i
i
i
i
i
i

H
| e

Table of contents

10

11

12

Introduction

A new take on paragraphs
Twin demerits
Namespaces
Bonus features
Whatif ...
Expressions
METAPOST
Getting noisy
Pages
Flagging

How complex is TgX

50

66

70

72

76

80

82

84

86

88

1 Introduction

This is the eights wrapup of the LuaTgX and LuaMetaTgX development cycle. The last
one was ontarget and focussed on what we did when the engine got mature. This
time we zoom in on developments that go a bit beyond what we originally planned.
One can argue that for instance some of the math extensions should have ended up
here but for us a turning point was when additional par passes became stable, which
was around the time of the 2024 ConTgXt meeting. We’ll see what comes after that.

Most of the chapters in this document were first published in TugBoat, in which case
we have a (year or so) delay in including it here; just become a tug member if you want
it sooner. We therefore want to explicitly mention that Karl Berry did an amazing job
on copy-editing and getting it production ready in a way that we can still feed back
fixes to the text. He not only improves the English but also catches glitches in our
explanations. It just got better. Thanks Karl!

Hans Hagen?
Hasselt NL
August 20247

I Various chapters in this document are co-authored by Mikael Sundqvist and/or Keith McKay.

Introduction 4

5 Introduction

2 A new take on paragraphs

2.1 Introduction

The excellence of the Knuth-Plass algorithm for breaking paragraphs into lines is
one of the reasons for the success of TgX. It is very fast (built upon dynamic pro-
gramming) and powerful (it can combine both justification and hyphenation in one
go). The algorithm is built to use so-called demerits in a cost function to determine
the optimal breakpoints.

The paragraph builder is however limited to at most three runs over each paragraph
to getthe job done. In this article we will describe some new ideas and tools regarding
the process of paragraph building. What we describe is already available in LuaMeta-
TgX and ConTgXt. The main new feature is that it is now possible to have an arbitrary
number of runs over each paragraph and to configure them independently.

If TgX is an example of “The Art of Programming”, then we might approach some of
its building blocks as pictures. These come in flavors; some are concrete and show
a scene that leaves no doubt about what is pictured. Others are more abstract and
can let us imagine or experience something and anyway leave interpretation to the
viewer. When old paintings are restored quite often layers under the top layer show
something different. The canvas might have been repurposed or we can see interme-
diate (even different) versions of what the final result is. Modern paintings can use
paint that was hip at that moment but was not durable over a long term, so drastic
measures are needed.

The par builder code in LuaMetaTgX has all these aspects: features were added, some
on top of others, the code and algorithm is open for interpretation, some tricks relate
to the toolkit used. This makes fundamental extensions hard and a rewrite has the
danger of losing compatibility. To quote from Knuth’s TgX source:

“This particular part of TgX was a source of several subtle bugs before the cor-
rect program logic was finally discovered; readers who seek to improve TgX
should therefore think thrice before daring to make any changes here.”

The original TgX par builder is (at least for us) not something that immediately re-
veals its workings. Since the logic is a bit fuzzy to us, we have to be able to analyze
what we see. There are many parameters like \pretolerance and \tolerance, as
well as badness, penalties, demerits and all of these plus slack in a line leads to a
conclusion about how bad breakpoints are. Add to that comparing neighboring lines
with respect to how much the applied spacing differs.

A new take on paragraphs 6

On top of that ¢-TgX added some layers (like last line related) and pdf TgX added even
more due to expansion and protrusion. We can see some remnants of Omega (Aleph)
likelocal boxes, too. The LuaTgX approach separated the hyphenation, ligature build-
ing and kerning from the main task. Then LuaMetaTgX added more control, various
new features, and node list normalization from the perspective of access by Lua.

So, the whole picture becomes more complex and abstract over time. And one indeed
has to be careful when adding new features to it. Some comments in the source indi-
cate that coming to the right solution has been a step-wise process. Just like painters
made their own paint we have all kinds of helpers. We can trace what TgX does, and
what solution was considered best. We can do that visually as well as via extensive
logging. These helpers have been invaluable in the work to extend the paragraph
builder.

The idea to use more runs over the paragraph is however not new. In D.E. Knuth’s
Digital Typography we can read the following:

“On the other hand, some paragraphs are inherently difficult, and there is no
way to break them into feasible lines. In such cases the algorithm we have de-
scribed will find that its active list dwindles until eventually there is no activity
left; what should be done in such a case? It would be possible to start over with
a more tolerant attitude toward infeasibility (a higher threshold value for the
adjustment ratios). TgX takes the attitude that the user wants to make some
manual adjustment when there is no way to meet the specified criteria, so the
active list is forcibly prevented from becoming empty by simply declaring a
breakpoint to be feasible if it would otherwise leave the active list empty. This
results in an overset line and an error message that encourages the user to
take corrective action.”

Maybe it was the limitations of computers at that time that prevented more runs? So,
given the faster computers and already opened-up code base, which permits exten-
sive visual tracing, we decided to play with multiple passes, a mechanism that will
be discussed below. When documenting this we occasionally went back to Knuth’s
descriptions, like the ones above, and admit that some started making sense only in
retrospect. For instance the “so the active list is forcibly prevented from becoming
empty by simply declaring a breakpoint to be feasible” action was something that we
had to circumvent in order to let additional passes kick in at all. We still learn.

2.2 The traditional par builder

Before we move on and discuss the possibility of using more paragraph passes, we
will discuss in a bit more detail how the traditional par builder works. This will help
us to better understand the various extensions in LuaMetaTgX.

7 A new take on paragraphs

For good order a paragraph is a horizontal list, wrapped over lines. This happens
either in a \vbox or in the main vertical list (page). When such a list is broken, TgX
has to keep track of the current width of a line. That width can change depending on
the so-called par shape or hanging indentation.

There are four possi-
ble combinations
of hang indent
and hang after
being positive
and negative:

There are four possi-
ble combinations

of hang indent
and hang after
being positive
and negative:

There are four
possible combina-
tions of hang indent
and hang after being
positive and nega-
tive:

There are four
possible combina-
tions of hang indent
and hang after being
positive and nega-
tive:

Figure 2.1 hangindent

We show the hanging indentation in Figure 2.1, which makes clear that it adds a con-
straint. We can also have an indentation on the first line, left and right par fill skip
(last line) as well as left and right init skip (first line). Then there are left and right
skip but these are the same for every line. All this means that the par builder has to
keep track of the current line, in order to set the current width.

If we render table cells, or captions, or a narrow quote, or text flowing around an
image, the width can be a limiting factor and combined with penalizing hyphenation,
multiple hyphens in a row, specific demands like inline math, the solution space can
become cramped but we will notice that the engine can quite well deal with these
situations, unless of course we leave no room, for instance by setting every penalty
that plays a role to 10000 or demerits to the maximum number possible.

It is also good to keep in mind that a macro package can have features that inter-
fere with what otherwise would be a pristine paragraph. Think of a forced linebreak
(\crlf), binding words (using ~), switching fonts and thereby spacing, ligatures and
kerning, changing to a language with fewer or more short words, compound words
and possibly different hyphenation rules, verbatim, which normally runs wider and
doesn’t hyphenate.

TgX first tries to break the paragraph list into lines without using hyphenation, within
the constraints of the \pretolerance value. If this fails a second pass will use \ tol -
erance as the constraint, with hyphenation enabled. The verdict is also influenced
by various penalties, for instance those that penalize one or more hyphens at the end
of lines. If the outcome is still not right, a third pass permits \emergencystretchto
be applied.

The decision to enter a next pass is determined by a valid result. So, if a pass
processes the whole list within the constraints we have a result and no further passes
are done. When there is no result, the next pass will be entered. We can skip the first
pass by setting \pretolerance to —1, and the third pass won’t happen if we have no

A new take on paragraphs 8

emergency stretch. It is important to have a final pass, because TgX has to make sure
to provide a result. Thus, we can have the following cases.

pretolerance tolerance
pretolerance tolerance stretch
tolerance

tolerance stretch

N

Take the first situation: we run the pretolerance pass, if there is a valid result we quit,
otherwise we run the tolerance pass which is tagged final and therefore will be forced
to always have a result by dealing with troublesome breakpoints. There is no third
pass because emergency stretch is zero. This is where the majority of TgX users end

up.

In the second case we can succeed after the pretolerance pass and quit, or carry on
with the tolerance pass, where again we can succeed or carry on. The stretch pass is
the final one and it must result in something.

The third case is final right from the start so the first pass will always result in some-
thing, no matter how bad. The fourth case can succeed after the tolerance pass but
can carry on with the last pass, which then must return a result.

Traditionally, TgX can break lines

+ at glue (after words, not usually inside math),
 at a kern followed by glue,

- atadiscretionary (hyphenation),

+ due to a penalty (also inside math).

We will look at many examples below, and for them we will (re)use a paragraph writ-
ten by the famous mathematician and physicist P.A.M. Dirac.?

As TgX runs over a paragraph, a badness value is attached to each possible break-
point. With the default parameter settings of \pretolerance to 100 and \toler-
ance to 200, many of the possible breakpoints are discarded, since the badnesses
attached to them are greater than the tolerance; they would simply lead to non-op-
timal (within our measurement of tolerance) lines. In ConTgXt we can use the pair
of commands \startshowbreakpoints and \stopshowbreakpoints to show the
possible breakpoints; see Figure 2.2.

From his article “Pretty Mathematics”, Internat. J. Theoret. Phys. vol. 21, no. 8-9, pp. 603-605, 1981/82.
Presented at the Dirac Symposium, Loyola University, New Orleans, May 1981.

9 A new take on paragraphs

I can give a good example of this procedure. At one time, in 1927, [was playing around with threg]
2 x| 2/ matrices whose squares are equal to unity and which anticommute with one another. Calling
them|g,, 05, 03, I noticed that if one multiplied them into the three components of a momentum sg|as|
tq forrr}| 01p1 + 02p5 + 03p3, 0ne obtained a quantity whose square was just pf + p% + p%. Thig was ag|
exciting result, but what use could one make of it?

Figure 2.2 Feasible breakpoints are marked with vertical bars. Here we are using the de-
fault settings \ (and \).

In fact, each breakpoint (except the first one, which sits at the start of the paragraph
and has index 0) points to a previous breakpoint; a tree is built. With \showbreak-
points we can get some information about the breakpoints that TgX kept until it was
time to make the choice; see Figure ??. We will discuss the details a bit later when
we have introduced the relevant concepts.

1 1 0 13 529 loose glue 11 5 0 31710 tight glue 14 741

2 0 3 490169 decent penalty 4 12 7 54 5238 loose glue 15 841

3 0 45 3025 tight math 13 8 14 1515 loose glue 16 741
2 4 1 7 818 decent glue 14 7 14 1242 decent glue 17 1063

5 3 6 25781 decent glue 15 8 8 1039 decent glue pass : 1 demerits : 1139

6 3 38 27829 tight glue 16 7 8 2511 tight glue subpass : P looseness : 0
3 7 4 8 1142 decent glue 17 10 1 28050 decent glue subpasses : 0

8 4 1 939 decent glue 11 53

9 4 15 12054 tight glue 12 741

10 6 0 27929 decent glue 13 841

Table 2.1

We can also draw a representation of the tree with \drawbreakpoints, where each
line represent the possible breakpoints for different lines; see Figure 2.3. Some of
the nodes are kept by TgX until the end, even though no later node points back to
them.

Figure 2.3 The tree TgX has after going
over the paragraph, with the selected path
dashed.

By setting the parameters \pretolerance to -1 and \tolerance to 10000, we can
fool TEX into viewing all possible breakpoints in a paragraph as feasible, not throwing
away any of them; see Figures 2.4 and 2.5.

A new take on paragraphs 10

]| can give|a| good| example| of this| profcefdure| Aff one| time,|in|1927]| was| playjing around| with| three]
2 x| 2| mafrices| whose| squares|are equall to| unity| and| which| anfticommute| with| one| anpther| Calling
them 61,/ 05,/ 03/]|nfriced| thay|if one| mulkiplied| them|intg| the| threg components|of a| momenjrum| sofa|
tolform| 01 p1 4|0, P> 40313/ ong|obttained|al quantity whose square|was|just| p1 |3 +/p3 Thigwas|an)
exciting result, ong

buf|what| use|could make|of|it?

Figure 2.4 All possible breakpoints considered by TgX.

S Ssa

515252545E55657 56 5S6€616263646E6€676€ 657

L e

2 - - v - / - 2 ”
9€9900010101010101016101101111111411141114112021212121212(121201213013131313131313

A%

. —— =
[1313140414141414140414149

S <
4’¢E¢?W’\\?‘6" ' &

Figure 2.5 All possible breakpoints, drawn in a cramped manner. We observe that among
all solutions, some are one line longer than the selected solution.

We have mentioned badness and tolerance, and that breakpoints are discarded if
their badness is larger than the tolerance. We will next explain how badness values
are calculated. To do that, we first need the adjustment ratio.

When TgX starts to run over a paragraph, it knows the desired length of each line.
Usually these lengths are fixed, but they can vary a bit depending on (hanging) in-
dentation, or even more advanced par shapes. While running over the paragraph,
there will be a few active nodes. At the start, it is only the one that we have marked
with a 0 in the upper left of the figures. Then every possible breakpoint points back to
node 0. When TgX goes on, it will check for each possible breakpoint in turn, whether
it, when pointing back to 0, will give a line that is okay according to the rules set up.
If so, it will add that point to the list of active nodes and move on. Once we come to
a point where the first line would be more than completely filled, it will deactivate
node 0. Hopefully, there will be new active nodes to test new possible breakpoints
against (if not, the run fails). Other active nodes will also be deactivated in a similar
way as TgX moves on.

When TgX creates an active node it also creates a so-called passive node, which car-
ries additional information. It is the passive nodes that point to the previous break-
points and build the tree. There can be multiple nodes pointing to a node, but only
the one with the fewest demerits in each fitness class is kept. If an active node is de-
activated, the passive nodes are not cleaned up. (This is also why we can generate
the tree graphics.)

11 A new take on paragraphs

We now assume that we have a new possible breakpoint, and an active one that it
might be able to point back to. Let £ be the desired length of the corresponding line
(which is known). Let L be the total natural width of what we have so far (without
stretch and shrink), calculated from the active breakpoint, considered at the mo-
ment, up to the current candidate. Also, let Y > 0 be the total stretchability and Z > 0
be the total shrinkability. (Negative values are possible but we leave them out of this
discussion.) Define the adjustment ratio r as

fe-L)Y, L<U¥
r=40, L=29;
f-L)z, L>01.

The closer r is to O, the less stretch or shrink is needed. When r = -1, all available
shrink is asked for, and when r = 1 all stretch is needed.

The badness 5 of the breakpoint is defined as (here | x | denotes the integer part of a
real number x)

+00, r<-1;

[100|r|3 +0.5], otherwise.

The badness does not depend on the sign of r. TgX never allows more shrink than
specified, and therefore the badness is defined to be infinite if r < —1. We emphasize
that TgX does allow more stretch than what is specified, so r > 1 is allowed in the
second line of the badness calculation above.

It is possible in ConTgXt to show beside each line the badness values that were
calculated for each used breakpoint; see Figure 2.6. The turquoise bars at right
(grayscaled for print) indicate if the line is set tight or loose.

I can give a good example of this procedure. At one time, in 1927, I was playing around wih o -
three 2 x 2 matrices whose squares are equal to unity and which anticommute with one another s
Calling them 04, 04, 03, I noticed that if one multiplied them into the three components e-f-d 5] 052 rm o512
momentum so as to form ¢, p; + 0,p5 + 03p3, one obtained a quantity whose square was jusﬂ) 5t 0
p> 4| p5 + p3. This was an exciting result, but what use could one make of it? (@ om0

Figure 2.6 The turquoise bars indicate how much the first, third and fourth lines are
stretched and therefore a bit loose. The second line is shrunk and therefore tight.

In Figure 2.7 we have set the paragraph on a narrower width. To the left, with hy-
phenations enabled, we get a solution that is okay, while to the right the word Calling
is sticking out. Here the second run failed and TgX gave up on finding a good solution.

A new take on paragraphs 12

I can give a good example of this procedure. Af
one time, in 1927, I was playing around with three|
2 x 2 matrices whose squares are equal to unity|
and which anticommute with one another. Call-
lingthem 04, 05, 03, I noticed that if one multiplied|
them into the three components of a momentum|
so as to form o1 p1 + 0,5 + 03p3, onel obtained|
al quantity whose square was just p> +| p5 4 p3|
Thig was an exciting result, but what use| could)
one make of it?

I can give a good example of this procedure. Af|
one time, in 1927, Iwas playing around with three|
2 x 2 matrices whose squares are equal to unity|
and which anticommute with one another. Calling]
them o4, 05, 03, I noticed that if one multiplied|
them into the three components of a momentum)|
so as to form o1p; + 05p> + 03p3, one obtained|
a| quantity whose square was just p% + p% + p§|
Thig was an exciting result, but what use could)
one make of it?

Figure 2.7 Left: a narrow paragraph, with hyphenation enabled. Right: The same narrow

paragraph, with hyphenation disabled.

In TgX, hyphenations are controlled by penalties. We want to avoid hyphenation if

possible, but we do not want to disable it completely, since then TgX will sometimes
fail to find feasible solutions. Each hyphenated line costs a \hyphenpenalty, and
there is a competition between different costs that determine how TgX will break the

paragraphs.

Going even narrower, we will eventually end up in a situation where none of the first
two passes succeed, with or without hyphenations enabled. With \emergencys-
tretch unset (left in Figure 2.8), we get overfull lines sticking out. We absolutely
want to avoid that, if at all possible. To the right we set \emergencystretch to 2em.
This means that each line gets an amount of 2em extra stretch to distribute. For this
paragraph 2em was enough for TgX to find a solution without any line sticking out.

I can give a good example of this pro-
kedure. At one time, in 1927, I was|
playing around with three 2 x 2 ma-

riceswhose squares are equal to unity]

and which anticommute with one an-
ther. Calling them o4, 05, 03, I no-
liced that if one multiplied them into|
the three components of a momen-
umsoastoform o, p; +0,ps+03p3)|
one obtained a quantity whose square|
was just p? + p5 + p3. This was an|
exciting result, but what use could|
one make of it?

mute| with one| anpther,

I can give a good example of this|
procedure. At one time, in/ 1927,
] was playing around with| three|
2 x| 2| matrices whose squares| are|
equal to unity and which| anficom-
Calling|
then}‘ 0-1257‘ 0295‘ 0331‘ 3I| nghiceg}\ tha;d lﬂ
one multiplied| them| intg| the| three|
comjponents| of al momenfum|so| as|
to| form| 0191 + 02p2 +| 03pa) ong|
obftained a quantity| whose| square|
was|jusf| p1 +{p3 + p3] This/wagan)|
extifing result buf wha usd coulg|
one make| of] it?

Figure 2.8 Left: a narrow paragraph. TgX has failed to find a solution with
its both first runs, and we see several overfull lines. Right: The same para-
graph with the emergency run enabled by setting \emergencystretch to

2em.

As discussed above, when TgX reads a paragraph, it will put possible breakpoints in
a tree-like structure (in fact a single-linked list, with new entries added at the begin-

13 A new take on paragraphs

ning). If the badness is greater than the (pre)tolerance, the breakpoints will be dis-
carded. Once the paragraph is read, TgX will work on the tree with the breakpoints
that survived, as shown in Figures ?? and 2.3 (unless there was a complete failure,
and then TgX will typically produce a paragraph where some line sticks out, as in
Figure 2.8, left). To choose among the possible breakpoints, TgX calculates demerit
values for each possible solution, and the final choice is the path in the tree that adds
up to the least total amount of demerits.

Let us explain the content in Figure ??. The first column denotes what linebreak we
are looking at, so for example the three first rows all correspond to the breakpoint
after the first line. Since there are three such rows there are exactly three possible
line breaks. The second column is an index for the possible breakpoints. The third
column shows what breakpoint each breakpoint is pointing at. We see that the first
three point at 0, which means the beginning of the paragraph. The fourth breakpoint
is pointing at breakpoint 1. The values in the fourth column are the badness values.
The fifth column keeps the (accumulated) demerits. The sixth column shows the
fitness class of the break (more on that below) and the seventh column shows the type
of break. The breakpoints that have colored numbers are the ones that are used.

After that we get a summary on what paths in the tree were still valid at the end; here
there were seven,and 15 - 8 —» 4 — 1, marked in color, was the chosen one. Looking
at the paragraph we note that the breakpoints 15 and 16 sit at the same place. The
difference is that they point to different previous breakpoints (8 and 7, respectively).

In the summary we also see what subpass was used (P means the pretolerance run).
We also see that the total demerits was 1139, that we did not use (extra) paragraph
passes, and not looseness (more on that later).

Next, we describe how the demerits are calculated. For each breakpoint, the follow-
ing happens. Let be the badness, £ the line penalty (by default set to 10), m the
possible penalty, and « the additional demerits that correspond to a certain break-
point (but that usually comes from a combination with the previous one). Then the
demerits value ¢ for that breakpoint is defined by

C+B)*+m*+a, ifn>0;
§=1@+p)*-m*+a, if —co<m<O0;

@ +B)*+a, if 7= —00.

The penalty 7 can come, for example, from a hyphenation (\hyphenpenalty is often
set to 50) or a break inside a formula. The only places where traditional TgX breaks
inside formulas are after binary operators such as + (default penalty 700) and binary

A new take on paragraphs 14

relations such as = (500). This means that hyphenations are preferred over breaks
inside formulas.

The additional demerits, a in the formula, come from the interplay of neighboring
lines. There is for example \doublehyphendemerits (10000) that gets added when
consecutive hyphenated lines are considered during line breaking, \finalhyphen-
demerits (5000) thatis added if the final breakpoint of the paragraph is hyphenated
and also \adjdemerits (10000) thatisadded when consecutive lines are considered
to be incompatible with each other, say one with fitness class tight and one with loose.
The values given above in parentheses are the ones that Knuth set up for plain TgX;
they have survived also in other macro packages.

We stress that in the formula for demerits, the £ + and 7 are squared, while «a is
not. This means that @ = 10000 corresponds to a penalty 7 = 100. This is important
to have in mind when setting up the parameters, since when TgX chooses the line
breaks, these are the kind of terms that compete with each other, and that influence
the final choice.

Traditional TgX has four fitness classes: tight, decent, loose and very loose. They
are attached to breakpoints and depend on the badness. The adjacent demerits are
added when we jump over at least one fitness class. Looking at Figure 2.9, we see
that it happens when we go from A to either C or D (from tight to either loose or very
loose), or when we go from B to D (decent to very loose). The same amount is added
both for jumps from A to C and from A to D, even though the latter is likely worse.

Problematic paragraphs can be tweaked manually. We can locally increase the toler-
ance to make TgX accept less good solutions, we can enable font expansion in order
to stretch or shrink characters slightly, and thus enable line breaks that otherwise
would be considered bad. Excessive use of expansion might lead to visually incom-
patible lines and ugly results. We can also, as mentioned and shown above, set the
\emergencystretch to a positive value, and hope for a good final run.

Sometimes, the last line of a paragraph is too short. It can look bad if indentation is
enabled and the size of the indentation is approximately the same, or even bigger,
than the width of the last line in the paragraph before. One way to avoid such short
last lines is to use orphan penalties (we will come back to them). If set to 10000, TgX
may no longer break between the last two words.

When optimizing for the number of lines to stay on a page, or to add one extra, it
is sometimes possible to shorten (or lengthen, but that usually does not give good
results) paragraphs with help of \1looseness. As an example, look at Figure 2.10.
By adding \looseness-1 we ask for a paragraph that is one line shorter than the

15 A new take on paragraphs

+o00 T
- 99 -

1| r

S
\

A B B C D

Figure 2.9 Traditional fitness classes. A: tight, B: decent, C:loose
and D: very loose. The graph shows the badness f as a func-
tion of the adjustment ratio r. The jumps are due to the integer
part in the formula (we want integers). The division into fitness
classes is done so that the subintervals on the r-axis have the
same length. This gives the thresholds 12 and 99 for the bad-
ness.

number of lines that the optimal paragraph considered by TgX has, if possible. In
this case it succeeded.

We emphasize once more that this will only work if there is a case among the pos-
sible solutions that TgX has collected that has the number of lines asked for. Also,
an otherwise-successful pretolerance run might be discarded in the hunt for a para-
graph with the number of lines asked for. In LuaMetaTgX the user will get a message
in the log that tells if it was successful or not. The \1looseness-1 islocal, bound to
the current paragraph, so it is completely a manual tweak.

2.3 Introducing paragraph passes

We are now ready to discuss the LuaMetaTgX extension of the traditional paragraph
builder, where we set up and use our own paragraph passes (par passes for short).
The idea is that more runs on each paragraph, and the possibility of configuring the

A new take on paragraphs 16

I can give a good example of this procedure. At one time, in 1927, I was|
playing around with three 2 x 2 matrices whose squares are equal to unity]
and which anticommute with one another. Calling them g,, 05, 03, I noticed|
that if one multiplied them into the three components of a momentum so|
asto form g, p, + 0,5 + 03p3, one obtained a quantity whose square was|
just|p? + p3 + p3. This was an exciting result, but what use could one make|
of| it?

A paragraph with a short last line.

I can give a good example of this procedure. At one time, in 1927, I wag|
playing around with three 2 x 2 matrices whose squares are equal to unity|
and which anticommute with one another. Calling them ¢4, 05, 03, 1 noticec}|
that if one multiplied them into the three components of a momentum sgas|
to form o, p; + 05 p5 + 03p3, one obtained a quantity whose square wag\jusﬂ
p3 + p5+ p3. This was an exciting result, but what use could one make|ofit?

By using \looseness-1, the paragraph is shortened by one line.

Figure 2.10 A paragraph with a short last line.

relevant parameters for each run independently, will give a higher quality in gen-
eral. The model with badness, penalties and demerits is kept, and we also keep the
same logic when running over the paragraph to decide which breakpoints to keep
and which to throw away. We did in fact test altering the formulas both for badness
(for instance, why the cube?) and demerits, but we did not see any improvements.

Let us introduce the new concept by studying examples, where we step-wise show
what we can do and the different parameters available. We will use some low-level
setups here. Later we will indicate a few possible high-level interfaces available to
ConTgXt users. We start with a very simple example where we use two passes, the
first with tolerance set to 50 and the second with tolerance set to 100. We disable
hyphenation.

\parpasses 2
hyphenation 0]

tolerance 50
next

tolerance 100
\relax

Here, the \parpasses 2 specifies that we will use two passes. The keyword next is
the divider for successive par pass setups. Values are inherited, so hyphenation is
still disabled in the second run. The specification ends with \relax just to be sure
that we do not read on. We can enable these par passes with \1linebreakpasses 1,
and have a look at the test paragraph.

17 A new take on paragraphs

I can give a good example of this procedure. At one time, in 1927, I was playing around with three
2 x 2 matrices whose squares are equal to unity and which anticommute with one another. Calling
them o4, 04, 05, I noticed that if one multiplied them into the three components of a momentum so as
to form o, p, + 0,p, + 033, one obtained a quantity whose square was just p% + p% + p%. This was an
exciting result, but what use could one make of it?

Figure2.11 Withthe same text width asin Figure 2.2 ithappensthat we get the same break-
points with the par passes enabled.

This happens to work out well; we get the same result as the traditional parbuilder
gave us. If we go a bit narrower, we will get an overfull line pretty soon, since the
tolerance is low and we do not hyphenate: see Figure 2.12.

I can give a good example of this procedure. At one time, in 1927, I was playing
around with three 2 x 2 matrices whose squares are equal to unity and which
anticommute with one another. Calling them o4, 05, 63, I noticed that if one multiplied
them into the three components of a momentum so as to form o, p; + 0,p, +
03p3, one obtained a quantity whose square was just pi + p% + p%. This was an
exciting result, but what use could one make of it?

Figure 2.12 Hyphenation is disabled in the defined par pass. A narrower width
leads to a problematic paragraph.

One way to prevent the overfull line could be to enable hyphenation in the second
run; see Figure 2.13. Except for the lower tolerance, this is close to the traditional
TgX setup that we started with, with a pretolerance run and a tolerance run, only a
bit stricter.

\parpasses 2
hyphenation 0]
tolerance 50

next
hyphenation 1
tolerance 100

\relax

I can give a good example of this procedure. At one time, in 1927, I was playing
around with three 2 x 2 matrices whose squares are equal to unity and which
anticommute with one another. Calling them a4, 05, 63, I noticed that if one mul-
tiplied them into the three components of a momentum so as to form o, p; +
05 P2 + 033, One obtained a quantity whose square was just pf + p% + p%. This
was an exciting result, but what use could one make of it?

Figure 2.13 Hyphenation enabled in the second run.

In the example above, we specified the values of a few parameters. Then the logic
follows the traditional paragraph builder: TgX does a run with the settings of the first
pass. If it is successful, we are done. If not, it will run the second pass, and since we
have no more passes, it is marked as a final pass. This means that TgX will make sure

A new take on paragraphs 18

that something is returned, even if it fails to fulfill the constraints of the parameter
values. Thatis why we got an overfull line in Figure 2.12, with hyphenations disabled.
Another option for fixing the overfull line would be to increase the tolerance. A value
of 200 would work in this case.

2.4 Hyphenation

We just saw how one can turn hyphenations on and off in par passes. The outer value
of \hyphenpenalty (50) will be used; for technical reasons, it cannot be changed
inside the par passes. Therefore, we have introduced the keyword extrahyphen-
penalty, that adds to the exterior \hyphenpenalty.

\parpasses 2

hyphenation 0]

tolerance 50
next

hyphenation 1

tolerance 100

extrahyphenpenalty 150
\relax

Here we have set extrahyphenpenalty to 150. It is additive, so with \hyphen-
penalty set to 50, the total penalty for breaking at hyphens becomes 200. The out-
come would in this case be the same, whatever finite value of extrahyphenpenalty
we give, because this is essentially the only solution that is available. We would need
an extremely high value (9950) to prevent the hyphenated line, but that would just
mean that we forbid hyphenations, so we could then equally well not enable it. And
we saw that the paragraph did not come out well without hyphenation.

It is also possible to influence hyphenations by setting the parameters doublehy-
phendemerits and finalhyphendemerits. We need to remember that these are
indeed demerits, and therefore of the order of penalties squared.

2.5 Font expansion

It has become very popular in so-called microtypography to use font expansion, i.e.
to stretch and shrink glyphs just slightly. This can reduce the amount of hyphen-
ations needed, and it can also even out the spacing a bit, leading to better paragraphs.
An excessive use of expansion quickly becomes ugly, as we can see in many newspa-
pers, with narrow columns.

One of the nice aspects of par passes is that one can apply expansion selectively. It
is indeed possible to enable and disable expansion. Below we disable it in the first

19 A new take on paragraphs

run (it might have been enabled outside the par passes with \setupalign[hz]) and
then enable it in the third run by doing adjustspacing 3 to expand glyphs and font
kerns. We set the step to 1, maximum shrink to 10 (that means 1%) and maximum
stretchto 15 (that means 1.5%). These values might seem small, but, by using several
paragraph passes, one can increase the values in the latter passes, and thereby not
use more than needed.

\parpasses 3

tolerance 50

hyphenation 0

adjustspacing 0
next

tolerance 100
next

adjustspacing 3

adjustspacingstep 1

adjustspacingshrink 10
adjustspacingstretch 15
\relax

Note that we disabled hyphenation in this setup. The narrow paragraph, that before
introduced the lines sticking out, now typesets okay; see Figure 2.14. We get a line-
break inside a formula, and we will soon come back to that problem.

an give a good example of this procedure. At one time, in 1927, I was playing
und with three 2 x 2 matrices whose squares are equal to unity and which

I A1 i i1

Ie
ar
anticommute with one another. Calling them ¢y, 05, 03, I noticed that if one
multiplied them into the three components of a momentum so as to form g, p; +
02D2 + 033, one obtained a quantity whose square was just p + p3 + p3, This
was an exciting result, but what use could one make of it?

Figure 2.14 The tight paragraph, with expansion. The blue and red numbers

indicate the amount of stretch and glue, respectively.

In the paragraph in Figure 2.14 we used the command \showmakeup [expansion]
to show the amount of stretch and shrink for each character. In ConTgXt it makes
sense to set expansion=quality as a font feature. This will take the difference in
characters into account when spreading the stretch and shrink.

\definefontfeature
[default]
[default]
[expansion=quality]

For those who are familiar with expansion in the other engines we remark that in
LuaMetaTgX we implemented it a bit differently. For instance, we have an expansion

A new take on paragraphs 20

as well as compression factor per glyph. Instead of ‘freezing’ the step, stretch and
shrink in a font definition, we can change it any time. Sensible values can still be
bound to a specific font switch but when we set the adjustment properties in a pass
those values are taken instead. Moreover, instead of initializing the glyph compres-
sion and expansion factors when a font is loaded we (can) delay this until it is needed.
Experiments demonstrated that it is less often needed that one might think, so not
all fonts need this to be set up. For this reason, font expansion in the par passes has
only a small impact on run time.

2.6 Mathematics

When developing this extension we were also busy with extending math support in
the engine and as a consequence we took math into account. For instance, we have
a parameter that can influence the inter-atom penalties.

mathpenaltyfactor 500

This reduces several math penalties by 50%. To minimize the number of breaks in-
side math, we can start out with a large mathpenaltyfactor in the first run, and
decrease it during later runs. We consider the narrow paragraph, but under more
natural tolerance values, and without hyphenation (Figure 2.15).

\parpasses 2
tolerance 100
hyphenation 0

next
tolerance 200

\relax

I can give agood example of this procedure. At one time, in 1927, lawas playing
around with three 2 x 2 matrices whose squares are equal to unity and which
anticommute with one another. Calling them g,, g5, 03, Isnoticed that if one
multiplied them into the three components of aamomentum so as to form g, p; +
0>D> +,03P3, one obtained asquantity whose square was just p; + p3 + p3. This

1P:0

was an exciting result, but what use could one make 0Ofit?sm

P:000

Figure 2.15 A narrow paragraph. We get penalties before short formulas and
after binary operators and binary relations. In this case the penalty does not
prevent a break in a formula.

We get the default penalty of 700 after binary operators (the plus signs). We would
also get 500 after binary relations, if we had any. We do also get the ConTgXt specific
penalties of 150 before short formulas. We do indeed get a line break inside the for-
mula. If we want a run that prohibits both the breaks after the plus signs and before

21 A new take on paragraphs

the short formulas we need to multiply by a factor that ensures that both are 10000
or more. In this case 67 is sufficient; see Figure 2.16.

\parpasses 2

tolerance 100

hyphenation 0

mathpenaltyfactor 67000
next

tolerance 200
\relax

I can give agood example of this procedure. At one time, in 1927, lawas playing
around with three 2 x 2 matrices whose squares are equal to unity and which
anticommute with one another. Calling them g,, g5, 03, Isnoticed that if one

1

multiplied them into the three components of aanomentum so as to form g1 p1 +0, P2 + 0303,
one obtained asquantity whose square was just ’pﬁ + gﬁi + ,ﬂémThiS was an exciting
result, but what use could one make ofisit ?smm

Figure 2.16 With high enoughmathpenaltyfactor, we can forbid TgX to break
inside formulas and before short formulas. In this case it was not successful.

This was not especially successful, since we kept the high value through all para-
graph passes. We reiterate that it might be better to forbid those breaks in the first
pass(es) and then maybe decrease the factor for later runs.

The mathpenaltyfactor also works in combination with forward and backward
penalties, which can be used to try to avoid line breaks in the beginning or at the
end of a longer inline math formula. A possible setup for these is given below.

\mathforwardpenalties 2 200 100
\mathbackwardpenalties 2 200 100

These will add a penalty of 200 to the first and last available breakpoints in an inline
math formula, and a penalty of 100 to the second and second from last.

2.7 We have an emergency!!

Oh, just kidding! The word emergency in the traditional TgX primitive \emergen-
cystretch might have been a bit unfortunate, since it is not a bad idea to enable it,
sparingly of course.

If we set the emergency stretch to 2em in the example with low tolerance, we do in-
deed get the break inside the formula (Figure 2.17). With emergency stretch set to
1em above, it won’t help (Figure 2.18).

\parpasses 2

A new take on paragraphs 22

hyphenation 0

tolerance 50
next

tolerance 100

emergencystretch 2em
\relax

I can give a good example of this procedure. At one time, in 1927, I was playing
around with three 2 x 2 matrices whose squares are equal to unity and which
anticommute with one another. Calling them o,, 0,5, 03, I noticed that if one
multiplied them into the three components of a momentum so as to form o, p; +
05 P» + 03 P3, one obtained a quantity whose square was just pi + p% + pg. This was
an exciting result, but what use could one make of it?

Figure 2.17 Paragraph set with \emergencystretch=2em.

I can give a good example of this procedure. At one time, in 1927, I was playing
around with three 2 x 2 matrices whose squares are equal to unity and which
anticommute with one another. Calling them o4, 65, 05, Inoticed that if one multiplied
them into the three components of a momentum so as to form o, p; + 05 p5 + 033,
one obtained a quantity whose square was just pf + pi + pg. This was an exciting
result, but what use could one make of it?

Figure 2.18 Paragraph set with \emergencystretch=21em.

There are more “cheats”. In Figure 2.19 we use an emergency stretch of 1em and
also mess with the width of the paragraph, to the right. The 20 here means 2%.

\parpasses 2

hyphenation 0

tolerance 50
next

tolerance 100

emergencystretch lem

emergencyleftextra 0

emergencyrightextra 20
\relax

I can give a good example of this procedure. At one time, in 1927, I was playing
around with three 2 x 2 matrices whose squares are equal to unity and which
anticommute with one another. Calling them ¢4, 0,5, 03, I noticed that if one
multiplied them into the three components of a momentum so as to form o, p; +
05 D5 + 033, one obtained a quantity whose square was just pf + p% + pg. This
was an exciting result, but what use could one make of it?

Figure 2.19 Paragraph set with emergencyrightextra.

Another one is emergencywidthextra: use a different width when the line breaks
are decided, but not apply it in the end. This means it only works out well if lines

23 A new take on paragraphs

have stretch and shrink. In the example in Figure 2.20 we use 2% extra width. This
should probably only be used in true emergencies, if at all.

\parpasses 2

hyphenation 0]

tolerance 50
next

tolerance 100

emergencystretch lem

emergencywidthextra 20
\relax

I can give a good example of this procedure. At one time, in 1927, I was playing
around with three 2 x 2 matrices whose squares are equal to unity and which
anticommute with one another. Calling them ¢4, 6,5, 03, I noticed that if one
multiplied them into the three components of a momentum so as to form o4 p; +
0,po + 03p3, one obtained a quantity whose square was just pf + p§ + pg. This
was an exciting result, but what use could one make of it?

Figure 2.20 Paragraph set with emergencywidthextra.

We have so far set the emergency stretch explicitly, in terms of font em units. If we
have hanging indentation or parshapes, the widths of different lines in the paragraph
will vary. One can then argue that it makes more sense to set the amount of emer-
gency stretch as a percentage of the line width, even if it does not matter for most
paragraphs. In Figure 2.21 we set the stretch to 4% of the line width, which was suf-
ficient this time.

\parpasses 2

hyphenation 0

tolerance 50
next

tolerance 100

emergencypercentage 40
\relax

I can give a good example of this procedure. At one time, in 1927, I was playing
around with three 2 x 2 matrices whose squares are equal to unity and which
anticommute with one another. Calling them ¢4, 65, 03, I noticed that if one
multiplied them into the three components of a momentum so as to form o4 p; +
05P2 + 03Pp3, One obtained a quantity whose square was just p% + p% + pg. This was
an exciting result, but what use could one make of it?

Figure 2.21 Paragraph set with emergencypercentage.

It might happen that \emergencystretch is set to a positive value outside of the
par pass setups (for example via \setupalign[stretch]). When we go in to the

A new take on paragraphs 24

par passes, we can use emergencyfactor to handle that. We can start by setting it
to 0 in the first pass to be sure to disable the emergency stretch, and then update it
to a positive value in a later run to enable it.

\parpasses 2

hyphenation 0

emergencyfactor 0

tolerance 50
next

tolerance 100

emergencyfactor 1000
\relax

2.8 More penalties

An example above showed the extrahyphenpenalty parameter, which is specific
to paragraph passes. There are a few more penalties available. The ones below can
also be set by primitives. An orphan penalty can prevent a line break before the last
word in a paragraph (we come back to that one), and a toddler penalty might prevent
a line break before a single glyph.

linepenalty 100
orphanpenalty 200
toddlerpenalty 200

We show one example with 1inepenalty. Earlier we used \1looseness-1to get the
paragraph one line shorter. In Figure 2.22 we succeed in obtaining the same para-
graph by increasing the 1inepenalty from 10 to 100. It is, however, difficult to pre-
dict when it will work.

\parpasses 2
tolerance 50
hyphenation 0
linepenalty 200

next
tolerance 100

\relax

It’sworth mentioning that the first versions of TgX did not come with the \1inepenalty
parameter. The corresponding number was then 1 instead of the 10, which is prob-
ably used everywhere now.

25 A new take on paragraphs

I can give a good example of this procedure. At one time, in 1927, I was
playing around with three 2 x 2 matrices whose squares are equal to unity
and which anticommute with one another. Calling them ¢4, 05, 63, I noticed
that if one multiplied them into the three components of a momentum so as
to form ¢, p, + 05 p5 + 03p3, One obtained a quantity whose square was just
P2+ p3 + p3. This was an exciting result, but what use could one make of it?

Figure 2.22 Shortening a paragraph with a higher \1inepenalty.

The orphan penalties can be problematic if set too aggressively, in particular for
short paragraphs that often occur in novels with a lot of dialogue. In Figure 2.23
we see such a problematic example, where we have prohibited breaks before the last
word by setting the penalty there to 10000.

\parpasses 1

tolerance 100
orphanpenalties 1 10000
\relax

This is just asshort sentence that is just adbit longer than onew
line pmm

Figure 2.23 A one-liner with too-strict orphan penalties.

To avoid this problem we have factors that can be used. Below we multiply by 0.1 if
the paragraph has one line break, 0.5 if it has two and 1.0 if it has more than two. We
see in Figure 2.24 that this is sufficient; we can now break before the last word.

\parpasses 1
tolerance 100
orphanpenalties 1 10000
orphanlinefactors 3 100 500 1000
\relax

This is just asshort sentence that is just abit longer than onew
line. pm

Figure 2.24 A one liner with strict
orphan penalties and multipliers.

Let us also show an example where we set toddler penalties both to the left and the
right. If you are able to zoom in Figure 2.25, you will see that we get penalties of 50
sitting to the right of the single character letters, and 25 to the left of the leftmost
one. The \parfillrightskip was set to Opt here, to get a bit extra space between
the words so that the penalties show better. We do not know if there are languages
where single-letter words can be stacked like this.

\parpasses 1
tolerance 100

A new take on paragraphs 26

toddlerpenalties 1 options 2 50 25
\relax

Some ~write: les OWE yOUs ONE.mmm

The kids writess lm Om Uss 1.om

Figure 2.25 Penalized toddlers.
2.9 Being more granular

It is possible to specify the number of fitness classes to be used. We saw before that
traditional TgX uses four: tight, decent, loose and very loose. By invoking

\setupalign[granular]

we enable more. You can see in Figure 2.26 that they are evenly spread out regarding
the adjustment ratio, and how they are related to the badness values. This should be
compared with Figure 2.9.

99

42

1| r

-1

A B C D E E F G H I

Figure 2.26 Granular fitness classes. A: very tight. B: tight.
C: almost tight. D: barely tight. E: decent. F: barely loose. G:
almost loose. H: loose. I: very loose.

27 A new take on paragraphs

The granular fitness classes are defined by a \specificationdef command (more
about them later). The classes are defined to spread evenly over the adjustment ra-
tios, just as in the non-granular situation.

\permanent \specificationdef \granularfitnessclasses
\fitnessclasses 9

99

42 % .75
12 % .50
2% .25
0% .00
2% .25
12 % .50
42 9% .75
99

It becomes more meaningful to enable the granular mode if we also configure how
these fitness classes are to be used. As previously mentioned, in traditional TgX the
\adjdemeritsisadded whenever we jump over atleast one fitness class when going
from one line to the next. We can use adjacentdemerits in the par passes. For
example,

adjacentdemerits 4 0 5000 7500 10000

defines four levels of adjacent demerits. For two consecutive linebreaks with neigh-
boring fitness classes, no demerits is added. If we jump one step 5000 is added,
jumping two steps cost 7500 and three steps (or more) cost 10000.

I can give a good example of this procedure. At one time, in 1927, I was playing around with threel
2 x|2| matrices whose squares are equal to unity and which anticommute with one another. Calling
them| 01 05, 03, I noticed that if one multiplied them into the three components of a momentum so|as|
to|form| 0, p1 + 6, p5 + 033, one obtained a quantity whose square was just p3 + p3 + p3. This was|an|
excitingresult, but what use could one make of it?

Figure 2.27 The test paragraph, set with more granular fitness classes.

1 1 0 13 5529 almostloose glue 10 6 0 40429 decent glue 14 741
2 0 3 490169 barelytight penalty 4 11 8 14 11515 almostloose glue 15 1063
3 0 45 10525 tight math 12 7 14 6242 decent glue pass : 4 demerits : 6139
2 4 1 7 5818 barelyloose glue 13 8 8 6039 decent glue subpass : 1 looseness : 0
5 3 6 43281 barelyloose glue 14 7 8 15011 almosttight glue subpasses : 2
6 3 38 35329 almosttight glue 15 10 1 40550 decent glue
3 7 4 8 6142 barelyloose glue 11 841
8 4 1 5939 decent glue 12 741
9 5 15 43906 almostloose glue 13 841

Figure 2.28 Information on the breakpoints that TgX used for the paragraph in Figure 2.27.

In Figure 2.28 we see fitness classes that we did not see before, such as barely tight
and almost loose. We see in Figure 2.29 that the tree is slightly different from the one
in Figure 2.3.

A new take on paragraphs 28

Figure 2.29 The tree corresponding
to the paragraph in Figure 2.27.

We got here the same linebreaks as for the traditional parbuilder (Figure 2.2). Butin
the traditional case we had fitness classes loose, decent, decent, which means that
we paid no demerits for them. Now we got almost loose (cost 5000), barely loose (0),
decent (0). Thus, the total demerits in this case landed at 6139 instead of 1139.

Going back to the default fitness classes, one can use
\fitnessdemerits 0

and to go granular in only one par pass, one can use

fitnessclasses \granularfitnessclasses

adjacentdemerits \granularadjacentdemerits
next

classes \matchallfitnessclasses

where the \granularadjacentdemerits have been defined to be compatible with
the more granular fitness classes. The classes parameter (a bitset) tells the builder
to check all set classes; the constant is a generous "FF.

On a bigger project, we have seen only a few changes when enabling the granular
setup. Since they are few it is difficult to say something general about quality, but we
expect that the neighboring lines are slightly more compatible.

2.10 Other demerits

We recall that it is the demerits of the paragraph that TgX uses as a cost function
to select the best set of line breaks; the solution with minimal demerits wins. We

29 A new take on paragraphs

emphasize again that the additional demerits are not added to singular breakpoints,
but to combinations of breakpoints that fulfill some condition.

We have already seen how the granular fitness classes could be used, together with
adjdemerits (defaults to 10000), or rather the plural version adjacentdemerits,
to be able to detect smaller differences in badness values between consecutive lines.
There are other demerits we can set. In Figure 2.30, we compare results with dou-
blehyphendemerits set to zero (left), and set to a high value (right), preventing two
consecutive lines from being hyphenated.

I can give a good example of this
procedure. At one time, in 1927, I
was playing around with three 2 x 2
matrices whose squares are equal
to unity and which anticommute
with one another. Calling them o4,
05, 03, I noticed that if one multi-
plied them into the three compo-
nents of a momentum so as to form
01p1 + O,p, + 03p3, one obtained
a quantity whose square was just
P2 + p3 + p5. This was an exciting
result, but what use could one make
of it?

I can give a good example of this
procedure. At one time, in 1927,
I was playing around with three
2 x 2 matrices whose squares are
equal to unity and which anticom-
mute with one another. Calling
them o4, 04, 05, I noticed that if one
multiplied them into the three com-
ponents of a momentum so as to
form o,p, + 0,p5 + 03p3, one ob-
tained a quantity whose square was
just p? + p3 + p3. This was an ex-
citing result, but what use could one
make of it?

Figure 2.30 Left: A narrow paragraph set with doublehyphendemerits set to
0. Right: The same paragraph with doublehyphendemerits set to 300000.

We also have finalhyphendemerits that can be used to discourage the last break-
point from being hyphenated. Its default value is 5000.

The settings are equivalent to the primitives and more about them can be found in
regular TgX documentation. We also have twin demerits:

lefttwindemerits 2000
righttwindemerits 2000

These discourage line breaks where words at the beginning or end of lines are the
same; be aware that this doesn’t prevent mid-line occurrences. And of course it puts
more constraints on the solution and has to work with other constraints. More about
this feature can be found in another recent TUGboat article.?

“Twin demerits”, Hans Hagen and Mikael P. Sundqvist, TugBoat, vol. 45, no. 2, pp. 362-369, 2024,
https://tug.org/TUGboat/tb45-3/th141hagen-twins.pdf.

A new take on paragraphs 30

2.11 Conditionally entering par passes

We have seen several examples of using par passes, where the standard logic of TgX
is kept: if TgX is happy after a run, we are done with the line breaking. It is possible
to also enter par passes conditionally. There are three main criteria that we can use.
The valid criteria keys are demerits, threshold and class:

- demerits: the overall measure that TgX uses to select the best choice.
« threshold: over- or underfull lines
« classes: compatibility between successive lines.

The first is not that useful because it is hard to come up with some good numbers.
Longer paragraphs typically have higher demerits than shorter, and for very long
paragraphs some shortcuts are taken and large values get clipped in order not to
overflow numbers. We will discuss the classes option soon.

In the traditional paragraph builder it is difficult to go back and deduce what deci-
sions were made during the runs, and how and why they were made. The values are
not kept, except for the demerits, but those are recalculated as we go.

When we add more passes we don’t know in advance what is the final pass, but we
need one because in the end we must have a result. We could of course always add
a final one automatically but then we might just as well take the last one anyway.
The multiple pass mechanism will always do the regular pretolerance and tolerance
passes but we can set the values in a par pass definition. We have two situations:

1. When we have a criterion in the first par pass, we will first do the two tolerant
passes. The second tolerant pass is a final pass so we do have a result but we
check for further actions in the list of par passes.

2. When we have three or more par passes, the first two will act like tolerance passes
when there are no criteria. Again the second one is a final pass that can have a
follow up.

Here we have a single par pass of the first category:

\parpasses 1

threshold 0.025pt

tolerance 300

emergencyfactor 1000
\relax

and here is an example of the second:

\parpasses 3

31 A new take on paragraphs

tolerance 100

next
tolerance 200
next
threshold 0.025pt
tolerance 300
emergencyfactor 1000
\relax

The second one has no criteria, so the last pass becomes the final pass, which kicks
in when none of the previous ones gave an acceptable solution.

The classes key is the most difficult one to describe. In ConTgXt we can add

\parpasses 1

classes \indecentparpassclasses
tolerance 300
emergencyfactor 1000

\relax

and that needs an explanation. When TgX looks at lines it will use adjacent demerits
to penalize neighboring lines that are space wise incompatible. The \indecent-
parpassclasses condition will let you enter the par pass if there are any lines that
ar flagged as not being decent.

In ConTEXt, when using the granular mode described above, we have these constants
defined:

\integerdef\verylooseparpassclass "0001
\integerdef\looseparpassclass "0002
\integerdef\almostlooseparpassclass "0004
\integerdef\barelylooseparpassclass "0008
\integerdef\decentparpassclass "0010
\integerdef\barelytightparpassclass "0020
\integerdef\almosttightparpassclass "0040
\integerdef\tightparpassclass "0080
\integerdef\verytightparpassclass "0100

\integerdef\allparpassclasses "FFFF
The definition of \indecentparpassclassesis then:

\integerdef\indecentparpassclasses\numexpr

A new take on paragraphs 32

\allparpassclasses
- \decentparpassclass
\relax

As you see the condition is really using a bitset, but it is easier to have names for
them. There are a few others predefined:

\almostdecentparpassclasses
\looseparpassclasses
\tightparpassclasses

and you can define your own just as we showed above.

In addition to the demerits, threshold and classes criteria mentioned above, we
can also decide if entering (using) a par pass with the following keys

« 1ifadjustspacing: enterif expansion is enabled.

« ifemergencystretch: enterif emergencystretch is enabled.
« 1ifglue: enterif there is anything to stretch or shrink.

« iftext: enterif the paragraph has text (glyphs/discretionaries).
« ifmath: enter if the paragraph has math.

« unlessmath: enter if the paragraph does not have math.

A new block of parameters is marked by next. With quit processing passes can be
stopped, and skip will bypass a pass. These last two are mostly for testing.

To sum up, we have three situations:

« traditional mode, up to three passes,
« mixed mode, first two traditional passes and then additional ones,
« par passes that likely include traditional setups,

and we have various different ways to condition on entering the par passes.

2.12 A bit of infrastructure

For administrative purposes we have the directives callback, identifier, and
linebreakchecks, as well as 1inebreakoptional to select what optional content
to enable.

We can add an identifier:
\parpasses 3

identifier 1

33 A new take on paragraphs

tolerance 100

next
tolerance 200
hyphenation 1

next ifemergencystretch
emergencyfactor 1000
\relax

This identifier will be used in reporting and in ConTgXt we can relate this to a more
meaningful name, like ‘default’. We can avoid altering the current par pass by defin-
ing an alias:

\specificationdef \parpassdefault \parpasses 3

identifier 1

tolerance 100
next

tolerance 200

hyphenation 1

next ifemergencystretch
emergencyfactor 1000
\relax

We use a generic \specificationdef and by just issuing the given name the par
passis activated. However, one also hastoset \1inebreakpasses to a positive value
to let it do its work.

2.13 Changing par passes locally

We saw how to use \looseness to manually (try to) tweak a single paragraph in
the traditional par builder. We have a similar local par pass mechanism. With
\parpassesexception we can locally use a specified par pass setup for the current
paragraph. It has to be called just before the paragraph in question, as in:

\parpassesexception \mylocalparpasses
Paragraph comes here ...

will use the par passes setup \mylocalparpasses, which must have been previ-
ously defined with a \specificationdef. This opens it up for a simple but com-
plete local control when needed.

2.14 After breaking the paragraph into lines

Breaking a paragraph into lines and, at some asynchonous, point breaking pages are
separate processes. The first process hasrelated penalties and demerits that are part

A new take on paragraphs 34

of the decision making that are no longer relevant once the work is done. The second
process also has penalties to consider, for instance widow and club penalties. These
are inserted between lines by the par builder because it is that routine that, after
optimal breakpoints have been determined calls out to a post line break routine that
constructs the lines. The lines themselves as well as various glue and penalties, plus
possible \vadjustand \ insert material, are added to a currentlist of contributions
that is eventually transferred to the page. So, it makes sense to mention them here.

It goes unnoticed, but the broken line is in practice no more than a begin and end
point in the horizontal list that enters the routine. Every line is just a range and al-
though the decisions were made using glue and optionally font expansion, the origi-
nal nodes are still there. So, when that range has tobecome aline, the horizontal pack
routineis called towrapitintoa \hbox, and, as with any horizontal box construction,
it will recalculate what the final glue will be and what expansion is applied, based on
what the par builder decided. Also, before packaging, the left and right skip, indenta-
tion, paragraph related shape measure etc. are injected. This somewhat redundant
effort is fast enough not to be of impact.

An important activity in this packing is that we (When enabled) can normalize the
line. Depending on what line we are, we have a lot of skips to consider (for practical
purposes items that are actually kerns, like indentation, also use glue nodes):

leftskip lefthangskip leftparskip leftinitskip
indentskip [content] correctionskip
rightinitskip rightparskip righthangskip rightskip

We also make sure that direction nodes are balanced and math is well indicated
across lines. Discussing this process is beyond what this article focuses on, but you
can imagine that it involves some code. This pays off in nicer code at the Lua end
when we want to mess with the lines afterwards.

The abovementioned widow and club penalties (plus some more) are taken from the
singular and plural commands \widowpenalty, \widowpenalties, \clubpenalty,
\clubpenalties. In LuaMetaTgX these values are stored in the initial par node.

For the record: there are uet more penalties that matter, for instance we have
\shapingpenalty that can prevent breaks in a parshape or hanging setup and
\singlelinepenalty that penalizes a two line result. We don’t discuss how display
math is handed in line breaks and wrapping up, but just mention that we can have a
display formula that combines with the previous and upcoming paragraph. In that
case the builder sees three paragraphs as one and display math as three lines, which
of course influences what is seen as the current line width when shaping the whole.

35 A new take on paragraphs

It doesn’t affect the discussed break mechanism. In ConTgXt we handle display math
differently, so we have not added features for mixed-in display math.

A par pass definition is what (in LuaMetaTgX) we internally call a specification com-
mand. Other examples of specification commands are \parshape and the men-
tioned plural penalties. Each of their values is a pointer to a node, and because the
amount of data can differ these have a variable size. In LuaTgX they are taken from
the regular pool and when the set of values change another sized one is needed. Re-
leased nodes are kept in a pool but one can think of scenarios where too many dif-
ferent sizes will create a bit of a mess. This is why in LuaMetaTgX we allocate the
variable part dynamically as an independent ‘array’ of parameters.

The reason for mentioning these details is that, because of the decoupling between
the handful of primitives and the way their information is stored, it started making
sense to provide ways to create variables as with registers. This brings us to an ex-
ample:

\widowpenalties 4 2000 500 250 0
We can also say:

\specificationdef \lesswidowpenalties \widowpenalties
4 2000 500 250 0
\relax

and then use \lesswidowpenalties to enable this set of penalties.

The \specificationdef command can also be used to define par passes, as we
saw above. Using these definitions is not only faster but also has the advantage that
we can provide interfaces in ConTgXt in the way we like. It also makes it easier to
reset the plural penalties to default values. An even more important feature is that
we can get rid of the singulars which is a big benefit because of the way the engine
works. When ¢-TgX introduced these plurals it had to remain compatible so this is
what happens there:

« When \widowpenaltiesis set, \widowpenalty isignored.
« When \widowpenaltiesisreset, \widowpenalty kicks in again.

Resetting \widowpenalties is done with:
\widowpenalties O
That said, what about the following?

\def\widowpenalty{\widowpenalties 1 }

A new take on paragraphs 36

This is very close to what we want but because the last value is used for all that follow
we would need this to be compatible.

\widowpenalty 500
\widowpenalties 2 500 0O

This is why we end up with:

\permanent\protected\untraced\def\widowpenalty
{\widowpenalties\minusone}

where the negative one sets an option to not reuse the last value. The prefixes de-
clare that the command can’t be redefined when overload protection is enabled, that
it doesn’t expand (in e.g. an \edef) and that in tracing it gets reported without its
meaning, so basically the users see a primitive. The advantage of this approach is
that we only have to deal with one variable. Of course users should be aware of this
but few will set these plurals explicitly, leaving that to ConTgXt.

The plural widow and club penalties can result in better results but also add con-
straints. This means that we can get less full pages or when we have stretch in the
white space (if present) possibly inconsistent spacing. We can handle this by limit-
ing the stretch in the vertical spacing combined with overall vertical scaling that we
call vz, analogous to hz (Hermann Zapf’s initials for expansion); it was Hermann who
suggested to us to play with this because “No reader will notice a few percent vertical
scaling of the page”. Limiting stretch is an engine feature (in the page builder) while
vertical scaling is a ConTgXt trick. Applied to the large test document this also helps
to make it look great.

Another new feature is that when a paragraph is eventually broken across a page, you
might want to distinguish between a left and right page of a spread. It is therefore
possible to do this:

\widowpenalties 3 options \numexpr8 + 4\relax % largest + double
5000 7500

250 500
0] 0]
\relax

This says: use higher penalties for the right page and when you overlap with club
penalties use the larger of the widow and club penalty, i.e., we do not want to add
them. The options is a bitset that differs per specification.

The \adjdemerits parameter controls what demerits get added to lines that have a
distance of more than one step in the fitness sequence tight, decent, loose, very loose.

37 A new take on paragraphs

In LuaMetaTgX we have more control over this; for instance we can, as we have seen,
have more steps. In that case we also apply different demerits for every distance and
even have accumulated demerits. This is controlled by \adjacentdemerits and we
can redefine the traditional parameter like this:

\permanent\protected\untraced\def\adjdemerits
i{\adjacentdemerits\minusone}

So, to summarize this part: setting up and using par passes to get better results is
worth the effort, but part of this often also involves making sure the vertical penalties
are right. This is bound (applied) to the result of line breaking.

2.15 Tracing and debugging

It would be impossible for us to develop these new features without extensive testing,
and the testing would be very difficult to do without tracing. There are two ways to
trace what the engine is doing: built-in (hard-coded in the engine) reporting, and
ConTgXt trackers that use Lua to add visual or report textual information. The first
one is probably not that useful unless you need to know what goes on deep inside;
the second can help you improve a specific document setup.

When \tracingpenalties is set to 1, you will get reports like this, where 1 and r
refer to the left and right page of a spread where the values kick in when the page is
broken in a double sided layout:

[linebreak: interline penalty, line 1, index 1, delta 101, total 101]
[linebreak: club 1 penalty, line 1, index 1, delta 100, total 201]
[linebreak: club r penalty, line 1, index 1, delta 100, total 201]
[linebreak: interline penalty, line 2, index 2, delta 101, total 101]
[linebreak: interline penalty, line 3, index 3, delta 101, total 101]
[linebreak: interline penalty, line 4, index 4, delta 101, total 101]
[linebreak: interline penalty, line 5, index 5, delta 101, total 101]
[linebreak: interline penalty, line 6, index 6, delta 101, total 101]
[linebreak: interline penalty, line 7, index 7, delta 101, total 101]
[linebreak: interline penalty, line 8, index 8, delta 101, total 101]
[linebreak: widow 1 penalty, line 8, index 1, delta 101, total 202]
[linebreak: widow r penalty, line 8, index 1, delta 101, total 202]

When the value is set to 2, you will also get lines that report the \shaping-
penaltiesmode value that was applied. This is a bitset that determines what penal-
ties will be applied when we have a hanging situation.

A new take on paragraphs 38

[linebreak: penalty, line 1, best line 10, prevgraf 0, mode "FF (i=1 c=4 w=2
b=8) 1]

Another tracing option is the traditional TgX \tracingparagraphs that reports a
lot and even more when its value exceeds 1. Probably more interesting is \trac-
ingpasses, which reports the parameters used, and, when set to more than 1, also
reports details over the decisions made. We mention also \tracingtoddlers and
\tracingorphans that might come in handy.

When we discussed and tested these extensions with ConTgXt users, there was some
confusion about \1ooseness. These parameters can, as we have explained, be used
to increase or decrease the number of lines relative to the optimum, if possible.
Any change to the involved parameters might spoil the ability to get that extra line.
With \tracingloosenessyou get some information about the attempts to fit the de-
mands. When tracing with the trackers that show all possible breakpoints it quickly
becomes clear that TgX doesn’t discard bad solutions as it goes forward but keeps
them around till (at the end of a successful pass) it tries to loosen.

While developing features like these it helps very much to see what we're dealing
with. For instance, TgX distinguishes between spaces between words (that become
glue) and spaces after punctuation (influenced by the space factors). With \show-
makeup [space] you can show both (Figure 2.31). This example also shows another
feature: space factoring applied after uppercase characters, in this case shown but
not applied. Think of situations like ‘D.E. Knuth’. More control over space factors is
part of the optimizations because we have ways to limit the maximum stretch, just
like TgX already limits the shrink.

[.can.give.a.good.example.of.this.proced
around.with.three.2 x 2.matrices.whose:s
commute.with.one.another..Calling.them

spaces between words and after punctuation

D.E..Knuth,.;author.of. TgX.

spaces after initials and punctuation

[.s.can . give,.«.if . needed, «.an . example
space factors and stretch

Figure 2.31

Similarly, we can use \showmakeup[hpenalty] to see where horizontal penalties
are applied and \showmakeup [vpenalty] for vertical penalties; see Figure 2.32.

39 A new take on paragraphs

I can give a.good example of this proced
around with three 2 x 2 matrices whose s

MP:700 MP:0

commute with one another. Calling them

math has plenty penalties

I can give a good example of this proced
around with three 2 x 2 matrices whose s
commute with one another. Calling them

vertical penalties are added between lines

Figure 2.32

Hyphenationresultsininjected discretionary nodes; \showmakeup [discretionary]
lets us see them. The ones at ends of lines eventually get replaced by the content of
pre and post fields but we can show the places where they were seen in the rest. We
can show them because in LuaMetaTgX we keep track of such decisions in the glyph
nodes so we know at what places hyphenation is possible; see Figure 2.33.

I can give a good example of this proced
around with three 2 x 2 matrices whose s
commute with one another. Calling them

Figure 2.33 We look at all discretionaries, but only longer words get
hyphenated.

Expansion is another feature that we might want to track, and \showmakeup
[expansion] reveals it, see Figure 2.34.

I can give a good example of this procedure
with three 2 x 2 matrices whose squares ¢
with one another. Calling them o4, 04, 03,

Figure 2.34 Expansion kicks in.

2.16 Larger example used in a math book

We have experimented a lot with a first year analysis book that Mikael has written
with his colleague Tomas Persson, in Swedish. We emphasize that the settings we
have ended up using might not fit everyone, but they did seem to work well for this
book.

A new take on paragraphs 40

We use five par passes, and we don’t enter any of them conditionally; we quit directly
if TgX is happy after a run. Our strategy is trying to avoid both hyphenations and
breaking inside of mathematics, as much as possible.

The book contains 3023 paragraphs. A vast majority, 2697 paragraphs, are done by
the first run. This is one of the reasons that the extra par passes do not add much
overhead.

The first run is a typical pretolerance run. We use no expansion, no emergency
stretch, and we accept no hyphenations. Also, the math penalties (inside formulas
and before short formulas) are multiplied by 20. This means that they reach at least
10000 and thus such breaks are prohibited.

We follow up with a run with a slightly higher tolerance, and also a very small allowed
font expansion, with a stretch of at most 1% and a shrink of at most 0.5%. This one
is used 192 times.

In the third run we switch expansion off again, but allow for a tolerance of 300; this
is used only five times. In the fourth run we go back to tolerance 200 but increase
the possible amount of expansion, and get 76 paragraphs. Finally, in the fifth run we
enable hyphenation, but add 200 to its penalty, we increase the amount of font ex-
pansion allowed, enable some additional emergency stretch, and also reset the math
penalties to the outer values. This run takes care of the 53 remaining paragraphs.

\startsetups align:pass:analysishook

\parpasses 5

identifier \parpassdefaultone
tolerance 100
adjustspacing 0
emergencyfactor 0
hyphenation 0
mathpenaltyfactor 20000
next
tolerance 200
adjustspacing 3
adjustspacingstep 1
adjustspacingshrink 5

adjustspacingstretch 10

next
tolerance 300
adjustspacing 0
next
tolerance 200

41 A new take on paragraphs

adjustspacing 3
adjustspacingshrink 20
adjustspacingstretch 40

next
tolerance 400
hyphenation 1

extrahyphenpenalty 200
adjustspacing 3
adjustspacingshrink 30
adjustspacingstretch 60

emergencystretch 1\bodyfontsize
emergencyfactor 1000
mathpenaltyfactor 1000

\relax

\stopsetups

\newinteger\parpassdefaultone

\parpassdefaultone\parpassidentifierfanalysisbhook?
With the last line, we can set up these par passes with
\setupalignpass[analysisbook]

With
\enabletrackers[paragraphs.passes=summary]

we get a summary in the log file. Here we find how many times each run was used
and also what the paragraphs contained (t is text, d is discretionary and m is math).

"subpass 01', count 2697, states 93:t-- 199:td- 1:--m 145:t-m 44:t-- 549:td-
135:t-m 1443:tdm 18:td- 69:tdm 1:tdm

"subpass 02', count 0192, states 35:td- 1:t-m 138:tdm 6:td- 12:tdm

'subpass 03', count 0005, states 5:tdm

'subpass 04', count 0076, states 12:td- 57:tdm 2:td- 5:tdm

'subpass 05', count 0053, states 1:t-m 10:td- 40:tdm 1:td- 1:tdm

Before comparing some outputs, let us first make clear that it is only a few paragraphs
that change. Thisis good, we do not want to alter TgX’s usual very high quality output.

Since we enable hyphenations only in the last run, we get fewer hyphenations. We
show one example in Figure 2.35.

A new take on paragraphs 42

It is possible to disallow line breaks before short math formulas by manually insert-
ing a maximum penalty. Knuth calls them “ties”, and it has become standard to use
a tilde to type them, as in Om~A. With our math penalties setup we do not need that
manual tweak in the source. Compare the results in Figure 2.36, where the stricter

Eftersom E &dr begrdnsad enligt lemma 2.41, har (az) en konvergent del-
foljd (a,,) enligt Bolzano-Weierstrall sats (sats 2.23). Lat A beteckna delfolj-
dens gransviarde. Vi vill visa att A € E.

traditional
Eftersom E ar begransad enligt lemma 2.41, har (ax) en konvergent delfoljd

(ay,) enligt Bolzano-Weierstral} sats (sats 2.23). Lt A beteckna delfoljdens
gransvarde. Vi vill visa att A € E.

par passes

Figure 2.35

math penalties avoids short formulas at the beginning of lines.

Line breaks inside formulas can become very ugly, compare the results in Fig-

ure 2.37.

The orphan penalties sometimes help us to prevent just a word or a symbol at the

Funktionsbegreppet dr oerhort viktigt och centralt inom matematiken. Om
A och B ar tva mangder, sa tanker vi ofta pa en funktion fran A till B som
en regel som till varje element i A tilldelar ett entydigt bestdmt element i
B. Om f ar en funktion fran A till B, sa skriver vi f. A — B. Det element
i B som funktionen f tilldelar ett element a € A betecknas f(a). Mangden
A kallas definitionsmdngden for f och mangden B kallas mdlmcingden eller
virdeforrddet till f. Ibland kommer vi att skriva D for definitionsméngden
for f.

traditional

Funktionsbegreppet dr oerhort viktigt och centralt inom matematiken.
Om A och B ar tva mangder, sa tanker vi ofta pa en funktion fran A till B
som en regel som till varje element i A tilldelar ett entydigt bestamt element
i B. Om f ar en funktion fran A till B, sa skriver vi f: A — B. Det element i B
som funktionen f tilldelar ett element a € A betecknas f(a). Mangden A
kallas definitionsmdngden for f och mangden B kallas mdlmcdingden eller
virdeforrddet till f. Ibland kommer vi att skriva D¢ for definitionsméngden
for f.

par passes

Figure 2.36

end of the line. Compare the results in Figure 2.38.

We also show one example of a paragraph where TgX fails with the traditional runs

but succeeds with the par passes, see Figure 2.39.

43 A new take on paragraphs

Lésning. Eftersom a'/* = 1/(1/a)/* racker det att visa pastaendet for a >
1.Fér a > 1 och k € N dr a'/* > 1. Bernoullis('!) olikhet (se 6vning 2.4) med

x =a'’*—1 ger

traditional

Lésning. Eftersom a'/* = 1/(1/a)"/* racker det att visa pastaendet for
a>1.Fora > 1ochk € N dr a'/* > 1. Bernoullis(*!) olikhet (se 6vning 2.4)
med x = al’/*— 1 ger

par passes

Figure 2.37

Ibland vill man starta summationen pa nagot annat tal dn 1. Fragan om
konvergens/divergens for serier beror inte pa hur de forsta termerna uppfor
sig, utan endast hur a; beter sig for stora viarden pa k. Vi kommer darfor att
anvanda beteckningen > ay for att beteckna serien med termer ag, dir den
undre gransen ar nagot fixt heltal (ofta O eller 1) och den 6vre gransen &r
+00.

traditional
Ibland vill man starta summationen pa nagot annat tal dn 1. Fragan om
konvergens/divergens for serier beror inte pa hur de forsta termerna uppfor
sig, utan endast hur a; beter sig for stora viarden pa k. Vi kommer darfor att

anvanda beteckningen > ay for att beteckna serien med termer ay, dir den
undre gransen ar nagot fixt heltal (ofta O eller 1) och den 6vre gransen ar + oo.

par passes

Figure 2.38

In addition to the previously mentioned settings for the math book, we also use

\setupalign
[hanging, % protrusion
depth, % align stuff at bottom of page
profile, % even line spacing if possible
granular, % a granular setup (classes and adjacentdemerits)

lesswidows, 9% a strict widow setup

lessclubs, % a strict club setup

lessorphans, % a strict orphan setup

lessbroken, % try to avoid hyphenations over pages
strictmath] % strict math penalty setup

The lessbroken option makes sure that we penalize hyphenations that run from
right to left pages more than from left to right pages. This make sense in a book,
where one has to turn pages.

A new take on paragraphs 44

Serien Y (—1)¥k ar konvergent, och eftersom 0 < a; < 1/k sd dr serien
> (—ag)*/ k absolutkonvergent eftersom Y. 1/k**1 d&r konvergent (jamfor till
exempel med den konvergenta p-serien Y. 1/k?). Det foljer att serien > (—1)%a,
ar konvergent. Alltsa konvergerar > a;x* precisda —1 < x < 1.

traditional

Serien > (—1)%/k ar konvergent, och eftersom 0 < ay < 1/k sd 4r serien
> (—ax)¥/k absolutkonvergent eftersom > 1/k**! a4r konvergent (jamfor
till exempel med den konvergenta p-serien > 1/k?). Det foljer att serien
> (—1)*ay ar konvergent. Alltsa konvergerar > a,x* precis da —1 < x < 1.

par passes

Figure 2.39

Let us also mention that these extra par passes do not increase compilation time
much. We have kept track of some of the compilation times for the book (290 pages)
while working. The par passes were enabled in the September 2023 run (but the
setup has been evolving).

December 2022 | total runtime: 12.109 seconds

July 2023 | total runtime: 7.997 seconds

September 2023 | total runtime: 8.306 seconds

April 2024 | total runtime: 9.739 seconds

April 2024 | total runtime: 18.439 seconds (with synctex and
tagging)

September 2024 | total runtime: 9.290 seconds

So, it has not slowed down much. This is of course non-scientific, but the runs were
done on the same computer. If it was only the par passes that had changed (it is not),
one second extra is not a big deal. With synctex and tagging enabled, the compilation
time doubles.

2.17 Another test paragraph

In D.E. Knuth’s Digital Typography he uses a rather math-dense paragraph as a show-
case. We display that paragraph below, in a few different text widths, with the tradi-
tional run, and with the par passes from the last section, used in the math book.

In Figure 2.40 we note that the traditional paragraph builder is hyphenating and
breaking inside one of the formulas. The third subpass manages without both.

45 A new take on paragraphs

15. (This procedure maintains four integers (A4, B, C, D) with the
invariant meaning that “our remaining job is to output the con-
tinued fraction for (Ay + B)/(Cy + D), where y is the input yet
to come.”) Initially set j « k « 0, (A4, B, C, D) « (a, b, c, d);
then input x; and set (4, B, C, D) « (Axj+ B, A, Cx;+ D, C), j <
Jj + 1, one or more times until C + D has the same sign as C.
(When j > 1 and the input has not terminated, we know that
1 < y < oo; and when C + D has the same sign as C we know
therefore that (Ay + B)/(Cy + D) lies between (A + B)/(C + D)
and A/C.) Now comes the general step: If no integer lies strictly
between (A + B)/(C + D) and A/C, output X, < [A/C], and set
(A,B,C,D) — (C,D,A-X,C,B— X;;D), k — k +1; otherwise in-
put x;and set (4, B,C, D) « (Ax;+B,A,Cxj+D,C), j « j+1. The
general step is repeated ad infinitum. However, if at any time the
Jfinal x; is input, the algorithm immediately switches gears: It out-
puts the continued fraction for (Ax; + B)/(Cx; + D), using Euclid’s
algorithm, and terminates.

traditional

15. (This procedure maintains four integers (4, B, C, D) with
the invariant meaning that “our remaining job is to output the
continued fraction for (Ay + B)/(Cy + D), where y is the input
yet to come.”) Initially set j « k < 0, (4, B, C, D) « (a, b, ¢, d);
then input x; and set (4, B, C, D) « (Ax; + B, A, Cx; + D, C),
Jj < j+1,one or more times until C + D has the same sign as C.
(When j > 1 and the input has not terminated, we know that
1 < y < oo; and when C + D has the same sign as C we know
therefore that (Ay + B)/(Cy + D) lies between (A + B)/(C + D)
and A/C.) Now comes the general step: If no integer lies strictly
between (A + B)/(C + D) and A/C, output X, « [A/C], and set
(A,B,C,D) « (C,D, A- X,C, B— X,D), k — k + 1; otherwise
input x; and set (4, B, C, D) « (Axj+ B, A,Cx;+ D, C), j « j+1.
The general step is repeated ad infinitum. However, if at any time
the final x; is input, the algorithm immediately switches gears:
It outputs the continued fraction for (Ax; + B)/(Cx; + D), using
Euclid’s algorithm, and terminates.

par passes

Figure 2.40 A test paragraph from Knuth’s Digital typography.
Here \hsize is 300pt.

In Figure 2.41 (\hsize=240pt), the traditional parbuilder fails, with an overfull line.
Here we need subpass 5. The first line is a bit loose, but overall it looks good.

In Figure 2.42, the text block is quite narrow (180pt). The traditional builder fails
again, while subpass 5 succeeds. We get another broken formula and a few hyphen-
ated lines, but given the constraints it is not too bad.

A new take on paragraphs 46

15. (This procedure maintains four integers (4, B, C, D)

with the invariant meaning that “our remaining job
isto output the continued fraction for (Ay + B)/(Cy +
D), where y is the input yet to come.”) Initially set
J<k«<0,(A,B,C,D)«(a,b,cd),theninputx;and
set (4, B, C,D) « (Ax;+ B, A, Cx;+ D, C), j « j+1,
one or more times until C + D has the same sign as C.
(When j > 1 and the input has not terminated, we
know that 1 < y < co; and when C + D has the same
sign as C we know therefore that (Ay + B)/(Cy + D)
lies between (A + B)/(C + D) and A/C.) Now comes
the general step: If no integer lies strictly between
(A+B)/(C +D)and A/C, output X;, — | A/C], and set
(A,B,C,D) « (C,D,A-X,C,B—X,D), k — k+1; oth-
erwise input x;and set (4, B,C, D) « (Ax;+B, A, Cx;+
D, (), j « j+ 1. The general step is repeated ad in-
finitum. However, if at any time the final x; is input,
the algorithm immediately switches gears: It out-
puts the continued fraction for (Ax; + B)/(Cx; + D),
using Euclid’s algorithm, and terminates.

traditional

15. (This procedure maintains four integers
(A, B, C, D) with the invariant meaning that “our
remaining job is to output the continued fraction for
(Ay + B)/(Cy + D), where y is the input yet to come.”)
Initially set j « k < 0, (A, B, C, D) « (a, b, ¢, d); then
input x;and set (A, B, C, D) < (Axj+ B, A,Cx;+ D, C),
Jj < j + 1, one or more times until C + D has the
same sign as C. (When j > 1 and the input has not
terminated, we know that 1 < y < oo; and when
C + D has the same sign as C we know therefore
that (Ay + B)/(Cy + D) lies between (A + B)/(C + D)
and A/C.) Now comes the general step: If no
integer lies strictly between (4 + B)/(C + D) and
A/C, output X;, « [A/C], and set (4, B, C, D) «
(C,D, A-X,C, B— X;,D), kR —« k + 1; otherwise
input x;and set (4, B, C, D) « (Axj+ B, A,Cx;+ D, C),
Jj « j+ 1. The general step is repeated ad infinitum.
However, if at any time the final x; is input, the
algorithm immediately switches gears: It outputs
the continued fraction for (Ax; + B)/(Cx; + D), using
Euclid’s algorithm, and terminates.

par passes

Figure 2.41 A test paragraph from Knuth’s Digital typography. Here \hsize is 240pt

2.18 Summary

We have discussed an extension to the traditional Knuth—Plass paragraph builder,
implemented in LuaMetaTgX, and available today to ConTgXt users.

The main new feature is the possibility of having an arbitrary number of runs over
each paragraph, with independent setups for each run. With a setup where the first
two runs are similar to the traditional pretolerance and tolerance runs, most ordi-
nary paragraphs are taken care of by them, leaving only the more difficult para-
graphs to be handled by the later runs. This means that the impact on speed is neg-
ligible.

We have also introduced a few new penalty and demerit parameters, and made oth-
ers more configurable, with plural versions and sometimes also with the possibility
to keep track of left and right pages.

The next step is to test this on various types of documents and to provide a few stan-
dard setups that make sense for the users who don’t want to mess with details. There
are already a few users who are up and running on their book projects, and they seem
to be very satisfied.

We also touched upon how the result of the paragraph builder can influence the page
builder. The process of building pagesis at a first glance simpler than the building the

47 A new take on paragraphs

15. (This procedure maintains four in-

tegers (4, B, C, D) with the invariant mean-

ing that “our remaining job is to output
the continued fraction for (Ay + B)/(Cy +
D), where y is the input yet to come.”)
Initially set j « k < 0, (4, B, C, D) «

(a,b,c,d); theninputx;andset (4, B,C, D) «

(Ax;+ B, A,Cx;+ D, C), j « j+1,o0ne
or more times until C + D has the same
sign as C. (When j > 1 and the input
has not terminated, we know that 1 <
¥ < oo; and when C + D has the same
sign as C we know therefore that (Ay +
B)/(Cy + D) lies between (A + B)/(C + D)
and A/C.) Now comes the general step:
If no integer lies strictly between (A +
B)/(C+D)and A/C, output X, < A/C],
andset(4,B,C,D) « (C,D,A-X,C,B—
XiD), k < k+1; otherwise input x; and
set(A,B,C,D) « (Axj+B,A,Cx;+D,C),
Jj < j+1. The general step is repeated
ad infinitum. However, if at any time
the final x; is input, the algorithm im-
mediately switches gears: It outputs the
continued fraction for (Ax; + B)/(Cx; +
D), using Euclid’s algorithm, and ter-
minates.

traditional

15. (This procedure maintains four
integers (4, B, C, D) with the invariant
meaning that “our remaining job
is to output the continued fraction
for (Ay + B)/(Cy + D), where y is
the input yet to come.”) Initially set
j<—k«<0,(A B, C,D) « (a,b,c,d)
then input x; and set (4, B, C, D) «
(Ax; + B, A, Cx;+ D, C),] « j+1,
one or more times until C + D has
the same sign as C. (When j > 1
and the input has not terminated,
we know that 1 < y < oo; and when
C + D has the same sign as C we know
therefore that (Ay + B)/(Cy + D) lies
between (4 + B)/(C + D) and A/C.) Now
comes the general step: If no integer
lies strictly between (A + B)/(C + D)
and A/C, output X, « [A/C], and set
(A, B,C,D) « (C,D, A— X,C, B— XyD),
k « k +1; otherwise input x; and set
(A, B, C,D) « (Axj+ B, A, Cx; + D, (),
j < j + 1. The general step is re-
peated ad infinitum. However, if at
any time the final x; is input, the al-
gorithm immediately switches gears:
It outputs the continued fraction for
(Ax; + B)/(Cx; + D), using Euclid’s
algorithm, and terminates.

par passes

Figure 2.42 A test paragraph from Knuth'’s
Digital typography. Here \hsize is 180pt

paragraphs, since we merely add content to a vertical list until it is deemed as being
full, and then ship out the page. On the other hand one has to handle footnotes, floats,
sections, columns, and so on, and that greatly complicates the matter. We intend to
study this process in a future project.

A new take on paragraphs 48

49 A new take on paragraphs

3 Twin demerits

This chapter was written for the TugBoat and appeared as preprint in the proceedings of the
2024 ConTgXt meeting. Many thanks to Karl Berry who, as usual, improved the writing a lot
and also gave valuable feedback on the confusing bits of the content. Thanks Karl!

Upgrading math support in ConTgXt not only concerns rendering formulas but also
breaking formulas across lines. For instance, fenced formulas should cross lines
while retaining the automatic scaling of fences but at the same time you don’t want
a single fence at the beginning or end of a line. Longer formulas should preferably
break somewhere away from the begin and start. Single atoms should not end up at
the end of a line and the same is in fact true for text. The later can be prevented by
so-called toddler penalties. And then there are languages where (binary) operators
need to berepeated, in a similar way as hyphens, at the start of a broken line. Alterna-
tive content (swapping one word for another in order to get a visually better looking
paragraph) is also possible but those are more (usable) proofs of concept than fea-
tures used daily. We are fans of the ‘rewrite if needed’ approach, but it is of course a
nice and fun challenge to solve some typographical problems in a generic way, when
possible.

So, looking at the end of a broken line and the beginning of the following becomes
second nature when moving forward with development. In order to explore and test
all these possibilities, we added ways to trace the process of breaking lines: we love
to visualize such things. When playing with this we also looked at the start and end
of lines with repeated sequences, for instance avoiding the same words or math vari-
able stacking at the start or end, similar to repeated hyphens. But we had enough on
our plate to not fully explore this beyond some experiments.

Around that time we had some email contact with Didier Verna, who at the 2023 tug
meeting reported on some experiments he conducted in the ETAP (Experimental
typesetting algorithms platform) software that he develops. He followed up on that in
2024 with a preprint of an article reporting on further experiments, especially avoid-
ing similar words at the start and end of successive lines.* Of course given the long
history of TgX it is no surprise that the wish to avoid that has been expressed before,
but this was the first time we have seen detailed data on the topic. We already knew
that extensions to the par builder didn’t come at a huge performance hit and Didier,
also knowing this, therefore wondered if adding such prevention to the engine was
an option.

Similarity Problems in Paragraph Justification, An Extension to the Knuth-Plass Algorithm, Didier
Verna, EPITA Research Laboratory, Le Kremlin-Bicétre, France, July 2024 (preprint).

Twin demerits 50

Before we dive into this one should notice that over time many suggestions have been
made with regards to where TgX can be improved. Among the reasons why these
never made it into the engine are that TgX is frozen, so extensions have to go into
successors like ¢-TgX, pdf TgX, XgTEX, LuaTgX, LuaMetaTgX, etc. One complication is
in the way TgX is programmed: it uses a linked list of nodes for what eventually be-
comes a list of lines, a paragraph. This is a forward-linked list so one cannot look
back, although in some cases TgX keeps a pointer to the previous node around. But
looking back a ‘word’ demands quite a bit of extra code. In LuaTgX and LuaMetaTgX
we have a dual linked list so there we can go back. This means that implementing a
feature as discussed here is less hard and also can be prototyped in Lua. On top of
that, in LuaMetaTgX we also carry around more information to act upon. Of course it
doesn’t change the fact that while experiments can show that ‘it can be done’ doesn’t
mean that we don’t run into complications that have to be dealt with in order to make
it usable and not backfire with bad results elsewhere. We will show a few cases that
demonstrate that one reason for engines not to support this out of the box is that for
a single (extra) feature like this, one likely has to add far more control options. So
keep this in mind when reading on: there is always more involved than at first sight.
What looks like a home run for LuaMetaTgX is less so for other engines.

As we had been playing a bit with tracing and analysing decisions we have a mech-
anism in place to plug code into the par builder. We use this for instance to force
breaks based on feedback. Discouraging a break at similar words can be done using
those same hooks so we decided to take the challenge and just made it a more perma-
nent feature, possibly with the side effect of it being more integrated in the engine.®
Below are some outcomes that can be seen as a progress report on this feature.

The first thing we did was go back to the already existing callback. Because the
builder is rather complex (keep in mind that we have several extensions) there are
nine places where the callback can be triggered, mysteriously identified as: initialize,
start, list, stop, collect, line, delete, report, and wrap up. Each call to the same call-
back gets a different set of status parameters that at that particular moment make
sense. It is up to Lua code to collect, analyze, feedback and/or use it somehow. This
plugin mechanism seems like a lot of overhead but as it is only needed for tracing it
goes unnoticed.

When we play with these repeated words we distinguish between what we call left
and right edge twins.® We look at glyphs as well as discretionaries and ignore font

We often keep experimental code around, interfaced not at the user level but via runtime directives,
if only because we need it for articles. Supporting a feature as discussed here needs some thinking
with respect to integrating in, for instance, the paragraph rendering setups which differs from low-
level directives.

6 S0 in addition to widows, clubs, toddlers and orphans we now have twins too.

51 Twin demerits

kerns. We need to check the pre, post and replacement parts of discretionary nodes
because we must assume that more complex OpenType features might give a more
complex discretionary than a single hyphen.”

Using a Lua approach is quite flexible and permits nice tracing but, as said, it abuses
a callback that, due to the many different invocations, is not the best candidate for
this. We could add another callback but that is overkill. Therefore, after testing, part
of the Lua code has been turned into a native feature so that we can do both: native
twin checking as well as tracing of the break routine (which we need for testing par
passes) but also exploring more variants using that callback.

So, the reference implementation is still done in Lua where we then also have twin
tracing. In principle that is fast enough; the overhead on a 240 page (1000) Tufte
quote test is around .1 seconds. The native C implementation works slightly differ-
ently but is derived from the Lua code. In the engine we have some constraints, such
as limiting the maximum length of a snippet to 16 characters.

In both cases (Lua and C) the overhead is rather small because we look only at a lim-
ited set of breakpoints. In Lua we gain performance by caching, in C by limiting the
snippet. We can squeeze out some more performance if needed by immediately com-
paring the second snippet with the first one. Unlike the Lua variant, the C implemen-
tation checks for a so-called glyph option being set.® Because it has to fit into how we
handle linebreak controlling parameters, we carry new \lefttwindemerits and
\righttwindemerits registers in the paragraph state node and we can also set it
in the (optional extra) paragraph passes, so that it can be disabled when we get bad
results. This makes a relatively small patch a bit larger due to housekeeping.

With support in the engine (C) as well as in Lua (the callback), we can now come back
to some of the observations we made when we discussed this feature during exper-
iments. But first let’s stress that adding this feature to the engine makes sense so
that users can play with it, but this doesn’t mean that it always solves the problem.
Also, like other features, one might only benefit in a few places in hundreds of pages
of text. One should always visually check the result.

PN 11

In his article Didier uses a quote (from Grimm Brothers’ “Frog King”) that in his case
has three ‘and”s in row (using an eight bit Computer Modern font). Actually there
are four ‘and’’s close together that can team up. Here we use a different setup with
the same quote. We have different defaults for e.g. tolerance and spacing in ConTgXt
anyway. In figure 3.1, we start with the paragraph as it comes out normally, using 12
point Latin Modern and an \hsize of 82mm.

In his preprint Didier only mentions glyphs and stops in his experiments at discretionary nodes.
Glyph options control features like kerning, ligature building, protrusion, expansion, at the individual
glyph level.

Twin demerits 52

In olden times when wishing still helped one,
there lived a king whose daughters were all
beautiful; and the youngest was so beautiful
that the sun itself, which has seen so much,
was astonished whenever it shone in her face.
Close by the king’s castle lay a great dark for-
est, and under an old lime-tree in the forest
was a well, and when the day was very warm,
the king’s child went out into the forest and
sat down by the side of the cool fountain; and
when she was bored she took a golden ball,
and threw it up on high and caught it; and
this ball was her favorite plaything.

In figure 3.2 we show what we get when we set the demerits to 7500 thereby enabling
twin detection. This number is pretty high because demerits are usually large num-
bers, as in squared penalties. When a paragraph is broken into lines TgX keeps track
of reasonable breakpoints. As it goes over the paragraph breakpoints get identified
and depending on criteria previous breakpoints get looked at. That means that at
any of these points we can check if there are similar words before and/or after a pair.
If that is the case one or both extra demerits get added to the current accumulated
amount. Normally the current amount is in the thousands so that is why we need

Figure 3.1

relatively high twin values.

In olden times when wishing still helped one,
there lived a king whose daughters were all
beautiful; and the youngest was so beautiful
that the sun itself, which has seen so much,
was astonished whenever it shone in her face.
Close by the king’s castle lay a great dark for-
est, and under an old lime-tree in the forest
was a well, and when the day was very warm,
the king’s child went out into the forest and
sat down by the side of the cool fountain;
and when she was bored she took a golden
ball, and threw it up on high and caught it;
and this ball was her favorite plaything.

Figure 3.2 Twin demerits parameters set to 7500, en-
gine implementation.

In figure 3.2 we use the engine variant; in the next example we use the Lua imple-
mentation, which permits coloring the snippets that we found troublesome. Tracing
also happens on the console and that is why we use the callback: if we report the

53 Twin demerits

words that matter, we need a proper Unicode string and in a typeset paragraph we
might have (in the case of ConTgXt) private ones that point to ligatures, case variants,
stylistic alternates etc.

In olden times when wishing still helped one,
there lived a king whose daughters were all
beautiful; and the youngest was so beautiful
that the sun itself, which has seen so much,
was astonished whenever it shone in her face.
Close by the king’s castle lay a great dark for-
est, and under an old lime-tree in the forest
was a well, and when the day was very warm,
the king’s child went out into the forest and
sat down by the side of the cool fountain;
and when she was bored she took a golden
ball, and threw it up on high and caught it;
and this ball was her favorite plaything.

Figure 3.3 Lua implementation,
with colored snippets.

Notice that we not only detect an ‘and’ case here but also a hyphenated part of ‘forest’.
Of course the whole ‘forest’ could also have shown up as a candidate.

All this depends a lot on the fonts and widths used. In figure 3.4 we use the Pagella
font. It demonstrates that one cannot simply assume that when twins get set up the
desired effect occurs. Again we set the values to 7500, and in figure 3.5 we get the
same results, contrary to the Latin Modern case.

In olden times when wishing still helped one,
there lived a king whose daughters were all
beautiful; and the youngest was so beautiful
that the sun itself, which has seen so much,
was astonished whenever it shone in her face.
Close by the king’s castle lay a great dark for-
est, and under an old lime-tree in the forest
was a well, and when the day was very warm,
the king’s child went out into the forest and
sat down by the side of the cool fountain; and
when she was bored she took a golden ball,
and threw it up on high and caught it; and
this ball was her favorite plaything.

Figure 3.4 The Pagella font, without twin detection.

Twin demerits 54

In olden times when wishing still helped one,
there lived a king whose daughters were all
beautiful; and the youngest was so beautiful
that the sun itself, which has seen so much,
was astonished whenever it shone in her face.
Close by the king’s castle lay a great dark for-
est, and under an old lime-tree in the forest
was a well, and when the day was very warm,
the king’s child went out into the forest and
sat down by the side of the cool fountain; and
when she was bored she took a golden ball,
and threw it up on high and caught it; and
this ball was her favorite plaything.

Figure 3.5 The Pagella font, with twin detection, but

li

Figure 3.6 uses the Lua variant so that we can show the candidates, red for the right
ones; later we’ll also see green for the left ones and yellow for both left and right. In
all cases, words are colored when they were considered as twins at some point in
the paragraph processing, even if those particular line breaks were discarded later.

ne breaks are unchanged.

Thus, the colored words might show up anywhere in a paragraph.

At any rate, the reason why it doesn’t work out here is that we need to bump the
tolerance and also permit emergency stretch. This shows that just enabling a fea-
ture doesn’t guarantee results. So, figure 3.7 does that: more tolerance and possible
Playing with the widths shows that single point differences can

emergency stretch.

have quite some effect.

In olden times when wishing still helped one,
there lived a king whose daughters were all
beautiful; and the youngest was so beautiful
that the sun itself, which has seen so much,
was astonished whenever it shone in her face.
Close by the king’s castle lay a great dark for-
est, and under an old lime-tree in the forest
was a well, and when the day was very warm,
the king’s child went out into the forest and
sat down by the side of the cool fountain; and
when she was bored she took a golden ball,
and threw it up on high and caught it; and
this ball was her favorite plaything.

55 Twin demerits

Figure 3.6 Showing candidates
in the Pagella example.

In olden times when wishing still helped
one, there lived a king whose daughters
were all beautiful; and the youngest was so
beautiful that the sun itself, which has seen
so much, was astonished whenever it shone
in her face. Close by the king’s castle lay a
great dark forest, and under an old lime-tree
in the forest was a well, and when the day
was very warm, the king’s child went out
into the forest and sat down by the side of the
cool fountain; and when she was bored she
took a golden ball, and threw it up on high
and caught it; and this ball was her favorite
plaything.

Figure 3.7 With more tolerance
and emergency stretch.

Finally we show a few examples with nonsense text. The red words are the ones that
show up at the right, the green ones on the left, but when a word can occur at both

ends yellow is used.

more and efficiency and efficient more and efficiency and efficient more and ef-
ficiency and efficient more and efficiency and efficient more and efficiency and
efficient more and efficiency and efficient more and efficiency and efficient more
and efficiency and efficient more and efficiency and efficient more and efficiency
and efficient more and efficiency and efficient more and efficiency and efficient
more and efficiency and efficient more and efficiency and efficient more and ef-
ficiency and efficient more and efficiency and efficient more and efficiency and
efficient more and efficiency and efficient more and efficiency and efficient more
and efficiency and efficient

Figure 3.8

With the demerits set to 5000 (figure 3.8) we still get a few ‘efficien’ at the left but
they are different words. One can argue that we could use some snippet length (say
six glyphs) but of course then something else will bother us. In the next variant of the
above, we set \parfillskip such that we have a different solution space, combined
with an extreme 25000 demerits (figure 3.9). In both examples we use a 426 point

width.

Twin demerits 56

more and efficiency and efficient more and efficiency and efficient more
and efficiency and efficient more and efficiency and efficient more and ef-
ficiency and efficient more and efficiency and efficient more and efficiency
and efficient more and efficiency and efficient more and efficiency and effi-
cient more and efficiency and efficient more and efficiency and efficient more
and efficiency and efficient more and efficiency and efficient more and ef-
ficiency and efficient more and efficiency and efficient more and efficiency
and efficient more and efficiency and efficient more and efficiency and ef-
ficient more and efficiency and efficient more and efficiency and efficient

Figure 3.9 With unusual parfillskip and demerit registers at 25000.

Going narrower, as in figure 3.10, brings us words that can be at either end (shown in
yellow) and leaves us without solution but that is what we expect. One can conclude
that this feature works best with a wider layout and is not that useful in columns,
unless one prefers excessive space glue over no twins, but the good news is that TgX
is unlikely to favor that.

more and efficiency and
efficiency and
and
and
effi and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
effi and efficient

Figure 3.10 Narrower hsize.

So what can we conclude? First of all that it is indeed possible to get rid of repetition.
To what extent this improves a document while not introducing suboptimal para-
graphs we leave to the user; Didier makes a case for it. Performancewise, there is no

57 Twin demerits

reason not to enable it. We did some tests with the larger documents that we also
use for testing other features (math line breaking, page building) and when there are
twins seen sometimes they do indeed get separated.

One of our test documents, the King James bible in two columns using the Unifraktur
font, is a good candidate but although we find candidates only in some cases the line
break routine was not always influenced by the increased demerits. Examples of
two letter words are ‘of’ and ‘is’ and of course it being English we find plenty ‘the’
and ‘and’ but some still ended up below each other, simply because we have narrow
columns. In figure 3.11 (a bitmap screenshot) we see an interesting case but one that
happened to render the same without twin detection. Words like ‘their’ and ‘shall’
happily team up as twins, no matter how high we set the demerits.

19 Three bowls made after the fashion of almonds in one brand), a
flower; and three bowls made life almonds in another brand, a
flower: so throughout the six brandyes going out of the candlestid.

Figure 3.11 Example from the bible.

In the pdfTgX project, font expansion was tested on an annotated bible and the com-
bination of text, notes, numbers, references was a real challenge.’ In the abovemen-
tioned King James we don’t have those constraints but one can wonder what setup
will make the verse in figure 3.12 come out better. We bet that the double twins here
are considered less of a problem than excessive spacing or extreme expansion.

8 And thou shalt bring the meat offering that is made of these things
ZORD: and when it is presented unto the priest, he shall bring it
altar.

Figure 3.12 With perhaps too much font expansion.

The good news is that in this 740 page document, there were quite a few catches,
like the one in figure 3.13. In some cases we got one line more or less and therefore
a different column or page break. Of course this itself then can create a problem,
like a widow or club but we set that up with pretty high penalties and combined with
vertical expansion and page slack tolerance (both are relatively new features) we still
get good output so overall we gain in quality!

S fmd anemy ptovtt ot hipefiphd b dfifre dtitowe énilhyeheaetlys ndney ey dye e of
oyt el fidiofded dtepitweefor fiye BO KD BH0 God tefd cnusehiked thifo upon
tiyonciifh) 2 andl) £ vk thyese ot e modro b il tih il tdunds

Figure 3.13 Overlaying results; the first line ends with a doubled ‘the’.

° Han Thé Thanh’s thesis reported on that.

Twin demerits 58

We tested two other documents that show some interesting (challenging) aspects. In
Mikael’s university course we compared the versions with and without twin control.
The traceridentified 25 situations where demerits could be bumped. We noticed that
‘att’, ‘och’, ‘sd@’, ‘vi’ and other short words were popular candidates but after turning
on tracing we saw that many were left and were surprised to see quite a few longer
words, with of course in a math book quite some ‘komplexa’ and ‘negativa’ showing
up at the edge.

Keep in mind that we only look at a subset of the possible breakpoints. Of these 25
only 5 were applied, so for the other 20 the solution space was not adequate. For the 5
cases the solution resulted in somewhat narrower lines so we wondered if additional
par passes made (hz) expansion kick in but it didn’t so in the end we’re okay. Of the
20 remaining cases 10 had long words, some with hyphenation so actually we had
more cases. An interesting side effect of tracing (by color) is that we noticed that the
long words also had successive words and that rewriting the paragraph made sense.

element (a, b) dir a € A och b € B. Exempelvis ar N X N méangden av alla
par av naturliga tal, sasom (1, 1), (2, 3) och (101, 23).

Ett mycket viktigt och centralt begrepp i matematiken ar begreppet funk-
tion. Om A och B ar tva mangder, sa tanker vi ofta pa en funktion fran A till B
som en regel som till varje element i A tilldelar ett entydigt bestdmt element

B. Om f ar en funktion fran A till B, sa skriver vi f: A — B. Det B
som funktionen f tilldelar ett element a € A betecknas f(a). Mangden A kal-

Figure 3.14 Math example; the ‘alla’ on the first line is repeated at the bot-
tom of the previous page.

In a math document sometimes it’s unavoidable. In figure 3.14 we see a few trouble-
makers and ‘alla’ is actually not resolved. The figure shows the top of a page and at
the bottom of the previous page there’s also ‘alla’. We don’t even want to ponder how
to bring page breaks into this model. One can also wonder what is more troublesome:
edge cases or middle cases.

Also worth noticing is that when twins end up in the middle they tend to stack even
when the par builders in the end didn’t consider the end-of-line case anyway. A bad
example had three separate slightly offset but still stacked long words, shown in fig-
ure 3.15. And, once the author saw this, he made a note to “fix it by rephrasing”.

Funktionen x ~ tanx, kvoten av sinx och cos x ar vildefinierad sa lidnge
som cos x # 0.Det ar klart att tan O = 0 och att tan ar kontinuerlig
vax pa (0, 1m/2) (strangt vaxande foljer av att sin ar positiv
vax och cos ar positiv och strangt avtagande pa intervallet). Da sin ar

Figure 3.15 Worse math example.

59 Twin demerits

10

The ‘solved’ cases were mostly short words but so were unsolved ones; see fig-
ure 3.16. The constraints that math put on breaking the lines win over any twin con-
straints we add. We also were confirmed in our decision to take discretionaries into
account.

OmO0<a<1saarl/a>1ocha*=1/(1/a)*. Alltsa foljer det fran
det vi just gjort att (1/a)* —» +o0 da x — +o0, dvs. givet A existerar w
(1/a)* > A om x > w. Givet ett godtyckligt € > 0 finns det alltsa w

att [1/(1/a)* — 0] = 1/(1/a)* < € om x > w. Alltsa galler det att a* =

1/(1/a)* - 0dax — +oo. |

Figure 3.16 Math example.

We also tested a document that Mikael typeset from Gutenberg sources for a book
club, Henry James’ The Turn of the Screw. Here we again noticed quite a few duplicates
but also quite a few eventually separated twins, as in figure 3.17.

—superficially at least—by a visible wound to his head; such a wound
as might have been produced—and as, on the final evidence, had been
—by a fatal slip, in the dark and after leaving the public house, on the
steepish a wrong path altogether, at the bottom of which he
lay. The the turn mistaken at night and in liquor, accounted
for much—practically, in the end and after the inquest and boundless
chatter, for everything; but there had been matters in his life—strange
passages and perils, secret disorders, vices more than suspected—that
would have accounted for a good deal more.

Figure 3.17 From “The Turn of the Screw”.

In figure 3.18 we wondered if the twin handler had kicked in which indeed was the
case. But we also noticed that without this mechanism being enabled, the same mid-
line stacking occurred. However, in both cases, without coloring they can easily go
unnoticed; just try to locate them in figure 3.19. (See figure ?? for the results.)

This document also demonstrated that words close together tend to register as sib-
lings, and when Mikael showed one of his children what we were looking at, she no-
ticed disturbing repetitions which we hadn’t noticed before.'® But adding more tricky
mechanisms will only make the solution space smaller so we will not reveal every an-
noyance. We did once consider \siblingpenalty but already forgot what for, but
we hereby reserve that name.

There is plenty left to explore. It is not uncommon in the TgX community to hear
users (and developers) express the wish for a feature, offer a few examples of why it’s
needed, and then fall silent. Time and money can be arguments used to not spend

From figure 3.20 you can deduce what words were involved. In that example there are many possible
twins, so we set twinslimit to 3, a feature added for this purpose to the Lua version.

Twin demerits 60

settled: there was a queer relief, at all events—I mean for myself in espe-
cial —in the renouncement of one pretension. If so much had sprung to
the surface, I scarce put it too strongly in saying that what had perhaps
sprung highest was the absurdity of our prolonging the fiction that I
had anything more to teach him. It sufficiently stuck out that, by tacit
little tricks in which even more than myself he carried out the care for
my dignity, I had had to appeal to him to let me off straining to meet
him on the ground of his true capacity. He had at any rate his freedom
now; I was never to touch it again; as I had amply shown, moreover,
when, on his joining me in the schoolroom the previous night, I had
uttered, on the subject of the interval just concluded, neither challenge
nor hint. I had too much, from this moment, my other ideas. Yet when
he at last arrived, the difficulty of applying them, the accumulations of
my problem, were brought straight home to me by the beautiful little
presence on which what had occurred had as yet, for the eye, dropped
neither stain nor shadow.

Figure 3.18 Another text from “The Turn of the Screw”.

was a queer relief, at all events—I mean for myself in especial —in the
renouncement of one pretension. If so much had sprung to the surface,
I scarce put it too strongly in saying that what had perhaps sprung high-
est was the absurdity of our prolonging the fiction that I had anything
more to teach him. It sufficiently stuck out that, by tacit little tricks in
which even more than myself he carried out the care for my dignity, I
had had to appeal to him to let me off straining to meet him on the
ground of his true capacity. He had at any rate his freedom now; I
was never to touch it again; as I had amply shown, moreover, when, on
his joining me in the schoolroom the previous night, I had uttered, on
the subject of the interval just concluded, neither challenge nor hint. I
had too much, from this moment, my other ideas. Yet when he at last
arrived, the difficulty of applying them, the accumulations of my prob-
lem, were brought straight home to me by the beautiful little presence
on which what had occurred had as yet, for the eye, dropped neither
stain nor shadow.

Figure 3.19

time on actually implementing something and the possibility keeps floating around.
One can play science and stop an experiment with the usual “suggestions for further
research” and move on. It’s therefore nice to see some real research on the topic as
with Didier’s using a prototype. However, because typesetting is pretty much about
esthetics and boundary conditions we have to face reality and that’s what we hit when
testing. An example is the following case:

ceeo \Im x+1%.
ceeo \Im Ix+2%.

61 Twin demerits

11

saying that instead of growing used to them—and it's a marvel for a
governess: I call the sisterhood to witness!—I made constant fresh dis-
coveries. There was one direction, assuredly, in which these discoveries
stopped: deep obscurity continued to cover the region of the boy's con-
ductat school. It had been promptly given me, I have noted, to face that
mystery a pang. Perhaps even it would be nearer the truth to
say that— a word—he himself had cleared it up. He had made
the whole charge absurd. My conclusion bloomed there with the real
rose flush of his innocence: he was only too fine and fair for the little
horrid, unclean school-world, and he had paid a price for it. I reflected
acutely that the sense of such differences, such superiorities of quality,
always, on the part of the majority—which could include even stupid,
sordid headmasters—turn infallibly to the vindictive.

Figure 3.20 Example of many twins, with twinslimit=3.

In the paragraph stream we get math formulas followed by a period. However, what
we really get after the ‘1’ and ‘2’ is a math end node, a penalty, and a (likely zero)
glue or kern (depending on what we configured). This means that the period is seen
as a snippet and so we get a twin here, and bumping demerits then interferes with
our rather advanced math spacing and penalty model. This made us be more strict
in what makes for a possible sibling: we expect glue and glyph after and/or glyph
and glue before. Maybe we should be even more restrictive and look at character
properties which makes us end up in Lua.

Another challenge is shown in figure ??, where we have twins that are followed by
punctuation. So how do we tackle that? At the Lua end we have access to the font
properties so there we can act on the original Unicode character being punctuation,
in which case we can ignore it. At the TgX end we need to figure that out differently.
We could look at the \sfcode but that’s rather unreliable. We could have a callback
that gives the required property information, but do we really want an extra callback?
In the example the third paragraph is done by our Lua implementation. The second
one comes from the engine where we use an experimental character control feature
that we set up for this case.!* The verdict is still open if we add this feature, also
because for it to be useful yet another field in the glyph node would be required.

So, as we move on and test more, additional constraints can occur. It is easy to come
up with various “TgX should do this or that”, or even “I looked into it and it can be
done”, and then end up with “Sorry, not now.” It does take time and effort indeed
but it also brings one into unknown territory. So, we do show that it can be done but
we will never claim that what we do is perfect and we definitely do not enable it by

Think of cccode"2E = "0001 (period) and cccode"2C = "0001 (comma) that sets the ,ignore twin‘ bit,
where cccode is the * ' character control" primitive.

Twin demerits 62

test even more test more, and test
more, and test even more test more,
nore test more, and test even more
test even more

test even more test more, and test
more, and test even more test more,
re test more, and test even more test
even more

test even more test more, and test
more, and test even more,
re test more, and test even more test
even more

Figure 3.21 Twins with punctuation. First para-
graph has default processing; second with an ex-
perimental engine feature, third with Lua.

default. It will take some time and likely input from ConTgXt users to fine-tune this,
assuming it gets used. It can currently be enabled by setting one of the align options:

\setupalign[notwins] % for the brave:
[notwins,notoddlers, noorphans]

Let’s end with some statistics. In this document we enable multiple par passes, but
the number of times that these are needed is small. The extra overhead can often be
neglected anyway. Here’s how many first, second and emergency passes we have and
how often additional sub-passes were needed to fit the criteria. In the King James we
bumped the demerits by 7500 for 665 left twins, 772 right twins and 113 of these end
up left and right.

context first second emergency sub-pass
page 35989 4733 (13%) 0 (0%) 282 (1%)
vbox 2942 734 (25%) 0 (0%) 0 (0%)

The document has 246,470 words, of which 112,329 get hyphenated in 35,750
checked node lists. A run without twin detection takes 14.50 seconds, with engine
twin detection that gets raised to 14.75 seconds. Because here we have only text and
many small paragraphs the Lua variant performs relatively slowly: 15.35 seconds.
Tracing, marking words with color and reporting to the console adds .15 seconds to
that. This document is not the fastest to process: we use columns, a rather demand-
ing font, selective expansion (sub-pass driven), and the sources are xml which gets
interpreted and remapped on the fly.

63 Twin demerits

Thanks to Didier for inviting us to prove that it can be added to the engine with little
effort and providing some stimulating statistics. Let’s end with some more because
it can’t be that there is no performance hit when we enable this feature, right? Solet’s
check out three scenarios:

1. The \glyphoptions variable has the ‘checktwin’ bit set but both twin demerits
parameters are zero, so we never enter the check.

2. The \glyphoptions variable has the ‘checktwin’ bit set and both twin demerits
parameters are 7500. We enter the check and per-glyph options permit it.

3. The\glyphoptionsvariablehasthe ‘checktwin’ bit unset but both twin demerits
parameters are 7500. We enter the check but per-glyph options prevent it from
succeeding.

In ConTgXt we set the demerits and use the options bit to control it, so we always have
the check but can quit after some initial tests (case 2 and 3). The numbers below are
for ten runs of 15000 times each of the well-known Tufte quote, for each of the three
cases:

\setbox\scratchbox\vbox{\samplefile{tuftet}?

1 17.860 18.478 19.026 18.824 18.736 18.665 18.623 19.002 18.101
2 18.672 19.181 18.150 18.960 18.414 19.120 18.246 18.945 19.050
3 18979 18.597 18.747 18.837 18.660 18.846 18.513 18.457 18.448

The results are in table table:stats. These numbers include font processing time as
well as some other ConTgXt specific callback overhead processing time but we want
to test with ligatures and discretionaries so this is required. When we use \vpack all
times are the same.

But, this is for 15000 nine-line paragraphs using the Tufte quote and that is a tough
one: many short words, ligatures, four hyphenated lines in the standard layout. If we
output the result, we get a 3335 page document and a runtime of about 37.5 seconds
(on my 2018 laptop).

1 nocheckatall 18.622 37.270 37.433 37.425 37.376
2 check and honored 18.748 37.651 37.261 37.690 37.534
3 checkbutignored 18.650 37.032 37.565 37.967 37.521

So, in the end, assuming that we have the third variant as default (which is the most
practical in ConTgXt) users will see a small performance hit due to this new feature
but on a regular run, which in practice does way more than just outputting text only,
no one will notice it. So, our and Didier’s conclusion that we have no performance
hit (something that is always considered when making a possible extension to a core
component) holds.

Twin demerits 64

18.905 1
18.744 1
18.414 1

you (as a daddy) are never too old to learn from young kids
vou (as a daddy) are never too old to learn from young kicls
you (as a daddy) are never too old to learn from ng
s vou (as a daddy) are never too old to learn from
ng lids vou (as a daddy) are never too old to lcarn

m ng kids yvou (as a daddy) are never too old

rn from ng kids you (as a daddy) are never too

rn from young kids vou (as a daddy) are never
rn from yvoung kids you (as a daddy) are never
rn from ng kids (as a daddy) are

er rn [rom ng kids are you
Figure 3.22

65 Twin demerits

4 Namespaces

Occasionally on TgX related mailing lists, meetings, articles or forums performance
comes up. It makes no sense for me to go into the specific (assumed) bottlenecks
mentioned but as in ConTgXt we do keep an eye on performance every now and then
I also spend words on it, so here are some.

The nature of the (multilingual) user interface of ConTgXt there is extensive use of
the \csname and related primitives. For instance, if we have the namespace 999>
and a keyword testkeywoxrd, we can have a specific property set with:

\expandafter\def\csname 999>testkeyword\endcsnamei}

We can then test if a macro with the inaccessible name ‘999 >testkeyword’ exists and
has been set with a test command available in all engines that carry e-TgX extensions:

\ifcsname 999>testkeyword\endcsname
% whatever
\fi

In order to test this, the list of tokens starting at 9 and ending at d has to be converted
into a (C) string that is used for a hash lookup. One can expect this to be a costly
operation. In a 300 page book with many thousands of formulas this easily runs into
the millions. Testing this five times on one million such tests gives:

0.303 0.293 0.283 0.301 0.298
for LuaMetaTgX and
0.276 0.287 0.287 0.274 0.274

for LuaTgX. I deliberately show five numbers because one has to keep some system
load into account. When I'm interested in performance I only care about trends be-
cause no run ever gets the whole machine for its job. That said, where does the no-
ticeable difference between these engines come from? It can partly be explained by
LuaMetaTgX having more primitives and therefore a bit more overhead (more scat-
tered code in memory and cpu cache). But as the basic code that kicks in here is not
that much different I figured that it might be the hash lookup and, because indeed we
had a follow up lookup in the hash (two steps), by using a larger hash table we could
limit that to a direct hit.

0.288 0.281 0.280 0.288 0.277

Namespaces 66

So we ended up with similar measurements for these engines. Before we carry on,
let’s ask ourselves if these numbers worry us. Say that this book takes 12 seconds to
process, does it matter much if we half this overhead? Probably not, but in the follow-
ing, we need to keep in mind that much can interfere. A simple million times test is
likely very cpu cache friendly. There are however other factors in play: convenience
coding, abstraction, less cluttered tracing, more detailed feedback from the engine,
less code and memory usage, the size of the format file. Trying to get lower numbers
is also kind of fun.

Backtothe userinterface, we now introduce some abstraction (the test in the names
avoids clashes with existing definitions):

\def\??testfoo $999>1
\def\c!testkeywordikeyword}?

\ifcsname\??testfoo\c!testkeyword\endcsname
% whatever
\fi

Again LuaMetaTgX is a little slower but it is kind of noise:

0.243 0.243 0.247 0.241 0.249 luatex
0.251 0.250 0.250 0.249 0.249 luametatex

But how about the following timings for LuaMetaTgX:

0.136 0.143 0.139 0.139 0.140
0.132 0.132 0.133 0.129 0.130

In the first case we defined the namespace and keyword as follows:

\cdef\??testfoo $999>1%
\cdef\c!testkeywordikeyword}

A \cdef’s macro is basically an \edef. This definition is scanned as token list and
therefore we know the macro has no arguments. It operates as any macro but in a
\csname related command it is just passes as-is and only expanded when we need
to do alookup. When that happens we don’t need to go through a token list (copy) but
directly can go to string characters.

The second measurement shows a little improvement and is the outcome from an
experiment with build in namespaces. Think of this:

\namespaceifcsnamedef\iftestfoocsname 999

67 Namespaces

12

\iftestfoocsname\c!testkeyword\endcsname
% whatever
\fi

That variant is faster but we’re talking .05 second on 2.5 million calls in the book be-
cause we already use \cdef. Even more important is to notice that most documents
have only tens of thousands such calls. And 0.15 seconds csname “test and call” on
the whole run is not that bad. So, if we go beyond \ cdef usage we don’t need the effi-
ciency argument but the other ones. So, after a few days of playing with this I rejected
this solution. First of all the source didn’t become more readable. We also had many
more commands because there were for instance:

\namespacecsnamedef \csnamefoo 999
\namespacedefcsnamedef \defcsnamefoo 999
\namespaceifcsnamedef \ifcsnamefoo 999

\namespacebegincsnamedef\begincsnamefoo 999

We also had a callback for reporting associated names when tracing. Of course there
can be use cases where we have tens of millions of \ csname calls but I still need to find
them. But don’t expect miracles now that we’re in these low numbers. Integrating all
this is also not that trivial because TgX has two separated code paths for expandable
commands and ones more related to housekeeping and typesetting (the mail loop).
This means that one has to intercept expansion of encoded namespaces and that
gives a bit of a mess, especially because we also need to handle nested csnames.

As an aside I also played a bit with ‘compiling’ regular csname commands followed
by a namespace into one token but that was even more messier.'? So in the end I re-
moved all that experimental namespace code and happily accept the fact that there’s
nothing to gain, but it was a fun experiment.

As a side effect of this experiment I decided to enable a primitive that had been com-
mented. When it was tested years ago there was no real gain but I realized that it
could be implemented a bit more efficient in specific scenarios. Think of this:

\csname\ifcsname999>foobar:width\endcsname999>foo:width\fi\endcsname

when abstracted becomes:

\csname\ifcsname\??testme foobar:\c!width\endcsname\??testme
foo:\c!width\fi\endcsname

Occasionally I consider some compilation of tokens lists into more efficient ones but so far I could
resist.

Namespaces 68

In both cases the same list of tokens (\??testme foobar:\c!width) has to be con-
verted into a byte string, which we can avoid by:

\csname\ifcsname\??testme
foobar:\c!width\endcsname\csnamestring\fi\endcsname

when we have a hit. After all, the found macro has a known name that has been reg-
istered as a string. This variant runs over 10 percent faster, which of course can be
neglected, especially if we don’t call it millions of times; the book has 400.000 calls
to \csnamestring. But as with many optimizations: gaining 20 times 0.1 seconds
on different subsystems eventually adds up to 20 % on a 10 seconds run for that 300
page, math extensive, book.

When looking at timings one always need to keep in mind that a simple test (in a
loop) is very easy on the cpu cache while in a real document there can be more cache
misses simply because the cache is limited in size. That is why in practice we often
see a bit more positive impact than shown here. In the case of the \csnamestring
we not only gain a bit on parameter handling but also on some font related opera-
tions, but again the gain depends on how many (more complex) font switches hap-
pen, which is more likely in for instance manuals.

69 Namespaces

5 Bonus features

In ¢-TgX the plural \widowpenalties and friends were introduced. These use, like
\parshape anode type that varies in size. In LuaMetaTgX we implement the variable
part differently which gives more efficient (and recoverable) memory usage. This is
needed because we have more such structures, like \parpasses that can become
pretty large. The basic approach is:

\somecommand number entries

where the number of entries is multiplied by a constant depending on \ somecommand.
A \parshape takes twice the number, and \widowpenalties one or two times the
number, depending on a passed option indicating if we differentiate between left and
right pages. The \parpasses primitive takes dozens of named entries separated by
a next key and ends with a \relax.

\somecommand number options bitset entries

The bitset after the options keyword depends on the command. The fact that we
have a somewhat generic structure makes that we can also provide a mechanism
for storing ‘arrays’ of integers, dimensions, posits (and maybe some day token lists).
Adding this was a cheap bonus feature that needed little extra code. We implement
this using the \specificationdef command that takes the form:

\specificationdef \somename \widowpenalties

with of course support for structures other than these penalties. An array is defined
with

\specificationdef \foo \dimen 3 1pt 2pt 3pt
\specificationdef \oof \count 3 1 2 3
\specificationdef \ofo \float 3 1.1 2.2 3.3
%specificationdef \fof \toks 3 {a} i{b} ic} % some day

You can access the fields like this:

(\the\foo 1) (\the\foo 2) (\the\foo 3)
(\the\ofo -1) (\the\ofo -2) (\the\ofo -3)
(\the\oof 1) (\the\oof -2) (\the\oof 3)

The negative index starts at the end and a zero index returns the number of entries
and out of range values are zero. An array with two entries per row is defined with an
option:

Bonus features 70

\specificationdef \foo \dimen 3 options 4
1pt 1pt
3pt 2pt
5pt 3pt

This time we use an index and subindex.
(\the\foo 3 1, \the\foo 3 2) : (5pt,3pt)

If youwant an integer and dimension (or float) you can do this, where the four triggers
double entries and 32 tells that the first of each pair is an integer:

\specificationdef \oof \dimen 3
options \numexpr 4 + 32 \relax
5 2pt
9 3pt
2 1pt

Although ConTgXt has all kind of data structures like this using Lua, the advantage is
that when TgX itself manages this grouping works more naturally. Also, these ways
of storing and accessing data is extremely runtime efficient. To what extend if will
be used in ConTgXt is to be seen, but it can come in handy when we experiment with
paragraph and page builder enhancements in Lua that we want to drive from the TgX
end. Given:

\specificationdef \foo \dimen 3 options 4
1pt 1pt
3pt 2pt
5pt 3pt

the Lua call tex.getspecification("foo") gives a table like:

1
{ 65536, 65536 %,
{ 196608, 131072 %,
{ 327680, 196608 %,
$

So we can for instance consider this to be a table of coordinates defined at the TgX
end that can be processed at the Lua end.

71 Bonus features

6 Whatif ...

6.1 Introduction

We don’t remove features present in TgX in LuaMetaTgX, although there are some
exceptions in the sense that we delegate some tasks to Lua. Of course we dropped
some ¢-TpX and pdfTgX extensions and kept very little of what Aleph (Omega) added
but apart from relaxing the \1long and \outer prefixes we are good. Of course some
primitives, like \ ifcsname behave better and we handle \ par in math but that’s not
really influencing the results. As we go forward it can become tempting to replace
some functionality that is sort of redundant or will never be used but it should not
have consequences for existing user code. Below I will collect some ideas that fit
these criteria.

6.2 Penalty lists

The ¢-TgX extensions introduced a multiple penalty approach, like \widowpenal-
tiesand \clubpenalties. This have a few side effects. First of all they take a vari-
able amount of values so they need a variable size data structure and that happens to
be nodes. Normally there are not that many definitions so the impact that this has on
node memory is limited but if you have thousands of different sized lists it might go
bad because they don’t get reclaimed and/or reused. This is why in LuaMetaTgX we
have a basic so called specification node with a dynamically allocated list. Of course
this has some impact on dumping and undumping because we need to handle these
nodes in a special way but it can be done reliable. We also have \specification-
def to predefine the various plurals, par passes and fitness demerits, so that we can
conveniently switch between states.

Another side effect is that setting the \widowpenalties masquerades the normal
\widowpenalty and resetting the plural it makes the singular active gain. So we
have two mechanisms (the plural and singular) and one really needs to manage both
well in order not to confuse users. For instance, when you want no widow penalties
at all, you need to disable both.

Related to this is that when a paragraph starts a node is added, it stores the current
state and therefore contains various single and plural penalty states that the post line
break routine has to check and apply check: first for the plural and when that one is
unset, for the singular. It takes memory, time and code.

When we were setting up the new par passes and extended alignment options we
also decided to provide keys (options) for controlling the penalties. I then realized
that we can actually redefine \widowpenalty and alike like this:

Whatif ... 72

\permanent\protected\untraced\def\widowpenalty$\widowpenalties\plusone}?

However we don’t want them to be repeated, which is what the plural does when there
is no final ‘reset’ value.

\widowpenalties\plustwo 2500 0
The way to deal with this is to use an option:

\permanent\protected\untraced\def\widowpenalty
{1 \widowpenalties \plusone options
\finalspecificationoptioncode}?

Which of course involved more parsing, so we made that equivalent to:
\permanent\protected\untraced\def\widowpenalty{\widowpenalties\minusone}

In a similar way we can also define \clubpenalty, \displaywidowpenalty, which
we ignore in ConTgXt because we do display math differently), \brokenpenalty,
\orphanpenalty and \interlinepenalty. When doing so we also set the \un-
traced flag so that when we ask the meaning or enable some tracing they are pre-
sented to the user as if they ae primitive. The \permanent flag will protect them
against redefinition when overload protection is enabled. The \protected flag
makes sure that we don’t expand it in for instance an \edef situation.

\meaningfull\widowpenalty
Compare no prefixed:

macro:\widowpenalties \minusone

with only \permanent:

permanent macro:\widowpenalties \minusone
and with both \permanent and \untraced:
\widowpenalty

Actually, the reason why this works out well is because in the context of am integer
value, like \the the plural already returned the value requested by the integer fol-
lowing the command, so effectively this already did the job:

\the\widowpenaltie\plusone

73 Whatif ...

Removing the primitives and replacing them this way has the advantage of removing
related code which simplifies the post line break routine a bit. Making the par nodes
smaller also is nice.

Om an average run a user won'’t notice the difference because these penalties are not
consulted that often during a run: basically once for every line. So, with the standard
Tufte test renders in 7 lines, 7000 lines using these three scenarios:

\normalwidowpenalty 0 \normalwidowpenalties 0
\normalwidowpenalty 500 \normalwidowpenalties 0
\normalwidowpenalty O \normalwidowpenalties 3 500 O O

We get the following results for ten times three times 1000 paragraphs:

(3.170,3.208,3.109) (3.161,3.310,3.155) (3.120,3.166,3.142)
(3.116,3.134,3.154)
(3.119,3.193,3.208) (3.063,3.060,3.058) (3.166,3.182,3.142)
(3.158,3.054,3.063)
(3.111,3.198,3.070) (3.195,3.242,3.224)

I didn’t even bother to turn of the music running in the background because that
process, although it slows down the runs, averages well. with such tests it are the
patterns that matters, the user experience.

So, currently (September 2024) we just redefine these primitives in ConTgXt but at
some point we can either alias them already in the engine or just expect the format
file to define them as part of the LuaMetaTgX ‘primitives’ initialization.

6.3 Math italics

This can be completely dropped from the engine. But because we want to demon-
strate differences between tweaked and untweaked fonts, we keep it for now. Maybe
some day it will be dropped but then we need to fake the examples in older articles
when we rerun them or we need to make the examples into images. Sometimes the
simple fact of documenting behavior has that side effect. But it would simplify the
code a lot!

6.4 Keywords

Occasionally I wonder how much time is wasted on verbose keywords but because
this feature has already been very much optimized, there is little to gain. So, for in-
stance replacing the popular:

Whatif... 74

\srule height\strutht depth\strutdp\relax
by

\srule ht\strutht dp\strutht\relax

or even

\srule hd\strutht\strutht\relax

will save little, also because this happens in already tokenized macros. So while
50.000 times \normalsrule\relax takes 0.004 seconds, the two argument one
needs 0.001 seconds (passing just one argument indeed takes 0.007 seconds); this
number is a reasonable guess for an average complex 250 page document. So, for
now [see no reason to go forward with this also because distinguishing between what
follow the h, d or w also adds time.

However, because a strut rule in most cases takes both height and depth, so adding
a pair keyword can safe some noise on tracing, so I tested that:

\srule pair \strutht\strutht\relax

And although we only save 0.002 seconds on the 50.000 calls I decided to keep that
experiment, if only because we have other noise reduction measures elsewhere too.
At the same time I decided to default such rules to zero width; for the record, the
running height and depth dimensions are used as signals in (math) char struts so
these two need to be set explicitly when values are needed.

75 Whatif ...

7 Expressions

Examples of quantities are internal and register dimensions, counters (also referred
to as integers or numbers), attributes, glue, and floats. Most commonly used are di-
mensions and numbers. Assignments happen like this:

\dimen0 10pt % an indexed register
\count20 =10 % the = is optional
\hsize 15cm % an internal quantity

\scratchdimen 10pt % a \dimendef'd indexed register

The scanners involved are also used for getting quantities that are arguments to
primitives.

The e-TgX extension came with \dimexpzr, \numexpzr and \glueexpr which support
simple expressions where the order of what is permitted, so this is ok:

x\hskip \dimexpr 10pt * 10 \relax x\par
But this isn’t:

x\hskip \dimexpr 10 % 10pt \relax x\par
There are a few pitfalls. For instance, this works ok:
x\hskip \dimexpr (10 % 10pt) \relax x\par
but this doesn’t:

x\hskip \dimexpr (10 % 10pt) \relax x\par

and the reason is that this feature is either looking for a number or an operator and
(is kind of an operator here. In order to make that work the integer scanner has to
backtrack when it sees a parenthesis but as this scanner is shares in other situations
that actually is an error. Alternatively there could be more look ahead which com-
plicates the code and brings a (nowadays small) performance penalty. Keep in mind
that expressions were not part of original TgX, the the simple expressions used what
was already there. It does the job but one has to be aware of the somewhat weird
parsing rules.

However, LuaMetaTgX has additional scanners that accept the same operators:

x\hskip \dimexpression 10 * 10pt \relax x\par

Expressions 76

They have more operators and also handle boolean expression that can be used in
tests. Although these scanners likely can be improved on the average they already
perform better than the (also optimized) e-TgX siblings.

One problem with expressions is that they keep looking ahead until they run into
something that doesn’t make sense, like \relax, or other tokens that are not part of
an expression. A common way to end a \dimexpr us to use \relax but take this:

x\hskip \dimexpr 10pt = #1 \relax x\par

What if #1 itself is an expression that doesn’t end with a \relax? In that case scan-
ning continues after one us seen. It is for that reason that \dimexpressionalso han-
dles braced expressions. When adding some flexibility to the ConTgXt user interface,
by moving (optional) explicit expressions in values to keys that set quantities to the
lower level handlers, it started making sense to replace:

\def\foo#l{\scratchdimen\relax}? \fooi\dimexprlOpt + lex\relax}?
and actually deep down we often already had:

\def\foo#l{\scratchdimen\dimexpri#l\relax} \fooi\dimexprlOpt +
lex\relaxt?

which gives double expression scanning overhead. If we change to the other scanner
we get:

\def\foo#1{\scratchdimen\dimexpression#l\relax} \foo{lOpt + lex}
or, given that we can use braces:
\def\foo#l{\scratchdimen\dimexpressioni#1}{} \fooilOpt + lex}

But if we do this frequently do we really need the explicit expression primitive. A few
line patch made this possible:

\def\foo#l{\scratchdimen{#1}:} \fooilOpt + lex}
and even this:

\def\foo#l{\scratchdimen{#1}} \foo${10pt + lexi}?}
\def\foo#l{\scratchdimen{#1}} \foo{{10pt} + {lex}?}

How dangerous is this from the perspective of compatibility? We’ll see but as users
normally get an error when doing this in an other engine, it’s unlikely that they ex-
pect an error here, unless they enjoy triggering errors. There is one side effect worth
mentioning:

77 Expressions

\the\dimexpr {1 + 4%

actually works, as does

\the\dimexpr -i1 + 4%

This is so because numbers scan for expressions, so
\number -i1 + 4%

is indeed valid. Of course the \dimexpr will keep scanning till it sees a \relax or
something it considers no operator or number.

Once the decision was made to switch to the new expression parser at the TgX end
quite some files were affected which is a delicate operation. In the process glue ex-
pressions also had to accept the braced variant, something that had been postponed.
Also, because we don’t have a ‘new’ parse for glue, we need nested braced scanning
there too.

There are more features in LuaMetaTgX that are yet sparsely used but eventually will
decorate the code base. An intended side effect is less clutter and less tracing noise
but that’s more a concern for developers than users.

So what is supported? The usual operators +, -, * and / are of course handles. We
also interpret : (or div) and ; (or mod). Bitwise operators are | (or bor or v), & (or
band, ~ (or bxor, ! (or bnot, bset and bunset. The conditional cand and cor result
in a value instead of zero if the condition succeeds. We can shift with << and >> and
compare with <, <=, = or ==, <> or !=, and (or &&) as well as or (or | |). Negation
happens with not, ! and ~ for bitwise operations. There are two somewhat odd infix
operators: nmp (minus plus) and npm (plus minus) that result in a negative or positive
value and can be used to get the (complement of an) absolute value.

We can have integers, floats and dimensions ans use parentheses for sub expres-
sions. The \dimexpression \numexpression don’t prioritize because they are
variants of \dimexpr and \numexpr. The \dimexperimental and \numexperimental
cousins actually do prioritize and internally create an RPL stack. In the future we
might switch to that alternative when scanning integers and dimensions.

There are some aspects that you need to keep in mind. Compare these two. In the
first case we stay within the dimension space which means that the 1pt and 2pt are
dimension results and therefore get serialized as such, including the zero:

\scratchdimenone 100pt \scratchdimentwo 200pt \todimension %
(\scratchdimenone > \scratchdimentwo) cand 1pt cor 2pt

Expressions 78

§

So we get: 2.0pt. In the next case we get what we explicitly asked for: the three token
sequences:

\ifdim\scratchdimenone>\scratchdimentwo 1pt\else 2pt\fi

So expect this: 2pt. In practice this doesn’t matter much and to be honest, even
in ConTgXt using complex expressions is not happening that often, but that might
change over time. By the way, both sides of the ‘and’ and friends are evaluated, con-
trary to what some programming languages do. On a 2018 laptop, one million itera-
tions of the following give the runtime in seconds shown after the comment. In the
second case we use the A (U+2227) and v (U+2228) symbols which saves some pars-
ing but of course one will probably never do such tests so consider it a bit of ‘showing
off’.

\scratchdimenone 100pt
\scratchdimentwo 200pt

\scratchdimen % 0.440
1 (\scratchdimenone>\scratchdimentwo) cand 1pt cor 2pt}
\scratchdimen % 0.411
{ (\scratchdimenone>\scratchdimentwo) 1pt 2pt?
\scratchdimen % 0.210
\ifdim\scratchdimenone>\scratchdimentwo 1pt\else 2pt\fi
\scratchdimen 9% 0.209
\ifdim\scratchdimenone>\scratchdimentwo 1\else 2\fi pt

Here are some equivalent operations:

\the\dimexperimental{ (2 + 1) % \lineheight?
\the\dimexperimental$ (2.0 + 1.0) % \lineheight}
\the\dimexperimental{ (2.1 + 0.9) % \lineheight?
\the\dimexperimental{ (1 + 2.0) % \lineheight?
\the\dimexperimental{ (2.0 + 1) % \lineheight}
\the\dimexperimental{ (3) * \lineheight}
\the\dimexperimental{ (3.0) * \lineheight}

We get: 51.98428pt 51.98428pt 51.98428pt 51.98428pt 51.98428pt 51.98428pt
51.98428pt, all the same of course. Instead of \1ineheight in ConTgXt we can also
use 1h because that is one of the units that we define.

There is undoubtely more to say here but that is for the low level manuals to deal
with. Here we just discuss it as some LuaMetaTgX enhancement.

79 Expressions

8 METAPOST

This first appears in TugBoat

MetaPost 80

81 MetaPost

9 Getting noisy

This first appears in TugBoat

Getting noisy 82

83 Getting noisy

10 Pages

This first appears in TugBoat

Pages 84

85 Pages

11 Flagging

This first appears in TugBoat

Flagging 86

87 Flagging

12 How complex is TgX

12.1 Introduction

Sometimes on mailing lists (or support platforms) a user comes up with a question
that sounds a bit disappointed, for instance because what looks like a trivial case
has no trivial solution or doesn’t work as expected. Of course this relates to a view
limited by the specific task, one that maybe by itself looks easy but that can become
way more complex when all kind of interactions kick in. Functionality wrapped into
a macro can hide a lot. Take \section: it has to pick up a title, typeset it according
to some specification, prefix the title with a number (that can be prefixed by other
numbers), save the title to a list, including the number and page and maybe more.
It also has to save a reference used for running titles, aka marks, maybe it has an
embedded footnote reference, often some specific font is used, maybe a language
switch is needed that then also can affect a label, some coloring can happen, and
specific transformations e.g. smallcaps might have to be applied. The title has to be
kept with the following text but can have spacing before and after. It might end up in
the margin next to the text. Following text might demand suppressing of indentation.
In the case of tagged output some additional work might be needed. We can go on and
on here but the message is clear: various subsystems of a macro package are involved
and they themselves use various subsystems of the TgX engine. Here \tracingall
can be revealing!

Below I will not go into the complications, workings and writing of a complex inte-
grated macro package. Instead [will tell a bit about the engines and what subsystems
are the most complex, in code and/or understanding. This is of course a personal
impression but one I can expose because I've been involved in the development of
various engines. As such I will not limit myself to the traditional engine(s) but also
handle LuaMetaTgX, which has extensions all over the place, some that made already
complex subsystems more complex, although there are cases where one can argue
that it became less complex.

The order below is arbitrary. The exploration is also not intended to be complete and
of course determined by personal experiences and interpretations. But I hope that
the reader will get the idea. It might lead to some people that ask questions to be a
bit more ‘careful of what to ask for’ or at least understand that what they ask for is
non trivial. But of course there is little chance that they will read this. We start with
three more general observations that determine how we look at the rest.

How complex is TgX 88

12.2 Open or close

The TgX engine has primitive operations that operate on content collected from the
input. An example is \hbox. The user knows what it does: packaging content, but
how that happens and what exactly goes in is an abstraction. Even if we talk about
‘nodes’ (glyphs, kerns, glue etc.) and a list of them being processed, it still stays ab-
stract. It is the result that matters: a box with dimensions.

That all changed with LuaTgX where the internals got accessible with the help of call-
backs. These are intercepts or overloads in terms of Lua functions that for instance
can get a node list, mess around with it, and return some result. This means that out
of a sudden, users who want to use that functionality have to deal with internal rep-
resentations: token and node speak goes beyond abstractions! But more important
in the perspective of our discussion is that it has consequences for how we look at the
engine’s code base. Before it was a fact that for instance a packing routine as used in
\hbox could assume no one had access to the list while suddenly assumptions could
become violated.

It also means that shortcuts in the code base or even dirty hacks no longer were re-
liable although we were careful with changing too much in LuaTgX. There are for in-
stance various places that nodes of similar size can change in nature by changing a
subtype that then drives decisions later on. Or take glue that uses shared nodes with
reference counters. For instance, as long as spacing doesn’t change glue between
words can share a value, which is not a simple number but an object that holds mul-
tiple properties (width, stretch, shrink, etc). Actually, vertical glue also talks ‘width’
while maybe in an open approach ‘advance’ had made more sense. But when we see
glue at the Lua end one actually wants to consider these nodes to be unique, espe-
cially when values are changed. You don’t want all spaces with the same reference to
change when a specific space is adapted. Of course one can create a new glue node
and use that instead but how to know when to do that.

So if we compare the code base of traditional TgX and LuaTgX, we already see some
of these abstractions and assumptions change. Keep in mind that the code bases are
hard to compare, because since LuaTgX we use a C base and not web. But there we
still rely on the low level coder to plug in sane Lua code: you can mess up internals
and successive operations so care is needed. In LuaMetaTgX some more precautions
are taken and the engine provides way more information about possible values of
various node fields. It also carries more states and options with nodes, and the addi-
tional level of control makes for less messing around. In a traditional engine a sub-
type number (in nodes and commands) was never exposed. In LuaTgX it is public
but extending the engine beyond what it provides now could lead to a change in that
number or additional numbers that need to be intercepted. In LuaMetaTgX all these

89 How complex is TgX

(for instance subtype) numbers and their meaning can be queried and as such the
engine is more self documenting.

Because some mechanisms got more features some parts of the original engine got
more complex code. Sometimes we could simplify things. Again LuaMetaTgX goes
further: better separation of components, more abstraction, less hard coded as-
sumptions, more consistency (all due to less constraints). The code base is larger
because features were added but probably also less interwoven as LuaTgX. In the end
the program is still surprisingly small, in 2025 we’re still below 4 MB, even with ad-
ditional features, especially in the graphic department (for MetaPost).

We will mention various subsystems but an in-depth explanation of what is involved
in for instance the builders can be found in our other publications, like development
wrapups and the so called ‘low level’ manuals.

12.3 Programming

A second general aspect that relates to complexity is the programming language. For
goodreasonoriginal TgX has alimited number of primitives. Butas computing power
and memory grew so did macro packages. The number of helper macros in plain TgX
is small but macro packages excel in that department. Between the user interface
with high level commands and the primitive behavior there can be layers of support
macros. When MKII evolved so did the repertoire of helpers but in practice the num-
ber was not that large and many of those related to consistent user interfacing.

In MKIV, on top of LuaTgX, we could remove some of that by introducing new prim-
itive operations with the help of Lua: for a user it doesn’t really matter if it is a real
primitive or looks like one. In MkXL we go even further because LuaMetaTgX has
extended some existing primitives and introduced new ones. That actually means
that we could remove mediating macro code and simplify the code base a bit. It also
means that code looks nicer and more natural. We don’t really need an intermedi-
ate layer of abstraction, on the contrary: we prefer to see native TgX code which is
also more efficient. On the mailing list very few users go beyond the user level com-
mands, and when they do a handful of simple helpers that are there since MKII are
used. Go deeper and it makes sense to use the (somewhat extended) TgX language.

When we discuss complexity, we will not go deeply into programming features and
only mention what was or became complex internally. The low level manuals cover
various mechanisms so there you can get more information. They also show where
we came from and aimed for. What we added doesn’t come out of thin air, it is there
because we evolved in that direction; we had a wish list.

How complex is TgX 90

Just to give you an idea of what we’re dealing with, here is a list of the (TgX) code
blocks in LuaMetaTgX: adjust, align, arithmetic, balance, buildpage, commands, con-
ditional, directions, discretionaries, dumpdata, equivalents, errors, expand, fileio,
font, inputstack, inserts, language, legacy, linebreak, localboxes, mainbody, main-
control, marks, math, mathcodes, mlist, nesting, nodes, packaging, primitive, print-
ing, rules, scanning, snapping, specifications, stringpool, textcodes, token and types.

12.4 Performance

The third aspect concerns performance. Sometimes (on public fora) users complain
about performance of TgX, although it seldom refers to ConTgXt, which is considered
to be fast (enough). If you look at what the engine is supposed to deliver, and if you
keep in mind that we’re talking about a macro processor, the engine is actually very
fast. Huge amounts of data (stored tokens) are consumed and processed without
the user noticing. Even processes like par building hardly cost time and quite some
calculations and juggling goes on there.

Quite often claims and observations wrt performance are not that accurate. They
need to take into account that there is a lot of memory access, we jump all over the
place, we have object manipulation and not byte processing, calculations involve ac-
cessing various resources. Some simple measurements of performance are seldom
representative of the real usage pattern. Also, inefficient macro coding can grind
down, and user styles (like inefficient font switches) can do a lot of harm to perfor-
mance.

So, even if we're talking of complex tasks, all engines perform pretty good given what
they are asked to to, being it in an 8 bit setup (pdfTgX) or 32 bit one (LuaTgX). Itis a
fact that in the meantime LuaMetaTgX is faster than LuaTgX, but we're not talking
factors, more small percentages. And it depends on what one does.

12.5 Languages

Engines have no real concept of a language. It is just a number and that number dri-
ves the hyphenation. In the case of LuaTgX it also creates a name space for some
related properties, for instance those related to hyphenation (like pre and post char-
acters and lowercase codes) but managing a bit more data is not adding much to
complexity. It does demand additional storage facilities, in our case using a hash
and not 256 slot arrays; after all we moved to Unicode.

But there is an important difference when we talk about hyphenation. An original
engine loads patterns and, as we normally use a so called format file, it stores them.
The patterns are encoded in a memory saving way and are really a subsystem in the

91 How complex is TgX

sense that it was developed as part of separate research. In LuaTgX patterns are (nor-
mally) loaded at runtime because they get initialized from a text stream; they are not
packed in the format. The complexity of loading remains the same.

In LuaTgX we introduced a separate library for managing the hyphenation patterns
and exceptions and applying them to words. But even there, the principles are the
same. So there is no difference between engines when it comes to complexity. Ac-
tually when it comes to patterns the complexity is in creating them. Even if one can
get the words and knows the valid breaks, creating pattern files is an art and magic
numbers kick in. How to come to these patterns is to some extend a well kept secret.
Okay, this is not entirely true: we can have weighted hyphenation points (penalties
per discretionary), handle compound words, do some collapsing (of e.g. hyphens),
etc. And yes that makes the code more messy and influences performance. But the
general ideas are the same.

The fact that in LuaTgX we support dedicated hyphenation codes (so no lowercase
code abuse) and also support compound word prioritizing and penalty driven breaks
is not that well known. It falls in the category: users ask for it but then don’t use it.
Of course, as mentioned, that adds to the complexity of the hyphenator in LuaTgX. In
LuaMetaTgX we have more control over various matters and it adds a little complexity
nut not much; it can be well recognized in various places of the code.

Discretionaries, basically manually inserted discretionary nodes, are the same but in
LuaMetaTgX carry a bit more information. Additional control and status information
complicates the code of course but not much. A bigger issue is that usage ends up all
over the place (checks, application) so one has to know what one deals with, even if
the addition involves a few lines only. Normally this is covered in the manual or low
level manuals that come with ConTgXt. We carry over some information to the glyphs
that we end up with, but that’s just for the sake of tracing. It means that the glyph
node got larger and more complex, additional access in Lua is needed, states have to
be updated but it means more code, not more complex code. One can argue that the
complexity goes in the conceptual additions to the system: one has to understand
why we added it.

One aspect needs mentioning. When TgX got support for more than one language the
way to switch between them was by language nodes indicating a switch. In LuaMeta-
TgX the language is a property of glyphs. This simplifies the code at the cost of more
memory but it also makes for less checking at the Lua end due to the lack of language
nodes. Of course with Lua we can do a lot more so language (and script) subsystems
in ConTgXt became more advanced.

How complex is TgX 92

12.6 Fonts

When processing text the engine only needs dimensions of glyphs, how to construct
ligatures and where to inject font kerns. In math rendering it needs some informa-
tion about how to get to larger sizes and construct extensibles, think of larger paren-
theses orradicals. In OpenType fonts more is needed because there we have features:
single to single, single to multiple and multiple to single replacements, as well as in-
ter character kerning, relative positioning, mark anchoring and cursive anchoring.
That can also happen in a contextual analysis: looking at one or more characters at
the same time, optionally checking character before and after those. That’s not for
the TgX engine to worry about: one can either delegate it to a library (feed it charac-
ters and get some replacement stream back with glyph indices and positioning info)
or handle it in Lua as we do in ConTgXt with LuaTgX and LuaMetaTgX. For the record:
traditional engines have forward linked lists so they can’t look back, but in LuaTgX we
have double linked lists, initially for this purpose. It actually took some time before
all mechanisms guaranteed that, so a minor complication.

In a traditional engine ligature building as well as kerning happens when reading
input and also in the par builder when decisions are made wrt where to hyphenate
words. So there we have construction, deconstruction and reconstruction going on.
In LuaTgX the stages are separated which is less complex, and conceptually easier to
deal with. There the complexity comes from handling features but that is, as men-
tioned, not an engine thing so one can say that the engine is less complex. because
TgX is written in a literate way steps are well documented but the whole picture is
still pretty intimidating.

But what if complex font processing was done in the engine? It would add quite some
code if we want the same flexibility, that is adapting fonts and glyphs on the fly, which
means managing data in Lua. It would also freeze the interface which is not what we
want. But the worst part is that we need to decide on what to do with discretionar-
ies. Although for instance Arabic fonts look complex (design wise with plenty fea-
ture processing), and as Devanagari fonts are actually complex because they needs
a reshuffled input, Latin fonts are rather demanding because of hyphenation in the
languages that they are used for. There we need to traverse into pre, post and re-
place lists of discretionaries and often multiple such nodes are in a word. It can get
nasty when multiple discretionaries follow each other. Add, optionally to be ignored,
marks and another level of complexity is added. We prefer to keep that logic at the
Lua end because it permits tracing, adaptation, upgrading, or alternative implemen-
tations. But if it were in the engine it would be the more complex bit of code. Keep in
mind that solutions also need to be efficient.

Expansion and protrusion in traditional engines demand newly created instances
because the engine needs the adapted dimensions. In LuaTgX we scale on the fly and

93 How complex is TgX

carry information in the glyph and kern nodes. The additional costs in recalculating
expansion is compensated by less memory usage because we don’t need extra font
instances and therefore we also gain on font creation as Unicode aware fonts can be
pretty large. Of course now the backend has to do more work but it pays back in less
fonts resources in the pdf file. It is a win-win. In LuaMetaTgX we also distinguish
between expansion and compression so we have more code but it didn’t add much
complexity.

The pdfTEX and LuaTgX engines have a backend built-in. It means that quite some
extra code, that normally would sit in a dvi post-processor, is now part of the engine
and needs to be maintained. And yes, that code is kind of complex because it has
to filter glyphs from font resources, do subsetting, create required data structures,
etc. It has to share resources when possible. It also has to apply expansion, slanting,
boldening etc.

Loading metric etc. information from a font is more extensive in LuaTgX that pro-
vides a FontForge library but in the meantime we delegate this to Lua, so we can
consider that complexity to be outsourced. In fact, because LuaMetaTgX has no font
loader and backend included, as all that is done in Lua, the engine is less complex in
that respect. This is not to say that the Lua replacement looks simple: it doesn’t. Al-
though this is very much dependent on the macro package, and ConTgXt is the only
package that uses LuaMetaTgX as intended, the backend is more complex than in
LuaTgX. We have to deal with image inclusion, including pdf, resource management,
optimal page stream generation, etc. A particular (and somewhat complex) aspect is
virtual fonts. Here we support the basics but also additional features, just because
we can and also because virtual fonts are tightly integrated in the concept. It all pays
back in flexibility.

12.7 Paragraphs

When TgX breaks a paragraph into lines, it might end up with an overflow and that
is the moment a word gets hyphenated. In LuaTgX we have these callbacks which
means that we apply hyphenation to the list as a whole. As a consequence we have a
simpler routine in LuaTgX than in original TgX: we don’t need to hyphenate, deal with
ligatures and kerns.

On the other hand, when pdfTgX introduced font expansion the traditional routine
got more complex because expansion had to be taken into account too. In LuaTgX we
got rid of font-generation-on-the-fly and use a dedicated expansion field in a glyph
node so that actually simplified the code. Also in LuaTgX we also got left- and right
boxes so that again made for more code although it can easily be separated.

How complex is TgX 94

But then, in LuaMetaTgX we added various new features, toddler penalties, twin
penalties, orphan penalties, multiple passes driven by various (additional) parame-
ters. We also have a better interaction with math, more advanced shaping, and nor-
malization of the lines, which makes usage in Lua more predictable and convenient.
Also note that we handle marks, inserts and vadjusts in a more advanced way so there
is extra code present for that. Understanding all that also means that one has to be
aware of all these aspects (features) of the engine.

When it comes to complexity, a traditional par builder is an intimidating piece of
code, also because of the up to three passes (interwoven code), integration of sub-
processes like hyphenation, solution tree building, and subtle optimizations. In Lua-
MetaTgX the builder is also complex but there the reason is that we have way more
functionality, configurable multiple passes, additional control over aspects, tracing
and what more. We’ve written plenty about that.

In LuaMetaTgX the par shaper (\parshape) but also the penalty arrays (like \wid-
owpenalties) are generalized in what we call ‘specifications’. There is more code
involved in managing them but this is also due to the fact that we have options (like
repeated shapes), left- and right page specific penalties. Instead of considering this
management more complex, we can better look at it as if it is something new.

12.8 Pages

The page builder is actually relatively simple if we forget about the fact that inserts
have to be handled. There can be multiple inserts, set up with different constraints.
Because they can be huge or plenty, the page builder has to make decisions between
inserts but also has to split one, assuming it is permitted, when it overshoots the

page.

In LuaMetaTgX we made the builder a bit more complex because we want to have
more information when the output routine is triggered. We can also add additional
slack to a page so that the solution space becomes larger. And, as with nearly all
mechanism, in LuaMetaTgX tracing has been boosted, with parameters as well as
with optional callbacks. So more code, and more complexity.

12.9 Packaging

There are two packaging functions, one for horizontal boxes and one dedicated to
vertical boxes. The vertical one is rather simple: it only needs to accumulate heights
and stretch and shrink that eventually can be applied when a vertical box has a target
height specified.

95 How complex is TgX

The horizontal packager is more complex because there we access glyphs and these
can have expansion applied. In traditional TgX this is not present, in pdfTgX it is
equally simple because there an expanded font has its own font id, in LuaTgX some
scaling has to be applied driven by a variable in the glyph node and in LuaMeta-
TgX we also have compression. Actually, in LuaMetaTgX we also have glyph scaling
(\glyphscale, \glyphxscale, \glyphyscale, \glyphweight, and \glyphslant
reflected in the node so much more calculations go on there.

The so called hpack routine is also used to pack a line in the par builder in which
case we basically do some work twice: in the builder expansion, shrink and stretch
are part of the decision tree, while in the packer it is more static: the desired line
width is known so now these properties can really be applied because now is known
how much stretch and shrink has to be applied to get the desired width; so the work
really has to be done twice, also because some information from the par builders has
been lost in reaching the optimal solution and we need to be accurate in the end (the
box gets some glue specific properties set that the backend applies).

Overall the packer is not that complex, it’s just a bit different between engines. Be-
cause the packers are called a lot they’d better be efficient. In for instance rendering
math formulas a lot of packing goes on, although there often boxes are just filled and
their dimensions set, simply because they are already known.

In LuaTgX (and LuaMetaTgX) in the case of \hbox and alike a callback can be triggered
that then can (for instance) deal with fonts. This can be prevented by using \hpack.
The overhead of a callback can be considerable and it can do very complex node list
manipulations, so it’s safe to say that when this is considered part of the game, pack-
ing is pretty complex. Fortunately this is only true with explicit packing. A pitfall is
that when one doesn’t do the callbacks, some processing expected by users can be
bypassed. This means that the macro package has to orchestrate this well.

12.10 Alignments

The par builder, page builder and math builder are important subsystems. Another
one is alignments. This is a multi-step process: collect table cells and lines, preroll
then so that we know the final widths (in the case of horizontal alignment) and finally
can assemble the lot. Here the complication is maybe more in the preparations than
in the actual work. Of course we do more in LuaMetaTgX, combined with less use
of resources, but we leave it by mentioning this. The problem is in scanning: there
is some look-ahead going on. For instance, we need to know if we're at the end of a
row or start a new cell. And we need to know when the alignment ends. There is a
preamble to be scanned, so called tabskips as well as leading and trailing cell content
has to be injected (often left or right end fillers).

How complex is TEX 96

In LuaMetaTgX we can plug in additional functionality so there is more code. In gen-
eral, various places in the source code (also in traditional engines) have some check-
ing related to alignment scanning and state. When an alignment is collected we’re in
a constant switch between scanning and building lists, with grouping, preamble to-
ken list expansion and what more going on. We wanted some more control over scan-
ning, that is, can influence look-ahead expansion, because looking ahead in align-
ments can badly interfere with user interfaces that pickup optional arguments with
commands that go to a next cell, but we can deal with that now.

So yes, in the end alignments are more complex than they seem at first sight, also
because it is a fundamental state switch: we’re either in alignments, or in math, or
in text and each has its twists. It is nevertheless good to notice that tables spanning
hundreds of pages with many cells can be rendered quite comfortable. In that respect
it is good to realize that TgX is used for cases that the author could not foresee, but it
still handles them well.

12.11 Macros

In TgX the macro model is split in two processes: definition and usage (also known
as expanding). When defining a macro the so called preamble is scanned, that is:
checking if there are arguments and, if so, how are they (optionally) delimited. In
LuaMetaTgX the preamble is more advanced and therefore takes more effort to be
parsed. The same is true when the macro gets expanded but the new argument re-
lated features (for instance optional arguments, mandate fences, discardable items,
nested fences) pay back in runtime. Just look at the low-level manual that explains
this to get an idea; it is one of the more interesting additions.

In traditional TgX we have regular, \1longand \outer macros. These are gone in Lua-
MetaTgX. Instead we have more call variants than the regular one, like native protec-
tion \protected, dealing with expansion in alignments (\noaligned, optional ar-
guments (\tolerant), and such, but that is not really complicating matters. What is
making things more complex is overload protection (\permanent and \immutable
for example), which is a way to prevent users from messing with definitions. The
code related to that is all over the place.

We use a slightly different way to keep track of properties and save state (which re-
lates to grouping) but that is more related to memory management than to substan-
tially more code. It does make it easier to optimize some code paths so occasionally
we have alternative code paths but again, once you understand what is going on, the
complexity level stays the same. Maybe the way we deal with parameters is the most
differential aspect and one needs to understand more of what the engine provides
to the user in order to also grasp what the code does. We don’t have the same high

97 How complex is TgX

quality explanations that the original engine comes with.???I do not understand the
last sentence.

It might be worth noticing that the LuaMetaTgX code base uses enum’s and switch’s
all over the place and expects the compiler to do a decent job. Keep in mind that com-
pilers had decades to become better, for instance in optimizing the machine code and
inlining. We also got processors that can cache memory and predict branches. Al-
though TgX is a single threaded application it can nowadays benefit a lot from other
cores dealing with the file system etc. We have plenty of memory, lots of cpu cycles,
floating point processors, etc. This all contributes to a macro machinery perform-
ing very well. Add ssd’s to the picture and file caching by the operating system and
multiple runs bring little startup overhead, even with huge macro collections.

12.12 Migration

Marks are state token lists that can be used for e.g. running headers like chapter titles.
Inserts are collected node lists that can be used for e.g. footnotes and are attached to
(content) nodes. Adjusts are node lists that get injected before or after the specific
line that they end up in. Users seldom see the related commands because they make
most sense in some more advanced setup, one that hides the details.

In a traditional engine the related code is not complex, apart from dealing with in-
serts in the page builder (decisions to be made as well as optional split). In LuaTgX
it is the same but in LuaMetaTgX we have a mechanism that will migrate these el-
ements up stream. In itself that is not complex but it involves quite some code in
various places so conceptually it might be considered hard.

Also, where in traditional TgX inserts are using a set of registers, in LuaMetaTgX we
have a dedicated data structure for that. This permits more properties and also
avoids register clutter. The storage model has been abstracted and doesn’t influence
the code complexity.

12.13 Math

Math rendering is complex in the sense that one has to know a bit what the target is in
order to see why things happen. In the traditional code path the complications are:
italic correction and kerning (get added and possibly removed), extensible construc-
tion, and attaching scripts to a nucleus. The process is a bit mystified by the fact that
two passes use the same code, with choices.

In LuaTgX many functions got two code paths: one for traditional fonts and one for
OpenType. There are also many more math font parameters in play. As in the tra-
ditional code we have lots of switches to script and script script, depending on hard

How complex is TgX 98

codes assumptions (heuristics). In the meantime, because the way fonts evolved,
and because the way other macro packages like to see things we simplified the more
modern paths in LuaTgX, also because in ConTgXt we made some decisions that made
for better output in general. In LuaMetaTgX on the other hand we went further and
have a lot of freedom to make choices of what to use in ConTgXt. We can however
discuss, show and play with all aspects, also for (TgX related) educational purposes.

In LuaMetaTgX we have dynamic scaling of glyphs (as with text) which gives much
more code, and there we also have opened up all the hard coded assumptions so we
have more parameters and more code. The super- and subscript attachment code is
way more complex than in the predecessors because we also have prescripts and a
native prime construct. We can have multi-scripts so we need to handle more spac-
ing. There are more classes and all inter-class spacing and penalties can be set, plus
various options. The good news is that we have split the main code blob in separate
steps so the two-step rendering is now multi-step. That also gave some possibili-
ties, of course not present in traditional engines. More can be found in articles; the
ConTgXt math manual also gives a good impression. Because we're the only macro
package that will use these new features, the added complexity is irrelevant.

So yes, definitely in LuaMetaTgX math rendering is complex, if only because every-
thing is opened up and a lot can be controlled. Just think of this: where in predeces-
sors the nodes involved are relatively small, in LuaMetaTgX then are several times
larger and all that extra information is really used and supported. At the input end
most constructs have many keywords (options) to be processed.

12.14 Balancing

This is a LuaMetaTgX feature: splitting main vertical lists into pieces that can be as-
sembled to pages, columns or whatever. The mvl collector is relatively simple. There
can be many lists collected, which also included appending to already collected con-
tent. The balancer itself is more complex and looks like the par builder, so it has for
instance shapes and supports multiple passes.

Here the complication to a large extent is in the concepts involved: details of shape
slots, boxes and rules that can be discarded, inserts and marks that have to be
fetched, a possible decision loop, etc. As with TgX itself, it has to grow on you: much
makes little sense unless you need it and have a clue what it is intended for. The
complexity in many ways is comparable with the par builder.

99 How complex is TgX

12.15 Scanning

Of course TgX has to interpret input and there are basically a few places where that
can come from: files or stored token lists. In LuaTgX we can add Lua prints to the
repertoire.

Inthe enditisall about tokens and interpreting them. A token is basically acombina-
tion of an operator and operand or in TgX speak, a command and a char. Here again
we see that a non exposed classification can comfortably be used deep down: not
every operand is a character. The same is actually true for memory usage: a memory
word consists of an info and link field even if represents neither of then. These nom-
inations have often been adapted in LuaMetaTgX to reflect reality because opening
up we have to be more consistent. In fact, the LuaMetaTgX ending is more consistent
than LuaTgX.

A token can be an element in a token list in which case it combines with a pointer
to a next token. That model is the same in all engines although in LuaMetaTgX there
can be a bit more granularity especially in the reference token at the start of a list but
this is not exposed (via Lua).

Tokens getinterpreted (expanded), created, discarded, pushed back in case of a look-
ahead, etc. Thisiskind of complex as it happens all over the place but it helps to know
what TgX does, read: have written plenty macros. We could consider a double linked
list, so that we need less pushing back into the input, but that would explode mem-
ory usage. It would also add more overhead to a critical (in terms of performance)
process.

There are specific scanners for keywords, like fo instance the height key for rules
or by for advancing a register value. In LuaMetaTgX we have way more keywords and
places where they are scanned so the keyword scanner has been optimized which
gives more code. But that code has to be there anyway. Instead of pushing back a
keyword when it makes no sense or when a partial key has been read we do a stepwise
progressive scan and no push back. This is definitely faster.

There are also scanners for integers and dimensions (with units) and glue (with addi-
tional properties). All these are rewritten in LuaMetaTgX for better performance and
sometimes more features. We really try to avoid pushing back already read tokens
for reinterpretation. So, indeed, more complex code but as this is rather isolated it’s
not harder to grasp. The scanner for units has been extended to support user defined
units.

The expression scanner from ¢-TgX has been rewritten and additional more ad-
vanced scanners have been added but we had to accept its limitations because its

How complex is TgX 100

functionality can’t be changed. Instead we added some more advanced scanners
with more operators and more reasonable order related constraints. This is moder-
ately complex code because of the mixed data-types (integers with units, dimensions
with units, proper operator precedence). But contrary to for instance complex ren-
dering mechanisms this is predictable and users don’t have to deal with these low
level representations or workings.

12.16 Input

Reading from file, token list or Lua is complex in the sense that in LuaMetaTgX we
have more housekeeping. There, input from file comes from a callback. Input from
Lua is collected till the call ends. In order to do that efficiently, because when one
uses Lua huge quantities can be pushed, the mechanisms are not trivial. We don’t
want every ‘character’ to become a token in a linked token list as that costs lots of
memory.

Another aspectofinputisthe input stack. Opening a file pushed the stack, expanding
a macro also does that as does expanding a token list. Pushing back a token in the
input for reinterpretation ... indeed a push. Using a macro argument also does it.
It can involve pushing a reference to a list or a (later to be released) copy. So, maybe
the complication is not so much in the concept but more in imagining what happens.

There is also the input state: text, math or alignment but that is kept track of by state
variables. In traditional TgX quite some state is handled global, in LuaMetaTgX we try
to work with local or at least collected in structures variables. That makes the code a
bit more readable, also because we have more code due to extensions.

12.17 Stacks

These complicate matters, if only because one needs to know why they are there: in-
put stack (files, token lists, Lua output), condition stack (if statements), save stack
(grouping), expression stack (indeed for expressions), parameter stack (for macro
parameters). Some are native TgX but for instance in order to deal with the many
possible Unicode’s and math character definitions and math parameters, in LuaTgX
and LuaMetaTgX we use hashes to store then. These then also come with a stack
model that relates to stacking hash entries. An example is grouping of catcode ta-
bles; it is not the easiest code. In general there are many subtle details in stacking.
There are also related complexities: reference counting in node lists or much more
tricky: efficient handling of attributes lists because every content related node gets
one attached and we need to keep memory usage and assignments performing.

101 How complex is TgX

In LuaMetaTgX this is often different than in LuaTgX but as that happened stepwise
the increased complexity goes unnoticed. Although: when one looks at how attrib-
utes are dealt with (space and time efficient) one cannot deny a degree of complexity
and indeed it did involve some time to get there. Lucky us that once it worked okay,
we never had to go back to it.

12.18 Assignments

There are many data types in the engine, like registers, fonts and character proper-
ties. The pdfTgX engine added some more, after that LuaTgX extended the repertoire
and indeed LuaMetaTgX did the same. For instance in LuaMetaTgX we also have in-
tegers, dimensions, etc, in an alternative form, not as registers but as more direct
entities. This potentially frees memory because we can have less registers (that take
space but are not used) but we can still go way beyond what registers provided. So,
more results in more complexity, also because some data types can cast to other

types.

In LuaMetaTgX, assignments where dimensions, integers, floats (posits) and similar
quantities are involved often we can assign expressions (delimited by curly braces).
This only complicates the code in the sense that scanners have been extended.

What does complicate is overload protection. We not only want to be able to freeze a
definition (or allocation, think \permanent) but also values (think \immutable).

Because TgX has grouping, assignments result in pushing old values on the save
stack. In LuaMetaTgX we have optimized thisin order toreduce the stack. This comes
at the price of complexity indeed, especially when also combined with overload pro-
tection. This kind of code evolved stepwise so from the authors point of view it might
look less intimidating and easier. But I admit that once some new neat feature is ap-
plied in the ConTgXt code base, I tend to forget things, especially if it is low level code
that doesn’t change, even if used a lot.

12.19 Conditions

The code related to conditions is not that complex one you get the idea. The more
tricky part is the handling of nested conditions and in LuaMetaTgX that has become
more complex because we support continuation (think \orelse) and user defined
(via Lua) conditions. There are many more than the handful of built-in traditional
conditions but that is just more code. Okay, some of that might look complex. In
LuaMetaTgX we also tried to optimize performance but that doesn’t make it more
complex: it just might look different, also because we have regrouped some so called
command codes and values (operands). The original comments, that we kept, don’t

How complex is TgX 102

always apply but the idea remains the same. And yes, it helps to know how to write
macros.

12.20 Format file

The initial state can be saved in a format file that then can be loaded fast when we
have a real run: dumping and undumping are the terms used to describe this. The
code in LuaTgX is more complex than in traditional engines because we have to also
save the (Unicode and math related) hashes. In LuaMetaTgX the process is a bit more
complex because we optimize the way various things are stored. At the cost of a bit
more effort when dumping, we get a smaller format files and gain on undumping. In
the end we’re upto twice as fast in LuaMetaTgX as in LuaTgX, and we have a smaller
effective file (LuaTgX compresses the format while LuaMetaTgX doesn’t need that any
longer). Anyway, in LuaMetaTgX the code is moderately complex.

12.21 Not mentioned

This isjust a simple overview, for those who might draw the wrong conclusions based
on incomplete observations, wishful thinking, over- or underestimating how some-
thing works, etc. We didn’t discuss splitting lists (similar to the page builder), clean-
ing up processed data (like flattening node lists), directions (actually very simple as
it is a backend thing mostly), new features like various native loops, manipulating
token list registers (appending and such), local control (nested main loop), hashing
(name lookups), calculations, etc.

We also didn’t discuss anything happening at the Lua end, for instance libraries, ac-
cess to internal data, scanning, MetaPost (wWhich deserves a discussion itself). We
have a lot of Lua code in ConTgXt and some of that can be considered complex. Rea-
sons are that we need to be efficient but even more important is that we try to solve
something that is kind of complex, so the code then also it hard to grasp. One can
argue that we then need more documentation but that costs time and effort. Sup-
porting a macro package already takes much time and it all is done and comes for
free, so we can’t allocate additional resources to it.

There are other fundamental differences between engines that add complexity. For
instance, in LuaMetaTgX we don’t allocate all memory in advance, so there is differ-
ent checking gong on combined with stepwise allocation and (of course) callbacks to
keep track of this. Where in pdfTgX and LuaTgX image inclusion is in the backend
and libraries hide details, in LuaMetaTgX we have (rather minimalistic) Lua libraries
that make it possible to deal with that in Lua. So we have some compressors but read-
ing a zip file is up to Lua. We have some png related byte jugglers but reading the file

103 How complex is TgX

and its structure is managed by Lua. One can consider this complex but it is probably
less so than using the (often somewhat bloated) libraries.

I might occasionally add something to this story, either because in the end it is (or
became) complex, or because I simply forgot about it. On the other hand, the Lua-
MetaTgX manual can enlighten a bit too, even if one doesn’t get all that is mentioned
there (which is my bad then).

12.22 Conclusion

So, is TgX complex? I let you decide. | remember that when I first saw the TgX book it
looked intriguing. And because at that time I programmed in Pascal, and later Mod-
ula2, the program in print also looked interesting. However, with only paper and no
computer it all remained intriguing and a miracle. Then, when TgX came to the Per-
sonal Computer I reread the book, played with TgX started writing a macro package
because there wasn’t much out there that we could use for educational purposes (and
there was no internet either). Some things you read in the book I only understood af-
ter a while and a reread. The same is true for MetaFont: after a few chapters reading
on makes no sense if you can’t try things out.

In TgX concepts like for instance an output routine makes little sense until you have to
write one. Just like inserts only get meaning when you have to deal with them in that
perspective. The same is true for the code base: someone like me, who has troubles
getting into the mind of a coder, has to kind of reinvent the wheel. And at some point
maybe the ‘Aha’ principle kicks in. In the end this is why I can probably extend the
engine: becausel alsowrite a macro package. Abstract discussions are simplylost on
me: [have to do it. And in that case, complexity actually matters little and definitely
less that seeing people drawing weird conclusions wrt TgX, ConTgXt, our intentions,
applications, the joy of working on this with users and friends. Also, I'm basically
dealing with all aspects of the machinery: engine, macros, fonts, MetaPost, Lua, all
of the above comes together in ConTgXt. Maybe this wrap up helps seeing our point
of view.

How complex is TgX 104

105 How complex is TgX

