
RFC 9404

JSON Meta Application Protocol (JMAP) Blob

Management Extension

Abstract

The JSON Meta Application Protocol (JMAP) base protocol (RFC 8620) provides the ability to

upload and download arbitrary binary data via HTTP POST and GET on a defined endpoint. This

binary data is called a "blob".

This extension adds additional ways to create and access blobs by making inline method calls

within a standard JMAP request.

This extension also adds a reverse lookup mechanism to discover where blobs are referenced

within other data types.

Stream:

RFC:

Updates:

Category:

Published:

ISSN:

Author:

Internet Engineering Task Force (IETF)

9404

8620

Standards Track

August 2023

2070-1721

 B. Gondwana, Ed.

Fastmail

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9404

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

Gondwana Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9404
https://www.rfc-editor.org/rfc/rfc8620
https://www.rfc-editor.org/info/rfc9404

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Conventions Used in This Document

3. Addition to the Capabilities Object

3.1. urn:ietf:params:jmap:blob

3.1.1. Capability Example

4. Blob Methods

4.1. Blob/upload

4.1.1. Blob/upload Simple Example

4.1.2. Blob/upload Complex Example

4.2. Blob/get

4.2.1. Blob/get Simple Example

4.2.2. Blob/get Example with Range and Encoding Errors

4.3. Blob/lookup

4.3.1. Blob/lookup Example

5. Security Considerations

6. IANA Considerations

6.1. JMAP Capability Registration for "blob"

6.2. JMAP Error Codes Registration for "unknownDataType"

6.3. Creation of "JMAP Data Types" Registry

7. References

7.1. Normative References

7.2. Informative References

Acknowledgements

3

3

3

3

5

5

5

7

8

10

12

14

19

20

21

22

22

22

22

23

23

24

24

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 2

https://trustee.ietf.org/license-info

Author's Address 24

1. Introduction

Sometimes JMAP interactions require creating a blob and then referencing it. In the

same way that IMAP literals were extended by , embedding small blobs directly into

the JMAP method calls array can be an option for reducing round trips.

Likewise, when fetching an object, it can be useful to also fetch the raw content of that object

without a separate round trip.

Since raw blobs may contain arbitrary binary data, this document defines a use of the base64

coding specified in for both creating and fetching blob data.

When JMAP is proxied through a system that applies additional access restrictions, it can be

useful to know which objects reference any particular blob; this document defines a way to

discover those references.

[RFC8620]

[RFC7888]

[RFC4648]

2. Conventions Used in This Document

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

The definitions of JSON keys and datatypes in the document follow the conventions described in

.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8620]

3. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session object; see .

This document defines an additional capability URI.

[RFC8620], Section 2

3.1. urn:ietf:params:jmap:blob

The presence of the capability urn:ietf:params:jmap:blob in the accountCapabilities property

of an account represents support for additional API methods on the Blob datatype. Servers that

include the capability in one or more accountCapabilities properties also include the

property in the capabilities property.

The value of this property in the JMAP Session capabilities property be an empty object.

MUST

MUST

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 3

https://rfc-editor.org/rfc/rfc8620#section-2

The value of this property in an account's accountCapabilities property is an object that

contain the following information on server capabilities and permissions for that account:

maxSizeBlobSet: "UnsignedInt|null"

The maximum size of the blob (in octets) that the server will allow to be created (including

blobs created by concatenating multiple data sources together).

Clients attempt to create blobs larger than this size.

If this value is null, then clients are not required to limit the size of the blob they try to

create, though servers can always reject creation of blobs regardless of size, e.g., due to lack

of disk space or per-user rate limits.

maxDataSources: "UnsignedInt"

The maximum number of DataSourceObjects allowed per creation in a Blob/upload.

Servers allow at least 64 DataSourceObjects per creation.

supportedTypeNames: "String[]"

An array of data type names that are supported for Blob/lookup. If the server does not

support lookups, then this will be the empty list.

Note that the supportedTypeNames list may include private types that are not in the "JMAP

Data Types" registry defined by this document. Clients ignore type names they do not

recognise.

supportedDigestAlgorithms: "String[]"

An array of supported digest algorithms that are supported for Blob/get. If the server does

not support calculating blob digests, then this will be the empty list. Algorithms in this list

 be present in the "HTTP Digest Algorithm Values" registry defined by ;

however, in JMAP, they must be lowercased, e.g., "md5" rather than "MD5".

Clients prefer algorithms listed earlier in this list.

MUST

•

MUST NOT

•

MUST

•

MUST

•

MUST [RFC3230]

SHOULD

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 4

3.1.1. Capability Example

{
 "capabilities": {
 ...,
 "urn:ietf:params:jmap:blob": {}
 },
 "accounts": {
 "A13842": {
 ...
 "accountCapabilities": {
 "urn:ietf:params:jmap:blob": {
 "maxSizeBlobSet": 50000000,
 "maxDataSources": 100,
 "supportedTypeNames" : [
 "Mailbox",
 "Thread",
 "Email"
],
 "supportedDigestAlgorithms" : [
 "sha",
 "sha-256"
]
 }
 }
 }
 }
}

4. Blob Methods

A blob is a sequence of zero or more octets.

JMAP defines the Blob/copy method, which is unchanged by this specification and is

selected by the urn:ietf:params:jmap:core capability.

The following JMAP methods are selected by the urn:ietf:params:jmap:blob capability.

[RFC8620]

4.1. Blob/upload

This is similar to a Foo/set in in some ways. However, blobs cannot be updated or

deleted, so only create is allowed in the method call. Also, blobs do not have state, so there is no

state field present in the method response.

Parameters

accountId: "Id"

The id of the account in which the blobs will be created.

create: "Id[UploadObject]"

[RFC8620]

•

•

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 5

A map of creation id to UploadObjects.

Result

The result is the same as for Foo/set in , with created and notCreated objects mapping

from the creation id.

The created objects contain:

id: "Id"

The blobId that was created.

type: "String|null"

The media type as given in the creation (if any). If not provided, the server perform

content analysis and return one of the following: the calculated value, "application/octet-

string", or null.

size: "UnsignedInt"

As per , the size of the created blob in octets.

The created objects will also contain any other properties identical to those that would be

returned in the JSON response of the upload endpoint described in . This may be

extended in the future; in this document, it is anticipated that implementations will extend both

the upload endpoint and the Blob/upload responses in the same way.

If there is a problem with a creation, then the server will return a notCreated response with a

map from the failed creation id to a SetError object.

For each successful upload, servers add an entry to the createdIds map (

) for the request; even if the caller did not explicitly pass a createdIds, the value must

be available to later methods defined in the same Request Object. This allows the blobId to be

used via back-reference in subsequent method calls.

The created blob will have the same lifetime and same expiry semantics as any other binary

object created via the mechanism specified in .

Uploads using this mechanism will be restricted by the maxUploadSize limit for JMAP requests

specified by the server, and clients consider using the upload mechanism defined by

 for blobs larger than a megabyte.

UploadObject

data: "DataSourceObject[]"

An array of zero or more octet sources in order (zero to create an empty blob). The result of

each of these sources is concatenated in order to create the blob.

type: "String|null" (default: null)

A hint for media type of the data.

[RFC8620]

•

•

MAY

•

[RFC8620]

[RFC8620]

MUST [RFC8620],

Section 3.3

[RFC8620], Section 6

SHOULD

[RFC8620]

•

•

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 6

https://rfc-editor.org/rfc/rfc8620#section-3.3
https://rfc-editor.org/rfc/rfc8620#section-6

DataSourceObject

Exactly one of:

data:asText: "String|null" (raw octets, must be UTF-8)

data:asBase64: "String|null" (base64 representation of octets)

or a blobId source:

blobId: "Id"

offset: "UnsignedInt|null" (be zero)

length: "UnsignedInt|null" (be zero)

If null, then offset is assumed to be zero.

If null, then length is the remaining octets in the blob.

If the range cannot be fully satisfied (i.e., it begins or extends past the end of the data in the blob),

then the DataSourceObject is invalid and results in a notCreated response for this creation id.

If the data properties have any invalid references or invalid data contained in them, the server

 guess the user's intent and reject the creation and return a notCreated response

for that creation id.

Likewise, invalid characters in the base64 of data:asBase64 or invalid UTF-8 in data:asText

result in a notCreated response.

It is envisaged that the definition for DataSourceObject might be extended in the future, for

example, to fetch external content.

A server accept at least 64 DataSourceObjects per create, as described in Section 3.1 of this

document.

•

•

•

• MAY

• MAY

MUST NOT MUST

MUST

MUST

4.1.1. Blob/upload Simple Example

The data:asBase64 field is set over multiple lines for ease of publication here; however, the entire

data:asBase64 field would be sent as a continuous string with no wrapping on the wire.

Method Call:

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 7

Response:

[
 "Blob/upload",
 {
 "accountId": "account1",
 "create": {
 "1": {
 "data" : [
 {
 "data:asBase64": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABAQMAAAAl21bKA
 AAAA1BMVEX/AAAZ4gk3AAAAAXRSTlN/gFy0ywAAAApJRE
 FUeJxjYgAAAAYAAzY3fKgAAAAASUVORK5CYII="
 }
],
 "type": "image/png"
 }
 }
 },
 "R1"
]

[
 "Blob/upload",
 {
 "accountId" : "account1",
 "created" : {
 "1": {
 "id" : "G4c6751edf9dd6903ff54b792e432fba781271beb",
 "type" : "image/png",
 "size" : 95
 }
 }
 },
 "R1"
]

4.1.2. Blob/upload Complex Example

Method Calls:

[
 [
 "Blob/upload",
 {
 "create": {
 "b4": {
 "data": [
 {
 "data:asText": "The quick brown fox jumped over the lazy dog."
 }
]
 }

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 8

Responses:

 }
 },
 "S4"
],
[
 "Blob/upload",
 {
 "create": {
 "cat": {
 "data": [
 {
 "data:asText": "How"
 },
 {
 "blobId": "#b4",
 "length": 7,
 "offset": 3
 },
 {
 "data:asText": "was t"
 },
 {
 "blobId": "#b4",
 "length": 1,
 "offset": 1
 },
 {
 "data:asBase64": "YXQ/"
 }
]
 }
 }
 },
 "CAT"
],
[
 "Blob/get",
 {
 "properties": [
 "data:asText",
 "size"
],
 "ids": [
 "#cat"
]
 },
 "G4"
]
]

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 9

[
 [
 "Blob/upload",
 {
 "oldState": null,
 "created": {
 "b4": {
 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",
 "size": 45,
 "type": "application/octet-stream"
 }
 },
 "notCreated": null,
 "accountId": "account1"
 },
 "S4"
],
 [
 "Blob/upload",
 {
 "oldState": null,
 "created": {
 "cat": {
 "id": "Gcc60576f036321ae6e8037ffc56bdee589bd3e23",
 "size": 19,
 "type": "application/octet-stream"
 }
 },
 "notCreated": null,
 "accountId": "account1"
 },
 "CAT"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "Gcc60576f036321ae6e8037ffc56bdee589bd3e23",
 "data:asText": "How quick was that?",
 "size": 19
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G4"
]
]

4.2. Blob/get

A standard JMAP get, with two additional optional parameters:

offset: "UnsignedInt|null"•

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 10

Start this many octets into the blob data. If null or unspecified, this defaults to zero.

length: "UnsignedInt|null"

Return at most this many octets of the blob data. If null or unspecified, then all remaining

octets in the blob are returned. This can be considered equivalent to an infinitely large

length value, except that the isTruncated warning is not given unless the start offset is past

the end of the blob.

Request Properties:

Any of:

data:asText

data:asBase64

data (returns data:asText if the selected octets are valid UTF-8 or data:asBase64)

digest:<algorithm> (where <algorithm> is one of the named algorithms in the

supportedDigestAlgorithms capability)

size

If not given, the properties default to data and size.

Result Properties:

data:asText: "String|null"

The raw octets of the selected range if they are valid UTF-8; otherwise, null.

data:asBase64: "String"

The base64 encoding of the octets in the selected range.

digest:<algorithm>: "String"

The base64 encoding of the digest of the octets in the selected range, calculated using the

named algorithm.

isEncodingProblem: "Boolean" (default: false)

isTruncated: "Boolean" (default: false)

size: "UnsignedInt"

The number of octets in the entire blob.

The size value always be the number of octets in the underlying blob, regardless of offset

and length.

The data fields contain a representation of the octets within the selected range that are present in

the blob. If the octets selected are not valid UTF-8 (including truncating in the middle of a multi-

octet sequence) and data or data:asText was requested, then the key isEncodingProblem

be set to true, and the data:asText response value be null. In the case where data was

requested and the data is not valid UTF-8, then data:asBase64 be returned.

•

•

•

•

•

•

•

•

•

•

•

•

MUST

MUST

MUST

MUST

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 11

If the selected range requests data outside the blob (i.e., the offset+length is larger than the blob),

then the result is either just the octets from the offset to the end of the blob or an empty string if

the offset is past the end of the blob. Either way, the isTruncated property in the result be

set to true to tell the client that the requested range could not be fully satisfied. If digest was

requested, any digest is calculated on the octets that would be returned for a data field.

Servers store the size for blobs in a format that is efficient to read, and clients

limit their request to just the size parameter if that is all they need, as fetching blob content could

be significantly more expensive and slower for the server.

MUST

SHOULD SHOULD

4.2.1. Blob/get Simple Example

In this example, a blob containing the string "The quick brown fox jumped over the lazy dog."

has blobId Gc0854fb9fb03c41cce3802cb0d220529e6eef94e.

The first method call requests just the size for multiple blobs, and the second requests both the

size and a short range of the data for one of the blobs.

Method Calls:

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 12

Responses:

[
 [
 "Blob/get",
 {
 "accountId" : "account1",
 "ids" : [
 "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",
 "not-a-blob"
],
 "properties" : [
 "data:asText",
 "digest:sha",
 "size"
]
 },
 "R1"
],
 [
 "Blob/get",
 {
 "accountId" : "account1",
 "ids" : [
 "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e"
],
 "properties" : [
 "data:asText",
 "digest:sha",
 "digest:sha-256",
 "size"
],
 "offset" : 4,
 "length" : 9
 },
 "R2"
]
]

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 13

[
 [
 "Blob/get",
 {
 "accountId": "account1",
 "list": [
 {
 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",
 "data:asText": "The quick brown fox jumped over the lazy dog.",
 "digest:sha": "wIVPufsDxBzOOALLDSIFKebu+U4=",
 "size": 45
 }
],
 "notFound": [
 "not-a-blob"
]
 },
 "R1"
],
[
 "Blob/get",
 {
 "accountId": "account1",
 "list": [
 {
 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",
 "data:asText": "quick bro",
 "digest:sha": "QiRAPtfyX8K6tm1iOAtZ87Xj3Ww=",
 "digest:sha-256": "gdg9INW7lwHK6OQ9u0dwDz2ZY/gubi0En0xlFpKt0OA=",
 "size": 45
 }
]
 },
 "R2"
]
]

4.2.2. Blob/get Example with Range and Encoding Errors

The b1 value is the text "The quick brown fox jumped over the \x81\x81 dog.", which contains an

invalid UTF-8 sequence.

The results have the following properties:

G1: Defaults to data and size, so b1 returns isEncodingProblem and a base64 value.

G2: Since data:asText was explicitly selected, does not attempt to return a value for the

data, just isEncodingProblem for b1.

G3: Since only data:asBase64 was requested, there is no encoding problem, and both values

are returned.

G4: Since the requested range could be satisfied as text, both blobs are returned as

data:asText, and there is no encoding problem.

G5: Both blobs cannot satisfy the requested range, so isTruncated is true for both.

•

•

•

•

•

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 14

Note: Some values have been wrapped for line length. There would be no wrapping

in the data:asBase64 values on the wire.

Method Calls:

[
 [
 "Blob/upload",
 {
 "create": {
 "b1": {
 "data": [
 {
 "data:asBase64": "VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wZW
 Qgb3ZlciB0aGUggYEgZG9nLg=="
 }
]
 },
 "b2": {
 "data": [
 {
 "data:asText": "hello world"
 }
],
 "type" : "text/plain"
 }
 }
 },
 "S1"
],
 [
 "Blob/get",
 {
 "ids": [
 "#b1",
 "#b2"
]
 },
 "G1"
],
 [
 "Blob/get",
 {
 "ids": [
 "#b1",
 "#b2"
],
 "properties": [
 "data:asText",
 "size"
]
 },
 "G2"
],
 [
 "Blob/get",

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 15

Responses:

 {
 "ids": [
 "#b1",
 "#b2"
],
 "properties": [
 "data:asBase64",
 "size"
]
 },
 "G3"
],
 [
 "Blob/get",
 {
 "offset": 0,
 "length": 5,
 "ids": [
 "#b1",
 "#b2"
]
 },
 "G4"
],
 [
 "Blob/get",
 {
 "offset": 20,
 "length": 100,
 "ids": [
 "#b1",
 "#b2"
]
 },
 "G5"
]
]

[
 [
 "Blob/upload",
 {
 "oldState": null,
 "created": {
 "b2": {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "size": 11,
 "type": "application/octet-stream"
 },
 "b1": {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "size": 43,
 "type": "text/plain"
 }

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 16

 },
 "updated": null,
 "destroyed": null,
 "notCreated": null,
 "notUpdated": null,
 "notDestroyed": null,
 "accountId": "account1"
 },
 "S1"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "isEncodingProblem": true,
 "data:asBase64": "VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wZW
 Qgb3ZlciB0aGUggYEgZG9nLg==",
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "data:asText": "hello world",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G1"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "isEncodingProblem": true,
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "data:asText": "hello world",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G2"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 17

 "data:asBase64": "VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wZW
 Qgb3ZlciB0aGUggYEgZG9nLg==",
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "data:asBase64": "aGVsbG8gd29ybGQ=",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G3"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "data:asText": "The q",
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "data:asText": "hello",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G4"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "isTruncated": true,
 "isEncodingProblem": true,
 "data:asBase64": "anVtcGVkIG92ZXIgdGhlIIGBIGRvZy4=",
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "isTruncated": true,
 "data:asText": "",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G5"

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 18

]
]

4.3. Blob/lookup

Given a list of blobIds, this method does a reverse lookup in each of the provided type names to

find the list of Ids within that data type that reference the provided blob.

Since different datatypes will have different semantics of "contains", the definition of "reference"

is somewhat loose but roughly means "you could discover this blobId by looking at this object or

at other objects recursively contained within this object".

For example, with a server that supports , if a Mailbox references a blob and if any

Emails within that Mailbox reference the blobId, then the Mailbox references that blobId. For

any Thread that references an Email that references a blobId, it can be said that the Thread

references the blobId.

However, this does not mean that if an Email references a Mailbox in its mailboxIds property,

then any blobId referenced by other Emails in that Mailbox are also referenced by the initial

Email.

Parameters

accountId: "Id"

The id of the account used for the call.

typeNames: "String[]"

A list of names from the "JMAP Data Types" registry or defined by private extensions that the

client has requested. Only names for which "Can reference blobs" is true may be specified,

and the capability that defines each type must also be used by the overall JMAP request in

which this method is called.

If a type name is not known by the server, or the associated capability has not been

requested, then the server returns an "unknownDataType" error.

ids: "Id[]"

A list of blobId values to be looked for.

Response

list: "BlobInfo[]"

A list of BlobInfo objects.

BlobInfo Object

id: "Id"

The blobId.

matchedIds: "String[Id[]]"

[RFC8621]

•

•

•

•

•

•

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 19

A map from type name to a list of Ids of that data type (e.g., the name "Email" maps to a list

of emailIds).

If a blob is not visible to a user or does not exist on the server at all, then the server still

return an empty array for each type as this doesn't leak any information about whether the blob

is on the server but not visible to the requesting user.

MUST

4.3.1. Blob/lookup Example

Method Call:

Response:

[
 "Blob/lookup",
 {
 "typeNames": [
 "Mailbox",
 "Thread",
 "Email"
],
 "ids": [
 "Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",
 "not-a-blob"
]
 },
 "R1"
]

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 20

[
 "Blob/lookup",
 {
 "list": [
 {
 "id": "Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",
 "matchedIds": {
 "Mailbox": [
 "M54e97373",
 "Mcbe6b662"
],
 "Thread": [
 "T1530616e"
],
 "Email": [
 "E16e70a73eb4",
 "E84b0930cf16"
]
 }
 }
],
 "notFound": [
 "not-a-blob"
]
 },
 "R1"
]

5. Security Considerations

All security considerations for JMAP apply to this specification. Additional

considerations specific to the data types and functionality introduced by this document are

described here.

JSON parsers are not all consistent in handling non-UTF-8 data. JMAP requires that all JSON data

be UTF-8 encoded, so servers only return a null value if data:asText is requested for a

range of octets that is not valid UTF-8 and set isEncodingProblem: true.

Servers apply any access controls, such that if the authenticated user would be unable to

discover the blobId by making queries, then this fact cannot be discovered via a Blob/lookup. For

example, if an Email exists in a Mailbox that the authenticated user does not have access to see,

then that emailId be returned in a lookup for a blob that is referenced by that email.

The server trust that the data given to a Blob/upload is a well-formed instance of the

specified media type. Also, if the server attempts to parse the given blob, only hardened parsers

designed to deal with arbitrary untrusted data should be used. The server reject

data on the grounds that it is not a valid specimen of the stated type.

[RFC8620]

MUST

MUST

MUST NOT

MUST NOT

SHOULD NOT

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 21

With carefully chosen data sources, Blob/upload can be used to recreate dangerous content on

the far side of security scanners (anti-virus or exfiltration scanners, for example) that may be

watching the upload endpoint. Server implementations provide a hook to allow security

scanners to check the resulting blob after concatenating the data sources in the same way that

they do for the upload endpoint.

Digest algorithms can be expensive for servers to calculate. Servers that share resources between

multiple users should track resource usage by clients and rate-limit expensive operations to

avoid resource starvation.

SHOULD

6. IANA Considerations

Capability Name:

Specification document:

Intended use:

Change Controller:

Security and privacy considerations:

6.1. JMAP Capability Registration for "blob"

IANA has registered the "blob" JMAP capability as follows:

urn:ietf:params:jmap:blob

RFC 9404

common

IETF

RFC 9404, Section 5

JMAP Error Code:

Intended use:

Change Controller:

Reference:

Description:

6.2. JMAP Error Codes Registration for "unknownDataType"

IANA has registered the "unknownDataType" JMAP error code as follows:

unknownDataType

common

IETF

RFC 9404

The server does not recognise this data type, or the capability to enable it is not

present in the current Request Object.

6.3. Creation of "JMAP Data Types" Registry

IANA has created a new registry called "JMAP Data Types". Table 1 shows the initial contents of

this new registry.

Type Name Can Ref

Blobs

Can Use for

State

Change

Capability Reference

Core No No urn:ietf:params:jmap:core

PushSubscription No No urn:ietf:params:jmap:core

[RFC8620]

[RFC8620]

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 22

[RFC2119]

[RFC3230]

[RFC4648]

7. References

7.1. Normative References

, , ,

, , March 1997,

.

 and , , ,

, January 2002, .

, , ,

, October 2006, .

The registration policy for this registry is "Specification Required" . Either an RFC or a

similarly stable reference document defines a JMAP Data Type and associated capability.

IANA will appoint designated experts to review requests for additions to this registry, with

guidance to allow any registration that provides a stable document describing the capability and

control over the URI namespace to which the capability URI points.

Type Name Can Ref

Blobs

Can Use for

State

Change

Capability Reference

Mailbox Yes Yes urn:ietf:params:jmap:mail

Thread Yes Yes urn:ietf:params:jmap:mail

Email Yes Yes urn:ietf:params:jmap:mail

EmailDelivery No Yes urn:ietf:params:jmap:mail

SearchSnippet No No urn:ietf:params:jmap:mail

Identity No Yes urn:ietf:params:jmap:

submission

EmailSubmission No Yes urn:ietf:params:jmap:

submission

VacationResponse No Yes urn:ietf:params:jmap:

vacationresponse

MDN No No urn:ietf:params:jmap:mdn

Table 1

[RFC8621]

[RFC8621]

[RFC8621]

[RFC8621]

[RFC8621]

[RFC8621]

[RFC8621]

[RFC8621]

[RFC9007]

[RFC8126]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Mogul, J. A. Van Hoff "Instance Digests in HTTP" RFC 3230 DOI 10.17487/

RFC3230 <https://www.rfc-editor.org/info/rfc3230>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI

10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 23

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc4648

[RFC8174]

[RFC8620]

[RFC7888]

[RFC8126]

[RFC8621]

[RFC9007]

, ,

, , , May 2017,

.

 and , ,

, , July 2019,

.

7.2. Informative References

, , ,

, May 2016, .

, , and ,

, , , , June

2017, .

 and ,

, , , August 2019,

.

,

, , , March 2021,

.

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Jenkins, N. C. Newman "The JSON Meta Application Protocol (JMAP)" RFC

8620 DOI 10.17487/RFC8620 <https://www.rfc-editor.org/info/

rfc8620>

Melnikov, A., Ed. "IMAP4 Non-synchronizing Literals" RFC 7888 DOI 10.17487/

RFC7888 <https://www.rfc-editor.org/info/rfc7888>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Jenkins, N. C. Newman "The JSON Meta Application Protocol (JMAP) for

Mail" RFC 8621 DOI 10.17487/RFC8621 <https://www.rfc-

editor.org/info/rfc8621>

Ouazana, R., Ed. "Handling Message Disposition Notification with the JSON Meta

Application Protocol (JMAP)" RFC 9007 DOI 10.17487/RFC9007

<https://www.rfc-editor.org/info/rfc9007>

Acknowledgements

, , , , , , and the

JMAP Working Group in the IETF.

Joris Baum Jim Fenton Neil Jenkins Alexey Melnikov Ken Murchison Robert Stepanek

Author's Address

Bron Gondwana ()editor

Fastmail

Level 2, 114 William St

 Melbourne VIC 3000

Australia

 brong@fastmailteam.com Email:

 https://www.fastmail.com URI:

RFC 9404 JMAP Blob August 2023

Gondwana Standards Track Page 24

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc7888
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8621
https://www.rfc-editor.org/info/rfc8621
https://www.rfc-editor.org/info/rfc9007
mailto:brong@fastmailteam.com
https://www.fastmail.com

	RFC 9404
	JSON Meta Application Protocol (JMAP) Blob Management Extension
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used in This Document
	3. Addition to the Capabilities Object
	3.1. urn:ietf:params:jmap:blob
	3.1.1. Capability Example

	4. Blob Methods
	4.1. Blob/upload
	4.1.1. Blob/upload Simple Example
	4.1.2. Blob/upload Complex Example

	4.2. Blob/get
	4.2.1. Blob/get Simple Example
	4.2.2. Blob/get Example with Range and Encoding Errors

	4.3. Blob/lookup
	4.3.1. Blob/lookup Example

	5. Security Considerations
	6. IANA Considerations
	6.1. JMAP Capability Registration for "blob"
	6.2. JMAP Error Codes Registration for "unknownDataType"
	6.3. Creation of "JMAP Data Types" Registry

	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Author's Address

 JSON Meta Application Protocol (JMAP) Blob Management Extension

 Fastmail

 Level 2, 114 William St
 Melbourne
 VIC
 3000
 Australia

 brong@fastmailteam.com
 https://www.fastmail.com

 art
 jmap
 jmap

 The JSON Meta Application Protocol (JMAP) base protocol (RFC 8620) provides
the ability to upload and download arbitrary binary data via HTTP POST and GET
on a defined endpoint. This binary data is called a "blob".
 This extension adds additional ways to create and access blobs by making
inline method calls within a standard JMAP request.
 This extension also adds a reverse lookup mechanism to discover where blobs
are referenced within other data types.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Conventions Used in This Document

 . Addition to the Capabilities Object

 . urn:ietf:params:jmap:blob

 . Capability Example

 . Blob Methods

 . Blob/upload

 . Blob/upload Simple Example

 . Blob/upload Complex Example

 . Blob/get

 . Blob/get Simple Example

 . Blob/get Example with Range and Encoding Errors

 . Blob/lookup

 . Blob/lookup Example

 . Security Considerations

 . IANA Considerations

 . JMAP Capability Registration for "blob"

 . JMAP Error Codes Registration for "unknownDataType"

 . Creation of "JMAP Data Types" Registry

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Author's Address

 Introduction
 Sometimes JMAP interactions require creating
a blob and then referencing it. In the same way that IMAP literals were
extended by , embedding small blobs directly
into the JMAP method calls array can be an option for reducing round trips.
 Likewise, when fetching an object, it can be useful to also fetch the raw
content of that object without a separate round trip.
 Since raw blobs may contain arbitrary binary data, this document defines
a use of the base64 coding specified in for both creating and
fetching blob data.
 When JMAP is proxied through a system that applies additional
access restrictions, it can be useful to know which objects reference
any particular blob; this document defines a way to discover those
references.

 Conventions Used in This Document

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as described in BCP 14
 when, and only when, they appear in all capitals,
 as shown here.

 The definitions of JSON keys and datatypes in the document follow the
conventions described in .

 Addition to the Capabilities Object
 The capabilities object is returned as part of the JMAP Session
object; see .
 This document defines an additional capability URI.

 urn:ietf:params:jmap:blob
 The presence of the capability urn:ietf:params:jmap:blob in the
accountCapabilities property of an account represents support for additional
API methods on the Blob datatype. Servers that include the capability in one
or more accountCapabilities properties MUST also include the
property in the capabilities property.
 The value of this property in the JMAP Session capabilities
property MUST be an empty object.
 The value of this property in an account's accountCapabilities
property is an object that MUST contain the following information
on server capabilities and permissions for that account:

 maxSizeBlobSet: "UnsignedInt|null"
 The maximum size of the blob (in octets) that the server will
 allow to be created (including blobs created by concatenating multiple data
 sources together).
 Clients MUST NOT attempt to create blobs larger than this
 size.
 If this value is null, then clients are not required to limit
 the size of the blob they try to create, though servers can always reject
 creation of blobs regardless of size, e.g., due to lack of disk space or
 per-user rate limits.

 maxDataSources: "UnsignedInt"
 The maximum number of DataSourceObjects allowed per creation in a
 Blob/upload.
 Servers MUST allow at least 64 DataSourceObjects per
 creation.

 supportedTypeNames: "String[]"
 An array of data type names that are supported for Blob/lookup.
 If the server does not support lookups, then this will be the empty list.
 Note that the supportedTypeNames list may include private types that are not
 in the "JMAP Data Types" registry defined by this document. Clients
 MUST ignore type names they do not recognise.

 supportedDigestAlgorithms: "String[]"
 An array of supported digest algorithms that are supported for
 Blob/get. If the server does not support calculating blob digests,
 then this will be the empty list. Algorithms in this list
 MUST be present in the "HTTP Digest Algorithm Values"
 registry defined by ; however, in JMAP, they
 must be lowercased, e.g., "md5" rather than "MD5".
 Clients SHOULD prefer algorithms listed earlier in this
 list.

 Capability Example
 {
 "capabilities": {
 ...,
 "urn:ietf:params:jmap:blob": {}
 },
 "accounts": {
 "A13842": {
 ...
 "accountCapabilities": {
 "urn:ietf:params:jmap:blob": {
 "maxSizeBlobSet": 50000000,
 "maxDataSources": 100,
 "supportedTypeNames" : [
 "Mailbox",
 "Thread",
 "Email"
],
 "supportedDigestAlgorithms" : [
 "sha",
 "sha-256"
]
 }
 }
 }
 }
}

 Blob Methods
 A blob is a sequence of zero or more octets.
 JMAP defines the
 Blob/copy method, which is unchanged by this specification and is
selected by the urn:ietf:params:jmap:core capability.
 The following JMAP methods are selected by the
 urn:ietf:params:jmap:blob capability.

 Blob/upload
 This is similar to a Foo/set in in some
ways. However, blobs cannot be updated or deleted, so only create is
allowed in the method call. Also, blobs do not have state, so there is no
 state field present in the method response.
 Parameters

 accountId: "Id"
 The id of the account in which the blobs will be created.

 create: "Id[UploadObject]"
 A map of creation id to UploadObjects.

 Result
 The result is the same as for Foo/set in , with created and notCreated objects
mapping from the creation id.
 The created objects contain:

 id: "Id"
 The blobId that was created.

 type: "String|null"
 The media type as given in the creation (if any). If not provided, the
 server MAY perform content analysis and return one of the
 following: the calculated value, "application/octet-string", or
 null.

 size: "UnsignedInt"
 As per , the size of the
 created blob in octets.

 The created objects will also contain any other properties identical to
 those that would be returned in the JSON response of the upload endpoint
 described in . This may be
 extended in the future; in this document, it is anticipated that
 implementations will extend both the upload endpoint and the Blob/upload
 responses in the same way.
 If there is a problem with a creation, then the server will return a
 notCreated response with a map from the failed creation id to a
 SetError object.
 For each successful upload, servers MUST add an entry to the
 createdIds map () for the request; even if the caller did not explicitly pass a
createdIds, the value must be available to later methods defined in the same
Request Object. This allows the blobId to be used via back-reference in
subsequent method calls.
 The created blob will have the same lifetime and same expiry semantics as
any other binary object created via the mechanism specified in .
 Uploads using this mechanism will be restricted by the maxUploadSize limit
for JMAP requests specified by the server, and clients SHOULD
consider using the upload mechanism defined by for blobs larger than a megabyte.
 UploadObject

 data: "DataSourceObject[]"
 An array of zero or more octet sources in order (zero to create an empty
 blob). The result of each of these sources is concatenated in
 order to create the blob.

 type: "String|null" (default: null)
 A hint for media type of the data.

 DataSourceObject
 Exactly one of:

 data:asText: "String|null" (raw octets, must be UTF-8)

 data:asBase64: "String|null" (base64 representation of octets)

 or a blobId source:

 blobId: "Id"

 offset: "UnsignedInt|null" (MAY be zero)

 length: "UnsignedInt|null" (MAY be zero)

 If null, then offset is assumed to be zero.
 If null, then length is the remaining octets in the blob.
 If the range cannot be fully satisfied (i.e., it begins or extends past
the end of the data in the blob), then the DataSourceObject is invalid
and results in a notCreated response for this creation id.
 If the data properties have any invalid references or invalid data
contained in them, the server MUST NOT guess the user's intent
and MUST reject the creation and return a notCreated response for that
creation id.
 Likewise, invalid characters in the base64 of data:asBase64 or invalid
UTF-8 in data:asText MUST result in a notCreated response.
 It is envisaged that the definition for DataSourceObject might be
extended in the future, for example, to fetch external content.
 A server MUST accept at least 64 DataSourceObjects per create, as
described in of this document.

 Blob/upload Simple Example
 The data:asBase64 field is set over multiple lines for ease of publication
here; however, the entire data:asBase64 field would be sent as a continuous
string with no wrapping on the wire.
 Method Call:

[
 "Blob/upload",
 {
 "accountId": "account1",
 "create": {
 "1": {
 "data" : [
 {
 "data:asBase64": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABAQMAAAAl21bKA
 AAAA1BMVEX/AAAZ4gk3AAAAAXRSTlN/gFy0ywAAAApJRE
 FUeJxjYgAAAAYAAzY3fKgAAAAASUVORK5CYII="
 }
],
 "type": "image/png"
 }
 }
 },
 "R1"
]
 Response:
 [
 "Blob/upload",
 {
 "accountId" : "account1",
 "created" : {
 "1": {
 "id" : "G4c6751edf9dd6903ff54b792e432fba781271beb",
 "type" : "image/png",
 "size" : 95
 }
 }
 },
 "R1"
]

 Blob/upload Complex Example
 Method Calls:

[
 [
 "Blob/upload",
 {
 "create": {
 "b4": {
 "data": [
 {
 "data:asText": "The quick brown fox jumped over the lazy dog."
 }
]
 }
 }
 },
 "S4"
],
[
 "Blob/upload",
 {
 "create": {
 "cat": {
 "data": [
 {
 "data:asText": "How"
 },
 {
 "blobId": "#b4",
 "length": 7,
 "offset": 3
 },
 {
 "data:asText": "was t"
 },
 {
 "blobId": "#b4",
 "length": 1,
 "offset": 1
 },
 {
 "data:asBase64": "YXQ/"
 }
]
 }
 }
 },
 "CAT"
],
[
 "Blob/get",
 {
 "properties": [
 "data:asText",
 "size"
],
 "ids": [
 "#cat"
]
 },
 "G4"
]
]
 Responses:
 [
 [
 "Blob/upload",
 {
 "oldState": null,
 "created": {
 "b4": {
 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",
 "size": 45,
 "type": "application/octet-stream"
 }
 },
 "notCreated": null,
 "accountId": "account1"
 },
 "S4"
],
 [
 "Blob/upload",
 {
 "oldState": null,
 "created": {
 "cat": {
 "id": "Gcc60576f036321ae6e8037ffc56bdee589bd3e23",
 "size": 19,
 "type": "application/octet-stream"
 }
 },
 "notCreated": null,
 "accountId": "account1"
 },
 "CAT"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "Gcc60576f036321ae6e8037ffc56bdee589bd3e23",
 "data:asText": "How quick was that?",
 "size": 19
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G4"
]
]

 Blob/get
 A standard JMAP get, with two additional optional parameters:

 offset: "UnsignedInt|null"
 Start this many octets into the blob data. If null or unspecified, this
 defaults to zero.

 length: "UnsignedInt|null"
 Return at most this many octets of the blob data. If null or
 unspecified, then all remaining octets in the blob are returned. This can
 be considered equivalent to an infinitely large length value, except that
 the isTruncated warning is not given unless the start offset is past the end
 of the blob.

 Request Properties:
 Any of:

 data:asText
 data:asBase64
 data (returns data:asText if the selected octets are valid UTF-8 or data:asBase64)
 digest:<algorithm> (where <algorithm> is one of the named algorithms in the supportedDigestAlgorithms capability)
 size

 If not given, the properties default to data and size.
 Result Properties:

 data:asText: "String|null"
 The raw octets of the selected range if they are valid UTF-8; otherwise,
 null.

 data:asBase64: "String"
 The base64 encoding of the octets in the selected range.

 digest:<algorithm>: "String"
 The base64 encoding of the digest of the octets in the selected range,
 calculated using the named algorithm.

 isEncodingProblem: "Boolean" (default: false)

 isTruncated: "Boolean" (default: false)

 size: "UnsignedInt"
 The number of octets in the entire blob.

 The size value MUST always be the number of octets in the underlying blob,
regardless of offset and length.
 The data fields contain a representation of the octets within the selected
range that are present in the blob. If the octets selected are not valid
UTF-8 (including truncating in the middle of a multi-octet sequence)
and data or data:asText was requested, then the key isEncodingProblem
 MUST be set to true, and the data:asText response value MUST be null.
In the case where data was requested and the data is not valid UTF-8,
then data:asBase64 MUST be returned.
 If the selected range requests data outside the blob (i.e., the
offset+length is larger than the blob), then the result is either just the
octets from the offset to the end of the blob or an empty string if the
offset is past the end of the blob. Either way, the isTruncated
property in the result MUST be set to true to tell the
client that the requested range could not be fully satisfied. If digest was
requested, any digest is calculated on the octets that would be
returned for a data field.
 Servers SHOULD store the size for blobs in a format that is
efficient to read, and clients SHOULD limit their request to
just the size parameter if that is all they need, as fetching blob content
could be significantly more expensive and slower for the server.

 Blob/get Simple Example
 In this example, a blob containing the string "The quick brown fox jumped over
the lazy dog." has blobId Gc0854fb9fb03c41cce3802cb0d220529e6eef94e.
 The first method call requests just the size for multiple blobs, and
the second requests both the size and a short range of the data for one
of the blobs.
 Method Calls:
 [
 [
 "Blob/get",
 {
 "accountId" : "account1",
 "ids" : [
 "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",
 "not-a-blob"
],
 "properties" : [
 "data:asText",
 "digest:sha",
 "size"
]
 },
 "R1"
],
 [
 "Blob/get",
 {
 "accountId" : "account1",
 "ids" : [
 "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e"
],
 "properties" : [
 "data:asText",
 "digest:sha",
 "digest:sha-256",
 "size"
],
 "offset" : 4,
 "length" : 9
 },
 "R2"
]
]
 Responses:

[
 [
 "Blob/get",
 {
 "accountId": "account1",
 "list": [
 {
 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",
 "data:asText": "The quick brown fox jumped over the lazy dog.",
 "digest:sha": "wIVPufsDxBzOOALLDSIFKebu+U4=",
 "size": 45
 }
],
 "notFound": [
 "not-a-blob"
]
 },
 "R1"
],
[
 "Blob/get",
 {
 "accountId": "account1",
 "list": [
 {
 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",
 "data:asText": "quick bro",
 "digest:sha": "QiRAPtfyX8K6tm1iOAtZ87Xj3Ww=",
 "digest:sha-256": "gdg9INW7lwHK6OQ9u0dwDz2ZY/gubi0En0xlFpKt0OA=",
 "size": 45
 }
]
 },
 "R2"
]
]

 Blob/get Example with Range and Encoding Errors
 The b1 value is the text "The quick brown fox jumped over the \x81\x81 dog.", which contains an invalid UTF-8 sequence.
 The results have the following properties:

 G1: Defaults to data and size, so b1 returns
 isEncodingProblem and a base64 value.

 G2: Since data:asText was explicitly selected, does not
attempt to return a value for the data, just isEncodingProblem for
b1.

 G3: Since only data:asBase64 was requested, there is no
encoding problem, and both values are returned.

 G4: Since the requested range could be satisfied as text, both blobs
are returned as data:asText, and there is no encoding problem.

 G5: Both blobs cannot satisfy the requested range, so isTruncated is
true for both.

 Note: Some values have been wrapped for line length. There would be
no wrapping in the data:asBase64 values on the wire.

 Method Calls:
 [
 [
 "Blob/upload",
 {
 "create": {
 "b1": {
 "data": [
 {
 "data:asBase64": "VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wZW
 Qgb3ZlciB0aGUggYEgZG9nLg=="
 }
]
 },
 "b2": {
 "data": [
 {
 "data:asText": "hello world"
 }
],
 "type" : "text/plain"
 }
 }
 },
 "S1"
],
 [
 "Blob/get",
 {
 "ids": [
 "#b1",
 "#b2"
]
 },
 "G1"
],
 [
 "Blob/get",
 {
 "ids": [
 "#b1",
 "#b2"
],
 "properties": [
 "data:asText",
 "size"
]
 },
 "G2"
],
 [
 "Blob/get",
 {
 "ids": [
 "#b1",
 "#b2"
],
 "properties": [
 "data:asBase64",
 "size"
]
 },
 "G3"
],
 [
 "Blob/get",
 {
 "offset": 0,
 "length": 5,
 "ids": [
 "#b1",
 "#b2"
]
 },
 "G4"
],
 [
 "Blob/get",
 {
 "offset": 20,
 "length": 100,
 "ids": [
 "#b1",
 "#b2"
]
 },
 "G5"
]
]
 Responses:
 [
 [
 "Blob/upload",
 {
 "oldState": null,
 "created": {
 "b2": {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "size": 11,
 "type": "application/octet-stream"
 },
 "b1": {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "size": 43,
 "type": "text/plain"
 }
 },
 "updated": null,
 "destroyed": null,
 "notCreated": null,
 "notUpdated": null,
 "notDestroyed": null,
 "accountId": "account1"
 },
 "S1"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "isEncodingProblem": true,
 "data:asBase64": "VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wZW
 Qgb3ZlciB0aGUggYEgZG9nLg==",
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "data:asText": "hello world",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G1"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "isEncodingProblem": true,
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "data:asText": "hello world",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G2"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "data:asBase64": "VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wZW
 Qgb3ZlciB0aGUggYEgZG9nLg==",
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "data:asBase64": "aGVsbG8gd29ybGQ=",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G3"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "data:asText": "The q",
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "data:asText": "hello",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G4"
],
 [
 "Blob/get",
 {
 "list": [
 {
 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",
 "isTruncated": true,
 "isEncodingProblem": true,
 "data:asBase64": "anVtcGVkIG92ZXIgdGhlIIGBIGRvZy4=",
 "size": 43
 },
 {
 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
 "isTruncated": true,
 "data:asText": "",
 "size": 11
 }
],
 "notFound": [],
 "accountId": "account1"
 },
 "G5"
]
]

 Blob/lookup
 Given a list of blobIds, this method does a reverse lookup in each of
the provided type names to find the list of Ids within that data type
that reference the provided blob.
 Since different datatypes will have different semantics of "contains",
the definition of "reference" is somewhat loose but roughly
means "you could discover this blobId by looking at this object or
at other objects recursively contained within this object".
 For example, with a server that supports , if a Mailbox references a blob and if any Emails
within that Mailbox reference the blobId, then the Mailbox references that
blobId. For any Thread that references an Email that references a blobId, it
can be said that the Thread references the blobId.
 However, this does not mean that if an Email references a Mailbox in its
mailboxIds property, then any blobId referenced by other Emails in
that Mailbox are also referenced by the initial Email.
 Parameters

 accountId: "Id"
 The id of the account used for the call.

 typeNames: "String[]"
 A list of names from the "JMAP Data Types" registry or defined by
private extensions that the client has requested. Only names
for which "Can reference blobs" is true may be specified, and the
capability that defines each type must also be used by the overall
JMAP request in which this method is called.
 If a type name is not known by the server, or the associated capability
has not been requested, then the server returns an "unknownDataType"
error.

 ids: "Id[]"
 A list of blobId values to be looked for.

 Response

 list: "BlobInfo[]"
 A list of BlobInfo objects.

 BlobInfo Object

 id: "Id"
 The blobId.

 matchedIds: "String[Id[]]"
 A map from type name to a list of Ids of that data type (e.g., the name
"Email" maps to a list of emailIds).

 If a blob is not visible to a user or does not exist on the server at all,
then the server MUST still return an empty array for each type
as this doesn't leak any information about whether the blob is on the server
but not visible to the requesting user.

 Blob/lookup Example
 Method Call:
 [
 "Blob/lookup",
 {
 "typeNames": [
 "Mailbox",
 "Thread",
 "Email"
],
 "ids": [
 "Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",
 "not-a-blob"
]
 },
 "R1"
]
 Response:
 [
 "Blob/lookup",
 {
 "list": [
 {
 "id": "Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",
 "matchedIds": {
 "Mailbox": [
 "M54e97373",
 "Mcbe6b662"
],
 "Thread": [
 "T1530616e"
],
 "Email": [
 "E16e70a73eb4",
 "E84b0930cf16"
]
 }
 }
],
 "notFound": [
 "not-a-blob"
]
 },
 "R1"
]

 Security Considerations
 All security considerations for JMAP apply to this specification.
Additional considerations specific to the data types and functionality
introduced by this document are described here.
 JSON parsers are not all consistent in handling non-UTF-8 data.
JMAP requires that all JSON data be UTF-8 encoded, so servers
 MUST only return a null value if data:asText is
requested for a range of octets that is not valid UTF-8 and set
 isEncodingProblem: true.
 Servers MUST apply any access controls, such that if the authenticated user would
be unable to discover the blobId by making queries, then this fact cannot be
discovered via a Blob/lookup. For example, if an Email exists in a Mailbox that
the authenticated user does not have access to see, then that emailId MUST NOT be
returned in a lookup for a blob that is referenced by that email.
 The server MUST NOT trust that the data given to a
Blob/upload is a well-formed instance of the specified media type. Also, if
the server attempts to parse the given blob, only hardened parsers designed to
deal with arbitrary untrusted data should be used. The server SHOULD NOT reject data on the grounds that it is not a valid specimen of the
stated type.
 With carefully chosen data sources, Blob/upload can be used to recreate
dangerous content on the far side of security scanners (anti-virus or
exfiltration scanners, for example) that may be watching the upload endpoint.
Server implementations SHOULD provide a hook to allow security
scanners to check the resulting blob after concatenating the data sources in
the same way that they do for the upload endpoint.
 Digest algorithms can be expensive for servers to calculate. Servers that
share resources between multiple users should track resource usage by clients
and rate-limit expensive operations to avoid resource starvation.

 IANA Considerations

 JMAP Capability Registration for "blob"
 IANA has registered the "blob" JMAP capability as follows:

 Capability Name:
 urn:ietf:params:jmap:blob
 Specification document:
 RFC 9404
 Intended use:
 common
 Change Controller:
 IETF
 Security and privacy considerations:
 RFC 9404,

 JMAP Error Codes Registration for "unknownDataType"
 IANA has registered the "unknownDataType" JMAP error code as follows:

 JMAP Error Code:
 unknownDataType
 Intended use:
 common
 Change Controller:
 IETF
 Reference:
 RFC 9404
 Description:
 The server does not recognise this data type, or
 the capability to enable it is not present in the current Request
 Object.

 Creation of "JMAP Data Types" Registry
 IANA has created a new registry called "JMAP Data Types". shows the initial contents of this
new registry.

 Type Name
 Can Ref Blobs
 Can Use for State Change
 Capability
 Reference

 Core
 No
 No
 urn:ietf:params:jmap:core

 PushSubscription
 No
 No
 urn:ietf:params:jmap:core

 Mailbox
 Yes
 Yes
 urn:ietf:params:jmap:mail

 Thread
 Yes
 Yes
 urn:ietf:params:jmap:mail

 Email
 Yes
 Yes
 urn:ietf:params:jmap:mail

 EmailDelivery
 No
 Yes
 urn:ietf:params:jmap:mail

 SearchSnippet
 No
 No
 urn:ietf:params:jmap:mail

 Identity
 No
 Yes
 urn:ietf:params:jmap:​submission

 EmailSubmission
 No
 Yes
 urn:ietf:params:jmap:​submission

 VacationResponse
 No
 Yes
 urn:ietf:params:jmap:​vacationresponse

 MDN
 No
 No
 urn:ietf:params:jmap:mdn

 The registration policy for this registry is "Specification Required" . Either an RFC or a similarly stable reference document defines a JMAP Data Type
and associated capability.
 IANA will appoint designated experts to review requests for additions to this
registry, with guidance to allow any registration that provides a stable document describing
the capability and control over the URI namespace to which the capability URI points.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Instance Digests in HTTP

 HTTP/1.1 defines a Content-MD5 header that allows a server to include a digest of the response body. However, this is specifically defined to cover the body of the actual message, not the contents of the full file (which might be quite different, if the response is a Content-Range, or uses a delta encoding). Also, the Content-MD5 is limited to one specific digest algorithm; other algorithms, such as SHA-1 (Secure Hash Standard), may be more appropriate in some circumstances. Finally, HTTP/1.1 provides no explicit mechanism by which a client may request a digest. This document proposes HTTP extensions that solve these problems. [STANDARDS-TRACK]

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JSON Meta Application Protocol (JMAP)

 This document specifies a protocol for clients to efficiently query, fetch, and modify JSON-based data objects, with support for push notification of changes and fast resynchronisation and for out-of- band binary data upload/download.

 Informative References

 IMAP4 Non-synchronizing Literals

 The Internet Message Access Protocol (RFC 3501) contains the "literal" syntactic construct for communicating strings. When sending a literal from client to server, IMAP requires the client to wait for the server to send a command continuation request between sending the octet count and the string data. This document specifies an alternate form of literal that does not require this network round trip.
 This document specifies 2 IMAP extensions: LITERAL+ and LITERAL-. LITERAL+ allows the alternate form of literals in all IMAP commands. LITERAL- is the same as LITERAL+, but it disallows the alternate form of literals unless they are 4096 bytes or less.
 This document obsoletes RFC 2088.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 The JSON Meta Application Protocol (JMAP) for Mail

 This document specifies a data model for synchronising email data with a server using the JSON Meta Application Protocol (JMAP). Clients can use this to efficiently search, access, organise, and send messages, and to get push notifications for fast resynchronisation when new messages are delivered or a change is made in another client.

 Handling Message Disposition Notification with the JSON Meta Application Protocol (JMAP)

 This document specifies a data model for handling Message Disposition Notifications (MDNs) (see RFC 8098) in the JSON Meta Application Protocol (JMAP) (see RFCs 8620 and 8621).

 Acknowledgements
 , , , , , , and
the JMAP Working Group in the IETF.

 Author's Address

 Fastmail

 Level 2, 114 William St
 Melbourne
 VIC
 3000
 Australia

 brong@fastmailteam.com
 https://www.fastmail.com

