether a token is
\spalign@end using \ifx without using some other sentinel expansion of the
macro, and the only reason \spalign@end would be executed is if there is a bug
in this package.
35 \def\spalign@end{\spalign@end}

\spalign@bgroup This is just used to test whether a token is a literal \bgroup (as opposed to an actual
open brace {) using \ifx.
36 \def\spalign@bgroup{\bgroup}

\spalign@curcols This counter keeps track of how many columns are in the current row.
37 \newcount\spalign@curcols

\ifspalign@ignorespaces Boolean variable which keeps track of whether spaces should be ignored in the current
state, like after an end-of-row token.
38 \newif\ifspalign@ignorespaces

\ifspalign@saw@space Boolean variable which is true if the argument to \spalign@parsetoks was pre-
ceded by at least one space token.
39 \newif\ifspalign@saw@space

\spalign@gobble@spaces This macro has the effect of deleting any subsequent space tokens, replacing them with
\spalign@parsetoks. It sets \spalign@nexttok to the next (non-space) token,
and sets \spalign@saw@spacetrue if it ate at least one space. The boolean vari-
able \ifspalign@saw@space should be false before \spalign@gobble@spaces
is first executed.

The macro \spalign@gobble@next has the effect of replacing the following
token with \spalign@gobble@spaces.
40 \def\spalign@gobble@next{%
41 \afterassignment\spalign@gobble@spaces\let\spalign@atoken= }
42 \def\spalign@check@space{%
43 \ifx\spalign@nexttok\spalign@space%

12

44 \spalign@saw@spacetrue%
45 \let\spalign@next=\spalign@gobble@next%
46 \else%

Don’t set \spalign@saw@spacefalse here: eventually we will run into a non-space
token.
47 \let\spalign@next=\spalign@parsetoks%
48 \fi%
49 \spalign@next%
50 }
51 \def\spalign@gobble@spaces{%
52 \futurelet\spalign@nexttok\spalign@check@space}

\spalign@append Convenience macro that appends its argument, unexpanded, onto the token register
\spaligntoks.
53 \def\spalign@append#1{%
54 \begingroup%
55 \toks255={#1}%

The \edef and \xdef macros do not expand tokens obtained by expanding a token
register.
56 \xdef\spalign@settok{%
57 \spaligntoks={\the\spaligntoks\the\toks255}}%
58 \endgroup%
59 \spalign@settok%
60 }

\spalign@addcol Convenience macro to take care of housekeeping when an align column has been
parsed but the row is not complete. Note that it appends the top-level expansion of
\spaligntab to \spaligntoks, not the token \spaligntab itself.
61 \def\spalign@addcol{%
62 \expandafter\spalign@append\expandafter{\spalignaligntab}%
63 \advance\spalign@curcols by 1 %
64 }

\spalign@endrow Convenience macro to take care of housekeeping when a row has been ended, either
by an end-of-row token or an end-of-input token.
65 \def\spalign@endrow{%
66 \advance\spalign@curcols by 1 %
67 \ifnum\spalign@curcols>\spalignmaxcols%
68 \spalignmaxcols=\spalign@curcols%
69 \fi%
70 \spalign@curcols=0%
71 \spalign@ignorespacestrue%
72 }

\spalign@normaltok Convenience macro to take care of housekeeping when a non-special token (not a
space, end-of-row token, separator token, or end-of-input token) has been parsed.
The boolean variable \ifspalign@saw@space will be true if the token preceding
the non-special token was a space.

13

73 \def\spalign@normaltok{%
74 \ifspalign@saw@space%
75 \ifspalign@ignorespaces%
76 \else%
77 \spalign@addcol%
78 \fi%
79 \fi%
80 \spalign@ignorespacesfalse%
81 }

\spalign@parsetoks This is the main retokenizing routine. It is only called by \spalign@gobble@spaces.
When it is expanded, \spalign@nexttok is the token that immediately follows the
\spalign@parsetoks token itself; this is not a space. The value of the boolean
variable \ifspalign@saw@space is true if there was a space before the argument
of \spalign@parsetoks in the token list.
82 \def\spalign@parsetoks#1{%
83 \let\spalign@next=\spalign@gobble@spaces%

This is for \ifx comparisons:
84 \def\spalign@arg{#1}%

Anything in braces is passed through untouched:
85 \ifx\spalign@nexttok\bgroup%
86 \spalign@normaltok%
87 \ifx\spalign@arg\spalign@bgroup%

The argument is a literal \bgroup, not a brace.
88 \spalign@append{#1}%
89 \else%

Re-wrap the argument in braces and append.
90 \spalign@append{{#1}}%
91 \fi%
92 \else%

The argument is not wrapped in braces.
93 \ifx\spalign@arg\spalignendofrow%

End-of-row token. Append the top-level expansion of \spalignendline. (Ignore
previous spaces.)
94 \expandafter\spalign@append\expandafter{\spalignendline}%
95 \spalign@endrow%
96 \else%
97 \ifx\spalign@arg\spalignseparator%

Separator token. (Ignore previous spaces.)
98 \spalign@addcol%
99 \spalign@ignorespacestrue%

100 \else%
101 \ifx\spalign@arg\spalign@end%

14

End-of-input token. End the current row to record \spalign@maxcols. (Ignore
previous spaces.)

102 \let\spalign@next=\relax%
103 \spalign@endrow%
104 \else%

Non-special token.
105 \spalign@normaltok%
106 \spalign@append{#1}%
107 \fi%
108 \fi%
109 \fi%
110 \fi%

Reset \ifspalign@saw@space for the next \spalign@gobble@spaces.
111 \spalign@saw@spacefalse%
112 \spalign@next%
113 }

\spalign@process This is a wrapper for \spalign@parsetoks. It initializes registers and boolean vari-
ables, then starts the parsing routine with \spalign@gobble@spaces. It should be
run in a local group. It stops processing at \spalign@end. It fills \spalignmaxcols
and \spaligntoks with the results of the retokenization. It replaces everything in
the token list up through \spalign@end with \relax.

114 \def\spalign@process{%
115 \spaligntoks={}%
116 \spalignmaxcols=0%
117 \spalign@curcols=0%
118 \spalign@ignorespacestrue%
119 \spalign@saw@spacefalse%
120 \spalign@gobble@spaces%
121 }

3.3 Poor man’s starred commands

There are several excellent packages that allow for flexible command specifications.
However, the needs of this package are minimal as regards starred commands, so in
order to reduce dependencies, this package contains its own simple implimentation.

\ifspalign@star Boolean variable which records whether or not the current command has a star on it.
122 \newif\ifspalign@star

\spalign@def@star Used like \def, the command \spalign@def@star\foo{...} defines a macro
\foowhich can be called as \foo or \foo*. In the body of \foo, the boolean variable
\ifspalign@star indicates whether the command was called with a star.

This command actually defines three commands: \foo, \foo@x, and \foo@star.
The first calls the second with \spalign@nexttok defined via \futurelet to the
token following \foo. The command \foo@x checks whether or not the next token
is a star, and if it is, it is removed from the token list. It then sets \ifspalign@star

15

appropriately and calls \foo@star, which contains the original command definition.
Of course, \foo@star can then be redefined, for instance using \newcommand, to
take advantage of LATEX’s optional argument parsing.

123 \def\spalign@gobble@one#1{}
124

125 \def\spalign@def@star#1{%

If #1 is \foo, then \spalign@cmd expands to \foo, \spalign@cmd@x expands to
\foo@x, and \spalign@cmd@star expands to \foo@star.

126 \def\spalign@cmd{#1}%
127 \edef\spalign@cmd@x{%
128 \csname\expandafter\spalign@gobble@one\string#1@x\endcsname}%
129 \edef\spalign@cmd@star{%
130 \csname\expandafter\spalign@gobble@one\string#1@star\endcsname}%

Make \foo@x unexpandable. (The \csname...\endcsname construction already
does this, but only if \foo@xwas previously undefined.) This makes it easier to define
\foo.

131 \expandafter\let\spalign@cmd@x=\relax
132 \expandafter\edef\spalign@cmd{%
133 \futurelet\noexpand\spalign@nexttok\spalign@cmd@x}%

I don’t know a less annoying but still short way of defining a token list where only one
token in the middle is to be expanded, and that one token only once (not recursively).

134 \def\spalign@mkcmd##1{%
135 \expandafter\def\spalign@cmd@x{%
136 \ifx\spalign@nexttok*%
137 \spalign@startrue%
138 \let\spalign@next=\spalign@gobble@one%
139 \else%
140 \spalign@starfalse%
141 \def\spalign@next{}%
142 \fi%

Expanding \spalign@gobble@one before ##1 (which is \foo@star) eats the star
before parsing the arguments for \foo@star.

143 \expandafter##1\spalign@next%
144 }%
145 }%
146 \expandafter\spalign@mkcmd\spalign@cmd@star%
147 \expandafter\def\spalign@cmd@star%
148 }

3.4 General macros

Here are the definitions of the macros presented in §2.4.
149 \newtoks\spaligntoks
150 \newcount\spalignmaxcols

16

\spalignrun Calls \spalign@process on #2, then inserts #1, in a group. Presumably #1 will
refer to \spaligntoks and/or \spalignmaxcols.

151 \def\spalignrun#1#2{%
152 \begingroup%
153 \spalign@process#2\spalign@end%
154 %\showthe\spaligntoks% For debugging
155 #1%
156 \endgroup%
157 }

\spalignenv This effectively calls \spalign@process on #3, then puts the resulting token
list between #1 and #2. Both #1 and #2 have access to \spaligntoks and
\spalignmaxcols.

158 \def\spalignenv#1#2{%
159 \spalignrun{%
160 #1%
161 \the\spaligntoks%
162 #2%
163 }%
164 }

\spalignretokenize This calls \spalign@process on #1, then expands to \the\spaligntoks.
165 \def\spalignretokenize#1{%
166 \begingroup%
167 \spalign@process#1\spalign@end%
168 \expandafter\endgroup\the\spaligntoks%
169 }

\spaligntabular Tabular utility macro.
170 \def\spaligntabular#1#2{%
171 \begin{tabular}{#1}\spalignretokenize{#2}\end{tabular}}

\spalign@maybedelim This is like \spalignenv, but it adds delimiters and the glue specified in #3 before
#1 and after #2, if \ifspalign@star is false.

172 \def\spalign@maybedelim#1#2#3{%
173 \spalignenv%
174 {\ifspalign@star\else\left\spalign@leftdelim#3\fi#1}%
175 {#2\ifspalign@star\else#3\right\spalign@rightdelim\fi}%
176 }

\spalignarray Array utility macro with delimiters.
177 \spalign@def@star\spalignarray#1{%
178 \spalign@maybedelim%
179 {\begin{array}{#1}}%
180 {\end{array}}%
181 {\hskip-\arraycolsep\spalignmatdelimskip}%
182 }

17

\spalignvector Vector utility macro: an array with one column, with \spaligntab set to \\ so that
spaces produce new rows.

183 \spalign@def@star\spalignvector{}
184 \renewcommand\spalignvector@star[2][c]{%
185 \begingroup%
186 \def\spalignaligntab{\\}%
187 \spalign@maybedelim%
188 {\begin{array}{#1}}%
189 {\end{array}}%

Note the use of \spalignvecdelimskip here.
190 {\hskip-\arraycolsep\spalignvecdelimskip}%
191 {#2}%
192 \endgroup%
193 }

\spalign@repeat Sets \spalign@repeated to #1, repeated #2 times. Used for auto-constructing
array alignment specifications from \spalignmaxcols.

194 \def\spalign@repeat#1#2{%
195 \begingroup%
196 \count255=0 %
197 \toks255={}%
198 \loop\ifnum\count255<#2%
199 \edef\spalign@settok{\toks255={\the\toks255 #1}}%
200 \spalign@settok%
201 \advance\count255 by 1 %
202 \repeat%
203 \xdef\spalign@repeated{\the\toks255}%
204 \endgroup
205 }

\spalignmat Matrix utility macro. Uses \spalignmaxcols and \spalign@repeat to construct
the array align specification.

206 \spalign@def@star\spalignmat{}
207 \renewcommand\spalignmat@star[1][c]{%
208 \spalign@maybedelim{%
209 \spalign@repeat{#1}{\spalignmaxcols}%
210 \edef\spalign@barray{\noexpand\begin{array}{%
211 \spalign@repeated}}%
212 \spalign@barray%
213 }{\end{array}%
214 }{\hskip-\arraycolsep\spalignmatdelimskip}%
215 }

\spalignaugmatn Augmented matrix with #2 columns on the right of the vertical bar. Uses \spalignmaxcols
and \spalign@repeat to construct the array align specification.

216 \spalign@def@star\spalignaugmatn{}
217 \renewcommand\spalignaugmatn@star[2][r]{%
218 \spalign@maybedelim{%

18

219 \advance\spalignmaxcols by -#2 %
220 \spalign@repeat{#1}{\spalignmaxcols}%
221 \let\spalign@repeated@one=\spalign@repeated%
222 \spalign@repeat{#1}{#2}%
223 \let\spalign@repeated@two=\spalign@repeated%
224 \edef\spalign@barray{\noexpand\begin{array}{%
225 \spalign@repeated@one|\spalign@repeated@two}}%
226 \spalign@barray%
227 }{\end{array}%
228 }{\hskip-\arraycolsep\spalignmatdelimskip}%
229 }%

\spalignaugmat Augmented matrix with one column on the right of the vertical bar.
230 \spalign@def@star\spalignaugmat{}
231 \renewcommand\spalignaugmat@star[1][r]{%
232 \spalignaugmatn@star[#1]{1}%
233 }%

\spalignaugmathalf Augmented matrix with (ceiling of) half the columns on the right.
234 \spalign@def@star\spalignaugmathalf{}
235 \renewcommand\spalignaugmathalf@star[1][r]{%
236 \spalign@maybedelim{%
237 \count255=\spalignmaxcols%
238 \divide\spalignmaxcols by 2 %
239 \advance\count255 by -\spalignmaxcols%
240 \spalign@repeat{#1}{\spalignmaxcols}%
241 \let\spalign@repeated@one=\spalign@repeated%
242 \spalignmaxcols=\count255%
243 \spalign@repeat{#1}{\spalignmaxcols}%
244 \let\spalign@repeated@two=\spalign@repeated%
245 \edef\spalign@barray{\noexpand\begin{array}{%
246 \spalign@repeated@one|\spalign@repeated@two}}%
247 \spalign@barray%
248 }{\end{array}%
249 }{\hskip-\arraycolsep\spalignmatdelimskip}%
250 }%

\spalignsys System of equations with aligned operators and variables.
251 \spalign@def@star\spalignsys#1{%
252 \ifspalign@star\else%
253 \left\spalign@sysleftdelim\spalignsysdelimskip%
254 \fi%
255 \vcenter{%
256 \def\spalignendline{\cr}%
257 \openup1pt%
258 \tabskip=0pt%
259 \def\+{\mathbin{}}%
260 \def\={\mathrel{}}%
261 \def\.{}%
262 \halign{%

19

Adding {} to each side of the align argument in the even columns causes binary oper-
ators (+, −, . . .) and relations (=, <, . . .) to use their natural spacing. Assuming the
even columns contain only binary operators (resp. only relations), these columns will
all be the same width. The \hfil in the odd columns right-justifies. There should be
no spaces in the templates.

263 \tabskip=\spalignsystabspace%
264 &$\hfil##$&${}##{}$\cr%
265 \spalignretokenize{#1}\crcr%
266 }%

It seems that one can’t specify tabskip glue for after the last column when there are
repeated templates.

267 }\hskip-\spalignsystabspace%
268 \ifspalign@star\else%
269 \spalignsysdelimskip\right\spalign@sysrightdelim%
270 \fi%
271 }

272 \makeatother

20

