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ElmerSolver Manual

About this document

The ElmerSolver Manual is part of the documentation of Elmer finite element software. ElmerSolver Man-

ual describes the Elmer Solver options common for all specific equation solvers. The different equations

solver options are described separately in Elmer Models Manual. The ElmerSolver Manual is best used as a

reference manual rather than a concise introduction to the matter.

The present manual corresponds to Elmer software version 26.1. The latest documentation and program

versions of Elmer are available (or links are provided) at

http://www.csc.fi/elmer.

Copyright information

The original copyright of this document belongs to CSC – IT Center for Science, Finland, 1995–2026. This

document is licensed under the Creative Commons Attribution-No Derivative Works 3.0 License. To view a

copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Elmer program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation; either version 2 of the License, or (at

your option) any later version. Elmer software is distributed in the hope that it will be useful, but without

any warranty. See the GNU General Public License for more details.

Elmer includes a number of libraries licensed also under free licensing schemes compatible with the

GPL license. For their details see the copyright notices in the source files.

All information and specifications given in this document have been carefully prepared by the best ef-

forts of CSC, and are believed to be true and accurate as of time writing. CSC assumes no responsibility or

liability on any errors or inaccuracies in Elmer software or documentation. CSC reserves the right to modify

Elmer software and documentation without notice.
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Chapter 1

Solving a multiphysics problem with the

solver of Elmer: Fundamentals

Elmer software has been developed with multiphysics simulations in mind. Thus, in addition to offering

ways to produce computational solutions to single-physics models (the available collection of which is de-

scribed in the Elmer Models Manual), Elmer provides procedures for creating computational models which

describe interactions of multiple physical phenomena. Our intention here is to give an overview how this

functionality is built into the solver of Elmer associated with the independent program executable Elmer-

Solver.

1.1 Basic concepts

The models handled by Elmer may generally be stationary or evolutionary, with nonlinearities possible

in both the cases. Starting from the weak formulation of the problem, finite element approximation and

advancing in time with implicit methods are typically applied in order to obtain the computational version

of the model. In the simplest case of single-physics models we are then lead to solving equations

F (u) = 0, (1.1)

where u represents either the vector of coefficients in the finite element expansion of the stationary solution

or the coefficient vector to describe the evolutionary finite element solution at a given time t = tk. Thus, in

the case of evolution, the problems of the type (1.1) are solved repeatedly when advancing in time.

For linear models the problem (1.1) reduces to solving a linear system via defining

F (u) = b −Ku

where the coefficient matrix K is referred to as the stiffness matrix and b corresponds to the right-hand side

vector in the linear system. Otherwise F is a nonlinear mapping and an iteration is needed to handle the

solution of the problem (1.1). Available nonlinear iteration methods generally depend on the model, as the

definition of the linearization strategy is a part of the computational description of each physical model.

We note that many single-physics models offer the possibility of using the Newton iteration where the

current nonlinear iterate u(m) to approximate u is updated at each iteration step as

DF (u(m))[δ(m)] = −F (u(m)),

u(m+1) = u(m) + δ(m),
(1.2)

where DF (u(m)) is the derivative of F at u(m). Thus, performing the nonlinear solution update again

entails the solution of the linear system at each iteration step. As an alternate to the Newton method, lin-

earization strategies based on lagged-value approximations are also often available. In addition, relaxation

is conventionally offered as a way to enable convergence in cases where the basic nonlinear iteration fails

CSC – IT Center for Science



1. Solving a multiphysics problem with the solver of Elmer: Fundamentals 7

to produce convergence. Given the current nonlinear iterate u(m) and a computed correction δu(m) to the

approximation, the new nonlinear iterate is then defined by

u(m+1) = u(m) + λ(m)δ(m),

where λ(m) is an adjustable parameter referred to as the relaxation parameter.

1.2 Handling interactions of multiple physical phenomena

Having considered the basic concepts in the context of single-physics models, we now proceed to describe

how the modularity employed in the design of Elmer allows us to create models which represent interactions

of multiple physical phenomena. To this end, we assume that the complete model describes the interaction

of N constituent models, the computational versions of which are primarily associated with the coefficient

vectors ui, i = 1, 2, . . . , N . As before, the coefficients contained in ui are associated with the finite element

expansion of either the stationary solution or the evolutionary solution at a time level t = tk.

The fully discrete version of the coupled model leads to handling a problem of the form

F1(u1, u2, . . . , uN ) = 0,

F2(u1, u2, . . . , uN ) = 0,

· · · (1.3)

FN (u1, u2, . . . , uN ) = 0.

If all the constituent models are linear, the problem (1.3) corresponds to solving the linear system where the

coefficient matrix is a N × N block matrix. Otherwise (1.3) describes a nonlinear problem. Although the

solution of (1.3) could in principle be done in the same way as explained in the context of single-physics

models in Section 1.1, i.e. by performing either a coupled linear solve or Newton iteration, the coupled

problems have usually been handled differently in order to enable the reuse of solvers for single-physics

models and the easy extendability of the code to handle new applications.

To this end, the nonlinear Gauss-Seidel iteration is usually applied, so that the coupling of the models is

resolved via generating new coupled system iterates u(j) = (u
(j)
1 , u

(j)
2 , . . . , u

(j)
N ) as

F1(u
(j)
1 , u

(j−1)
2 , u

(j−1)
3 , . . . , u

(j−1)
N ) = 0,

F2(u
(j)
1 , u

(j)
2 , u

(j−1)
3 , . . . , u

(j−1)
N ) = 0,

· · · (1.4)

FN (u
(j)
1 , u

(j)
2 , . . . , u

(j)
N ) = 0.

It is noted that the kth discrete model description in (1.4) depends implicitly only on the coupled system

iterate to its primary variable uk, while the dependencies on the other constituent model variables are treated

explicitly. This brings us to solving a nonlinear single-field problem

F (u
(j)
k ) = Fk(v1, . . . , vk−1, u

(j)
k , vk+1, . . . , vN ) = 0, with all vj given, (1.5)

which is handled by using the methods already described in Section 1.1. We also note that if all the con-

stituent models are linear the nonlinear Gauss-Seidel iteration (1.4) reduces to the block Gauss-Seidel itera-

tion for linear systems. Relaxation may again be applied as an attempt to improve the convergence behaviour

of the basic iteration (1.4).

It is good to pause here to stress that the main advantage of the adopted nonlinear Gauss-Seidel scheme is

its support for the modular software design. Also, it brings us to handling coupled problems via solving linear

systems which are smaller than those which would result from treating all constraints in (1.3) simultaneously.

Despite these merits, the suitability of the loosely coupled iteration (1.4) generally is case-dependent as

convergence problems may occur in cases where a strong physical coupling is involved. Such problems

are often best handled by methods which treat all the constituent models in (1.3) simultaneously. Certain

physical models available in Elmer indeed employ this alternate tightly coupled solution strategy. However,
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1. Solving a multiphysics problem with the solver of Elmer: Fundamentals 8

these models have initially been developed independently, as common Elmer utilities for creating tightly

coupled iteration methods in a general manner are less developed.

To summarize, the following pseudo-code presentation describes the basic loosely coupled iteration

scheme employed by the solver of Elmer. This rough description may be helpful in summarizing what

needs to be controlled overall to create a working computational solution procedure for a coupled problem.

! The time integration loop

for k = 1 : M
Generate an initial guess u(0) = (u

(0)
1 , u

(0)
2 , . . . , u

(0)
N ) for the coupled system solution at t = tk

! The nonlinear Gauss-Seidel iteration

for j = 1, 2, . . .
! Generate the next coupled system iterate u(j) by performing single-field updates

for i = 1 : N
Set vl = u

(j)
l for l = 1, 2, . . . , i− 1

Set vl = u
(j−1)
l for l = i+ 1 : N

Perform nonlinear iteration to solve Fi(v1, . . . , vi−1, u
(j)
i , vi+1, . . . , vN ) = 0

Apply relaxation to set u
(j)
i := u

(j−1)
i + αi(u

(j)
i − u

(j−1)
i )

end

end

end

Here the descriptions of the termination criteria for the iterations have been omitted. It is also noted that,

obviously, the time integration loop is not needed in the case of a stationary problem. On the other hand,

in the case of stationary simulation it is possible to replace the time integration loop by a pseudo-version of

time stepping to enable performing multiple solutions for a range of model parameter values.

1.3 The key abilities

In the following, we give some additional information on the key abilities of the solver of Elmer to create

computational solution procedures.

1.3.1 Extendability by modular design

A module of the Elmer software which enables the creation of the discrete model description of the type (1.5)

and its solution with respect to the primary variable is generally called a solver. The solvers of Elmer are

truly modular in this manner and have a standard interface. Thus, each solver usually contains an implemen-

tation of the nonlinear iteration, instructions to assemble the corresponding linear systems from elementwise

contributions, and standard subroutine invocations to actually solve the linear systems assembled.

It follows that enabling an interaction with another field, designated by vj in (1.5), is simply a matter of

solver-level implementation. Therefore, interactions which have not been implemented yet can be enabled

by making modifications which are localized to the solvers. In addition, a completely new physical model

may be added by introducing a new solver which comprises a separate software module and which can be

developed independently with respect to the main program. As a result, a loosely coupled solution procedure

for a coupled problem based on the new physical model may again be achieved by making only solver-level

modifications.

1.3.2 Model-specific finite element approximation

In the most basic setting all constituent model variables ui, i = 1, . . . , N , of a coupled problem are approx-

imated by using the same piecewise polynomial basis functions defined over a single mesh. In addition to

this, the solver of Elmer offers a built-in functionality to perform a coupled problem simulation by using

solver-specific finite element meshes. The solver description is then augmented by the specification of the

CSC – IT Center for Science



1. Solving a multiphysics problem with the solver of Elmer: Fundamentals 9

independent mesh which the solver uses. To make this functional in connection with the solution of cou-

pled problems, Elmer has the capability of performing the solution data transfer, which is needed between

the solvers in the loosely coupled solution procedure, even when the meshes are non-matching. It must be

understood, however, that the loss of high-resolution details is unavoidable when the high-resolution field is

represented by using a coarser finite element mesh.

1.3.3 Approximation by various finite element formulations

Elmer has traditionally employed the Galerkin finite element approximation of weak formulation based on

the Lagrange interpolation basis functions. In this connection, the piecewise polynomial approximation of

degree 1 ≤ p ≤ 3 is possible for 2-D models, while 3-D models may be discretized by using the elements

of degree 1 ≤ p ≤ 2. The isoparametric mapping to describe curved element shapes is also supported with

these traditional elements.

Discrete models based on more recent versions of the Galerkin finite element approximation are also

possible. As an alternate to using the standard Lagrange interpolation basis functions, the Galerkin approxi-

mation based on using high-degree piecewise polynomials can be employed. In this connection, the degree

of polynomial approximation can also be defined elementwise, with Elmer providing an in-built mechanism

to guarantee the continuity of any solution candidate, so that in effect the use of the hp-version of the finite

element method is enabled. However, generic ways to describe curved body surfaces accurately in connec-

tion with the high-degree finite elements have not been implemented yet which may limit the utility of these

elements.

The way to define the high-degree approximation is based on the idea that a background mesh for rep-

resenting the standard lowest-degree continuous finite element expansion is first provided so that a specific

element type definition in relation to elements present in the background mesh may then be given to enhance

the approximation. The same idea has been adapted to create other alternate finite element formulations.

For example, finite element formulations which enhance the approximation defined on the background mesh

by a subscale approximation spanned by elementwise bubble basis functions can be obtained in this way.

We note that this strategy is widely used in Elmer to stabilize otherwise unstable formulations. Another

example of the use of the user-supplied element definition relates to creating approximations based on the

discontinuous Galerkin method. As a final example we mention that enhancing the approximation on the

background mesh by either face or edge degrees of freedom and then omitting the original nodal degrees of

freedom is also possible. This leads to a suitable set of unknowns for creating discretizations based on the

Raviart-Thomas or edge element interpolation.

1.3.4 Parallel computing

A strength of the solver of Elmer is that it supports the use of parallel computing. This opportunity sig-

nificantly widens the range of problems which can be considered. Additional details on utilizing parallel

computers are found elsewhere in this manual.

1.3.5 Linear algebra abilities

This exposition should have made it clear that having the ability to solve large linear systems efficiently is a

central aspect of the simulation process with Elmer. As explained, in the basic setting a linear solve is needed

to obtain the solution update at each step of the nonlinear iteration. In practice linear solves are usually done

iteratively, revealing one unexposed iteration level in relation to the pseudo-code presentation in the end of

Section 1.2.

The solver of Elmer offers a large selection of strategies to construct linear solvers. The majority of

them are directly implemented into Elmer software, but interfaces to exploit external linear algebra libraries

are also available. Typically the most demanding aspect in the use of linear solvers relates to identifying

an effective preconditioning strategy for the problem at hand. Traditionally Elmer has employed generic

preconditioning strategies based on the fully algebraic approach, but recently alternate block preconditioning

strategies which typically try to utilize physics-based splittings have also been developed.
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Chapter 2

Structure of the Solver Input File

2.1 Introduction

Solving partial differential equation (PDE) models with the solver of Elmer requires that a precise description

of the problem is given using the so-called solver input file, briefly referred to as the sif file. This file contains

user-prepared input data which specify the location of mesh files and control the selection of physical models,

material parameters, boundary conditions, initial conditions, stopping tolerances for iterative solvers, etc. In

this chapter, the general structure of the file is described. We explain how the input data is organized into

different sections and describe the general keyword syntax which is used in these sections to define the

values of various model parameters and to control the solution procedures.

In the case of simple problem setups the solver input file may be written automatically by the prepro-

cessor of Elmer software, so that knowing the solver input file format may be unnecessary. Creating a more

complicated setup, or using keywords introduced by the user, however, requires the knowledge of the file

format and keyword syntax.

In the following the general structure of the input file is first illustrated by using simple examples, without

trying to explain all possibilities in an exhaustive manner. We then describe the keyword syntax in more

detail, showing also how model parameters whose values depend on solution fields can be created. The later

chapters of this manual, and Elmer Models Manual, which focuses on describing the PDE models Elmer can

handle, provide more detailed material on specific issues. Elmer Tutorials also give complete examples of

solver input files.

2.2 The sections of solver input file

The material of the solver input file is organized into different sections. Each section is generally started

with a row containing the name of the section, followed by a number of keyword commands, and ended with

a row containing the word End. The names for starting new sections are

• Header

• Simulation

• Constants

• Body n

• Material n

• Body Force n

• Equation n
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• Solver n

• Boundary Condition n

• Initial Condition n

• Component n

Here n associated with the section name represents an integer identifier needed for distinguishing between

sections of the same type. A basic keyword command included in a section is nothing more than a statement

which sets the value of a keyword with an equal sign.

In the following we describe how the sections are basically arranged without trying to explain all possi-

bilities in an exhaustive manner. The later chapters of this manual and Elmer Models Manual provide more

detailed material on specific issues. Elmer Tutorials also give complete examples of solver input files.

Header section

The location of mesh files is usually given in the header section. Often this is also the only declaration given

in the header section. If the Elmer mesh files (see Appendix A) are located in the directory ./mymesh, the

header section may simply be

Header

Mesh DB "." "mymesh"

End

Note that separate equations can nevertheless be discretized using different meshes if the location of mesh

files is given in the solver section described below.

Simulation section

The simulation section is used for giving general information that is not specific to a particular PDE model

involved in the simulation. This information describes the coordinate system used, indicates whether the

problem is stationary or evolutionary, defines the file names for outputting, etc. Without trying to describe

many possibilities and the details of commands, we only give the following simple example:

Simulation

Coordinate System = "Cartesian 2D"

Coordinate Mapping(3) = 1 2 3

Coordinate Scaling = 0.001

Simulation Type = Steady State

Steady State Max Iterations = 1

Output Intervals(1) = 1

Post File = "case.vtu"

Output File = "case.dat"

Simulation Timing = True

End

Currently the preferred method for visualization is to use VTU output and compatible visualization tool,

such as Paraview. Hence the suffix .vtu is used in the value of the Post File. Historically ElmerPost

with suffix .ep was used but this tool is obsolete.

Constants section

The constants section is used for defining certain physical constants. For example the gravity vector and the

Stefan-Boltzmann constant may be defined using the commands

Constants

Gravity(4) = 0 -1 0 9.82

Stefan Boltzmann = 5.67e-08

End

CSC – IT Center for Science



2. Structure of the Solver Input File 12

If the constants are not actually needed in the simulation, this section can also be left empty.

Body, material, body force and initial condition sections

The Elmer mesh files contain information on how the computational region is divided into parts referred

to as bodies. A body section associates each body with an equation set, material properties, body forces,

and initial conditions by referring to definitions given in a specified equation section, material section, body

force section, and initial condition section. To manage to do this, the different sections of the same type

are distinguished by integer identifiers that are parts of the section names. Note that the integer in the body

section name is an identifier for the body itself.

For example, one may define

Body 1

Material = 1

Body Force = 1

Equation = 1

Initial Condition = 2

End

Material properties, body forces, an equation set, and initial conditions are then defined in the material

section

Material 1

...

End

the body force section

Body Force 1

...

End

the equation section

Equation 1

...

End

and the initial condition section

Initial Condition 2

...

End

What material properties and body forces need to be specified depends on the mathematical models involved

in the simulation, and the initial condition section used for giving initial values is only relevant in the so-

lution of evolutionary problems. We here omit the discussion of these very model-dependent issues; after

reading this introductory chapter the reader should be able to understand the related documentation given in

Elmer Models Manual, which focuses on describing the different mathematical models, while the contents

of equation section will be described next.

Equation and solver sections

Equation section provides us a way to associate each body with a set of solvers, where each solver is typically

associated with the ability to solve a certain physical model; cf. the definition of solver given in the beginning

of Section 1.3.1. That is, if the set defined consists of more than one solver, several physical phenomena may

be considered to occur simultaneously over the same region of space. The actual definitions of the solvers

are given in solver sections, the contents of an equation section being basically a list of integer identifiers

for finding the solver sections that define the solvers. The keyword commands given in the solver sections
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then control the selection of physical models, linearization procedures of nonlinear models, the selection of

solution methods for resulting linear equations, convergence tolerances, etc.

For example, if only two solvers are needed, one may simply define a list of two solver identifiers

Equation 1

Active Solvers(2) = 1 2

End

Then the solver definitions are read from the solver sections

Solver 1

...

End

and

Solver 2

...

End

Finally, we give an example of solver definitions, without trying to explain the commands at this point:

Solver 1

Equation = "Poisson"

Variable = "Potential"

Variable DOFs = 1

Procedure = "Poisson" "PoissonSolver"

Linear System Solver = "Direct"

Steady State Convergence Tolerance = 1e-06

End

Boundary condition section

Boundary condition sections define the boundary conditions for the different models. The Elmer mesh files

contain information on how the boundaries of the bodies are divided into parts distinguished by their own

boundary numbers. The keyword Target Boundaries is used to list the boundary numbers that form

the domain for imposing the boundary condition. For example the declaration

Boundary Condition 1

Target Boundaries(2) = 1 2

...

End

means that the boundary condition definitions that follow concern the two parts having the boundary numbers

1 and 2.

Component section

Component is a physical entity that is not associated with the mesh. It could be a representation of a 0D

object such as electrical component, equation of state, chemical reaction, rigid object etc. The component

could be independent, or it can be a target for model reduction in the higher dimensional parts.

The following is an example of a component which is used as a reduction target for two bodies.

Component 1

Name = "MyComponent"

Master Bodies(2) = 1 2

...

End

This section that has been added much later than the other sections and it is still quite little used.
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Text outside sections

We finally note that some commands, such as comments started with the symbol ! and MATC expres-

sions described below, may also be placed outside section definitions. An exception of this type is also the

command

Check Keywords "Warn"

usually placed in the beginning of the input file. When this command is given, the solver outputs warning

messages if the input file contains keywords that are not listed in the file of known keywords. If new

keywords are introduced, misleading warning messages can be avoided by adding the new keywords to the

keyword file SOLVER.KEYWORDS, located in the directory of the shared library files of ElmerSolver. The

other options include ignore, abort, silent.

There is also the commands echo on and echo off that may be used to control the output of the

parser. This is mainly intended for debugging purposes. The default is off.

2.3 Keyword syntax

As already illustrated, a basic keyword command used in the solver input file is a statement which sets the

value of a solution parameter with the equal sign. Such a command in its full form also contains the data

type declaration; for example

Density = Real 1000.0

Valid data types generally are

• Real

• Integer

• Logical

• String

• File

If the keyword is listed in the keyword file SOLVER.KEYWORDS, the data type declaration may be omitted.

Therefore, in the case of our example, we may also define

Density = 1000.0

The value of a keyword may also be an array of elements of specified data type, with the array size

definition associated with the keyword. We recall our previous examples of the equation and boundary

condition sections, where we defined two lists of integers using the commands

Active Solvers(2) = 1 2

and

Target Boundaries(2) = 1 2

Two-dimensional arrays are also possible and may be defined as

My Parameter Array(3,3) = Real 1 2 3 \
4 5 6 \
7 8 9
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Defining parameters depending on field variables

Most solver parameters may depend on time, or on the field variables defined in the current simulation

run. Such dependencies can generally be created by means of tabular data, MATC functions, or Fortran

functions. MATC has the benefit of being an interpreted language, making an additional compilation step

with a compiler unnecessary.

Simple interpolating functions can be created by means of tabular data. The following example defines

the parameter Density the value of which depends on the variable Temperature:

Density = Variable Temperature

Real

0 900

273 1000

300 1020

400 1000

End

This means that the value of Density is 900 when Temperature is 0, and the following lines are

interpreted similarly. Elmer then uses linear interpolation to approximate the parameter for argument values

not given in the table. If the value of the independent variable is outside the data set, the first or the last

interpolating function which can be created from the tabulated values is used to extrapolate the value of the

parameter.

If the field variable has several independent components, such as the components of displacement vector,

the independent components may be used as arguments in a function definition. For example, if a three-

component field variable is defined in a solver section using the commands

Variable = "Displ"

Variable DOFs = 3

then the solver of Elmer knows, in addition to the three-component vector Displ, three scalar fields Displ

1, Displ 2 and Displ 3. These scalar fields may be used as independent variables in parameter defini-

tions and used in the definitions of initial and boundary conditions, etc.

More complicated functions can be defined using MATC language. Here the basic usage of MATC in

connection with the solver input file is illustrated; for an additional documentation, see a separate manual

for MATC. For example, one may define

Density = Variable Temperature

MATC "1000*(1-1.0e-4*(tx-273))"

This means that the parameter Density depends on the value of Temperature as

ρ = ρ0(1− β(T − T0)), (2.1)

with ρ0 = 1000, β = 10−4 and T0 = 273. Note that the value of the independent variable is known as tx

in the MATC expression.

If the independent variable has more than one component, the variable tx will contain all the compo-

nents in values tx(0),tx(1),...,tx(n-1), where n is the number of the components of the independent

variable. A MATC expression may also take several scalar arguments; one may define, for example,

My Parameter = Variable Time, Displ 1

Real MATC "..."

The values of the scalar fields Time and Displ 1 can then be referred in the associated MATC expression

by the names tx(0) and tx(1), respectively.

In addition to using MATC functions, Fortran 90 functions may also be used to create parameter defini-

tions, etc. In the same manner as MATC functions are used, we may define

Density = Variable Temperature

Procedure "filename" "proc"
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In this case the file ”filename” should contain a shareable .so (Unix) or .dll (Windows) code for the user

function whose name is ”proc”. The call interface for the Fortran function is as follows

FUNCTION proc( Model, n, T ) RESULT(dens)

USE DefUtils

IMPLICIT None

TYPE(Model_t) :: Model

INTEGER :: n

REAL(KIND=dp) :: T, dens

dens = 1000*(1-1.0d-4(T-273.0d0))

END FUNCTION proc

The Model structure contains pointers to all information about the model, and may be used to obtain field

variable values, node coordinates, etc. The argument n is the index of the node to be processed, and T is the

value of the independent variable at the node. The function should finally return the value of the dependent

variable.

The independent variable can also be composed of several independent components. We may thus define

Density = Variable Coordinate

Procedure "filename" "proc"

Now the argument T in the Fortran function interface should be a real array of three values, which give the

x,y and z coordinates of the current node.

Parameterized keyword commands

The solver input file also offers possibilities for creating parameterized commands that utilize MATC. In the

solver input file an expression following the symbol $ is generally interpreted to be in MATC language. If

the solver input file contains the lines

$solvertype = "Iterative"

$tol = 1.0e-6

then one may define, e.g.,

Solver 1

...

Linear System Solver = $solvertype

Linear System Convergence Tolerance = $tol

...

End

Solver 2

...

Linear System Solver = $solvertype

Linear System Convergence Tolerance = $100*tol

...

End

Alternative keyword syntax

Some keyword commands may be given by using an alternative syntax that may sometimes be needed. The

size of an integer or real number arrays may be given in parenthesis in connection with the keyword, but also

with the Size declaration. Therefore the following are exactly the same

Timestep Intervals(3) = 1 10 100

Timestep Intervals = Size 3; 1 10 100
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This feature is useful when giving vectors and matrices in ElmerGUI since there the keyword body is fixed

and cannot include any size declaration. Note that in the above the semicolon is used as an alternative

character for newline.

Another convention is to use two colons to make in-lined definitions in the sif files. The following two

expressions are equal

Body Force 1

Heat Source = 1.0

End

and

Body Force 1 :: Heat Source = 1.0

2.4 Running several sequences

Execution within command file

When reading the string RUN in the command file, the solver stops the reading and performs the computation

with the instructions so far obtained. After a successful execution the solver continues to interpret the

command file. Using this functionality it is therefore possible to create scripts where some parameter value

is changed and the problem is recomputed. For example, adding the same sequence to the end of the sif file

could be used to test the solution with another linear solver

RUN

Solver 1::Linear System Iterative Method = BiCgstabl

RUN

It should be noted that not quite all features support this procedure. For example, some preconditioners

create static structures that will not be recreated.
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Chapter 3

Restart from existing solutions

Often, the user wants to restart a run. This may be needed simply to continue an interrupted simulation

— no matter what caused the interruption — but also to read in values needed either as initial conditions or

as boundary conditions. These features are controlled by some keywords in the Simulation section that

will be presented in the following sections.

3.1 Restart file

Any output file obtained by using the keyword command

Output File = String ...

can be used to define a restart point for a new simulation. By convention the suffix of the file has been

.result but basically it may be chosen by the user.

By default all distributed fields will be saved to the restart file. Additionally the user may save global

variables with the following keyword

Output Global Variables = Logical

If one wants to select the fields to be saved they may be given individually by

Output Variable i = String

where i = 1, 2, 3, . . ..
The format of the output is either ASCII or binary. ASCII is the default, and binary format is enforced

by setting

Binary Output = True

The limitation of the restart functionality is that the mesh on which the previous case has been run must

be identical to that on which the new run is performed. In parallel runs, additionally, also the partitions of

the mesh have to coincide. The permutation vectors may vary, and also the field variables do not have to be

the same.

The commands for restarting are then given in the Simulation section by declaring the restart file

name as well as a restart position. For example we may specify

Simulation

Restart File = "previousrun.result"

Restart Position = 101

End

This would perform the current simulation by restarting from the time/iteration level 101 of the previously

stored result file previousrun.result.

If one wants to select the fields to be restarted they may be given individually by
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Restart Variable i = String

where i = 1, 2, 3, . . .. In this mode it is also possible to direct the field so that they become renamed. This

often eliminates the need to make an initial condition dependent on the restart variables.

Target Variable i = String

where i = 1, 2, 3, . . ..
Upon running the new simulation, a message similar to the following example should be seen in the

standard output of Elmer:

LoadRestartFile:

LoadRestartFile: --------------------------------------------

LoadRestartFile: Reading data from file: previousrun.result

LoadRestartFile: BINARY 3.L

LoadRestartFile:

LoadRestartFile: Total number of dofs to load: 13

LoadRestartFile: Reading time sequence: 2.000E-03

LoadRestartFile: Reading timestep: 10

LoadRestartFile: Time spent for restart (s): 7.9990E-03

LoadRestartFile: All done

LoadRestartFile: --------------------------------------------

If the number of stored time/iteration levels is not known a priori, the user can insert the command

Restart Position = 0

in order to make sure that the results for the lastly stored time/iteration level are reloaded.

Result files arising from steady state simulations often contain results for multiple iteration steps (with

the result for the last step containing the converged solution). Nevertheless, these instances of solutions are

— if reloaded — interpreted to describe the solution at different time levels. In this case the user might want

to redefine the value of time variable for the restarted simulation, especially if continuing with transient runs.

The keyword command

Restart Time = Real ...

may be given in order to manually set the time to correspond the zeroth time level of the new simulation.

There is also a keyword allowing to just ignore the restart time

Restart Time Ignore = Logical True

Effectively this would usually mean having restart time equal to zero.

3.2 Initialization of dependent variables

The initialization of variables and their boundary conditions is done by default before reading in the previous

results. That has two main implications:

1. Values set in the section Initial Condition are overwritten by the corresponding values of the

variable loaded afterwards from the restart file

2. Variable values given as initial or boundary conditions and specified to depend on other variables are

not initiated with those values from the restart file by default.

The latter can be influenced with two keywords, Restart Before Initial Conditions (by de-

fault False) and Initialize Dirichlet Condition (by default True).

By setting

Restart Before Initial Conditions = Logical True
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Elmer would first load the variables from the restart file and then apply initial conditions to those variables

that have not been set by the earlier solution. This is necessary if one of the initial conditions depends on

the earlier solution. By default, first the initial conditions from the solver input file are set and thereafter the

restart file (if existing) is read.

The value of the keyword Initialize Dirichlet Condition is by default set to be true, which

means that Dirichlet conditions are set before the simulation and thus also before the particular solver for

handling that variable is executed. If a boundary condition for a certain variable now depends on the value

of another, the first-time Dirichlet condition is set using the initial values of variables — either set or read in

from the restart file. If this is not wanted, the user can switch to using the option

Initialize Dirichlet Condition = False

which will set the Dirichlet condition on the fly during the execution of the solver associated with the

variable.

CSC – IT Center for Science



Chapter 4

Solution methods for linear systems

4.1 Introduction

Discretization and linearization of a system of partial differential equations generally leads to solving linear

systems

Ax = b, (4.1)

where A and b are of orders n×n and n× 1, respectively. The coefficient matrix A resulting from the finite

element discretization has a specific feature that the matrix is sparse, i.e. only a few of the matrix entries in

each row differ from zero. In many applications the system can also have a very large order n, so that the

chief part of the computation time in performing the simulation is typically spent by solvers for the linear

systems.

Solution methods for linear systems fall into two large categories: direct methods and iterative methods.

Direct methods determine the solution of the linear system exactly up to a machine precision. They per-

form in a robust manner leading to the solution after a predetermined number of floating-point operations.

Nevertheless, the drawback of direct methods is that they are expensive in computation time and computer

memory requirements and therefore cannot be applied to linear systems of very large order. The efficient

solution of large systems generally requires the use of iterative methods which work by generating sequences

of (hopefully) improving approximate solutions.

ElmerSolver provides access to both direct and iterative methods. The iterative methods available fall

into two main categories: preconditioned Krylov subspace methods and multilevel methods. Iteration meth-

ods that combine the ideas of these two approaches may also be constructed. Such methods may be very

efficient leading to a solution after a nearly optimal number of operation counts.

The development of efficient solution methods for linear systems is still an active area of research, the

amount of literature on the topic being nowadays vast. The aim of the following discussion is to provide

the user the basic knowledge of the solution methods available in ElmerSolver. The detailed description of

methods is omitted. For a more comprehensive treatment the reader is referred to references mentioned.

4.2 Direct methods

A linear system may be solved in a robust way by using direct methods. ElmerSolver offers two main options

for using direct methods. The default method utilizes the well-known LAPACK collection of subroutines for

band matrices. In practice, this solution method can only be used for the solution of small linear systems as

the operation count for this method is of order n3.

The other direct solver employs the Umfpack routines to solve sparse linear systems [1]. Umfpack uses

the Unsymmetric MultiFrontal method. In practice it may be the most efficient method for solving 2D

problems as long as there is enough memory available.

It should be noted that the success of the direct solvers depends very much on the bandwidth of the sparse

matrix. In 3D these routines therefore usually fail miserably.
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Elmer may be also compiled with Mumps, SuperLU, and Pardiso. The licensing scheme of these

software do not allow the distribution of precompiled binaries but everybody may themselves compile a

version that includes these solvers. Many times the best linear solver for a particular problem may be found

among these.

4.3 Preconditioned Krylov methods

ElmerSolver contains a set of Krylov subspace methods for the iterative solution of linear systems. These

methods may be applied to large linear systems but rapid convergence generally requires the use of precon-

ditioning.

4.3.1 Krylov subspace methods

The Krylov subspace methods available in ElmerSolver are

• Conjugate Gradient (CG)

• Conjugate Gradient Squared (CGS)

• Biconjugate Gradient Stabilized (BiCGStab)

• BiCGStab(ℓ)

• Transpose-Free Quasi-Minimal Residual (TFQMR)

• Generalized Minimal Residual (GMRES)

• Generalized Conjugate Residual (GCR)

• Induced Dimension Reduction method (IDRS)

Both real and complex systems can be solved using these algorithms. For the detailed description of some

of these methods see [3] and [4].

A definite answer to the question of what is the best iteration method for a particular case cannot be

given. In the following only some remarks on the applicability of the methods are made.

The CG method is an ideal solution algorithm for cases where the coefficient matrix A is symmetric and

positive definite. The other methods may also be applied to cases where A is non-symmetric. It is noted that

the convergence of the CGS method may be irregular. The BiCGStab and TFQMR methods are expected

to give smoother convergence. In cases where BiCGStab does not work well it may be advantageous to use

the BiCGStab(ℓ) method, with ℓ ≥ 2 a parameter. Faster convergence in terms of iteration counts may be

expected for increasing values of the parameter ℓ. However, since more work is required to obtain the iterate

as ℓ increases, optimal performance in terms of computational work may be realized for quite a small value

of ℓ. Starting with the value ℓ = 2 is recommended.

The GMRES and GCR methods generate gradually improving iterates that satisfy an optimality condi-

tion. The optimality may however come with a significant cost since the computational work and computer

memory requirements of these methods increase as the number of iterations grows. In practice these meth-

ods may be restarted after m solution updates have been performed in order to avoid the increasing work

and storage requirements. The resulting methods are referred to as the GMRES(m) and GCR(m) meth-

ods. Here the choice of m has to be controlled by the user. It should be noted that the convergence of the

restarted algorithms may be considerably slower than that of full versions. Unfortunately, general guidelines

for determining a reasonable value for m cannot be given as this value is case-dependent.
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4.3.2 Basic preconditioning strategies

The performance of iterative Krylov methods depends greatly on the spectrum of the coefficient matrix

A. The rate at which an iteration method converges can often be improved by transforming the original

system into an equivalent one that has more favorable spectral properties. This transformation is called

preconditioning and a matrix which determines the transformation is called a preconditioner.

In ElmerSolver preconditioning is usually done by transforming (4.1) into the system

AM−1z = b, (4.2)

where the preconditioner M is an approximation to A and z is related to the solution x by z = Mx. In

practice, the explicit construction of the inverse M−1 is not needed, since only a subroutine that for a given

v returns a solution u to the system

Mu = v (4.3)

is required.

The solver of Elmer provides several ways to obtain preconditioners. The basic strategies described in

this section may be used to form the Jacobi preconditioner and incomplete factorization preconditioners.

In addition to these preconditioners which remain stationary during the linear system iteration, the solver

of Elmer allows the use of variable preconditioning where the action of the preconditioner is defined in

terms of applying another iteration method to auxiliary preconditioning systems. Such inner-outer iterations

are typically applied in connection with block preconditioners and preconditioning by multilevel methods.

These advanced preconditioning strategies are considered in Section 4.5 below.

The Jacobi preconditioner is simply based on taking M to be the diagonal of A. More sophisticated pre-

conditioners may be created by computing incomplete LU factorizations of A. The resulting preconditioners

are referred to as the ILU preconditioners. This approach gives the preconditioner matrix M in the form

M = LU where L and U are lower and upper triangular with certain elements that arise in the factorization

process ignored.

There are several ways to choose a set of matrix positions that are allowed to be filled with nonzero

elements. ILU preconditioners of fill level N referred to as the ILU(N) preconditioners are built so that

ILU(0) accepts nonzero elements in the positions in which A has nonzero elements. ILU(1) allows nonzero

elements in the positions that are filled if the first step of Gaussian elimination is performed for A. ILU(2)

accepts fill in positions that are needed if the next step of Gaussian elimination is performed with ILU(1)

factorization, etc.

Another approximate factorization strategy is based on numerical tolerances. The resulting precondi-

tioner is referred to as the ILUT preconditioner. In the creation of this preconditioner Gaussian elimination

is performed so that elements of a given row of the LU factorization are obtained but only elements whose

absolute value (scaled by the norm of all values of the row) is over a given threshold value are accepted in

the preconditioner matrix.

Obviously, the additional computation time that is spent in creating the preconditioner matrix and solving

systems of the type (4.3) should be compensated by faster convergence. Finding an optimal ILU precondi-

tioner for a particular case may require the use of trial and error. Start with ILU(0) and try to increase the

fill level N . As N increases, more and more elements in the incomplete LU factorization of the coefficient

matrix are computed, so the preconditioner should in principle be better and the number of iterations needed

to obtain a solution should decrease. At the same time the memory usage grows rapidly and so does the time

spent in building the preconditioner matrix and in applying the preconditioner during iterations. The same

applies to the ILUT preconditioner with decreasing threshold values.

4.4 Multilevel methods

A class of iterative methods referred to as multilevel methods provides an efficient way to solve large linear

systems. For certain class of problems they perform nearly optimally, the operation count needed to obtain a

solution being nearly of order n. Two different multilevel-method approaches are available in ElmerSolver,

namely the geometric multigrid (GMG) and algebraic multigrid (AMG).
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4.4.1 Geometric multigrid

Given a mesh T1 for the finite element discretization of problem the geometric multigrid method utilizes

a set of coarser meshes Tk, k = 2, ..., N , to solve the linear system arising from the discretization. One

of the fundamental ideas underlying the method is based on the idea of coarse grid correction. That is, a

coarser grid is utilized to obtain an approximation to the error in the current approximate solution of the

linear system. The recursive application of this strategy leads us to multigrid methods.

To utilize different meshes multigrid methods require the development of methods for transferring vec-

tors between fine and coarse meshes. Projection operators are used to transfer vectors from a fine mesh Tk
to a coarse mesh Tk+1 and will be denoted by Ik+1

k , while interpolation operators Ikk+1 transfer vectors from

a coarse mesh to a fine mesh.

The multigrid method is defined by the following recursive algorithm: Given A, b and an initial guess y
for the solution of the system Ax = b set i = 1 and do the following steps:

1. If i = N , then solve the system Ax = b by using the direct method and return.

2. Do pre-smoothing by applying some iterative algorithm for a given number of times to obtain a new

approximate solution y.

3. Perform coarse grid correction by starting a new application of this algorithm with A = Ii+1
i AIii+1,

b = Ii+1
i (Ay − b), i = i+ 1 and the initial guess e = 0.

4. Compute a new approximate solution by setting y = y + Iii+1e

5. Do post-smoothing by applying some iterative algorithm for a given number of times to obtain a new

approximate solution y.

6. If the solution has not yet converged, go to step 2.

In ElmerSolver one may choose the Jacobi, CG or BiCGStab algorithm as the method for smoothing itera-

tions.

The full success of multigrid methods is based on the favorable combination of the properties of ba-

sic iteration methods and methods for transferring vectors between meshes. The smoothing iterations give

rapid convergence for oscillatory solution components while coarse grid correction entails an efficient solu-

tion method for smooth solution components. For a comprehensive introduction to the geometric multigrid

method the reader is referred to [2].

4.4.2 Algebraic multigrid

In many cases the geometric multigrid may not be applied because we do not have the luxury of having

a set of appropriate hierarchical meshes. The alternative is the algebraic multigrid (AMG) method which

uses only the matrix A to construct the projectors and the coarse level equations. AMG is best suited for

symmetric and positive semidefinite problems. For other types of problems the standard algorithm may fail.

For more information on AMG see reference [5].

The AMG method has two main phases. The set-up phase includes the recursive selection of the coarser

levels and definition of the transfer and coarse-grid operators. The solution phase uses the resulting compo-

nents to perform a normal multigrid cycling until a desired accuracy is reached. The solution phase is similar

to that of the GMG.

Note that the AMG solvers in ElmerSolver are not fully mature. They may provide good solutions for

some problems while desperately failing for others.

Classical Ruge-Stüben algorithm

The coarsening is performed using a standard Ruge-Stüben coarsening algorithm. The possible connections

are defined by the entries in the matrix A. The variable i is strongly coupled to another variable j if

aij < −c−max |aik| or aij > c+ max |aik|, (4.4)
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where 0 < c− < 1 and 0 < c+ < 1 are parameters. Typically c− ≈ 0.2 and c+ ≈ 0.5. Once the negative

(P−) and positive (P+) strong couplings have been determined the variables are divided into coarse (C) and

fine (F ) variables using the standard coarsening scheme.

The interpolation matrix may be constructed using the C/F -splitting and the strong couplings of the

matrix. The interpolation of coarse nodes is simple as they remain unchanged. The interpolation of fine

nodes starts from the fact the smooth error e must roughly satisfy the condition Ae = 0 or

aiiei +
∑

j 6=i

aijej = 0. (4.5)

By manipulation

aiiei + αi

∑

j∈C∩P−

i

aijej + βi

∑

j∈C∩P+

i

aijej = 0, (4.6)

where

αi =

∑

j∈P−

i
aij

∑

j∈C∩P−

i
aij

and βi =

∑

j∈P+

i
aij

∑

j∈C∩P+

i
aij

. (4.7)

The interpolation thus becomes

ei =
∑

j∈C∩Pi

wijej with wij =

{
−αiaij/aii, j ∈ P−

i ,
−βiaij/aii, j ∈ P+

i .
(4.8)

This is known as direct interpolation. It may be modified by using also the strong F -nodes in the

interpolation. This means that in formula (4.5) the following elimination is made for each j ∈ F ∩ Pi

ej → −
∑

k∈C∩Pj

ajkek/ajj . (4.9)

This is known as standard interpolation. In practice it means that the number of nodes used in the interpo-

lation is increased. This may be important to the quality of the interpolation particularly if the number of

direct C-neighbors is small.

After the interpolation weights have been computed the smallest coefficients may be truncated if they

are small, i.e., wj < cw max |wk|, where cw ≈ 0.2. The other values must accordingly be increased so that

the sum of weights remains constant. The truncation is essential in preventing the filling of the coarse level

matrices.

Cluster multigrid

There is also an implementation of the agglomeration or cluster multigrid method. It is a variant of the

algebraic multigrid method. In this method the components are grouped and the coarse-level matrices are

created simply by summing up the corresponding rows and columns. In other words, the projection matrix

includes just ones and zeros.

The cluster multigrid method should be more robust for problems where it is difficult to generate an

optimal projection matrix. However, for simple problems it is usually beaten by the standard Ruge-Stüben

method.

4.5 Preconditioning via inner iterations

In the following, we return to the subject of preconditioning and consider the construction of more advanced

preconditioners that utilize the idea of variable preconditioning. We recall that the procedural description

of preconditioning allows us to consider schemes where the action of M−1 in (4.2) is replaced by perform-

ing an inexact solution of the preconditioning system of the type (4.3) with other iterative methods. In this

connection, the iteration steps of the method applied to the preconditioning system are referred to as inner

iterations, while the iteration steps of the method which is being preconditioned are referred to as outer iter-

ations. In addition, the concept of variable preconditioning is motivated by the fact that the preconditioner
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can change during the outer iteration process. It should be noted that all the Krylov methods do not neces-

sarily admit using variable preconditioning. Anyhow, GCR algorithm can always be employed as the outer

iterative method, and we generally recommend using it in connection with inner-outer iterations.

4.5.1 Preconditioning by multilevel methods

Multilevel methods are iteration methods on their own but they can also be applied to define preconditioners

for the Krylov subspace methods. This preconditioning approach corresponds to taking M = A in (4.3) and

performing an inaccurate solution of the resulting system using multilevel methods to obtain u. A rather

mild stopping criterion may be used in this connection. Preconditioning by multilevel methods may lead to

very efficient solution methods for large linear systems.

4.5.2 Block preconditioning

Performing preconditioning by solving auxiliary systems iteratively also arises naturally in connection with

a strategy referred to as the block preconditioning. Tacit in the concept of block preconditioning is that

the unknowns of the linear system are grouped into sets of variables so that a natural block partitioning of

the linear system is induced. Often such partitioning is naturally induced by physics. Block factorizations,

block matrix splittings, or even other iteration schemes based on updating different types of variables inde-

pendently can then be utilized to derive preconditioners. The bottom line is that such block preconditioners

typically lead to solving subsidiary problems which can be handled by employing inner iterations.

The designs of efficient block preconditioners tend to involve problem-specific features, especially, if

block factorizations or other segregated iteration methods are used to derive preconditioners. Therefore the

model solvers in Elmer that offer the possibility of using block preconditioning have originally been devel-

oped independently, with the block preconditioning ability being a part of the solver-level implementation.

Recently, routines which are suited for constructing block matrices on a more general level have also been

implemented. For the general level approach see Chapter 14.

4.6 Keywords related to linear system solvers

The following keywords may be given in Solver section of the solver input file (.sif file).

Linear System Solver String

Using this keyword the type of linear system solver is selected. This keyword may take the following

values:

• Direct

• Iterative

• Multigrid

Here Iterative and Multigrid refer to the Krylov and multilevel methods, respectively.

Linear System Direct Method String

If the value of the Linear System Solver keyword is set to be Direct, one may choose a band

matrix solver with the value Banded or a sparse matrix solver with the value umfpack, mumps,

Pardiso or superlu, . The default is Banded.

Linear System Iterative Method String

If the value of the Linear System Solver keyword is set to be Iterative, one should choose

a Krylov method by setting the value of this keyword to be one of the following alternatives:

• CG

• CGS

• BiCGStab
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• BiCGStabl

• TFQMR

• GMRES

• GCR

• Idrs

See also the MG Smoother keyword.

Linear System GMRES Restart Integer [10]

The restart parameter m for the GMRES(m) method may be given using this keyword.

Linear System GCR Restart Integer

The restart parameter m for the GCR(m) method may be given using this keyword. The default option

is that restarting is not performed, i.e. the full GCR is used.

BiCGstabl polynomial degree Integer

The parameter ℓ for the BiCGStab(ℓ) method may be given. By default the minimal applicable value

ℓ = 2 is used.

Idrs Parameter Integer

The s parameter of the IDR(s) method.

Linear System Preconditioning String

A preconditioner for the Krylov methods may be declared by setting the value of this keyword to be

one of the following alternatives:

• None

• Diagonal

• ILUn, where the literal n may take values 0,1,...,9.

• ILUT

• Multigrid

See also the MG Preconditioning keyword.

Linear System ILUT Tolerance Real [0.0]

This keyword is used to define the value of the numerical tolerance for the ILUT preconditioner.

Linear System Convergence Tolerance Real [0.0]

This keyword is used to define a stopping criterion for the Krylov methods. The approximate solution

is considered to be accurate enough if the iterate satisfies

||Ax− b||
||b|| ≤ ǫ

where ǫ is the value of this keyword. See also MG Tolerance.

Linear System Max Iterations Integer [0]

This keyword is used to define the maximum number of the iterations the Krylov methods are permit-

ted to perform. If this limit is reached and the approximate solution does not satisfy the stopping crite-

rion, ElmerSolver either continues the run using the current approximate solution as the solution of the

system or aborts the run depending on the value of Linear System Abort Not Converged

keyword. See also MG Max Iterations keyword.

Linear System Abort Not Converged Logical [True]

If the value of this keyword is set to be True, ElmerSolver aborts the run when the maximum number

of iterations the algorithm is permitted to perform is reached and the approximate solution does not

satisfy the stopping criterion. Otherwise the run will be continued using the current approximate

solution as the solution of the system (this may lead to troubles at later steps of computation).
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Linear System Residual Mode Logical

Usually the solvers of Elmer are written so that the linear system is solved for the full amplitude of the

solution. However, often it is numerically to solve the residual equation where a change in the system

of solved such that the residual would be minimized. This has the advantage that the linear system

does not need to be solved as accurately. In practice we take the linear equation Ax = b and make a

change of variables such that Adx = r, where r = b−Ax0 and dx = x1 − x0. After solution of the

modified equation we revert back to the original system by setting x1 = x0 + dx.

Linear System Residual Output Integer [1]

By default the iterative algorithms display the value of the (scaled) residual norm after each iteration

step. Giving a value n > 1 for this keyword may be used to display the residual norm only after every

n iterations. If the value 0 is given, the residual output is disabled.

Linear System Precondition Recompute Integer [1]

By default the ElmerSolver computes the preconditioner when a new application of iterative algorithm

is started. If the value of this keyword is set to be n, the preconditioner is computed only after

n successive subroutine calls for linear systems arising from same source. This may speed up the

solution procedure especially in cases where the coefficient matrix does not change much between

successive subroutine calls. On the other hand if the coefficient matrix has changed significantly, the

preconditioner may not be efficient anymore.

Optimize Bandwidth Logical [True]

If the value of this keyword is set to be True, the Cuthill-McKee bandwidth optimization scheme is

used to order the unknowns in such a way that band matrices can be handled efficiently. The bandwidth

optimization is recommended when the direct solver or incomplete factorization preconditioners are

used.

Linear System Block Mode Logical

If the value of this keyword is set to be True, the linear system to be solved is created by using a

special block-matrix construct. This keyword provides a main switch to inform that the coefficient

matrix has a block structure. There are other keywords for specifying the block structure.

Linear System Solver Disabled Logical

In some special cases it may be useful to run a solver without trying to solve the linear system which

has been assembled. This keyword can be used to activate such option. The linear system assembled

in this manner can be used for example to create a block of a larger linear system.

The keywords beginning with MG are activated only if either the Linear System Solver or Linear

System Preconditioning keyword has the value Multigrid. If a multigrid method is used as the

linear system solver, some keywords starting with MG may be replaced by corresponding keywords starting

with phrase Linear System. It should be noted that in the case of a multigrid solver there are some

limitations to what values the keywords starting with the phrase Linear System may take, see below.

MG Levels Integer [1]

This keyword is used to define the number of levels for the multigrid method.

MG Equal Split Logical [False]

A hierarchy of meshes utilized by the multigrid method may be generated automatically by setting the

value of this keyword to be True. The coarsest mesh must be supplied by the user and is declared in

the usual way in the Header section of the solver input file. The other meshes are obtained using an

equal division of the coarse mesh. The solution of the problem will be sought for the finest mesh.

MG Mesh Name File

A hierarchy of meshes utilized by the multigrid method may be supplied by the user. A base name of

the mesh directories is declared using this keyword. The names of mesh directories must be composed

of the base name appended with a level number such that if the base name is mgridmesh, the mesh

directories should have names mgridmesh1, mgridmesh2, etc. The meshes are numbered starting
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from the coarsest mesh. In addition, the finest mesh must be declared in the Header section of the

solver input file. It should be noted that the MG Equal Split keyword must be set to be False

to enable the use of user-supplied meshes.

MG Max Iterations Integer [0]

If a multigrid method is used as a preconditioner for the Krylov methods, the value of this keyword

defines the maximum number of iterations the multigrid method is allowed to perform to solve the

preconditioning equation (4.3). Usually one or two iterations are sufficient. If a multigrid method

is the linear system solver, the use of this keyword is similar to that of the Linear System Max

Iterations keyword.

MG Convergence Tolerance Real [0.0]

If a multigrid method is used as a preconditioner for the Krylov methods, this keyword defines the

solution accuracy for the preconditioning equation (4.3). This keyword is not usually needed if the MG

Max Iterations keyword has a small value. If a multigrid method is the linear system solver,

the use of this keyword is similar to that of the Linear System Convergence Tolerance

keyword.

MG Smoother String

This keyword defines the algorithm for pre- and post-smoothing. It may take one of the following

values:

• Jacobi

• CG

• BiCGStab

If the linear system solver is a multigrid method, the Linear System Iterative Method

keyword may be used instead of this keyword, but only the three algorithms mentioned here can be

applied.

MG Pre Smoothing Iterations Integer [0]

This keyword defines the number of pre-smoothing iterations.

MG Post Smoothing Iterations Integer [0]

This keyword defines the number of post-smoothing iterations.

MG Preconditioning String

This keyword declares the preconditioner for the algorithm which is used in smoothing iterations. It

may take one of the following values:

• None

• ILUn, where the literal n may take values 0,1,...,9.

• ILUT

Note that this keyword is not related to using multigrid method as a preconditioner. It is also noted

that preconditioning the smoothing algorithms does not seem to work well if a multigrid method is

used as a preconditioner for Krylov methods.

MG ILUT Tolerance Real [0.0]

This keyword defines the numerical tolerance for the ILUT preconditioner in connection with smooth-

ing iterations.

The keywords for the algebraic multigrid solver are in a large part the same as for the geometric multigrid.

There are however some keywords that are related only to AMG.

MG Lowest Linear Solver Limit Integer

This value gives a lower limit for the set of coarse nodes after which the recursive multilevel routine

is terminated. A proper value might be around 100.
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MG Recompute Projector Logical

This flag may be used to enforce recomputation of the projector each time the algebraic multigrid

solver is called. The default is False as usually the same projector is appropriate for all computations.

MG Eliminate Dirichlet Logical

At the highest level the fixed nodes may all be set to be coarse since their value is not affected by the

lower levels. The default is True

MG Eliminate Dirichlet Limit Real

Gives the maximum fraction of non-diagonal entries for a Dirichlet node.

MG Smoother String

In addition to the selection for the GMG option sor (symmetric over relaxation) is possible.

MG SOR Relax String

The relaxation factor for the SOR method. The default is 1.

MG Strong Connection Limit Real

The coefficient c− in the coarsening scheme. Default is 0.25.

MG Positive Connection Limit Real

The coefficient c+ in the coarsening scheme. Default is 1.0.

MG Projection Limit Real

The coefficient cw in the truncation of the small weights. The default is 0.1.

MG Direct Interpolate Logical

Chooses between direct and standard interpolation. The default is False.

MG Direct Interpolate Limit Integer

The standard interpolation may also be applied to nodes with only a small number of coarse connec-

tion. This gives the smallest number of nodes for which direct interpolation is used.

Finally, there are also some keywords related only to the clustering multigrid.

MG Cluster Size Integer

The desired choice of the cluster. Possible choices are 2,3,4,5,. . . and zero which corresponds to the

maximum cluster.

MG Cluster Alpha Real

In the clustering algorithm the coarse level matrix is not optimal for getting the correct convergence.

Tuning this value between 1 and 2 may give better performance.

MG Strong Connection Limit Real

This is used similarly as in the AMG method except it is related to positive and negative connections

alike.

MG Strong Connection Minimum Integer

If the number of strong connections with the given limit is smaller than this number then increase the

set of strong connection if available connections exist.

4.7 Implementation issues

4.7.1 The sparse matrix storage

To be efficient, iteration methods require that a matrix-vector product for sparse matrices is efficiently im-

plemented. A special storage scheme called the Compressed Row Storage (CRS) [3] is used in ElmerSolver

to store only those matrix coefficients that differ from zero.

The matrix structure is defined in module Types as:
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TYPE Matrix_t

...

INTEGER :: NumberOfRows

REAL(KIND=dp), POINTER :: Values(:)

INTEGER, POINTER :: Rows(:), Cols(:), Diag(:)

...

END TYPE Matrix_t

The matrix type has several additional fields, but the basic storage scheme can be implemented using the

fields shown. The array Values is used to store the nonzero elements of the coefficient matrix. The array

Cols contains the column numbers for the elements stored in the array Values, while the array Rows

contains indices to elements that start new rows. In addition, Row(n+1) gives the number of nonzero

matrix elements + 1. The array Diag is used to store the indices of the diagonal elements.

For example, to go through the matrix row by row the following loop may be used

USE Types

TYPE(Matrix_t), POINTER :: A

REAL(KIND=dp):: val

INTEGER :: i, j, row, col

DO i=1, A % NumberOfRows

PRINT *, ’Diagonal element for row ’, i, ’ is ’, A % Values( A % Diag(i) )

DO j=A % Rows(i), A % Rows(i+1)-1

row = i

col = A % Cols(j)

val = A % Values(j)

PRINT *, ’Matrix element at position: ’, row,col, ’ is ’, val

END DO

END DO

4.7.2 Subroutine calls

Most of the functionality of the sparse linear system solver of the ElmerSolver is available by using the

function call

Norm = DefaultSolve().

The return value Norm is a norm of the solution vector.

Sometimes it may be convenient to modify the linear system before solving it. A Fortran function which

performs this modification can be written by the user with the name of the function being declared in the

solver input file. For example, this technique may be used to define a user-supplied linear system solver.

If the name of the user-supplied Fortran function is proc and it can be found in the file having the name

Filename, the declaration

Before Linsolve File Filename proc

in the solver input file has the effect that the function will be called just before the default call of linear

system solver. The arguments the function can take are fixed and are declared as

FUNCTION proc( Model, Solver, A, b, x, n, DOFs, Norm ) RESULT(stat)

USE SolverUtils

TYPE(Model_t) :: Model

TYPE(Solver_t) :: Solver

TYPE(Matrix_t), POINTER :: A

REAL(KIND=dp) :: b(:), x(:), Norm
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INTEGER :: n, DOFs, stat

...

END FUNCTION proc

Here the Model structure contains the whole definition of the Elmer run. The Solver structure contains

information for the equation solver from which this linear system originates. The coefficient matrix A is in

CRS format, b is the right-hand side vector, and x contains the previous solution. The argument n is the

number of unknowns, and DOFs is the number of unknowns at a single node.

If the return value from this function is zero, the (possibly) modified linear system is solved after the

return. If the return value is 1, the linear system is assumed to be already solved and the vector x should

contain the result. It is noted that the user-supplied Fortran function may also call the default linear equation

solver within the function, i.e. one may write the subroutine call

CALL SolveLinearSystem( A, b, x, Norm, DOFs, Solver )

Here A and bmay be modified so that the linear system which is solved need not be same as the input system.

In a similar way the user may also supply a user-defined Fortran function which will be called just after

the solution of linear system. This is done using the declaration

After Linsolve File Filename proc

in the solver input file. The arguments of this function are the same as for a function in the context of

Before Linsolve keyword.
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Chapter 5

Nonlinear System Options

5.1 Introduction

Numerical methods in linear algebra are usually intended for the solution of linear problems. However, there

are many problems which are not linear in nature. The nonlinearity may be an intrinsic characteristic of the

equation, such as is the case with inertial forces in the Navier-Stokes equation. The nonlinearity might also

a result of nonlinear material parameters that depend on the solution. What ever the reason for nonlinearity

the equations in Elmer are always first linearized to the form

A(ui−1)ui = b(ui−1), (5.1)

where i refers to the iteration cycle.

How the equations are linearized varies from one solver to another. For example, in the Navier-Stokes

solver there are two different methods – the Picard linearization and the Newton linearization that may

be used. Also a hybrid scheme where the Picard type of scheme is switched to the Newton kind of scheme

when certain criteria are met is available. Therefore this section will not deal with the particular linearization

technique of different solver but tries to give some light to the generic keywords that are available. Some

keywords may also be defined in the Models Manual related to particular solvers.

In multiphysical simulations there are also a number of keywords related to the solution of coupled

systems. Basically one may may define how many times a system of equations is solved repeatedly at

maximum and what are the convergence criteria of the individual solvers that must be met simultaneously.

5.2 Keywords related to solution of nonlinear systems

These keywords are located in the Solver section of each solver, if required at all.

Nonlinear System Convergence Measure String

The change of solution between two consecutive iterations may be estimated by a number of differ-

ent measures which are invoked by values norm, solution and residual. The default way of

checking for convergence is to test the change of norm

δ = 2 ∗ ||ui| − |ui−1||/(|ui|+ |ui−1|). (5.2)

This measure is rather liberal since the norm of two solutions may be the same even though the

solutions would not. Therefore it is often desirable to look at the norm of change,

δ = 2 ∗ |ui − ui−1|/(|ui|+ |ui−1|). (5.3)

The third choice is to use a backward norm of the residual where the old solution is used with the new

matrix.

δ = |Axi−1 − b|/|b|. (5.4)
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In the current implementation this norm lags one step behind and therefore always performs one extra

iteration.

Nonlinear System Norm Degree Integer

The choice of norms used in the evaluation of the convergence measures is not self evident. The

default is the L2 norm. This keyword may be used to replace this by Ln norm where value n = 0
corresponds to the infinity (i.e. maximum) norm.

Nonlinear System Norm Dofs Integer

For vector valued field variables by default all components are used in the computation of the norm.

However, sometimes it may be desirable only to use some of them. This keyword may be used to give

the number of components used in the evaluation. For example, in the Navier-Stokes equations the

norm is only taken in respect to the velocity components while pressure is omitted.

Nonlinear System Convergence Absolute Logical

This keyword may be used to enforce absolute convergence measures rather than relative. The default

is False.

Nonlinear System Convergence Tolerance Real

This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the norm

of the field variable between two consecutive iterations is small enough δ < ǫ, where ǫ is the value

given with this keyword.

Nonlinear System Max Iterations Integer

The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer

Change the nonlinear solver type to Newton iteration after a number of Picard iterations have been

performed. If a given convergence tolerance between two iterations is met before the iteration count

is met, it will switch the iteration type instead. This applies only to some few solvers (as the Navier-

Stokes) where different linearization strategies are available.

Nonlinear System Newton After Tolerance Real

Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the field

variable meets a tolerance criterion:

δ < ǫ,

where ǫ is the value given with this keyword.

Nonlinear System Relaxation Factor Real

Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor

below unity is sometimes required to achieve convergence of the nonlinear system. Typical values

range between 0.3 and unity. If one must use smaller values for the relaxation factor some other

methods to boost up the convergence might be needed to improve the convergence. A factor above

unity might rarely speed up the convergence. Relaxed variable is defined as follows:

u
′

i = λui + (1− λ)ui−1,

where λ is the factor given with this keyword. The default value for the relaxation factor is unity.

Nonlinear System Convergence Without Constraints Logical

This keyword may be used to study the convergence and norms of a constrained system without

considering the constraints. This means that Lagrange multipliers will not be accounted for when

studying convergence.

Nonlinear System Divergence Limit Real

This keyword gives a limit for the norm when the nonlinear iteration is deemed to have diverged.

Otherwise the code could just go on for a long time even though the end-user knows that the iteration

has diverged.
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Many of the keywords used to control the Nonlinear System have a corresponding keyword for the

Steady State. Basically the operation is similar except the reference value for the current solution ui is the

last converged value of the nonlinear system before starting a new loosely coupled iteration cycle. Otherwise

the explanations given above are valid.

Steady State Convergence Measure String

Steady State Norm Degree Integer

Steady State Norm Dofs Integer

Steady State Convergence Tolerance Real

Steady State Convergence Absolute Logical

Steady State Relaxation Factor Real

Steady State Divergence Limit Real

Additionally these keywords are located in the Simulation section of the command file.

Steady State Max Iterations Integer

The maximum number of coupled system iterations. For steady state analysis this means it literally,

for transient analysis this is the maximum number of iterations within each time step.

Steady State Min Iterations Integer

Sometimes the coupling is such that nontrivial solutions are obtained only after some basic cycle

is repeated. Therefore the user may sometimes need to set also the minimum number of iterations.

Sometimes the steady state loop is also used in a dirty way to do some systematic procedures – for

example computing the capacitance matrix, or lumped elastic springs. Then this value may be set to

an a priori known constant value.

Convergence Monitor Logical

This makes each solver write information about the convergence to an external file. This could be

monitored then with external tools more easily than the standard output.

Convergence Monitor File File

This is the file related to the previous keyword. If not given then “convergence.dat” will be used by

default.
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Chapter 6

Integration of time-dependent systems

6.1 Introduction

Solving time-dependent systems is becoming more and more common in various branches of computational

science, as the computer resources grow steadily. ElmerSolver may be adapted to solve such systems. The

first order time derivatives may be discretized by using the following methods:

• the Crank-Nicolson method

• the Backward Differences Formulae (BDF) of several orders

In the case of the first order BDF scheme adaptive time-stepping strategy may also be used.

The second order time derivatives are approximated by either using the Bossak method or reformulating

the second order equations as equivalent systems of first order equations.

In addition, a predictor-corrector scheme is available to automatically control the time steps according to

the local truncation error. The analysis and implementation details can be seen in [1].

6.2 Time discretization strategies

Consider the numerical solution of the evolutionary field equation

∂φ

∂t
+Kφ = f, (6.1)

where the differential operator K does not involve differentiation with respect to time t and f is a given

function of spatial coordinates and time. The spatial discretization of (6.1) leads to the algebraic equations

M
∂Φ

∂t
+KΦ = F, (6.2)

where M , K and F result from the discretization of the identity operator, the operator K and f , respectively.

The vector Φ contains the values of the unknown field φ at nodes.

The applications of the first three BDF methods to discretize the time derivative term in (6.2) yield the

following systems:
(

1

∆t
M +K

)

Φi+1 = F i+1 +
1

∆t
MΦi, (6.3)

(
1

∆t
M +

2

3
K

)

Φi+1 =
2

3
F i+1 +

1

∆t
M

(
4

3
Φi − 1

3
Φi−1

)

, (6.4)

(
1

∆t
M +

6

11
K

)

Φi+1 =
6

11
F i+1 +

1

∆t
M

(
18

11
Φi − 9

11
Φi−1 +

2

11
Φi−2

)

, (6.5)
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where ∆t is the time step and Φi is the solution at time step i. Similarly, F i is the value of F at time step i.
All the BDF methods are implicit in time and stable. The accuracies of the methods increase along with

the increasing order. The starting values for the BDF schemes of order n > 1 are computed using the BDF

schemes of order 1, ..., n− 1 as starting procedures. It should be noted that the BDF discretizations of order

n > 3 do not allow the use of variable time-step size. Adaptive time-stepping strategy may also be used in

the case of the first order BDF scheme.

The adaptive time-stepping is accomplished by first solving the system using a trial time step and then

using two time steps the lengths of which equal to the half of that of the trial time step and comparing the

results. If the difference between the results is found to be sufficiently small, the use of the trial time step is

accepted. Otherwise a new trial time step is defined by dividing the previous trial time step into two steps

of equal length and then the procedure is repeated. One may define one’s own criterion for determining

whether the use of the current time step is accepted. The default criterion is that the norms of the solutions

to each system of field equations do not differ more than the given threshold value.

The time discretization of the second order equation

M
∂2Φ

∂t2
+B

∂Φ

∂t
+KΦ = F (6.6)

using the Bossak method leads to the system
(

1− α

β(∆t)2
M +

γ

β∆t
B +K

)

Φi+1 = F i+1 +M

(
1− α

β(∆t)2
Φi +

γ

β∆t
V i +

(1− α)

2β
Ai

)

+

B

(
γ

β∆t
Φi +

(
γ

β
− 1

)

V i +

(

1− γ

2β

)

∆tAi

)

,

(6.7)

where

V i+1 = V i +∆t
(
(1− γ)Ai + γAi+1

)
,

Ai+1 =
1

β(∆t)2
(Φi+1 − Φi)− 1

β∆t
V i +

(

1− 1

2β

)

Ai,

β =
1

4
(1− α)2, γ =

1

2
− α.

(6.8)

In the following the matrices M and B are referred to as the mass and damping matrix, respectively.

6.3 Keywords related to time discretization

All the keywords related to the time discretization may be given in Simulation section of the solver input file

(.sif file). A number of keywords may also be given in Solver section, so that each system of field equations

may be discretized using independently chosen time-stepping method. If keywords are not given in the

Solver section, the values of the keywords are taken to be those given in the Simulation section. It should

be noted that certain keywords such as those controlling the number of time steps, time-step sizes etc., may

only be given in the Simulation section.

Timestepping Method String

This keyword is used to declare the time discretization strategy for the first order equations. The value

of this keyword may be set to be either ’’BDF’’ or ’’Crank-Nicolson’’ and may be given in

either Simulation section or Solver section of the solver input file. For the second order equations the

only option is ’’Bossak’’.

BDF Order Integer

This keyword is used to define the order of the BDF method and may take values 1,...,5. This keyword

may be given in either Simulation section or Solver section of the solver input file.

Time Derivative Order Integer

If a second order equation is discretized, this keyword must be given the value 2 in the Solver section

of the solver input file. It should be noted that the second order time derivatives are always discretized

using the Bossak method.
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Bossak Alpha Real [-0.05]

This keyword is used to define the value for α in the Bossak method used in the time discretization of

second order equations. This keyword may be given in either Simulation section or Solver section of

the solver input file.

Timestep Intervals Integer array

This keyword is used to define the number of time steps. It may be array-valued so that different

time-step lengths may be used for different time intervals of the entire simulation. For example, if one

wishes to take first 50 time steps and then to use a different time-step length for the following 100 time

steps, one may define

Timestep Intervals(2) = 50 100

and use the Timestep Sizes keyword to define time-step lengths for the two sets of time steps.

Timestep Sizes Real array

This keyword is used to define the length of time step. If the value of the Timestep Intervals

keyword is array-valued, the value of this keyword must also be an array of the same size. For example,

if one has defined

Timestep Intervals(2) = 50 100

the declaration

Timestep Sizes(2) = 0.1 1.0

sets the time-step length for the first 50 time steps to be 0.1 and for the remaining 100 time steps 1.0.

Timestep Size Real

Instead of using the Timestep Sizes keyword the length of time step may be defined by using

this keyword (mind the singular). The value of this keyword is evaluated at the beginning of each time

step. A variable time-step length may conveniently be defined using a MATC or Fortran function.

This replaces the old keyword Timestep Function.

Output Intervals Integer array

This keyword is used to define the time-step interval for writing the results on disk. As in the case of

the Timestep Sizes keyword the size of the value of this keyword must be compatible with that

of the Timestep Intervals keyword. The value at a step m is saved if for the corresponding

output interval o mod(m-1,o)==0. An exception is output interval equal to zero for which output is

not saved at all. However, the last step of the simulation is always saved.

Lumped Mass Matrix Logical [false]

The use of a lumped mass matrix may be activated by setting the value of this keyword to be True in

the Solver section of solver input file. The default lumping is defined by

M ′
ii = Mii

∑

i

∑

j Mij
∑

iMii
. (6.9)

The keywords related to the adaptive time-stepping may only be given in the Simulation section of the

solver input file. When the adaptive time-stepping strategy is used, a set of trial time steps is defined using

the keywords introduced above. The adaptive procedure is executed for each of these trial steps. Note that

the adaptive time-stepping is possible only in the case of the first order BDF scheme.

Adaptive Timestepping Logical [false]

The value of this keyword must be set to be True if the adaptive time integration is to be used.
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Adaptive Time Error Real

This keyword is used to define the threshold value for the criterion for determining whether the use of

the current time step is accepted.

Adaptive Error Measure Real

Using this keyword one may define one’s own measure for evaluating the difference between the

computed results. This measure and the threshold value, which is given using the Adaptive Time

Error keyword, may be used to define a user-defined criterion for determining whether the use of the

current time step is accepted. The value of the Adaptive Error Measure keyword is evaluated

twice for each trial time step. For the first time the value of the keyword is evaluated after the system

is solved using the trial time step. The second time is after the system is solved using two time steps

the lengths of which equal to the half of that of the trial time step. The absolute value of the relative

difference between these two values is compared to the threshold value given by the Adaptive

Time Error keyword to determine whether the use of the current time step is accepted. If several

systems of field equations are solved, all the solutions must satisfy the similar criterion. If this keyword

is not used, the default criterion is based on comparing the norms of the solution fields.

Adaptive Min Timestep Real

Using this keyword one can limit the subsequent division of the trial time steps by giving the minimum

time-step length which is allowed.

Adaptive Keep Smallest Integer [1]

By default the adaptive scheme tries to double the length of the time step after the acceptable time

step is found. If a value n > 1 is given for this keyword, the adaptive scheme tries to increase the step

length after taking n steps which are at most as long as the step length accepted.

6.4 On the treatment of time derivatives in Elmer Solver code

In the following a number of issues that may be useful if one is writing a code to solve one’s own application

are explained.

By default Elmer Solver does not generate or use global mass or damping matrices in the solution of

time-dependent systems. Mass and damping matrices need to be computed only element-wise, as the linear

system resulting from the time discretization, such as (6.3), is first formed element-wise and this local

contribution is later assembled to the global system. In the case of the first order equation (6.2) the local

linear system may be formed by using the subroutine call

CALL Default1stOrderTime( M, K, F ),

where M is the element mass matrix, K is the element stiffness matrix and F is the element force vector. In

a similar manner, in the case of the second order equation (6.6) one may use the subroutine call

CALL Default2ndOrderTime( M, B, K, F ),

where B is the element damping matrix.

Note that these subroutines must also be called for the local matrices and vectors that result from the

discretization of neumann and newton boundary conditions. If the boundary conditions do not contain any

time derivatives, the M and B matrices should be set to be zero before calling the above subroutines.

If the global mass matrix is required, it may be generated by using the subroutine call

CALL DefaultUpdateMass( M )

Similarly, the global damping matrix may be generated by using the subroutine call

CALL DefaultUpdateDamp( B ).

Global mass (and possibly damping) matrices are required, for example, in the solution of eigenvalue prob-

lems. One may also implement one’s own time-stepping scheme at the global level using these matrices.
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6.5 Predictor Corrector Scheme

The keyword Timestep Intervals is used to set the number of steps and the keyword Timestep

Sizes is used to set the initial step size only. The step size will be changed automatically by the predictor-

corrector scheme based on an error estimator and PI controller. The solver used for predictor-corrector error

estimator is set by having

Exec Solver = "Predictor-Corrector"

There can be more than one solver with predictor-corrector scheme, but only the one with the smallest index

will be used for the error estimate and the time step will be changed accordingly. In order to use a predictor-

corrector scheme, one keyword should be given in the Simulation section and several keywords may also be

given in the Solver section.

Predictor-Corrector Control Logical

The predictor-corrector scheme may be activated by setting the value of this keyword to be True in

the Simulation section.

Skip First Timestep Logical

This keyword has to be set to True in the Solver section for most cases to get the solutions from the

other solvers which are used as the initial condition for the predictor-corrector solver. If this keyword

is false, the predictor-corrector solver will use the values from the Initial Condition section directly.

Predictor method String

This keyword is used to define the time scheme for the predictor in the Solver section. Currently, the

value may only be Adams-Bashforth. But, there will be more options in the future release.

Corrector method String

This keyword is used to define the time scheme for the corrector in the Solver section. Currently, the

value may only be Adams-Moulton. But, there will be more options in the future release.

Predictor-Corrector Scheme Order Integer[2]

This keyword is used to define the order of the predictor-corrector scheme. The value can be set to 1

or 2 which corresponds the first or second order semi-implicit schemes mentioned in [1].

Predictor-Corrector Control Tolerance Real[1e-6]

This keyword is used to define the tolerance ǫ for the PI control process in [1]. The default value is

1e-6. A smaller value puts more restriction on the accuracy which may reduce the step sizes. A

larger value of the tolerance allows larger step sizes, but the solution may not be stable in some cases.

Predictor-Corrector Save Error Logical[false]

This keywords is used to save the time steps and local truncation errors for each step.

The following two keywords are optional. They are related to the PI controller used for the time step

control. The default values are given as in [1] for first and second order scheme.

Predictor-Corrector Control Beta 1 Real

Predictor-Corrector Control Beta 2 Real
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Chapter 7

Solving eigenvalue problems

7.1 Introduction

Eigenvalue problems form an important class of numerical problems, especially in the field of structural

analysis. Also some other application fields may have eigenvalue problems, such as those in density func-

tional theory. This manual, however, introduces eigenvalue computation in Elmer using terminology from

elasticity.

Several different eigenvalue problems can be formulated in elasticity. These include the “standard”

generalized eigenvalue problems, problems with geometric stiffness or with damping, as well as stability

(buckling) analysis. All of the aforementioned problems can be solved with Elmer. The eigenproblems can

be solved using direct, iterative or multigrid solution methods.

7.2 Theory

The steady-state equation for elastic deformation of solids may be written as

−∇ · τ = ~f, (7.1)

where τ is the stress tensor. When considering eigen frequency analysis, the force term ~f is replaced by the

inertia term,

−∇ · τ = −ρ
∂2~d

∂t2
, (7.2)

where ρ is the density.

The displacement can now be assumed to oscillate harmonically with the eigen frequency ω in a form

defined by the eigenvector ~d. Inserting this into the above equation yields

−∇ · τ(~d) = ω2ρ~d, (7.3)

or in discretized form

Ku = ω2Mu, (7.4)

where K is the stiffness matrix, M is the mass matrix, and u is a vector containing the values of ~d at

discretization points. The equation (7.4) is called the generalized eigenproblem.

Including the effects of pre-stresses into the eigenproblem is quite straightforward. Let us assume that

there is a given tension field σ in the solid. The tension is included by an extra term in the steady-state

equation

−∇ · τ −∇ · (σ∇u) = ~f. (7.5)

The pre-stress term includes a component KG to the stiffness matrix of the problem and thus the eigenvalue

equation including pre-stresses is

(K +KG)u = ω2Mu. (7.6)
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The pre-stress in Elmer may be a known pre-tension, due to external loading or due to thermal stress,

for example. The stress tensor containing the pre-stresses σ is first computed by a steady-state analysis and

after that the eigenvalue problem is solved. It should be noted though that the eigenvalue problem in a pre-

stressed state is solved using first order linearization, which means that the eigenvalues are solved about the

non-displaced state. If the pre-loading influences large deformations the eigenvalues are not accurate.

The eigenvalue problem with pre-stresses may be used to study the stability of the system. Some initial

loading is defined and a pre-stress tensor σ is computed. This tensor is then multiplied by a test scalar λ. The

critical load for stability, or buckling, is found by setting the force on the right hand side of the equation (7.5)

equal to zero. The problem then is to solve λ from

Ku = −λKGu, (7.7)

which again is formally an eigenvalue problem for the test parameter. The critical loading is found by

multiplying the given test load with the value of λ. In other words, if λ > 1 the loading is unstable.

7.2.1 Damped eigenvalue problem

Finally, let us consider the damped eigenproblem, also called quadratic eigenvalue problem. In this case

there is a force component proportional to the first time derivative of the displacement in addition to the

inertia term

−∇ · τ = −δ
∂ ~d

∂t
− ρ

∂2~d

∂t2
, (7.8)

where δ is a damping coefficient. The problem is transformed into a more suitable form for numerical

solution by using a new variable ~v′ defined as ~v′ = ∂~d
∂t . This yields

−∇ · τ = −δ~v′ − ρ
∂~v′

∂t
. (7.9)

Working out the time derivatives and moving into the matrix form, the equation may be written as

Ku = −Dv − iωMv, (7.10)

or,

iω

(
I 0
0 M

)(
u
v

)

=

(
0 I

−K −D

)(
u
v

)

, (7.11)

where i is the imaginary unit, D is the damping matrix, and v a vector containing the values of ~v′ at the

discretization points. Now the damped eigenproblem is transformed into a generalized eigenproblem for

complex eigenvalues.

Finally, to improve the numerical behavior of the damped eigenproblem, a scaling constant s is intro-

duced into the definition s~v′ = s∂~d
∂t . In the matrix equation (7.11) this influences only the identity matrix

blocks I to be replaced by sI . Good results for numerical calculations are found when

s = ||M ||∞ = max |Mi,j|. (7.12)

7.3 Keywords related to eigenvalue problems

An eigenvalue analysis in Elmer is set up just as the corresponding steady-state elasticity analysis. An

eigenvalue analysis is then defined by a few additional keywords in the Solver section of the sif file. The

solver in question can be linear elasticity solver called Stress Analysis, linear plate elasticity solver, or even

nonlinear elasticity solver, though the eigen analysis is, of course, linear.

Many of the standard equation solver keywords affect also the eigen analysis, e.g. the values given for

Linear System Solver and Linear System Iterative Method in case of an iterative solver. More information

about these settings is given in this Manual under the chapter concerning linear system solvers. The specific

keywords for eigen analysis are listed below
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Eigen Analysis Logical

Instructs Elmer to use eigensystem solvers. Must be set to True in all eigenvalue problems.

Eigen System Values Integer

Determines the number of eigen values and eigen vectors computed.

Eigen System Select String

This keyword allows the user to select, which eigenvalues are computed. The allowable choices are

• Smallest Magnitude

• Largest Magnitude

• Smallest Real Part

• Largest Real Part

• Smallest Imag Part

• Largest Imag Part

Smallest magnitude is the default.

Eigen System Shift Real

Gives an offset in the eigenvalues. May be useful if the user is interested in eigenvalues in a specific

pre-defined frequency-regime, for example. In practice the shift ω2
0 is achieved by defining K :=

K − ω2
0M and solving the eigenvalues of this modified system.

Eigen System Convergence Tolerance Real

The convergence tolerance for iterative eigensystem solver. The default is 100 times Linear System

Convergence Tolerance.

Eigen System Max Iterations Integer

The number of iterations for iterative eigensystem solver. The default is 300.

Eigen System Complex Logical

Should be given value True if the eigen system is complex, i.e. the system matrices are complex. Not

to be given in damped eigen value analysis.

Geometric Stiffness Logical

Defines geometric stiffness (pre-stress) to be taken into account in eigen analysis. This feature is only

available with linear bulk elasticity solver.

Stability Analysis Logical

Defines stability analysis. This feature is only available with linear bulk elasticity solver.

Eigen System Damped Logical

Defines a damped eigen analysis. Damped eigen analysis is available only when using iterative solver.

Eigen System Use Identity Logical

If True defines the relation displacement and its derivative to be s~v′ = s∂~d
∂t . The other possibility is to

use Mv = iωMu. The default is True.

Eigen System Lanczos Vectors Integer

Number of Lanczos vectors that are used to compute the eigenvalues. The default is 3Ne + 1, where

Ne is the number of eigenvalues.

Eigen System Compute Residuals Logical

Computes the residuals of the eigen value system.
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7.4 Constructing matrices M and D in Solver code

In eigen analysis the mass matrix M and the damping matrix D have to be separately constructed. Usually

in Elmer the different matrices are summed into a single matrix structure, since the final linear equation is

of the form Ax = b, and there is no need for separate values of the mass matrix and the stiffness matrix.

The matrix is represented in Elmer using compressed row storage (CRS) format, as explained in chapter

about Linear system solvers. The matrix structure holds also vectors for the values of the mass and damping

matrices

TYPE Matrix_t

...

REAL(KIND=dp), POINTER :: MassValues(:), DampValues(:)

...

END TYPE Matrix_t

These arrays use the same Rows and Cols tables than the normal Values array.

The mass and damping matrices are constructed elementwise in a similar manner as the stiffness matrix.

After each element the local contributions are updated to the equation matrices by the following subroutine

calls

CALL DefaultUpdateEquations( STIFF, FORCE )

IF ( Solver % NOFEigenValues > 0 ) THEN

CALL DefaultUpdateMass( MASS )

CALL DefaultUpdateDamp( DAMP )

END IF

In this segment of code the variables STIFF, MASS, DAMP and FORCE store the local values of the

stiffness matrix, the mass matrix, the damping matrix, and the right hand side of the equation, respectively.

The integer NOFEigenValues in the Solver data structure gives the number of eigenvalues requested.

Here it is used as an indicator of whether the mass and damping matrices need to be constructed.

The eigenvalues and eigenvectors are stored in the arrays Solver % Variable % EigenValues

and Solver % Variable % EigenVectors,

TYPE Variable_t

...

COMPLEX(KIND=dp), POINTER :: EigenValues(:)

COMPLEX(KIND=dp), POINTER :: EigenVectors(:,:)

...

END TYPE Matrix_t

andSolver % Variable % EigenVectors(i,:) gives the eigenvector corresponding to the eigen-

value i.
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Chapter 8

Dirichlet boundary conditions and

limiters

Except for special cases, basically any partial differential equation (PDE) model needs boundary con-

ditions. Often their definition is solver-specific in Elmer. This chapter focuses on constraints which are

referred to as the Dirichlet conditions.

8.1 Dirichlet constraints

In the context of variational formulations of PDE models different kinds of boundary conditions are met. In

connection with the second-order PDE models, boundary conditions of Dirichlet type refer to cases where

the value of the field is set on the boundary. In engineering literature these are also knows as the essential

boundary conditions. The other types of boundary conditions involve derivatives of the solution and often

correspond to prescribing a flux or force on the boundary. They are referred to as the Neumann bound-

ary conditions or natural boundary conditions. More general boundary conditions of Robin type are also

possible. For problem-specific examples of them the reader is directed to the Models Manual.

Technically the Dirichlet conditions in ElmerSolver are set through manipulating only the values of the

linear system entries rather than the structure of the linear system. To be more specific, in setting the degree

of freedom with index i, the ith row of the matrix is set to be zero, except for the diagonal entry which is set

to be unity. When also the corresponding entry of the right-hand side (RHS) vector is set to have the desired

value, the solution will satisfy the Dirichlet condition.

A handicap of the procedure described is that the symmetry of the original matrix is not maintained.

This may affect the applicability of linear system solvers. There are two remedies to ensure that the matrix

remains symmetric. The column may also be zeroed except for the diagonal entry and the contribution of

the known values may be subtracted from the RHS vector. The second option is to eliminate all the rows

and columns related to the known values. This reduces the size of the matrix but has an additional cost as a

secondary matrix is created and the values are copied into it.

The standard Dirichlet conditions are given by referring to objects which have a lower dimension than

the leading dimension in the geometry definition, i.e. for 3D problems values are usually fixed only at 2D

faces. The Dirichlet conditions may hence be set for the degrees of freedom of existing boundary elements.

Additionally Dirichlet-like conditions may be set for a set of nodes that is created on-the-fly. It is possible

also to set Dirichlet-like conditions for bodies also. This may be particularly useful when the constraint is

only conditional.

Sometimes a Dirichlet condition should depend on other variables in a way which defines whether or not

to apply the condition at all. For example, the temperature at a boundary might only be defined in the case of

inflow, while for outflow giving the temperature would not be physically justified. For this kind of purposes

the user may define an additional real-valued variable that depends on the variable itself. Then, the Dirichlet

condition can be applied conditionally in cases where the additional variable has a positive value.

Simulation
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Set Dirichlet BCs by BC Numbering Logical

By default the Dirichlet conditions are set in the order that they just happen to appear in the

boundary element list. This is fine when there are no conflicting boundary conditions. However,

when such is the case the user may want to control the order of the conditions – knowing that

the last Dirichlet condition always prevails. This flag enforces the BCs to be set in the order of

boundary condition numbering entered in the sif file.

Boundary Condition bc id

Target Boundaries(n) Integer

The set of boundaries on which the Dirichlet conditions will be applied.

Target Nodes(n) Integer

Sets pointwise conditions on-the-fly. These points are referred via the absolute indexing of the

nodes.

Target Coordinates(n,DIM) Real

Sets pointwise conditions via transforming the coordinate values into nodal indices correspond-

ing to the nearest nodes at the time of the first call. Target groups defined by Target Boundaries,

Target Nodes, and Target Coordinates should not reside in the same boundary con-

dition definition.

Varname Real

The value of each variable which has an active equation associated may be set by giving its value

in a boundary condition section. If the variable name is not listed in the keyword listing, the user

should also define the value type which is always Real.

Varname i Real

For multicomponent fields the Dirichlet condition may be set for each field component sepa-

rately.

Varname Condition Real

The Dirichlet condition related to the variable is set to be active only when the condition variable

is positive.

Varname {e} i Real

This keyword is used to define the vector g so that its tangential trace g ×n is approximated by

uh × n, with uh the edge element interpolating function corresponding to the solver variable.

The value of this keyword defines the components gi, i ∈ {1, 2, 3}, with respect to the global

Cartesian coordinate system. For the edge finite elements see the appendix F.

Varname {e} Real

If the edge finite element has only degrees of freedom which are associated with element edges,

this keyword can be used to define a scalar field ĝτ so that the values of the prescribed degrees

of freedom are computed as (cf. the appendix F)

D =

∫

Eij

[g(x) · τ (x) + ĝτ ]φ(x) ds,

with Eij an element edge. This keyword should not be used if additional degrees of freedom

associated with the element faces are present (that is, this feature should not be used for edge

elements of the second degree or edge elements from the optimal family).

Varname {f} i Real

This keyword is used to define the vector g so that its normal trace g × n is approximated by

uh × n, with uh the face element interpolating function corresponding to the solver variable.

The value of this keyword defines the components gi, i ∈ {1, 2, 3}, with respect to the global

Cartesian coordinate system. For the face finite elements see the appendix F.

The Dirichlet-like conditions for bodies. It is also possible to set the values of an exported variable with

exactly the same logic.
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Body Force body force id

Varname Real

The setting of Dirichlet-like conditions for the whole body follows the same logic as for the

boundaries. When the body force definition is assigned to a body, the variable values will be

fixed as defined.

Varname Condition Real

The conditional Dirichlet-like condition may also be given for bodies.

The following may be used in conjunction with the Dirichlet conditions to affect the setup of the linear

system equation.

Solver solver id

Linear System Symmetric Logical True

Make the matrix symmetric by eliminating the known values from the RHS and by zeroing the

appropriate matrix entries.

Before Linsolve "EliminateDirichlet" "EliminateDirichlet"

Creates the secondary matrix of a reduced size by eliminating Dirichlet conditions and passing

this to the linear system solver.

8.2 Soft limiters

The user may set soft lower and upper limits to the values of the field variable. For example, concentration

can never be negative and hence a zero lower limit could be applied for it. The limits are applied in an

iterative manner defining a contact set where Dirichlet-like conditions are applied. A node is included in the

contact set when its value passes the limits, and a node is released from the contact set when the nodal load

related to it is negative (or positive). The limiters may be applied to both boundary conditions and bodies.

Solver solver id

Apply Limiter Logical True

Activates the search for limiters and also activates the computation of nodal loads.

Limiter Value Tolerance Real

Defines the tolerance of the field value by which a node is added to the contact set.

Limiter Load Tolerance Real

Defines the tolerance of the nodal load to determine whether a node is removed from the contact

set.

Limiter Load Sign Negative Logical

The default sign used for determining the contact set is derived from the default discretization of

the Poisson equation. If the equation would be multiplied by −1, the load would also change its

sign. With that in mind, a possibility to influence the rules is given with this keyword.

Boundary Condition bc id

Varname Lower Limit Real

The lower limit of field variable.

Varname Upper Limit Real

The upper limit of field variable.

Body Force body force id

Varname Lower Limit Real

The lower limit of field variable.

Varname Upper Limit Real

The upper limit of field variable.
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Chapter 9

Enforcing shared conditions between

boundaries

Special classes of boundary conditions arise from treating constraints that involve two boundaries si-

multaneously. For example enforcing the periodicity of the solution is considered here. We also consider

conditions relating to the application of the mortar finite element method, which offers a general strategy to

approximate the solution continuity across a shared boundary when the meshes of two independently dis-

cretized bodies are not conforming on the shared boundary (that is, the locations of the mesh nodes do not

coincide on the shared boundary).

Historically the implementation of periodic boundary conditions in Elmer has been based on projec-

tors which are derived directly using the interpolation scheme. However, over the time the development

has evolved towards mortar finite element strategies which lead to projectors based on weak formulations.

Currently both approaches are still used but the mortar finite element approach should be employed when

striving for the best possible accuracy over nonconforming meshes.

On the other hand, for conforming boundaries one can do one-to-one mapping between degrees of free-

dom on the two boundaries. These enable the use of elimination prior to solving the equations. This has

the advantage of decreasing the size of the problem instead of increasing it by the use of constraints. So if

possible, the conforming boundary approach should be numerically the most favorable one.

9.1 Periodic conditions

Periodic BCs may be considered to be a special case of Dirichlet conditions where the fixed value is given as

a linear combination of other unknown values. The periodic boundary conditions in Elmer are very flexible.

In fact they may even be antiperiodic.

Boundary Condition bc id

Periodic BC Integer

Periodic boundaries generally come in pairs. This command defines a pointer to another bound-

ary condition definition which is considered to be the counterpart.

Periodic BC Explicit Logical

Sometimes the implicit periodic BCs (the default) leads to convergence problems. It also com-

plicates the matrix structure by adding additional connections. Then the explicit type of periodic

conditions may be a good alternative. Note that it requires iteration even for a linear operator.

Periodic BC Translate(3) Real

The correspondence of the periodic boundaries should be obtained by performing three different

operations: translation, rotation and scaling. This generality is not usually needed and therefore

default values are usually appropriate. For translation the default translation vector is obtained

via moving in the normal direction of the primary boundary until the target boundary is hit. If

this is not desired, the user may give another translation vector using this keyword.
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Periodic BC Rotate(3) Real

By default no rotation is performed prior to the construction of the constraints. This keyword

may be used to give the angles of rotation. There is no automatic rotation, but there is some

detection of the correctness of the rotation.

Periodic BC Scale(3) Real

This keyword may be used to give a scaling vector if this is desired. If this is not given, an

isotropic scaling will be used to map the bounding boxes of the two boundaries to the same size.

Periodic BC VarName Logical

The user should define the variables that are to be periodic in nature. This is done by attaching

their names into logical expressions following the string Periodic BC.

Anti Periodic BC VarName Logical

The variable may be also antiperiodic, i.e. the absolute value is the same but the sign is different.

Then this should be used instead.

Periodic BC Use Lagrange Coefficients Logical

By default the periodic BCs are handled by elimination. The other alternative is to use a Lagrange

multiplier. This strategy is enforced by setting this keyword to be True.

9.2 Mortar conditions

The motivation for implementing mortar finite element framework into Elmer came from the simulation of

rotating electrical machines. There the continuity of solution between a rotor and a stator must be approxi-

mated. Both parts usually have their own fixed meshes that move with respect to each other. The principal

complication associated with the moving mesh approach is that the finite element meshes are then generally

non-matching across the model boundary which represents the interaction surface Γ shared by the rotating

and surrounding bodies. The usual continuity requirements to obtain a conforming finite element approxi-

mation over the entire domain cannot thus be satisfied. To this aim a monolithic discretization strategy based

on the mortar finite element method has been implemented.

The implementation of the mortar conditions in Elmer is related to the periodic boundary conditions in

that some common routines and techniques are shared. The mortar conditions may be dynamic, whereas the

periodic conditions are assumed to be fixed.

The mortar finite element formulations approximate the solution continuity via a weak formulation and,

in the case of a scalar unknown, lead to evaluating integrals of the type
∫

(u1 − u2)φS dΓS = 0 (9.1)

where the integration is over the element(s) on the slave (non-mortar) side, u1 is the value of the matched

variable on the slave side and u2 is the variable on the master (mortar) side. In addition, φS is a test function.

The integration is accomplished in practice by searching the locations of the integration points within the

mortar elements. If the set of the test functions coincides with the trace space of admissible solutions on the

non-mortar side, the degrees of freedom at each side are related via the linear equations

Mu1 = Nu2, (9.2)

with
Mij =

∫
φj
Sφ

i
S dΓS ,

Nij =
∫
φj
Mφi

S dΓS .
(9.3)

All the integration points of the non-mortar side must be locatable in the set of mortar elements. There-

fore the mortar boundary may be larger than the non-mortar boundary but never vice versa. To enforce the

constraint in a monolithic manner a constraint matrix block

C = [M −N ] (9.4)

is constructed. This constraint block is then added to the original system by using the Lagrange multipliers

as [
A CT

C 0

] [
u
λ

]

=

[
f
0

]

. (9.5)
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Re-parametrization of the shared boundary

When we are studying problems where the potential contact surface (or line) is known, a re-parametrization

of the surface meshes may be useful. For example, in the case of a cylindrical surface the element faces may

be mapped from (x, y, z) coordinates to (θ, z) coordinates since the r-coordinate should be the same by con-

struction. Finding the counterparts of non-mortar points from the mortar side becomes then somewhat easier

as we avoid the problem of two mismatching polygons. Similarly, (r, z) coordinates may be used instead

of (x, y, z) coordinates when the solutions on two boundaries which are planes in the (r, z) coordinates are

matched. The similar strategy works also for constraints that need to be expressed at certain coordinate level.

For example, we may use the (x, y)-plane to express the constraints instead of the full 3D coordinates.

When using the reduction to (θ, z) plane, we may also consider periodicity of the projector. Assuming

that the mortar nodes are in interval [θmin, θmax] such that 2π/(θmax − θmin) is an integer we may always

map the angle φ to the existing interval from anywhere in [0, 2π]. Similar repeated projector could basically

also be taking place in translation between two planes if their structure would be periodic.

Integration of mortar projector

When performing the integration, there are several ways how the integration and search is carried out. Which

one is optimal depends greatly on how the mesh is configured.

If the mesh is basically conforming and the need for the projector is caused by the internally created

discontinuity (using keyword Discontinuous Boundary), we have the luxury that there is an exact

correspondence between a master and a slave element. Then an exact projector may be computed with a

minimal effort. By default the projector is of mass matrix type but also a diagonal projector may be created

by mass lumping. This branch of projectors is invoked if the corresponding Mortar BC is given the value

zero. This approach works also in parallel, at least if the boundary halo is saved during the partitioning

process.

In some cases of rotating machines created by extrusion we have the luxury that the nodes are only at

specific coordinate levels. This makes it easier to have an accurate integration over the intersection of the

elements. In the current implementation of Level Projector it is assumed that the surface elements

are quadrilaterals and two of the element sides remain parallel. The integration is performed by checking

whether any of master and slave elements cross each other and creating a temporal triangulation for their

intersection. This is a loop of complexity O(N2) but for typical cases it is still not a bottle-neck. This

approach may work in parallel when using a tailored partitioning algorithm that distributes the elements

such that they by construction will be in the same partitioning as their counterparts.

A generic approach is used if we have no simplifications that could be utilized when integrating over

the non-mortar elements. The integration utilizes oct-tree based search algorithm. Unfortunately the inte-

gration is not accurate (a temporal triangulation for improved integration accuracy is not generated in this

case) which may result to accuracy and convergence problems when treating the resulting constrained linear

system. Currently there is no way to perform parallel communication when performing the integration.

Biorthogonal basis for mortar projectors

There is a possibility to use biorthogonal basis functions when creating the mortar projector with some

integrators. The biorthogonal basis is advantageous since either the non-mortar or mortar degrees of freedom

may then be eliminated from the linear system, thereby significantly simplifying the solution.

Contact mechanics

ElmerSolver library includes some generic features for contact mechanics. The functionality relies heavily

on contact mortar projectors which are used to ensure the match on the contact surface. The contact pressure,

on the other hand, is used to determine the active contact set quite similarly as for the case of soft limiters.

The contact features are applicable to all elasticity equations having the displacement degrees of freedom

at each node. The contact mechanics is still under development and the documentation is therefore not

complete. There are severe limitations when it comes to parallel operation and conflicting contact conditions

on different boundaries.
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Keywords for mortar projector

Solver solver id

Apply Mortar BCs Logical

Enforces the application of mortar BCs. This is not by default set to be True partly because at

the time of writing this machinery is still under development. If this flag is set to be true, then

the mortar BCs are applied to the variable of this solver. Otherwise the mortar projectors are not

applied to the solver variable.

Mortar BCs Additive Logical

When different mortar conditions share degrees of freedom, it makes sense to sum up the rows

in the different constraints together in order to not have conflicting constraints. Each degree of

freedom can only fill one constraint at the time. The effect of conflicting constraints may be seen

in inferior operation of the linear solvers.

Edge Basis Logical

Activates the use of edge element basis functions for the mortar conditions.

Boundary Condition bc id

Mortar BC Integer

This is set for the non-mortar (slave) boundary to refer to the boundary condition index of the

corresponding mortar boundary. The mortar boundaries always come in pairs, but the settings

are only given in the context of the non-mortar boundary.

Rotational Projector Logical

The interface lying in 3D space may be flattened to 2D plane by several ways. Using the flattened

geometry results to better interpolation accuracy since faceting is not needed. This keyword

activates the use of the (θ, z) coordinate system when computing the projector. The angle may

have a discontinuity around 180 degrees. The Level Projector option offers a special way

to deal with cases that make a full circle.

Cylindrical Projector Logical

Similar to Rotational Projector except there is automatic fitting to get a cylinder surface

such that the cylinder axis is determined via computation. Also, if the angle is not full 2π, it will

not be enforced.

Anti Rotational Projector Logical

As the previous one but if the module or the periodic cycle is odd use a negative coefficient in

enforcing the periodicity. This way the mortar projector becomes antiperiodic.

Sliding Projector Logical

Perform dimensional reduction so that only two of the coordinates are accounted for. By default

this means mapping to (x, y) plane.

Anti Sliding Projector Logical

As the sliding projector except if the mapping of the sliding projector cycle is odd use a negative

coefficient in the mortar projector.

Radial Projector Logical

Use the (r, z) coordinate system when computing the projector.

Mortar BC Scaling Real

The coefficient with which the values are scaled when enforcing continuity over the mortar

interface. The default is one.

Level Projector Logical

Level projector assumes that the re-parametrized surfaces consist of quadrilaterals with two par-

allel edges at constant z-levels. This projector may use either strong (interpolation based) or

weak strategies to find the constraints for edge and nodal degrees of freedom. There are many

additional keywords that apply to the level projector.
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Plane Projector Logical

This is similar to Level Projector except the plane over which the projection will be made

is fitted automatically such that the best fit of a plane associated with either slave or master

boundary will be used.

Level Projector Nodes Strong Logical

This uses strong (interpolation based) projector for the nodal degrees of freedom. The default is

False, i.e. a weak projector is used.

Level Projector Plane Edges Strong Logical

For extruded geometry some edges will always be aligned with the plane. For these edges it

seems natural to use only the other edges on the same constant z-plane to create the projector.

Then this keyword should be set True. The default is False.

Level Projector Extruded Edges Strong Logical

The extruded edges are the ones that are created when the 2D mesh is extruded into the third di-

rection. So they are aligned with the z-axis. This keyword controls how the edge element degrees

of freedom are treated in the z-direction. Using the default value False is recommended.

Projector Skip Nodes Logical

The level projector may skip to create the projector for the nodal degrees of freedom. This would

also be the choice when there are no nodal degrees of freedom for the solver. Also there could

be a physical reason that would make them obsolete.

Projector Skip Edges Logical

Also the edge element degrees of freedom may be skipped. They will be treated by default if

there are degrees of freedom associated with the edges.

Save Projector Logical

Save the projector values to an external file for mainly debugging purposes. Default is False.

The following keywords are related to the use of biorthogonal basis.

Biorthogonal Basis Logical [False]

This will enable the elimination of slave degrees of freedom by making the constraint matrix

block corresponding to the slave entries diagonal.

Biorthogonal Dual Master Logical [True]

This option also makes the constraint matrix block corresponding to the slave entries diagonal.

The value of this keyword defines whether the nodal basis or the biorthogonal basis should be

used on the master side. The default is the latter.

Biorthogonal Dual LCoeff Logical [False]

Here nodal basis functions are used for expressing the traces of the fields to be matched, while

the Lagrange multiplier is treated with the biorthogonal basis functions.

The following keywords are related to the use of contact mechanics.

Solver solver id

Apply Contact BCs Logical

Enforces the solver to apply contact mechanics conditions for the boundaries where the flag is

given. When doing contact mechanics, it may be useful to set Linear System Residual

Mode = Logical True so that only the difference is solved making the solution process

more robust.

Boundary Condition bc id

Contact Depth Offset Initial Real

Sometimes the contact set is initially empty which may result to rigid body motion making the

system indefinite. Therefore it may advantageous to introduce some initial offset to the contact

set detection such that the initial contact set is increased for the first iteration.
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Contact Depth Offset Real

This has the same effect as the previous one but is used for each iteration. This could be used to

model a tight fit of cylinders, for example.

Contact Active Condition Real

This keyword may be used to enforce active contact somewhere. For positive values the contact

is active, otherwise the flag has no effect.

Contact Passive Condition Real

This keyword may be used to enforce no-contact somewhere. For positive values the contact is

passive, otherwise the flag has no effect.

Stick Active Condition Real

This keyword may be used to enforce active stick condition somewhere. For positive values the

contact is active, otherwise the flag has no effect.

Stick Passive Condition Real

This keyword may be used to enforce slip contact somewhere. For positive values the slip con-

tact, otherwise the flag has no effect.

Static Friction Coefficient Real

This keyword is used to give the static friction coefficient on a surface. The magnitude of the

tangential force will then be the friction coefficient times the normal contact force.

Dynamic Friction Coefficient Real

This keyword is used to give the dynamic friction coefficient on a surface.

Stick Contact Coefficient Real

This keyword is used to give the stick coefficient that allows a small tangential movement even

if stick model is used by adding an entry to the diagonal of the linear constraint.

Contact Velocity(dim) Real

For steady state contact the velocity cannot be retrieved from history. Then the user may give the

relative velocity between the slave and master surfaces. The velocity magnitude is not important

for linear friction models but the direction of the velocity is used to set the direction of the friction

forces.

Normal-Tangential VarName Logical

If the normal of the surface is not suitably aligned with some coordinate direction, it is rec-

ommended to use a normal-tangential coordinate system except for the tie contact. Here the

Varname would typically be Displacement.

Contact Active Set Minimum Integer

If the contact set is empty, there may be numerical problems. Therefore a minimum size for the

contact set may be defined. Then the requested number of nodes with the shortest distance are

added to the contact set.

Tie Contact Logical

Contact type where the contact set is active on the whole surface. Hence there is no testing

performed on the direction of the contact pressure.

Stick Contact Logical

Contact type where the tangential contact set is the same as the normal contact set.

Slide Contact Logical

Contact type where the tangential contact set is empty.

Friction Contact Logical

Contact type where the tangential contact set is tuned after some conditions. This flag is not fully

operational yet.

Contact Type String [stick, tie, friction, slide]

Instead of using the above flags to set the contact type, the user may also give a string that

chooses between the different options.
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9.3 Conforming conditions

Conforming boundary conditions may be used if we know by construction that there is a direct node-to-

node mapping, or edge-to-edge mapping on the two boundaries. In practice we use a simple search and

identify node pairs by their coordinates. For edges we use the center of the edge to identify edge pairs. The

conforming mapping can be successful if all degrees of freedom can be mapped uniquely.

Internally conforming boundary conditions use an additional permutation table that maps the original

nodes (or edges) to the list of reduced nodes (or edges). This permutation is applied always when node

indexes or edge indexes are referred to. For example, the gluing routines that add local elemental matrices

to global matrices check the conforming permutations.

In practice we make a mapping

i := Mesh % PeriodicPerm(i)

and use this new index for global matrices.

The limitation of the conforming permutation is that it must apply to all components of a vector field, or

none of them. For example, we cannot have Navier-Stokes equations with periodic velocity and non-periodic

pressure. However, we may have antiperiodicity or different orientation for the edge elements.

Keywords for conforming BCs

Solver solver id

Apply Conforming BCs Logical

Enforces the application of conforming BCs for this solver. If this flag is set to be true, then the

conforming BCs are applied to the variable of this solver. Otherwise the mortar projectors are

not applied to the solver variable.

Boundary Condition bc id

Conforming BC Integer

This defines a pair of boundaries similarly as for the case of mortar finite elements. The require-

ment is that the two boundaries really should be conforming.

Most of the flags related to the type of assumed continuity are exactly the same as for mortar BCs.

At least the following ones may be used with conforming BCs as well assuming that the mesh is

otherwise suitable.

Rotational Projector Logical

Radial Projector Logical

Axial Projector Logical

Sliding Projector Logical

Cylindrical Projector Logical

Anti Rotational Projector Logical

Anti Radial Projector Logical

Anti Axial Projector Logical

Mortar BC Enforce Overlay Logical

Projector Skip Nodes Logical

Projector Skip Edges Logical
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Linear systems with constraints

10.1 Introduction

There are a number of cases where a set of linear equations under additional constraints has to be solved.

For example, in conjunction with the mortar finite element methods the application of the mortar projection

introduces additional constraints that are dealt with introducing Lagrange multipliers.

There are two different ways to treat the linear constraints. The first one is to use a large monolithic

system where new constraint equations are added. This is generally applicable but may result in numerically

difficult problems. The other approach uses elimination to reduce the size of the system. It is a numerically

favorable method but has some limitations related to its generality.

10.1.1 Solving linear systems with constraints

The Lagrange multiplier procedure leads to a matrix that is indefinite. Any Krylov method capable of

handling indefinite matrices should be applicable to the constrained system. In practice the GCR and

BiCGStab(L) methods in Elmer has been used successfully in applications. The constraint equations can

be effectively preconditioned using ILU (for example).

In the case of (9.5) the current implementation in Elmer uses a preconditioning matrix

P =

[
P0 CT

C 0

]

(10.1)

For the ungauged edge element discretization of the A-V formulation we select

P0 = I (10.2)

for magnetostatic cases, and

P0 =

[
I 0
0 AV

]

(10.3)

for dynamic cases, with AV the diagonal block corresponding to the scalar potential of the A-V formulation.

As we are not using any gauging for the curl-curl systems currently, the direct solvers are not available for

solution of these systems.

Currently the mortar projector assumes that each node on the master boundary can be found in the slave

boundary of the same partition. This limits the current parallelization strategy such that the ownership of

the mortar boundaries must be carefully considered when making the partitioning. If the ownership issues is

honoured, standard iterative parallel linear solvers may be used for solving the constrained system.
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10.1.2 Eliminating linear constraints

Sometimes the constraint block C allows for applying an elimination procedure. The elimination may be

highly beneficial since it removes the saddle-point nature of the problem and makes it much easier to solve

with standard linear solvers.

10.2 Keywords related to treatment of linear constraints

The following keywords should be put in the solver section of the solver in question.

Apply Mortar BCs Logical

This flag introduces mortar BCs that results in linear constraints. More information on mortar BCs are

provided in Section 9.2.

Apply Contact BCs Logical

This flag introduces contact BCs that results in linear constraints.

Export Lagrange Multiplier Logical

If linear constraints are involved, this defines whether the related Lagrange multipliers should be saved

as a field. Often this field has a useful physical interpretation.

Lagrange Multiplier Name String

Name of the Lagrange multiplier to be exported.

Use Transpose values Logical

Should we use the constraint matrix in a transposed form.

Nonlinear System Convergence Without Constraints Logical

Taking into account the linear constraints (i.e. the Lagrange multipliers) in the nonlinear system norm

may have a large impact on the value. Often it is preferable just to study the norm of the solution and

neglect the additional dofs associated with the constraints. This is enforced by setting this keyword to

True. The same effect is obtained also by setting NonLinear System Consistent Norm to

True.

Eliminate Linear Constraints Logical

This specifies whether the Lagrange multipliers are eliminated. A sufficient condition for the elimina-

tion is that the slave part of the constraint matrix is diagonal. This may be obtained by either using a

biorthogonal basis with the accurate integration or in conjunction with a discontinuous boundary.

Eliminate Slave Logical

This enforces also the elimination of slave degrees of freedom using the constraint equations. This is

not possible if the constraint matrix is not diagonal (for example when using Biorthogonal Dual

LCoeff = True), or there are diagonal entries in the constraint equation rows.

Eliminate From Master Logical

Instead of eliminating the Lagrange multiplier using the slave part use the master part. This could be

applicable if we use the keywords Discontinuous Boundary and Mortar BC Diag and the

constraint equation involves the diagonal. In this way both the Lagrange multiplier and the slave dofs

can be eliminated.
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Solving constraint modes

11.1 Introduction

Elmer includes a possibility to compute constraint modes associated with a selected part of the boundary

referred to as the attachment boundary. These are solution modes that are obtained by successively applying

a unit field value to each degree of freedom associated with the attachment boundary. The results may be

used for model lumping, for example. Together with solving eigenproblems where the degrees of freedom

associated with the attachment boundary are fixed, the constraint modes may be employed to perform the

Craig-Bampton component mode synthesis.

11.2 Keywords related to constraint modes analysis

Solver solver id

Constraint Modes Analysis Logical

When true, this instructs Elmer to compute constrained modes using the field equation of the

solver.

Constraint Modes Lumped Logical

This defines whether the constraint modes are lumped such that all the dofs associated with the

attachment boundary are given the fixed value, or whether all the dofs have a separate permu-

tation. The default is that the system is not lumped and each dof has a separate permutation.

Setting this flag to True enforces lumping.

Constraint Modes Fluxes Logical

Computes fluxes between the constraint modes. The fluxes are used to determine a conductivity

matrix between the constraint modes. For example, if the equation in question is electrostatic

equation, the fluxes will be surface charges, and the resulting lumped matrix is the capacitance

matrix.

Constraint Modes Fluxes Symmetric Logical

This is used to assume that fluxes between constraint modes are symmetric in order to enforce

the symmetry of the conductivity matrix.

Boundary Condition bc id

Constrained Modes Varname String

This keyword can be used to specify the attachment boundary and to specify that the field variable

Varname is used for obtaining the constraint modes.
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Working with nodal loads

Usually source data for equations are specified as spatial fields. Elmer then internally transforms these

definitions to entries of the right-hand side vector by following the weak formulation of the problem. This

is convenient as the specification of data is independent of the underlying mesh.

However, it may sometimes be attractive to define discrete loads directly as entries of the right-hand

side vector. Similarly, after the solution of the discrete system has been accomplished, it may be useful to

consider discrete reactions which occur at nodes to maintain the balance. Both options are supported by

Elmer. In addition, integrals of the basis functions can be computed to generate weights which can then be

employed to reproduce a spatial data field approximately corresponding to the entries of the given right-hand

side vector.

12.1 Setting nodal loads

Similarly to the Dirichlet constraints one may also set nodal loads, i.e. the entries of the right-hand side

vector in the linear system. This has to be done with care as proper values generally depend on the mesh.

There are anyhow some uses for this option. For example, in multiphysical couplings it may sometimes be

a good choice to transfer the forces directly in the nodal form as this is the consistent way to compute the

forces resulting from the solution of the discrete system.

Body Force bf id

Varname Load Real

This can be used to specify directly the entries of the right-hand side vector in the linear system.

The nodal loads are given exactly as the Dirichlet conditions except that a string Load is attached

to the name of the variable occurring in the place of Varname.

12.2 Computing nodal loads

It is possible to evaluate the nodal loads after the solution has been computed. This however requires that

the original matrix A0 is maintained without eliminating the rows and columns that correspond to the known

Dirichlet conditions. Then the nodal forces may be computed from

f = A0x− b. (12.1)

It should be noted that the nodal values depend on the mesh. If SI units are employed, for heat equation they

are expressed in Watts and for electrostatic equation in Coulombs, for example.

Solver solver id

Calculate Loads Logical True

This keyword activates the computation of nodal loads. The resulting values will be saved to

the variable the name of which is derived from the primary variable name by adding the suffix

Loads to it.
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12.3 Computing nodal weights

While the computation of the nodal loads often gives the best approximation of boundary fluxes, for example,

they are however in cumbersome units as the nodal loads depend on the mesh. It may thus be more ideal to

transform the nodal loads into a distributed field. To this aim there is a possibility to compute the values of

the integrals

wi =

∫

Ω

φi dΩ (12.2)

where φi is the basis function associated with the mesh node i. When the basis forms a partition of unity, the

sum of all weights wi gives the volume (or area) of the domain occupied by the elements. An approximate

reproduction of the data field ḡ corresponding to the nodal load f may be obtained as ḡ = fi/wi.

Solver solver id

Calculate Weights Logical True

This keyword activates the computation of the nodal weights wi.

12.4 Energy norm

When the initial matrix is known, the square of the energy norm of x (that is, the energy inner product of x
with itself) may be computed as

E = xTA0x. (12.3)

If the matrix is complex-valued, then this definition is generalized as

E = xHA0x, (12.4)

where xH is the conjugate transpose of x. In this case E equals to the square of a norm of x when A0 is a

Hermitian matrix, satisfying AH
0 = A0.

Solver solver id

Calculate Energy Inner Product Logical True

This activates the computation of the energy inner product. The result E will be written to the

Simulation block with name res: VarName Energy inner product so that the

SaveScalars subroutine may be used to save the result. This computation may only be performed

when the loads are also computed.

CSC – IT Center for Science



Chapter 13

Generic solver utilities

When the solvers use the default procedure for solving the partial differential equations, there are a

number of generic features that may be used with any model. This chapter describes these features.

13.1 Solver activation

There is a large number of different ways how solvers need to be activated and deactivated. Mostly these

needs are related to different kinds of multiphysical coupling schemes. There is also a large number of

auxiliary solvers that are needed, for example, only when results are saved or inspected. In the Solver

section one may give the following keywords.

Exec Solver String

The value options are here never, always, before all, before timestep, after

timestep, before saving, after saving, after all. If nothing else is specified,

the solver is called every time in its order of appearance. The saving instance refers to the one defined

by Output Intervals which controls the saving of the results.

Exec Intervals Integer

This keyword gives an interval at which the solver is active. At other intervals the solver is not used.

This should have the same length as Timestep Intervals in the Simulation section.

Start Time Real

The start time after which the execution of the solver is started.

Stop Time Real

The stop time after which the execution of the solver is halted.

Exec Condition Real

Given this keyword, activate the solver only upon a positive value for the keyword.

13.2 Solver execution by a master solver

With special keywords a solver may activate the execution of another solver in a particular stage of the

solution procedure. Here the solver which performs the activation is called a master solver. The subroutines

of non-master solvers which are run during the execution of the master solver may be used for many different

tasks. For example, it can be a simple utility which manipulates the linear system associated with the

master solver before calling a linear solver. A non-master solver may also be run without trying to solve the

linear system assembled so that the stiffness matrices of both the master solver and the non-master solver

are available simultaneously. This option can be utilized to create a block-matrix construct which enables

applying a linear solver to the fully coupled system of two physical models; see the Chapter 14.
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Since the execution of the non-master solvers is controlled by the master solver, the standard solver

activation procedure controlled by the keyword Exec Solver should not be the primary way of guiding

the execution of the non-master solvers. Therefore the solver section associated with a non-master solver

usually contains the command

Exec Solver = "Never"

so that the special keywords given in the solver section of the master solver can fully control the execution of

the non-master solvers. The values of these keywords are arrays of integer identifiers to specify what solvers

are run as non-master solvers, while the keyword itself specifies a stage when the listed non-master solvers

are run. These keywords are listed as follows

Pre Solvers Integer

With this keyword the non-master solvers are executed when starting the execution of the master solver

(the execution of the non-master solvers is triggered by the subroutine DefaultStart within the

master solver module).

Slave Solvers Integer

This keyword can be considered to offer an alternate for the keyword Pre Solvers. If both Slave

Solvers and Pre Solvers are given, the non-master solvers specified with Slave Solvers

are executed first.

Nonlinear Pre Solvers Integer

This keyword is intended to provide a way to trigger the execution of the non-master solvers (within the

subroutine DefaultInitialize) when starting the system assembly to compute a new nonlinear

iterate. The associated non-master solvers should not be used to alter the linear system of the master

solver, since the linear system is initialized afterwards.

Assembly Solvers Integer

With this keyword the non-master solvers are executed immediately after the linear system of the

master solver is initialized by zero values (within the subroutine DefaultInitialize). This thus

provides an option to manipulate the linear system constructed within the master solver.

Nonlinear Post Solvers Integer

With this keyword the non-master solvers are executed after the linear system of the master solver has

been solved (within the function DefaultSolve). Therefore the execution is triggered again by

each nonlinear iteration.

Post Solvers Integer

This keyword provides a way to execute non-master solvers just before exiting from the master solver

(the triggering function is DefaultFinish).

13.3 Variable names

The variable name is presented in the Solver section by keyword Variable, for example

Variable = Varname

This name is used when setting Dirichlet conditions and initial conditions. Also the name is used as a basis

for other features appending it with suffixes such as Load, Condition and Passive, described later in

this chapter.

Sometimes one may want to rename the components of the primary variable. This may be done by

defining the component names in the brackets. For example the command

Variable = Flow[Velo:2 Pres:1]
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declares that variable Flow consists of Velo with two components and Pres with one component. If

the number of components is 2 or 3, the variable will be treated as a vector when saving the results for

visualization.

If one does not require output for a certain variable, one may prevent it with the -nooutput option,

e.g.

Variable = -nooutput Dummy

One may also use the -dofs option to define the number of components in a variable, e.g.

Variable = -dofs 3 Flow

By default variables are assumed to be field variables. However, they may also be scalars which have

globally the same value. These variables may be introduced with the -global option, e.g.

Variable = -global Frequency

After defining a global variable, it may be used similarly to time in giving dependencies.

These different options should not be fully mixed.

13.4 Exported and derived variables

The intent of exported variables is to enable automatic allocation and treatment of additional data that may

usually be derived from the primary fields. Often this is done within a solver and many times the machinery

is used transparently from the user.

Each solver that has a primary variable (defined by the Variable keyword) may also have exported

variables. It is in principle way to define easily additional variables within the same solver. By default The

exported variable inherits the permutation of the primary variable. The declaration would simply be

Exported Variable 1 = myvar

However, it is also possible that the variable is of different type. The currently allowed types include

• -nodal: default field associated with nodal finite elements

• -global: variable is defined globally (state variable)

• -elem: variable having a constant value within the element

• -dg: variable that is defined separately for nodes in each elements

• -ip: variable existing on the default integration points of the solver

For code developers it is worth noting that the permutation for the different variable types is quite different

than for standard ones.

• -nodal: for node p the degree of freedom is Perm(p)

• -global: no permutation associated

• -elem: for element t the global dof is Perm(t)

• -dg: for element t and node p the global dof is Perm(Element % DGIndexes(p))

• -ip: for element t and integration point p the global dof is Perm(t)+p

The exported variable may be masked such that it will be defined in a domain smaller than the primary

variable. Note that the domain may not be larger! This is achieved with a given mask ‘‘secname:

maskname’’
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Here the secname can be any of body, body force, material, boundary condition and

maskname refers to any keyword. The mask may be either logical keyword and then its value will be used.

If the keyword is non-logical its presence will be used. So one can use some suitable keyword for masking

purposes. For example,

The exported variable types may in most parts be used also in the ListGet operations. The main

limitation is that the -ip variable can only have dependencies when the ListGetElementReal routine

is used and the GaussPoint is given as the optional parameter. The ListGetReal routine does not

know how to use the Gaussian points to return nodal values. So to fully use the features one needs to change

the calling routines.

Upon request the exported variables may also be defined by the user in the Body Force and Boundary

Condition sections. The operation is set behind keywords to circumvent unwanted definitions. The ex-

ported variables also follow the initial conditions.

Also upon request, the exported variables may be made transient, and optionally be numerically differ-

entiated to obtain the first or second derivatives.

There can also be derivatives of the primary variable that are treated here since they are treated pretty

similarly as the exported variables.

Solver solver id

Exported Variable i -vartype Varname

A name for an additional variable created by the solver, i=1, 2, 3, . . .. The -vartype may be

any of nodal, global, dg, elem, ip.

Exported Variable i Mask Section: Maskname

An optional mask for defining the exported variable in a reduced domain.

Update Exported Variables Logical

Update the exported variable values of the current solver after leaving the iterative solution for

the next solver, i.e. in the steady-state iteration level.

Nonlinear Update Exported Variables Logical

Update the exported variables within the nonlinear solution to get the current iterate.

Calculate Velocity Logical

Calculate the simple first order time differential for the primary variable. Only applicable to

time-dependent simulations. Calculation is performed after each steady-state iteration.

Nonlinear Calculate Velocity Logical

As the previous keyword except calculation of the velocity is performed after each nonlinear

iteration.

Calculate Acceleration Logical

Calculate the simple second order time differential for the primary variable. Only applicable to

second order equation in time. Calculation is performed after each steady-state iteration.

Nonlinear Calculate Acceleration Logical

As the previous keyword except calculation of the acceleration is performed after each nonlinear

iteration.

VarName Calculate Acceleration Logical

Calculate the simple second order time differential of exported variable VarName creating new

variable VarName Acceleration. Also enforces the field to be transient automatically.

VarName Transient Logical

Make the exported variable VarName transient such that space is allocated for field values at

previous timesteps.

VarName Calculate Velocity Logical

Calculate the simple first order time differential of exported variable VarName creating new

variable VarName Velocity. Also enforces the field to be transient automatically.

VarName Calculate Acceleration Logical

Calculate the simple second order time differential of exported variable VarName creating new

variable VarName Acceleration. Also enforces the field to be transient automatically.
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13.5 Active and passive elements

In Elmer it is possible to define certain areas of the modeled geometry to be passive during the solution. This

feature also allows for deactivating and reactivating of the elements. Being a passive element means that

its contribution is not included in the global matrix assembly. One could, for example, model two separate

bodies heated with different heating power and connect them with a third structure only after suitable time

has elapsed. This all could be modeled within a single simulation.

The geometry of the whole system is meshed as usual, and the passive elements are only omitted in the

assembly of equations. The passive definition is done solverwise and elementwise. The former means that

for example the temperature may be passive and the displacements active at the same element. The passive

property of elements is defined in the Body Force section using a real valued parameter with the name

constructed from the name of the variable followed by Passive. When the parameter obtains a value

greater than zero, the element is passive.

Body Force body force id

Varname Passive Real

If this variable obtains a positive value, the element is set passive. Note that it is not possible to

control components of vector-valued variables separately.

13.6 Timing the solvers

Often it is of interest to time the performance of the different steps in the solution sequence. For that purpose

there are some keywords for activating timers for the solvers.

Solver solver id

Linear System Timing Logical True

This keyword activates the timing for the linear system.

Linear System Timing Cumulative Logical True

This keyword sums up the cumulative time used in solving the linear systems.

Solver Timing Logical True

This keyword activates the timing for the whole solver including iteration over nonlinear and

linear systems etc. The time used for assembly may roughly be estimated as the difference

between the linear solution time and the total time used in the solver.

Solver Timing Cumulative Logical True

As the previous one but sums up the cumulative time used in the solver.

13.7 Consistency testing of solvers

Each solver may be tested for consistency. The way the testing is performed is that it is assumed that the

correct solution will have a predefined norm. After the simulation has been carried out the computed norm

and predefined norm are compared. If they are the same with a given tolerance the test is assumed to be

passed.

The result of a test is outputted on the screen. Additionally a file named TEST.PASSED is saved in

the working directory. If all the tests of the case are passed then the number 1 is written to the file in ascii

format. If any of the tests fails then the number 0 is written to the file, correspondingly.

Reference Norm Real

The target norm for the solver. The computed norm is tested against this one.

Reference Norm Tolerance Real

The tolerance for testing. The default is 1.0e-6. A sloppier tolerance could be used if the case is known

to be sensitive against numerical fluctuations.
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Block-matrix construct to build tightly

coupled solvers

In Elmer the coupling of single-physics models is usually handled by using loosely coupled iterations.

If the physical coupling of the constituent models is strong, convergence problems may however occur

making the loosely coupled iterations inefficient. In the following we describe some options to build alternate

strongly coupled solvers which employ simultaneous updates of all constituent variables. This is achieved by

utilizing a block matrix construct which enables applying a linear solver to the fully coupled system. Such

solution strategy depends on the ability to perform a matrix-vector product with the coefficient matrix of the

fully coupled system. On the other hand, the idea of decoupling to obtain simpler linear algebra problems

can still be employed by utilizing block preconditioning strategies in the solution phase.

The simplest case to describe is the coupling of two models which are linear or linearized by Picard

iteration. The coupled system to be solved then has a natural block structure and can thus be written as

[
K N
D A

] [
u
v

]

=

[
f
g

]

, (14.1)

where the vectors u ∈ R
m and v ∈ R

p describe the approximations of the unknown fields. The coefficient

matrices K and A can be thought of as being available independently when the solution is attempted in

the standard manner by decoupling the equations and solving the resulting subproblems sequentially via an

iteration. The diagonal blocks of the fully coupled system matrix can thus be created by utilizing the single-

physics solvers. The generation of the off-diagonal blocks is a more specific task, since single-physics

models usually handle the interaction in a matrix-free manner without assembling the interaction matrices.

Ready coupling procedures already exist in order to generate the interaction matrices for certain appli-

cations, including some fluid-structure interaction problems in acoustics and the coupling of some structural

models. Except for the task of creating the interaction matrices, the utilities to construct a block matrix are

available as generic subroutines.

14.1 Automated creation fully coupled models

Setting up the fully coupled cases may be tedious. For that reason a special keyword that often does the trick

and eliminates the need to dig further has been introduced. The following keyword when given to a standard

elasticity solver can couple it with some fluid solvers that solve for pressure

Automated Fluid-Structure Coupling = Logical True

Likewise we may introduce coupling either with other elasticity solvers or a shell solver with the keyword

Automated Structure-Structure Coupling = Logical True

If the automated approach works, there might not be reason to read further.
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14.2 Creating a fully coupled model

If the example case of the coupling of two models were handled in the standard manner by decoupling the

equations, two solver sections should be defined in the solver input file. Two solvers sections are still needed

even though a strongly coupled solver is created to employ simultaneous updates of both the variables. Then

one of the solver sections is used to create a master solver which controls the construction of the coupled

linear system and its solution, in addition to defining one diagonal block of the coupled linear system. Due

to the twofold tasks of the master solver, the solver section associated with the master solver has a similar

appearance as any basic solver section but contains additional commands related to constructing and solving

the fully coupled model. Usually the master solver is used to integrate the (1,1)-block of the coupled system.

The command

Linear System Block Mode = True

given in the section for the master solver is a main switch to inform that the block construct is used to

create the linear system. The integer identifiers of the solver sections which are utilized to assemble the

(2×2)-block matrix are given with the keyword

Block Solvers(2) = Integer ...

The first entry in the list defines what solver section is used to read the (1,1)-block, while the second entry

defines the solver section which defines the content of the (2,2)-block. It is noted that this keyword has a

higher-dimensional generalization. The value of the keyword can thus be a n-tuple in order to create the

coupling between n models.

The keyword command

Pre Solvers(1) = Integer ...

given in the section for the master solver defines what solver section has to be run as a non-master solver

in order to get its system matrix and RHS vector. Here it is useful to disable the linear system solution

procedures in connection with the non-master solver and utilize it just for assembling the other diagonal

block. Usually the section for the non-master solver thus contains the commands

Exec Solver = "Never"

Linear System Solver Disabled = True

The first command is needed so that only the master solver can control the execution of the non-master solver

(see also the section 13.2). The second keyword disables the standard linear solvers as the non-master solver

needs to be run only for integrating the associated system matrix and RHS vector that are assembled into the

fully coupled system.

A non-master solver section may however contain commands related to a linear solver. They have an

effect if the fully coupled solver uses the block Gauss-Seidel preconditioning that depends on the ability to

solve linear systems with the diagonal blocks as coefficient matrices. For the same reason the section for

the master solver may also contain standard commands for controlling a linear solver employed in the block

preconditioning. Here the boolean-valued keyword for activating the use of block preconditioning is

Block Preconditioner = Logical True

Since the section for the master solver is also used to specify a linear solver for the fully coupled system,

a specific namespace construct is used within the solver input file to distinguish commands which defines

the purpose of the command. A prefix outer: attached to an ordinary keyword makes an effect that the

keyword controls the linear solver applied to the fully coupled system. For example the stopping condition

for the fully coupled solution can be given as

Outer: Linear System Convergence Tolerance = Real 1e-6

It should be noted that by default the solver of Elmer does not create the matrix of the fully coupled

system as a single object. Some solution techniques (for example direct solvers and solvers depending on

factorizations of the full matrix) may however need the matrix as a single object. To this end one has to give

an additional command

Block Monolithic = Logical True
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14.2.1 Applications: Fluid-Structure Interaction

Ready routines to obtain interaction blocks for certain applications exist. The default application is fluid-

structure interaction. In this connection the structural model can be a linearized elasticity model, or a dimen-

sionally reduced shell or plate model. By default a linearized elasticity model is assumed.

In order to construct the off-diagonal blocks generating the interaction correctly, the solver section of the

master solver should be used to inform what solver section creates the block of the structural equations. The

generic command for this purpose is the keyword

Structure Solver Index = Integer ...

The solver section specified may then contain additional information about the type of the structural model.

For this purpose there exist two additional keywords

Plate Solver = Logical ...

and

Shell Solver = Logical ...

Alternatively, instead of using the command Structure Solver Index, one may use the keywords

Plate Solver Index = Integer ...

and

Shell Solver Index = Integer ...

in the master section when a shell or plate model is employed. The solver section of the master solver should

also be used to inform what solver section creates the block of the flow equations. For this purpose there

exists the command

Fluid Solver Index = Integer ...

14.2.2 Applications: The Coupling of Structural Models

Some structural (solid mechanics) models can also be coupled if the keyword command

Structure-Structure Coupling = Logical True

is given in the solver section for the master solver. Currently it is assumed that the first solver section of

the solver input file is used to define the master solver and create the (1,1)-block, while the second solver

section should be reserved to define the non-master solver related to the structure-structure coupling. At the

moment the (1,1)-block is supposed to consist of linearized elasticity equations, while the commands

Solid Solver Index = Integer ...

and

Shell Solver Index = Integer ...

given in the solver section for the master solver can be used to couple the linearized elasticity model with

itself or with a shell model, respectively. The coupling with a shell model is not fully generic, being still

subject to some additional geometric assumptions on the mesh.
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Meshing Utilities

ElmerSolver includes some internal possibilities to affect the mesh. These include the ability to split

the mesh repeatedly on a partitioned level (mesh multiplication), the possibility to extrude meshes within

the code, and the possibility to create discontinuous meshes on-the-fly, or to generate discontinuity using

discontinuous galerkin method. These features make it possible to eliminate some meshing bottle-necks and

to implement more versatile physical boundary conditions, for example.

15.1 Coordinate transformation

By default Elmer read in coordinates ~r = (x, y, z) as they are in the mesh files. The user may perform

scaling such that ~r := C ~r. Here C may be either a scalar or a diagonal matrix that maps each coordinate

differently. It could be used to scale the units of the mesh back to meters if they were initially given in mm.

The coordinates (x, y, z) may be mapped to any order by a suitable permutation which is any ordered

list of numbers 1, 2 and 3. The mapping could be useful, for example, if the initial coordinate system has the

rotational axis at x-axis whereas Elmer always assumes that the rotational axis is the y-axis.

Coordinate transformations can be used to map the Cartesian coordinates to some other coordinate sys-

tem and vice versa. Currently supported transformations are from Cartesian to cylindrical,

r = r0 +
√

x2 + y2 (15.1)

φ = arctan(y, x) (15.2)

z = z (15.3)

and cylindrical to Cartesian,

x = cos(φ)(r + r0) (15.4)

y = sin(φ)(r + r0) (15.5)

z = z. (15.6)

The following keywords are related to coordinate transformations

Simulation

Coordinate Scaling Real

The coefficient used to scale the coordinate.

Coordinate Mapping(dim) Integer

The permutation of the coordinates.

Coordinate Transformation String

Options are ”cartesian to cylindrical”, ”cylindrical to cartesian” and ”previous”.

Coordinate Transformation Radius Real

The offset r0 in radius.
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Note that the Coordinate Transformation may also be given in the Solver section which can then

be used to invoke different coordinate systems for different solvers.

15.2 Mesh multiplication

Mesh multiplication is the process where each mesh edge is split into two resulting to an increased number

of elements. In 2D each mesh multiplication increases the number of elements by factor of 4, and in 3D by

factor of 8 correspondingly. For hexahedral elements this results to eight elements that are of original shape.

For tetrahedral elements the innermost octahedron may be split into four tetrahedra in three ways of which

only one preserves the minimum angle condition (Delaunay splitting) and this is naturally implemented in

Elmer.

The mesh multiplication may be used recursively. This makes it possible to create meshes with a very

large number of elements. The functionality of mesh multiplication may also be used in conjunction with the

geometric multigrid of Elmer. Saving the meshes of different density gives an optimal hierarchy of meshes.

The main handicap of mesh multiplication is that the geometric description will not be improved during the

mesh multiplication. Therefore curved boundaries will be as faceted as they were in the coarsest mesh level.

Elmer includes also a feature for maintaining mesh grading. For simple geometries the mesh grading

may be conserved with the following scheme:

1. Solve at the coarsest level with Galerkin method the nodal mesh parameter from the equation h =

V
1/m
e , where h is the element size factor, Ve is the element volume and m is the dimension of grading.

2. When splitting an edge for the new mesh, inherit the size factor and coordinate from h′ =
√
h1h2 and

~r′ = (h1~r2 + h2~r1) / (h1 + h2).

The procedure may be applied recursively. It provides ideal grading for structured boundary layers with

m = 1 and homogeneous Delaunay meshes with m =dim.

The functionality of mesh multiplication is implemented also in parallel and is very efficient since it

requires only quite little communication.

The following keywords are related to the mesh multiplication.

Simulation

Mesh Levels Integer

The number of mesh levels when using the equal split feature.

Mesh Keep Integer

The user may choose to optionally keep more than one level. This could be needed for coarser

postprocessing, for example.

Mesh Keep Grading Logical

When creating meshes using equal split, the elements are by default split to equally sized pieces.

When this flag is on, the solver tries to maintain the mesh grading.

Mesh Grading Power Real

The mesh grading is evaluated from the element sizes of the initial mesh. The size is a scalar

function and cannot therefore handle very complicated meshes. For boundary layer type of

meshes the optimal value is one, while for meshes of Delaunay type the optimal value is the

space dimension.

15.3 Mesh extrusion

The feature of mesh extrusion was initially implemented for the needs of computational glaciology where

the meshing had become a serious bottle-neck. The current implementation of mesh multiplication takes

a 1D or 2D mesh and extrudes it to the desired direction. In the extrusion process the dimension of the

elements also grow. Line segments are extruded into quadrilaterals, triangles into wedges, and quadrilaterals

into hexahedrons, correspondingly.
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When the mesh is extruded, the boundary condition will also be extruded. New boundary conditions

may be set to the bottom and top of the mesh. These boundaries will get the first free boundary condition

index and may thereby be referenced in the sif file.

The mesh density of the extrusion is defined only once and this same division is copied for all nodes. So

each node gives rise to exactly similar 1D mesh stride in the desired direction.

Because only one division needs to be defined it can be more costly than would be otherwise feasible.

Therefore also an iterative process for setting the division has been implemented. There the user can give

an arbitrary mesh parameter function h(x) and a 1D mesh is created so that the mesh position as accurately

obeys the desired distribution. The algorithm is an iterative one based on a Gauss-Seidel type of iteration.

First initialize the distribution:

do i = 0, n
wi = i/n

end

Then iterate the distribution until it has converged:

do while( max |dwi| > ǫ )

do i = 1, n
hi = f((wi + wi−1)/2)

end

do i = 1, n− 1
wi = (wi−1hi+1 + wi+1hi)/(hi + hi+1)

end do

do i = n− 1, 1,−1
wi = (wi−1hi+1 + wi+1hi)/(hi + hi+1)

end do

end do

The following keywords are used to control the internal extrusion

Simulation

Extruded Mesh Levels Integer

The number of node layers in the extruded mesh. This keyword not only defines the number but

also activates the whole feature. The number of node layers is the same over the whole extruded

mesh.

Extruded Coordinate Index Integer

The index (1,2,3) of the coordinate to be extruded. The default direction is dim+1. So for 2D

mesh the extrusion is by default carried out to the z-direction.

Extruded Mesh Ratio Real

The ratio of the first and last element when extruding the mesh. The element size is assumed to

follow a geometric division. The same division is applied for all strides resulting from extruding

a node.

Extruded Mesh Density Real

This keyword may be used to define an arbitrary functional dependence that defines the local

mesh parameter h. The function will be automatically called at the interval [0, 1]. The same

division is applied for the strides.

Extruded Min Coordinate Real

The mesh is by default extruded to interval [0, 1]. This keyword may be used to set a new

minimum coordinate for the extrusion.

Extruded Max Coordinate Real

The mesh is by default extruded to interval [0, 1]. This keyword may be used to set a new

maximum coordinate for the extrusion.

Preserve Baseline Integer

Sometimes the user wants to give a boundary condition for the initial baseline of the 2D mesh.
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This keyword may be used to preserve it for setting the boundary condition. Otherwise only the

extruded version of the baseline, i.e. higher dimensional creature will be available.

15.4 Discontinuous mesh for internal jumps

Discontinuous interfaces are sometimes needed for internal boundary conditions. For example, in the heat

equation a poor thermal contact between objects may lead to a temperature jump at the interface. Such a

jump may be difficult to model with standard elements since they cannot reproduce a discontinuity in the

mesh. For this purpose a second set of nodes at the interface may be created. All the elements that share

nodes at the interface must then be carefully checked to decide on which side of the interface the elements

are located, and set the new element indices accordingly.

For some nodes on the boundary there is some room for interpretation when creating a discontinuous

boundary. By default all nodes that have even just one hit on the boundary are doubled, i.e. a greedy method

is used. The other alternative is to not include nodes which are attached also to other than boundary nodes

and their immediate parents. This could be applied mainly to structured meshes with some cut through

the mesh. For triangular and tetrahedral meshes the greedy method should be used since in these meshes

elements will always have some orphan nodes on the boundary.

After a discontinuity has been created into the mesh the solution will by default be totally discontinuous,

i.e. no flux will pass through the boundary. To allow again continuous solutions mortar and periodic projec-

tors may be used to ensure continuity. Some field variables may be continuous and some discontinuous over

the interface. The projectors with related jump and offset terms will allow this.

The following keywords are used to control the creation of discontinuous boundaries.

Simulation

Discontinuous Boundary Greedy Logical [True]

Whether to use the greedy method when defining the discontinuous boundary. The user may

choose to set the flag to False freeing some corner nodes that are located in the junction of

continuous and discontinuous interface from being treated as discontinuous.

Discontinuous Bulk Greedy Logical [True]

Similar as the one for boundary element but now the nodes are treated as continuous if they

can be associated with some non-parental bulk element. This probably works correctly only

for structured meshes. In unstructured meshes there are usually many nodes at the boundary

associated with non-parent elements.

Boundary Condition bc id

Discontinuous Boundary Logical

Create discontinuous boundary on-the-fly. The nodes on the boundary are doubled and heuristics

is used to determine for each element which of the doubled nodes it should use. Discontinuous

boundaries may only be created for internal boundaries. Currently there can be only one discon-

tinuous boundary at a time.

Discontinuous Target Bodies Integer

This keyword may be used to control the owner of the discontinuous boundary (i.e. the ”left”

parent element). If not specified the ownership will be given to the parent element with a higher

body index. There may be several discontinuous target bodies. Then the size of the array must

also be specified.

Discontinuous BC Integer

This keyword may be used to activate the creation of the other side of the discontinuous bound-

ary. The other side will be needed if the two boundaries, for example, move with respect to each

other. The value of this keyword relates to the boundary condition index of the new boundary.

Note that also Mortar BC and Periodic BC keywords will have the same effect but only

when they are nonzero! If mortar or periodic boundary condition is requested with a zero ar-

gument, the discontinuous boundary will not be doubled. Instead a cheaper way to create the

mapping between the boundary nodes is used.
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15.5 Discontinuous Galerkin for internal jumps

The discontinuous interfaces described above have some challenges. The most eminent is that fact that as

the mesh is made discontinuous to enable physical jumps in one condition, the discontinuous mesh needs

to be considered also for all other equations. This is cumbersome particularly as the additional constraints

make the resulting linear system more difficult to solve. Also, the parallel operation of the discontinuous

mesh is not very robust currently. Therefore, using Discontinuous Galerkin method offers a more general

method to enable discontinuities in the mesh.

Assume that we only have discontinuities at the interfaces. Then it does not really make sense to have all

possible discontinuities enabled as in standard Discontinuous Galerkin method. Instead, we create

a reduced basis where discontinuities are eliminated using the permutation vector. The end effect is much

smaller system.

The Discontinuous Galerkin framework has the additional advantage that the other equations living on

the same mesh are unaffected. This is ideal for multiphysical problems where jumps only related to some

phenomena.

For the reduction we have different techniques that define how many discontinuous groups there are in

the mesh, and among which of them discontinuities are enabled.

The following keywords are used to control the generation and preservation of discontinuities between

bodies.

Solver solver id

Discontinuous Galerkin Logical [True]

Enable the Discontinuous Galerkin solver.

DG Reduced Basis Logical

Should we used reduction of the dofs for minimal basis that still conserves the wanted disconti-

nuities.

DG Reduced Basis Mapping Integer

This defines the mapping such that the initial bodies may be mapped to smaller number of groups

and thereby eliminate the discontinuities among bodies belonging to the same group.

DG Reduced Basis Master Bodies Integer

DG Reduced Basis Slave Bodies Integer

Master and slave bodies create two body groups and the discontinuities are preserved only be-

tween them. If there are bodies which do not belong to either group then they are not affected by

the discontinuity.

DG Indirect Connections Logical

This keyword may be used to optionally generate also indirect connections over the discon-

tinuous interface. This makes in possible to use various elimination techniques for the jump

conditions.
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Chapter 16

Adaptive Solution

16.1 Introduction

A posteriori error analysis and adaptive mesh refinement are nowadays standard tools in finite element anal-

ysis when cracks, boundary layers, corner singularities, shock waves, and other irregularities are present.

A posteriori error indicators can be used to reveal flaws in finite element discretizations and well-designed

adaptive mesh refinements can reduce the computational costs drastically.

16.2 Theory

Let us consider equilibrium equations of the form

−∇ · q = f in Ω, (16.1)

q · n = g on Γ, (16.2)

where q is either a flux vector or a second-order stress tensor, Ω is a computational domain, Γ is a boundary

part, f is an external source or body force, g is an external flux or traction and n is the unit outward normal

to the boundary.

Many of the symmetric steady state problems described in the Elmer Models Manual fit in the above

framework of equilibrium equations. To fix ideas, suppose that q is the heat flux satisfying Fourier’s law

q = −k∇T , where T is the temperature and k is the heat conductivity of the material. We could also think

of q as the stress tensor of linear elasticity. In this case Hooke’s law states that q = E : ε, where E is

the fourth order tensor of elastic coefficients, ε = symm(∇u) is the linearized strain tensor and u is the

displacement vector.

16.2.1 A posteriori estimate

Let us denote the finite element approximation of q by qh and measure the error q − qh as

ERROR =

√
∫

Ω

|q − qh|2 dΩ. (16.3)

Our primary goal is to ensure the accuracy of the solution by imposing the condition

ERROR ≤ TOLERANCE (16.4)

where TOLERANCE > 0 is an error tolerance prescribed by the user.

In practice, the goal must be replaced by a stronger condition

ESTIMATE ≤ TOLERANCE (16.5)
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where ESTIMATE is a computable functional (of all available data) satisfying

ERROR ≤ ESTIMATE (16.6)

Then, if (16.5) holds, (16.4) is satisfied and the quality of the numerical solution is guaranteed.

In Elmer the a posteriori estimate (16.5) is computed from local residuals of the finite element solution

as a weighted sum over the elements,

ESTIMATE =

√
∑

E

η2E , (16.7)

where ηE is the local error indicator for an individual element E:

η2E = αEh
2
E

∫

E

∣
∣∇ · qh + f

∣
∣
2
dΩ

+ βE

∑

e in Ω

he

∫

e

∣
∣[[qh · ne]]e

∣
∣
2
dΓ (16.8)

+ γE
∑

e on Γ

he

∫

e

∣
∣qh · ne − g

∣
∣
2
dΓ.

Here αE , βE , and γE , are local positive constants. The values of these constants depend, among other

things, on the problem to be solved, and must be estimated carefully case by case.

The first sum in (16.8) is taken over all edges e of E inside the computational domain, the second sum

is taken over all edges on the boundary part Γ, [[·]]e is the jump in (·) across e, and ne is a unit normal to the

edge. hE is the size of the element and he is the size of the edge.

The first term on the right-hand-side of (16.8) measures the local residual of the finite element solution

with respect to the equilibrium equation (16.1). The second term measures the discontinuity in the numerical

flux inside Ω and the third term the residual with respect to the boundary condition (16.2).

16.2.2 Adaptivity

The secondary goal of our numerical computations is to find a solution satisfying (16.4) as efficiently as

possible. A nearly optimal solution strategy is obtained by utilizing the property (here we need to impose

some minor restrictions on f and g, see [])

LOCAL ERROR ≥ ηE (16.9)

where

LOCAL ERROR =

√
∫

E

|q − qh|2 dΩ (16.10)

The estimate suggests that the error in the numerical solution should be reduced efficiently if the mesh is

refined locally where the indicators ηE are large. Naturally, we can think of coarsening the mesh where the

values of the indicators are small.

The adaptive mesh refinement strategy of Elmer is based on the local estimate (16.9) and on the following

additional assumptions and heuristic optimality conditions:

• The local error behaves as

ηE = CEh
pE

E (16.11)

for some constants CE and pE .

• In the optimal mesh the error is uniformly distributed over the elements:

ηE = TOLERANCE/Nelements (16.12)

CSC – IT Center for Science



16. Adaptive Solution 75

The constants CE and pE in (16.11) can be solved locally for each element if the local errors and the

local mesh sizes are known from at least two different solutions. The second rule (16.12) can then be applied

to extrapolate a new nearly optimal mesh density for the subsequent calculations.

The mesh refinements can be performed either by splitting the existing elements into smaller using the so-

called RGB-refinement strategy described in [], or by performing a complete remeshing of the computational

domain using the built-in unstructured mesh generators that produce high quality Delaunay triangulations.

In the latter alternative not only mesh refinement is possible, but also local adaptive coarsening.

16.3 Keywords related to the adaptive solution

The adaptive solver of Elmer is activated and controlled by the following keywords in the Solver block of

the solver-input-file.

Adaptive Mesh Refinement Logical

If set to true, then after the solution of the linear system the program computes residual error indicators

for all active elements, estimates the global error, computes a new mesh density and refines the mesh

accordingly.

Adaptive Remesh Logical

If set to true, then a complete remeshing is performed after error estimation using the Mesh2D or

Mesh3D generators. The new mesh density is written in file “bgmesh”. If set to false, then the RGB-

splitting strategy for triangles is applied to perform the refinements.

Adaptive Save Mesh Logical

If set to true, the subsequent meshes are stored in directories RefinedMeshN, where N is the number

of the adaptive iterate.

Adaptive Error Limit Real

Error tolerance for the adaptive solution.

Adaptive Min H Real

Imposes a restriction on the mesh size. Default is zero.

Adaptive Max H Real

Imposes a restriction on the mesh size. Default is infinite.

Adaptive Max Change Real

Controls the change in local mesh density between two subsequent adaptive iterates. Using this key-

word the user can restrict the refinement/coarsening to stabilize the adaptive solution process.

16.4 Implementing own error estimators

Suppose that we are given a subroutine called MySolver for solving the Poisson equation, and we would

like to enhance the code by implementing an a posteriori error indicator for adaptive mesh refinement. The

first thing to do is to take the module Adaptive in use, and define the local error indicators as functions in

an interface block. The beginning of the subroutine should look like the following:

SUBROUTINE MySolver( Model,Solver,Timestep,TransientSimulation )

USE DefUtils

USE Adaptive

INTERFACE

FUNCTION InsideResidual( Model, Element, Mesh, &

Quant, Perm, Fnorm ) RESULT( Indicator )

USE Types
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TYPE(Element_t), POINTER :: Element

TYPE(Model_t) :: Model

TYPE(Mesh_t), POINTER :: Mesh

REAL(KIND=dp) :: Quant(:), Indicator, Fnorm

INTEGER :: Perm(:)

END FUNCTION InsideResidual

FUNCTION EdgeResidual( Model, Edge, Mesh, &

Quant, Perm ) RESULT( Indicator )

USE Types

TYPE(Element_t), POINTER :: Edge

TYPE(Model_t) :: Model

TYPE(Mesh_t), POINTER :: Mesh

REAL(KIND=dp) :: Quant(:), Indicator

INTEGER :: Perm(:)

END FUNCTION EdgeResidual

FUNCTION BoundaryResidual( Model, Edge, Mesh, &

Quant, Perm, Gnorm ) RESULT( Indicator )

USE Types

TYPE(Element_t), POINTER :: Edge

TYPE(Model_t) :: Model

TYPE(Mesh_t), POINTER :: Mesh

REAL(KIND=dp) :: Quant(:), Indicator, Gnorm

INTEGER :: Perm(:)

END FUNCTION BoundaryResidual

END INTERFACE

After these fixed declarations we may proceed normally by defining the local variables, allocate memory

for local tables, integrate the stiffness matrix, set boundary conditions, and solve the problem. Error esti-

mation and adaptive mesh refinements are then performed by calling the subroutine RefineMesh, which

should appear in the code right after the function DefaultSolve.

Norm = DefaultSolve()

IF ( ListGetLogical( Solver % Values, ’Adaptive Mesh Refinement’ ) ) &

CALL RefineMesh( Model, Solver, Potential, Permutation, &

InsideResidual, EdgeResidual, BoundaryResidual )

The functions InsideResidual, EdgeResidual and BoundaryResidual defined in the inter-

face block should finally be contained in MySolve, and return the values of the error indicators described

in the previous section.

As an example, suppose that we are using linear triangles or tetrahedra for solving the Poisson equation.

In this case it holds ∇ · qh = 0 on each element E, and the contribution of the first term in (7.1) is simply

InsideResidual= hE

√
∫

E

|f |2 dΩ (16.13)

The function that computes the value of the inside residual could be written as follows.

FUNCTION InsideResidual( Model, Element, Mesh, &

Quant, Perm, Fnorm ) RESULT( Indicator )

IMPLICIT NONE

TYPE(Model_t) :: Model
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INTEGER :: Perm(:)

REAL(KIND=dp) :: Quant(:), Indicator, Fnorm

TYPE( Mesh_t ), POINTER :: Mesh

TYPE( Element_t ), POINTER :: Element

TYPE(GaussIntegrationPoints_t), TARGET :: IP

TYPE(ValueList_t), POINTER :: BodyForce

REAL(KIND=dp) :: f, hK, detJ, Basis(MAX_NODES), &

dBasisdx(MAX_NODES,3), ddBasisddx(MAX_NODES,3,3), &

Source(MAX_NODES)

LOGICAL :: stat

INTEGER :: n

Indicator = 0.0d0

Fnorm = 0.0d0

hK = element % hK

BodyForce => GetBodyForce( Element )

Source = GetReal( Element, ’Source’ )

IP = GaussPoints( Element )

DO n = 1, IP % n

stat = ElementInfo( Element, Nodes, IP % u(n), IP % v(n), &

IP % w(n), detJ, Basis, dBasisdx, ddBasisddx, .FALSE. )

f = SUM( Source * Basis )

Fnorm = Fnorm + f**2 * detJ % IP % s(n)

Indicator = Indicator + f**2 * detJ * IP % s(n)

END DO

Fnorm = SQRT( Fnorm )

Indicator = hK * SQRT( Indicator )

END FUNCTION Inside Residual

For the boundary and edge residuals refer to the example Poisson.f90 in the tutorial manual of Elmer.
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Chapter 17

Parallel runs

17.1 Introduction

In times of even simple desktop PCs containing multiple CPUs or at least multiple cores, parallel computing

is a necessity to exploit the complete potential of those architectures. As on multi-core architectures multi-

threading (e.g., OpenMP) would be a feasible concept, Elmer utilizes the well-established Message Passing

Interface standard for inter-process communication. This approach makes it possible to run Elmer on both

multi-core and multi-processor environments.

17.1.1 Parallel Implementation in Elmer

The general concept of a parallel run within Elmer is displayed in Fig. 17.1. Elmer uses domain de-

unpartitioned
mesh

combined result

partitioned mesh

parallel
solution

domain
decomposition

unification of
result

Figure 17.1: The principle steps to be taken for a parallel run of Elmer
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composition for distributing the load to multiple processes that are being run on either different cores or

CPUs. To that end, the initial mesh has to be split into parts. This partitioning will may be done using

externally ElmerGrid or internally with the master process using Zoltan and internal algorithms of

ElmerSolver. This will be discussed in section 17.2.

The solver stage mostly will demand from serial runs differing numerical techniques, as solution strate-

gies have to take care of the domain boundaries limited possibilities of memory access. In general, conver-

gence of linear systems is more difficult to achieve compared to serial runs. These issues will be addressed

in section 17.3.1.

Finally, as also the output of the parallel runs is split up into domains, the post-processing usually de-

mands an additional step of unifying the split results. Alternatively, new visualization software is capable

to do that either on the fly or to also visualize the results using multiple processes. Especially the latter

method inevitably will gain importance with the increasing size of models that cannot be handled on a single

CPU/core due to memory and computational constraints. Concepts of post-processing parallel results are

discussed in section 17.4.

17.2 Preprocessing of Parallel Runs

In order to utilize the decomposition, the mesh has to be split up into the same amount of partitions, N , as

there are different processes within the parallel computation. The plain and easy way is to start from a mesh

for a serial run. The typical structure of a single domain mesh database is the following:

meshdirectoryname|

|-mesh.header

|-mesh.nodes

|-mesh.elements

|-mesh.boundary

The mesh consists of a header file, containing the basic information (e.g., numbers of nodes and elements),

a file containing all nodes and two further files defining the bulk and boundary elements.

The parallel mesh consisting of 2 partitions is written under the same directory within the sub-directory

partitioning.2:

meshdirectoryname|

|-mesh.header

|-mesh.nodes

|-mesh.elements

|-mesh.boundary

|-partitioning.2|

|-part.1.header

|-part.1.nodes

|-part.1.elements

|-part.1.boundary

|-part.1.shared

|-part.2.header

|-part.2.nodes

|-part.2.elements

|-part.2.boundary

|-part.2.shared

These files basically reflect the structure of a single domain mesh on the partition level. Additionally, file

names part.N.shared (with N being the partition number) is introduced. It contains – as the name

suggests – information on between domains shared nodes.
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17.2.1 Partitioning with ElmerGrid

Starting from an existing mesh a corresponding ElmerGrid command to create a partitioning with respect to

the major coordinates directions (split nx × ny × nz pieces) would read as

ElmerGrid 2 2 meshdirectoryname -partition nx ny nz

Also Metis provides generic graph partitioning algorithms that may be called by ElmerGrid. The main algo-

rithms are PartGraphKway and PartGraphRecursive corresponding to in-line parameters-metiskway

and-metisrec. With Metis it is usually recommended to use the dual mesh activated with flag -partdual.

For example, the following command would partition the mesh into np partitions using the dual mesh.

ElmerGrid 2 2 meshdirectoryname -partdual -metiskway np

There are a number of additional command-line parameters that may be used to prepare the parallel mesh.

For complete list of parallel parameters please study the ElmerGrid manual.

Figure 17.2 shows the different distribution of partitions obtained with two different methods. In gen-

Figure 17.2: Distribution of four partitions using the options -partition 2 2 1 (left) and

-metiskway 4 (right). It comes clear that the partitioning to the left contains more partition-partition

boundaries and consequently will perform worse in a parallel run

eral, the user should utilize the Metis options, if more complex geometries (like in Fig. 17.2) are to be

decomposed. This ensures that the number of shared nodes and consequently also the amount of inter-

process communication during the parallel computation is minimized. More simple objects, especially those

using regular meshes, can be split according to the axis using the partition option without having to

compromise on communication speed.

Halo Elements

One of these additional options are so-called halo elements. As displayed in Fig. 17.3, halo elements are

additional elements that do not belong to the partition (i.e., they are not contributing to the domain-wise

solution procedure), but rather are replicas of the neighbour elements of adjoining partitions. Thus, in a

parallel run, the values of variables as well as the geometry of the whole element are at disposition within

the domain partition. These may be needed by a specific FE method, such as the Discontinuous Galerkin

method or by specific solvers/functions that need additional geometric information from the other domain

(e.g., element-averaged surface normals).
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Figure 17.3: The concept of halo elements. Each partition contains information on the neighbour elements

along the domain boundary (red) of the adjoining partitions thus leading to a redundant stripe of elements

(light-gray) that is shared between the domains

17.2.2 Internal partitioning in ElmerSolver

ElmerSolver includes also some internal partitioning features. They utilize either internal, often geometric,

algorithms, or external Zoltan library. The nice thing with internal partitioning is that the code may hide

it more efficiently from the end-user. Also the partitioning may be more easily be optimized to take into

consideration aspects related to the actual physics. The downside of the current implementation is that the

partitioning is done by a master process which means that for large meshes the load balancing (particularly

in terms of memory) may become an issue. For relatively small parallel cases this should however not be a

problem.

Note that the internal partitioning is still under development. Below are some of the most important

keywords related to the internal partitioning. There are more keywords particularly to control the partitioning

of boundaries with special boundary conditions. They are omitted here for now.

Simulation

Partition Mesh Logical

Use internal partitioning method.

Partitioning Method String

There are currently three different partitioning methods supported. Use “Zoltan” to use the graph

partitioning algorithm from Zoltan library. Option “directional” partitions elements recursively

in each direction giving good load balancing but optimal communication only for simple ge-

ometries (similar to “partition” in ElmerGrid). Option “uniform” distributes elements to cells of

constant size. This may be ideal for structured uniform meshes (similar to “partcell” in Elmer-

Grid).

Number of Partitions Integer

Number of partitions may be given. This is only needed for serial jobs where we want to study

or debug the partitionings. Otherwise the number of partitions is inherited from the number of

jobs.

To compile with Zoltan you need to update the submodules in the source tree
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git submodule sync

git submodule update --init

and edit your build script to include

-DWITH_Zoltan:BOOL=TRUE

The current launchpad version comes with Zoltan, the Windows version does not.

17.3 Parallel Computations in Elmer

As mentioned before, Elmer utilizes Message Passing Interface (MPI) for inter-process communication

while doing a parallel computation. To that end, a special parallel executable that is linked to a MPI library

(the minimum requirement). The compilation process for the MPI version is shortly explained in chapter 18

of this guide. The executable file of the parallel version of Elmer has a different name, ElmerSolver mpi.

Typically it is executed as an argument to an additional call that is specific to the parallel (MPI) environment

of the platform. For instance, in a typical MPI installation (OpenMPI, MPICH) the command

mpirun -np 4 ElmerSolver mpi

will run a four-process parallel Elmer run. The typical screen-output upon launching ElmerSolver mpi

indicating the number of processes is

ELMER SOLVER (v 8.4) STARTED AT: 2020/08/31 18:09:46

ELMER SOLVER (v 8.4) STARTED AT: 2020/08/31 18:09:46

ELMER SOLVER (v 8.4) STARTED AT: 2020/08/31 18:09:46

ELMER SOLVER (v 8.4) STARTED AT: 2020/08/31 18:09:46

ParCommInit: ParCommInit: Initialize #PEs: 4

ParCommInit: Initialize #PEs: 4

ParCommInit: Initialize #PEs: 4

MAIN: OMP_NUM_THREADS not set. Using only 1 thread per task.

MAIN:

MAIN: =============================================================

MAIN: ElmerSolver finite element software, Welcome!

MAIN: This program is free software licensed under (L)GPL

MAIN: Copyright 1st April 1995 - , CSC - IT Center for Science Ltd.

MAIN: Webpage http://www.csc.fi/elmer, Email elmeradm@csc.fi

MAIN: Version: 8.4 (Rev: 5e44145, Compiled: 2020-08-31)

MAIN: Running in parallel using 4 tasks.

MAIN: Running with just one thread per task.

MAIN: HYPRE library linked in.

MAIN: MUMPS library linked in.

MAIN: Lua interpreted linked in.

MAIN: Zoltan library linked in.

MAIN: =============================================================

Additionally, the mesh directory declared in the SIF has to contain a mesh with – in this specific case –

four partitions.

17.3.1 Numerical Strategies in Parallel

The concept of domain decomposition means that ElmerSolver is run on N > 1 separate parts of a domain

that are interlinked at the boundaries. If no special solvers (see later in this section) are utilized, this in-

herently means that iterative methods have to be used in order to achieve convergence for the linear(ized)

system solution procedure. The selection of available iterative methods, is to be found in section 4.3. These

methods in general have similar convergence compared to a single process run. The biggest difference in-

troduced by domain decomposition is that some preconditioning strategies are altered. To give an example:

CSC – IT Center for Science



17. Parallel runs 83

As only applied to the local matrix, the LU factorization of a parallel run in comparison to a serial drops

the gray zones indicated in Fig. 17.4. This not necessarily will, but can negatively affect the convergence

Domain 1

Domain 2

Domain 3

Figure 17.4: Difference of ILU factorization between serial and domain decomposition runs. If the factor-

ization is applied only locally within the domain, contributions from the light-gray zones are not accounted

for in the latter

of the iterative method. Some preconditioners are exactly the same in parallel and their behaviour has less

variation.

Iterative methods of Elmer

Elmer comes with a large number of iterative methods built in, cg, cgs, BiCGStab, BiCGStabl,

TFQMR, GMRES, GCR and Idrs. For more details see Chapter 4. They are also applicable in paral-

lel. The main limitation of the linear solvers coming with Elmer is that only the diagonal and vanka

preconditioners are exactly the same in parallel. For incomplete LU the performance may vary a lot. Also

multilevel preconditioners (multigrid methods) are not available. For that reason the users may often have to

resort to external libraries for solving the linear systems in parallel.

Hypre

Hypre is a library for solving large, sparse linear systems of equations on massively parallel computers.

Hypre was developed at the Center for Applied Scientific Computing (CASC) at Lawrence Livermore Na-

tional Laboratory. Hypre is distributed under the GNU Lesser General Public License and thus not included

in the Elmer distribution. It rather has to be downloaded, compiled and linked together with the Elmer

sources.

The principle keyword for utilizing Hypre is given in the solver section

Linear System Use Hypre Logical

if set to True, Hypre will be used to solve the linear system.

The basic use of Hypre is very similar to the internal iterative methods of Elmer. For example, stabilized

(BiCGStab) method is taken to use by

Linear System Solver = "Iterative"

Linear System Iterative Method = "BiCGStab"
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For preconditioning the following commands may be given:

Linear System Preconditioning String "ILUN"

with N being the fill-in level (just in the built-in Elmer preconditioner). The only significant differ-

ence to Elmer’s built-in ILU preconditioner is that, in case of Hypre, the missing parts (illustrated in

Fig. 17.4) are now being passed from one domain to the other. In other words, the preconditioner

should behave exactly as if it would be applied in a serial, single domain run. This can improve

convergence, but comes at the cost of increased inter-processor communication.

Linear System Preconditioning String "ParaSails"

Parasails is a sparse approximate inverse preconditioner. It has the following additional parameters

ParaSails Threshold is a Real value that determines the typical value for matrix entries

being dropped. Its suggested range for direct input (positive sign) is from 0.0 to 0.1, with lower

values demanding higher accuracy and consequently computing time/memory. Alternatively, if

negative values are entered, they are interpreted as the fraction of non-zero elements that are

being dropped (e.g., -0.9 leads to 90/

ParaSails Filter is a Real value that determines the typical value for matrix entries that

are dropped in the the computed approximate inverse. Its suggested range for direct input (posi-

tive sign) is from 0.0 to 0.05. Alternatively, if negative values are entered, they are interpreted as

the fraction of nonzero elements that are being dropped (see earlier item).

ParaSails Maxlevel is an Integer value that determines the accuracy of the precondi-

tioner. Usually a value of 0 or 1 is within the applicable frame

ParaSails Symmetry is an Integer value that determines the nature of the original ma-

trix. The following settings are to be found from the Hypre manual:
0 non-symmetric and/or indefinite problem, non-symmetric preconditioner

1 Semi Positive Definite (SPD) problem, SPD (factored) preconditioner

2 non-symmetric definite problem, SPD (factored) preconditioner

Typical linear system settings with BiCGStab and ParaSails could look as follows

Solver 1

...

Linear System Solver = "Iterative"

Linear System Iterative Method = "BiCGStab"

Linear System Max Iterations = 1000

Linear System Convergence Tolerance = 1.0E-08

Linear System Abort Not Converged = True

Linear System Preconditioning = "ILU1"

Linear System Residual Output = 1

Linear System Use Hypre = Logical True

Linear System Preconditioning = "ParaSails"

ParaSails Threshold = Real -0.95

ParaSails Filter = Real -0.95

ParaSails Maxlevel = Integer 1

ParaSails Symmetry = Integer 0

...

End

Linear System Preconditioning String "BoomerAMG"

The multi-level procedure given by BoomerAMG can also be utilized as a preconditioner. See the

following part for the particular parameters that can be passed to BoomerAMG.

Additionally, the Algebraic MultiGrid (AMG) solver, BoomerAMG, can be used directly to solve the system

by
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Linear System Solver = "Iterative"

Linear System Iterative Method = "BoomerAMG"

The following parameters for BoomerAMG can be set

BoomerAMG Relax Type Integer

Defines the smoother on the fine grid and the up and the down cycle. Possible choices
0 Jacobi

1 Gauss-Seidel, sequential

2 Gauss-Seidel, interior points in parallel, boundary sequential

3 hybrid Gauss-Seidel or SOR, forward solve (default value)

4 hybrid Gauss-Seidel or SOR, backward solve

5 hybrid chaotic Gauss-Seidel (does not work with MPI!)

6 hybrid symmetric Gauss-Seidel or SSOR

9 Gaussian elimination (only on coarsest level)
The solver on the coarsest level is set to Gaussian elimination

BoomerAMG Coarsen Type Integer

Sets the parallel coarsening algorithm to be used. Possible options are
0 CLJP-coarsening (a parallel coarsening algorithm using independent

sets (default)

1 classical Ruge-Stüben coarsening on each processor, no boundary treat-

ment

3 classical Ruge-Stüben coarsening on each processor, followed by a third

pass, which adds coarse points on the boundaries

6 Falgout coarsening (uses 1 first, followed by CLJP using the interior

coarse points generated by 1 as its first independent set)

7 CLJP-coarsening (using a fixed random vector, for debugging purposes

only)

8 PMIS-coarsening (a parallel coarsening algorithm using independent

sets, generating lower complexities than CLJP, might also lead to slower

convergence)

9 PMIS-coarsening (using a fixed random vector, for debugging purposes

only)

10 HMIS-coarsening (uses one pass Ruge-Stüben on each processor inde-

pendently, followed by PMIS using the interior C-points generated as

its first independent set)

11 one-pass Ruge-Stüben coarsening on each processor, no boundary treat-

ment

BoomerAMG Num Sweeps Integer

sets the number of sweeps on the finest level (default value = 1)

Boomeramg Max Levels Integer

sets maximum number of MG levels (default value = 25)

BoomerAMG Interpolation Type Integer

Sets parallel interpolation operator. Possible options are
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0 classical modified interpolation (default)

1 LS interpolation (for use with GSMG)

2 classical modified interpolation for hyperbolic PDEs

3 direct interpolation (with separation of weights)

4 multipass interpolation

5 multipass interpolation (with separation of weights)

6 extended classical modified interpolation

7 extended (if no common C neighbor) classical modified interpolation

8 standard interpolation

9 standard interpolation (with separation of weights)

10 classical block interpolation (for use with nodal systems version only)

11 classical block interpolation (for use with nodal systems version only)

with diagonalized diagonal blocks

12 FF interpolation

13 FF1 interpolation

BoomerAMG Smooth Type Integer

For the use of more complex smoothers. Possible options are
6 Schwarz smoothers (default and recommended)

7 Pilut

8 ParaSails

9 Euclid

BoomerAMG Cycle Type Integer

For a V-cycle (default) give the value 1 for a W-cycle 2

BoomerAMG Num Functions Integer

has to be equal to the value given in Variable DOFs

Usually, the default values deliver a good performance and should hence be used as a reference constellation.

Mind also, that BoomerAMG would have more (partly obsolete) options that have not directly been made

accessible through its Elmer interface.

MUMPS

The only implementation of a direct solver in the parallel version of Elmer is a sparse matrix multi-frontal

parallel direct solver MUMPS (http://mumps.enseeiht.fr/). MUMPS is not licensed under the

GNU license terms and hence is not able to be distributed together with the Elmer sources or binaries, but

has to be downloaded by the user. How MUMPS is integrated into Elmer is explained in chapter 18.

There are certain limits what comes to memory consumption, as for the time being the analysis phase is

done on a master process. As a rule of thumb, about 100k elements distributed on a quad core machine with

2 Gb of memory per process still works, but does not work fast.

MUMPS is invoked by choosingLinear System Solver = Direct in combination with Linear

System Direct Method = Mumps. A typical call could hence simply read like this:

Solver 1

...

Linear System Solver = Direct

Linear System Direct Method = Mumps

...

End

If the code has not been compiled with MUMPS or Pardiso, no parallel direct solver is available. In

serial the UMFPack library is always available. Note that MUMPS will also work in serial nowadays.
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17.4 Post-processing of Parallel Runs

During a parallel run of Elmer the results are also written in parallel. That means, a run with N > 1
partitions/processes produces N > 1 output files. For example, if the base name of the output file is

parallelrun, given in the SIF as

Post File = "parallelrun.vtu"

the results of each partition will be written to the output directory as separate .vtu files and a single .pvtu

file which is a wrapper to the parallel files. When using Paraview, is suffices to open the .pvtu file and

proceed with the visualization in standard manner.

Similarly, if the result file base name is given as

Post File = "parallelrun.result"

the results of a N = 4 parallel run will be written into the output directory using separate file for each

partition.

parallelrun.result.0

parallelrun.result.1

parallelrun.result.2

parallelrun.result.3

From these files, a new Elmer run (on the same partitioned mesh) can be restarted. Restart with different

partitioning is possible but more cumbersome.

17.4.1 User Defined Functions and Subroutines in Parallel

In principle, the user does not have to distinguish between a user defined function/solver in parallel and serial

runs. Communication between processes is being taken care of within the built-in Elmer routines such that

the single solver does not really ”see” anything from the parallel environment it is running on. In special

cases a few lines of code might be necessary to deal with differences imposed by parallel runs. Those are

explained in section 19.4.3.
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Chapter 18

Compilation and Linking

The main Elmer distribution channel is currently GitHub. The source code may hence be found at

https://github.com/ElmerCSC/elmerfem

and a local copy of the repository can be made by giving the command

git clone git://www.github.com/ElmerCSC/elmerfem

or

git clone https://www.github.com/ElmerCSC/elmerfem

with the files placed under the working directory.

There are different branches in the repository. The most important branch devel contains the latest

updates of Elmer and should preferably be used for compilation. In order to see what is the current branch

use the command

git status

If the branch is not currently devel, one may switch to it by using the command

git checkout devel

The following simple instructions are intended mainly for Unix/Linux users. Additional compilation

instructions may be found via the www-site of Elmer and Wiki pages. For example compiling a parallel

version is not covered in the following.

18.1 Compiling with CMake

To compile, one should first create a separate directory for building. Now, if the working directory is the

place where git clone command was given, one may create the building directory and proceed to it as

mkdir build

cd build

CMake (version 2.8.9 or newer is needed) may then be called to generate makefiles. The following command

may already produce what is needed:

cmake -DWITH_ELMERGUI:BOOL=FALSE -DWITH_MPI:BOOL=FALSE

-DCMAKE_INSTALL_PREFIX=../install ../elmerfem

The command line may include additional options. For example the place of BLAS and LAPACK libraries

can be defined by using options -DBLAS LIBRARIES and -DLAPACK LIBRARIES.

If no errors are encountered in connection with running the cmake command, one may proceed to

compilation:
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make install

Finally, one may test the fresh version of Elmer as

ctest

or just perform a specific test (cf. the contents of ../elmerfem/fem/tests for existing tests) for ex-

ample as

ctest -R elasticity

In order to be able to run Elmer from anywhere, one may define the following environment variables:

export ELMER_HOME=$HOME/elmer/install

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ELMER_HOME/lib

export PATH=$PATH:$ELMER_HOME/bin

18.2 Compiling a user-defined subroutine

The elmerf90 command is provided to help compiling your own solvers. It is a wrapper script to the

compiler that was used to produce the Elmer installation and may be used as

elmerf90 -o MySolver MySolver.f90

In the MinGW system in Windows the suffix .dll should preferably be used

elmerf90 -o MySolver.dll MySolver.f90

After successful compilation, the file mysolver.dll should be found in the local directory. In the file-

name declaration of the Procedure-keyword given in the solver input file, the suffix .dll can be omitted,

so one should be able to define

Solver 1

Procedure = "MySolver" "SubroutineName"

...

End
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Chapter 19

Basic Programming

19.1 Introduction

The Elmer distribution contains a large set of different solvers and also the possibility to declare dependence

of material properties or boundary conditions on certain variables (e.g., using the MATC language). Never-

theless, there always may occur certain physical problems that are too difficult to be handled via the solver

input file. Such problems can be coped by introducing new user functions or even complete new solvers.

Elmer is very flexible if certain models have to be added by the user providing her/his own code.

This chapter shall provide a brief introduction to basic programming of user functions as well as solvers

that can be added to Elmer. This will be done by mainly using certain examples and explaining the program-

ming steps occurring in these.

The Elmer Solver source is written in the programming language Fortran 90. Since the Elmer Solver

binaries are compiled as shared objects, it is sufficient to just newly compile the code contributed by the user

as an executable of a shared object (.so in UNIX and .dll in Windows) that dynamically is linked to the

rest of the distribution. In order to provide Elmer with the needed information to be able to load an external

function or solver, the following entry in the solver input file (suffix .sif) has to be given:

Procedure "filename" "procedure"

Where the file filename is the above mentioned executable that should contain the Fortran 90 subroutine

or function procedure. The file filename should reside in the same directory where the solver input

file is. Else, the relative or absolute path to that file should be added in front of the entry filename.

19.2 Basic Elmer Functions and Structures

In order to provide a better understanding for the following mainly example-based explanation some of the

most often needed functions and routines provided by Elmer shall be discussed in this section. Most of these

routines and functions are defined in the Fortran 90 module DefUtils. It has to be included in the code

provided by the user giving the keyword

USE DefUtils

It is important to notice that – due to the nature of the Finite Element Method – the basic data structure

in the Elmer Solver is the single element, rather than single points. That simplifies data manipulation in

solver subroutines, but makes things a little bit more difficult if dealing with the coding of pointwise defined

boundary and initial condition as well as body forces and parameter functions. In the Elmer Solver the type

Element t contains information on elements.
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19.2.1 How to Read Values from the Input File

In the Elmer Solver the entries of each section of the solver input file – such as material, body force and

initial condition – are accessed via pointer of the defined data type ValueList t, further referred to as

“list”. A list provides access to all the information that has been passed to the Elmer Solver from the solver

input files, related to the specific section.

The principal connection between the solver input file and the access from a user function is depicted in

Fig. 19.1

   Variable = "MyVar"

Fortran 90 code (*.f90):

SUBROUTINE MySolver( Model,Solver,dt,Transient )

 LOGICAL :: Transient

 IMPLICIT NONE

 TYPE(Solver_t) :: Solver

 Type(Model_t) :: Model

 REAL(KIND=dp) :: dt

 

 !local variables

 TYPE(ValueList_t), POINTER :: listsol

 CHARACTER(LEN=MAX_NAME_LEN) :: varname

 varname = GetString(listsol,’Variable’,GotIt)

 !get keyword Variable

 listsol => GetSolverParams()

 !get list on Solver Section 

 LOGICAL :: GotIt

 IF (.NOT.GotIt) THEN

     CALL FATAL(’MySolver’,’Variable not found’)

 END IF

END SUBROUTINE MySolver

...

Solver 1

   Equation = "Poisson"

   Linear System Solver = "Direct"

   Steady State Convergence Tolerance = 1e−06

End

solver input file (*.sif):

Header

 Mesh DB "." "mymesh"

End

Simulation

 Coordinate System = "Cartesian 2D"

 Coordinate Main (3) = 1 2 3

End

Body 1

 Equation = 1

 Body Force =1

End

Body Force 1

 Source = Real 1

End

Equation 1

 Active Solvers (1) = 1

End 

Solver 1

 Equation = "MyEquation"

 Output Intervals(1) = 1 

 Simulation Type = Steady State

 Steady State Max Iterations = 1

 Post File = "myresult.ep"

 Output File = "myresult.dat"

END
 Steady State Convergence Tolerance = 1E−06

   Procedure = "Poisson" "PoissonSolver"

   Variable DOFs = 1

End

 MyVar=0

Boundary Condition 1

 Linear System Solver = "Direct"

 Procedure = "File" "MySolver"
 Variable DOFs = 1

 Variable = "MyVar"

 Target Boundaries (4) = 1 2 3 4

   Variable = "MyVar"

Figure 19.1: Scheme of the access of structures in the solver input file from a Fortran 90 user subroutine.

The example shows, how a string is read in from the Solver section.

How to Access Different Sections

The following table shows the definition of the functions defined in the module DefUtils to provide the

correct list for parameters and constants concerning the simulation and solvers

function corresponding section

GetSimulation() Simulation

GetConstants() Constants

GetSolverParams() Solver 1,...

For instance, the following source code lines provide access to the entries in the simulation section of the

solver input file
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! variable declaration for pointer on list

TYPE(ValueList_t), POINTER :: Simulation

...

! assign pointer to list

Simulation => GetSimulation()

...

Lists that provide information connected to a certain element are

function corresponding section

GetMaterial( Element, Found ) Material 1,...

GetBodyForce( Element, Found ) Bodyforce 1,...

GetEquation( Element, Found ) Equation 1,...

GetBC( UElement ) Boundary Condition 1,...

In the first three of these functions shown above the optional variable Found of type LOGICAL is set to

.TRUE. upon successful search in the solver input file. Hence, it can be used for error handling. The argu-

ments Element and UElement are of type Element t. If writing a solver, the current element is known

and hence can directly be passed to the functions listed above. Else, this argument may also be omitted.

However, Elmer Solver needs to have the information upon the element in order to inquire the number of the

material/bodyforce/equation/boundary condition section from the solver input file. Hence, if this function

argument is dropped, Elmer Solver falls back to the structure CurrentModel % CurrentElement,

which by the active solver has to be assigned to the address of the current element (see section 19.4).

The functions for input of different values from the solver input file need the assigned pointer to the

corresponding to the specific section.

Reading Constants from the Solver Input File

The following value types are defined for the solver input file:

Value in Input File Variable in Elmer Solver

Real Real(KIND=dp)

Integer INTEGER

Logical LOGICAL

String CHARACTER(LEN=MAX NAME LEN)

File CHARACTER(LEN=*)

The defined interface of such a function is

FUNCTION FunctionName( List, Name, Found ) Result(x)

TYPE(ValueList_t), POINTER :: List

CHARACTER(LEN=*) :: Name

LOGICAL, OPTIONAL :: Found

The arguments have the following purpose

List List from which the value has to be read. This pointer has to be obtained by one

of the previously introduced functions

Name The keyword in the particular section for the value

Found Optional boolean variable that contains the value .TRUE. upon successful read

in

The type of the returned of value, x, is depending on the function. The following functions are declared in

the DefUtils module:

• A value of type REAL is read in using the function
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REAL(KIND=dp) :: r

...

r = GetConstReal( List, Name, Found )

• A variable of type INTEGER is read in using the function

INTEGER :: i

...

i = GetInteger( List, Name, Found )

• A string is read into a user function or solver by the following code line

CHARACTER(LEN=MAX_NAME_LEN) :: str

...

str = GetString( List, Name, Found )

It is important to note that these routines are only meant for reading in constant values. Consequently, these

values must not be dependent on other variables.

Reading Mesh-values from the Solver Input File

The previously introduced function GetConstReal is defined for reading in a constant value of type

REAL(KIND=dp). In the case if values have to be obtained for nodes of an element defined on the mesh

(e.g., an initial condition, a boundary condition or a material parameter), the following function has to be

used

FUNCTION GetReal( List, Name, Found, UElement ) RESULT(x)

TYPE(ValueList_t), POINTER :: List

CHARACTER(LEN=*) :: Name

LOGICAL, OPTIONAL :: Found

TYPE(Element_t), OPTIONAL, TARGET :: UElement

REAL(KIND=dp) :: x(CurrentModel % CurrentElement % Type % NumberOfNodes)

The returned value, x, is a one-dimensional array of type REAL(KIND=dp) with entries for every node of

the either given elementUElement or alternatively the default structureCurrentModel % CurrentElement.

For instance, reading in the material parameter Viscosity from an already assigned pointer of type

ValueList t for a given element, Element, is done by the following code lines

REAL(KIND=dp), ALLOCATABLE :: viscosity(:)

INTEGER :: NoNodes

TYPE(ValueList_t), POINTER :: Material

TYPE(Element_t), POINTER :: Element

LOGICAL :: Found

...

allocate viscosity, set pointers Material and Element

...

NoNodes = GetElementNOFNodes(Element)

...

viscosity(1:NoNodes) = GetReal(Material, ’Viscosity’, Found, Element)

The user has to make sure that the array that later contains the nodal values is of sufficient size. This, for

instance, can be guaranteed by allocating it to the maximal occurring number of nodes for an element in the

model

ALLOCATE(viscosity(CurrentModel % MaxElementNodes))
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Physical Time as Argument of User Function

If a user function needs physical time as an input, it can be passed as an argument. For instance, if a boundary

condition for the normal component of the velocity would have the physical time as the input variable, the

function call in the solver input file then would look as follows (see section 19.3 for more details on user

functions)

Boundary Condition BCNo

Name = "time_dependent_outlet"

Target Boundaries = BoundaryNo

Normal-Tangential Velocity = True

Velocity 2 = 0.0

Velocity 1

Variable Time

Real Procedure "executable" "timeOutletCondition"

End

End

Here the entries BCNo and BoundaryNo have to be replaced by the correct boundary condition and bound-

ary target number. The file executable should contain the compiled user functiontimeOutletCondition.

19.2.2 How to Communicate with Structures Inside Elmer Solver

Often it is necessary to get information from inside the Elmer Solver, such as mesh coordinates or field

variables associated to another solver procedure. If writing a solver subroutine, all information of that kind

is accessible via the type TYPE(Solver t) :: Solver. In the case of a user function (boundary

condition, initial condition, material parameter), the default structure CurrentModel % Solver has to

be used.

Inquiring Information on the Element

As mentioned earlier, most of the pre-defined functions and subroutines inside Elmer Solver apply on the

whole element rather than on single nodes. Information on elements can be accessed via the pre-defined

type Element t. We list the functions/subroutines for the mostly needed purposes:

• Setting the active element (bulk):

TYPE(Element_t), POINTER :: Element

Type(Solver_t), Target :: Solver

INTEGER :: ElementNumber

...

Element => GetActiveElement(ElementNumber)

The argument Solver is optional. If it is not given, CurrentModel % Solver is used. This

function also automatically sets the pointer CurrentModel % CurrentElement to the element

with the given element number ElementNumber. This is important if sub-sequentially called func-

tions rely on this default value to be set.

The total number of active bulk elements for a specific solver is to be inquired using the value Solver

% NumberOfActiveElements.

• Setting the active element (boundary):

TYPE(Element_t), POINTER :: BoundaryElement

INTEGER :: ElementNumber

...

BoundaryElement => GetBoundaryElement(ElementNumber)

CSC – IT Center for Science



19. Basic Programming 95

This routine also sets the structure CurrentModel % CurrentElement to the boundary ele-

ment.

In contrary to the domain (i.e., bulk) it is a priory not known which boundary element is part of a

boundary condition of a specific solver. This information may be obtained using the function

Type(Element ) :: BoundaryElement

LOGICAL :: IsActiveBoundary

...

IsActiveBoundary = BoundaryElement(BoundaryElement,Solver)

where both arguments are optional. If they are omitted, Elmer Solver takes the valuesCurrentModel

% CurrentElement and CurrentModel % Solver, respectively. The boundary element num-

ber, ElementNumber may vary between 1 and the maximum value

Solver % Mesh % NumberOfBoundaryElements

• Inquire number of nodes in an element:

INTEGER :: N

TYPE(Element_t) :: Element

...

N = GetElementNOFNodes( Element )

The argument Element is optional. The default value is CurrentModel % CurrentElement

• Get nodal coordinates for element:

TYPE(Nodes_t) :: ElementNodes

TYPE(Element_t) :: Element

TYPE(Solver_t) :: Solver

...

CALL GetElementNodes( ElementNodes, Element, Solver )

The arguments Element and Solver are optional. The default values are CurrentModel %

CurrentElement and CurrentModel % Solver, respectively. The argumentElementNodes

is of the pre-defined type Nodes t. The different components of the coordinates for the i-th node can

be accessed by

REAL(KIND=dp) :: Xcoord, Ycoord, Zcoord

...

Xcoord = ElementNodes % x(i)

Ycoord = ElementNodes % y(i)

Zcoord = ElementNodes % z(i)

They correspond to the axes of the defined coordinate system in the solver input file.

• Get local coordinates of the i-th node for assigned element:

REAL(KIND=dp) :: U, V, W

TYPE(Element_t), POINTER :: Element

INTEGER :: i

...

U = Element % Type % NodeU(i)

V = Element % Type % NodeV(i)

W = Element % Type % NodeW(i)
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Local coordinates are corresponding to the position inside the prototype element that is used inside

the Elmer Solver. They are important if parameter values have to be obtained by summation over the

basis functions.

• Get normal vector at the i-th node of the assigned boundary element:

REAL(KIND=dp) :: U, V, Normal(3)

TYPE(Element_t), POINTER :: BoundaryElement

LOGICAL :: CheckDirection

...

U = BoundaryElement % Type % NodeU(i)

V = BoundaryElement % Type % NodeV(i)

Normal = NormalVector( BoundaryElement, Nodes, U, V, CheckDirection )

The function needs the boundary element as well as the local coordinates of the point, where the sur-

face (edge) normal shall be evaluated. The optional last argument, CheckDirection, is a boolean

variable. If set to .TRUE., the direction of the normal is set correctly to the rules given in section

19.3.2. The surface normal is returned in model coordinates and is of unity length.

Inquiring Nodal Values of Field Variables

Nodal values for an element of a scalar variables are read by the subroutine

SUBROUTINE GetScalarLocalSolution( x,name,UElement,USolver )

REAL(KIND=dp) :: x(:)

CHARACTER(LEN=*), OPTIONAL :: name

TYPE(Solver_t) , OPTIONAL, TARGET :: USolver

TYPE(Element_t), OPTIONAL, TARGET :: UElement

The returned value is an array containing the nodal values of the variable name. If this variable name is not

provided, it is assumed that the corresponding solver USolver has only one variable with a single degree

of freedom. If the optional parameters USolver and UElement are not provided, then the default values

CurrentModel % Solver and CurrentModel % CurrentElement, respectively, are used.

For instance, the following code lines read in the nodal element values for the variable Temperature

(from the heat solver)

REAL(KIND=dp), ALLOCATABLE :: localTemp(:)

ALLOCATE(localTemp(CurrentModel % MaxElementNodes))

...

CALL GetScalarLocalSolution(localTemp, ’Temperature’)

In the case of a vector field variable, the analog function

GetVectorLocalSolution has to be used. For instance, if the user wants to read in the local velocity

of an deforming mesh (from the MeshSolver), the following syntax has to be applied

REAL(KIND=dp) , ALLOCATABLE :: localMeshVelocity(:,:)

ALLOCATE(localMeshVelocity(3,Solver % Mesh % MaxElementNodes)

...

CALL GetVectorLocalSolution( MeshVelocity, ’Mesh Velocity’)

Inquiring Values of Field Variables for the Whole Mesh

Sometimes, the user also would like to have values for a field variable of the complete domain accessible.

This is done by assigning a pointer to the variable using the function VariableGet

VariablePointer => VariableGet(Solver % Mesh % Variables, ’Variable’ )

The argumentVariable has to be replaced by the variable name. The returned pointer is of typeVariable t.

This type contains the following components
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component purpose

INTEGER, POINTER :: Perm(:) Contains permutations for the variable. Since

Elmer Solver tries to optimize the matrix struc-

ture, the numbering of the nodal values of the

variable usually does not coincide with the num-

bering of the mesh-nodes. The is used to identify

the mesh-node for a variable-entry. Hence, the

field VariablePointer % Perm(i) con-

tains the nodal number of the i-th value of the

field variable Variable.

INTEGER :: DOFs Contains the amount of vector components of the

variable. DOFs is 1 in case of a scalar, 2 or 3 in

case of a two- or three-dimensional vector field.

REAL(KIND=dp), POINTER ::

Values(:)

contains the values of the field variable

For instance, in order to get access to the temperature field (similar as in the example above), the following

code lines may be used

TYPE(Variable_t), POINTER :: TempVar

INTEGER, POINTER :: TempPerm(:)

REAL(KIND=dp), POINTER :: Temperature(:)

INTEGER :: ElmentNo, N

REAL(KIND=dp), ALLOCATABLE :: localTemp(:)

ALLOCATE(localTemp(CurrentModel % MaxElementNodes))

TYPE(Element_t), POINTER :: Element

...

TempVar => VariableGet( Solver % Mesh % Variables, ’Temperature’ )

IF ( ASSOCIATED( TempVar) ) THEN

TempPerm => TempVar % Perm

Temperature => TempVar % Values

!!!! stop if temperature field has not been found !!!!

ELSE IF

CALL Fatal(’MyOwnSolver’, ’No variable Temperature found’)

END IF

...

DO ElementNo = 1,Solver % NumberOfActiveElements

Element => GetActiveElement(ElementNo)

N = GetElementNOFNodes()

NodeIndexes => Element % NodeIndexes

localTemp(1:N) = Temperature(TempPerm(Element % NodeIndexes))

END DO

It is recommended to check whether the pointer to the variable has been assigned correctly. In our little

example the call of the routine Fatal would stop the simulation run if the assessment would lead to a

negative result.

Inquiring the Current Time

In certain situations in transient simulations the physical time might be needed in a user function. In Elmer

Solver the physical time is treated as a variable and hence has to be read in using the type Variable t

TYPE(Variable t), POINTER :: TimeVar

Real(KIND=dp) :: Time

...

TimeVar => VariableGet( Solver % Mesh % Variables, ’Time’ )

Time = TimeVar % Values(1)
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How to Post Messages

Including PRINT or WRITE statements to stdio in numeric-codes can lead excessive output (large number

of iterations and/or large model sizes) and consequently to a reduction in performance. It is recommended

to use stdio-output routines provided by Elmer Solver, for which to a certain extend the amount of output

can be controlled via the solver input file. The three pre-defined subroutines for output of messages are:

• Info is used for displaying messages (e.g., upon convergence) on the screen. The syntax is

CALL Info(’FunctionName’,’The displayed message’, level=levelnumber)

The first string shall indicate which function the displayed message comes from. The second entry is

a string that contains the message itself. The integer value levelnumber indicates the importance

of the message, starting from 1 (most important). The maximum level of messages being displayed

can be determined in the simulation section of the solver input file

max output level = 3

• Warn is used for displaying warnings. Warnings are always displayed and should be used if conditions

in the code occur that might lead to possible errors

CALL Warn(’FunctionName’,’The displayed warning’)

• Fatal is used to terminate the simulation displaying a message. Consequently, it is used in conditions

in the code where a continuation of the computation is impossible

CALL Fatal(’FunctionName’,’The displayed error message’)

Of course the strings do not have to be hard-coded but can be composed during run-time, using the WRITE

command. The string variable Message is provided for that purpose

WRITE(Message,formatstring) list, of, variables

CALL Info(’FunctionName’,Message, level=3)

The format-string has to be set according to the list of variables.

19.3 Writing a User Function

User functions can be used to provide a pointwise (not element wise!) value for a certain property. They are

used for setting values of material properties inside the domain and/or to set values for certain variables on

boundary conditions at the domain boundary.

The defined interface for a user function looks as follows

FUNCTION myfunction( model, n, var ) RESULT(result)

USE DefUtils

IMPLICIT None

TYPE(Model_t) :: model

INTEGER :: n

REAL(KIND=dp) :: var, result

... contents of the function

leading to a value for variable result ...

END FUNCTION myfunction
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The function returns the value result. If this is supposed to be a nodal value of a material property or a

variable condition, the variable type in Elmer has to be real double precision, hence, REAL(KIND=dp).

The first argument passed to the function, model, is of the declared type Model t. It is basically the

interface to all information accessible at runtime, such as variable values, mesh coordinates and boundary

conditions.

The second argument, n, is the integer number of the node for which the function - i.e., the value result -

is is evaluated. Through the last argument, var, a value of an input variable on which the result depends is

passed to the function. In the solver input file this variable is indicated using the Variable-keyword. For

instance (see examples later in this chapter), if the user wants to provide the function above with the result

being the density which – in this particular case – depends on the temperature, the syntax looks as follows

Density = Variable Temperature

Procedure "filename" "myfunction"

Mind that there always has to be an input variable to be given using this keyword. In the case that there is

no need for an input, this may occur as a dummy argument in the function.

19.3.1 User Functions for Domain Properties

In the following we will give an outline of the main issues concerning the preparation of a user function for

a domain property. This might be of use if a material parameter (from material section of the solver input

file), an initial condition (from solver input file initial condition section) or a body force (from solver input

file body force section) of somewhat higher complexity has to be defined for the domain.

Some basic aspects concerning the syntax of such functions shall be explained by the following exam-

ples:

Example: Viscosity as a Function of Temperature

This example demonstrates the following topics:

• definition of a material property dependent on one input variable

• how to read in a value from the material section of the solver input file

We want to implement the following relation for the dynamic viscosity, µ, of a fluid

µ(T ) = µ293K exp

[

C ·
(
293

T
− 1

)]

(19.1)

where T is the temperature. The parameters µ293K (i.e., the reference viscosity at 293 Kelvin) and C have to

be read into our function from the material section of the solver input file. Thus, the material section looks

as follows:

! Material section (ethanol)

! --------------------------

Material 1

...

Viscosity = Variable Temperature

Procedure "fluidproperties" "getViscosity"

...

Reference Viscosity = Real 1.2E-03

Parameter C = Real 5.72

...

End

The values µ293K = 1.2 · 10−3 and C = 5.72 are the numerical values of the parameter occurring in

(19.1) for pure ethanol. The executable containing the function named getViscosity will be called

fluidproperties. The header – including the variable declaration – of the function then reads as

follows:
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!-----------------------------------------------------

! material property function for ELMER:

! dynamic fluid viscosity as a function of temperature

!-----------------------------------------------------

FUNCTION getViscosity( model, n, temp ) RESULT(visc)

! modules needed

USE DefUtils

IMPLICIT None

! variables in function header

TYPE(Model_t) :: model

INTEGER :: n

REAL(KIND=dp) :: temp, visc

! variables needed inside function

REAL(KIND=dp) :: refVisc, C

Logical :: GotIt

TYPE(ValueList_t), POINTER :: material

In order to get the pointer to the correct material-list, we use the function GetMaterial

! get pointer on list for material

material => GetMaterial()

IF (.NOT. ASSOCIATED(material)) THEN

CALL Fatal(’getViscosity’, ’No material found’)

END IF

We immediately check, whether the pointer assignment was successful. In the case of the NULL-pointer

being returned, the pre-defined procedure Fatal will stop the simulation and stdio will display the the

message: (getViscosity): No material-id found

The next step is to read in the numerical values for the parameter:

! read in reference viscosity

refvisc = GetConstReal( material, ’Reference Viscosity’, GotIt)

IF(.NOT. GotIt) THEN

CALL Fatal(’getViscosity’, ’Reference Viscosity not found’)

END IF

! read in parameter C

C = GetConstReal( material, ’Parameter C’, GotIt)

IF(.NOT. GotIt) THEN

CALL Fatal(’getViscosity’, ’Parameter C not found’)

END IF

The variable GotIt contains the state of success of the input. In the case of unsuccessful read-in (i.e., the

variable GotIt shows the value .FALSE.), the simulation will be stopped by the routine Fatal.

Finally, after a check upon the absolute temperature being larger than zero, the viscosity is computed ac-

cording to equation (19.1)

! compute viscosity

IF (temp <= 0.0D00) THEN ! check for physical reasonable temperature

CALL Warn(’getViscosity’, ’Negative absolute temperature.’)

CALL Warn(’getViscosity’, ’Using viscosity reference value’)

visc = refVisc(1)

ELSE
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visc = refVisc * EXP(C *(2.93D02/temp - 1.0D00))

END IF

END FUNCTION getViscosity

In the case of negative absolute temperature, the reference value will be returned. The pre-defined routine

Warn will display a specific warning on stdio.

Example: Body Force as a Function of Space

For the use as body force for the solver presented in 19.4 (i.e. heat source distribution for heat conduction

equation), we want to write a function that provides a scalar in the domain as a function of space. This

example demonstrates the following topics:

• definition of a scalar in the domain as function of space in two dimensions

• how to inquire the dimension of the problem

We want to implement the following two-dimensional spatial distribution for the scalar h:

h(x, y) = − cos(2 π x) · sin(2 π y), x, y ∈ [0, 1] (19.2)

where x corresponds to Coordinate 1 and y to Coordinate 2 of the solver input file.

Since the function given in (19.2) is dependent on two input variables, the single argument that is able to

be passed to the function is not sufficient. Hence it will just be used as dummy argument. Consequently, the

user can provide any (existing!) variable as argument in the solver input file. The header reads as follows

!-----------------------------------------------------

! body force function for ELMER:

! scalar load as function of coordinates x and y

! -cos(2*pi*x)*sin(2*pi*y)

!-----------------------------------------------------

FUNCTION getLoad( model, n, dummyArgument ) RESULT(load)

! modules needed

USE DefUtils

IMPLICIT None

! variables in function header

TYPE(Model_t) :: model

INTEGER :: n

REAL(KIND=dp) :: dummyArgument, load

! variables needed inside function

INTEGER :: DIM

REAL(KIND=dp) :: x, y

Logical :: FirstVisited = .TRUE.

! remember these variables

SAVE DIM, FirstVisited

Further we want to check whether the problem is two-dimensional and hence suitable for our function.

This is done only the first time the function is called, since - hopefully - the dimension of the prob-

lem does not change during all the following calls. The function returning the problem dimension is

CoordinateSystemDimension()

! things done only the first time the function is visited

IF (FirstVisited) THEN

CSC – IT Center for Science



19. Basic Programming 102

! check whether we are dealing with a 2d model

DIM = CoordinateSystemDimension()

IF (DIM /= 2) THEN

CALL FATAL(’getLoad’, ’Dimension of model has to be 2d’)

END IF

FirstVisited = .FALSE.

END IF

The next step to inquire the coordinates of the current point the function is evaluated for. The structure

model contains that information

! get the local coordinates of the point

x = model % Nodes % x(n)

y = model % Nodes % y(n)

Finally, the result is computed

! compute load

load = -COS(2.0D00*PI*x) * SIN(2.0D00*PI*y)

END FUNCTION getLoad

Figure 19.2 shows the result of a simulation using the solver defined in section 19.4 together with the function

getLoad as body force. The entry in the body force section of the solver input file reads as follows:

Figure 19.2: Result obtained with the routine getLoad as body force input for the heat conduction solver

presented in 19.4. The z-coordinate is set proportional to the result obtained in the x-y plane.

Body Force 1

Heat Source

Variable Temp !just a dummy argument
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Real Procedure "load" "getLoad"

End

where the shared object file has been given the name load. All boundaries are set to adiabatic boundary

condition, i.e., ∇T ·~n = 0. This is possible if – and only if – the integral over the load vector over the whole

domain balances to zero, like in our case. Since no Dirichtlet condition is set, the result is not unique and

contains an undetermined offset T0.

19.3.2 User Functions for Boundary Conditions

As for the user functions for bulk properties presented in section 19.3.1, the function for a boundary property

is evaluated pointwise. Hence, the identical function interface is used. The major difference between bulk

elements and elements on boundaries are, that the latter can be associated to more than one body. That is

the case on boundaries between bodies. This is important in such cases where the boundary condition is

dependent on properties inside a specific body to which the boundary is attached. Possible configurations of

boundaries are depicted in Fig. 19.3.

bulk
bulk

b) body−body boundary (interface)a) outside boundary 

corner point

other body
outside 

Figure 19.3: Possible constellations for boundaries and the normal vectors, ~n at element nodes. Mind, that

for a body-body interface (case b) the default orientation of the surface normal may vary from element to

element. At boundary points that have a discontinuous first derivative of the surface (i.e. at corners and

edges), the evaluation of the normal at the same point for two adjacent boundary elements leads to different

surface normals. Parent elements of boundary elements for the specific body are marked as filled.

If the keyword for checking the directions in the function NormalVector (see section 19.2.2) is set to

.TRUE., the following rules apply:

• In the case of an outside boundary the surface normal, ~n, is always pointing outwards of the body.

• By default on a body-body boundary, the orientation is such that the normal always is pointing towards

the body with lower density, ̺, which is evaluated by comparison of the values given for the keyword

Density in the corresponding material sections of the adjacent bodies.

In certain cases, if densities on both sides are either equal or varying functions of other variables, this may

lead to a varying orientation of the surface. This effect and the effect of different directions of surface

normal for the same point at surface corners and edges is depicted in Fig. 19.3. Whereas the latter effect can

only be dealt with by either producing smooth surfaces or averaging surface normals, the first problem can
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be overcome by providing the keyword Normal Target Body in the solver input file. This keyword

defines the direction of the surface normals for the pre-defined subroutine NormalVector. For instance,

the following sequence fixes the surface normal at boundary condition number 1 to point into body number

2

Boundary Condition 1

Target Boundaries = 1

Normal Target Body = Integer 2

...

End

Example: Idealized Radiation Law for External Heat Transfer

As an illustrative example we want to show how to implement a very idealized radiation boundary condition

for heat transfer. This example explains:

• how to identify the type of boundary according to Fig. 19.3

• how to get material parameters from domain parent elements of the boundary element

• how to identify the local node number in an elment

• how to inquire boundary normals

The net flux into the body at such a boundary shall be approximated by

qn = ǫ qext − ǫσ ·
(
T 4 − T 4

ext

)
, (19.3a)

where Text is the external temperature, σ stands for the Stefan-Boltzmann constant and ǫ is the emissivity.

The external heat flux shall be defined as

qext =

{

−I~s · ~n, ~s · ~n < 0,

0, else,
(19.3b)

where I is the intensity and ~s the direction of the incoming radiation vector. The surface normal, ~n, is

assumed to point outwards the body surface.

Since we are planning to use this boundary condition in connection with the solver presented in section

19.4.2, we have to provide the load vector l = qn/(cp ̺) occurring in the force vector of (19.7). This means

that we have to inquire the material parameters cp and ̺ for the parent element from the material section of

the adjacent body.

The header of the function reads as

!-----------------------------------------------------

! boundary condition function for ELMER:

! simplified radiation BC

!-----------------------------------------------------

FUNCTION simpleRadiation( model, n, temp ) RESULT(load)

! modules needed

USE DefUtils

IMPLICIT None

! variables in function header

TYPE(Model t) :: model

INTEGER :: n

REAL(KIND=dp) :: temp, load

! variables needed inside function
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REAL(KIND=dp), ALLOCATABLE :: Density(:), HeatCapacity(:), ExtTemp(:)

REAL(KIND=dp), POINTER :: Work(:,:)

REAL(KIND=dp) :: radvec(3), Normal(3), NormDir, U, V,&

Emissivity, normalabsorbtion, emission, StefanBoltzmann

INTEGER :: DIM, other_body_id, nboundary, nparent,&

BoundaryElementNode, ParentElementNode, istat

Logical :: GotIt, FirstTime=.TRUE., Absorption = .TRUE.

TYPE(ValueList t), POINTER :: ParentMaterial, BC

TYPE(Element t), POINTER :: BoundaryElement, ParentElement

TYPE(Nodes t) :: ElementNodes

SAVE FirstTime, Density, HeatCapacity, ExtTemp

!-----------------------------------------------------------------------

The boundary element and the pointer to the list of the corresponding Boundary Condition-entry in the solver

input file are assigned

! -----------------------

! get element information

! -----------------------

BoundaryElement => CurrentModel % CurrentElement

IF ( .NOT. ASSOCIATED(BoundaryElement) ) THEN

CALL FATAL(’simpleRadiation’,’No boundary element found’)

END IF

BC => GetBC()

IF ( .NOT. ASSOCIATED(BC) ) THEN

CALL FATAL(’simpleRadiation’,’No boundary condition found’)

END IF

Thereafter, a case distinction between the two possible constellations in Fig. 19.3 (i.e.,outside or body-body

boundary). A outside boundary is indicated by the value -1 of BoundaryElement % BoundaryInfo

% outbody. In the case of a boundary-boundary interface the surface normal is supposed to point out-

wards. I.e., the body hosting the parent element is taken the one for which ParentElement % BodyId

does not coincide with BoundaryElement % BoundaryInfo % outbody

other_body_id = BoundaryElement % BoundaryInfo % outbody

! only one body in simulation

! ---------------------------

IF (other_body_id < 1) THEN

ParentElement => BoundaryElement % BoundaryInfo % Right

IF ( .NOT. ASSOCIATED(ParentElement) )&

ParentElement => BoundaryElement % BoundaryInfo % Left

! we are dealing with a body-body boundary

! and assume that the normal is pointing outwards

! -----------------------------------------------

ELSE

ParentElement => BoundaryElement % BoundaryInfo % Right

IF (ParentElement % BodyId == other_body_id)&

ParentElement => BoundaryElement % BoundaryInfo % Left

END IF

! just to be on the save side, check again

! ----------------------------------------

IF ( .NOT. ASSOCIATED(ParentElement) ) THEN

WRITE(Message, *)&
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’No parent element found for boundary element no. ’, n

CALL FATAL(’simpleRadiation’,Message)

END IF

After that procedure the pointer ParentElement is set on the adjacent element of the boundary element

inside the body for which the radiation boundary condition is evaluated.

We further need the total number of nodes in the boundary element and the parent element given by

nboundary and nparent, respectively. Also the corresponding number of the boundary node number, n,

in the parent element, ParentElementNode, as well as in the boundary element itself, BoundaryElementNode,

is evaluated. At the end of this code sequence, the routine GetElementNodes sets the information on the

nodes of the boundary element

! get the corresponding node in the elements

! ------------------------------------------

nboundary = GetElementNOFNodes(BoundaryElement)

DO BoundaryElementNode=1,nboundary

IF ( n == BoundaryElement % NodeIndexes(BoundaryElementNode) ) EXIT

END DO

nparent = GetElementNOFNodes(ParentElement)

DO ParentElementNode=1,nboundary

IF ( n == ParentElement % NodeIndexes(ParentElementNode) ) EXIT

END DO

! get element nodes

! -----------------

CALL GetElementNodes(ElementNodes, BoundaryElement)

The needed space for reading material parameter fro the parent element as well as boundary condition

parameters for the boundary element is allocated. In the case of the function being re-visited, we first do a

deallocation, since the values of nboundary or nparent may change from element to element (hybrid

mesh)

! -----------

! Allocations

! -----------

IF (.NOT.FirstTime) THEN

DEALLOCATE(Density, HeatCapacity, ExtTemp)

ELSE

FirstTime = .FALSE.

END IF

ALLOCATE(Density( nparent ), HeatCapacity( nparent ),&

ExtTemp(nboundary), stat=istat)

IF (istat /= 0) CALL FATAL(’simpleRadiation’, ’Allocations failed’)

The following code lines read the values for the parameters associated with the boundary element and the

Stefan-Boltzmann constant from the solver input file

! --------------------------------------

! get parameters from constants section

! and boundary condition section

! --------------------------------------

DIM = CoordinateSystemDimension()

StefanBoltzmann = ListGetConstReal( Model % Constants, &

’Stefan Boltzmann’,GotIt)

IF (.NOT. GotIt) THEN ! default value in SI units

StefanBoltzmann = 5.6704D-08

END IF
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Emissivity = GetConstReal( BC,’Emissivity’,GotIt)

IF ((.NOT. GotIt) .OR. &

((Emissivity < 0.0d0) .OR. (Emissivity > 1.0d0))) THEN

load = 0.0d00

CALL WARN(’simpleRadiation’,’No Emissivity found.’)

RETURN ! no flux without or with unphysical emissivity

END IF

ExtTemp(1:nboundary) = GetReal( BC,’External Temperature’,GotIt)

IF (.NOT.GotIt) THEN

WRITE (Message,*) ’No external temperature defined at point no. ’, n

CALL Warn(’simpleRadiation’, Message)

ExtTemp(1::nboundary)= temp

END IF

Work => ListGetConstRealArray( BC,’Radiation Vector’,GotIt)

IF ( GotIt ) THEN

radvec = 0.0D00

NormDir = SQRT(SUM(Work(1:DIM,1) * Work(1:DIM,1)))

IF (NormDir /= 0.0d00) THEN

radvec(1:DIM) = Work(1:DIM,1)*Work(4,1)/NormDir

ELSE ! no radiation for weird radiation vector

Absorption = .FALSE.

END IF

ELSE ! no absorption without radiation vector

Absorption = .FALSE.

END IF

If absorption of an incoming radiation vector has to be computed, the surface normal has to be inquired

! ---------------------------------

! get surface normals ( if needed )

! ---------------------------------

IF (Absorption) THEN

U = BoundaryElement % Type % NodeU(BoundaryElementNode)

V = BoundaryElement % Type % NodeV(BoundaryElementNode)

Normal = NormalVector(BoundaryElement, ElementNodes, U, V, .TRUE.)

END IF

Thereafter, the needed material parameters are read from the material section of the solver input file that

associated with the body for which the radiation boundary condition is computed

! -------------------------------------------

! get material parameters from parent element

! -------------------------------------------

ParentMaterial => GetMaterial(ParentElement)

! next line is needed, if the consequently read

! parameters are themselves user functions

! ---------------------------------------------

CurrentModel % CurrentElement => ParentElement

Density(1:nparent) = GetReal(ParentMaterial, ’Density’, GotIt)

IF (.NOT.GotIt) Density(1:nparent) = 1.0d00

HeatCapacity(1:nparent) = GetReal(ParentMaterial, ’Heat Capacity’, GotIt)

IF (.NOT.GotIt) HeatCapacity(1:nparent) = 1.0d00

! put default pointer back to where it belongs
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! --------------------------------------------

CurrentModel % CurrentElement => BoundaryElement

Since these material parameters themselves may be given in form of user functions, the default pointer

CurrentModel % CurrentElement has to be set to the parent element upon call of the function

GetReal.

Finally the two parts of the total normal heat flux are evaluated. The external load is obtained by dividing

this Laue by the inquired values for Density and HeatCapacity.

!------------------------------------

! compute flux and subsequently load

!-----------------------------------

IF (Absorption) THEN

normalabsorbtion = -1.0D00 & ! since normal pointing outwards

* Emissivity * DOT_PRODUCT(Normal,radvec)

IF (normalabsorbtion < 0.0d0) &

normalabsorbtion = 0.0d00

ELSE

normalabsorbtion = 0.0d00

END IF

emission = StefanBoltzmann * Emissivity * &

( temp**4 - ExtTemp(BoundaryElementNode)**4) &

/ (HeatCapacity(ParentElementNode) * Density(ParentElementNode))

load = normalabsorbtion + emission

END FUNCTION simpleRadiation

Figure 19.4 shows the result of the heat conduction solver presented in section 19.4 in combination with

the function simpleRadiation as boundary condition on two oppositely directed boundaries (boundary

condition no. 1). Since the radiation vector is aligned with the x-direction and hence perpendicular with

respect to these two boundaries, the absorption part vanishes for one of these boundaries. For the sake of

simplicity, the material parameters ̺, cp and k have been set to unity. The corresponding entries of the solver

input file for the boundary conditions of the case shown in Fig. 19.4 are:

Boundary Condition 1

Target Boundaries(2) = 1 2

Boundary Type = String "Heat Flux"

External Load

Variable Temp

Real Procedure "radiation_flux.exe" "simpleRadiation"

External Temperature = Real -20.0E00

Radiation Vector(4) = Real -1.0E00 0.0E00 0.0E00 1.0E01

Emissivity = Real 0.5

End

Boundary Condition 2

Target Boundaries = 3

Boundary Type = String "Given Temperature"

Temp = Real 0

End

Boundary Condition 3

Target Boundaries = 4

Boundary Type = String "Adiabatic"

End
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Figure 19.4: Result of the heat conduction solver applying the simplified radiation boundary condition

described in this section. The coordinate directions as well as the number of the corresponding boundary

condition section are shown. The latter can be compared to the solver input file entries shown in this section.
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19.4 Writing a Solver

In Elmer an additional solver may be provided by dynamically linked subroutines. The pre-defined interface

of a solver subroutine is

SUBROUTINE mysolver( Model,Solver,dt,TransientSimulation )

TYPE(Model_t) :: Model

TYPE(Solver_t) :: Solver

REAL(KIND=dp) :: dt

LOGICAL :: TransientSimulation

The first argument,Model, is the same structure also passed to a user function (see section 19.3). The second

argument, Solver, is of type Solver t and contains all information upon options set for this particular

solver. The timestep size, dt, and a boolean variable, TransientSimulation, indicating whether the

solver is to be run as a part of a transient (value .TRUE.) or steady state (value .FALSE.) simulation are

further arguments of the solver subroutine.

19.4.1 Structure of a Solver

The well known structure of a linearized partial differential equation (PDE) for the scalar T in the variational

formulation is

Mij
∂Tj

∂t
+AijTj = Fi, (19.4)

with the mass matrix, Mij , the stiffness matrix, Aij and the force vector, Fi.

Time-stepping and the coupled solver iteration – i.e., the steady state or time level iteration of several

solvers of the simulation – is taken care of by the main part of the Elmer Solver. The task of the user

supplying a user defined solver subroutine is to linearize an eventually nonlinear PDE and to supply the

Elmer Solver with the element-wise components for the matrices as well as the force vector.

This leads to a principle structure of a user defined solver subroutine as it is depicted in Fig. 19.5. We

further will explain the construction of a user solver subroutine by discussing an example case.

19.4.2 Example: Heat Conduction Equation

In order to provide a simple example, we want to explain how the solution of the purely convective heat

transport equation is implemented in Elmer. This example explains:

• reading solver parameters from the solver input file

• assembly of the local element matrix components for the domain and a Neumann condition including

explanation of the most important Elmer Solver routines needed for linear system matrix assembly

and solution

• how to deal with non-linear and transient PDE’s

• how to implement Dirichlet boundary conditions

For constant density, ̺, and heat capacity, cp this equation may be written as

∂T

∂t
−∇ · ( k

cp ̺
∇T ) =

h

cp ̺
, (19.5)

where T stands for the temperature, k for the heat conductivity and h is the heat source.

The variational formulation of (19.5) reads after partial integration of the conduction term and application

of Green’s theorem
∫

V

∂T

∂t
γi dV +

∫

V

k

cp ̺
∇T · ∇γi dV =

∫

V

h

cp ̺
γi dV +

∮

∂V

1

cp ̺
(k∇T ) · ~n
︸ ︷︷ ︸

=qn

γi dA, (19.6)
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subroutine inside

the solver routine

subroutine inside

the solver routine

often provided as

often provided as

ElmerSolver Main

until last timestep 

relative change of norms < Steady State Tolerance

Timestepping loop

User Subroutine

Steady state iteration (coupled system)

Initialization

Nonlinear iteration loop

relative change of norms < Nonlinear Tolerance

Domain element loop

Matrix assembly for domain element

until last bulk element

Boundary element loop

Matrix assembly for von Neumann and 
Newton conditions at boundary element

until last boundary element

set Dirichlet boundary conditions

solve the system

          or

nonlinear max. iterations exceeded

Figure 19.5: Flowchart of a user defined solver subroutine within Elmer Solver. The grey underlayed area

indicates the tasks of a simulation that are provided by Elmer, whereas the white area contains the flowchart

for the source code of the user subroutine. Arrows pointing into this field indicate needed subroutine/function

calls to Elmer Solver.
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where γi is the basis-function, V and ∂V is the element volume and its enclosing surface, respectively. The

surface normal of ∂V is denoted by ~n. According to the Galerkin method, the variable is given as T = Tjγj ,

with the sum taken over the index j. Comparing with (19.4) leads to the matrices and vectors

Mij =

∫

V

γjγi dV,

Aij =

∫

V

k

cp ̺
∇γj · ∇γi dV,

Fi =

∫

V

h

cp ̺
∇γi dV +

∮

∂V

qn
cp ̺
︸︷︷︸

=l

γi dA.

(19.7)

Although the external heat flux perpendicular to the surface normal, qn(T ), in general is a function of

the temperature we want to keep it formal as being prescribed. Hence, only a contribution in the force

vector occurs in our formulation. Mind, that a linear or linearized expression of qn(T ) directly could give a

contribution to the stiffness matrix at the entries corresponding to boundary nodes. In our approach, even in

the case of a linear dependency qn(T ) ∝ T we have to iterate the solution because of our treatment of the

boundary condition.

The header contains the declaration needed variables – we tried to give them self explaining identi-

fiers. Furthermore, allocations of the needed field arrays are done for the first time the subroutine is visited

(checked by the boolean variable AllocationsDone). The variable names of these arrays then have to

be included in the SAVE-statement at the end of the variable declaration block.

SUBROUTINE MyHeatSolver( Model,Solver,dt,TransientSimulation )

USE DefUtils

IMPLICIT NONE

!----------------------------------------------------------------

TYPE(Solver_t) :: Solver

TYPE(Model_t) :: Model

REAL(KIND=dp) :: dt

LOGICAL :: TransientSimulation

!----------------------------------------------------------------

! Local variables

!----------------------------------------------------------------

TYPE(Element_t),POINTER :: Element

LOGICAL :: AllocationsDone = .FALSE., Found, Converged

INTEGER :: n, t, istat, other_body_id, iter, NonlinearIter

REAL(KIND=dp) :: Norm, PrevNorm=0.0d00, NonlinearTol, RelativeChange

TYPE(ValueList_t), POINTER :: BodyForce, Material, BC, SolverParams

REAL(KIND=dp), ALLOCATABLE :: MASS(:,:), STIFF(:,:), LOAD(:), FORCE(:)

REAL(KIND=dp), ALLOCATABLE :: HeatCapacity(:), HeatConductivity(:),&

Density(:), ExternalTemp(:), TransferCoeff(:), HeatFlux(:)

CHARACTER(LEN=MAX_NAME_LEN) :: BoundaryType

SAVE MASS, STIFF, LOAD, FORCE,&

HeatCapacity, HeatConductivity,&

Density, ExternalTemp, TransferCoeff, HeatFlux, &

CSC – IT Center for Science



19. Basic Programming 113

AllocationsDone, PrevNorm

!----------------------------------------------------------------

!Allocate some permanent storage, this is done first time only:

!--------------------------------------------------------------

IF ( .NOT. AllocationsDone ) THEN

N = Solver % Mesh % MaxElementNodes !big enough for elemental arrays

ALLOCATE( FORCE(N), LOAD(N), MASS(N,N), STIFF(N,N), STAT=istat )

IF ( istat /= 0 ) THEN

CALL Fatal( ’MyHeatSolve’,&

’Memory allocation error for matrix/vectors.’ )

END IF

ALLOCATE( HeatCapacity(N), HeatConductivity(N), Density(N),&

ExternalTemp(N), TransferCoeff(N), HeatFlux(N), STAT=istat )

IF ( istat /= 0 ) THEN

CALL Fatal( ’MyHeatSolve’,&

’Memory allocation error for parameter arrays.’ )

END IF

AllocationsDone = .TRUE.

END IF

In the next step, information on the nonlinear iteration is being read from the solver section of the solver

input file

!Read in solver parameters

!-------------------------

SolverParams => GetSolverParams()

IF (.NOT. ASSOCIATED(SolverParams))&

CALL FATAL(’MyHeatSolve’,’No Solver section found’)

NonlinearIter = GetInteger(SolverParams, &

’Nonlinear System Max Iterations’, Found)

IF ( .NOT.Found ) NonlinearIter = 1

NonlinearTol = GetConstReal( SolverParams, &

’Nonlinear System Convergence Tolerance’, Found )

IF ( .NOT.Found ) NonlinearTol = 1.0D-03

There after, the nonlinear iteration loop (outermost loop of the white underlayed area in Fig. 19.5) is started

and the linear system solver is initialized (routine DefaultInitialize)

!----------------------------------------------------------------

! Nonlinear iteration loop

!----------------------------------------------------------------

DO iter=1,NonlinearIter

Converged = .FALSE.

WRITE(Message,’(A,I5,A,I5)’) ’Nonlinear iteration no.’,iter,&

’ of max. ’, NonlinearIter

CALL INFO(’MyHeatSolve’,Message,level=1)

!Initialize the system and do the assembly:

!------------------------------------------

CALL DefaultInitialize()

The next loop is over all elements in the simulation domain our solver has been assigned to (Solver %

NumberOfActiveElements). The function GetActiveElement inquires the element associated

with the element number t. This call at the same time also sets the default pointer CurrentModel %

CurrentElement to that particular element, which is important if subsequently called functions rely on

CSC – IT Center for Science



19. Basic Programming 114

this pointer to be set correctly (see section 19.3). After inquiring the number of nodes the nodal material pa-

rameter values cp → HeatCapacity(1:n), k → HeatConductivity(1:n) and ̺ → Density(1:n)

are read in. If one of these parameters is not found (i.e., Found == .FALSE.), a default value of 1 will

be set in order to avoid division by zero.

!----------------------------------------------------------------

! Assembly for the domain

!----------------------------------------------------------------

DO t=1,Solver % NumberOfActiveElements

! get element info

!-----------------

Element => GetActiveElement(t)

n = GetElementNOFNodes()

! get material parameters

! ----------------------

Material => GetMaterial()

IF (.NOT. ASSOCIATED(Material)) THEN

WRITE(Message,’(A,I5,A)’) &

’No material for bulk element no. ’,t,’ found.’

CALL FATAL(’MyHeatSolve’,Message)

END IF

HeatCapacity(1:n) = GetReal(Material, ’Heat Capacity’, Found )

IF (.NOT. Found) HeatCapacity(1:n) = 1.0D00

HeatConductivity(1:n) = &

GetReal(Material, ’Heat Conductivity’, Found )

IF (.NOT. Found) HeatCapacity(1:n) = 1.0D00

Density(1:n) = GetReal(Material, ’Density’, Found )

IF (.NOT. Found) Density(1:n) = 1.0D00

In order to call the subroutine taking care of the composition of the element matrices and force vector

(subroutine LocalMatrix), the load vector – in our case the heat source, h → LOAD(1:n) – has to

be read from the body section of the solver input file. In the case of a transient simulation (indicated by

TransientSimulation == .TRUE.) the first order time discretization is accounted for using the

subroutine Default1stOrderTime. Mind, that also higher order time discretization routines would be

at hand. The local matrix is added to the global coefficient matrix of Elmer Solver calling the subroutine

DefaultUpdateEquations

!Get load for force vector

!-------------------------

LOAD = 0.0d0

BodyForce => GetBodyForce()

IF ( ASSOCIATED(BodyForce) ) &

LOAD(1:n) = GetReal( BodyForce, ’Heat Source’, Found )

!Get element local matrix and rhs vector:

!----------------------------------------

CALL LocalMatrix( MASS, STIFF, FORCE, LOAD, Element, n,&

HeatCapacity, HeatConductivity, Density, TransientSimulation)

!Update global matrix and rhs vector from local matrix & vector:

!---------------------------------------------------------------

IF ( TransientSimulation ) THEN

CALL Default1stOrderTime( MASS,STIFF,FORCE )

END IF
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CALL DefaultUpdateEquations( STIFF, FORCE )

!----------------------------------------------------------------

END DO ! end Assembly for the domain

!----------------------------------------------------------------

After the bulk elements, the contribution to the coefficient matrix and the force vector from a Neumann type

of boundary condition has to be taken into account. To this end, we are looping over all boundary elements.

Their total number is given by Solver % Mesh % NumberOfBoundaryElements. The routine

ActiveBoundaryElement checks whether the previously inquired element is part of a boundary condi-

tion that has been assigned to our solver. If the value 1 is returned from the function GetElementFamily

– i.e. we are dealing with boundary element given at a point element – the element also will be skipped,

since Neumann conditions cannot be set on such elements. Finally, the list-pointer to the associated boundary

condition section (GetBC) is set and the local matrices and vectors are initiated to zero.

!----------------------------------------------------------------

! assembly of Neumann boundary conditions

!----------------------------------------------------------------

DO t=1, Solver % Mesh % NumberOfBoundaryElements

! get element and BC info

! -----------------------

Element => GetBoundaryElement(t)

IF ( .NOT.ActiveBoundaryElement() ) CYCLE

n = GetElementNOFNodes()

! no evaluation of Neumann BC’s on points

IF ( GetElementFamily() == 1 ) CYCLE

BC => GetBC()

FORCE = 0.0d00

MASS = 0.0d00

STIFF = 0.0d00

Since we have to define between different types of boundary conditions, we inquire the contents of a keyword

Boundary Type from the solver input file. If this string is equal to ’heat flux’, the variable with the

name ’External Load’will be read in from the boundary condition list BC. Thereafter, the contribution

to the force vector will be computed by the internal subroutine BoundaryCondition (see later in this

code). Mind, that the external load is not the given heat flux, qn, but its value divided by the heat capacity

and the density, l = qn/(cp ̺). This has to be taken care of if a numerical value or even a user function

is provided in the solver input file (see section 19.3.2). In the case of no boundary type being found or

an unknown string being detected, the natural boundary condition, zero flux perpendicular to the surface,

will be assumed. This is equivalent to the ’adiabatic’ boundary condition. In the case of ’given

temperature’ the natural boundary condition will be altered by the matrix manipulation arising from

the Dirichlet boundary condition (see later in this code).

! check type of boundary and set BC accordingly

!----------------------------------------------

BoundaryType = GetString(BC,’Boundary Type’,Found)

IF (.NOT. Found) CYCLE

! natural boundary condition

IF ((BoundaryType == ’adiabatic’)&

.OR. (BoundaryType == ’given temperature’)) THEN

CYCLE

! external heat flux

ELSE IF(BoundaryType == ’heat flux’) THEN

! get external load; mind that this is the heat flux
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! divided by the density and heat capacity

LOAD(1:n) = LOAD(1:n) + GetReal(BC,’External Load’, Found)

! do the assembly of the force vector

CALL BoundaryCondition(LOAD, FORCE, Element, n)

ELSE

WRITE(Message,’(A,I3,A)’)&

’No boundary condition given for BC no. ’,GetBCId(),&

’. Setting it to adiabatic.’

CALL WARN(’MyHeatSolve’,Message)

CYCLE

END IF

The boundary element loop is closed after the component system matrix and vector are updated for the

current boundary element.

IF ( TransientSimulation ) THEN

MASS = 0.d0

CALL Default1stOrderTime( MASS, STIFF, FORCE )

END IF

CALL DefaultUpdateEquations( STIFF, FORCE )

!----------------------------------------------------------------

END DO ! end of assembly of Neumann boundary conditions

!----------------------------------------------------------------

Before setting the Dirichlet conditions (i.e., given boundary temperatureT ) using the subroutineDefaultDirichletBCs()

it is important to finish the element-wise assembly of the Elmer Solver system matrix callingDefaultFinishAssembly

CALL DefaultFinishAssembly()

! call Elmer Solver routine for Dirichlet BCs

! ------------------------------------------

CALL DefaultDirichletBCs()

The system is solved by the function call DefaultSolve, which returns the norm, Nn of the solution

vector Tj for the n-th nonlinear iteration step. This is needed in order to inquire the change of the solution

between two steps. If the relative norm

R = 2
|Nn−1 −Nn|
Nn−1 +Nn

,

is smaller than the given tolerance Nonlinear System Tolerance of the solver section, then the

nonlinear iteration is taken to be converged.

! Solve the system

! ----------------

Norm = DefaultSolve()

! compute relative change of norm

! -------------------------------

IF ( PrevNorm + Norm /= 0.0d0 ) THEN

RelativeChange = 2.0d0 * ABS( PrevNorm-Norm ) / (PrevNorm + Norm)

ELSE

RelativeChange = 0.0d0

END IF

WRITE( Message, * ) ’Result Norm : ’,Norm
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CALL Info( ’MyHeatSolve’, Message, Level=4 )

WRITE( Message, * ) ’Relative Change : ’,RelativeChange

CALL Info( ’MyHeatSolve’, Message, Level=4 )

! do we have to do another round?

! -------------------------------

IF ( RelativeChange < NonlinearTol ) THEN ! NO

Converged = .TRUE.

EXIT

ELSE ! YES

PrevNorm = Norm

END IF

!----------------------------------------------------------------

END DO ! of the nonlinear iteration

!----------------------------------------------------------------

After leaving the nonlinear iteration loop the status of convergence shall be displayed on stdio

! has non-linear solution converged?

! ----------------------------------

IF ((.NOT.Converged) .AND. (NonlinearIter > 1)) THEN

WRITE( Message, * ) ’Nonlinear solution has not converged’,&

’Relative Change=’,RelativeChange,’>’,NonlinearTol

CALL Warn(’MyHeatSolve’, Message)

ELSE

WRITE( Message, * ) ’Nonlinear solution has converged after ’,&

iter,’ steps.’

CALL Info(’MyHeatSolve’,Message,Level=1)

END IF

In the code lines given above, the user could exchange the routine Warn by Fatal if the simulation should

stop upon failed nonlinear iteration convergence.

Further we have to include the needed local subroutines using the Fortran 90 command

!----------------------------------------------------------------

! internal subroutines of MyHeatSolver

!----------------------------------------------------------------

CONTAINS

The subroutine LocalMatrix composes the local matrices and vectors for a bulk element. The header

with the variable declaration reads as follows

!----------------------------------------------------------------

SUBROUTINE LocalMatrix(MASS, STIFF, FORCE, LOAD, Element, n, &

HeatCapacity, HeatConductivity, Density, TransientSimulation)

IMPLICIT NONE

!----------------------------------------------------------------

REAL(KIND=dp), DIMENSION(:,:) :: MASS, STIFF

REAL(KIND=dp), DIMENSION(:) :: FORCE, LOAD, &

HeatCapacity, HeatConductivity, Density

INTEGER :: n

TYPE(Element_t), POINTER :: Element

LOGICAL :: TransientSimulation

!----------------------------------------------------------------

REAL(KIND=dp) :: Basis(n),dBasisdx(n,3),ddBasisddx(n,3,3)

REAL(KIND=dp) :: detJ, LoadAtIP,&
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LocalHeatCapacity, LocalHeatConductivity, LocalDensity

LOGICAL :: Stat

INTEGER :: t,i,j,DIM

TYPE(GaussIntegrationPoints_t) :: IP

TYPE(Nodes_t) :: Nodes

SAVE Nodes

For the sake of simplicity we use the same identifiers as in the solver subroutine for the variables in the

argument list.

The next step is to inquire the dimension of the coordinate system. Thereafter, we get the nodes of the

element using the already introduced function GetElementNodes. Since the values in CurrentModel

% CurrentElement and CurrentModel % Solver have been set, no additional arguments to the

variable Nodes have to be set. After we have initialized the local matrix and vector components to zero, the

information upon the Gauss-points needed for integration is inquired by the function GaussPoints. They

returned variable IP is of type GaussIntegrationPoints t.

DIM = CoordinateSystemDimension()

CALL GetElementNodes( Nodes )

STIFF = 0.0d0

FORCE = 0.0d0

MASS = 0.0d0

!Numerical integration:

!----------------------

IP = GaussPoints( Element )

The integration over the element is done by summing over all Gauss-points (from 1 to NIP → IP % n.

The square root of the determinant of the element coordinate system metric tensor
√

det(JT · J) →DetJ

as well as the local basis functions, γi → Basis, their derivatives, ∇γi → dBasisdx, are evaluated

for every Gauss-point using the function ElementInfo. The variable ddBasisddx is just passed as a

dummy argument, since the last argument, getSecondDerivatives is set to .FALSE.. The pointer to

the element, Element, and its nodes, Nodes and the local variables of the Gauss-points IP % U(t), IP

% V(t) and IP % W(t), are needed as input.

!----------------------------------------------------------------

! Loop over Gauss-points (element Integration)

!----------------------------------------------------------------

DO t=1,IP % n

!Basis function values & derivatives at the integration point:

!-------------------------------------------------------------

getSecondDerivatives = .FALSE.

stat = ElementInfo( Element, Nodes, IP % U(t), IP % V(t), &

IP % W(t), detJ, Basis, dBasisdx, ddBasisddx, &

getSecondDerivatives)

Thereafter, the material parameters at the Gauss-points are evaluated, using the basis function. For instance,

the local density, ̺|IP → LocalDensity at the Gauss-point is evaluated as follows:

̺|IP = ̺i γi|IP,

with the sum taken over the nodal index i. The load vector h/(̺ cp)|IP → LoadAtIP is evaluated in a

similar way.
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!Material parameters at integration point:

!----------------------------------------

LocalHeatCapacity = SUM( HeatCapacity(1:n) * Basis(1:n) )

LocalHeatConductivity = SUM( HeatConductivity(1:n) * Basis(1:n) )

LocalDensity = SUM( Density(1:n) * Basis(1:n) )

!The source term at the integration point:

!-----------------------------------------

LoadAtIP = SUM( Basis(1:n) * LOAD(1:n) ) &

/(LocalHeatCapacity * LocalDensity)

The force vector is obtained by the integral over the element, which is approximated by the sum over all

Gauss-point contributions

Fj =

∫

V

h

̺ cp
γj DV ≈

NIP∑

t=1

(√
ds2

√

det(JT · J) h

̺ cp
γj

)

|IP.

The model coordinate system metric
√
ds2 → IP % s(t) as well as the previously inquired element

coordinate system metric
√

det(JT · J) → DetJ have to be taken into account.

The matrix components are evaluated in complete analogy to the force vector

Mij =

∫

V

γjγi dV ≈
NIP∑

t=1

(√
ds2

√

det(JT · J)γjγi
)

|IP,

Aij =

∫

V

k

cp ̺
∇γj · ∇γi dV ≈

NIP∑

t=1

[√
ds2

√

det(JT · J) k

cp ̺
(∇γj · ∇γi)

]

|IP,

where the dot product of the first derivatives of the basis function is implemented using the expression

∇γj · ∇γi → SUM(dBasisdx(i,1:DIM) * dBasisdx(j,1:DIM))

!----------------------------------------------------------------

! Loop over j-components of matrices and over force vector

!----------------------------------------------------------------

DO j=1,n

FORCE(j) = FORCE(j) + IP % s(t) * DetJ * LoadAtIP * Basis(j)

!----------------------------------------------------------------

! Loop over i-components of matrices

!----------------------------------------------------------------

DO i=1,n

!The mass matrix, if needed

!--------------------------

IF (TransientSimulation) THEN

MASS(i,j) = MASS(i,j)+ IP % s(t) * DetJ * &

Basis(i)*Basis(j)

END IF

!Finally, the stiffness matrix:

!------------------------------

STIFF(i,j) = STIFF(i,j) &

+ IP % s(t) * DetJ * LocalHeatConductivity &

* SUM(dBasisdx(i,1:DIM) * dBasisdx(j,1:DIM))&

/(LocalDensity * LocalHeatCapacity)

!----------------------------------------------------------------

END DO ! end Loop over i-components of matrices

!----------------------------------------------------------------
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END DO ! end Loop over j-components of matrices and vector

!----------------------------------------------------------------

END DO ! end Loop over Gauss-points (element Integration)

!----------------------------------------------------------------

END SUBROUTINE LocalMatrix

!----------------------------------------------------------------

The last two statements in the code sequence given above close the loop over the Gauss-points and provide

the end statement of the local subroutine LocalMatrix.

The subroutine BoundaryCondition evaluates the contribution to the force vector at the boundary ele-

ments with given external load l = qn/(cp ̺) → LOAD

Fj =

∮

∂V

l dV ≈
NIP∑

t=1

(√
ds2

√

det(JT · J)l
)

|IP.

Since this is implemented in complete analogy to the assembly of the force vector in the previously discussed

subroutine LocalMatrix, a detailed explanation can be omitted

!----------------------------------------------------------------

SUBROUTINE BoundaryCondition(LOAD, FORCE, Element, n)

IMPLICIT NONE

!----------------------------------------------------------------

REAL(KIND=dp), DIMENSION(:) :: FORCE, LOAD

INTEGER :: n

TYPE(Element_t), POINTER :: Element

!----------------------------------------------------------------

REAL(KIND=dp) :: Basis(n),dBasisdx(n,3),ddBasisddx(n,3,3)

REAL(KIND=dp) :: detJ, LoadAtIP,&

LocalHeatCapacity, LocalDensity

LOGICAL :: stat, getSecondDerivatives

INTEGER :: t,j

TYPE(GaussIntegrationPoints_t) :: IP

TYPE(Nodes_t) :: Nodes

SAVE Nodes

!----------------------------------------------------------------

CALL GetElementNodes( Nodes )

FORCE = 0.0d0

!Numerical integration:

!----------------------

IP = GaussPoints( Element )

!-----------------------------------------------------------------

! Loop over Gauss-points (boundary element Integration)

!-----------------------------------------------------------------

DO t=1,IP % n

!Basis function values & derivatives at the integration point:

!-------------------------------------------------------------

getSecondDerivatives = .FALSE.

stat = ElementInfo( Element, Nodes, IP % U(t), IP % V(t), &

IP % W(t), detJ, Basis, dBasisdx, ddBasisddx, &

getSecondDerivatives)

!The source term at the integration point:
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!-----------------------------------------

LoadAtIP = SUM( Basis(1:n) * LOAD(1:n) )

!-----------------------------------------------------------------

! Loop over j-components of matrices and over force vector

!-----------------------------------------------------------------

DO j=1,n

FORCE(j) = FORCE(j) + IP % s(t) * DetJ * LoadAtIP * Basis(j)

END DO

END DO

!----------------------------------------------------------------

END SUBROUTINE BoundaryCondition

!----------------------------------------------------------------

The Fortran 90 file is completed providing the end statement for the user solver subroutineMyHeatSolver.

!----------------------------------------------------------------

END SUBROUTINE MyHeatSolver

!----------------------------------------------------------------

19.4.3 User Defined Functions and Subroutines in Parallel

User defined functions (boundary and initial conditions as well as body forces) and routines (solvers) do not

have to be especially adopted to be run within a ElmerSolver mpi call. Nevertheless, there might be

special situation that demand additional code-lines to avoid issues caused by parallel execution. To that end,

one has to be able to retrieve certain information on the parallel environment. Therefore, a special type exist

within Elmer with the following entries:

TYPE ParEnv_t

INTEGER :: PEs

INTEGER :: MyPE

LOGICAL :: Initialized

INTEGER :: ActiveComm

LOGICAL, DIMENSION(:), POINTER :: Active

LOGICAL, DIMENSION(:), POINTER :: IsNeighbour

LOGICAL, DIMENSION(:), POINTER :: SendingNB

INTEGER :: NumOfNeighbours

END TYPE ParEnv_t

The following list shall give an overview of the most important operations in this context:

How many parallel processes/domains are there in the current run? This can be accessed by

the construct ParEnv % PEs. For instance, the following line can be used to introduce a branch

between instructions for a serial and a parallel Elmer run:

! serial run

IF ( ParEnv % PEs <= 1 ) THEN

ELSE ! parallel run

ENDIF

What parallel process/domain is the current task being run on? This number can be inquired via

the construct ParEnv % myPe

What parallel process/domain my element belongs to? If the pointer CurrentElement is point-

ing to the actual element of interest, the host process/domain thisCurrentElement % partIndex.

For instance, in combination with the instruction in the previous point, this can be used to inquire

whether an element actually is being processed within the domain (is part of the domain’s matrix) or

is just an halo-element:
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! skip rest of routine, because element is not

! part of the domain (halo-element)

IF (ParEnv % myPe .NE. Element % partIndex) CYCLE

Is the parallel process/domain with index i a neighbour of my current process/domain? This is

inquired by the logical value in ParEnv % IsNeighbour(i)

How many neighbour processes/domains does my current process/domain have? This is inquired

by the logical value in ParEnv % NumOfNeighbours

++++++++++++++++++++++++++++++++

19.5 Compilation and Linking of User Defined Routines/Functions

Elmer provides a script elmerf90 (residing in $ELMER HOME/bin) for compilation of external routines.

This makes sure that the same compiler the Elmer installation has been compiled with is used for compi-

lation of the additional routines. This is necessary, as usually modules of different Fortran compilers are

incompatible. Additionally, the script contains the necessary compiler options in order to take care that the

essential libraries are being linked to the resulting shared object.

Compilation of ones own code is quite straight forward. It is essential, that the wrapper elmerf90 is in

the path of the system (or alternatively called with its path preceded). If now the routines/functions are in the

file mySolver.f90 then the dynamically linked object is obtained under UNIX/Linux with the command

elmerf90 mySolver.f90 -o mySolver

Under Windows XP, compilation can be made via the ElmerGUI or manually using the command window

(Windows XP: Start → Run, enter cmd). Preferably, the source file should be in the tree of the Elmer (e.g.,

Figure 19.6: Manual compilation of additional modules in Windows XP

C:\Elmer6.0) installation under the directory C:\Elmer6.0\share\elmersolver\lib. From

within this directory, the command

elmerf90 myOwnRoutines.f90

should create the shared object mySolver.dll that should be found automatically in every Elmer run.
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Appendix A

Format of mesh files

In this appendix the format of ElmerSolver mesh files is described. The mesh data are arranged into four

separate files: mesh.header, mesh.nodes, mesh.elements, and mesh.boundary.

In parallel computations the names of the files are changed so that mesh is replaced by string part.n

where n refers to the number of the partition. Additionally in parallel there is the part.n.shared file.

In the mesh files numeric codes are used for distinguishing different element types. For the element type

codes and the node numbering order of the elements see also appendix D.

A.1 The format of header file

The header file mesh.header tells how many nodes and elements are present in the mesh. The lines of

this file are organized as

nodes elements boundary-elements

nof_types

type-code nof_elements

type-code nof_elements

...

In the first line the numbers of nodes, elements, and boundary elements are given, while the count in the

second line is the number of different element types used in the mesh. The lines which follow give the

numbers of elements as sorted into different element types.

For example, the following header file

300 261 76

2

404 261

202 76

tells us that the mesh is composed of 300 nodes, 261 elements, and 76 boundary elements. Two different

element types are used in the mesh: there are 261 elements of type code 404 (bilinear quadrilateral) and 76

elements of type code 202 (linear line element).

A.2 The format of node file

The file mesh.nodes contains node data so that each line defines one node. Each line starts with two

integers followed by three real numbers:

n1 p x y z

n2 p x y z

...

nn p x y z
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The first integer is the identification number for the node. The second integer is a partition index for parallel

execution and is not usually referenced by the solver in the case of sequential runs. If the partition index is

not of particular use, it may be set to be -1 (or 1). The real numbers are the spatial coordinates of the node.

Three coordinates should always be given, even if the simulation was done in 1D or 2D. It is also noted that

the nodes may be listed in any order.

A.3 The format of element file

The mesh.elements file contains element data arranged as

e1 body type n1 ... nn

e2 body type n1 ... nn

...

en body type n1 ... nn

Each line starts with an integer which is used for identifying the element. The integer body defines the

material body which this element is part of. Then the element type code and element nodes are listed. For

example, the element file might start with the following lines:

1 1 404 1 2 32 31

2 1 404 2 3 33 32

3 1 404 3 4 34 33

4 1 404 4 5 35 34

...

A.4 The format of boundary element file

The elements that form the boundary are listed in the file mesh.boundary. This file is similar to the

mesh.elements file and is organized as

e1 bndry p1 p2 type n1 ... nn

e2 bndry p1 p2 type n1 ... nn

...

en bndry p1 p2 type n1 ... nn

The first integer is again the identification number of the boundary element. Next the identification number

of the part of the boundary where this element is located is given. Whether the boundary element can be

represented as the side of a parent element defined in the file mesh.elements is indicated using the two

parent element numbers p1 and p2. If the boundary element is located on an outer boundary of the body,

it has only one parent element and either of these two integers may be set to be zero. It is also possible that

both parent element numbers are zeros. Finally the element type code and element nodes are listed.

A.5 The format of shared nodes file

The nodes that are shared between different partitions are written in the part.n.shared file. The file is

organized as

n1 np p1 p2 ... pm

n2 np p1 p2 ... pm

...

nn np p1 p2 ... pm

Here the first index on the row refers to a node that is shared by different partitions, the partition under study

being one of the owners. Integer np gives the number of partitions sharing the node and this is followed

by the number of the sharing partitions. By convention the owner partition is the first one of the partitions.

Most shared nodes are shared just by two partitions but there can be also more owners on some nodes.
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A.6 Exceptions on parallel mesh format

When the mesh is saved in parallel there is an exception that must be dealt with. Assume that you have a

boundary condition for which you need to assign Dirichlet conditions. If it would happen to be so that some

partition shares such boundary node without being the owner of the boundary element itself, the boundary

nodes must still somehow be available for setting boundary conditions. In practice this is done so that new

single-node elements of type 101 are added to the mesh.n.boundary list. These must be given the same

bndry index as the initial boundary that it was deduced from.
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Format of result output files

B.1 Format versions

Result files can be written as either ASCII text or in binary. This is controlled by the parameter

Binary output = logical true|false

in the ’Simulation’ section of the .sif file. Default is false.

The format of the file is recorded on it’s first line;1 it’s either

BINARY v.e

or

ASCII v

The v at denotes the version number of the format, and the e in the binary format denotes an endianess-

marker; either L for little endian or B for big endian.

ElmerSolver can read files of older format versions for restarting, but all new files are written in the

newest formats. The current formats documented here are ASCII version 1 and BINARY version 2.

B.2 General structure

Both binary and ASCII files have the following general structure. In the binary files, the header is separated

from the rest by a null byte. The ASCII format has no such separator.

[File format version line]

[Header]

[<null byte> (binary only)]

[timestep 1]

[timestep 2]

[timestep 3]

.

.

.

[timestep n]

1except for old ASCII files, that lack the format version line, and start with ”!File started at:”
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B.2.1 The header

The header looks the same for both binary and ASCII (and is written in ASCII also for binary files):

!File started at: date time

Degrees of freedom:

variable 1 n1 :fs

variable 2 n2 :fs

variable 3 n3 :fs

.

.

.

Total DOFs: nTotDOFs

Number Of Nodes: nNodes

Note that in the list of variables, vectors appear both as vectors (DOF ¿ 1) and separate components (DOF =

1).

B.2.2 Timesteps

For each time step, the time and the values of the variables are stored. For vector variables, the components

are stored as separate variables, typically named varname 1, varname 2, etc.

If the parameter

Omit unchanged variables in output = logical true|false

in the ’Simulation’ section of the .sif file is set to true, only variables whose values has changes since last

time are saved. Default is false

For the binary format, the following type specifiers are used in this document:

¡s(str)¿ Null terminated string of characters.

¡i(i4)¿ 4 byte integer.

¡j(i8)¿ 8 byte integer.

¡x(dbl)¿ 8 byte floating point number.

For this part of the file, the general structure of binary and ASCII files are essentially the same, with just

some minor differences:
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ASCII Binary

Time: ns nt t ¡Time:(str)¿¡ns(i4)¿¡nt(i4)¿¡t(dbl)¿

Variablename 1 ¡Variablename 1(str)¿

[Permutation table p1] [Permutation table p1]
...

...
Variable 1’s values

∀ i s.t. p1(i) > 0.
Var1(p1(i)) ¡Var1(p1(i))(dbl)¿
...

...

Variablename 2 ¡Variablename 2(str)¿

[Permutation table p2] [Permutation table p2]
...

...
Variable 2’s values

∀ i s.t. p2(i) > 0.
Var2(p2(i)) ¡Var2(p2(i))(dbl)¿
...

...

Variablename 3 ¡Variablename 3(str)¿

[Permutation table p3] [Permutation table p3]
...

...
...

...
Variable 3’s values

∀ i s.t. p3(i) > 0.
Var3(p3(i)) ¡Var3(p3(i))(dbl)¿
...

...

nt= time step number, ns= saved time steps number, t= time.

The permutation tables

The permutation tables can be stored in three different ways:

1. As an explicit table:

ASCII Binary

Perm: size np ¡size(i4)¿¡np(i4)¿
...

... Permutation indexes i

and values p(i)
∀ i s.t. p(i) > 0.

i p(i) ¡i(i4)¿¡p(i)(i4)¿
...

...

size = total size of the permutation table (¿ 0), and np = number of positive values in the table.

2. If the permutation table is the same as for the previous variable, there’s no need to store it again. This

case is written as

ASCII Binary

Perm: use previous ¡−1(i4)¿¡Pos(i8)¿

Pos in the binary format is the position in bytes of the previous table.

3. No permutation table; corresponds to the case

size = np = nNodes , and p(i) = i ∀ i.

This case is stored as

ASCII Binary

Perm: NULL ¡0(i4)¿
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B.3 The positions file

For binary format, a positions file named ’outputfile.pos’ will be created. It contains the positions (in bytes)

of the timesteps and variables in the result file, expressed as 8 byte integers. It has the following format

(nVar = number of variables):

¡Endianess-marker (char)¿

¡nVar(i4)¿

¡varname 1(str)¿

¡varname 2(str)¿
...

¡varname nVar(str)¿

¡Pos. for Timestep 1(i8)¿

¡Pos. for variable 1(i8)¿

¡Pos. for variable 2(i8)¿
...

¡Pos. for variable nVar(i8)¿

¡Pos. for Timestep 2(i8)¿

¡Pos. for variable 1(i8)¿

¡Pos. for variable 2(i8)¿
...

¡Pos. for variable nVar(i8)¿

¡Pos. for Timestep 3(i8)¿

¡Pos. for variable 1(i8)¿

¡Pos. for variable 2(i8)¿
...

¡Pos. for variable nVar(i8)¿
...

Note: Positions are saved for all variables for every time step; even if an unchanged variable isn’t saved

to the result file for a time step, it will still have a position in the .pos file (i.e. the position of where it was

saved last time). Because of this all timesteps has the same size of (nVar+1)×8 bytes. Finding the position

of the n:th variable of the m:th time step is therefore easy; it’s found at the

(size-of-header + ((nVar + 1)× (m− 1) + n)× 8) : th

byte in the positions file.
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Format of ElmerPost Input File

ElmerPost as a visualization tool is obsolete. However, there may still be files laying around and the format

may be sometimes preferred for some software tools written to analyse Elmer results.

The lines of ElmerPost input file are organized as

nn ne nf nt scalar: name vector: name ...

x0 y0 z0

... ! nn rows of node coordinates (x,y,z)

xn yn zn

group-name element-type i0 ... in

... ! group data and element descriptions

group-name element-type i0 ... in

#time 1 timestep1 time1

vx vy vz p ...

... ! nn rows

vx vy vz p ...

#time 2 timestep2 time2

vx vy vz p

... ! nn rows

vx vy vz p ...

....

#time n timestepn timen

vx vy vz p ...

... ! nn rows

vx vy vz p ...

The header

The file starts with the header line which contains the following information:

• nn: the total number of nodes

• ne: the total number of the elements including boundary elements

• nf: the total number of degrees of freedom, i.e. the total number of scalar unknowns in the model

• nt: the number of time steps for which solution data is stored

• scalar: name vector: name ... : the list which pairs variable names with their types.
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The mesh and group data

After the header the node coordinates are given, each coordinate triplet on its own row. Three coordinates

should be given even if the model was two-dimensional.

Group data consist of the following information:

• group-name: the name of the element group (having the same material, body etc.)

• element-type: the numeric code giving the element type; see also Appendix D.

• The numbers i0 ... in are the indices of the element nodes. The nodes are referenced using the

row indices of the node coordinate array at the beginning of the file The first node in the array has the

index zero.

It is noted that there is also another level of element grouping that can be employed as follows

#group group1

element-definitions

...

#group group2

element-definitions

...

#endgroup group2

element-definitions

...

#endgroup group1

The number of element groups is not restricted in any way.

The solution data

For each timestep the following solution data is written:

• #time n t time: n is the order number of the solution data set, t is the simulation timestep

number, and time is the current simulation time.

• The next nn rows give the node values of the degrees of freedom. The values are listed in the same

order as given in the header with the keywords scalar: and vector:

An example file

Here a very simple example file is given. There is only one element, three nodes, one variable, and the

solution data are given for a single timestep:

3 1 1 1 scalar: Temperature

0 0 0

1 0 0

0 1 0

#group all

body1 303 0 1 2

#endgroup all

#time 1 1 0

1

2

3
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Appendix D

Basic element types

The basic nodal element types which ElmerSolver can handle are the linear and quadratic elements in one,

two, and three dimensions. In addition, cubic elements in one and two dimensions are also available. Each

element type is associated with a unique code which consists of the element family (the count of hundreds)

and the number of nodes.

• nodal element (101)

• linear (element type code 202), quadratic (203) and cubic (204) line segments

• linear (303), quadratic (306) and cubic (310) triangles, see Figure D.1

u

v

1 2

3

u

v

1 2

3

4

56

Figure D.1: The linear (303) and quadratic (306) triangular elements.

• bilinear (404), quadratic (408,409) and cubic (412,416) quadrilaterals, see Figure D.2

• linear (504) and quadratic (510) tetrahedrons, see Figure D.3

• linear (605) and quadratic (613) pyramids

• linear (706) and quadratic (715) wedges

• trilinear (808) and quadratic (820,827) hexahedrons (or bricks), see Figure D.4.

The element types are defined in the file elements.def and new element types may be added by adding

their definitions to this file.
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Figure D.2: The four-node (404) and eight-node (408) quadrilateral elements.
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Figure D.3: The linear (504) and quadratic (510) tetrahedron elements.
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Figure D.4: The 8-node (808) and 20-node (820) hexahedron elements.
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Higher-order finite elements

Higher-order finite elements are elements for which the degree of basis functions is higher than 1. If better

solution accuracy is sought by increasing the approximation degree, higher-order elements are also called p-

elements. They differ from the usual Lagrange-type elements in that, in addition to nodal basis functions of

the lowest degree, there exists additional basis functions which are associated with edges, faces and interiors

of elements.

• Side modes get their values along some element edge. They vanish towards other edges and all nodal

points of the element. Side modes are defined for all 2d and 3d elements.

• Face modes get their values along some element face. They vanish towards other faces and all edges

and nodal points of the element. Face modes are only defined for 3d elements.

• Internal modes get their values inside element and vanish towards element faces, edges and nodal

points. They are defined for all 1d, 2d and 3d elements.

Thus, for p-elements the usual element interpolant, now denoted as uh,p, is the sum of nodal, edge, face

and bubble interpolants as

uh,p = uv
h,p + ue

h,p + uf
h,p + ub

h,p (E.1)

where uv
h,p is the lowest-order nodal interpolant while ue

h,p, uf
h,p and ub

h,p are edge, face and bubble inter-

polants, respectively. Contribution of one p-element to the global system is similar to that of h-element.

Naturally for higher-order elements the size of the local stiffness matrix is larger, because of the larger

number of basis functions.

Properties for good p-elements include computational efficiency, at least partial orthogonality and hierar-

chy of basis functions. Hierarchy means that if basis for some element of a given degree p is Bp it holds for

p+1 that Bp ⊂ Bp+1. Orthogonality properties of basis functions ensure that condition number of the global

stiffness matrix does not increase as dramatically as for the nodal (Lagrange) elements of higher order. This

ensures good numerical stability. Some good references to higher-order finite elements in literature are [3]

by Szabo and Babuska and [4] by Solin et al.

E.1 Higher-order elements in Elmer

Elements implemented in Elmer follow the ones presented in [3]. Now let us define some orthogonal poly-

nomials based on Legendre polynomials Pi(x), i ≥ 0. The so-called Lobatto shape functions φk are defined

as

φk(ξ) =

√

1

2(2k − 1)
(Pk(ξ)− Pk−2(ξ)), k = 2, 3, . . . (E.2)

where Pk are Legendre polynomials. Function φk(ξ) has two of its roots at ξ = ±1, so define now another

function ϕk as
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ϕk(ξ) =
4φk(ξ)

1− ξ2
, k = 2, . . . , p (E.3)

Functions φk and ϕk are used to define higher order elements. Different element shapes and their basis

functions are defined in Appendix E.3. The pyramidal element used in Elmer is based loosely to Devloo’s

representation in [2].

In Elmer elements of varying polynomial degree p may be used in the same mesh. The mesh may also

consist of different element types, as the side and face modes for different element types are compatible with

one another. Pyramidal and wedge elements of high order to connect tetrahedral and brick elements are also

supported. To achieve the best possible converge the use of pyramidal elements in a mesh should be kept to

a minimum.

The global continuity of the higher-order finite element approximation is enforced by the solver when

the function ElementInfo is used for obtaining basis functions values for elements. To combine elements

of varying degree a maximum rule is used. Thus, if two or more elements share an edge and have different

polynomial degrees, the maximum of among the values is chosen as the degree of the global edge.

The approximation degree can be specified either in the solver section or in the equation section of the

solver input file. The solver section may for example contain the command

Element = "p:4"

so that the spatial discretization is based on polynomials of degree 4. Basically the same command may also

be used in the equation section if the intention is to apply the same basis functions for all active solvers.

A MATC function depending on an array argument of four entries may be defined in order to make the

approximation degree to depend on the place. The first entry of the argument is associated with the body

identifier of the element handled and the following three entries of the argument are the global coordinates

x, y, z of the mid-point of the element. If the MATC function is named as p matc function, one may

use the special construct

Element = "p:%p matc function"

in the solver section so that the degree of the basis functions is evaluated elementwise. Thus, a body-wise

changing approximation degree can be obtained simply by making the return value of the function to depend

just on the first entry of the argument.

It is worth noting, however, that all available solvers of Elmer may not support p-approximation without

modifying the code. Usually this only consists of making local stiffness matrix and force vector larger.

Nevertheless several solvers already support the approximation with high-order polynomials.

The actual number of degrees of freedom associated with the element edges, faces or interiors depends

on the element type and the local polynomial degree p. Each degree of freedom is naturally associated with

some basis function. The following table gives the number of degrees of freedom for elements used in Elmer:

Element Nodes Edges Faces Bubbles

Line 2 - - p− 1

Quadrilateral 4 4(p− 1) -
(p−2)(p−3)

2

Triangle 3 3(p− 1) -
(p−1)(p−2)

2

Brick 8 12(p− 1) 3(p− 2)(p− 3) (p−3)(p−4)(p−5)
6

Tetrahedron 4 6(p− 1) 2(p− 1)(p− 2) (p−1)(p−2)(p−3)
6

Wedge 6 9(p− 1) -
(p−2)(p−3)(p−4)

6

(quad. face) - -
3(p−2)(p−3)

2 -

(triang. face) - - (p− 1)(p− 2) -

Pyramid 5 8(p− 1) -
(p−1)(p−2)(p−3)

6

(quad. face) - -
(p−2)(p−3)

2 -

(triang. face) - - 2(p− 1)(p− 2) -
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A p-element passed to the Elmer Gaussian point generator GaussPoints contained in the module

Integration returns enough integration points to integrate the worst-case product of two element basis

functions. Here the worst case is the integration for two basis functions of degree pm = max{pe, pf , pb}.

As the Gaussian quadrature is accurate up to the degree p = 2n− 1, where n is the number of points used,

the number of points for each element is calculated from

n =
2pm + 1

2
(E.4)

and rounded up to the nearest integer. To get the final number of points for multiple integrals, n is raised to

the power of element dimension. If integral includes a non-constant factor, i.e
∫

K αφiφjdK where α is a

function of degree k, the default quadrature is not accurate and the number of integration points needs to be

set manually. Now the minimum number of gaussian points to integrate accurately becomes

n =
min {2pm + k, 3pm}+ 1

2
(E.5)

which may again be rounded up to the nearest integer and raised to the power of element dimension to get

the actual number of integration points.

E.1.1 Boundary conditions

From the point of view of programming, nonhomogeneous boundary conditions of Dirichlet type, e.g. u = g
on a boundary, are more difficult to handle for higher order elements. Even though the nodal values can be

set easily, finding coefficients of additional basis functions such that the data is represented (approximately)

as a linear combination of the basis functions over the element boundary is not as straightforward. The

subroutine DefaultDirichletBCs solves the unknown coefficients of higher-order basis functions by

seeking the best approximation of the data over the boundary. Thus, from the viewpoint of the user, Dirichlet

boundary conditions need no extra actions as compared to the use of the conventional elements. Neumann

and Robin boundary conditions can also be treated in the same way as done in the case of the standard

Lagrange elements.

E.1.2 Some practical aspects

Generally using p-elements yields a better approximation than using normal linear elements. In fact, conver-

gence for p-elements is exponential when there are no singularities inside or on the boundary of the solution

domain. Typical singular points in the solution are points where boundary conditions or material parameters

change abruptly or vertex-type singularities (such as the inner corner of a L-shaped beam or a crack tip).

When there are singular points inside the domain, convergence is algebraic. If the singular point is a nodal

point, convergence rate is twice that of h-method, otherwise it is equal to the h-method.

Therefore, if possible, the mesh should be designed such that near nodal singularities small low-degree

(p = 1) elements were used. In other parts of the solution domain, where the solution is smoother, large

elements with high polynomial degree are advised. As Elmer is not hp-adaptive so that the element degree

is not modified by the solver, mesh design issues must be taken into account for computational efficiency.

It is well known that it is possible to reduce the size of the linear system by the elimination of bubble

functions. This procedure is often called the static condensation. In Elmer the static condensation for the

local stiffness matrix may be done (and is advised to be done) when the bubble part need not be retrieved

afterwards (for example time stepping algorithms need to know the complete solution). Whether the bub-

ble degrees of freedom are assembled into the global system is controlled by the keyword Bubbles in

Global System.

E.2 ElmerSolver services for higher-order elements

This section describes some of the services related to p-elements, which are included in different parts of the

Solver.
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E.2.1 Properties of p-elements

There are several utilities for determining p-element properties. First of all, it is possible to check if some

element is a p-element by checking the isPElement flag of the element. If the flag is set to be true,

element is a p-element. Functions

isPTriangle( Element )

isPTetra( Element )

isPPyramid( Element )

isPWedge( Element )

check if the given element is a p-type triangle, tetrahedron, pyramid or wedge. They are implemented

because the reference p-element for triangles, tetrahedra, pyramids and wedges are different from those

defined for the Lagrange elements. The routines

getEdgeP( Element, Mesh )

getFaceP( Element, Mesh )

return the maximum polynomial degrees associated with the element edges or faces when Element and

finite element mesh Mesh are given.

E.2.2 Fields related to p-elements

In the module Types, the type Element t has the following p-element related fields

INTEGER :: TetraType

LOGICAL :: isPElement

LOGICAL :: isEdge

INTEGER :: localNumber

INTEGER :: GaussPoints

Tetratype defines the type of the tetrahedral p-element: for non-tetrahedral elementsTetratype=0,

for tetrahedral elements Tetratype={1, 2}.

isPElement defines if an element is of higher order: isPElement=.TRUE. for p-elements, other-

wise .FALSE..

isEdge defines if the element is an edge for some higher entity, i.e. an edge or a face of a 2d or 3d

element. If isEdge=.TRUE., the element is an edge, .FALSE. otherwise.

For boundary elements localNumber defines which local edge or face number the boundary element

has with respect to its parent element.

GaussPoints defines the number n of the Gauss points for the element. The value is calculated from

n = (2pm+1
2 )d, where d is the element dimension and pm the maximum polynomial degree. n is rounded

up to the nearest integer. The value GaussPoints corresponds to the requirement that a polynomial of

degree 2pm is integrated accurately.

When modifying a solver to support higher-order elements, the maximum number of degrees of freedom

associated with an element may be obtained from the mesh variable MaxElementDOFs. This variable is

set by the read-in process of the mesh.

E.2.3 Higher-order basis and element mappings

Basis functions for higher-order elements are defined in the module PElementBase. The module contains

also definitions for the functions φk and ϕk and Legendre polynomials. These definitions have been gener-

ated into explicit form with the symbolic program Maple [1] up to pmax = 20. This means that no recursion

is needed for the generation of the values of Legendre polynomials or other lower-level components based

on them, if p < pmax.

Generally higher-order basis functions take as their arguments the point in which to calculate the function

value and indexing i,m(i, j) or m(i, j, k) depending on the function type. All edge functions take in addition

CSC – IT Center for Science



E. Higher-order finite elements 139

to these parameters a special optional flag, namely invertEdge, which defines if the direction of the edge

basis function needs to be inverted. In Elmer the parametrization of edges depends on the global node

numbering. To describe this, let A and B be the global node numbers of an edge. The varying parameter

of edge function then varies between [−1, 1] as A → B. Inversion is then used for enforcing the global

continuity of edge basis functions which are not properly aligned. The edge rule is presented in figure E.2.3.

BA

Figure E.1: The global direction of edge for global node indexes A < B

Most of the face functions take an optional orientation argument in order to specify which face functions

are formed. This is formed according to the global numbers of face nodes. There are rules for triangular

and square faces. Let A,B,C be the global nodes of a triangular face. Globally the face is aligned so that

A < B < C. For square faces let A = min{vi} where vi are the global node indices of square face and B,C
correspond to the nodes next to the node A on the face. The square face is aligned by the rule A < B < C
for these nodes. These rules are presented in figure E.2.3.

B

C

AA B

C D

Figure E.2: The global direction of triangular and quadrilateral faces for global node indexes A < B < C;

A has the lowest index among the indices of the face.

The tetrahedral element uses an exception to the above interface rules, as the edge and face functions

of tetrahedral elements take the type of the tetrahedral element as their optional argument. This is due to

fact that it is possible to reduce any tetrahedral element to one of the two reference tetrahedral elements for

which all edges and faces are defined so that their local orientation matches global orientation. This means,

that for tetrahedral elements, global continuity does not need to be enforced, if proper reduction to one of

the two reference elements has been made.

Mappings from element nodal numbers to describe different p-element edges or faces are defined in

the module PElementMaps. These mappings generally define which nodes of the element belong to

a certain local edge or face of the element. Mappings to elements edges, faces and from faces to local

edge numbers may be obtained from the routines GetElementEdgeMap, GetElementFaceMap and

GetElementFaceEdgeMap. The mappings may also be accessed via methods getTePeMap, where Te

is the element name and Pe = {Edge,Face} is the part of the element for which the map is requested. The

routine getElementBoundaryMap returns mappings for element boundaries depending on the element

type.

For example, to get the global nodes for the brick face number 4, one would use the followingFortran90

code

map(1:4) = getBrickFaceMap(4)

nodes(1:4) = Element % NodeIndexes(map)
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E.3 Basis functions

Let λ1, λ2, λ3 ∈ {±ξ,±η,±ζ} and additionally
⋂

i λi = φ.

E.3.1 Line

ξ

−1 1

21

Figure E.3: Line element

Nodal basis

L1 =
1− ξ

2

L2 =
1 + ξ

2

Bubble basis

L
(0)
i = φi(ξ), i = 2, . . . , p

E.3.2 Quadrilateral

−1

−1

1

1

v2

v3v4

v1

ξ

η

Figure E.4: Quadrilateral element

Nodal basis

N1 =
1

4
(1 − ξ)(1− η)

N2 =
1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1 − ξ)(1 + η)
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Edge basis

N
(1,2)
i =

1

2
(1− η)φi(ξ), i = 2, . . . , p

N
(2,3)
i =

1

2
(1 + ξ)φi(η), i = 2, . . . , p

N
(4,3)
i =

1

2
(1 + η)φi(ξ), i = 2, . . . , p

N
(1,4)
i =

1

2
(1− ξ)φi(η), i = 2, . . . , p

Bubble basis

N
(0)
m(i,j) = φi(ξ)φj(η)

where i, j ≥ 2, i+ j = 4, . . . , p

E.3.3 Triangle

−1 1

0

ξ

v3

η
√
3

v2v1

Figure E.5: Triangle element

Nodal basis

L1 =
1

2
(1− ξ − 1√

3
η)

L2 =
1

2
(1 + ξ − 1√

3
η)

L3 =
η√
3

Edge basis

N
(1,2)
i = L1L2ϕi(L2 − L1), i = 2, . . . , p

N
(2,3)
i = L2L3ϕi(L3 − L2), i = 2, . . . , p

N
(3,1)
i = L3L1ϕi(L1 − L3), i = 2, . . . , p
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Bubble basis

N
(0)
m(j,n) = L1L2L3P1(L2 − L1)

jP1(2L3 − 1)n

where j, n = 0, . . . , i− 3, j + n = i− 3, i = 3, . . . , p

E.3.4 Brick

v2

v3

v7v8

v4

v6

v1

v5

ξ

ζ

η

Figure E.6: Brick element

Nodal basis

N1 =
1

8
(1 − ξ)(1− η)(1 − ζ)

N2 =
1

8
(1 + ξ)(1− η)(1 − ζ)

N3 =
1

8
(1 + ξ)(1 + η)(1 − ζ)

N4 =
1

8
(1 − ξ)(1 + η)(1 − ζ)

N5 =
1

8
(1 − ξ)(1− η)(1 + ζ)

N6 =
1

8
(1 + ξ)(1− η)(1 + ζ)

N7 =
1

8
(1 + ξ)(1 + η)(1 + ζ)

N8 =
1

8
(1 − ξ)(1 + η)(1 + ζ)
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Edge basis

N1,2
i−1 =

1

4
φi(ξ)(1 − η)(1 − ζ)

N2,3
i−1 =

1

4
φi(η)(1 + ξ)(1 − ζ)

N4,3
i−1 =

1

4
φi(ξ)(1 + η)(1 − ζ)

N1,4
i−1 =

1

4
φi(η)(1 − ξ)(1 − ζ)

N1,5
i−1 =

1

4
φi(ζ)(1 − ξ)(1 − η)

N2,6
i−1 =

1

4
φi(ζ)(1 + ξ)(1 − η)

N3,7
i−1 =

1

4
φi(ζ)(1 + ξ)(1 + η)

N4,8
i−1 =

1

4
φi(ζ)(1 − ξ)(1 + η)

N5,6
i−1 =

1

4
φi(ξ)(1 − η)(1 + ζ)

N6,7
i−1 =

1

4
φi(η)(1 + ξ)(1 + ζ)

N8,7
i−1 =

1

4
φi(ξ)(1 + η)(1 + ζ)

N5,8
i−1 =

1

4
φi(η)(1 − ξ)(1 + ζ)

Face basis

N
(1,2,5,6)
m(i,j) =

1

2
(1 − η)φi(ξ)φj(ζ)

N
(1,2,4,3)
m(i,j) =

1

2
(1 − ζ)φi(ξ)φj(η)

N
(1,4,5,8)
m(i,j) =

1

2
(1 − ξ)φi(η)φj(ζ)

N
(4,3,8,7)
m(i,j) =

1

2
(1 + η)φi(ξ)φj(ζ)

N
(5,6,8,7)
m(i,j) =

1

2
(1 + ζ)φi(ξ)φj(η)

N
(2,3,6,7)
m(i,j) =

1

2
(1 + ξ)φi(η)φj(ζ)

where i, j = 2, 3, . . . , p− 2, i+ j = 4, 5, . . . , p

Bubble basis

N
(0)
m(i,j,k) = φi(ξ)φj(η)φk(ζ)

where i, j, k = 2, 3, . . . , p− 4, i+ j + k = 6, 7, . . . , p
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v1

v4

v3

v2

ζ

ξ

η

ζ

ξ

η

v1

v4

v3

v2

Figure E.7: Tetrahedral elements of types 1 and 2

E.3.5 Tetrahedron

Nodal basis

L1 =
1

2
(1− ξ − 1√

3
η − 1√

6
ζ)

L2 =
1

2
(1 + ξ − 1√

3
η − 1√

6
ζ)

L3 =

√
3

3
(η − 1√

8
ζ)

L4 =

√

3

8
ζ

Edge basis

Type 1

N
(1,2)
i−1 = L1L2ϕi(L2 − L1), i = 2, . . . , p

N
(1,3)
i−1 = L1L3ϕi(L3 − L1), i = 2, . . . , p

N
(1,4)
i−1 = L1L4ϕi(L4 − L1), i = 2, . . . , p

N
(2,3)
i−1 = L2L3ϕi(L3 − L2), i = 2, . . . , p

N
(2,4)
i−1 = L2L4ϕi(L4 − L2), i = 2, . . . , p

N
(3,4)
i−1 = L3L4ϕi(L4 − L3), i = 2, . . . , p

Type 2

N
(3,2)
i−1 = L3L2ϕi(L2 − L3), i = 2, . . . , p

Edges (1, 2),(1, 3),(1, 4),(2, 4) and (3, 4) according to type 1.

Face basis

Type 1
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N
(1,2,3)
m(i,j) = L1L2L3Pi(L2 − L1)Pj(2L3 − 1)

N
(1,2,4)
m(i,j) = L1L2L4Pi(L2 − L1)Pj(2L4 − 1)

N
(1,3,4)
m(i,j) = L1L4L3Pi(L3 − L1)Pj(2L4 − 1)

N
(2,3,4)
m(i,j) = L2L3L4Pi(L3 − L2)Pj(2L4 − 1)

Type 2

N
(1,3,2)
m(i,j) = L1L3L2Pi(L3 − L1)Pj(2L2 − 1)

N
(3,2,4)
m(i,j) = L3L2L4Pi(L2 − L3)Pj(2L4 − 1)

where i, j = 0, 1, 2, . . . , p− 3, i+ j = 0, 1, . . . , p− 3. Faces (1, 2, 4) and (1, 3, 4) defined according to type

1.

Bubble basis

N
(0)
m(i,j,k) = L1L2L3L4Pi(L2 − L1)Pj(2L3 − 1)Pk(2L4 − 1)

where i, j, k = 0, 1, . . . , p− 4, i+ j + k = 0, 1, . . . , p− 4

E.3.6 Pyramid

ξ

η

ζ

v1 v2

v5

v3v4

Figure E.8: Pyramidal element

Nodal basis

T0(c, t) =
(1− t√

2
)− c

2(1− t√
2
)

T1(c, t) =
(1− t√

2
) + c

2(1− t√
2
)
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P1 = T0(ξ, ζ)T0(η, ζ)(1 −
ζ√
2
)

P2 = T1(ξ, ζ)T0(η, ζ)(1 −
ζ√
2
)

P3 = T1(ξ, ζ)T1(η, ζ)(1 −
ζ√
2
)

P4 = T0(ξ, ζ)T1(η, ζ)(1 −
ζ√
2
)

P5 =
1√
2
ζ

Edge basis

P
(1,2)
i−1 = P1(ξ, η, ζ)P2(ξ, η, ζ)ϕi(ξ)

P
(2,3)
i−1 = P2(ξ, η, ζ)P3(ξ, η, ζ)ϕi(η)

P
(4,3)
i−1 = P4(ξ, η, ζ)P3(ξ, η, ζ)ϕi(ξ)

P
(1,4)
i−1 = P1(ξ, η, ζ)P4(ξ, η, ζ)ϕi(η)

P
(1,5)
i−1 = P1(ξ, η, ζ)P5(ξ, η, ζ)ϕi(

ξ

2
+

η

2
+

ζ√
2
)

P
(2,5)
i−1 = P2(ξ, η, ζ)P5(ξ, η, ζ)ϕi(−

ξ

2
+

η

2
+

ζ√
2
)

P
(3,5)
i−1 = P3(ξ, η, ζ)P5(ξ, η, ζ)ϕi(−

ξ

2
− η

2
+

ζ√
2
)

P
(4,5)
i−1 = P4(ξ, η, ζ)P5(ξ, η, ζ)ϕi(

ξ

2
− η

2
+

ζ√
2
)

Face basis

Square face

P
(1,2,3,4)
m(i,j) = P1(ξ, η, ζ)P3(ξ, η, ζ)ϕi(ξ)ϕj(η)

where i, j = 2, . . . , p− 2, i+ j = 4, . . . , p.

Triangular faces

P
(1,2,5)
m(i,j) = P1(ξ, η, ζ)P2(ξ, η, ζ)P5(ξ, η, ζ)Pi(P2(ξ, η, ζ)− P1(ξ, η, ζ))Pj(2P5(ξ, η, ζ) − 1)

P
(2,3,5)
m(i,j) = P2(ξ, η, ζ)P3(ξ, η, ζ)P5(ξ, η, ζ)Pi(P3(ξ, η, ζ)− P2(ξ, η, ζ))Pj(2P5(ξ, η, ζ) − 1)

P
(3,4,5)
m(i,j) = P3(ξ, η, ζ)P4(ξ, η, ζ)P5(ξ, η, ζ)Pi(P4(ξ, η, ζ)− P3(ξ, η, ζ))Pj(2P5(ξ, η, ζ) − 1)

P
(4,1,5)
m(i,j) = P4(ξ, η, ζ)P1(ξ, η, ζ)P5(ξ, η, ζ)Pi(P1(ξ, η, ζ)− P4(ξ, η, ζ))Pj(2P5(ξ, η, ζ) − 1)

where i, j = 0, . . . , p− 3, i+ j = 0, . . . , p− 3 and Pi, Pj Legendre polynomials.
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Bubble basis

P
(0)
m(i,j,k) = P1(ξ, η, ζ)P3(ξ, η, ζ)P5(ξ, η, ζ)Pi(

ξ

1− ζ√
2

)Pj(
η

1− ζ√
2

)Pk(
ζ√
2
)

where i, j, k = 0, . . . , p− 4, i+ j + k = 0. . . . , p− 4 and Pi, Pj , Pk Legendre polynomials

E.3.7 Wedge

ζ

ξ

η

v2

v5

v1

v4

v6

v3

Figure E.9: Wedge element

Nodal basis

L1 =
1

2
(1− ξ − 1√

3
η)

L2 =
1

2
(1 + ξ − 1√

3
η)

L3 =

√
3

3
η

H1 =
1

2
L1(1− ζ)

H2 =
1

2
L2(1− ζ)

H3 =
1

2
L3(1− ζ)

H4 =
1

2
L1(1 + ζ)

H5 =
1

2
L2(1 + ζ)

H6 =
1

2
L3(1 + ζ)
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Edge basis

H
(1,2)
i−1 =

1

2
L1L2ϕi(L2 − L1)(1 − ζ)

H
(2,3)
i−1 =

1

2
L2L3ϕi(L3 − L2)(1 − ζ)

H
(3,1)
i−1 =

1

2
L3L1ϕi(L1 − L3)(1 − ζ)

H
(4,5)
i−1 =

1

2
L4L5ϕi(L5 − L4)(1 + ζ)

H
(5,6)
i−1 =

1

2
L5L6ϕi(L6 − L5)(1 + ζ)

H
(6,4)
i−1 =

1

2
L6L4ϕi(L4 − L6)(1 + ζ)

H
(1,4)
i−1 = L1φi(ζ)

H
(2,5)
i−1 = L2φi(ζ)

H
(3,6)
i−1 = L3φi(ζ)

Face basis

Triangular faces

H
(1,2,3)
m(i,j) =

1

2
(1− ζ)Pi(L2 − L1)Pj(2L3 − 1)L1L2L3

H
(4,5,6)
m(i,j) =

1

2
(1 + ζ)Pi(L2 − L1)Pj(2L3 − 1)L1L2L3

where i, j = 0, 1, . . . , p− 3, i+ j = 0, 1, . . . , p− 3 and Pi, Pj Legendre polynomials.

Square faces

H
(1,2,5,4)
m(i,j) = ϕi(L2 − L1)φj(ζ)L1L2

H
(2,3,6,5)
m(i,j) = ϕi(L3 − L2)φj(ζ)L2L3

H
(3,1,4,6)
m(i,j) = ϕi(L1 − L3)φj(ζ)L3L1

where i, j = 2, . . . , p− 2, i+ j = 4, . . . , p.

Bubble basis

H
(0)
m(i,j,k) = φk(ζ)L1L2L3Pi(L2 − L1)Pj(2L3 − 1)

where i, j = 0, . . . , p− 5, k = 2, . . . , p− 3, i + j + k = 2, . . . , p− 3.
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Appendix F

Face and edge elements

In Elmer the way to define a high-degree finite element discretization is based on the idea that a background

mesh for representing the standard lowest-degree continuous finite element expansion is first provided and

then additional degrees of freedom are introduced in order to enhance the approximation defined originally

over the background mesh. The same idea has also been adapted to create other alternate finite element

formulations. For example, it is possible to enhance the approximation on the background mesh by intro-

ducing additional degrees of freedom associated with either faces or edges of the elements and omitting then

the original nodal degrees of freedom. This leads to a suitable set of unknowns for creating discretizations

based on the face or edge element interpolation. If L2(Ω) is used to denote the set of square-integrable scalar

functions and Ω ⊂ R
d, we are thus led to bases for approximating vector fields in finite dimensional versions

of the spaces

H(div,Ω) = {v ∈ L2(Ω)
d | div v ∈ L2(Ω)}

or

H(curl,Ω) = {v ∈ L2(Ω)
d | curl v ∈ L2(Ω)

d}.
A physical motivation for using these spaces is that fields with only either normal or tangential continuity

on boundaries can then be approximated in a natural manner. They may also be used to approximate various

mixed variational formulations. In this appendix we shall detail the construction of available bases for

defining face and edge interpolation elements. Currently the selection of edge interpolation elements is

more extensive.

F.1 The construction of face element interpolation

Here we focus on the construction of finite element spaces Xh(Ω) ⊂ H(div,Ω). To this end, we use local

spacesX(K) which are defined over elements K in the finite element mesh Mh associated with the region

Ω. ThenH(div,Ω)-conforming approximations are obtained as members of the space

Xh = { vh ∈H(div,Ω) | vh|K ∈ X(K) ∀K ∈ Mh }.

We note that the functions belonging to Xh must have continuous normal components across the interior

element faces of the mesh Mh.

Any real element K ⊂ Ω is obtained as an image of a reference element K̂ under the element mapping

fK so that K = fK(K̂). The element space X(K) is defined via introducing a local space X(K̂) on the

reference element and showing how its members are transformed in connection with the element mapping

to get the basis for spanning X(K). To this end, we use the Piola transformation so that the connection

between the two element spaces is given by

X(K) = { vh | vh(x) =
1

detF (f−1
K (x))

F (f−1
K (x))(v̂h ◦ f−1

K )(x), with v̂h ∈X(K̂) }

where F = ∇fK is the gradient of fK with respect to x̂ ∈ K̂ . It then follows that the basis functions for

X(K) are obtained by applying the Piola transformation to the basis ofX(K̂).
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Currently the Elmer solver contains the implementation of face element bases for triangular, quadrilateral

and tetrahedral elements. In the case of triangular and quadrilateral elements the reference element is chosen

to be either an equilateral triangle or a square, while tetrahedral elements use a regular tetrahedron as the

reference element. These choices are convenient as using reference elements which have the faces of an

equal size simplifies implementation. These reference elements have also been employed in connection with

the high-order elements. The element mapping fK : K̂ → R
3 is always defined in terms of the lowest-order

Lagrange interpolation basis functions L̂j associated with the reference element as

x = fK(x̂) =
∑

j

L̂j(x̂)xj ,

where x̂ is a point on the reference element and the points xj give the vertices of the real element K .

F.1.1 The Raviart–Thomas space and its extension to three dimensions

In two dimensions (d = 2) the simplest face element is the triangular Raviart–Thomas element of order

k = 0. The reference element space is then chosen to be

X(K̂) = RT 0(K̂) = [P0(K̂)]d ⊕ P0(K̂)

[
x̂1

x̂2

]

(F.1)

where Pk(K̂) is the space of polynomials of at most degree k on K̂. The dimension ofX(K̂) is thus 3.

To define a basis for RT 0(K̂) each element face F̂ij connecting the reference element vertices x̂i and

x̂j is associated with one element basis function ψ̂ij . We choose

ψ̂12 = −1

2

[
0
1

]

+
1

2
√
3

[
x̂1

x̂2

]

,

ψ̂23 =
1

2
√
3

[
1
0

]

+
1

2
√
3

[
x̂1

x̂2

]

,

ψ̂31 = − 1

2
√
3

[
1
0

]

+
1

2
√
3

[
x̂1

x̂2

]

.

(F.2)

A finite element expansion

v̂h(x̂) = d̂12ψ̂12(x̂) + d̂23ψ̂23(x̂) + d̂31ψ̂31(x̂)

is referred to as the Raviart-Thomas interpolation function. Here the degrees of freedom d̂ij describe the

flux across the element faces as

d̂ij =

∫

F̂ij

v̂h(x̂) · n̂(x̂) dŝ,

where n̂ denotes the outward unit normal associated with the element face.

The tetrahedral element of the Nédélec face element family of the first kind generalizes the use of the

space (F.1) to three dimensions (d = 3). If we introduce the Whitney form φ̂ijk by

φ̂ijk = λ̂i∇λ̂j ×∇λ̂k − λ̂j∇λ̂i ×∇λ̂k + λ̂k∇λ̂i ×∇λ̂j ,

the reference element basis functions ψ̂ijk associated with the element faces F̂ijk may be defined as

ψ̂213 = −2φ̂123, ψ̂124 = 2φ̂124, ψ̂234 = 2φ̂234, ψ̂314 = −2φ̂134,

so that

ψ̂213 =





0

−
√
6/12

−1/
√
3



+

√
2

4





x̂1

x̂2

x̂3



 , ψ̂124 =





0

−
√
6/4
0



+

√
2

4





x̂1

x̂2

x̂3



 ,

ψ̂234 =





√
2/4
0
0



+

√
2

4





x̂1

x̂2

x̂3



 , ψ̂314 =





−
√
2/4
0
0



+

√
2

4





x̂1

x̂2

x̂3



 .

(F.3)
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The degrees of freedom for the corresponding finite element expansion v̂h(x̂) expressed in terms of these

basis functions are then characterized by

d̂ijk =

∫

F̂ijk

v̂h(x̂) · n̂(x̂) dŜ.

It can be verified that under the Piola transformation the basis functions of the reference element space

X(K̂) = RT 0(K̂) transform to a basis for X(K) = RT 0(K). In addition, the degrees of freedom

associated with the resulting basis functionsψij or ψijk are then characterized by

dij =

∫

Fij

vh(x) · n(x) ds or dijk =

∫

Fijk

vh(x) · n(x) dS.

In order to define a unique set of degrees of freedom for assembling global finite element equations, each

element face in the mesh Mh is associated with a uniquely defined unit normal m, so that either n(x) ·
m(x) = 1 or n(x) ·m(x) = −1 for all x on the same element face. The degrees of freedom for assembling

the global equations from elementwise contributions are then selected to be

Dij =

∫

Fij

vh(x) ·m(x) ds or Dijk =

∫

Fijk

vh(x) ·m(x) dS.

The restriction of the global finite element expansion vh on the element can then be written in terms of the

local basis functions and the global degrees of freedom as

vh|K =
∑

dijψij =
∑

Dij(n ·m)x∈Fij
ψij

or

vh|K =
∑

dijkψijk =
∑

Dijk(n ·m)x∈Fijk
ψijk.

In practice this is implemented by applying sign reversions to the local basis functions when n ·m = −1.

It should be noted that the normal continuity of the resulting face element expansion is then in-built.

F.1.2 The Brezzi-Douglas-Marini space and its extension to three dimensions

In the following we consider choosing the reference element space asX(K̂) = [P1(K̂)]d. In two dimensions

this choice leads to the construction of the Brezzi-Douglas-Marini space of order 1 (BDM1), while in three

dimensions it brings us to the definition of the Nédélec face elements of the second kind.

It seems that ways to obtain computational bases for face element discretizations are far less standardized

in comparison with implementing the basic element types. In Elmer we have followed the idea employed

in [1] to obtain a basis for the reference element space. Each basis function may then be associated with a

certain numerical integration point located on one of the element faces. The normal component of the basis

function is normalized to yield the unity at the integration point to which the basis function is associated,

while the normal component of this basis function is required to vanish at other integration points located

on the element faces. It follows from this strategy that convenient integral descriptions of the degrees of

freedom are also obtained.

For triangular elements the dimension of X(K̂) is 6 and hence two basis functions ψ̂
k

ij , k = 1, 2, are

associated with each face F̂ij . A possible choice would be to use λ̂i rot λ̂j and λ̂j rot λ̂i as these basis

functions, but the basis functions implemented into Elmer are chosen to be their linear combinations such

that the normal components of the resulting alternate basis functions satisfy the version of the Kronecker

delta property explained above. We note that if the element face is parametrized as F̂ij = { x̂ = ŝ(ξ) |−1 ≤
ξ ≤ 1 }, the two basis functions are associated with the Gaussian points ξ = −1/

√
3 and ξ = 1/

√
3. The

degrees of freedom associated with the face element interpolation function v̂h(x̂) can then be characterized

by

d̂kij =

∫

F̂ij

v̂h(x̂) · n̂(x̂)φ̂k(x̂) dŝ,
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where φ̂k(x̂) are the linear Lagrange interpolation functions which have the Gaussian points of the element

face as the interpolation points.

The construction of the basis for the reference element space in three dimensions is analogous to the

two-dimensional case. The dimension of X(K̂) is then 12 and each face F̂ijk of the reference tetrahedron

is associated with three basis functions. The basis functions ψ̂
l

ijk , l = 1, 2, 3, associated with each face F̂ijk

are determined as linear combinations of the alternate basis functions (see, for example, [5]) λ̂k∇λ̂i×∇λ̂j ,

λ̂j∇λ̂i ×∇λ̂k and λ̂i∇λ̂j ×∇λ̂k . Parameterizing the element face in the coordinates ξ and η as shown in

Figure E.5, the three basis functions for the element face are associated with the numerical integration points

(−1/2,
√
3/6), (1/2,

√
3/6), and (0, 2/

√
3). The degrees of freedom for the face element interpolation

function v̂h(x̂) in terms of this basis may again be characterized as

d̂lijk =

∫

F̂ijk

v̂h(x̂) · n̂(x̂)φ̂l(x̂) dŜ,

where φ̂l(x̂) are obtained by scaling the linear Lagrange interpolation functions that have the numerical

integration points of the element face as the interpolation points.

The Piola transformation is again used to transform the basis functions of the reference element space

X(K̂) = [P1(K̂)]d to a basis forX(K) = [P1(K)]d. Each element face in the mesh Mh is also associated

with a uniquely defined unit normal m, so that global finite element equations can be assembled using the

unique set of degrees of freedom as explained in connection with the Raviart-Thomas element. Additionally

an in-built mechanism is also applied to permute the order of basis functions so that the continuity of the

normal components is maintained when elementwise contributions are assembled to the global linear system

using the standard assembly subroutines of the Elmer solver.

F.1.3 The quadrilateral Arnold-Boffi-Falk element

The quadrilateral Arnold-Boffi-Falk edge element [4] is designed to provide the optimal accuracy even when

the physical elements are not obtained as affine images of the reference element. In this case the reference

element space is taken to be

X(K̂) = ABF 0(K̂) = Q2,0(K̂)×Q0,2(K̂) (F.4)

where Qm,n(K̂) denotes the space of polynomial functions on K̂ of degree at most m in x̂1 and at most n in

x̂2. The dimension of this space is 6. Four degrees of freedom are associated with the faces of the element

and the remaining two are local.

F.1.4 The hexahedral element

For the hexahedral element the reference element space is taken to be

X(K̂) = Q3,1,1(K̂)×Q1,3,1(K̂)×Q1,1,3(K̂), (F.5)

the dimension of which is 48 [2]. It has four degrees of freedom per face, while the rest are local. It is

designed to provide the optimal accuracy even when the physical elements are not obtained as affine images

of the reference element.

F.1.5 Using integration over the reference element

As with standard finite elements, it is convenient to convert integrals over elements K to integrals over

the reference element K in order to perform the numerical integration. Here the effect of using the Piola

transformation needs to be taken into account and hence the implementation of elementwise integration is

somewhat different as compared with using the standard transformation laws for the basic finite elements.

In the following u : K → R
d and v : K → R

d are the Piola transformations of û : K̂ → R
d and

v̂ : K̂ → R
d. A scalar field φ : K → R is obtained from a field φ̂ : K̂ → R via φ(x) = (φ̂ ◦ f−1

K )(x).
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In addition, grad and div are the gradient and divergence operators with respect to x, while ∇ and Div are

used to denote the gradient and divergence operators with respect to x̂. The following transformation laws

can then be used to convert integrals over elements K to integrals over the reference element K:

∫

∂K

u(x) · n(x)φ(x) dS =

∫

∂K̂

û(x̂) · n̂(x̂)φ̂(x̂) dŜ,

∫

K

u(x) · v(x) dΩ =

∫

K̂

F û(x̂) · F v̂(x̂) 1

detF
dΩ̂,

∫

K

divu(x)φ(x) dΩ =

∫

K̂

Div û(x̂)φ̂(x̂) dΩ̂,

∫

K

u(x) · gradφ(x) dΩ =

∫

K̂

û(x̂) ·∇φ̂(x̂) dΩ̂.

(F.6)

In addition, the referential description of the field divu(x) is given by

(divu)(fK(x̂)) =
1

detF (x̂)
Divû(x̂). (F.7)

F.1.6 Setting Dirichlet boundary conditions

In connection with face element interpolation Dirichlet constraints can be specified to prescribe the normal

component of the unknown field on the boundary. Here the values of the prescribed degrees of freedom can

be generated by computing integrals of the type

D =

∫

F

uh(x) ·m(x)φ(x) dS

over element faces F .

Specific syntax must be used in the solver input file to define boundary conditions for the face element

approximation. The following commands can be used in the Boundary Condition section to define

the boundary values of the solver variable U which corresponds to a continuous field u and is approximated

with the face element basis functions:

U {f} j Real

This keyword is used to define the vector g so that its normal trace g ·m is approximated by uh ·m,

with uh the finite element interpolating function. The value of this keyword defines the components

gj , j ∈ {1, 2, 3}, with respect to the global Cartesian coordinate system.

F.1.7 Examples

The classic Poisson equation

−div gradu = f on Ω

can be written as a mixed problem such that the problem consists of finding simultaneously u in L2(Ω) and

the flux vector q = grad u in H(div,Ω). For examples of using this mixed formulation see the files in the

directories

• ../trunk/fem/tests/MixedPoisson2D

• ../trunk/fem/tests/MixedPoisson3D

• ../trunk/fem/tests/RaviartThomas2D

• ../trunk/fem/tests/BDM2D
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• ../trunk/fem/tests/RaviartThomas3D

• ../trunk/fem/tests/BDM3D

contained in the source code repository of Elmer.

F.2 The construction of edge element interpolation

The definition of finite element spacesXh(Ω) ⊂H(curl,Ω) is also given by using local spacesX(K) so

thatH(curl,Ω)-conforming approximations are obtained as members of the space

Xh = { vh ∈H(curl,Ω) | vh|K ∈X(K) ∀K ∈ Mh }.

We note that the functions belonging to Xh must now have continuous tangential components across the

interior element faces of the finite element mesh Mh associated with the region Ω.

The element space X(K) is again constructed via introducing a local space X(K̂) on the reference

element and showing how its members are transformed in connection with the element mapping to obtain the

basis for spanningX(K). To this end, we use a transformation which is similar to the Piola transformation

used in the construction of the face element interpolation. Here the connection between the two element

spaces is given by

X(K) = { vh | vh(x) = [F (f−1
K (x))]−T v̂h(f

−1
K (x)), with v̂h ∈X(K̂) }.

It then follows that the basis functions forX(K) are obtained by applying theH(curl)-version of the Piola

transformation to the basis ofX(K̂).

F.2.1 The lowest-order triangular and tetrahedral edge elements of Nédélec’s first

and second family

In the case of triangular and tetrahedral elements the Nédélec edge elements of the first kind are based on

choosing the reference element space as

X(K̂) = [Pk−1(K̂)]d + Sk(K̂) (F.8)

where

Sk(K̂) = { q ∈ [P̃k]
d | q · x = 0 } (F.9)

with P̃k the set of homogeneous polynomials of degree k, i.e. the span of monomials of degree k. On the

other hand, the Nédélec edge elements of the second kind are obtained by selecting

X(K̂) = [Pk(K̂)]d. (F.10)

In the case of Nédélec’s first family of degree k = 1 each reference element edge Êij connecting the

reference element vertices x̂i and x̂j is associated with one basis function ψ̂ij . Given a finite element

expansion v̂h(x̂) in terms of these basis functions, the associated degrees of freedom d̂ij satisfy

d̂ij =

∫

Êij

v̂h(x̂) · t̂(x̂) dŝ,

where t̂ denotes the unit tangent vector associated with the element edge.

The H(curl,Ω)-version of the Piola transformation is applied to transform the basis functions of the

reference element space X(K̂) to a basis for X(K). The degrees of freedom associated with the resulting

basis functionsψij are then characterized by

dij =

∫

Eij

vh(x) · t(x) ds,
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with t the unit tangent vector that is oriented similarly with t̂. In order to define a unique set of degrees of

freedom for assembling global finite element equations, each element edge in the mesh Mh is associated

with a uniquely defined unit tangent τ , so that either t(x) · τ (x) = 1 or t(x) · τ (x) = −1 for all x on

the same element edge. The degrees of freedom for assembling the global equations from elementwise

contributions are then selected to be

Dij =

∫

Eij

vh(x) · τ (x) ds.

The restriction of the global finite element expansion vh on the element can then be written in terms of the

local basis functions and the global degrees of freedom as

vh|K =
∑

dijψij =
∑

Dij(t · τ )x∈Eij
ψij .

In practice this is implemented by applying sign reversions to the local basis functions when t · τ = −1. It

should be noted that the tangential continuity of the resulting edge element expansion is then in-built.

The strategy to construct basis functions for the Nédélec edge elements of the second kind is analogous to

that described in Section F.1.2 for the face elements. That is, each basis function is associated with a certain

numerical integration point located on one of the element edges. The tangential component of the basis

function is normalized to yield the unity at the integration point to which the basis function is associated,

while the tangential component of this basis function is required to vanish at other integration points located

on the element edges. Considering the lowest-degree case, in both two and three dimensions each element

edge is associated with two basis functions (as the dimension ofX(K̂) is 6 for the triangular element and 12

for the tetrahedral element). The degrees of freedom associated with the edge element interpolation function

v̂h(x̂) can then be characterized by

d̂kij =

∫

Êij

v̂h(x̂) · t̂(x̂)φ̂k(x̂) dŝ,

with φ̂k(x̂) the linear Lagrange interpolation functions which have the Gaussian points of the element edge

as the interpolation points.

The basis of the element space X(K) is again obtained via applying the adopted version of the Piola

transformation. The global degrees of freedom are also defined in the same way as in the case of Nédélec’s

first family. In addition, an in-built mechanism is now applied to permute the order of basis functions so that

the continuity of the tangential components is maintained when elementwise contributions are assembled to

the global linear system using the standard assembly subroutines of the Elmer solver.

F.2.2 The optimal edge element family of the lowest degree

The simplest edge elements which have other shapes than a triangle or a tetrahedron may not provide op-

timal accuracy when the physical elements are not obtained as affine images of the reference element. In

this section, we describe a family of edge elements designed to provide optimal accuracy even for non-affine

element shapes. The triangular and tetrahedral elements of this family correspond to the Nédélec edge ele-

ment family of the first kind; cf. the previous section. The other edge element types including quadrilateral,

pyramidic, prismatic and hexahedral elements are described in the following.

The curl-conforming version of the quadrilateral Arnold-Boffi-Falk element

In this case the reference element space is taken to be

X(K̂) = Q0,2(K̂)×Q2,0(K̂). (F.11)

The dimension of this space is 6. Four degrees of freedom are associated with the edges of the element and

the remaining two are local.
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A 10-DOF pyramidic element

The construction of the pyramidic element is based on [3]. Using the reference element of the high-order

family, the reference element space is given by

X(K̂) = [P0(K̂)]3 ⊕ span{ ϕ̂j | j = 4, . . . , 10 } (F.12)

where

ϕ̂4 =
1

(1− x̂3/a)2





x̂2(1− x̂3/a)
x̂1(1− x̂3/a)

x̂1x̂2/a



 , ϕ̂5 =





1− x̂3/a
0

x̂1/a



 , ϕ̂6 =





0
1− x̂3/a
x̂2/a



 ,

ϕ̂7 =
x̂2

1− x̂3/a





1− x̂3/a
0

x̂1/a



 , ϕ̂8 =
x̂1

1− x̂3/a





0
1− x̂3/a
x̂2/a



 ,

ϕ̂9 =
x̂2
2

(1− x̂3/a)2





1− x̂3/a
0

x̂1/a



 , ϕ̂10 =
x̂2
1

(1− x̂3/a)2





0
1− x̂3/a
x̂2/a



 ,

(F.13)

with a =
√
2.

A 15-DOF prismatic element

The construction of the prismatic element is also given in [3]. If the prismatic reference element is repre-

sented as K̂ = Ĉ × { x̂3 | − 1 ≤ x̂3 ≤ 1 }, with Ĉ a triangle on a plane x̂3 = const, the reference element

space is defined by

X(K̂) = [Nd1(Ĉ)⊗ P2({ x̂3| − 1 ≤ x̂3 ≤ 1 })]× P2(Ĉ) (F.14)

where Nd1(Ĉ) denotes the Nédélec edge element space of the first kind and P2(D) is the space of the

second-order polynomials defined over the domain D.

A 27-DOF hexahedral element

The optimal hexahedral edge element has been developed in [6]. In this case the reference element space is

taken to be

X(K̂) = Q0,2,2(K̂)×Q2,0,2(K̂)×Q2,2,0(K̂). (F.15)

F.2.3 Second-order edge elements

Second-order edge finite elements are also available. They are members of the conventional Nédélec’s first

family. The background mesh can then consist of either the lowest-order or second-order nodal elements.

For example, a tetrahedral background mesh may consist of elements of type 504 or 510.

In the case of triangles and tetrahedra the reference element space is given by (F.8) with k = 2 and thus

has the dimension 8 or 20, respectively. In the case of quadrilateral elements, the reference element space is

X(K̂) = Q1,2(K̂)×Q2,1(K̂), (F.16)

having the dimension 12.

If the prismatic reference element is represented as K̂ = Ĉ× Î , with Ĉ a triangle on a plane x̂3 = const
and Î = { x̂3 | − 1 ≤ x̂3 ≤ 1 }, the reference element space for the second-order prism is defined by

X(K̂) = [Nd2(Ĉ)⊗ P2(Î)]× [P2(Ĉ)⊗ P1(Î)] (F.17)

where Nd2(Ĉ) denotes the second-order Nédélec edge element space of the first kind and Pk(Î) is the

space of the kth order polynomials defined over the domain Î . This space has the dimension 36. On the

other hand, the reference element space for bricks is

X(K̂) = Q1,2,2(K̂)×Q2,1,2(K̂)×Q2,2,1(K̂), (F.18)
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having the dimension 54. Finally, the construction of the pyramidic element of degree 2 follows [3] by

omitting some of the basis functions associated with the quadrilateral face to obtain the conformity with the

elements of the Nédélec’s first family. The resulting element has 31 DOFs.

F.2.4 Using integration over the reference element

The effect of the applied version of the Piola transformation needs to be taken into account when integrals

over elements K are converted to integrals over the reference element K . Therefore the implementation

of elementwise integration is again somewhat different as compared with using the standard transformation

laws for the basic finite elements.

In the followingu : K → R
d and v : K → R

d are the transformations of û : K̂ → R
d and v̂ : K̂ → R

d

under the H(curl)-version of the Piola transformation. A scalar field φ : K → R is obtained from a field

φ̂ : K̂ → R via φ(x) = (φ̂ ◦ f−1
K )(x). In addition, the curl operator with respect to x is denoted by curl,

while Curl is used to denote the curl operator with respect to x̂. The following transformation laws can

then be used to convert integrals over elements K to integrals over the reference element K:
∫

∂K

u(x) · t(x)φ(x) dS =

∫

∂K̂

û(x̂) · t̂(x̂)φ̂(x̂) dŜ,

∫

K

u(x) · v(x) dΩ =

∫

K̂

[F (x̂)]−T û(x̂) · [F (x̂)]−T v̂(x̂) detF (x̂) dΩ̂

(F.19)

and
∫

∂K

[u(x)× n(x)] · [v(x) × n(x)] dS

=

∫

∂K̂

1
√

a(x̂)
∇f∂K(x̂)[û(x̂)× n̂(x̂)] · 1

√

a(x̂)
∇f∂K(x̂)[v̂(x̂)× n̂(x̂)]

√

a(x̂) dŜ

=

∫

∂K̂

[∇f∂K(x̂)[A(x̂)]−1û(x̂)] · [∇f∂K(x̂)[A(x̂)]−1v̂(x̂)]
√

a(x̂) dŜ

(F.20)

where a(x̂) is the determinant of the metric tensorA(x̂) = (∇f∂K(x̂))T∇f∂K(x̂), with ∇f∂K(x̂) ∈ R
3×2.

In addition, the referential description of the field curlu(x) is given by

(curlu)(fK(x̂)) =
1

detF (x̂)
F (x̂)Curl û(x̂). (F.21)

In two dimensions the only nontrivial component of the curl field transforms in particular as

(curlu · e3)(fK(x̂)) =
1

detF (x̂)
Curl û(x̂) · ê3. (F.22)

In view of (F.21), we thus have
∫

K

curlu(x) · curl v(x) dΩ =

∫

K̂

F (x̂)Curl û(x̂) · F (x̂)Curl v̂(x̂)
1

detF (x̂)
dΩ̂. (F.23)

F.2.5 Setting Dirichlet boundary conditions

In connection with edge element interpolation Dirichlet constraints can be specified to prescribe the tangen-

tial components of the unknown field on the boundary. In the case of the simplest edge elements the values

of the prescribed degrees of freedom can be generated by computing integrals of the type

D =

∫

Eij

uh(x) · τ (x)φ(x) ds
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over element edges Eij . In the case of elements of the second degree or elements from the optimal family

some degrees of freedom may be associated with element faces and a more general approach must be fol-

lowed. In that case the values of the degrees of freedom associated with the element faces are obtained by

seeking the best approximation of the data in L2.

Specific syntax must be used in the solver input file to define boundary conditions for the edge element

approximation. The following commands can be used in the Boundary Condition section to define

the boundary values of the solver variable U which corresponds to a continuous field u and is approximated

with the edge element basis functions:

U {e} j Real

This keyword is used to define the vector g so that its tangential trace g×n is approximated byuh×n,

with uh the finite element interpolating function. The value of this keyword defines the components

gj , j ∈ {1, 2, 3}, with respect to the global Cartesian coordinate system.

U {e} Real

If the edge element has only degrees of freedom which are associated with edges, this keyword can be

used to define a scalar field ĝτ so that the values of the prescribed degrees of freedom are computed as

D =

∫

Eij

[g(x) · τ (x) + ĝτ ]φ(x) ds.

This option gives a short construct for specifying a homogeneous Dirichlet constraint in connection

with the edges, as in this case the suitable value ĝτ = 0 does not depend on the orientation of τ .

However, this keyword should not be used if a nonhomogeneous Dirichlet constraint is needed or

if additional degrees of freedom associated with the element faces are present (that is, this feature

should not be used for elements of the second degree or elements from the optimal family). Instead

one should then use the generic construct to specify the vector g.
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Appendix G

Advanced finite element definitions

Advanced finite element formulations may require that several fields are approximated simultaneously using

different types of interpolation. For example curl-conforming (edge finite element) approximation may need

to be used in combination with the standard Lagrange interpolation of another field. This requires advanced

flexibility in creating suitable degrees of freedom for finite elements.

Elmer offers general support for creating advanced finite element formulations when a background mesh

for representing the standard lowest-degree continuous finite element expansion is available. Additional

degrees of freedom may then be added by associating them with the edges, faces or interiors of the elements

of the background mesh. This enhancement strategy is used internally for example in the creation of the

second-order curl-conforming finite elements. In general, the writer of a solver must nevertheless decide

how the additional degrees of freedom are utilized in the finite element approximation.

G.1 Specification of the degrees of freedom

Each solver specification in the sif file may contain an additional command of the type

Element = "n:N ... "

where the string between the quotation marks controls what degrees of freedom (DOFs) are allocated. The

specification string can contain the following parts:

• "n:N" to create N ≥ 0 DOFs associated with each node of the background mesh. It should be

noted that the support for values N > 1 is only partial as the default subroutines for setting Dirichlet

constraints work only for N = 1 at the moment.

• "e:E" to create E ≥ 0 DOFs associated with each edge of the background mesh.

• "f:F" to create F ≥ 0 DOFs associated with each face contained in the background mesh.

• As a more general alternate for the previous definition, "-quad face b:FQ -tri face b:FT ”

associates FQ DOFs with every quadrilateral face and FT DOFs with every triangular face of the

background mesh.

• "b:B" to create B ≥ 0 DOFs associated with each element interior

• As a more general alternate for the previous definition, giving

"-tetra b:BT -pyramid b:Bp -prism b:BW -brick b:BB"

controls the number of the local DOFs associated with the element interiors in a manner that depends

on the element shape (tetrahedron, pyramid, prism or brick).
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-dofs, 60

-global, 60

-nooutput, 60

Adaptive Error Limit, 73

Adaptive Error Measure, 37

Adaptive Keep Smallest, 37

Adaptive Max Change, 73

Adaptive Max H, 73

Adaptive Mesh Refinement, 73

Adaptive Min H, 73

Adaptive Min Timestep, 37

Adaptive Remesh, 73

Adaptive Save Mesh, 73

Adaptive Time Error, 37

Adaptive Timestepping, 36

After Linsolve, 30

algebraic multigrid, 21

Anti Axial Projector, 52

Anti Periodic BC VarName, 47

Anti Radial Projector, 52

Anti Rotational Projector, 49, 52

Anti Sliding Projector, 49

Apply Conforming BCs, 52

Apply Contact BCs, 50, 54

Apply Limiter, 45

Apply Mortar BCs, 49, 54

Assembly Solvers, 59

Axial Projector, 52

Backward Differences Formulae, 34

bandwidth optimization, 26

BDF, 34

BDF Order, 35

Before Linsolve, 29, 45

BiCGstab(ℓ), 25

BiCGstab, biconjugate gradient stabilized, 24

BiCGstabl polynomial degree, 25

Binary output, 124

Biorthogonal Basis, 50

Biorthogonal Dual LCoeff, 50

Biorthogonal Dual Master, 50

Block Monolithic, 64

Block Preconditioner, 64

Block Solvers, 64

Body, 8

Body Force, 8, 45, 56, 62

BoomerAMG, 82

BoomerAMG Coarsen Type, 83

BoomerAMG Cycle Type, 84

BoomerAMG Interpolation Type, 83

Boomeramg Max Levels, 83

BoomerAMG Num Functions, 84

BoomerAMG Num Sweeps, 83

BoomerAMG Relax Type, 83

BoomerAMG Smooth Type, 84

Bossak Alpha, 36

Boundary Condition, 9, 44–46, 49, 50, 52, 55

Boundary Condition bc id, 69

Calculate Acceleration, 61

Calculate Energy Inner Product, 57

Calculate Loads, 56

Calculate Velocity, 61

Calculate Weights, 57

CG, conjugate gradient, 24

CGS, conjugate gradient squared, 24

Check Keywords, 12

compilation instructions, 86

Component, 9

component name, 59

Compressed Row Storage, 28

Conforming BC, 52

Conforming conditions, 52

Constants, 8

Constrained Modes Varname, 55

constraint modes, 55

Constraint Modes Analysis, 55

Constraint Modes Fluxes, 55

Constraint Modes Fluxes Symmetric, 55

Constraint Modes Lumped, 55

Contact Active Condition, 51

Contact Active Set Minimum, 51

Contact Depth Offset, 51

Contact Depth Offset Initial, 50

Contact Passive Condition, 51

Contact Type, 51

Contact Velocity(dim), 51

Convergence Monitor, 33

Convergence Monitor File, 33

Convergence Tolerance, 32

Coordinate Mapping(dim), 66
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Coordinate Scaling, 66

Coordinate Transformation , 66

Coordinate Transformation Radius, 66

Corrector method, 38

Crank-Nicolson method, 34

Cuthill-McKee algorithm, 26

Cylindrical Projector, 49, 52

DG Indirect Connections, 70

DG Reduced Basis, 70

DG Reduced Basis Mapping, 70

DG Reduced Basis Master Bodies, 70

DG Reduced Basis Slave Bodies, 70

Direct methods, 19

direct solver, 24

Dirichlet constraints, 43

Discontinuous BC, 69

Discontinuous Boundary, 69

Discontinuous Boundary Greedy, 69

Discontinuous Bulk Greedy, 69

Discontinuous Galerkin, 70

Discontinuous Galerkin method, 78

Discontinuous Target Bodies, 69

domain decomposition, 77, 80

Dynamic Friction Coefficient, 51

Edge Basis, 49

Eigen Analysis, 41

Eigen System Complex, 41

Eigen System Compute Residuals, 41

Eigen System Convergence Tolerance, 41

Eigen System Damped, 41

Eigen System Lanczos Vectors, 41

Eigen System Max Iterations, 41

Eigen System Select, 41

Eigen System Shift, 41

Eigen System Use Identity, 41

Eigen System Values, 41

Eigenvalue problems, 39

Eliminate From Master, 54

Eliminate Linear Constraints, 54

Eliminate Slave, 54

ElmerPost input file, 128

ElmerSolver mesh file, 121

Equation, 8

error indicator, 71

Exec Condition, 58

Exec Intervals, 58

Exec Solver, 58

Export Lagrange Multiplier, 54

Exported and derived variables, 60

Exported Variable i, 61

Exported Variable i Mask, 61

Extruded Coordinate Index, 68

Extruded Max Coordinate, 68

Extruded Mesh Density, 68

Extruded Mesh Levels, 68

Extruded Mesh Ratio, 68

Extruded Min Coordinate, 68

Fluid Solver Index, 65

Friction Contact, 51

GCR, generalized conjugate residual, 25

geometric multigrid, 21

Geometric Stiffness, 41

GMRES, generalized minimal residual, 25

Header, 8

IDR(s), induced dimension reduction method, 25

Idrs Parameter, 25

ILU preconditioners, 21

ILU, incomplete LU-decomposition, 25

Initial Condition, 9

Initialization of dependent variables, 17

Initialize Dirichlet Condition, 17

iterative solver, 24

keyword syntax, 12

Krylov methods, 24

Krylov subspace methods, 20

Lagrange Multiplier Name, 54

LAPACK, 19

Level Projector, 49

Level Projector Extruded Edges Strong, 50

Level Projector Nodes Strong, 50

Level Projector Plane Edges Strong, 50

limiter, 45

Limiter Load Sign Negative, 45

Limiter Load Tolerance, 45

Limiter Value Tolerance, 45

linear algebra, 19

Linear System Abort Not Converged, 25

Linear System Block Mode, 26, 64

Linear System Convergence Tolerance, 25

Linear System Direct Method, 24

Linear System GCR Restart, 25

Linear System GMRES Restart, 25

Linear System ILUT Tolerance, 25

Linear System Iterative Method, 24

Linear System Max Iterations, 25

Linear System Precondition Recompute, 26

Linear System Preconditioning, 25, 82

Linear System Residual Mode, 26

Linear System Residual Output, 26

Linear System Solver, 24

Linear System Solver Disabled, 26, 64

Linear System Symmetric, 45

Linear System Timing, 62
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Linear System Timing Cumulative, 62

Linear System Use Hypre, 81

linear systems, 19

lower limit, 45

Lumped Mass Matrix, 36

MATC, 12, 13

parameterized keyword commands, 14

Material, 8

mesh database, 77

Mesh DB, 9

Mesh Grading Power, 67

Mesh Keep, 67

Mesh Keep Grading, 67

Mesh Levels, 67

mesh refinement, 71

MG Cluster Alpha, 28

MG Cluster Size, 28

MG Convergence Tolerance, 27

MG Direct Interpolate, 28

MG Direct Interpolate Limit, 28

MG Eliminate Dirichlet, 28

MG Eliminate Dirichlet Limit, 28

MG Equal Split, 26

MG ILUT Tolerance, 27

MG Levels, 26

MG Lowest Linear Solver Limit, 27

MG Max Iterations, 27

MG Mesh Name, 26

MG Positive Connection Limit, 28

MG Post Smoothing Iterations, 27

MG Pre Smoothing Iterations, 27

MG Preconditioning, 27

MG Projection Limit, 28

MG Recompute Projector, 28

MG Smoother, 27, 28

MG SOR Relax, 28

MG Strong Connection Limit, 28

MG Strong Connection Minimum, 28

Mortar BC, 49

Mortar BC Enforce Overlay, 52

Mortar BC Scaling, 49

Mortar BCs Additive, 49

multigrid solver, 24

Mumps, 20

nodal loads, 56

Nonlinear Calculate Acceleration, 61

Nonlinear Calculate Velocity, 61

Nonlinear Post Solvers, 59

Nonlinear Pre Solvers, 59

Nonlinear System Convergence Absolute, 32

Nonlinear System Convergence Measure, 31

Nonlinear System Convergence Tolerance, 32

Nonlinear System Convergence Without Constraints,

32, 54

Nonlinear System Divergence Limit, 32

Nonlinear System Max Iterations, 32

Nonlinear System Newton After Iterations, 32

Nonlinear System Newton After Tolerance, 32

Nonlinear System Norm Degree, 32

Nonlinear System Norm Dofs, 32

Nonlinear System Relaxation Factor, 32

Nonlinear Update Exported Variables, 61

nonlinearity, 31

Normal-Tangential VarName, 51

Number of Partitions, 79

Optimize Bandwidth, 26

outer: (as namespace), 64

Output Intervals, 36

Parasails, 82

Pardiso, 20

Partition Mesh, 79

Partitioning Method, 79

Periodic BC, 46

Periodic BC Explicit, 46

Periodic BC Rotate(3), 47

Periodic BC Scale(3), 47

Periodic BC Translate(3), 46

Periodic BC Use Lagrange Coefficients, 47

Periodic BC VarName, 47

Periodic conditions, 46

Plane Projector, 50

Plate Solver, 65

Plate Solver Index, 65

Post Solvers, 59

Pre Solvers, 59, 64

preconditioning, 21

Predictor method, 38

Predictor-Corrector Control, 38

Predictor-Corrector Control Beta 1, 38

Predictor-Corrector Control Beta 2, 38

Predictor-Corrector Control Tolerance, 38

Predictor-Corrector Save Error, 38

Predictor-Corrector Scheme Order, 38

Preserve Baseline, 68

Projector Skip Edges, 50, 52

Projector Skip Nodes, 50, 52

Radial Projector, 49, 52

Reference Norm, 62

Reference Norm Tolerance, 62

Relaxation Factor, 32

Restart Before Initial Conditions, 17

Restart file, 16

Restart Position, 16

Restart Time Ignore, 17
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Restart Variable, 16

Rotational Projector, 49, 52

Save Projector, 50

Set Dirichlet BCs by BC Numbering, 44

Shell Solver, 65

Shell Solver Index, 65

sif file, 8

Simulation, 8, 43, 66–69, 79

Skip First Timestep, 38

Slave Solvers, 59

Slide Contact, 51

Sliding Projector, 49, 52

Solid Solver Index, 65

Solver, 9, 45, 49, 50, 52, 55–57, 61, 62, 70

Solver activation, 58

Solver execution by a master solver, 58

solver input file, 8

section names, 8

Solver Timing, 62

Solver Timing Cumulative, 62

SOLVER.KEYWORDS, 12

Stability Analysis, 41

Start Time, 58

Static Friction Coefficient, 51

Steady State Convergence Absolute, 33

Steady State Convergence Measure, 33

Steady State Convergence Tolerance, 33

Steady State Divergence Limit, 33

Steady State Max Iterations, 33

Steady State Min Iterations, 33

Steady State Norm Degree, 33

Steady State Norm Dofs, 33

Steady State Relaxation Factor, 33

Stick Active Condition, 51

Stick Contact, 51

Stick Contact Coefficient, 51

Stick Passive Condition, 51

Stop Time, 58

Structure Solver Index, 65

SuperLU, 20

Target Boundaries(n), 44

Target Coordinates(n,DIM), 44

Target Nodes(n), 44

Target Variable, 17

Tie Contact, 51

Time Derivative Order, 35

time-dependent, 34

timeintegration, 34

Timestep Intervals, 36

Timestep Size, 36

Timestep Sizes, 36

Timestepping Method, 35

U {e}, 156

U {e} j, 156

U {f} j, 151

Umfpack, 19

Update Exported Variables, 61

upper limit, 45

Use Transpose values, 54

Variable name, 59

Varname, 44, 45

Varname {e}, 44

Varname {e} i, 44

Varname {f} i, 44

VarName Calculate Acceleration, 61

VarName Calculate Velocity, 61

Varname Condition, 44, 45

Varname i, 44

Varname Load , 56

Varname Lower Limit, 45

Varname Passive, 62

VarName Transient, 61

Varname Upper Limit, 45
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