
RFC 8999
Version-Independent Properties of QUIC

Abstract
This document defines the properties of the QUIC transport protocol that are common to all
versions of the protocol.

Stream: Internet Engineering Task Force (IETF)
RFC: 8999
Category: Standards Track
Published: May 2021
ISSN: 2070-1721
Author: M. Thomson

Mozilla

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8999

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Thomson Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8999
https://www.rfc-editor.org/info/rfc8999
https://trustee.ietf.org/license-info

Table of Contents
1. An Extremely Abstract Description of QUIC

2. Fixed Properties of All QUIC Versions

3. Conventions and Definitions

4. Notational Conventions

5. QUIC Packets

5.1. Long Header

5.2. Short Header

5.3. Connection ID

5.4. Version

6. Version Negotiation

7. Security and Privacy Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Incorrect Assumptions

Author's Address

1. An Extremely Abstract Description of QUIC
QUIC is a connection-oriented protocol between two endpoints. Those endpoints exchange UDP
datagrams. These UDP datagrams contain QUIC packets. QUIC endpoints use QUIC packets to
establish a QUIC connection, which is shared protocol state between those endpoints.

2. Fixed Properties of All QUIC Versions
In addition to providing secure, multiplexed transport, QUIC allows for the
option to negotiate a version. This allows the protocol to change over time in response to new
requirements. Many characteristics of the protocol could change between versions.

This document describes the subset of QUIC that is intended to remain stable as new versions are
developed and deployed. All of these invariants are independent of the IP version.

[QUIC-TRANSPORT]

RFC 8999 QUIC Invariants May 2021

Thomson Standards Track Page 2

The primary goal of this document is to ensure that it is possible to deploy new versions of QUIC.
By documenting the properties that cannot change, this document aims to preserve the ability
for QUIC endpoints to negotiate changes to any other aspect of the protocol. As a consequence,
this also guarantees a minimal amount of information that is made available to entities other
than endpoints. Unless specifically prohibited in this document, any aspect of the protocol can
change between different versions.

Appendix A contains a non-exhaustive list of some incorrect assumptions that might be made
based on knowledge of QUIC version 1; these do not apply to every version of QUIC.

3. Conventions and Definitions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

This document defines requirements on future QUIC versions, even where normative language is
not used.

This document uses terms and notational conventions from .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[QUIC-TRANSPORT]

x (A):

x (A..B):

x (L) = C:

x (L) ...:

4. Notational Conventions
The format of packets is described using the notation defined in this section. This notation is the
same as that used in .

Complex fields are named and then followed by a list of fields surrounded by a pair of matching
braces. Each field in this list is separated by commas.

Individual fields include length information, plus indications about fixed value, optionality, or
repetitions. Individual fields use the following notational conventions, with all lengths in bits:

Indicates that x is A bits long

Indicates that x can be any length from A to B; A can be omitted to indicate a minimum
of zero bits, and B can be omitted to indicate no set upper limit; values in this format always
end on a byte boundary

Indicates that x has a fixed value of C; the length of x is described by L, which can use
any of the length forms above

Indicates that x is repeated zero or more times and that each instance has a length of L

This document uses network byte order (that is, big endian) values. Fields are placed starting
from the high-order bits of each byte.

[QUIC-TRANSPORT]

RFC 8999 QUIC Invariants May 2021

Thomson Standards Track Page 3

Figure 1 shows an example structure:

Figure 1: Example Format

Example Structure {
 One-bit Field (1),
 7-bit Field with Fixed Value (7) = 61,
 Arbitrary-Length Field (..),
 Variable-Length Field (8..24),
 Repeated Field (8) ...,
}

5. QUIC Packets
QUIC endpoints exchange UDP datagrams that contain one or more QUIC packets. This section
describes the invariant characteristics of a QUIC packet. A version of QUIC could permit multiple
QUIC packets in a single UDP datagram, but the invariant properties only describe the first
packet in a datagram.

QUIC defines two types of packet headers: long and short. Packets with a long header are
identified by the most significant bit of the first byte being set; packets with a short header have
that bit cleared.

QUIC packets might be integrity protected, including the header. However, QUIC Version
Negotiation packets are not integrity protected; see Section 6.

Aside from the values described here, the payload of QUIC packets is version specific and of
arbitrary length.

5.1. Long Header
Long headers take the form described in Figure 2.

A QUIC packet with a long header has the high bit of the first byte set to 1. All other bits in that
byte are version specific.

Figure 2: QUIC Long Header

Long Header Packet {
 Header Form (1) = 1,
 Version-Specific Bits (7),
 Version (32),
 Destination Connection ID Length (8),
 Destination Connection ID (0..2040),
 Source Connection ID Length (8),
 Source Connection ID (0..2040),
 Version-Specific Data (..),
}

RFC 8999 QUIC Invariants May 2021

Thomson Standards Track Page 4

The next four bytes include a 32-bit Version field. Versions are described in Section 5.4.

The next byte contains the length in bytes of the Destination Connection ID field that follows it.
This length is encoded as an 8-bit unsigned integer. The Destination Connection ID field follows
the Destination Connection ID Length field and is between 0 and 255 bytes in length. Connection
IDs are described in Section 5.3.

The next byte contains the length in bytes of the Source Connection ID field that follows it. This
length is encoded as an 8-bit unsigned integer. The Source Connection ID field follows the Source
Connection ID Length field and is between 0 and 255 bytes in length.

The remainder of the packet contains version-specific content.

5.2. Short Header
Short headers take the form described in Figure 3.

A QUIC packet with a short header has the high bit of the first byte set to 0.

A QUIC packet with a short header includes a Destination Connection ID immediately following
the first byte. The short header does not include the Destination Connection ID Length, Source
Connection ID Length, Source Connection ID, or Version fields. The length of the Destination
Connection ID is not encoded in packets with a short header and is not constrained by this
specification.

The remainder of the packet has version-specific semantics.

Figure 3: QUIC Short Header

Short Header Packet {
 Header Form (1) = 0,
 Version-Specific Bits (7),
 Destination Connection ID (..),
 Version-Specific Data (..),
}

5.3. Connection ID
A connection ID is an opaque field of arbitrary length.

The primary function of a connection ID is to ensure that changes in addressing at lower
protocol layers (UDP, IP, and below) do not cause packets for a QUIC connection to be delivered to
the wrong QUIC endpoint. The connection ID is used by endpoints and the intermediaries that
support them to ensure that each QUIC packet can be delivered to the correct instance of an
endpoint. At the endpoint, the connection ID is used to identify the QUIC connection for which
the packet is intended.

The connection ID is chosen by each endpoint using version-specific methods. Packets for the
same QUIC connection might use different connection ID values.

RFC 8999 QUIC Invariants May 2021

Thomson Standards Track Page 5

5.4. Version
The Version field contains a 4-byte identifier. This value can be used by endpoints to identify a
QUIC version. A Version field with a value of 0x00000000 is reserved for version negotiation; see
Section 6. All other values are potentially valid.

The properties described in this document apply to all versions of QUIC. A protocol that does not
conform to the properties described in this document is not QUIC. Future documents might
describe additional properties that apply to a specific QUIC version or to a range of QUIC
versions.

6. Version Negotiation
A QUIC endpoint that receives a packet with a long header and a version it either does not
understand or does not support might send a Version Negotiation packet in response. Packets
with a short header do not trigger version negotiation.

A Version Negotiation packet sets the high bit of the first byte, and thus it conforms with the
format of a packet with a long header as defined in Section 5.1. A Version Negotiation packet is
identifiable as such by the Version field, which is set to 0x00000000.

Only the most significant bit of the first byte of a Version Negotiation packet has any defined
value. The remaining 7 bits, labeled "Unused", can be set to any value when sending and be
ignored on receipt.

After the Source Connection ID field, the Version Negotiation packet contains a list of Supported
Version fields, each identifying a version that the endpoint sending the packet supports. A
Version Negotiation packet contains no other fields. An endpoint ignore a packet that
contains no Supported Version fields or contains a truncated Supported Version value.

Version Negotiation packets do not use integrity or confidentiality protection. Specific QUIC
versions might include protocol elements that allow endpoints to detect modification or
corruption in the set of supported versions.

Figure 4: Version Negotiation Packet

Version Negotiation Packet {
 Header Form (1) = 1,
 Unused (7),
 Version (32) = 0,
 Destination Connection ID Length (8),
 Destination Connection ID (0..2040),
 Source Connection ID Length (8),
 Source Connection ID (0..2040),
 Supported Version (32) ...,
}

MUST

MUST

RFC 8999 QUIC Invariants May 2021

Thomson Standards Track Page 6

[RFC2119]

[RFC8174]

[QUIC-TLS]

8. References

8.1. Normative References

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

8.2. Informative References

 and , , ,
, May 2021, .

An endpoint include the value from the Source Connection ID field of the packet it receives
in the Destination Connection ID field. The value for the Source Connection ID field be
copied from the Destination Connection ID field of the received packet, which is initially
randomly selected by a client. Echoing both connection IDs gives clients some assurance that the
server received the packet and that the Version Negotiation packet was not generated by an
attacker that is unable to observe packets.

An endpoint that receives a Version Negotiation packet might change the version that it decides
to use for subsequent packets. The conditions under which an endpoint changes its QUIC version
will depend on the version of QUIC that it chooses.

See for a more thorough description of how an endpoint that supports QUIC
version 1 generates and consumes a Version Negotiation packet.

MUST
MUST

[QUIC-TRANSPORT]

7. Security and Privacy Considerations
It is possible that middleboxes could observe traits of a specific version of QUIC and assume that
when other versions of QUIC exhibit similar traits the same underlying semantic is being
expressed. There are potentially many such traits; see Appendix A. Some effort has been made to
either eliminate or obscure some observable traits in QUIC version 1, but many of these remain.
Other QUIC versions might make different design decisions and so exhibit different traits.

The QUIC version number does not appear in all QUIC packets, which means that reliably
extracting information from a flow based on version-specific traits requires that middleboxes
retain state for every connection ID they see.

The Version Negotiation packet described in this document is not integrity protected; it only has
modest protection against insertion by attackers. An endpoint authenticate the semantic
content of a Version Negotiation packet if it attempts a different QUIC version as a result.

MUST

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Thomson, M., Ed. S. Turner, Ed. "Using TLS to Secure QUIC" RFC 9001 DOI
10.17487/RFC9001 <https://www.rfc-editor.org/info/rfc9001>

RFC 8999 QUIC Invariants May 2021

Thomson Standards Track Page 7

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9001

[QUIC-TRANSPORT]

[RFC5116]

 and ,
, , , May 2021,

.

, ,
, , January 2008,

.

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

McGrew, D. "An Interface and Algorithms for Authenticated Encryption" RFC
5116 DOI 10.17487/RFC5116 <https://www.rfc-editor.org/info/
rfc5116>

Appendix A. Incorrect Assumptions
There are several traits of QUIC version 1 that are not protected from
observation but are nonetheless considered to be changeable when a new version is deployed.

This section lists a sampling of incorrect assumptions that might be made about QUIC based on
knowledge of QUIC version 1. Some of these statements are not even true for QUIC version 1. This
is not an exhaustive list; it is intended to be illustrative only.

Any and all of the following statements can be false for a given QUIC version:

QUIC uses TLS , and some TLS messages are visible on the wire.
QUIC long headers are only exchanged during connection establishment.
Every flow on a given 5-tuple will include a connection establishment phase.
The first packets exchanged on a flow use the long header.
The last packet before a long period of quiescence might be assumed to contain only an
acknowledgment.
QUIC uses an Authenticated Encryption with Associated Data (AEAD) function
(AEAD_AES_128_GCM; see) to protect the packets it exchanges during connection
establishment.
QUIC packet numbers are encrypted and appear as the first encrypted bytes.
QUIC packet numbers increase by one for every packet sent.
QUIC has a minimum size for the first handshake packet sent by a client.
QUIC stipulates that a client speak first.
QUIC packets always have the second bit of the first byte (0x40) set.
A QUIC Version Negotiation packet is only sent by a server.
A QUIC connection ID changes infrequently.
QUIC endpoints change the version they speak if they are sent a Version Negotiation packet.
The Version field in a QUIC long header is the same in both directions.
A QUIC packet with a particular value in the Version field means that the corresponding
version of QUIC is in use.
Only one connection at a time is established between any pair of QUIC endpoints.

[QUIC-TRANSPORT]

• [QUIC-TLS]
•
•
•
•

•
[RFC5116]

•
•
•
•
•
•
•
•
•
•

•

RFC 8999 QUIC Invariants May 2021

Thomson Standards Track Page 8

https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116

Author's Address
Martin Thomson
Mozilla

 mt@lowentropy.net Email:

RFC 8999 QUIC Invariants May 2021

Thomson Standards Track Page 9

mailto:mt@lowentropy.net

	RFC 8999
	Version-Independent Properties of QUIC
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. An Extremely Abstract Description of QUIC
	2. Fixed Properties of All QUIC Versions
	3. Conventions and Definitions
	4. Notational Conventions
	5. QUIC Packets
	5.1. Long Header
	5.2. Short Header
	5.3. Connection ID
	5.4. Version

	6. Version Negotiation
	7. Security and Privacy Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Incorrect Assumptions
	Author's Address

 Version-Independent Properties of QUIC

 Mozilla

 mt@lowentropy.net

 Transport
 QUIC
 crypto
 next generation
 protocol
 secure
 transport
 UDP
 invariants

 This document defines the properties of the QUIC transport protocol that are
common to all versions of the protocol.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . An Extremely Abstract Description of QUIC

 . Fixed Properties of All QUIC Versions

 . Conventions and Definitions

 . Notational Conventions

 . QUIC Packets

 . Long Header

 . Short Header

 . Connection ID

 . Version

 . Version Negotiation

 . Security and Privacy Considerations

 . References

 . Normative References

 . Informative References

 . Incorrect Assumptions

 Author's Address

 An Extremely Abstract Description of QUIC
 QUIC is a connection-oriented protocol between two endpoints. Those endpoints
exchange UDP datagrams. These UDP datagrams contain QUIC packets. QUIC
endpoints use QUIC packets to establish a QUIC connection, which is shared
protocol state between those endpoints.

 Fixed Properties of All QUIC Versions
 In addition to providing secure, multiplexed transport, QUIC
allows for the option to negotiate a version. This allows the protocol to
change over time in response to new requirements. Many characteristics of the
protocol could change between versions.
 This document describes the subset of QUIC that is intended to remain stable as
new versions are developed and deployed. All of these invariants are
independent of the IP version.
 The primary goal of this document is to ensure that it is possible to deploy new
versions of QUIC. By documenting the properties that cannot change, this
document aims to preserve the ability for QUIC endpoints to negotiate changes to
any other aspect of the protocol. As a consequence, this also guarantees a
minimal amount of information that is made available to entities other than
endpoints. Unless specifically prohibited in this document, any aspect of the
protocol can change between different versions.
 contains a non-exhaustive list of some incorrect assumptions
that might be made based on knowledge of QUIC version 1; these do not apply to
every version of QUIC.

 Conventions and Definitions
 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD",
" SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED", " MAY", and " OPTIONAL" in this
document are to be interpreted as described in BCP 14
when, and only when, they appear in all capitals, as shown here.
 This document defines requirements on future QUIC versions, even where normative
language is not used.
 This document uses terms and notational conventions from .

 Notational Conventions
 The format of packets is described using the notation defined in this section.
This notation is the same as that used in .
 Complex fields are named and then followed by a list of fields surrounded by a
pair of matching braces. Each field in this list is separated by commas.
 Individual fields include length information, plus indications about fixed
value, optionality, or repetitions. Individual fields use the following
notational conventions, with all lengths in bits:

 x (A):

 Indicates that x is A bits long

 x (A..B):

 Indicates that x can be any length from A to B; A can be omitted to indicate
a minimum of zero bits, and B can be omitted to indicate no set upper limit;
values in this format always end on a byte boundary

 x (L) = C:

 Indicates that x has a fixed value of C; the length of x is described by
L, which can use any of the length forms above

 x (L) ...:

 Indicates that x is repeated zero or more times and that each instance has a
length of L

 This document uses network byte order (that is, big endian) values. Fields
are placed starting from the high-order bits of each byte.
 shows an example structure:

 Example Format

Example Structure {
 One-bit Field (1),
 7-bit Field with Fixed Value (7) = 61,
 Arbitrary-Length Field (..),
 Variable-Length Field (8..24),
 Repeated Field (8) ...,
}

 QUIC Packets
 QUIC endpoints exchange UDP datagrams that contain one or more QUIC packets.
This section describes the invariant characteristics of a QUIC packet. A
version of QUIC could permit multiple QUIC packets in a single UDP datagram, but
the invariant properties only describe the first packet in a datagram.
 QUIC defines two types of packet headers: long and short. Packets with a long
header are identified by the most significant bit of the first byte being set;
packets with a short header have that bit cleared.
 QUIC packets might be integrity protected, including the header. However, QUIC
Version Negotiation packets are not integrity protected; see .
 Aside from the values described here, the payload of QUIC packets is
version specific and of arbitrary length.

 Long Header
 Long headers take the form described in .

 QUIC Long Header

Long Header Packet {
 Header Form (1) = 1,
 Version-Specific Bits (7),
 Version (32),
 Destination Connection ID Length (8),
 Destination Connection ID (0..2040),
 Source Connection ID Length (8),
 Source Connection ID (0..2040),
 Version-Specific Data (..),
}

 A QUIC packet with a long header has the high bit of the first byte set to 1.
All other bits in that byte are version specific.
 The next four bytes include a 32-bit Version field. Versions are described in
 .
 The next byte contains the length in bytes of the Destination Connection ID
field that follows it. This length is encoded as an 8-bit unsigned integer.
The Destination Connection ID field follows the Destination Connection ID Length
field and is between 0 and 255 bytes in length. Connection IDs are described in
 .
 The next byte contains the length in bytes of the Source Connection ID field
that follows it. This length is encoded as an 8-bit unsigned integer. The
Source Connection ID field follows the Source Connection ID Length field and is
between 0 and 255 bytes in length.
 The remainder of the packet contains version-specific content.

 Short Header
 Short headers take the form described in .

 QUIC Short Header

Short Header Packet {
 Header Form (1) = 0,
 Version-Specific Bits (7),
 Destination Connection ID (..),
 Version-Specific Data (..),
}

 A QUIC packet with a short header has the high bit of the first byte set to 0.
 A QUIC packet with a short header includes a Destination Connection ID
immediately following the first byte. The short header does not include the
Destination Connection ID Length, Source Connection ID Length, Source Connection
ID, or Version fields. The length of the Destination Connection ID is not
encoded in packets with a short header and is not constrained by this
specification.
 The remainder of the packet has version-specific semantics.

 Connection ID
 A connection ID is an opaque field of arbitrary length.
 The primary function of a connection ID is to ensure that changes in addressing
at lower protocol layers (UDP, IP, and below) do not cause packets for a QUIC
connection to be delivered to the wrong QUIC endpoint. The connection ID
is used by endpoints and the intermediaries that support them to ensure that
each QUIC packet can be delivered to the correct instance of an endpoint. At
the endpoint, the connection ID is used to identify the QUIC connection for
which the packet is intended.
 The connection ID is chosen by each endpoint using version-specific methods.
Packets for the same QUIC connection might use different connection ID values.

 Version
 The Version field contains a 4-byte identifier. This value can be used by
endpoints to identify a QUIC version. A Version field with a value of
0x00000000 is reserved for version negotiation; see . All other values
are potentially valid.
 The properties described in this document apply to all versions of QUIC. A
protocol that does not conform to the properties described in this document is
not QUIC. Future documents might describe additional properties that apply to
a specific QUIC version or to a range of QUIC versions.

 Version Negotiation
 A QUIC endpoint that receives a packet with a long header and a version it
either does not understand or does not support might send a Version Negotiation
packet in response. Packets with a short header do not trigger version
negotiation.
 A Version Negotiation packet sets the high bit of the first byte, and thus it
conforms with the format of a packet with a long header as defined in
 . A Version Negotiation packet is identifiable as such by the
Version field, which is set to 0x00000000.

 Version Negotiation Packet

Version Negotiation Packet {
 Header Form (1) = 1,
 Unused (7),
 Version (32) = 0,
 Destination Connection ID Length (8),
 Destination Connection ID (0..2040),
 Source Connection ID Length (8),
 Source Connection ID (0..2040),
 Supported Version (32) ...,
}

 Only the most significant bit of the first byte of a Version Negotiation packet
has any defined value. The remaining 7 bits, labeled "Unused", can be set to
any value when sending and MUST be ignored on receipt.
 After the Source Connection ID field, the Version Negotiation packet contains a
list of Supported Version fields, each identifying a version that the endpoint
sending the packet supports. A Version Negotiation packet contains no other
fields. An endpoint MUST ignore a packet that contains no Supported Version
fields or contains a truncated Supported Version value.
 Version Negotiation packets do not use integrity or confidentiality protection.
Specific QUIC versions might include protocol elements that allow endpoints to
detect modification or corruption in the set of supported versions.
 An endpoint MUST include the value from the Source Connection ID field of the
packet it receives in the Destination Connection ID field. The value for the
Source Connection ID field MUST be copied from the Destination Connection ID
field of the received packet, which is initially randomly selected by a client.
Echoing both connection IDs gives clients some assurance that the server
received the packet and that the Version Negotiation packet was not generated by
an attacker that is unable to observe packets.
 An endpoint that receives a Version Negotiation packet might change the version
that it decides to use for subsequent packets. The conditions under which an
endpoint changes its QUIC version will depend on the version of QUIC that it
chooses.
 See for a more thorough description of how an endpoint that
supports QUIC version 1 generates and consumes a Version Negotiation packet.

 Security and Privacy Considerations
 It is possible that middleboxes could observe traits of a specific version of
QUIC and assume that when other versions of QUIC exhibit similar traits the same
underlying semantic is being expressed. There are potentially many such traits;
see . Some effort has been made to either eliminate or
obscure some observable traits in QUIC version 1, but many of these remain.
Other QUIC versions might make different design decisions and so exhibit
different traits.
 The QUIC version number does not appear in all QUIC packets, which means that
reliably extracting information from a flow based on version-specific traits
requires that middleboxes retain state for every connection ID they see.
 The Version Negotiation packet described in this document is not
integrity protected; it only has modest protection against insertion by
attackers. An endpoint MUST authenticate the semantic content of a Version
Negotiation packet if it attempts a different QUIC version as a result.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Informative References

 Using TLS to Secure QUIC

 Mozilla

 sn3rd

 QUIC: A UDP-Based Multiplexed and Secure Transport

 Google

 Mozilla

 An Interface and Algorithms for Authenticated Encryption

 This document defines algorithms for Authenticated Encryption with Associated Data (AEAD), and defines a uniform interface and a registry for such algorithms. The interface and registry can be used as an application-independent set of cryptoalgorithm suites. This approach provides advantages in efficiency and security, and promotes the reuse of crypto implementations. [STANDARDS-TRACK]

 Incorrect Assumptions
 There are several traits of QUIC version 1 that are not
protected from observation but are nonetheless considered to be changeable when
a new version is deployed.
 This section lists a sampling of incorrect assumptions that might be made about
QUIC based on knowledge of QUIC version 1. Some of these statements are not
even true for QUIC version 1. This is not an exhaustive list; it is intended to
be illustrative only.

 Any and all of the following statements can be false for a given QUIC
version:

 QUIC uses TLS , and some TLS messages are visible on the wire.
 QUIC long headers are only exchanged during connection establishment.
 Every flow on a given 5-tuple will include a connection establishment phase.
 The first packets exchanged on a flow use the long header.
 The last packet before a long period of quiescence might be assumed
to contain only an acknowledgment.
 QUIC uses an Authenticated Encryption with Associated Data (AEAD) function
(AEAD_AES_128_GCM; see) to protect the packets it exchanges
during connection establishment.
 QUIC packet numbers are encrypted and appear as the first encrypted bytes.
 QUIC packet numbers increase by one for every packet sent.
 QUIC has a minimum size for the first handshake packet sent by a client.
 QUIC stipulates that a client speak first.
 QUIC packets always have the second bit of the first byte (0x40) set.
 A QUIC Version Negotiation packet is only sent by a server.
 A QUIC connection ID changes infrequently.
 QUIC endpoints change the version they speak if they are sent a Version
Negotiation packet.
 The Version field in a QUIC long header is the same in both directions.
 A QUIC packet with a particular value in the Version field means that the
corresponding version of QUIC is in use.
 Only one connection at a time is established between any pair of QUIC
endpoints.

 Author's Address

 Mozilla

 mt@lowentropy.net

