
linguex.sty Documentation

Wolfgang Sternefeld
Version 4.3 — May 2013

Abstract

linguex.sty is a LATEX-tool written for the lazy linguist. Its handling of exam-
ple numbering, indentations, indexed brackets, and grammaticality judgments
reduces the effort of formatting linguistic examples to a minimum. It also allows
for automatic extraction of a handout.

The macro runs with LATEX 2ε only and requires two additional style files:
xspace.sty from the base of and cgloss4e.sty (a modification of the midnight
gloss macro) for glosses.

The Three Basic Commands

The linguex macro defines three basic commands: \ex., \a., and \b.. The first
two generate list environments. The third functions basically like an \item.
Here is an example. Type setting

\ex. This is the first level of embedding

\a. This is the second level

\b. This is still the second level, but:

\a. This is the third level

\b. This is not the end.

\b. This is the end

will print:

(1) This is the first level of embedding

a. This is the second level
b. This is still the second level, but:

(i) This is the third level
(ii) This is not the end.
(iii) This is the end

The list environment created by \ex. must be closed by a single blank line
(a \par). The text following this list will not be indented. In order to get a
\parindent, a second blank line must be added, immediately following the first.

The commands \c., \d., \e., and \f. are equivalent copies of \b.; they
were defined to produce a kind of WYSIWYG-effect.

1

The blank line at the end of (1) simultaneously closes the three lists of
(1) (opened by \ex., \a., and the embedded \a.). To close just one of the
embedded lists (introduced by \a.) put \z. at the point of transition from level
n of the embedding to level n−1. This is exemplified by the following example:

(2) a. Government:
A governs B iff
(i) A is a governor;
(ii) A m-commands B;
(iii) no barrier intervenes between A and B

b. Governors are lexical nodes and tensed I.
(from Haegeman 1991)

This is exemplified by the following example:

\ex.\a. {\it Government:}\\

A governs B iff

\a. A is a governor;

\b. A m-commands B;

\c. no barrier intervenes between A and B

\z.

\b. Governors are lexical nodes and tensed I.

\z.

(from Haegeman 1991)

Cross References

can be handled by \label{...} and \ref{...} in the usual manner. For
example, a label between \ex. and \a. stores the main example number for
further reference; the same command following \a. or \b. stores the label of a
(sub-)subexample for further reference.

For cross references in the immediate vicinity of an example, you need not
\label the examples. \Next refers to the following example number, and
\NNext to the next but one. Reference to the previous example is provided
by \Last; the penultimate one is referred to with \LLast.

These shorthands always refer to the first level of embedding. Reference
to subexamples can only be obtained by adding an (optional) argument to the
above Next- and Last-commands. For example, saying \NNext[g-ii] right now
yields (4-g-ii). The dash between 4 and g is defined as \firstrefdash. It can
be suppressed by \renewcommand{\firstrefdash}{}.

Footnotes

Inside a footnote, the \Next-command presupposes that the next example is
still inside the footnote rather than within the main body of the document. Say
\TextNext to refer to the next example within the main text. (When you intend
to make endnotes instead of footnotes, all cross references from footnote to text
must be handled by \label{...} and \ref{...}.)

2

In case an \ex.-environment contains a footnote that contains a \par (= a
blank line — this will necessarily be the case with a footnote containing itself an
\ex.), the \par will be misinterpreted as the end of the main text example. It is
therefore necessary to split the command \footnote{...} into \footnotemark

and \footnotetext{...} (see LATEX-manual). The footnotetext must be placed
outside the \ex.-environment of the main text.

Some style files (e.g. endnote.sty) modify the definition of footnotes (as
linguex.sty itself does so in order to let \ex. know whether or not it is inside
a footnote). Such style files must be accommodated to linguex.sty by making
sure that \if@noftnote is set false at the beginning of each footnote (by saying
\@noftnotefalse in the modified footnote definition); otherwise you will get
the arabic style of example numberings (as being used in the main text) rather
than the roman numbers (being used inside footnotes).

Glosses

require cgloss4e.sty, which is input by linguex.sty. Instead of writing \gll

(as would be required by the gloss macro), one should append a ‘g’ to the last
letter of an example command, as shown below:

\ex.\a. No gloss

\bg. This is a first gloss\\

Dies ist eine erste Glosse\\

\exg. Dies ist nicht die erste Glosse\\

This is not the first gloss\\

(3) a. No gloss
b. This

Dies
is
ist

a
eine

first
erste

gloss
Glosse

(4) *Dies
This

ist
is

nicht
not

die
the

erste
first

Glosse
gloss

Using \gll still works in principle, but should be avoided, for reasons explained
in the next section.

Grammaticality Judgments

composed out of *, ?, #, and %, are automatically prefixed at the very beginning
of a new list. A standard example like (5) looks like this (to increase readability
I also removed mathmode from subscripting):

\catcode‘_=\active

\def_#1{\ifmmode\sb{#1}\else$\sb{#1}$\fi}

\exg. \%*Wen_i liebt_k seine_i Mutter t_i t_k?\\

Whom loves his mother\\

‘Who does his mother love?’

3

(5) %*Weni
Whom

liebtk
loves

seinei
his

Mutter
mother

ti tk?

‘Who does his mother love?’

Automatic prefixing implies that nothing intervenes between the list opening
command and the judgment. In particular, labels must follow the grammatical-
ity judgment! Likewise, writing \ex.\gll instead of \exg. will have the effect
of not prefixing the grammaticality judgment.

Labelled Brackets

\exi. identifies “words” by looking for space characters between them; it then
checks whether the word following a space starts with one of the brackets “[”
or “]”. The material between such a bracket and the next space character will
be subscripted. A standard example would be the following:

\exi. *[CP Wen_i [C$’$ liebt_j [IP [NP seine_i Mutter]%

[VP t_i t_j]]]]

(6) *[CP Weni [C′ liebtj [IP [NP seinei Mutter][VP ti tj]]]]

Note that above a blank space between [IP and [NP is crucial, otherwise the
bracket of [NP would be subscripted as well. Note also that a space is required
before the grammaticality judgment, otherwise the beginning of subscripting
cannot be properly identified.

As with the gloss macro, grouping suppresses subscripting. Consider the
effects of spacing and grouping in (7):

\exi.\a. [[NP Fritz][snores]]S

\b. [[NP Fritz][snores]]S

\c. [[NP Fritz][snores]]S

\d. [[NP Fritz {][}snores]]S

\e. {[[+N,--V]} Fritz][VP snores] \hfill{} [NP Structure]

\f. *[{}[+N,--V] Fritz][VP snores] \hfill [NP-Structure]

(7) a. [[NP Fritz][snores]]S
b. [[NP Fritz][snores]]S
c. [[NP Fritz][snores]]S
d. [[NP Fritz][snores]]S
e. [[+N,–V] Fritz][VP snores] [NP Structure]
f. *[[+N,–V] Fritz][VP snores] [NP-Structure]

Grouping works the same way as in the gloss macro where it protects from
glossing. E.g., a group such as {][} in (7-d) is ignored for subscripting so that
the following material is protected from automatic subscripting (but note that
something like the opposite happens in (7-e) after \hfill!).

Note that commands that look ahead and extend over more than one
word might not work properly unless two or more words are put into a

4

group. Suppose we are inside an \exi.-environment and we want to say some-
thing like \b.[Principle C]. What will happen? The space between “e”
and “C” will make the subscripting device read \b.[Principle as a “word.”
This, unfortunately, prevents the argument of \b. from being interpreted cor-
rectly. Solutions are to write \b.[Principle~C], \b.[{Principle C}], or
{\b.[Principle C]}.

Subscripting outside the \exi.-environment can be done by using \I as
shown below:

\I[NP Text =⇒ [NP Text,
\I(α Text =⇒ (α Text,
\I{α}NP Text =⇒ αNP Text,
\I{Whom}ACC does John\ldots =⇒ WhomACC does John. . .

For combining glosses with labelled brackets, say \exig. or \exgi.. Note that
although the list-generating commands \ex. and \a. can be combined in any
order, all commands that introduce automatic subscripting can be used only
at the top level, i.e. cannot be embedded!!!. Note also that n nested \ex.-
commands need n consecutive blank lines (\pars) to properly identify the end
of all lists.

Handouts

Since the surface implementation of the list environment does not use the begin-
end-format, style files that suppress printing between the end and the begin-
ning of certain environments (e.g. xcomment.sty) could unfortunately not be
adopted to produce a handout (I didn’t see a way of doing so, probably because
I didn’t understand what goes on inside xcomment.sty).

This deficiency might be compensated for by using linguho.sty, which
removes all examples and headings (of sections and subsections) from the
LATEX-document and stores them in a file whose extension is .han (namely job-
name.han). Putting \makehandout somewhere at the end of the document
(e.g. before the bibliography) will print out jobname.han at the position of
\makehandout. If \section*{...} and \subsection*{...} should also go
into the handout, say \usepackage[*]{linguho}. Use \maketitle to get the
title into the handout.

Note that all of LATEX’s \setlength and \settowidth instructions auto-
matically go into jobname.han and are executed only there. (The main body
of text before \makehandout is considered irrelevant, but I didn’t find a way
to suppress writing it into the dvi-file. Any help to solve this problem will be
appreciated; note that I am not a TEX-wizard, only a lazy linguist).

In case you have defined \active characters (e.g. Umlaut in German) these
will most likely turn out troublesome (i.e. these commands should normally be
protected). For a general solution, inspect the definition of \MkOthersSpecial
in linguho.sty. Uncommenting any of the lines there will solve the problem
for the active character contained in the respective line (sometimes it might in
addition be necessary to use t1enc.sty or germanb.sty instead of german.sty).

5

Customizing Lengths and Margins

The user may modify any of the lengths displayed in the following scheme, which
also shows their predefined default values:

(8) \Extopsep l 0.66\baselineskip

\Exindent︸ ︷︷ ︸
0pt

\Exlabelwidth \Exlabelsep︸ ︷︷ ︸
1.3em

Text...

a. Text . . .
\SubExleftmargin︸ ︷︷ ︸

2.4em

(i) Text . . .

\SubSubExleftmargin︸ ︷︷ ︸
2em

. . . text.

\Extopsep l 0.66\baselineskip

The value of \Exlabelwidth is determined by the width of the current label.
Note that for displaying the table as shown in (8), the leftmargin of the list
must be zero; accordingly, both \Exlabelwidth and \Exlabelsep were set to
zero. To restore all default values of the lenghts shown in (8) simultaneously,
say \resetExdefaults. The exact behavior of \Exlabelwidth is explained
further below. With some non standard fonts the default spacing can be defined
only \AtBeginDocument (for reasons I do not understand), therefore the default
values for the above lengths are declared \AtBeginDocument. Consequently, any
deviation from the default must be specified after \begin{document}

Some journals require a different arrangement of margins, e.g. one which
aligns the left edges of examples with the left edges of subexamples, as shown
in (9) and (10):

(9) First example:

a. Subexample1
b. Subexample2

(i) Subsubexample1 . . .

By saying \alignSubExtrue before \begin{document}, the sublabels (a. and
b. in (9)) are given a negative indentation. This is controlled by the
lengths \alignSubExnegindent and \Exlabelsep, which can be customized
by \setlength. after \begin{document}.

The spacing between two subsequent examples is defined by \Exredux, whose
default is -\baselineskip. Saying \resetExdefaults returns to all defaults
as defined below:

\newcommand{\resetExdefaults}{%

\setlength{\Exlabelsep}{1.3em}%

\setlength{\Extopsep}{.66\baselineskip}%

\setlength{\SubSubExleftmargin}{2.4em}%

\setlength{\SubExleftmargin}{2em}%

\setlength{\Exindent}{0pt}%

\setlength{\Exlabelwidth}{4em}%

6

\setlength{\alignSubExnegindent}{\Exlabelsep}%

\ifalignSubEx\addtolength{\Exlabelsep}{.7em}%

\addtolength{\alignSubExnegindent}{.7em}\fi

\setlength{\Exredux}{-\baselineskip}%

}

Customizing Labels

The labels of the examples are created by the counters ExNo, SubExNo, and
SubSubExNo for the three levels of embedding respectively; FnExNo is used for
the first level inside footnotes. These counters are the default labels of the list
items. They can be changed anywhere in the document, by using \setcounter

as usual.
There are a number of further possibilities to generate labels that differ from

the default. One is to use \a. without embedding it into \ex.. This will yield
the expected result, namely a list that uses the SubEx counter at the top-level:

a. First line
b. Second line
c. Third line

Moreover, any of the list commands can take an optional argument, whose
specification replaces the default label:

Principle C (Chomsky[81]): An R-expression is free only

α) with respect to potential binders in A-positions,
β) within the domain of its chain.

\a.[{\bf Principle C} (Chomsky{[81]}):]

An R-expression is free only

\a.[α)] with respect to potential binders

in A-positions,

\b.[β)] within the domain of its chain.

The optional argument must immediately follow “.”, so don’t leave space be-
tween \ex. or \a. and “[” !!!. By contrast, it will often be the case that an
example starts with a (labelled) bracket like [NP . If so, it is obligatory to put
a space between “.” and “[” .

As illustrated above, the topmost \a.-command picks up the \Exlabelwidth
of the preceding example. By contrast, using \ex.[{\it Principle C} ...]

instead of \a.[{\it Principle C} ...] has the effect of adjusting the inden-
tation of the following text to the width of the optional argument, as shown
below:

Principle C (Chomsky[81]): An R-expression is free only

α) with respect to potential binders in A-
positions,

7

β) within the domain of its chain.

Assuming that regular example numbers do not exceed (999), this departure
from the default behavior only occurs for optional arguments whose width ex-
ceeds that of (999).

Optional arguments can also be used to simulate other environments. E.g.,
LATEX-style itemizing at the top level can be simulated as follows:

\ex.[\hfill\bullet\hfill] Line 1

\b. Line 2

\c. Line 3

• Line 1
• Line 2
• Line 3

Temporarily redefining \alph, as shown in the following example, yields an
enumeration:

\let\oldalph=\alph\let\alph=\arabic

\a. Text 1

\b. Text 2

\c. Text 3 \global\let\alph=\oldalph

1. Text 1
2. Text 2
3. Text 3

The stylesheet of English Language and Linguistics requires examples of the
following form:

(10) [V [V brokei ∅][VP the vase [V′ ti into pieces]]]

(11) (a) It kept warm
(b) She kept it warm

Apart form specifying \alignSubExtrue before \begin{document} (11) re-
quires to redefine the brackets of sublabels, as shown below:

\renewcommand{\SubExLBr}{(}

\renewcommand{\SubExRBr}{)}

\setlength{\Exlabelsep}{2em}

\exi. [V [V broke_i \emptyset][VP the vase [V$’$ t_i into

pieces~]]]

\ex.\a. It kept warm

\b. She kept it warm

In addition, \renewcommand{\firstrefdash}{} changes cross references from
eg. (11-b) to (11b).

8

The following definitions generate the left (=L) and right (=R) environments
of example numberings in ordinary text, in footnotes, and in cross-references:

\newcommand{\ExLBr}{(}

\newcommand{\ExRBr}{)}

\newcommand{\FnExLBr}{(}

\newcommand{\FnExRBr}{)}

\newcommand{\theExLBr}{(}

\newcommand{\theExRBr}{)}

\newcommand{\theFnExLBr}{(}

\newcommand{\theFnExRBr}{)}

\newcommand{\SubExLBr}{}

\newcommand{\SubExRBr}{.}

\newcommand{\SubSubExLBr}{(}

\newcommand{\SubSubExRBr}{)}

For example, one might want to replace (10)–(11) with (10–11) by saying

{\renewcommand{\theExRBr}{}\LLast}--{\renewcommand{\theExLBr}{}\Last}

\Exlabelwidth
By default, the value of \Exlabelwidth is determined by the width of the ex-
ample numbering. More precisely, for labels between (1) and (9) the labelwidth
is by default the width of the narrowest number with two digits plus brackets;
accordingly, the actual labelwidth is a bit larger than the natural size of the
label. Digits may differ in size depending on the font in use, so the calculation
is done on the fly. Similarly, \Exlabelwidth has the width of three digits for
\theExNo’s between (10) and (99). Finally, \Exlabelwidth has the width of
four digits for example numbers between (100) and (999). For even wider labels
(usually specified by an optional argument, cf. above), the label retains its nat-
ural size. I hope that fonts are cooperative by keeping the difference between
the width of digits minimal. Otherwise you might experience weird behavior of
\Exlabelwidth

Since the space between the \Exlabelwidth and the text remains the same,
the transition from (9) to (10) and from (99) to (100) will cause a change
of indentation, which might look ugly, particularly in handouts. In order to
suppress the default behavior of \Exlabelwidth, it must be assigned a particular
length. For example, saying \settowidth{\Exlabelwidth}{(110)} will cause
the labelwidth of all examples from (1) to (99) to be identical.

Since wide labels should still retain their natural size, the user’s specifica-
tion of \Exlabelsep should not be wider than (1100), otherwise the default
mechanism is still active, and the value of \Exlabelsep is ignored. E.g., saying
\setlength{\Exlabelwidth}{3em} will most likely cause the list declaration
to take up its default behavior, because “3em” is wider than “(1100)”. (The
default value of \Exlabelwidth is 4em).

9

cgloss4e.sty

I found two problems with cgloss4e.sty. The first relates to AMS-TEX. Writ-
ing a translation immediately below the glossed material normally behaves as
one would expect, but with AMS-TEXthe translation becomes indented, for
reasons I do not understand. To remedy this, one has to (re-)define the list
indentation, e.g. as shown below (from LATEX):

\makeatletter

\def\@listi{\leftmargin\leftmargini

\parsep 5\p@ \@plus2.5\p@ \@minus\p@

\topsep 10\p@ \@plus4\p@ \@minus6\p@

\itemsep5\p@ \@plus2.5\p@ \@minus\p@}

\let\@listI\@listi

\@listi

\makeatother

The second problem concerns the use of \gll at a position other than the
beginning of a list. Then the gloss starts a new paragraph and puts un-
wanted vspace above and below the list. One way to suppress this is to change
the flushleft commands used within cgloss4e.sty into raggedright by saying
\renewenvironment{flushleft}{\raggedright}{}.

10

