
Elmer non-GUI Tutorials

CSC – IT Center for Science

January 20, 2026

Elmer non-GUI Tutorials

About this document
The Elmer non-GUI Tutorials is part of the documentation of Elmer finite element software. Elmer non-
GUI Tutorials gives examples on the use of Elmer in different fields of continuum physics. Also coupled
problems are included.

These tutorials were written before ElmerGUI was written (i.e. before year 2008) and they don’t make
use of it. See the Elmer GUI Tutorials for information how to set up the cases using ElmerGUI. These cases
are not really that well fitted as tutorials for beginners but they may be useful for power users who want to
understand more deeply how models in Elmer are set up.

The present manual corresponds to Elmer software version 26.1.
Latest documentations and program versions of Elmer are available (or links are provided) at http:

//www.csc.fi/elmer.

Copyright information
This document is licensed under the Creative Commons Attribution-NonCommercial 3.0 License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/.

Initially these tutorials have been written by the Elmer team at CSC - IT Center for Science. However,
external contributions to the tutorials are welcome.

2

http://www.csc.fi/elmer
http://www.csc.fi/elmer
http://creativecommons.org/licenses/by-nc/3.0/

Contents

Table of Contents 3

1 Eigenvalue analysis of an elastic beam 4

2 Flow through a hole – determining the acoustic impedance 9

3 Electrostatics 16

4 Induction heating of a graphite crucible 20

5 Thermal actuator driven with electrostatic currents 24

6 Axisymmetric coating process 29

7 Blood ejection from a ventricle into aorta 34

8 Temperature distribution with BEM 39

9 Adding user defined equation solver 42

10 Volume flow boundary condition 46

11 Streamlines 50

12 Timoshenko beam model of a cantilever 54

Index 64

3

Tutorial 1

Eigenvalue analysis of an elastic beam

Directory: ElasticEigenValues
Solvers: StressSolve, EigenSolve
Tools: ElmerGrid,Editor
Dimensions: 3D, Steady-state

Case definition
A homogenous, elastic silicon beam of dimensions 1 m length, 0.1 m height and 0.2 m width is supported
on its both ends (boundaries 1 and 2). A beam has the density 2330 kg/m3, Poisson ratio 0.3 and Young’s
modulus 1011 N/m2. The problem is to calculate the eigenvalues of the beam. Mathematically the equation
to be solved is

−ρω2φ = ∇ · τ(φ)

where ρ is the density, ω2 is the eigenvalue, ω is the angular frequency, φ is the corresponding vibration
mode and τ is the stress tensor.

Figure 1.1: Beam.

CSC – IT Center for Science

1. Eigenvalue analysis of an elastic beam 5

Solution procedure
The mesh has been created by using Gambit software and it consists of 2500 elements. The mesh can be
converted to Elmer format with ElmerGrid with the command

ElmerGrid 7 2 mesh.FDNEUT

This command creates the directory which contains the Elmer mesh files.

Header
Mesh DB "." "mesh"
Include Path ""
Results Directory ""

End

A steady-state three-dimensional analysis is defined in the simulation section.

Simulation
Coordinate System = "Cartesian 3D"
Coordinate Mapping(3) = 1 2 3
Simulation Type = "Steady State"
Steady State Max Iterations = 1
Solver Input File = "eigen_values.sif"
Output File = "eigen_values.dat"
Post File = "eigen_values.vtu"

End

The geometry of the problem is simple and it includes only one body and material.

Body 1
Equation = 1
Material = 1

End

Material 1
Youngs Modulus = 100e9
Poisson Ratio = 0.3
Density = 2330

End

The problem is solved according to linear elastic theory and due to that stress analysis is set to true.

Equation 1
Stress Analysis = True

End

In the solver section Stress Analysis is selected. In addition, the value of the keyword Eigen
Analysis has to be set to true. The keyword Eigen System Values defines the number of the
computed eigenvalues. The problem also is possible to solve with iterative solver but we have used direct
solver in this example.

Solver 1
Equation = "Stress Analysis"
Eigen Analysis = Logical True
Eigen System Values = Integer 5
Linear System Solver = "direct"

CSC – IT Center for Science

1. Eigenvalue analysis of an elastic beam 6

Variable = "Displacement"
Variable Dofs = 3
Linear System Iterative Method = "BiCGStab"
Linear System Max Iterations = 1000
Linear System Convergence Tolerance = 1.0e-08
Linear System Abort Not Converged = True
Linear System Preconditioning = "ILU0"
Linear System Residual Output = 1
Steady State Convergence Tolerance = 1.0e-05
Nonlinear System Convergence Tolerance = 1.0e-05
Nonlinear System Max Iterations = 1
Nonlinear System Newton After Iterations = 3
Nonlinear System Newton After Tolerance = 1.0e-02
Nonlinear System Relaxation Factor = 1
Linear System Precondition Recompute = 1

End

The beam is supported on its both ends and therefore displacements are set to zero in all directions.

Boundary Condition 1
Target Boundaries(1) = 1
Displacement 1 = 0
Displacement 2 = 0
Displacement 3 = 0

End

Boundary Condition 2
Target Boundaries(1) = 2
Displacement 1 = 0
Displacement 2 = 0
Displacement 3 = 0

End

After that, the problem is ready to solve.

An anisotropic model

The same problem can also be solved as an anisotropic problem which causes a couple of changes in the
sif-file. First, it is reasonable to rename the files in the simulation section

Solver Input File = "eigen_values_aniso.sif"
Output File = "eigen_values_aniso.dat"
Post File = "eigen_values_aniso.vtu"

For anisotropic material Young’s modulus has to be redefined as a matrix. In this case the matrix is defined
as follows

Youngs Modulus
Size 6 6

Real 200e9 60e9 60e9 0 0 0
60e9 200e9 200e9 0 0 0
60e9 60e9 200e9 0 0 0
0 0 0 80e9 0 0
0 0 0 0 80e9 0
0 0 0 0 0 80e9

End

No more changes are needed in the sif-file.

CSC – IT Center for Science

1. Eigenvalue analysis of an elastic beam 7

Results
Both the eigenvalues of the isotropic and the eigenvalues of the anisotropic model are shown below in Elmer
outputs. Figure 1.2 presents the computed eigenvectors of the beam with the isotropic model. The formula
ω = 2πf have been used in calculating frequencies (f) (Table 1.1). According to the results the anisotropic
model yielded greater eigenvalues with these values of Young’s modulus.

EigenSolve: Computed Eigen Values:
EigenSolve: --------------------------------
EigenSolve: 1 (16737546.4275755,0.00000000000000D+000)
EigenSolve: 2 (48175589.4544061,0.00000000000000D+000)
EigenSolve: 3 (99674749.0526558,0.00000000000000D+000)
EigenSolve: 4 (110392974.959463,0.00000000000000D+000)
EigenSolve: 5 (253947166.278411,0.00000000000000D+000)

Isotropic model.

EigenSolve: Computed Eigen Values:
EigenSolve: --------------------------------
EigenSolve: 1 (29608629.8775828,0.00000000000000D+000)
EigenSolve: 2 (88782964.0905879,0.00000000000000D+000)
EigenSolve: 3 (198583949.415515,0.00000000000000D+000)
EigenSolve: 4 (205085884.544046,0.00000000000000D+000)
EigenSolve: 5 (480903841.387323,0.00000000000000D+000)

Anisotropic model.

Table 1.1: Computed frequencies.

step isotropic anisotropic
1 651.127 Hz 866.023 Hz
2 1104.673 Hz 1499.633 Hz
3 1588.959 Hz 2242.809 Hz
4 1672.210 Hz 2279.229 Hz
5 2536.249 Hz 3490.191 Hz

CSC – IT Center for Science

1. Eigenvalue analysis of an elastic beam 8

Figure 1.2: Eigenvectors

CSC – IT Center for Science

Tutorial 2

Flow through a hole – determining the
acoustic impedance

Directory: FlowResistance
Solvers: FlowSolve
Tools: ElmerGrid, editor
Dimensions: 3D, Steady-state

Note: This test case is available as consistency tests FlowResNoslip and FlowResSlip. This may be
outdated in parts. For example, it is not necessary to use any special unit system, and also the computation
of forces is now more accurate.

Case definition
The problem at hand consists of finding the resistance that a fluid faces as it is forced to flow through a
hole. The flow resistance is stated by the ratio of pressure drop over the hole and the input velocity. In
micro-system modeling, the hole resistance is often needed to analyse the gas damping effect in perforated
structures. Here, the contribution of the holes is homogenized over the perforated structure based on a single
hole resistance. For homogenization in Elmer, the specific acoustic impedance is used to represent the flow
resistance. Specific acoustic impedance zh is defined as

zh =
p

v
=

F

vAh
, (2.1)

where F is the net force due to gas on the moving surface, v is the velocity of the gas on the same surface,
and Ah is the area of the moving surface. The calculation is best performed in a unit cell of the geometry.

In order to the homogenization to be possible, the dependence of input velocity and the net force should
be linear. Further, there should not be a phase change between these two quantities. These conditions are
satisfied when the flow is incompressible. In a linear case, the fluid flow can be treated with the linear form
of Navier-Stokes equations called the Stokes equation

ρ
∂~u

∂t
−∇ · (2ηε) +∇p = ρ~f, (2.2)

where ~u is the unknown velocity field, p is the pressure, η is the viscosity of the fluid, ρ~f is a body force
and ε is the linearised strain tensor. Note, that the stationary version of the above equation can be used in
homogenization calculations.

The condition for Stokes equation to apply is that the Reynolds number Re of the problem should be
small

Re =
ρUL

η
, (2.3)

where ρ is density of the fluid and U and L are, respectively, the velocity and length scales of the problem.

CSC – IT Center for Science

2. Flow through a hole – determining the acoustic impedance 10

The issue of compressibility is more difficult to answer. A classical condition for the compressibility is
that the Mach number Ma of the problem should be small

Ma =
U

a
< 0.3, (2.4)

where a is the speed of sound in the gas in operating conditions and the value 0.3 is often stated limit
for a small Mach number (actually, the condition is that Ma2 has to be small). Also the frequency and
amplitude of the oscillations of the system have an effect on the validity of the linearity and incompressibility
assumptions, since they affect the velocity scale of the problem.

However, also other factors have an effect on the compressibility of the gas. In micro-systems, the
viscous effects on pressure, or even temperature changes, can affect the density of the gas. A condition for
viscous pressure changes is that Ma2/Re has to be small, and for temperature, in addition, that the Prandtl
number Pr may not be too large

Pr =
ηcp
k
, (2.5)

where cp is the heat capacity (ie. specific heat) in constant pressure and k is the thermal conductivity.
The conditions listed here for the flow to be approximately incompressible are only an overview and the

validity of incompressibility assumption should be considered in each case separately. In micro-systems,
refer for example to the article M. Gad-el-Hak, J. Fluids Eng., 121, 5–33, 1999. Additionally, it is advisable
to perform numerical checks on the issue.

One final point on the applicability of the Stokes (or Navier-Stokes) equations is the effect of gas rarefac-
tion. If the dimensions of the problem are very small the continuity assumption may not be valid anymore.
The importance of the gas rarefaction effects are given by the Knudsen number Kn

Kn =
L
L
, (2.6)

where L is the mean free path of the gas molecules. The mean free path depends inversely on ambient
pressure, which has to take into account in stating the Knudsen number. For Knudsen numbers close to and
less than 1, slip boundary conditions should be used.

To summarize, the motivation of this tutorial is to perform a linear incompressible simulation of fluid
flowing through a hole. The wake for the flow is a constant velocity boundary condition for a boundary
before the hole. On the same boundary, the force caused by the fluid is recorded. These two quantities can
then be used to determine the specific acoustic impedance of a single hole. The constant velocity boundary
condition may be interpreted as describing a moving wall with small displacement. In this particular tutorial,
a symmetrical quadrant of a square-shaped hole is used.

Solution procedure
The solution for the problem is found by solving iteratively the Stokes equation. Nonlinear iterations are not
needed, since the problem is linear.

The computational mesh should include enough free space after the hole so that any artificial effects due
to the boundaries of the mesh are avoided. In this tutorial, the geometry is created and meshed using the
ElmerGrid program by the command elmergrid 1 2 hole.grd. The default mesh consists of about
12000 nodes and 10500 eight-noded hexahedrons.

The header section of solver input file includes only the location of the mesh files.

Header
Mesh DB "." "hole"

End

In the simulation section, a steady-state three-dimensional analysis is defined.

Simulation
Coordinate System = Cartesian 3D
Simulation Type = Steady State

CSC – IT Center for Science

2. Flow through a hole – determining the acoustic impedance 11

Steady State Max Iterations = 1
Output File = "flow.result"
Post File = "flow.vtu"

End

The geometry contains only one body and no body forces or initial conditions are present. The body
section reads thus as follows.

Body 1
Equation = 1
Material = 1

End

For solving the flow patterns the Navier-Stokes solver is used but the nonlinearity through convection is
switched off in the equation block. Also, solvers for the fluidic force and saving data are enabled.

Equation 1
Active Solvers(3) = Integer 1 2 3
NS Convect = False

End

Just a single iteration of the Navier-Stokes solver is needed, since the equation is linear. This can be
verified by switching the number of nonlinear iterations to a value more than one, and observing the change
in solution between iteration steps.

Solver 1
Equation = Navier-Stokes
Variable = Flow Solution
Variable DOFs = 3
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Preconditioning = ILU0
Linear System Max Iterations = 200
Linear System Convergence Tolerance = 1.0e-08
Stabilize = True
Nonlinear System Convergence Tolerance = 1.0e-05
Nonlinear System Max Iterations = 1
Nonlinear System Newton After Iterations = 3
Nonlinear System Newton After Tolerance = 1.0e-08
Nonlinear System Relaxation Factor = 1.0
Steady State Convergence Tolerance = 1.0e-05

End

The fluidic force solver needs to be run only once, after the flow solution is finished. With the keyword
Calculate Viscous Force it is possible to define whether the viscous forces of the fluid are included
in the force or not. If this is set to false, only the pressure integral is calculated.

Solver 2
Exec Solver = After All
Equation = Fluidic Force
Procedure ="FluidicForce" "ForceCompute"
Calculate Viscous Force = True

End

The final solver is used to save data from the analysis. With the following definitions, the input velocity
and the net force on the input boundary as well as the area of the boundary are written into a file called
flowdata.dat.

CSC – IT Center for Science

2. Flow through a hole – determining the acoustic impedance 12

Solver 3
Exec Solver = After All
Equation = SaveScalars
Procedure = "SaveData" "SaveScalars"
Filename = "flowdata.dat"
Save Variable 1 = Velocity 3
Save Coordinates(1,2) = 0.0 0.0

End

The fluid is defined to be air. Note the Elmer MEMS units used.

Material 1
Name = Air
Density = 1.293e-12
Viscosity = 1.67e-5

End

Finally, the boundary conditions. BC 1 defines the input boundary, where also the fluidic force is calcu-
lated. BCs 2 and 4 define the symmetry boundaries, BC 3 defines the no-slip conditions for the walls, and
BC 5 defines an open boundary.

Boundary Condition 1
Target Boundaries = 4
Velocity 1 = 0.0
Velocity 2 = 0.0
Velocity 3 = 1.0e3
Calculate Fluidic Force = True

End

Boundary Condition 2
Target Boundaries(2) = 8 10
Velocity 2 = 0.0

End

Boundary Condition 3
Target Boundaries(4) = 1 2 3 7
Velocity 1 = 0.0
Velocity 2 = 0.0
Velocity 3 = 0.0

End

Boundary Condition 4
Target Boundaries(2) = 6 9
Velocity 1 = 0.0

End

Boundary Condition 5
Target Boundaries = 5
Pressure = 0.0

End

Slip boundary conditions
The same simulation can also be performed using slip boundary conditions. These are appropriate, as stated
in introduction, when the Knudsen number is between 10−3 and 1. The slip boundary condition implemented
in Elmer is of first order

S · ~u = σ · ~n, (2.7)

CSC – IT Center for Science

2. Flow through a hole – determining the acoustic impedance 13

where S is a vector containing the slip coefficients si for each velocity component, µ is the viscosity, and σ
is the stress tensor. For Newtonian fluids and for tangential directions of the boundary this gives

siui = µ
∂ui
∂n

, (2.8)

where si and ui refer to the same tangential component of the slip coefficient and the flow velocity.
The value of the slip coefficient is related to the mean free path of the gas molecules λ. For example,

Maxwell’s first order slip boundary condition may be used (as in e.g. A. Beskok, Num. Heat Transfer, B, 40,
451–471, 2001):

ui =
2− σv
σv

λ
∂ui
∂n

, (2.9)

where σv is the tangential momentum accommodation coefficient, which models the momentum exchange
of gas molecules and the surface. The accommodation coefficient is dependent on the gas and on the surface,
and recent measurements give a result of σv ' 0.80 for various monoatomic gases such as Argon in contact
with prime Silicon crystal.

The slip coefficient of Elmer can finally be written as

si =
µ

λ

σv
2− σv

. (2.10)

The mean free path is defined as

λ =
µ

ρ

√
πM

2RT ,
(2.11)

where ρ is density, M is the molar mass, T is the temperature, and R = 8.3145 J/mol K is the molar gas
constant.

In the Elmer analysis, only a few changes in the sif-file are needed to make the slip conditions active. The
flow force boundary conditions have to be turned on and the numerical value of the slip coefficient has to be
defined on each boundary (here s =2e-4 is used for air). Further below is a list of the Boundary Condition
blocks. Note that there are more BCs than in the no-slip simulation, since a separate condition is needed for
surfaces oriented differently in space.

Generally, a normal-tangential orientation scheme for the boundary conditions are needed, since the
surfaces are not necessarily having a normal vector pointing in one of the coordinate directions. This would
be done for each such boundary by the line

Normal-Tangential Velocity = True

after which the Velocity component 1 points to the normal direction and the other components to the tangen-
tial directions.

! Definitions for slip boundary conditions:
Boundary Condition 1

Target Boundaries = 4
Flow Force BC = True
Slip Coefficient 1 = 2e-4
Slip Coefficient 2 = 2e-4
Velocity 3 = 2.0e3
Calculate Fluidic Force = True

End

Boundary Condition 2
Target Boundaries(2) = 8 10
Velocity 2 = 0.0

End

Boundary Condition 3

CSC – IT Center for Science

2. Flow through a hole – determining the acoustic impedance 14

Target Boundaries(2) = 2 3
Flow Force BC = True
Velocity 3 = 0.0
Slip Coefficient 1 = 2e-4
Slip Coefficient 2 = 2e-4

End

Boundary Condition 4
Target Boundaries(2) = 6 9
Velocity 1 = 0.0

End

Boundary Condition 5
Target Boundaries = 5
Pressure = 0.0

End

Boundary Condition 6
Target Boundaries = 1
Flow Force BC = True
Velocity 1 = 0.0
Slip Coefficient 2 = 2e-4
Slip Coefficient 3 = 2e-4

End

Boundary Condition 7
Target Boundaries = 7
Flow Force BC = True
Velocity 2 = 0.0
Slip Coefficient 1 = 2e-4
Slip Coefficient 3 = 2e-4

End

Results
The computation takes about 200 cpu seconds on an AlphaServer with 1 GHz central processor when tri-
linear elements are used (historical results). The results for two different input velocities taken from the file
flowdata.dat are summarised in Table 2.1. Also the specific acoustic impedance zh is calculated in the
table. The results of slip and no-slip simulations are also compared. Note that for the force, only the com-
ponent perpendicular to the surface should be used since the other components cancel out due to symmetry.
The values in the table are again given in Elmer MEMS units (these units are numerically favourable in small
dimensions and were used historically in MEMS projects).

Table 2.1: Results of flow simulations for two input velocities

v slip model Fz zh
1.0 · 103 no-slip 36.13 1.45 · 10−3

2.0 · 103 no-slip 72.25 1.45 · 10−3

1.0 · 103 slip 29.30 1.17 · 10−3

2.0 · 103 slip 58.60 1.17 · 10−3

The identical values obtained for the specific acoustic impedance in Table 2.1 prove by no means that
the flow in reality is linear, since this was the assumption and the simulation performed can and should not

CSC – IT Center for Science

2. Flow through a hole – determining the acoustic impedance 15

reveal any nonlinear behavior. The results indicate, though, that allowing slip on the boundaries reduces the
resistance that the fluid faces. This example shows that in micro-systems, as the dimension of the smallest
flow channel is in the range of a micrometer, it is reasonable to use slip boundary conditions for the velocity.

Figure 2.1: The linear flow results.

Finally, a picture of the results obtained with no-slip conditions is presented. The Fig. 2.1 shows a lot of
pressure isosurfaces which are coloured using the absolute value of the velocity.

Note: it seems that the results with the current code are not exactly the same. However, we didn’t invest
where the small discrepancy might come from.

CSC – IT Center for Science

Tutorial 3

Electrostatics

Directory: Electrostatics
Solvers: StatElecSolve, ElectricForce
Tools: ElmerGrid, editor
Dimensions: 3D, Steady-state

Case definition
This case presents solving the Poisson equation for electric potential and calculating appropriate derived
quantities, such as capacitance, based on the result. The geometry studied is a symmetric quadrant of a plane
capacitor having a rectangular hole in another plate. A setting of this kind can be used to study the effects of
geometrical features on the capacitance and on the electrostatic force, which both are meaningful quantities
for coupled simulations in e.g. microsystems.

Solution procedure
The mesh is constructed using ElmerGrid with the following command

ElmerGrid 1 2 elmesh.grd

The mesh is extended above the hole to avoid undesired boundary effects. The geometry is presented in the
Figure 3.1

Figure 3.1: The geometry of problem.

CSC – IT Center for Science

3. Electrostatics 17

The simulation problem includes a single body, and thus one material and one equation set, as well as
three solvers. The solvers are used to compute the electric potential and related quantities, to calculate the
electric force, and to save relevant data into a file. This tutorial is defined in Elmer MEMS units. The sif-file
is presented below.

Check Keywords Warn

Header
Mesh DB "." "elmesh"

End

Only a single steady state iteration is needed, since the Poisson equation is linear.

Simulation
Coordinate System = Cartesian 3D
Simulation Type = Steady State
Steady State Max Iterations = 1
Output File = "elstatics.result"
Post File = "elstatics.vtu"

End

The permittivity of vacuum has to be defined in the Constants section.

Constants
Permittivity Of Vacuum = 8.8542e-12

End

Body 1
Equation = 1
Material = 1

End

Electric energy density is added into the results in Equation section. This allows energy density to be
visualised. Here the visualization is done with now obsolete ElmerPost but you would probably rather use
Paraview (or some other software that can handle VTU files). Note also, that calculating electric flux (or
the electric displacement field) is disabled in the Solver 1 block. Further, the potential difference used in
calculating the capacitance of the system has to be defined in this section. This should be the same as the
boundary conditions define for the capacitance calculation to be sensible.

Equation 1
Active Solvers(2) = 1 2
Calculate Electric Energy = True ! (default False)

End

Solver 1
Equation = Stat Elec Solver
Variable = Potential
Variable DOFs = 1
Procedure = "StatElecSolve" "StatElecSolver"
Calculate Electric Field = True ! (default True)
Calculate Electric Flux = False ! (default True)
Potential Difference = 1.0e6
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Max Iterations = 200
Linear System Convergence Tolerance = 1.0e-07
Linear System Preconditioning = ILU1

CSC – IT Center for Science

3. Electrostatics 18

Linear System ILUT Tolerance = 1.0e-03
Nonlinear System Max Iterations = 1
Nonlinear System Convergence Tolerance = 1.0e-4
Nonlinear System Newton After Tolerance = 1.0e-3
Nonlinear System Newton After Iterations = 10
Nonlinear System Relaxation Factor = 1
Steady State Convergence Tolerance = 1.0e-4

End

The static electric force solver does not need a lot of information:

Solver 2
Equation = Electric Force
Procedure = "ElectricForce" "StatElecForce"

End

Finally, some data is saved in file scalars.dat in working directory.

Solver 3
Exec Solver = After All
Equation = SaveScalars
Procedure = "SaveData" "SaveScalars"
Filename = "scalars.dat"

End

Only the relative permittivity of the material has to be defined.

Material 1
Relative Permittivity = 1

End

The boundary conditions include the values of electric potential (voltage) and indication on which bound-
ary the electric force should be calculated. On all the other boundaries a natural boundary condition is used,
basically stating that the electric flux through these boundaries is zero.

Boundary Condition 1
Target Boundaries = 4
Potential = 0.0
Calculate Electric Force = True

End

Boundary Condition 2
Target Boundaries = 3
Potential = 1.0e6

End

Results
The results obtained for capacitance and electric force are compared to those of a complete plane capacitor.
For a plane capacitor, the capacitance is

C = εrε0
A

d
, (3.1)

and the electrostatic force is
Fe =

1

2
εrε0

A

d2
Φ2, (3.2)

where εr is the relative permittivity, ε0 is the permittivity of vacuum, A is the area of a capacitor plate, d is
the separation of the capacitor plates, and Φ is the potential difference between the plates.

CSC – IT Center for Science

3. Electrostatics 19

Table 3.1: Comparison of numerical results to analytic values

simulation analytic ratio
Capacitance 2.1361 · 10−10 2.2136 · 10−10 0.965
Electric Force 1.0406 · 102 1.1068 · 102 0.940

The results of the simulation as well as the comparison to the complete plane capacitor values are shown
in Table 3.1 (in Elmer MEMS units). Note that the fringe fields on capacitor edges are not calculated. This
would require much larger mesh extending outside the capacitor boundaries.

Finally, a picture of the results is presented. The Figure 3.2 shows the isosurfaces of the electric potential
with the color marking the strength of the electric field. From the picture it is clearly seen that the electric
field is constant between the plates except for the proximity of the hole which causes weakening of the field
magnitude. There are also strong electric fields at the edges of the hole.

Figure 3.2: Isosurfaces of the potential coloured with electric field magnitude.

CSC – IT Center for Science

Tutorial 4

Induction heating of a graphite crucible

Directory: InductionHeating
Solvers: StatMagSolve
Tools: ElmerGrid, editor
Dimensions: 2D, Axi-Symmetric

Case definition
At high temperatures the most practical method to heat up the crucible is by electromagnetic induction. The
induction coil generates an alternating current that flows through the crucible. The Ohmic resistance en-
countered by this current dissipates energy, thereby directly heating the crucible via internal heat generation.

The tutorial case is a simple axi-symmetric crucible that could be used, for example, to grow silicon
carbide (SiC) by the sublimation method. The crucible is made of dense graphite and isolated by porous
graphite. At the bottom of the crucible there is some SiC powder. The physical properties of the material are
given in Table 4.1. The dimensions of the induction heating crucible are given in Table 4.2. Additionally, the
powder thickness is 1.0 cm and there are 10 spirals in the coil. The frequency of induction heating f is 50
kHz and the current I is 10 A. The permeability of the space is 4π10−7 if the other variables are in SI-units.

Solution Procedure
At low frequencies the free charges may be neglected and the induction heating problem may be solved
in terms of an magnetic vector potential. The proper solver to do this is StatMagSolver. However,
the induction heating problem can only be modeled if the helicity of the coil is neglected and an average
current density is assumed. This current density may be computed easily when the area of the coil is known
j0 = nI/A, where A is the coil area.

The mesh for this problem may easily be created by ElmerGrid. The provided mesh is quite sufficient
for this case but for higher frequencies the mesh should be tuned to solve the thin boundary layers. The
computational mesh is created from file crucible.grd by the command

ElmerGrid 1 2 crucible

Table 4.1: Material parameters of the crucible

material ε κ [W/mk] σ (1/Ωm)
graphite 0.7 10.0 2.0E4
insulation 0.9 1.0 2.0E3
powder 0.5 25.0 1.0E4

CSC – IT Center for Science

4. Induction heating of a graphite crucible 21

Table 4.2: Dimensions of the crucible

body part rinner router hinner houter
graphite 2.0 2.5 6.0 8.0
insulation 2.5 4.0 8.0 12.0
coil 5.0 5.5 8.0

The mesh consists of 5 different bodies which need 4 different materials sets. Only on set of boundary
conditions are required for the external boundary. Thus the header information of the command file is as
follows

Header
Mesh DB "." "crucible"
Include Path ""
Results Directory ""

End

In the Simulation section the coordinate system and time dependency is set, among other things. Also
we know that the equation is linear and therefore only one steady state iteration is requited. If the electric
properties depend on the magnitude of the field several iterations are required.

Simulation
Coordinate System = "Axi Symmetric"
Simulation Type = Steady State
Steady State Max Iterations = 1
Output File = "crucible.result"
Post File = "crucible.vtu"

End

In the Constants section the permittivity of vacuum must be given.

Constants
Permittivity Of Vacuum = 8.8542e-12

End

In the differential equation for the magnetic vector potential the source the is the current density. Thus, it is
given in the Body Force section.

Body Force 1
Current Density = 2.5e5

End

In the Body section the different bodies are assigned with correct equation sets and material parameters, for
example

Body 3
Name = "Insulation"
Equation = 1
Material = 2

End

In the Equation block all the relevant solvers are set to active.

Equation
Name = "Vector Potential Equation"
Active Solvers = 1

End

CSC – IT Center for Science

4. Induction heating of a graphite crucible 22

The only solver in this simple tutorial is the solver for the magnetic vector potential. Look for the relevant
model manual for information about the options. Here the equation is solved iteratively and the local Joule
heating and magnetic flux are computed as a postprocessing step. The Joule heating is scaled so that the total
heating power is 3.0 kW. This option may be used when the total heating efficiency is known. The nonlinear
solver parameters are not really needed as the material parameters are constant. Sometimes the parameters
may depend on the magnetic field and thus the nonlinear problem must be solved iteratively.

Solver 1
Equation = Potential Solver
Variable = Potential
Variable DOFs = 2

Angular Frequency = Real 50.0e3
Calculate Joule Heating = Logical True
Calculate Magnetic Flux = Logical True
Desired Heating = Real 3.0e3

Procedure = "StatMagSolve" "StatMagSolver"
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Max Iterations = 300
Linear System Convergence Tolerance = 1.0e-10
Linear System Preconditioning = ILU1
Linear System ILUT Tolerance = 1.0e-03
Linear System Residual Output = 1
Nonlinear System Max Iterations = 1
Nonlinear System Convergence Tolerance = 1.0e-6
Nonlinear System Relaxation Factor = 1
Steady State Convergence Tolerance = 1.0e-6

End

In the Material sections all the necessary material parameters are given, for example

Material 2
Name = "Insulation"
Electric Conductivity = 2.0E3

End

The magnetic field must vanish at infinity. Unfortunately the computational domain is bounded and therefore
the infinite distance becomes very finite. A proper distance may be checked by gradually increasing it until
no change in the result occurs.

Boundary Condition 1
Target Boundaries = 1
Potential 1 = Real 0.0
Potential 2 = Real 0.0

End

Results
With the given computational mesh the problem is solved in a few seconds. With the 20 072 bilinear elements
the heating efficiency is 16.9 W. The corresponding results are shown in Fig. 4.1.

CSC – IT Center for Science

4. Induction heating of a graphite crucible 23

Figure 4.1: Induction heating of a simple crucible. a) in-phase component of the vector potential b) out-of-
phase component of the vector potential c) Joule losses in the conductors

CSC – IT Center for Science

Tutorial 5

Thermal actuator driven with
electrostatic currents

Test: ThermalActuator
Directory: ThermalActuator
Solvers: StatCurrentSolve, HeatSolve, StressSolve
Tools: ElmerGrid, editor
Dimensions: 3D, Steady-state

Case definition
The tutorial introduces a micro mechanical thermal actuator as shown in Fig. 5.1. A static electric current
is driven through the actuator. The power loss due to the resistance of the actuator is transformed into heat
which in turn causes thermal stresses into the structure. The electric current thus results in deformation
of the actuator. In industry, such an actuator might be used to control the position of a micromechanical
component.

Figure 5.1: The geometry of the actuator.

Solution procedure
The problem is solved by first iterating the electrostatic current solver and heat equation until both are
converged. The temperature distribution is then used as a load for stress analysis solver which calculates the
actual deformation of the structure. The electric conductivity of the actuator depends on the temperature and
thus the electrostatic - thermal problem is coupled in both directions.

The computational mesh for this particular tutorial is created by using Ansys software. The details of the
mesh are written into files called ExportMesh by a certain Ansys macro and converted to Elmer format by
the ElmerGrid program. The command to use is

CSC – IT Center for Science

5. Thermal actuator driven with electrostatic currents 25

ElmerGrid 4 2 ExportMesh -order 1.0 0.1 0.001 -o thermal

The above command reads in the Ansys mesh files, arranges the mesh nodes in a reasonable way and saves
the mesh in Elmer format in a directory called thermal.

The geometry of the problem includes only one body and material. Boundary conditions are defined on
the actuator legs, which are kept at constant electric potential, temperature and position. Thus, only Dirichlet
boundary conditions are used.

The header and simulation blocks of the solver input file are

Header
Mesh DB "." "thermal"

End

Simulation
Coordinate System = Cartesian 3D
Simulation Type = Steady State
Steady State Max Iterations = 30
Output Intervals = 1
Output File = "actuator.result"
Post File = "actuator.vtu"

End

An initial condition for temperature is defined in order to ease the convergence of the iterative solvers.
Also, a body force for the heat equation solver defining the Joule heating is needed. These both have to be
declared in the body section as follows:

Body 1
Equation = 1
Material = 1
Initial Condition = 1
Body Force = 1

End

The solution procedure requires the use of three solvers: Static current solver, heat equation solver and
the stress analysis solver. The equation block below defines that these solvers are used.

Equation 1
Active Solvers(3) = Integer 1 2 3
Calculate Joule Heating = True

End

The solver blocks define the parameters of the respecting solvers. The static current conduction problem
is tackled by an iterative conjugate gradient method (CG). For heat equation, a stabilized biconjugate gradient
method is used. The coupled problem of these two solvers is difficult since the static current calculated heats
the structure on each step, and the rise of temperature makes the current conduction more and more difficult.
To overcome this problem, a relaxation factor of 0.5 is defined for the heat equation solver.

Solver 1
Equation = Stat Current Solver
Procedure = "StatCurrentSolve" "StatCurrentSolver"
Variable = Potential
Variable DOFs = 1
Calculate Volume Current = True
Calculate Electric Conductivity = True
Linear System Solver = Iterative
Linear System Iterative Method = CG

CSC – IT Center for Science

5. Thermal actuator driven with electrostatic currents 26

Linear System Preconditioning = ILU3
Linear System Max Iterations = 300
Linear System Convergence Tolerance = 1.0e-8
Nonlinear System Max Iterations = 1
Nonlinear System Convergence Tolerance = 1.0-6
Nonlinear System Newton After Iterations = 3
Nonlinear System Newton After Tolerance = 1.0e-12
Nonlinear System Relaxation Factor = 1.0
Steady State Convergence Tolerance = 1.0e-6

End

Solver 2
Equation = Heat Equation
Variable = Temperature
Variable DOFs = 1
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Preconditioning = ILU1
Linear System Max Iterations = 350
Linear System Convergence Tolerance = 1.0e-9
Nonlinear System Max Iterations = 1
Nonlinear System Convergence Tolerance = 1.0e-07
Nonlinear System Newton After Iterations = 3
Nonlinear System Newton After Tolerance = 1.0e-12
Nonlinear System Relaxation Factor = 0.5
Steady State Convergence Tolerance = 1.0e-07

End

For stress analysis, a direct solver is used instead of an iterative solver. It is often difficult for the
iterative solver to find a solution for a structure that contains parts with varying stiffness properties, which
is obviously the case here (try the iterative solver and see!). The stress analysis solver is called first only
after the coupled iteration of two previous solvers is complete. This is possible since the deformation of the
structure is so small that it does not change the current density distribution. Defining stress analysis this way
saves computational time. It is possible to iterate all the three solvers until convergence by commenting the
Exec Solver line.

Solver 3
Exec Solver = After All
Equation = Stress Analysis
Variable = Displacement
Variable DOFs = 3
Linear System Solver = Direct
Linear System Direct Method = Banded
Nonlinear System Max Iterations = 1
Nonlinear System Convergence Tolerance = 1.0e-6
Nonlinear System Newton After Iterations = 3
Nonlinear System Newton After Tolerance = 1.0e-12
Nonlinear System Relaxation Factor = 1.0
Steady State Convergence Tolerance = 1.0e-6

End

The material of the structure has a temperature dependent electric conductivity. This, as well as other
material parameters, is defined in the material block. Note that a MEMS unit system is used.

Material 1

CSC – IT Center for Science

5. Thermal actuator driven with electrostatic currents 27

Electric Conductivity = Variable Temperature
Real

298.0 4.3478e10
498.0 1.2043e10
698.0 5.1781e9
898.0 2.7582e9
1098.0 1.6684e9
1298.0 1.0981e9
1683.0 1.0
2000.0 1.0

End

Density = 2.3e-15
Heat Conductivity = 32.0e6
Youngs Modulus = 169.0e3
Poisson Ratio = 0.22
Heat Expansion Coefficient = 2.9e-6
Reference Temperature = 298.0

End

Finally, the initial condition, thermal heat load for stress analysis, and the boundary conditions are de-
fined.

Initial Condition 1
Temperature = 298.0

End

Body Force 1
Heat Source = Equals Joule Heating

End

Boundary Condition 1
Target Boundaries = 1
Potential = 0
Temperature = 298
Displacement 1 = 0.0
Displacement 2 = 0.0
Displacement 3 = 0.0

End

Boundary Condition 2
Target Boundaries = 2
Potential = 7
Temperature = 298
Displacement 1 = 0.0
Displacement 2 = 0.0
Displacement 3 = 0.0

End

Results
The problem converges after 27 steady state iterations on the tolerance limits defined above. The calcu-
lation takes about 180 cpu seconds of which 40 cpus is spent in solving the stress analysis equation. The
calculations were performed on a Compaq Alpha Server with a 1 GHz central processor.

CSC – IT Center for Science

5. Thermal actuator driven with electrostatic currents 28

Figure 5.2: Temperature distribution.

Figure 5.3: The displacement of the actuator.

Result for temperature distribution and the displacement are shown in Figs 5.2 and 5.3. The tempera-
ture rises unrealistically high in this example because all heat transfer mechanisms out of the structure are
neglected. Presumably at least the heat radiation is of major importance in this case. For displacement, the
results show a movement of about 3.3 micrometers for the actuator tip.

CSC – IT Center for Science

Tutorial 6

Axisymmetric coating process

Director: CoatingProcess
Solvers: FlowSolve, FreeSurfaceReduced
Tools: ElmerGrid, editor
Dimensions: 2D, Steady-state

Case definition
The optical fibers are quite fragile and must therefore be coated with a layer of polymer before they are
stored. This means that the coating process must be done with the same speed as the drawing of optical
fibers. When the diameter of the fiber is only 125 µm this sets high demands for the coating geometry since
it must provide even coating at high draw speeds. In Elmer a tailored free surface boundary condition allows
an efficient solution of this particular problem.

Solution procedure
The mesh is done with ElmerGrid in the directory coat by the command

ElmerGrid 1 2 coat.grd

Therefore the header reads

Header
Mesh DB "." "coat"

End

The geometry is axisymmetric and the problem is solved in steady state. Typically around 10 iterations is
needed to solve the problem but to be on the safe side 30 is set as the maximum.

Simulation
Coordinate System = Axi Symmetric
Simulation Type = Steady State
Steady State Max Iterations = 30
Output Intervals = 1
Output File = "coat.result"
Post File = "coat.vtu"

End

In this case there is only one body which comprises of the polymer floating between the coating cup and the
optical fiber.

CSC – IT Center for Science

6. Axisymmetric coating process 30

Body 1
Equation = 1
Material = 1

End

The presented solution used four different solvers. The Navier-Stokes solver is required to solve the flow
field for the polymer.

Solver 1
Equation = Navier-Stokes
Stabilize = True
Internal Move Boundary = Logical False
Nonlinear System Max Iterations = 5
Nonlinear System Convergence Tolerance = 1.0e-7
Nonlinear System Newton After Iterations = 2
Nonlinear System Newton After Tolerance = 1.0e-2
Nonlinear System Relaxation Factor = 0.7
Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Preconditioning = ILU1
Linear System Max Iterations = 100
Linear System Convergence Tolerance = 1.0e-10
Steady State Convergence Tolerance = 1.0e-7

End

A tailored free surface solver is used to find the position of the free surface with a given flow field. The
variable being solved is the displacement of the free surface. Relaxation is used to avoid over-shooting
during the iteration. This solver does not solve any matrix equations. Instead it solves the radius from the
mass conservation constraint for each node on the free surface separately. There is a possibility to do the
mapping also within the solver using a 1D scheme but this is disabled by setting the Perform Mapping
to be False.

Solver 2
Equation = "Free Surface Reduced"
Procedure = "FreeSurfaceReduced" "FreeSurfaceReduced"
Variable = Dx
Variable DOFs = 1
Nonlinear System Relaxation Factor = 0.7
Nonlinear System Convergence Tolerance = 1.0e-3
Steady State Convergence Tolerance = 1.0e-3
Perform Mapping = Logical False

End

The mesh update solver is required to map the computational mesh so that it corresponds to the altered
geometry. Here the displacements of the free surface have already been computed and this solver solves the
displacements inside the domain. Note that solvers 1, 2 and 3 are coupled and therefore the system must be
solved iteratively

Solver 3
Equation = Mesh Update
Linear System Solver = Iterative
Linear System Iterative Method = BiCGSTAB
Linear System Preconditioning = ILU
Linear System Convergence Tolerance = 1.0e-12
Linear System Max Iterations = 200
Linear System Symmetric = True
Steady State Convergence Tolerance = 1.0e-4

End

CSC – IT Center for Science

6. Axisymmetric coating process 31

In the end, an additional solver is used to compute the forces acting on the fiber. This does not affect the
results.

Solver 4
Equation = Fluidic Force
Procedure = "FluidicForce" "ForceCompute"
Calculate Viscous Force = Logical True

End

Additionally there are two solvers for saving the results in a form that is more useful than plain pictures. The
SaveScalars saves the scalar values, such as the diameter and force values, and the SaveLine saves
the free surface.

Solver 5
Equation = SaveScalars
Procedure = "SaveData" "SaveScalars"
Filename = "scalars.dat"

End

Solver 6
Equation = SaveLine
Procedure = "SaveData" "SaveLine"
Filename = "kurvi.dat"

End

The equation includes only the solvers that need a permutation vector pointing out the active nodes. There-
fore the save utilities do not need to belong to the set of active solvers.

Equation 1
Active Solvers(4) = 1 2 3 4

End

The material parameters are those of the polymer. Additionally elasticity parameters are needed because the
solver that updates the mesh is actually a linear elasticity solver.

Material 1
Density = 1.0
Viscosity = 1.0
Poisson Ratio = 0.3
Youngs Modulus = 1.0

End

Five different boundary conditions are needed. The origin is a symmetry axis and therefore the radial
velocity is set to zero. The axial velocity is the draw velocity.

Boundary Condition 1
Name = "Symmetry"
Target Boundaries = 1
Velocity 2 = -10.0 ! The draw velocity
Velocity 1 = 0.0
Compute Fluidic Force = Logical True
Mesh Update 1 = 0.0

End

The free surface has a condition stating that the reduced order free surface solver should be solved for that.
Additionally the free surface is a boundary condition for the mesh update, and a line to be saved.

CSC – IT Center for Science

6. Axisymmetric coating process 32

Boundary Condition 2
Name = "Free"
Target Boundaries = 2
Mesh Update 1 = Equals Dx
Mesh Update 2 = 0.0
Free Surface Reduced = Logical True
Save Line = Logical True

End

At the outlet the radial velocity should vanish and the axial coordinate should be fixed.

Boundary Condition 3
Name = "Outlet"
Target Boundaries = 3
Velocity 1 = 0.0
Mesh Update 2 = 0.0

End

At the inlet it is assumed that there is no radial velocity and that the pressure acting on the surface is zero.

Boundary Condition 4
Name = "Inlet"
Target Boundaries = 4
Velocity 1 = 0.0
Pressure = 0.0
Mesh Update 2 = 0.0

End

Finally, no-slip conditions are set for the boundaries with the walls of the coater.

Boundary Condition 5
Name = "No-slip"
Target Boundaries = 5
Velocity 1 = 0.0
Velocity 2 = 0.0
Mesh Update 1 = 0.0
Mesh Update 2 = 0.0

End

Results
In the given case solution is obtained after 13 iterations. The solution gives the final radius, the forces, and
the profile of the free surface. To visualize the true free surface you may visualize the last timestep using
Paraview, or some other software capable of reading VTU files.

CSC – IT Center for Science

6. Axisymmetric coating process 33

Figure 6.1: The velocity and pressure fields in a simple coating geometry. The solution utilizes the reduced
dimensional free surface solver.

CSC – IT Center for Science

Tutorial 7

Blood ejection from a ventricle into
aorta

Test: ArteryOutlet
Directory: ArteryFlow
Solvers: FlowSolve,ElasticSolve, OutletCompute
Tools: Editor, Fortran 90 compiler, ElmerGrid
Dimensions: 2D, Transient

Case description
This tutorial is about simulating blood ejection in to the elastic human aorta. The idea is to mimic left
ventricle contraction and resulting pulse propagation in an elastic conduit. In the simulation about 0.8
deciliters of blood is ejected to a 50 cm long elastic aorta during a time period of 400 ms. In order to get the
outlet of the model behave physiologically more realistic way, a one dimensional model is coupled with the
higher order model.

Solution procedure
First we generate the mesh of 366 eight-node quadrilaterals elements with the command

ElmerGrid 1 2 contra

Next we generate one dimensional mesh to the outlet of the 2D model. The program AddOneDim is posed to
be run in the mesh directory contra. The length, the number of the elements, and the coordinate direction
of the 1D section will be asked.

In the simulation block the timestep is set equal to 1 ms and total simulation time equal to 600 ms. The
geometry consists of five bodies of which the first three are for the fluid volume. Body number 1 os the
contracting volume. Body 2 is a short rigid channel between the body 1 and the elastic artery. Artificial
compressibility method is used for the fluid volume (body 3) which is in contact with the elastic wall (body
4). One dimensional model is the body 5. Material settings for those are following:

! Bodies 1 and 2 (blood)
Material 1

Density = 1000
Viscosity = 3.5e-3
Youngs Modulus = 1
Poisson Ratio = 0.3

End

CSC – IT Center for Science

7. Blood ejection from a ventricle into aorta 35

! Body 3 (blood)
Material 2

Density = 1000
Viscosity = 3.5e-3
Youngs Modulus = 1
Poisson Ratio = 0.3
Compressibility Model = Artificial Compressible
Artificial Compressibility = 3.3E-5

End

! Body 4 (elastic wall)
Material 3

Density = 1010
Youngs Modulus = 3.0e5
Poisson Ratio = 0.45

End

! One dimensional model
Material 4

Density = 1010.0
Artery Wall Youngs Modulus = Real 3.0e5
Artery Radius = Real 0.0135
Artery Wall Thickness = Real 0.002
Artery Poisson Ratio = Real 0.45

End

Notice that the radius of the one dimensional model (Artery Radius) is to the midplane of the wall
(inner radius + half of the wall thickness). The overall FSI iteration scheme is started by one dimensional
solver (OutletCompute, see the solver manual), after that Navier-Stokes, elasticity and mesh update
solvers are run. Steady state convergence tolerance is set equal to 1.0E-4 for each of the solvers. The
nonlinearities of each of the solvers are computed within the FSI scheme loop, that is, the flag Nonlinear
System Max Iterations is set equal to 1. Artificial compressibility coefficient is computed by the
equation c = (1 − ν2)[D/(E h)], where ν is the Poisson ratio of the artery wall, D, E and h are the inner
diameter, Young’s modulus and the thickness of the artery, respectively.

The only driving force of the system, the wall motion of the contracting fluid domain is given by the
fortran function Motion, see the figure 7.1. The boundary condition setting is

! Moving boundary
Boundary Condition 1

Target Boundaries = 1
Velocity 1 = 0
Velocity 2 = Equals Mesh Velocity 2
Mesh Update 1 = Real 0
Mesh Update 2 = Variable Time

Real Procedure "./Motion" "Motion"
End

At the outlet, the pressure boundary condition is given by the function OutletPres and the corre-
sponding radial displacement of the end wall of the outlet is given by the function OutletdX

! Outlet pressure of the 2D model
Boundary Condition 2

Target Boundaries = 2
Flux Integrate = Logical True
Flow Force BC = True
Pressure 2 = Variable Time

CSC – IT Center for Science

7. Blood ejection from a ventricle into aorta 36

Real Procedure "./ArteryOutlet" "OutletPres"
Mesh Update 2 = Real 0

End

! Radial displacement of the end wall at the outlet of 2D model
Boundary Condition 9

Target Boundaries = 9
Displacement 1 = Variable Time

Real Procedure "ArteryOutlet" "OutletdX"
Displacement 2 = 0

End

FSI interface boundary is described as following

! FSI interface boundary
Boundary Condition 11

Target Boundaries = 11
Velocity 1 = Equals Mesh Velocity 1
Velocity 2 = Equals Mesh Velocity 2
Mesh Update 1 = Equals Displacement 1
Mesh Update 2 = Equals Displacement 2
Force BC = Logical True

End

Finally, the coupling of the 1D model with the 2D is done at the inlet boundary as

Boundary Condition 16
Target Boundaries = 16
Fluid Coupling With Boundary = Integer 2
Structure Coupling With Boundary = Integer 9

End

Results
The contraction is curve seen in the figure 7.1 and the velocity fields at different time levels are presented in
the figure 7.2. Postprocessing instructions are given in the file PostProcessingInstr.txt.

CSC – IT Center for Science

7. Blood ejection from a ventricle into aorta 37

Figure 7.1: Contraction curve generated by the function Motion.

CSC – IT Center for Science

7. Blood ejection from a ventricle into aorta 38

Figure 7.2: The geometry of the model and velocity fields at 5 time steps, 100, 200, 300, 400 and 500 ms.
The displacements of the wall are magnified by factor of 10.

CSC – IT Center for Science

Tutorial 8

Temperature distribution with BEM

Directory: PoissonBEM
Solvers: PoissonBEMSolver
Tools: ElmerGrid, editor
Dimensions: 2D

Case definition
This tutorial uses boundary element method (BEM) to solve Poisson equation. Even though Elmer is pri-
marily a finite element software the are limited support also for BEM computation. One should however
note that Elmer does not include any multilevel strategies essential for a good performance. For more details
about BEM check the Elmer Models Manual. The simulation setting is described in Figure 8.1. A heater
with constant heat flux is placed inside a box and the walls of the box are in fixed temperature. We are in-
terested in the temperature distribution in the medium around the heater (Ω) and on the surface of the heater
(Γ1). We also want to know the heat flux through the walls of the box (Γ2).

Ω, medium

heater

Γ1, −∂T
∂n = 1

Γ2, T = 0

Figure 8.1: Simulation setting

Solution Procedure
First we create a mesh with ElmerGrid. The mesh is defined in heater.grd and it is created with com-
mand

ElmerGrid 1 2 heater

The solver input file PoissonBEM.sif starts with the definition of the mesh directory.

CSC – IT Center for Science

8. Temperature distribution with BEM 40

Header
Mesh DB "." "heater"

End

The simulation uses 2D Cartesian geometry, searches a steady state and since there is no coupled solvers
only one iteration is needed. Numerical results for restart are written to file BEM_Temperature.result
and file for Paraview visualization is BEM_Temperature.vtu.

Simulation
Coordinate System = Cartesian 2D
Coordinate Mapping(3) = 1 2 3

Simulation Type = Steady
Steady State Max Iterations = 1

Output Intervals = 1
Post File = "BEM_Temperature.vtu"
Output File = "BEM_Temperature.result"

End

There is just one body, the medium around the heater, and it uses equation 1.

Body 1
Name = "medium"
Equation = 1

End

In equation block we say that we use the solver named PoissonBEM.

Equation 1
PoissonBEM = Logical True

End

In solver block the Equation keyword must match the one in equation block. We also need to define the
procedure, name the variable (Temperature) and tell the degrees of freedom of the variable. Keyword
Optimize Bandwidth must be set to false with BEM solver. Since we were interested in the flux, we
must now export it to the results. The lines beginning Exported must be exactly as below. Keywords
beginning Linear System can be used except that the preconditioning cannot be ILU.

Solver 1
Equation = PoissonBEM
Procedure = "PoissonBEM" "PoissonBEMSolver"
Variable = Temperature
Variable DOFs = 1

Optimize Bandwidth = False

Exported Variable 1 = String Flux
Exported Variable 1 DOFs = 1

Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Preconditioning = Jacobi
Linear System Max Iterations = 100
Linear System Convergence Tolerance = 1.0e-8

Steady State Convergence Tolerance = 1.0e-6
End

CSC – IT Center for Science

8. Temperature distribution with BEM 41

Finally we give the boundary conditions for the heater surface and for the walls of the box. The keyword
Body Id tells the reference body of this boundary. Here it is 1. The keyword Normal Target Body
tells the direction of the outer normal. Value -1 means the side where there are no volume elements. We
didn’t mesh the inside of the heater and so we can use value -1 in both cases. The heat flux from heater to
medium is 1 and the walls of the box are set to zero temperature. The keyword Temperature matches the
name of the variable in solver block.

Boundary Condition 1
Name = "heater_surface"
Target Boundaries = 1

Body Id = 1
Normal Target Body = Integer -1
Flux = Real 1

End

Boundary Condition 2
Name = "box_walls"
Target Boundaries = 2

Body Id = 1
Normal Target Body = Integer -1
Temperature = 0

End

Results
Problem is solved with command Solver. The results are here viewed with ElmerPost. In Figure 8.2 is
the temperature distribution.

Figure 8.2: The temperature distribution.

CSC – IT Center for Science

Tutorial 9

Adding user defined equation solver

Directory: Temperature1D
Solvers: PoissonSolver
Tools: Editor, Fortran 90 compiler, ElmerGrid
Dimensions: 1D, Steady-state

Problem description
This tutorial is about creating the code for a simple poisson equation solver. The solver is applied to 1d case
with internal source term and fixed boundaries.

Mathematically the problem we solve is{
−∆Φ = f in Ω

Φ = 0 on Γ
(9.1)

Although this example is in 1d the same solver code also applies to 2D and 3D problems.

Solution procedure
Own codes solving some specific equation may be added dynamically to Elmer software. Here we create a
very simple equation solver code. The final code may be found in the tutorial directory as well as the files
for running the example. The solution may be attempted as follows:

• Copy all the files from tutorial directory to current directory

• Setup Elmer

• Give the following commands:

elmerf90 -o Poisson Poisson.f90
ElmerGrid 1 2 1dheat
ElmerSolver
ElmerPost

The solver code
The example Fortran code may be found in the tutorial files under the name Poisson.f90. The example run
is defined in 1dheat.sif. Only a rough guideline is given here of both of the files, refer to the files themselves
for more details.

All the equation solvers in Elmer have the following common interface

CSC – IT Center for Science

9. Adding user defined equation solver 43

SUBROUTINE PoissonSolver(Model, Solver, dt, TransientSimulation)
USE SolverUtils

TYPE(Model) :: Model
TYPE(Solver_t), POINTER :: Solver
REAL(KIND=dp) :: dt
LOGICAL :: TransientSimulation

...
END SUBROUTINE PoissonSolver

The argument Model contains pointers to the whole definition of the Elmer run. The argument Solver
contains parameters specific to our equation solver. The argument dt and TransientSimulation are the current
timestep size, and a flag if this run is steady or transient. These don’t concern us this time.

When starting the ElmerSolver looks the solver input (.sif) file for a Solver section with keyword "Pro-
cedure". This should contain reference to the compiled code

Procedure = "Poisson" "PoissonSolver"

where the first string in the right hand side is the file name of the compiled code, and second argument is the
name of the subroutine to look for in the given file.

In the Solver section one also gives the name of the field variable (here Poisson) and the DOFs/node
(here 1).

The basic duty of the equation solver is to solve one or more field variables inside the time progressing-
or steady state iteration-loop of ElmerSolver. Here we use FEM to discretize the Poisson equation and finally
solve the equation by calling ElmerSolver utility SolveSystem.

The solution progresses the following way:

• Get the space for variables and temporaries from ElmerSolver and compiler. The matrix structure and
space for solution and RHS vector have already been allocated for you before you enter the equation
solver.

The matrix is of type Matrix_t and may be obtained from the arguments as

TYPE(Matrix_t), POINTER :: StiffMatrix
StiffMatrix => Solver % Matrix

Usually one doesn’t need to know the internal storage scheme or the fields of the Matrix type, but one
just passes this pointer further to ElmerSolver utility routines.

Similarly, the force vector may be accessed as follows:

REAL(KIND=dp), POINTER :: ForceVector(:)
ForceVector => StiffMatrix % RHS

The solution vector is obtainable similarly

TYPE(Variable_t), POINTER :: Solution
Solution => Solver % Variable

The Variable_t structure contains the following fields

– DOFs: the number of degrees of freedom for one node. This value is for information only and
should’nt be modified.

– Perm: an integer array that is nonzero for nodes that belong to computational volume for this
equation. The entry Perm(i) holds the index of the global matrix row (for 1 DOF) for nodal
point i. This array should’nt be modified by the equation solver.

CSC – IT Center for Science

9. Adding user defined equation solver 44

– Values: Space for the solution vector values. Note that the values are ordered the same way as
the matrix rows, .i.e. the value of Potential at node n is stored at

val = Solution % Values(Solution % Perm(n))

• Initialize the global system to zero. Calling the utility routing

CALL InitializeToZero(StiffMatrix, ForceVector)

is usually enough.

• Go trough the elements for which this equation is to be solved, get the elemental matrices and vectors
and add them to the global system:

DO i=1,Solver % NumberOfActiveElements
CurrentElement => Solver % Mesh % Elements(Solver % ActiveElements(i))

...
CALL LocalMatrix(...)
CALL UpdateGlobalEquations(...)

END DO
CALL FinishAssembly(...)

Here the LocalMatrix is your own subroutine computing elemental matrices and vectors. In the exam-
ple code LocalMatrix uses three routines from ElmerSolver utilities. The function

dim = CoordinateSystemDimension()

returns the dimension of the current coordinate system, i.e. the return value is 1, 2 or 3 depending
on the input file setting of keyword "Coordinate System". The function GaussPoints returns structure
containing the integration point local coordinates and weights

TYPE(GaussIntegrationPoints_t) :: IntegStuff
IntegStuff = GaussPoints(Element)

The fields of the type GaussIntegrationPoints_t are

INTEGER :: n
REAL(KIND=dp) :: u(:), v(:), w(:), s(:)

the integer value n is the number of points selected. The arrays u,v and w are the local coordinates of
the points, and the array s contains the weights of the points. One may call the GaussPoints-routine
with second argument,

IntegStuff = GaussPoints(Element, n)

if the default number of integration points for given element is not suitable.

Inside the integration loop the function ElementInfo is called:

TYPE(Element_t), POINTER :: Element
TYPE(Nodes_t) :: Nodes
REAL(KIND=dp) :: U,V,W,detJ, Basis(n), dBasisdx(n,3), ddBasisddx(n,3,3)

stat = ElementInfo(Element, Nodes, U, V, W, detJ, &
Basis, dBasisdx, ddBasisddx, .FALSE.)

CSC – IT Center for Science

9. Adding user defined equation solver 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

P
ot

en
tia

l

Figure 9.1: Solution of the Poisson Equation.

This routine returns determinant of the element jacobian (detJ), basis function values (Basis(n)), basis
function global derivative values (dBasisdx(n,3)), basis function second derivative values (ddBasis-
ddx(n,3,3)). The second derivatives are only computed if the next logical flag is set to true. All the
values are computed at the point U,V,W inside element defined by structures Element and Nodes.

Refer to the code for more details.

• Set boundary conditions. Here only dirichlet boundary conditions are used. These may be set by using
the utility routine SetDirichletBoundaries.

• Solve the system by calling utility routine SolveSystem.

Results
In the elmerpost file there is a variable called Potential which contains the solution of this simple example.
See figure 9.1

CSC – IT Center for Science

Tutorial 10

Volume flow boundary condition

Directory: FlowLinearRestriction
Solvers: FlowSolve, SolveWithLinearRestriction
Tools: Editor, Fortran 90 compiler, ElmerGrid
Dimensions: 2D, Transient

Case definition
This tutorial gives an example how to use SolveWithLinearRestriction. It also describes how to execute own
functions before the original system is solved. In order to understand the case reader should be familiar
with compressed row storage matrices and Elmer basics. This tutorial gives only the guidelines and reader
is advised to read the files in order to get more through understanding.

We simulate the flow of incompressible fluid in a pipe. The pipe has a length of 5 and a width of 1. On
the left end we want to describe a certain time dependent volume flow. In other words, we don’t want to
describe the velocity field here but we want the velocity field be such that it transports certain amount of
volume in time interval. We could integrate the correct volume flow, but let’s now approximate it to make
the more important aspects more visible. Our approximation here is that the volume flow is proportional to
average velocity on the edge i.e.

1

N

N∑
i=1

ui =
volume

time
(10.1)

Here ui are the nodal velocities parallel to the pipe on the left edge and N is the number of nodes on the left
edge. We want to set a nicely scaled sinusoidal volume flow on the edge, which leads to

N∑
i=1

ui = 10N sin(2Πt) (10.2)

This equation we can (easily) force with Lagrange multiplier.

Solution procedure
First we make a uniform mesh of 800 four-node quadrilaterals with command

ElmerGrid 1 2 mflow

Next we construct the solver input file. Header is simply

Header
Mesh DB "." "mflow"

End

The simulation block is also very simple. Here we need to define the time stepping method and timescale.

CSC – IT Center for Science

10. Volume flow boundary condition 47

Simulation
Coordinate System = Cartesian 2D

Simulation Type = Transient
Steady State Max Iterations = 1

Timestepping Method = BDF
BDF Order = 1

Timestep Sizes = 0.02
Timestep Intervals = 100

Output Intervals = 1

Output File = "mflow.result"
Post File = "mflow.ep"

End

The body, material and equation blocks are as usual. The material parameters, of course, have affect on the
solution and interested reader is encouraged to modify these values and recalculate the solution.

Body 1
Material = 1
Equation = 1

End

Material 1
Density = 3.0
Viscosity = 0.1

End

Equation 1
Navier-Stokes = TRUE
Active Solvers(1) = 1

End

The solver block has the usual Navier-Stokes keywords and two keywords for volume flow boundary. The
Before Linsolve keyword defines binary file and function that is called before the system is solved.
This function we must write and compile and we will come to it shortly. The following keyword, Export
Lagrange Multiplier, states that we are not interested in the value of the Lagrange multiplier and it
is therefore not saved.

Solver 1
Equation = Navier-Stokes
Stabilize = True

Before Linsolve = "./AddMassFlow" "AddMassFlow"
Export Lagrange Multiplier = Logical FALSE

Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Preconditioning = ILU1
Linear System Max Iterations = 500
Linear System Scaling = False
Linear System Convergence Tolerance = 1.0e-8

CSC – IT Center for Science

10. Volume flow boundary condition 48

Nonlinear System Max Iterations = 15
Nonlinear System Convergence Tolerance = 1.0e-8
Nonlinear System Newton After Tolerance = 1.0e-4
Nonlinear System Newton After Iterations = 8
Nonlinear System Relaxation Factor = 1.0

Steady State Convergence Tolerance = 1.0e-7
End

In boundary conditions we state that both parallel and perpendicular velocities are zero on the pipe sides and
on both edges the perpendicular velocity is zero. Here we also define the number tags for the boundaries.
The tag 2 is assigned to boundary that has number 4 in grd-file, which is the left edge of the pipe. To this tag
number 2 we shall refer in our AddMassFlow-function.

Boundary Condition 1
Target Boundaries(2) = 1 3
Velocity 1 = 0.0
Velocity 2 = 0.0

End

Boundary Condition 2
Target Boundaries = 4
Velocity 2 = 0.0

End

Boundary Condition 3
Target Boundaries = 2
Velocity 2 = 0.0

End

AddMassFlow function
Here we shall only give some rough guidelines of the function, for more information check the code. This
function creates the constraint matrix and RHS that forces the equation mentioned above. Then it calls
SolveWithLinearRestriction to solve the system. The constraint matrix is actually only a row-vector and the
RHS is only one value.

• The function parameters are defined in Elmer so you shouldn’t change them.

• First we set a pointer to EMatrix-field of the given system matrix. If the pointed matrix is not yet
allocated, calculate the number of nodes on the edge we want to define the volume flow. This gives us
the number of non-zeros in our constraint matrix and we can allocate the matrix.

• Set the rows, cols and diag -fields of the matrix. This sets the non-zeros on their right places in the
constraint matrix.

• Set all values of the constraint matrix to unity.

• Calculate the RHS-value. The current time was checked in the beginning of the function, so this is
possible.

• Call SolveWithLinearRestriction

• Return 1 which tells the ElmerSolver that the system is already solved.

The function is the compiled with command

elmerf90 -o AddMassFlow AddMassFlow.f90

Here it is assumed that the source file name is AddMassFlow.f90.

CSC – IT Center for Science

10. Volume flow boundary condition 49

Results
Just say ElmerSolver and you should get the solution in few minutes. The velocity perpendicular to the
pipe is practically zero and the velocity parallel to the pipe is an example of Womersley velocity profile 1.
An interesting feature of this velocity profile is that on some time steps the fluid flows to both directions, see
figure 10.1.

Figure 10.1: Solution of the velocity field. Note the flow to both directions.

1J.Physiol (1955) 127, 553-563

CSC – IT Center for Science

Tutorial 11

Streamlines

Directory: FlowStreamlines
Solvers: StreamSolver, FlowSolve
Tools: ElmerGrid, editor
Dimensions: 2D

Case definition
The case definition is the same as in the incompressible flow passing a step. The mathematical definition of
the stream function ψ is

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (11.1)

where u, v are the velocity components in x, y geometry. For more info check Elmer Models Manual.

Solution Procedure
First we create a mesh with ElmerGrid. The mesh is defined in step.grd and it is created with command

ElmerGrid 1 2 step

You may need to compile the StreamSolver yourself. If the Elmer environment is successfully setup the
compilation command should look like the following lines,

elmerf90 -o StreamSolver StreamSolver.f90

The solver input file streamlines.sif starts with the definition of the mesh directory.

Header
Mesh DB "." "step"

End

The simulation uses 2D Cartesian geometry and searches a Steady State. There is no coupled solvers so only
one iteration is needed. Numerical results are written to file streamlines.result and ElmerPost file
is streamlines.ep.

Simulation
Coordinate System = Cartesian 2D
Coordinate Mapping(3) = 1 2 3

Simulation Type = Steady
Steady State Max Iterations = 1

CSC – IT Center for Science

11. Streamlines 51

Output Intervals = 1
Post File = "streamlines.ep"
Output File = "streamlines.result"

End

There is just one body and it uses equation 1 and is of material 1.

Body 1
Equation = 1
Material = 1

End

The equation block states that we use Solvers 1 and 2 to solve the problem and that we use Navier-Stokes
equations.

Equation 1
Active Solvers(2) = 1 2
Navier-Stokes = True

End

In material block we define the density and the viscosity of the fluid.

Material 1
Density = 1
Viscosity = 0.01

End

Solver 1 is for the Navier-Stokes equations. Here we give the linear system solver 1 and convergence crite-
rions for linear, nonlinear and steady state solution of the Navier-Stokes equations.

Solver 1
Equation = "Navier-Stokes"
Stabilize = True

Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Max Iterations = 500
Linear System Convergence Tolerance = 1.0e-8
Linear System Preconditioning = ILU1

Nonlinear System Convergence Tolerance = 1.0e-6
Nonlinear System Max Iterations = 15
Nonlinear System Newton After Iterations = 8
Nonlinear System Newton After Tolerance = 1.0e-4
Nonlinear System Relaxation Factor = 1.0

Steady State Convergence Tolerance = 1.0e-6
End

Then the solver for streamlines.

• Name of the equation. This may be what ever you like.

• Name of the binary file and the subroutine. If you compiled the StreamSolver yourself, then you may
need to change this to Procedure = "./StreamSolver" "StreamSolver".

• Name of the variable. This may be what ever you like.

1Biconjugate gradient method with incomplete LU preconditioning

CSC – IT Center for Science

11. Streamlines 52

• Stream function is scalar, so the degree of freedom is 1.

Next set of keywords is for the StreamSolver. More info on keywords is in the Elmer Models Manual.

• Name of the flow field variable. The name of the FlowSolves variable is FlowSolution.

• Global number of the offset node. 1 is always a safe choice.

• Shift the smallest value to zero.

• Scale the maximum value to 1.

• Use the normal stream function i.e. don’t use Stokes stream function.

Then we define the linear system solver and convergence criterions.

Solver 2
Equation = "StreamSolver"
Procedure = "StreamSolver" "StreamSolver"
Variable = "StreamFunction"
Variable DOFs = 1

Stream Function Velocity Variable = String "Flow Solution"
Stream Function First Node = Integer 1
Stream Function Shifting = Logical TRUE
Stream Function Scaling = Logical TRUE
Stokes Stream Function = Logical FALSE

Linear System Solver = Iterative
Linear System Iterative Method = BiCGStab
Linear System Max Iterations = 500
Linear System Convergence Tolerance = 1.0e-8
Linear System Preconditioning = ILU1

Steady State Convergence Tolerance = 1.0e-6
End

Finally we give the boundary conditions. The condition 1 is for the lower and upper side of the step
(Γ1,Γ2,Γ3,Γ5 in case definition). Here both velocities are zero. The condition 2 is for the output edge
(Γ4). Here vertical velocity is zero. The condition 3 is for the input edge (Γ6). Here horizontal velocity is 1
and vertical velocity is zero.

Boundary Condition 1
Target Boundaries = 1
Velocity 1 = 0
Velocity 2 = 0

End

Boundary Condition 2
Target Boundaries = 2
Velocity 2 = 0

End

Boundary Condition 3
Target Boundaries = 3
Velocity 1 = 1
Velocity 2 = 0

End

CSC – IT Center for Science

11. Streamlines 53

Results
Problem is solved with command Solver. The results are then viewed with ElmerPost. In figure 11.1
are some contour lines of the stream function. These are also flows streamlines. The contour values are
manually selected to get a nice picture. Note the swirl after the step.

Figure 11.1: The streamlines of the flow.

CSC – IT Center for Science

Tutorial 12

Timoshenko beam model of a cantilever

Directory: TimoshenkoBeamCantilever
Solvers: BeamSolver3D
Tools: ElmerGrid, Python, Gmsh
Dimensions: 3D, Steady-state

Case definition
In this tutorial, the geometry of a basic cantilever beam is created with Gmsh via its Python interface and
simulated with Timoshenko beam elements when the applied force is a constant pressure load. Different
numbers of elements for the cantilever are used to demonstrate divergence from the analytical solution for
low number of elements. The workflow will be implemented in python and it demonstrates shortly how
multiple simulations with different parameters can be created from a pre-existing sif-file.

Requirements
Before you do this tutorial, you have to do the following things:

• install the required python packages (e.g. via pip install) found in requirements.txt. If you do not get
the exact versions, that should not matter.

• replace in the file create_geometry.py the variable of the ElmerGrid path

• replace in the file total_workflow.py the variable of the ElmerSolver path

We expect the reader to have basic Python skills, but no advanced knowledge except knowing how to run a
script and the ability to read the code/syntax.

Workflow
If you want to see the entire workflow, simply run python total_workflow.py. For running its individual parts,
run the single subroutines:

• create_geometry.py: Create the geometry via Gmsh and convert it to an Elmer usable format via
ElmerGrid. Optional: you can view the geometry via the Gmsh graphical user interface.

• create_sif.py: Take the existing constant_pressure_load.sif and modify it for different mesh resolu-
tions for postprocessing files not to overwrite each other.

• plot_results.py: Collect simulations and display them.

CSC – IT Center for Science

12. Timoshenko beam model of a cantilever 55

Geometry Creation
We import the packages and functions that we need for the task. We need gmsh to create and mesh the
geometry, numpy for some basic array functionality (although it could be done without it) and from the
subprocess package of the basic libraries of Python the function run to use Elmergrid:

from subprocess import run

import numpy as np

import gmsh

Enter the path to Elmergrid. If it was added to the system path already, it looks like this

elmergrid = r"ElmerGrid"

We want to do the geometry creation repeatedly, so we define it as a function of the characteristic mesh
length which determines the number of elements in the model and optionally allow the Gmsh graphical user
interface (GUI) to be opened to have a final look at the geometry.

def create_geo(lc=1e-2, gui=False):

When starting to work on a Gmsh model, you first have to start Gmsh

gmsh.initialize()

and create the empty object

gmsh.model()

that you will later fill with nodes, lines, surfaces etc. that are then meshed. We now create the start and
endpoint of our beam at the positions (0,0) and (1,0).

i = 0
for x,y in zip([0.,1.],[0.,0.]):

i = i + 1
gmsh.model.geo.addPoint(x, y, 0., lc, i)

Notice that every entity in Gmsh has a tag or index (here i). Indices start always from 1. Next we create a
line to connect our nodes. This will later form our physical beam.

gmsh.model.geo.addLine(1, 2, 1)

Before geometric entities can be meshed or manipulated outside the standard Gmsh kernel, they must be
synchronized with the Gmsh model creating/updating relevant internal data structures. Synchronizations
can be called at any time but they are expensive, so minimize the number of synchronization points for large
complicated geometries.

gmsh.model.geo.synchronize()

In Gmsh, entities are grouped together into Physical Groups to later assign material properties, boundary
conditions etc. to these. Usually also only the physical groups are explicitly meshed. For each group the
dimension of the objects which are to be grouped is first mentioned (0 points, 1 lines, 2 surfaces, 3 bodies),
then a list of the tags/ids of the objects and finally a name. Here we define our beam and the point where we
apply the boundary condition:

gmsh.model.addPhysicalGroup(1, [1],name = "beam")

gmsh.model.addPhysicalGroup(0, [1], name = "anchor")

We then generate a mesh where the dimensionality of the intended mesh must given. As we intend to create
line/beam elements, it is 1.

CSC – IT Center for Science

12. Timoshenko beam model of a cantilever 56

gmsh.model.mesh.generate(1)

As we want to study mesh convergence, we need to know the number of elements. We iterate over all
existing Physical Groups, find the ones that are lines by checking the group dimension to be one and count
the number of elements tags.

for phys in gmsh.model.getEntities():
if phys[0] == 1:

eltyps, eltags, ndtags = gmsh.model.mesh.getElements(phys[0],
phys[1])

nelements = eltags[0].shape[0]

We save the number of elements to disk in a simple csv file

np.savetxt("cantilever-0_nelem.csv".format(str(lc)), np.array([nelements]))

and save the mesh to the disk as well:

filename = "cantilever-0.msh".format(str(lc))
gmsh.write(filename)

Gmsh automatically infers the format of the file by its ending. Optionally one can start the graphical user
interface of Gmsh to inspect the geometry before finishing:

if gui:
gmsh.fltk.run()

We clear out the geometry

gmsh.clear()

and close Gmsh

gmsh.finalize()

The latter two steps must always be taken as otherwise the geometry is considered open and will linger in
the background and may cause strange errors as tags of entities are still assigned and must not be reassigned
as it will cause an error. We now need to convert the mesh in Gmsh format to an Elmer friendly one. We do
this with ElmerGrid by calling the shell from python

run([elmergrid, "14", "2", filename], shell=True, check=True)

The check flag causes an error if the statement returns an error in the shell. If not present, this program
would fail without raising an error. If you encounter problems with the latter statement, you have probably
not entered the ElmerGrid path correctly. If for some reason this line does not work despite your best efforts,
just comment it out

#run([elmergrid, "14", "2", filename], shell=True, check=True)

and run ElmerGrid by yourself

ElmerGrid 14 2 cantilever.msh

by adapting the file name accordingly. We now want to see whether this program works, so we enter at the
bottom of the program this standard expression

if __name__ == ’__main__’:

that ensures, that this routine is only executed when you explicitly call this program file via

python create_geometry.py

and not if you call the function create_geo from another program. We now perform a simple visual check
that everything runs fine

lc = 1e0
create_geo(lc, True)

which should result in a geometry with one beam element. Do not get confused as Gmsh also counts the
nodes as elements, so its report will mention three. The GUI output should look like Fig. 12.1.

CSC – IT Center for Science

12. Timoshenko beam model of a cantilever 57

Figure 12.1: Output of the Gmsh GUI.

Solution Procedure
We tell Elmer to find the geometric information in the directory cantilever

Header
Mesh DB "." "cantilever"

End

and specify the coordinate system, some general output options and the output file in which displacements
will be stored:

Simulation
Max Output Level = 5
Coordinate System = Cartesian 3D
Simulation Type = Steady
Output Intervals = 1
Steady State Max Iterations = 1
Post File = "cantilever.vtu"

End

We will have later to change this automatically. Now we mention which equations, materials and body forces
act on body 1

Body 1
Equation = 1
Material = 1
Body Force = 1

End

which is our only geometric object here. The material data and the geometric data of the beam have to be
entered. We make a simplification here, by assuming that we have a beam shape that does not depend on the
orientation of the beam with regards to loading, in other words a cylindrical beam:

Material 1

CSC – IT Center for Science

12. Timoshenko beam model of a cantilever 58

Youngs Modulus = Real 2.0e-1
Shear Modulus = Real 1.0
Second Moment of Area 2 = Real 1.0
Second Moment of Area 3 = Real 1.0
Cross Section Area = Real 1.0
Torsional Constant = Real 1.0
Density = 2700.0

End

The density is not needed here. We specify the constant pressure load as body force acting in y-direction

Body Force 1
Body Force 1 = 0.0
Body Force 2 = 1.0e-2
Body Force 3 = 0.0

End

and set up the beam solver.

Equation 1 :: Active Solvers(1) = 1

Solver 1
Equation = "Timoshenko Beam Equations"
Procedure = "BeamSolver3D" "TimoshenkoSolver"

Linear System Solver = "Direct"
End

We can choose the most simple direct solver here as our system is quite small. Solver 2 is just a way to save
some scalar data in the file cantilever.dat of the free end to later compare it with the analytic solution. We
will have to change the name of the file later as well.

Solver 2
Equation = "Save Scalars"
Exec Solver = After Timestep
Procedure = "SaveData" "SaveScalars"
Filename = cantilever.dat
Variable 1 = U 1
Variable 2 = U 2
Variable 3 = U 3
Variable 4 = Theta 1
Variable 5 = Theta 2
Variable 6 = Theta 3
Save Points(1) = 2

End

We fix the first node in place

Boundary Condition 1
Target Nodes(1) = 1
U 1 = Real 0.0
U 2 = Real 0.0
U 3 = Real 0.0
Theta 1 = Real 0.0
Theta 2 = Real 0.0
Theta 3 = Real 0.0

End

CSC – IT Center for Science

12. Timoshenko beam model of a cantilever 59

and are done with the simulation. No other boundary conditions need to be mentioned as everything else is
free. Run the simulation by entering

ElmerSolver constant_pressure_load.sif

in the command line, and you should find in the directory cantilever a file called cantilever_t0001.vtu which
you can display with ParaView (Fig. 12.2).

Figure 12.2: Output of ParaView.

Creating New sif-Files
We do not need to import any packages here, as everything can be done with basic Python functions. We want
to update a specific sif file ad replicate it with by changing a few lines and leave 99 % of the file untouched.
Therefore as input for our function we have that file’s name, a list of lines that we want to exchange and the
replacements of these specific lines. The characteristic mesh length scale is there to change the name of the
file.

def write_new_sif(file,
search_strings,
replacements,
lc):

We read the already existing sif file and all its lines.

with open(file, ’r’) as f:
lines = f.readlines()

We open a new file whose name is a modified version of the already existing sif file.

with open(file.split(".")[0]+"-"+str(lc)+".sif", "w") as f:

and iterate over all its lines.

for line in lines:

CSC – IT Center for Science

12. Timoshenko beam model of a cantilever 60

We check each line whether a string expression is contained in that line. If not, we copy the line. Otherwise
we replace it by the corresponding entry in the replacement list

flags = [string in line for string in search_strings]
if any(flags):

ind = [i for i,flag in enumerate(flags) if flag][0]
f.write(replacements[ind].format(str(lc)))

else:
f.write(line)

return

We quickly test our function with the sif file for the previously generate geometry.

if __name__ == ’__main__’:
lc = 1e0

We exchange the lines that load the geometry, the output file for ParaView and the file containing the dis-
placements of the free end with names changed appropriately for different characteristic mesh length scales.

write_new_sif(file = "constant_pressure_load.sif",
search_strings = [’ Mesh DB "." "cantilever"’,

’ Post File = "cantilever.vtu"’,
’ Filename = cantilever.dat’],

replacements = [’ Mesh DB "." "cantilever-0"\ n’,
’ Post File = "cantilever-0.vtu"\ n’,
’ Filename = cantilever-0.dat\ n’],

lc = lc)

Check whether the lines have been changed accordingly and move on.

Plotting Results
We import numpy for some basic array functionality and matplotlib as our standard tool for creating plots in
python.

import numpy as np
import matplotlib.pyplot as plt

We define our function for a collection of characteristic length scales and enable optional figure saving as
we do not want to dump every figure on our disc.

def plot_displacements(lcs,
save_fig=False):

For convenience we select a single font size for things like axis labels, etc.

font = 14

Set up two lists as collection bags for the number of elements and the displacements and start looping over
the characteristic length scales

nelems = []
displ = []
for lc in lcs:

We read the number of elements from our previously created csv file when making the geometry, directly
put them into the list and do the same for the displacements created by Elmer during the solution process.

nelems.append(np.loadtxt("cantilever-0_nelem.csv".format(str(lc))))
displ.append(np.loadtxt("cantilever-0.dat".format(str(lc)))[[4,-1]])

CSC – IT Center for Science

12. Timoshenko beam model of a cantilever 61

After looping we merge the displacements into one array by stacking the list entries on top of each other to
receive an array with a variable number of rows and two columns (as we only read two types of displace-
ment). We then split the displacements in two arrays for readability reasons, namely the deflection w and
the rotation Θ:

displ = np.vstack(displ)
w = displ[:,0]
theta = displ[:,1]

We create a figure with one row and two columns

fig, axs = plt.subplots(1,2,figsize=(12,8))

and fill each plot with the corresponding element vs. displacement data plotted as lines (as an alternative one
could use "scatter" instead of plot to have data points instead of lines).

axs[0].plot(nelems,w)
axs[1].plot(nelems,theta)

We now calculate the analytical solutions and plot them as horizontal red lines to which our simulations
should converge with increasing number of elements

A,I,G,L,E,f = 1,1,1,1,0.2,1e-2
axs[0].axhline(y=L**4 * f * (1 + 4*E*I / (G*A*L**2)) / (8*E*I),

color = "r", linestyle="--")
axs[1].axhline(y=L**3 * f / (6*E*I),

color = "r", linestyle="--")

We transform the x-axis to a logarithmic scale as the number of elements may give a large interval and is
nonzero

axs[0].set_xscale("log")
axs[1].set_xscale("log")

and adapt the limits of the y scale,

axs[0].set_ylim(8e-3,1.2e-2)
axs[1].set_ylim(8e-3,8.5e-3)

create axis labels

axs[0].set_xlabel(r"elements",fontsize=font)
axs[1].set_xlabel(r"elements",fontsize=font)
axs[0].set_ylabel(r"deflection w",fontsize=font)
axs[1].set_ylabel(r"rotation $\ theta$",fontsize=font)

and allow for the option to save our figure to the disk.

if save_fig:
plt.savefig("nr-elements-displacements.pdf", format="pdf",

bbox_inches="tight")

We now cause our figure to be shown on the screen as so far you should not have seen anything

show the plot as pop up window
plt.show()

and mark the end of the function by return

return

Strictly speaking the latter is unnecessary as nothing is returned, but helps with readability of the code. As
our usual exercise we test our program and you should end up with a single plotted data point.

if __name__ == ’__main__’:
plot_displacements(lcs = np.array([1e0]))

CSC – IT Center for Science

12. Timoshenko beam model of a cantilever 62

Total Workflow for Mesh Convergence Study
In this section we piece together all our previous programs. We need subprocess.run again for calling Elmer-
solver and numpy for basic array routines.

from subprocess import run

from numpy import array

We import all our previously created functions

from create_geometry import create_geo
from create_sif import write_new_sif
from plot_results import plot_displacements

and add our path to ElmerSolver.

elmersolver = "ElmerSolver"

We now write the main routine of our solver, create some array with a collection of characteristic length
scales that we would like to use and start iteration. (If lc is larger than 1, you will end up with just 1 element,
so lc = 1 is the sensible upper bound here)

if __name__ == ’__main__’:
lcs = array([1e0,1e-1,1e-2,1e-3])
for lc in lcs:

We create the geometry and mesh it with Gmsh to convert it to an Elmer compatible file format

create_geo(lc)

and create the corresponding sif file whose geometry input location and its result output files are changed to
avoid overwriting previous results.

write_new_sif(file = "constant_pressure_load.sif",
search_strings = [’ Mesh DB "." "cantilever"’,

’ Post File = "cantilever.vtu"’,
’ Filename = cantilever.dat’],

replacements = [’ Mesh DB "." "cantilever-0"\ n’,
’ Post File = "cantilever-0.vtu"\ n’,
’ Filename = cantilever-0.dat\ n’],

lc = lc)

We call Elmer solver to solve the system of equations

run([elmersolver,
"constant_pressure_load-0.sif".format(str(lc))],

shell=True,
check=True)

and continue to the next iteration or stop the iteration process. In the end we plot our accumulated results

plot_displacements(lcs, True)

which should show a plot similar to Fig. 12.3.

CSC – IT Center for Science

12. Timoshenko beam model of a cantilever 63

100 101 102 103

elements
0.0080

0.0085

0.0090

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

de
fle

ct
io

n
w

100 101 102 103

elements
0.0080

0.0081

0.0082

0.0083

0.0084

0.0085

ro
ta

tio
n

Figure 12.3: Collected results.

Concluding Remarks
So far this tutorial has presented a minor introduction to the use of the Timoshenko beam solver and applying
Elmer in conjunction with Gmsh and also exemplified the usefulness of Python for the construction of
workflows to study mesh convergence. For the inexperienced use, we would like to mention that mesh
convergence is not usually done with the help of analytical solutions as they are only available in a few
cases. Instead one typically analyses the development of the residuals and target outcomes of interest. It
goes without saying that if the residuals do not decrease with increasing mesh refinement, you are not
converging and you should check the physics and numerics of your problem.

CSC – IT Center for Science

Index

acoustic impedance, 9
Ansys, 24

BeamSolver3D, 54
BEM, 39

capacitance, 16
compressed row storage, 46

EigenSolve, 4
ElasticSolve, 34
ElectricForce, 16
ElmerGrid, 4, 9, 16, 20, 24, 29, 34, 39, 42, 46, 50, 54

FlowSolve, 9, 29, 34, 46, 50
Fortran 90 compiler, 34, 42, 46
FreeSurfaceReduced, 29

Gmsh, 54

HeatSolve, 24

MEMS, 12, 17

OutletCompute, 34

PoissonBEMSolver, 39
PoissonSolver, 42
Python, 54

SaveData, 12, 18
SolveWithLinearRestriction, 46
StatCurrentSolve, 24
StatElecSolve, 16
StatMagSolve, 20
Stokes equation, 9
StreamSolver, 50
StressSolve, 4, 24

Womersley velocity profile, 49

CSC – IT Center for Science

	Table of Contents
	Eigenvalue analysis of an elastic beam
	Flow through a hole – determining the acoustic impedance
	Electrostatics
	Induction heating of a graphite crucible
	Thermal actuator driven with electrostatic currents
	Axisymmetric coating process
	Blood ejection from a ventricle into aorta
	Temperature distribution with BEM
	Adding user defined equation solver
	Volume flow boundary condition
	Streamlines
	Timoshenko beam model of a cantilever

	Index

