
RFC 8927
JSON Type Definition

Abstract
This document proposes a format, called JSON Type Definition (JTD), for describing the shape of
JavaScript Object Notation (JSON) messages. Its main goals are to enable code generation from
schemas as well as portable validation with standardized error indicators. To this end, JTD is
intentionally limited to be no more expressive than the type systems of mainstream
programming languages. This intentional limitation, as well as the decision to make JTD schemas
be JSON documents, makes tooling atop of JTD easier to build.

This document does not have IETF consensus and is presented here to facilitate experimentation
with the concept of JTD.

Stream: Independent Submission
RFC: 8927
Category: Experimental
Published: November 2020
ISSN: 2070-1721
Author: U. Carion

Segment

Status of This Memo
This document is not an Internet Standards Track specification; it is published for examination,
experimental implementation, and evaluation.

This document defines an Experimental Protocol for the Internet community. This is a
contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has
chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8927

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Carion Experimental Page 1

https://www.rfc-editor.org/rfc/rfc8927
https://www.rfc-editor.org/info/rfc8927

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Terminology

1.2. Scope of Experiment

2. Syntax

2.1. Root vs. Non-root Schemas

2.2. Forms

2.2.1. Empty

2.2.2. Ref

2.2.3. Type

2.2.4. Enum

2.2.5. Elements

2.2.6. Properties

2.2.7. Values

2.2.8. Discriminator

2.3. Extending JTD's Syntax

3. Semantics

3.1. Allowing Additional Properties

3.2. Errors

3.3. Forms

3.3.1. Empty

3.3.2. Ref

3.3.3. Type

3.3.4. Enum

3.3.5. Elements

3.3.6. Properties

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 2

https://trustee.ietf.org/license-info

3.3.7. Values

3.3.8. Discriminator

4. IANA Considerations

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Rationale for Omitted Features

A.1. Support for 64-Bit Numbers

A.2. Support for Non-root Definitions

Appendix B. Comparison with CDDL

Appendix C. Example

Acknowledgments

Author's Address

1. Introduction
This document describes a schema language for JSON called JSON Type Definition
(JTD).

There exist many options for describing JSON data. JTD's niche is to focus on enabling code
generation from schemas; to this end, JTD's expressiveness is intentionally limited to be no more
powerful than what can be expressed in the type systems of mainstream programming
languages.

The goals of JTD are to:

Provide an unambiguous description of the overall structure of a JSON document.
Be able to describe common JSON data types and structures (that is, the data types and
structures necessary to support most JSON documents and that are widely understood in an
interoperable way by JSON implementations).
Provide a single format that is readable and editable by both humans and machines and that
can be embedded within other JSON documents. This makes JTD a convenient format for
tooling to accept as input or produce as output.
Enable code generation from JTD schemas. JTD schemas are meant to be easy to convert into
data structures idiomatic to mainstream programming languages.

[RFC8259]

•
•

•

•

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 3

Provide a standardized format for error indicators when data does not conform with a
schema.

JTD is intentionally designed as a rather minimal schema language. Thus, although JTD can
describe some categories of JSON, it is not able to describe its own structure; this document uses
Concise Data Definition Language (CDDL) to describe JTD's syntax. By keeping the
expressiveness of the schema language minimal, JTD makes code generation and standardized
error indicators easier to implement.

Examples in this document use constructs from the C++ programming language. These examples
are provided to aid the reader in understanding the principles of JTD but are not limiting in any
way.

JTD's feature set is designed to represent common patterns in JSON-using applications, while still
having a clear correspondence to programming languages in widespread use. Thus, JTD
supports:

Signed and unsigned 8-, 16-, and 32-bit integers. A tool that converts JTD schemas into code
can use "int8_t", "uint8_t", "int16_t", etc., or their equivalents in the target language, to
represent these JTD types.
A distinction between "float32" and "float64". Code generators can use "float" and "double",
or their equivalents, for these JTD types.
A "properties" form of JSON objects, corresponding to some sort of struct or record. The
"properties" form of JSON objects is akin to a C++ "struct".
A "values" form of JSON objects, corresponding to some sort of dictionary or associative
array. The "values" form of JSON objects is akin to a C++ "std::map".
A "discriminator" form of JSON objects, corresponding to a discriminated (or "tagged") union.
The "discriminator" form of JSON objects is akin to a C++ "std::variant".

The principle of common patterns in JSON is why JTD does not support 64-bit integers, as these
are usually transmitted over JSON in non-interoperable (i.e., ignoring the recommendations in

) or mutually inconsistent ways. Appendix A.1 further elaborates on why
JTD does not support 64-bit integers.

The principle of clear correspondence to common programming languages is why JTD does not
support, for example, a data type for integers up to 2**53-1.

It is expected that for many use cases, a schema language of JTD's expressiveness is sufficient.
Where a more expressive language is required, alternatives exist in CDDL and others.

This document does not have IETF consensus and is presented here to facilitate experimentation
with the concept of JTD. The purpose of the experiment is to gain experience with JTD and to
possibly revise this work accordingly. If JTD is determined to be a valuable and popular
approach, it may be taken to the IETF for further discussion and revision.

•

[RFC8610]

•

•

•

•

•

Section 2.2 of [RFC7493]

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 4

https://www.rfc-editor.org/rfc/rfc7493#section-2.2

This document has the following structure. Section 2 defines the syntax of JTD. Section 3
describes the semantics of JTD; this includes determining whether some data satisfies a schema
and what error indicators should be produced when the data is unsatisfactory. Appendix A
discusses why certain features are omitted from JTD. Appendix B presents various JTD schemas
and their CDDL equivalents.

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

The term "JSON Pointer", when it appears in this document, is to be understood as it is defined in
.

The terms "object", "member", "array", "number", "name", and "string" in this document are to be
interpreted as described in .

The term "instance", when it appears in this document, refers to a JSON value being validated
against a JTD schema. This value can be an entire JSON document, or it can be a value embedded
within a JSON document.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC6901]

[RFC8259]

1.2. Scope of Experiment
JTD is an experiment. Participation in this experiment consists of using JTD to validate or
document interchanged JSON messages or building tooling atop of JTD. Feedback on the results
of this experiment may be emailed to the author. Participants in this experiment are anticipated
to mostly be nodes that provide or consume JSON-based APIs.

Nodes know if they are participating in the experiment if they are validating JSON messages
against a JTD schema or if they are relying on another node to do so. Nodes are also participating
in the experiment if they are running code generated from a JTD schema.

The risk of this experiment "escaping" takes the form of a JTD-supporting node expecting another
node, which lacks such support, to validate messages against some JTD schema. In such a case,
the outcome will likely be that the nodes fail to interchange information correctly.

This experiment will be deemed successful when JTD has been implemented by multiple
independent parties and these parties successfully use JTD to facilitate information interchange
within their internal systems or between systems operated by independent parties.

If this experiment is deemed successful, and JTD is determined to be a valuable and popular
approach, it may be taken to the IETF for further discussion and revision. One possible outcome
of this discussion and revision could be that a working group produces a Standards Track
specification of JTD.

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 5

Some implementations of JTD, as well as code generators and other tooling related to JTD, are
available at .<https://github.com/jsontypedef>

2. Syntax
This section describes when a JSON document is a correct JTD schema. Because Concise Data
Definition Language (CDDL) is well suited to the task of defining complex JSON formats, such as
JTD schemas, this section uses CDDL to describe the format of JTD schemas.

JTD schemas may recursively contain other schemas. In this document, a "root schema" is one
that is not contained within another schema, i.e., it is "top level".

A JTD schema is a JSON object taking on an appropriate form. JTD schemas may contain
"additional data", discussed in Section 2.3. Root JTD schemas may optionally contain definitions
(a mapping from names to schemas).

A correct root JTD schema match the "root-schema" CDDL rule described in this section. A
correct non-root JTD schema match the "schema" CDDL rule described in this section.

MUST
MUST

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 6

https://github.com/jsontypedef

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 7

; root-schema is identical to schema, but additionally allows for
; definitions.
;
; definitions are prohibited from appearing on non-root schemas.
root-schema = {
 ? definitions: { * tstr => { schema}},
 schema,
}
; schema is the main CDDL rule defining a JTD schema.
;
; All JTD schemas are JSON objects taking on one of eight forms
; listed here.
schema = (
 ref //
 type //
 enum //
 elements //
 properties //
 values //
 discriminator //
 empty //
)
; shared is a CDDL rule containing properties that all eight schema
; forms share.
shared = (
 ? metadata: { * tstr => any },
 ? nullable: bool,
)
; empty describes the "empty" schema form.
empty = shared
; ref describes the "ref" schema form.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.2 describes these additional
; constraints in detail.
ref = (ref: tstr, shared)
; type describes the "type" schema form.
type = (
 type: "boolean"
 / "float32"
 / "float64"
 / "int8"
 / "uint8"
 / "int16"
 / "uint16"
 / "int32"
 / "uint32"
 / "string"
 / "timestamp",
 shared,
)
; enum describes the "enum" schema form.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.4 describes these additional
; constraints in detail.
enum = (enum: [+ tstr], shared)

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 8

The remainder of this section will describe constraints on JTD schemas that cannot be expressed
in CDDL. It will also provide examples of valid and invalid JTD schemas.

Figure 1: CDDL Definition of a Schema

; elements describes the "elements" schema form.
elements = (elements: { schema }, shared)
; properties describes the "properties" schema form.
;
; This CDDL rule is defined so that a schema of the "properties" form
; may omit a member named "properties" or a member named
; "optionalProperties", but not both.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.6 describes these additional
; constraints in detail.
properties = (with-properties // with-optional-properties)
with-properties = (
 properties: { * tstr => { schema }},
 ? optionalProperties: { * tstr => { schema }},
 ? additionalProperties: bool,
 shared,
)
with-optional-properties = (
 ? properties: { * tstr => { schema }},
 optionalProperties: { * tstr => { schema }},
 ? additionalProperties: bool,
 shared,
)
; values describes the "values" schema form.
values = (values: { schema }, shared)
; discriminator describes the "discriminator" schema form.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.8 describes these additional
; constraints in detail.
discriminator = (
 discriminator: tstr,
 ; Note well: this rule is defined in terms of the "properties"
 ; CDDL rule, not the "schema" CDDL rule.
 mapping: { * tstr => { properties } }
 shared,
)

2.1. Root vs. Non-root Schemas
The "root-schema" rule in Figure 1 permits a member named "definitions", but the "schema" rule
does not permit for such a member. This means that only root (i.e., "top-level") JTD schemas can
have a "definitions" object, and subschemas may not.

Thus,

 { "definitions": {} }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 9

is a correct JTD schema, but

is not, because subschemas (such as the object at "/definitions/foo") must not have a member
named "definitions".

 {
 "definitions": {
 "foo": {
 "definitions": {}
 }
 }
 }

2.2. Forms
JTD schemas (i.e., JSON objects satisfying the "schema" CDDL rule in Figure 1) must take on one of
eight forms. These forms are defined so as to be mutually exclusive; a schema cannot satisfy
multiple forms at once.

2.2.1. Empty

The "empty" form is defined by the "empty" CDDL rule in Figure 1. The semantics of the "empty"
form are described in Section 3.3.1.

Despite the name "empty", schemas of the "empty" form are not necessarily empty JSON objects.
Like schemas of any of the eight forms, schemas of the "empty" form may contain members
named "nullable" (whose value must be "true" or "false") or "metadata" (whose value must be an
object) or both.

Thus,

and

and

are correct JTD schemas of the "empty" form, but

 {}

 { "nullable": true }

 { "nullable": true, "metadata": { "foo": "bar" }}

 { "nullable": "foo" }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 10

is not, because the value of the member named "nullable" must be "true" or "false".

2.2.2. Ref

The "ref" form is defined by the "ref" CDDL rule in Figure 1. The semantics of the "ref" form are
described in Section 3.3.2.

For a schema of the "ref" form to be correct, the value of the member named "ref" must refer to
one of the definitions found at the root level of the schema it appears in. More formally, for a
schema S of the "ref" form:

Let B be the root schema containing the schema or the schema itself if it is a root schema.
Let R be the value of the member of S with the name "ref".

If the schema is correct, then B have a member D with the name "definitions", and D
contain a member whose name equals R.

Thus,

is a correct JTD schema and demonstrates the point of the "ref" form: to avoid redefining the
same thing twice. However,

is not a correct JTD schema, as there are no top-level "definitions", and so the "ref" form cannot
be correct. Similarly,

is not a correct JTD schema, as there is no member named "bar" in the top-level "definitions".

•
•

MUST MUST

 {
 "definitions": {
 "coordinates": {
 "properties": {
 "lat": { "type": "float32" },
 "lng": { "type": "float32" }
 }
 }
 },
 "properties": {
 "user_location": { "ref": "coordinates" },
 "server_location": { "ref": "coordinates" }
 }
 }

 { "ref": "foo" }

 { "definitions": { "foo": {}}, "ref": "bar" }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 11

2.2.3. Type

The "type" form is defined by the "type" CDDL rule in Figure 1. The semantics of the "type" form
are described in Section 3.3.3.

As an example of a correct JTD schema of the "type" form,

is a correct JTD schema, whereas

and

are not correct schemas, as neither "true" nor the JSON string "foo" are in the list of permitted
values of the "type" member described in the "type" CDDL rule in Figure 1.

 { "type": "uint8" }

 { "type": true }

 { "type": "foo" }

2.2.4. Enum

The "enum" form is defined by the "enum" CDDL rule in Figure 1. The semantics of the "enum"
form are described in Section 3.3.4.

For a schema of the "enum" form to be correct, the value of the member named "enum" must be
a nonempty array of strings, and that array must not contain duplicate values. More formally, for
a schema S of the "enum" form:

Let E be the value of the member of S with name "enum".

If the schema is correct, then there exist any pair of elements of E that encode equal
string values, where string equality is defined as in .

Thus,

is not a correct JTD schema, as the value of the member named "enum" must be nonempty, and

•

MUST NOT
Section 8.3 of [RFC8259]

 { "enum": [] }

 { "enum": ["a\\b", "a\u005Cb"] }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 12

https://www.rfc-editor.org/rfc/rfc8259#section-8.3

is not a correct JTD schema, as

and

encode strings that are equal by the definition of string equality given in .
By contrast,

is an example of a correct JTD schema of the "enum" form.

 "a\\b"

 "a\u005Cb"

Section 8.3 of [RFC8259]

 { "enum": ["PENDING", "IN_PROGRESS", "DONE"]}

2.2.5. Elements

The "elements" form is defined by the "elements" CDDL rule in Figure 1. The semantics of the
"elements" form are described in Section 3.3.5.

As an example of a correct JTD schema of the "elements" form,

is a correct JTD schema, whereas

and

are not correct schemas, as neither

nor

 { "elements": { "type": "uint8" }}

 { "elements": true }

 { "elements": { "type": "foo" } }

 true

 { "type": "foo" }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 13

https://www.rfc-editor.org/rfc/rfc8259#section-8.3

are correct JTD schemas, and the value of the member named "elements" must be a correct JTD
schema.

2.2.6. Properties

The "properties" form is defined by the "properties" CDDL rule in Figure 1. The semantics of the
"properties" form are described in Section 3.3.6.

For a schema of the "properties" form to be correct, properties must either be required (i.e., in
"properties") or optional (i.e., in "optionalProperties"), but not both.

More formally, if a schema has both a member named "properties" (with value P) and another
member named "optionalProperties" (with value O), then O and P have any member
names in common; that is, no member of P may have a name equal to the name of any member
of O, under the definition of string equality given in .

Thus,

is not a correct JTD schema, as "confusing" appears in both "properties" and "optionalProperties".
By contrast,

is a correct JTD schema of the "properties" form, describing a paginated list of users and
demonstrating the recursive nature of the syntax of JTD schemas.

MUST NOT

Section 8.3 of [RFC8259]

 {
 "properties": { "confusing": {} },
 "optionalProperties": { "confusing": {} }
 }

 {
 "properties": {
 "users": {
 "elements": {
 "properties": {
 "id": { "type": "string" },
 "name": { "type": "string" },
 "create_time": { "type": "timestamp" }
 },
 "optionalProperties": {
 "delete_time": { "type": "timestamp" }
 }
 }
 },
 "next_page_token": { "type": "string" }
 }
 }

2.2.7. Values

The "values" form is defined by the "values" CDDL rule in Figure 1. The semantics of the "values"
form are described in Section 3.3.7.

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 14

https://www.rfc-editor.org/rfc/rfc8259#section-8.3

As an example of a correct JTD schema of the "values" form,

is a correct JTD schema, whereas

and

are not correct schemas, as neither

nor

are correct JTD schemas, and the value of the member named "values" must be a correct JTD
schema.

 { "values": { "type": "uint8" }}

 { "values": true }

 { "values": { "type": "foo" } }

 true

 { "type": "foo" }

2.2.8. Discriminator

The "discriminator" form is defined by the "discriminator" CDDL rule in Figure 1. The semantics
of the "discriminator" form are described in Section 3.3.8. Understanding the semantics of the
"discriminator" form will likely aid the reader in understanding why this section provides
constraints on the "discriminator" form beyond those in Figure 1.

To prevent ambiguous or unsatisfiable constraints on the "discriminator" property of a tagged
union, an additional constraint on schemas of the "discriminator" form exists. For schemas of the
"discriminator" form:

Let D be the member of the schema with the name "discriminator".
Let M be the member of the schema with the name "mapping".

If the schema is correct, then all member values S of M will be schemas of the "properties" form.
For each S:

If S has a member N whose name equals "nullable", N's value be the JSON
primitive value "true".

•
•

• MUST NOT

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 15

For each member P of S whose name equals "properties" or "optionalProperties", P's value,
which must be an object, contain any members whose name equals D's value.

Thus,

is an incorrect schema, as a member of "mapping" has a member named "nullable" whose value
is "true". This would suggest that the instance may be null. Yet, the top-level schema lacks such a
"nullable" set to "true", which would suggest that the instance in fact cannot be null. If this were
a correct JTD schema, it would be unclear which piece of information takes precedence.

JTD handles such possible ambiguity by disallowing, at the syntactic level, the possibility of
contradictory specifications of whether an instance described by a schema of the "discriminator"
form may be null. The schemas in a discriminator "mapping" cannot have "nullable" set to "true";
only the discriminator itself can use "nullable" in this way.

It also follows that

and

•
MUST NOT

 {
 "discriminator": "event_type",
 "mapping": {
 "can_the_object_be_null_or_not?": {
 "nullable": true,
 "properties": { "foo": { "type": "string" } }}
 }
 }
 }

 {
 "discriminator": "event_type",
 "mapping": {
 "is_event_type_a_string_or_a_float32?": {
 "properties": { "event_type": { "type": "float32" }}
 }
 }
 }

 {
 "discriminator": "event_type",
 "mapping": {
 "is_event_type_a_string_or_an_optional_float32?": {
 "optionalProperties": { "event_type": { "type": "float32" }}
 }
 }
 }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 16

are incorrect schemas, as "event_type" is both the value of "discriminator" and a member name
in one of the "mapping" member "properties" or "optionalProperties". This is ambiguous, because
ordinarily the "discriminator" keyword would indicate that "event_type" is expected to be a
string, but another part of the schema specifies that "event_type" is expected to be a number.

JTD handles such possible ambiguity by disallowing, at the syntactic level, the possibility of
contradictory specifications of discriminator "tags". Discriminator "tags" cannot be redefined in
other parts of the schema.

By contrast,

is a correct schema, describing a pattern of data common in JSON-based messaging systems.
Section 3.3.8 provides examples of what this schema accepts and rejects.

 {
 "discriminator": "event_type",
 "mapping": {
 "account_deleted": {
 "properties": {
 "account_id": { "type": "string" }
 }
 },
 "account_payment_plan_changed": {
 "properties": {
 "account_id": { "type": "string" },
 "payment_plan": { "enum": ["FREE", "PAID"] }
 },
 "optionalProperties": {
 "upgraded_by": { "type": "string" }
 }
 }
 }
 }

2.3. Extending JTD's Syntax
This document does not describe any extension mechanisms for JTD schema validation, which is
described in Section 3. However, schemas are defined to optionally contain a "metadata"
keyword, whose value is an arbitrary JSON object. Call the members of this object "metadata
members".

Users add metadata members to JTD schemas to convey information that is not pertinent to
validation. For example, such metadata members could provide hints to code generators or
trigger some special behavior for a library that generates user interfaces from schemas.

Users expect metadata members to be understood by other parties. As a result, if
consistent validation with other parties is a requirement, users use metadata
members to affect how schema validation, as described in Section 3, works.

MAY

SHOULD NOT
MUST NOT

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 17

Users expect metadata members to be understood by other parties and use metadata
members to affect how schema validation works, if these other parties are somehow known to
support these metadata members. For example, two parties may agree, out of band, that they will
support an extended JTD with a custom metadata member that affects validation.

MAY MAY

3. Semantics
This section describes when an instance is valid against a correct JTD schema and the error
indicators to produce when an instance is invalid.

3.1. Allowing Additional Properties
Users will have different desired behavior with respect to "unspecified" members in an instance.
For example, consider the JTD schema in Figure 2:

Some users may expect that

satisfies the schema in Figure 2. Others may disagree, as "b" is not one of the properties described
in the schema. In this document, allowing such "unspecified" members, like "b" in this example,
happens when evaluation is in "allow additional properties" mode.

Evaluation of a schema does not allow additional properties by default, but this can be
overridden by having the schema include a member named "additionalProperties", where that
member has a value of "true".

More formally, evaluation of a schema S is in "allow additional properties" mode if there exists a
member of S whose name equals "additionalProperties" and whose value is a boolean "true".
Otherwise, evaluation of S is not in "allow additional properties" mode.

See Section 3.3.6 for how allowing unknown properties affects schema evaluation, but briefly, the
schema

rejects

Figure 2: An Illustrative JTD Schema

{ "properties": { "a": { "type": "string" }}}

 {"a": "foo", "b": "bar"}

 { "properties": { "a": { "type": "string" }}}

 { "a": "foo", "b": "bar" }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 18

However, the schema

accepts

Note that "additionalProperties" does not get "inherited" by subschemas. For example, the JTD
schema

accepts

but rejects

because the "additionalProperties" at the root level does not affect the behavior of subschemas.

Note from Figure 1 that only schemas of the "properties" form may have a member named
"additionalProperties".

 {
 "additionalProperties": true,
 "properties": { "a": { "type": "string" }}
 }

 { "a": "foo", "b": "bar" }

 {
 "additionalProperties": true,
 "properties": {
 "a": {
 "properties": {
 "b": { "type": "string" }
 }
 }
 }
 }

 { "a": { "b": "c" }, "foo": "bar" }

 { "a": { "b": "c", "foo": "bar" }}

3.2. Errors
To facilitate consistent validation error handling, this document specifies a standard error
indicator format. Implementations support producing error indicators in this standard
form.

SHOULD

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 19

The standard error indicator format is a JSON array. The order of the elements of this array is not
specified. The elements of this array are JSON objects with:

A member with the name "instancePath", whose value is a JSON string encoding a JSON
Pointer. This JSON Pointer will point to the part of the instance that was rejected.
A member with the name "schemaPath", whose value is a JSON string encoding a JSON
Pointer. This JSON Pointer will point to the part of the schema that rejected the instance.

The values for "instancePath" and "schemaPath" depend on the form of the schema and are
described in detail in Section 3.3.

•

•

3.3. Forms
This section describes, for each of the eight JTD schema forms, the rules dictating whether an
instance is accepted, as well as the error indicators to produce when an instance is invalid.

The forms a correct schema may take on are formally described in Section 2.

3.3.1. Empty

The "empty" form is meant to describe instances whose values are unknown, unpredictable, or
otherwise unconstrained by the schema. The syntax of the "empty" form is described in Section
2.2.1.

If a schema is of the "empty" form, then it accepts all instances. A schema of the "empty" form
will never produce any error indicators.

3.3.2. Ref

The "ref" form is for when a schema is defined in terms of something in the "definitions" of the
root schema. The "ref" form enables schemas to be less repetitive and also enables describing
recursive structures. The syntax of the "ref" form is described in Section 2.2.2.

If a schema is of the "ref" form, then:

If the schema has a member named "nullable" whose value is the boolean "true", and the
instance is the JSON primitive value "null", then the schema accepts the instance.

Otherwise:

Let R be the value of the schema member with the name "ref".
Let B be the root schema containing the schema or the schema itself if it is a root schema.
Let D be the member of B with the name "definitions". Per Section 2, we know D exists.
Let S be the value of the member of D whose name equals R. Per Section 2.2.2, we know S
exists and is a schema.

The schema accepts the instance if and only if S accepts the instance. Otherwise, the error
indicators to return in this case are the union of the error indicators from evaluating S against
the instance.

•

◦

◦

◦

◦

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 20

For example, the schema

accepts

but rejects

with the error indicator

The schema

accepts

because the schema has a "nullable" member whose value is "true".

Note that "nullable" being "false" has no effect in any of the forms described in this document.
For example, the schema

 {
 "definitions": { "a": { "type": "float32" }},
 "ref": "a"
 }

 123

 null

 [{ "instancePath": "", "schemaPath": "/definitions/a/type" }]

 {
 "definitions": { "a": { "type": "float32" }},
 "ref": "a",
 "nullable": true
 }

 null

 {
 "definitions": { "a": { "nullable": false, "type": "float32" }},
 "ref": "a",
 "nullable": true
 }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 21

accepts

In other words, it is not the case that putting a "false" value for "nullable" will ever override a
"nullable" member in schemas of the "ref" form; it is correct, though ineffectual, to have a value
of "false" for the "nullable" member in a schema.

 null

3.3.3. Type

The "type" form is meant to describe instances whose value is a boolean, number, string, or
timestamp . The syntax of the "type" form is described in Section 2.2.3.

If a schema is of the "type" form, then:

If the schema has a member named "nullable" whose value is the boolean "true", and the
instance is the JSON primitive value "null", then the schema accepts the instance.

Otherwise:

Let T be the value of the member with the name "type". The following table describes
whether the instance is accepted, as a function of T's value:

[RFC3339]

•

If "T" equals
...

then the instance is accepted if it is ...

boolean equal to "true" or "false"

float32 a JSON number

float64 a JSON number

int8 See Table 2

uint8 See Table 2

int16 See Table 2

uint16 See Table 2

int32 See Table 2

uint32 See Table 2

string a JSON string

timestamp a JSON string that follows the standard format described in ,
as refined by

Table 1: Accepted Values for Type

[RFC3339]
Section 3.3 of [RFC4287]

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 22

https://www.rfc-editor.org/rfc/rfc4287#section-3.3

"float32" and "float64" are distinguished from each other in their intent. "float32" indicates
data intended to be processed as an IEEE 754 single-precision float, whereas "float64"
indicates data intended to be processed as an IEEE 754 double-precision float. Tools that
generate code from JTD schemas will likely produce different code for "float32" than for
"float64".

If T starts with "int" or "uint", then the instance is accepted if and only if it is a JSON number
encoding a value with zero fractional part. Depending on the value of T, this encoded number
must additionally fall within a particular range:

Note that

and

and

encode values with zero fractional part, whereas

"T" Minimum Value (Inclusive) Maximum Value (Inclusive)

int8 -128 127

uint8 0 255

int16 -32,768 32,767

uint16 0 65,535

int32 -2,147,483,648 2,147,483,647

uint32 0 4,294,967,295

Table 2: Ranges for Integer Types

 10

 10.0

 1.0e1

 10.5

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 23

encodes a number with a non-zero fractional part. Thus, the schema

accepts

and

and

but rejects

as well as

because "false" is not a number at all.

If the instance is not accepted, then the error indicator for this case shall have an "instancePath"
pointing to the instance and a "schemaPath" pointing to the schema member with the name
"type".

For example, the schema

accepts

 {"type": "int8"}

 10

 10.0

 1.0e1

 10.5

 false

 {"type": "boolean"}

 false

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 24

but rejects

The schema

accepts

and

but rejects

The schema

accepts

and

but rejects

 127

 {"type": "float32"}

 10.5

 127

 false

 {"type": "string"}

 "1985-04-12T23:20:50.52Z"

 "foo"

 false

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 25

The schema

accepts

but rejects

and

The schema

accepts

and

but rejects

In all of the examples of rejected instances given in this section, the error indicator to produce is:

 {"type": "timestamp"}

 "1985-04-12T23:20:50.52Z"

 "foo"

 false

 {"type": "boolean", "nullable": true}

 null

 false

 127

 [{ "instancePath": "", "schemaPath": "/type" }]

3.3.4. Enum

The "enum" form is meant to describe instances whose value must be one of a given set of string
values. The syntax of the "enum" form is described in Section 2.2.4.

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 26

If a schema is of the "enum" form, then:

If the schema has a member named "nullable" whose value is the boolean "true", and the
instance is the JSON primitive value "null", then the schema accepts the instance.

Otherwise:

Let E be the value of the schema member with the name "enum". The instance is accepted
if and only if it is equal to one of the elements of E.

If the instance is not accepted, then the error indicator for this case shall have an "instancePath"
pointing to the instance and a "schemaPath" pointing to the schema member with the name
"enum".

For example, the schema

accepts

and

and

but rejects all of

and

and

•

 { "enum": ["PENDING", "DONE", "CANCELED"] }

 "PENDING"

 "DONE"

 "CANCELED"

 0

 1

 2

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 27

and

and

with the error indicator

The schema

accepts

and

but rejects

and

with the error indicator

 "UNKNOWN"

 null

 [{ "instancePath": "", "schemaPath": "/enum" }]

 { "enum": ["PENDING", "DONE", "CANCELED"], "nullable": true }

 "PENDING"

 null

 1

 "UNKNOWN"

 [{ "instancePath": "", "schemaPath": "/enum" }]

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 28

3.3.5. Elements

The "elements" form is meant to describe instances that must be arrays. A further subschema
describes the elements of the array. The syntax of the "elements" form is described in Section
2.2.5.

If a schema is of the "elements" form, then:

If the schema has a member named "nullable" whose value is the boolean "true", and the
instance is the JSON primitive value "null", then the schema accepts the instance.

Otherwise:

Let S be the value of the schema member with the name "elements". The instance is
accepted if and only if all of the following are true:

The instance is an array. Otherwise, the error indicator for this case shall have an
"instancePath" pointing to the instance and a "schemaPath" pointing to the schema
member with the name "elements".

If the instance is an array, then every element of the instance must be accepted by S.
Otherwise, the error indicators for this case are the union of all the errors arising from
evaluating S against elements of the instance.

For example, the schema

accepts

and

but rejects

•

▪

▪

 {
 "elements": {
 "type": "float32"
 }
 }

 []

 [1, 2, 3]

 null

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 29

with the error indicator

and rejects

with the error indicators

The schema

accepts

and

and

but rejects

 [{ "instancePath": "", "schemaPath": "/elements" }]

 [1, 2, "foo", 3, "bar"]

 [
 { "instancePath": "/2", "schemaPath": "/elements/type" },
 { "instancePath": "/4", "schemaPath": "/elements/type" }
]

 {
 "elements": {
 "type": "float32"
 },
 "nullable": true
 }

 null

 []

 [1, 2, 3]

 [1, 2, "foo", 3, "bar"]

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 30

with the error indicators

 [
 { "instancePath": "/2", "schemaPath": "/elements/type" },
 { "instancePath": "/4", "schemaPath": "/elements/type" }
]

3.3.6. Properties

The "properties" form is meant to describe JSON objects being used as a "struct". The syntax of
the "properties" form is described in Section 2.2.6.

If a schema is of the "properties" form, then:

If the schema has a member named "nullable" whose value is the boolean "true", and the
instance is the JSON primitive value "null", then the schema accepts the instance.

Otherwise:

The instance must be an object.

Otherwise, the schema rejects the instance. The error indicator for this case shall have an
"instancePath" pointing to the instance, and a "schemaPath" pointing to the schema
member with the name "properties" if such a schema member exists; if such a member
doesn't exist, "schemaPath" shall point to the schema member with the name
"optionalProperties".

If the instance is an object, and the schema has a member named "properties", then let P
be the value of the schema member named "properties". Per Section 2.2.6, we know P is an
object. For every member name in P, a member of the same name in the instance must
exist.

Otherwise, the schema rejects the instance. The error indicator for this case shall have an
"instancePath" pointing to the instance, and a "schemaPath" pointing to the member of P
failing the requirement just described.

If the instance is an object, then let P be the value of the schema member named
"properties" (if it exists) and O be the value of the schema member named
"optionalProperties" (if it exists).

For every member I of the instance, find a member with the same name as I's in P or O. Per
Section 2.2.6, we know it is not possible for both P and O to have such a member. If the
"discriminator tag exemption" is in effect on I (see Section 3.3.8), then ignore I.

Otherwise:

If no such member in P or O exists and validation is not in "allow additional properties"
mode (see Section 3.1), then the schema rejects the instance.

•

◦

◦

◦

▪

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 31

The error indicator for this case has an "instancePath" pointing to I and a "schemaPath"
pointing to the schema.

If such a member in P or O does exist, then call this member S. If S rejects I's value, then
the schema rejects the instance.

The error indicators for this case are the union of the error indicators from evaluating S
against I's value.

If an instance is an object, it may have multiple errors arising from the second and third
bullet in the list above. In this case, the error indicators are the union of the errors.

For example, the schema

accepts

and

and

and

but rejects

▪

 {
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 }
 }

 { "a": "foo", "b": "bar" }

 { "a": "foo", "b": "bar", "c": "baz" }

 { "a": "foo", "b": "bar", "c": "baz", "d": "quux" }

 { "a": "foo", "b": "bar", "d": "quux" }

 null

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 32

with the error indicator

and rejects

with the error indicators

If instead the schema had "additionalProperties: true" but was otherwise the same:

and the instance remained the same:

 [{ "instancePath": "", "schemaPath": "/properties" }]

 { "b": 3, "c": 3, "e": 3 }

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
 { "instancePath": "/e",
 "schemaPath": "" }
]

 {
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 },
 "additionalProperties": true
 }

 { "b": 3, "c": 3, "e": 3 }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 33

then the error indicators from evaluating the instance against the schema would be:

These are the same errors as before, except the final error (associated with the additional
member named "e" in the instance) is no longer present. This is because
"additionalProperties: true" enables "allow additional properties" mode on the schema.

Finally, the schema

accepts

but rejects

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
]

 {
 "nullable": true,
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 },
 "additionalProperties": true
 }

 null

 { "b": 3, "c": 3, "e": 3 }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 34

with the error indicators

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
]

3.3.7. Values

The "values" form is meant to describe instances that are JSON objects being used as an
associative array. The syntax of the "values" form is described in Section 2.2.7.

If a schema is of the "values" form, then:

If the schema has a member named "nullable" whose value is the boolean "true", and the
instance is the JSON primitive value "null", then the schema accepts the instance.

Otherwise:

Let S be the value of the schema member with the name "values". The instance is accepted
if and only if all of the following are true:

The instance is an object. Otherwise, the error indicator for this case shall have an
"instancePath" pointing to the instance and a "schemaPath" pointing to the schema
member with the name "values".

If the instance is an object, then every member value of the instance must be accepted
by S. Otherwise, the error indicators for this case are the union of all the error indicators
arising from evaluating S against member values of the instance.

For example, the schema

accepts

•

▪

▪

 {
 "values": {
 "type": "float32"
 }
 }

 {}

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 35

and

but rejects

with the error indicator

and rejects

with the error indicators

The schema

accepts

but rejects

 {"a": 1, "b": 2}

 null

 [{ "instancePath": "", "schemaPath": "/values" }]

 { "a": 1, "b": 2, "c": "foo", "d": 3, "e": "bar" }

 [
 { "instancePath": "/c", "schemaPath": "/values/type" },
 { "instancePath": "/e", "schemaPath": "/values/type" }
]

 {
 "nullable": true,
 "values": {
 "type": "float32"
 }
 }

 null

 { "a": 1, "b": 2, "c": "foo", "d": 3, "e": "bar" }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 36

with the error indicators

 [
 { "instancePath": "/c", "schemaPath": "/values/type" },
 { "instancePath": "/e", "schemaPath": "/values/type" }
]

3.3.8. Discriminator

The "discriminator" form is meant to describe JSON objects being used in a fashion similar to a
discriminated union construct in C-like languages. The syntax of the "discriminator" form is
described in Section 2.2.8.

When a schema is of the "discriminator" form, it validates that:

the instance is an object,
the instance has a particular "tag" property,
this "tag" property's value is a string within a set of valid values, and
the instance satisfies another schema, where this other schema is chosen based on the value
of the "tag" property.

The behavior of the "discriminator" form is more complex than the other keywords. Readers
familiar with CDDL may find the final example in Appendix B helpful in understanding its
behavior. What follows in this section is a description of the "discriminator" form's behavior, as
well as some examples.

If a schema is of the "discriminator" form, then:

Let D be the schema member with the name "discriminator".
Let M be the schema member with the name "mapping".
Let I be the instance member whose name equals D's value. I may, for some rejected
instances, not exist.
Let S be the member of M whose name equals I's value. S may, for some rejected instances,
not exist.

If the schema has a member named "nullable" whose value is the boolean "true", and the
instance is the JSON primitive value "null", then the schema accepts the instance. Otherwise, the
instance is accepted if and only if all of the following are true:

The instance is an object.

Otherwise, the error indicator for this case shall have an "instancePath" pointing to the
instance and a "schemaPath" pointing to D.

If the instance is a JSON object, then I must exist.

Otherwise, the error indicator for this case shall have an "instancePath" pointing to the
instance and a "schemaPath" pointing to D.

•
•
•
•

•
•
•

•

•

•

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 37

If the instance is a JSON object and I exists, I's value must be a string.

Otherwise, the error indicator for this case shall have an "instancePath" pointing to I and a
"schemaPath" pointing to D.

If the instance is a JSON object and I exists and has a string value, then S must exist.

Otherwise, the error indicator for this case shall have an "instancePath" pointing to I and a
"schemaPath" pointing to M.

If the instance is a JSON object, I exists, and S exists, then the instance must satisfy S's value.
Per Section 2, we know S's value is a schema of the "properties" form. Apply the
"discriminator tag exemption" afforded in Section 3.3.6 to I when evaluating whether the
instance satisfies S's value.

Otherwise, the error indicators for this case shall be error indicators from evaluating S's
value against the instance, with the "discriminator tag exemption" applied to I.

The list items above are defined in a mutually exclusive way. For any given instance and schema,
exactly one of the list items above will apply.

For example, the schema

rejects

with the error indicator

(This is the case of the instance not being an object.)

•

•

•

 {
 "discriminator": "version",
 "mapping": {
 "v1": {
 "properties": {
 "a": { "type": "float32" }
 }
 },
 "v2": {
 "properties": {
 "a": { "type": "string" }
 }
 }
 }
 }

 null

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 38

Also rejected is

with the error indicator

(This is the case of I not existing.)

Also rejected is

with the error indicator

(This is the case of I existing but not having a string value.)

Also rejected is

with the error indicator

(This is the case of I existing and having a string value but S not existing.)

Also rejected is

 {}

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 { "version": 1 }

 [
 {
 "instancePath": "/version",
 "schemaPath": "/discriminator"
 }
]

 { "version": "v3" }

 [
 {
 "instancePath": "/version",
 "schemaPath": "/mapping"
 }
]

 { "version": "v2", "a": 3 }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 39

with the error indicator

(This is the case of I and S existing but the instance not satisfying S's value.)

Finally, the schema accepts

This instance is accepted even though "version" is not mentioned by "/mapping/v2/properties";
the "discriminator tag exemption" ensures that "version" is not treated as an additional property
when evaluating the instance against S's value.

By contrast, consider the same schema but with "nullable" being "true". The schema

accepts

 [
 {
 "instancePath": "/a",
 "schemaPath": "/mapping/v2/properties/a/type"
 }
]

 { "version": "v2", "a": "foo" }

 {
 "nullable": true,
 "discriminator": "version",
 "mapping": {
 "v1": {
 "properties": {
 "a": { "type": "float32" }
 }
 },
 "v2": {
 "properties": {
 "a": { "type": "string" }
 }
 }
 }
 }

 null

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 40

To further illustrate the "discriminator" form with examples, recall the JTD schema in Section
2.2.8, reproduced here:

This schema accepts

and

and

but rejects

 {
 "discriminator": "event_type",
 "mapping": {
 "account_deleted": {
 "properties": {
 "account_id": { "type": "string" }
 }
 },
 "account_payment_plan_changed": {
 "properties": {
 "account_id": { "type": "string" },
 "payment_plan": { "enum": ["FREE", "PAID"] }
 },
 "optionalProperties": {
 "upgraded_by": { "type": "string" }
 }
 }
 }
 }

 { "event_type": "account_deleted", "account_id": "abc-123" }

 {
 "event_type": "account_payment_plan_changed",
 "account_id": "abc-123",
 "payment_plan": "PAID"
 }

 {
 "event_type": "account_payment_plan_changed",
 "account_id": "abc-123",
 "payment_plan": "PAID",
 "upgraded_by": "users/mkhwarizmi"
 }

 {}

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 41

with the error indicator

and rejects

with the error indicator

and rejects

with the error indicator

and rejects

with the error indicator

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 { "event_type": "some_other_event_type" }

 [
 {
 "instancePath": "/event_type",
 "schemaPath": "/mapping"
 }
]

 { "event_type": "account_deleted" }

 [{
 "instancePath": "",
 "schemaPath": "/mapping/account_deleted/properties/account_id"
 }]

 {
 "event_type": "account_payment_plan_changed",
 "account_id": "abc-123",
 "payment_plan": "PAID",
 "xxx": "asdf"
 }

 [{
 "instancePath": "/xxx",
 "schemaPath": "/mapping/account_payment_plan_changed"
 }]

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 42

[RFC2119]

[RFC3339]

[RFC4287]

[RFC6901]

[RFC8174]

[RFC8259]

[RFC8610]

6. References

6.1. Normative References

, , ,
, , March 1997,
.

, ,
, , July 2002,

.

, , ,
, December 2005,

.

,
, , , April 2013,

.

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

,

, ,
, June 2019, .

4. IANA Considerations
This document has no IANA actions.

5. Security Considerations
Implementations of JTD will necessarily be manipulating JSON data. Therefore, the security
considerations of are all relevant here.

Implementations that evaluate user-inputted schemas implement mechanisms to detect
and abort circular references that might cause a naive implementation to go into an infinite loop.
Without such mechanisms, implementations may be vulnerable to denial-of-service attacks.

[RFC8259]

SHOULD

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Klyne, G. and C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/
rfc3339>

Nottingham, M., Ed. and R. Sayre, Ed. "The Atom Syndication Format" RFC 4287
DOI 10.17487/RFC4287 <https://www.rfc-editor.org/info/
rfc4287>

Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed. "JavaScript Object Notation
(JSON) Pointer" RFC 6901 DOI 10.17487/RFC6901 <https://www.rfc-
editor.org/info/rfc6901>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Birkholz, H., Vigano, C., and C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 43

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8610

[JSON-SCHEMA]

[OPENAPI]

[RFC7071]

[RFC7493]

6.2. Informative References

,
, ,

, 17 September 2019,
.

, , February 2020,
.

, ,
, , November 2013,

.

, , , ,
March 2015, .

Wright, A., Andrews, H., Hutton, B., and G. Dennis "JSON Schema: A Media
Type for Describing JSON Documents" Work in Progress Internet-Draft, draft-
handrews-json-schema-02 <https://tools.ietf.org/html/draft-
handrews-json-schema-02>

OpenAPI Initiative "OpenAPI Specification" <https://
spec.openapis.org/oas/v3.0.3>

Borenstein, N. and M. Kucherawy "A Media Type for Reputation Interchange"
RFC 7071 DOI 10.17487/RFC7071 <https://www.rfc-editor.org/
info/rfc7071>

Bray, T., Ed. "The I-JSON Message Format" RFC 7493 DOI 10.17487/RFC7493
<https://www.rfc-editor.org/info/rfc7493>

Appendix A. Rationale for Omitted Features
This appendix is not normative.

This section describes possible features that are intentionally left out of JSON Type Definition and
justifies why these features are omitted.

A.1. Support for 64-Bit Numbers
This document does not allow "int64" or "uint64" as values for the JTD "type" keyword (see
Sections 2.2.3 and 3.3.3). Such hypothetical "int64" or "uint64" types would behave like "int32" or
"uint32" (respectively) but with the range of values associated with 64-bit instead of 32-bit
integers. That is:

"int64" would accept numbers between -(2**63) and (2**63)-1
"uint64" would accept numbers between 0 and (2**64)-1

Users of "int64" and "uint64" would likely expect that the full range of signed or unsigned 64-bit
integers could interoperably be transmitted as JSON without loss of precision. But this
assumption is likely to be incorrect, for the reasons given in .

"int64" and "uint64" likely would have led users to falsely assume that the full range of 64-bit
integers can be interoperably processed as JSON without loss of precision. To avoid leading users
astray, JTD omits "int64" and "uint64".

•
•

Section 2.2 of [RFC7493]

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 44

https://tools.ietf.org/html/draft-handrews-json-schema-02
https://tools.ietf.org/html/draft-handrews-json-schema-02
https://spec.openapis.org/oas/v3.0.3
https://spec.openapis.org/oas/v3.0.3
https://www.rfc-editor.org/info/rfc7071
https://www.rfc-editor.org/info/rfc7071
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/rfc/rfc7493#section-2.2

A.2. Support for Non-root Definitions
This document disallows the "definitions" keyword from appearing outside of root schemas (see
Figure 1). Conceivably, this document could have instead allowed "definitions" to appear on any
schema, even non-root ones. Under this alternative design, "ref"s would resolve to a definition in
the "nearest" (i.e., most nested) schema that both contained the "ref" and had a suitably named
"definitions" member.

For instance, under this alternative approach, one could define schemas like the one in Figure 3.

If schemas like that in Figure 3 were permitted, code generation from JTD schemas would be
more difficult, and the generated code would be less useful.

Code generation would be more difficult because it would force code generators to implement a
name-mangling scheme for types generated from definitions. This additional difficulty is not
immense, but it adds complexity to an otherwise relatively trivial task.

Generated code would be less useful because generated, mangled struct names are less pithy
than human-defined struct names. For instance, the "user" definitions in Figure 3 might have
been generated into types named "PropertiesFooUser", "PropertiesBarUser", and
"PropertiesBazUser"; obtuse names like these are less useful to human-written code than names
like "User".

Figure 3: A Hypothetical Schema Had This Document Permitted Non-root Definitions. This Is Not a
Correct JTD Schema.

{
 "properties": {
 "foo": {
 "definitions": {
 "user": { "properties": { "user_id": {"type": "string" }}}
 },
 "ref": "user"
 },
 "bar": {
 "definitions": {
 "user": { "properties": { "user_id": {"type": "string" }}}
 },
 "ref": "user"
 },
 "baz": {
 "definitions": {
 "user": { "properties": { "userId": {"type": "string" }}}
 },
 "ref": "user"
 }
 }
}

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 45

Furthermore, even though "PropertiesFooUser" and "PropertiesBarUser" would be essentially
identical, they would not be interchangeable in many statically typed programming languages. A
code generator could attempt to circumvent this by deduplicating identical definitions, but then
the user might be confused as to why the subtly distinct "PropertiesBazUser", defined from a
schema allowing a property named "userId" (not "user_id"), was not deduplicated.

Because there seem to be implementation and usability challenges associated with non-root
definitions, and because it would be easier to later amend JTD to permit for non-root definitions
than to later amend JTD to prohibit them, this document does not permit non-root definitions in
JTD schemas.

Appendix B. Comparison with CDDL
This appendix is not normative.

To aid the reader familiar with CDDL, this section illustrates how JTD works by presenting JTD
schemas and CDDL schemas that accept and reject the same instances.

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

 {}

 root = any

 {
 "definitions": {
 "a": { "elements": { "ref": "b" }},
 "b": { "type": "float32" }
 },
 "elements": {
 "ref": "a"
 }
 }

 root = [* a]
 a = [* b]
 b = number

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 46

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

The JTD schemas:

and

both accept the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

 { "enum": ["PENDING", "DONE", "CANCELED"]}

 root = "PENDING" / "DONE" / "CANCELED"

 {"type": "boolean"}

 root = bool

 {"type": "float32"}

 {"type": "float64"}

 root = number

 {"type": "string"}

 root = tstr

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 47

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

The JTD schema

accepts the same instances as the CDDL rule

 {"type": "timestamp"}

 root = tdate

 { "elements": { "type": "float32" }}

 root = [* number]

 {
 "properties": {
 "a": { "type": "boolean" },
 "b": { "type": "float32" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "timestamp" }
 }
 }

 root = { a: bool, b: number, ? c: tstr, ? d: tdate }

 { "values": { "type": "float32" }}

 root = { * tstr => number }

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 48

Finally, the JTD schema

accepts the same instances as the CDDL rule

 {
 "discriminator": "a",
 "mapping": {
 "foo": {
 "properties": {
 "b": { "type": "float32" }
 }
 },
 "bar": {
 "properties": {
 "b": { "type": "string" }
 }
 }
 }
 }

 root = { a: "foo", b: number } / { a: "bar", b: tstr }

Appendix C. Example
This appendix is not normative.

As a demonstration of JTD, in Figure 4 is a JTD schema closely equivalent to the plain-English
definition "reputation-object" described in :Section 6.2.2 of [RFC7071]

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 49

https://www.rfc-editor.org/rfc/rfc7071#section-6.2.2

This schema does not enforce the requirement that "sample-size", "generated", and "expires" be
unbounded positive integers. It does not express the limitation that "rating", "confidence", and
"normal-rating" should not have more than three decimal places of precision.

The example in Figure 4 can be compared against the equivalent example in
.

Figure 4: A JTD Schema Describing "reputation-object" from Section 6.2.2 of [RFC7071]

{
 "properties": {
 "application": { "type": "string" },
 "reputons": {
 "elements": {
 "additionalProperties": true,
 "properties": {
 "rater": { "type": "string" },
 "assertion": { "type": "string" },
 "rated": { "type": "string" },
 "rating": { "type": "float32" },
 },
 "optionalProperties": {
 "confidence": { "type": "float32" },
 "normal-rating": { "type": "float32" },
 "sample-size": { "type": "float64" },
 "generated": { "type": "float64" },
 "expires": { "type": "float64" }
 }
 }
 }
 }
}

Appendix H of
[RFC8610]

Acknowledgments
 provided lots of useful guidance and feedback on JTD's design and the

structure of this document.

 suggested the addition of "nullable" and thoroughly vetted this document for
mistakes and opportunities for simplification.

 suggested the current "ref" model and the addition of "enum".
suggested extending "type" to have more support for numerical types. suggested
additional clarifying examples of how integer types work. suggested many
improvements to help make this document clearer.

Members of the IETF JSON mailing list -- in particular, , ,
, , , and -- provided lots of useful feedback.

OpenAPI's "discriminator" object inspired the "discriminator" form.
influenced various parts of JTD's early design.

Carsten Bormann

Evgeny Poberezkin

Tim Bray Anders Rundgren
James Manger

Adrian Farrel

Pete Cordell Phillip Hallam-Baker Nico
Williams John Cowan Rob Sayre Erik Wilde

[OPENAPI] [JSON-SCHEMA]

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 50

https://www.rfc-editor.org/rfc/rfc7071#section-6.2.2
https://www.rfc-editor.org/rfc/rfc8610#appendix-H

Author's Address
Ulysse Carion
Segment.io, Inc
100 California Street

, San Francisco CA 94111
United States of America

 ulysse@segment.com Email:

RFC 8927 JSON Type Definition November 2020

Carion Experimental Page 51

mailto:ulysse@segment.com

	RFC 8927
	JSON Type Definition
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Scope of Experiment

	2. Syntax
	2.1. Root vs. Non-root Schemas
	2.2. Forms
	2.2.1. Empty
	2.2.2. Ref
	2.2.3. Type
	2.2.4. Enum
	2.2.5. Elements
	2.2.6. Properties
	2.2.7. Values
	2.2.8. Discriminator

	2.3. Extending JTD's Syntax

	3. Semantics
	3.1. Allowing Additional Properties
	3.2. Errors
	3.3. Forms
	3.3.1. Empty
	3.3.2. Ref
	3.3.3. Type
	3.3.4. Enum
	3.3.5. Elements
	3.3.6. Properties
	3.3.7. Values
	3.3.8. Discriminator

	4. IANA Considerations
	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Rationale for Omitted Features
	A.1. Support for 64-Bit Numbers
	A.2. Support for Non-root Definitions
	Appendix B. Comparison with CDDL
	Appendix C. Example
	Acknowledgments
	Author's Address

 JSON Type Definition

 Segment.io, Inc

 100 California Street
 San Francisco
 CA
 94111
 United States of America

 ulysse@segment.com

 Applications
 Independent Submission
 data interchange format
 description language
 schema language
 tree grammar

 This document proposes a format, called JSON Type Definition (JTD),
 for describing the shape of JavaScript Object Notation (JSON)
 messages. Its main goals are to enable code generation from schemas as
 well as portable validation with standardized error indicators. To this
 end, JTD is intentionally limited to be no more expressive than the type
 systems of mainstream programming languages. This intentional
 limitation, as well as the decision to make JTD schemas be JSON
 documents, makes tooling atop of JTD easier to build.
 This document does not have IETF consensus and is presented here to
 facilitate experimentation with the concept of JTD.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for examination, experimental implementation, and
 evaluation.

 This document defines an Experimental Protocol for the Internet
 community. This is a contribution to the RFC Series,
 independently of any other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value
 for implementation or deployment. Documents approved for publication
 by the RFC Editor are not candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Terminology

 . Scope of Experiment

 . Syntax

 . Root vs. Non-root Schemas

 . Forms

 . Empty

 . Ref

 . Type

 . Enum

 . Elements

 . Properties

 . Values

 . Discriminator

 . Extending JTD's Syntax

 . Semantics

 . Allowing Additional Properties

 . Errors

 . Forms

 . Empty

 . Ref

 . Type

 . Enum

 . Elements

 . Properties

 . Values

 . Discriminator

 . IANA Considerations

 . Security Considerations

 . References

 . Normative References

 . Informative References

 . Rationale for Omitted Features

 . Support for 64-Bit Numbers

 . Support for Non-root Definitions

 . Comparison with CDDL

 . Example

 Acknowledgments

 Author's Address

 Introduction
 This document describes a schema language for JSON called JSON Type Definition
 (JTD).
 There exist many options for describing JSON data. JTD's niche is to
 focus on enabling code generation from schemas; to this end, JTD's
 expressiveness is intentionally limited to be no more powerful than what
 can be expressed in the type systems of mainstream programming
 languages.
 The goals of JTD are to:

 Provide an unambiguous description of the overall structure of a
	JSON document.
 Be able to describe common JSON data types and structures (that
 is, the data types and structures necessary to support most JSON
 documents and that are widely understood in an interoperable way by
 JSON implementations).
 Provide a single format that is readable and editable by both
	humans and machines and that can be embedded within other JSON
	documents. This makes JTD a convenient format for tooling to accept as
	input or produce as output.
 Enable code generation from JTD schemas. JTD schemas are meant to
	be easy to convert into data structures idiomatic to mainstream
	programming languages.
 Provide a standardized format for error indicators when data does
	not conform with a schema.

 JTD is intentionally designed as a rather minimal schema
 language. Thus, although JTD can describe some categories of JSON, it is
 not able to describe its own structure; this document uses Concise Data
 Definition Language (CDDL) to
 describe JTD's syntax. By keeping the expressiveness of the schema
 language minimal, JTD makes code generation and standardized error
 indicators easier to implement.
 Examples in this document use constructs from the C++ programming
 language. These examples are provided to aid the reader in understanding
 the principles of JTD but are not limiting in any way.
 JTD's feature set is designed to represent common patterns in
 JSON-using applications, while still having a clear correspondence to
 programming languages in widespread use. Thus, JTD supports:

 Signed and unsigned 8-, 16-, and 32-bit integers. A tool that
	converts JTD schemas into code can use "int8_t",
	"uint8_t", "int16_t", etc., or their equivalents in the
	target language, to represent these JTD types.
 A distinction between "float32" and "float64". Code
	generators can use "float" and "double", or their
	equivalents, for these JTD types.
 A "properties" form of JSON objects, corresponding to some sort of
	struct or record. The "properties" form of JSON objects is akin to a
	C++ "struct".
 A "values" form of JSON objects, corresponding to some sort of
	dictionary or associative array. The "values" form of JSON objects is
	akin to a C++ "std::map".
 A "discriminator" form of JSON objects, corresponding to a
	discriminated (or "tagged") union. The "discriminator" form of JSON
	objects is akin to a C++ "std::variant".

 The principle of common patterns in JSON is why JTD does not support
 64-bit integers, as these are usually transmitted over JSON in
 non-interoperable (i.e., ignoring the recommendations in) or mutually
 inconsistent ways. further elaborates on why JTD does not support 64-bit
 integers.
 The principle of clear correspondence to common programming languages
 is why JTD does not support, for example, a data type for integers up to
 2**53-1.
 It is expected that for many use cases, a schema language of JTD's
 expressiveness is sufficient. Where a more expressive language is
 required, alternatives exist in CDDL and others.
 This document does not have IETF consensus and is presented here to
 facilitate experimentation with the concept of JTD. The purpose of the
 experiment is to gain experience with JTD and to possibly revise this
 work accordingly. If JTD is determined to be a valuable and popular
 approach, it may be taken to the IETF for further discussion and
 revision.
 This document has the following structure.
 defines the syntax of
 JTD. describes the semantics
 of JTD; this includes determining whether some data satisfies a schema
 and what error indicators should be produced when the data is
 unsatisfactory.
 discusses why certain features are omitted from JTD. presents various JTD
 schemas and their CDDL equivalents.

 Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 The term "JSON Pointer", when it appears in this document, is to be
	understood as it is defined in .
 The terms "object", "member", "array", "number", "name", and
	"string" in this document are to be interpreted as described in .
 The term "instance", when it appears in this document, refers to a
	JSON value being validated against a JTD schema. This value can be an
	entire JSON document, or it can be a value embedded within a JSON
	document.

 Scope of Experiment
 JTD is an experiment. Participation in this experiment consists of
	using JTD to validate or document interchanged JSON messages or
	building tooling atop of JTD. Feedback on the results of this
	experiment may be emailed to the author. Participants in this
	experiment are anticipated to mostly be nodes that provide or consume
	JSON-based APIs.
 Nodes know if they are participating in the experiment if they are
	validating JSON messages against a JTD schema or if they are relying
	on another node to do so. Nodes are also participating in the
	experiment if they are running code generated from a JTD schema.
 The risk of this experiment "escaping" takes the form of a
	JTD-supporting node expecting another node, which lacks such support,
	to validate messages against some JTD schema. In such a case, the
	outcome will likely be that the nodes fail to interchange information correctly.
 This experiment will be deemed successful when JTD has been
	implemented by multiple independent parties and these parties
	successfully use JTD to facilitate information interchange within
	their internal systems or between systems operated by independent parties.
 If this experiment is deemed successful, and JTD is determined to
	be a valuable and popular approach, it may be taken to the IETF for
	further discussion and revision. One possible outcome of this
	discussion and revision could be that a working group produces a
	Standards Track specification of JTD.
 Some implementations of JTD, as well as code generators and other
	tooling related to JTD, are available at
	 .

 Syntax
 This section describes when a JSON document is a correct JTD
 schema. Because Concise Data Definition Language (CDDL) is well suited
 to the task of defining complex JSON formats, such as JTD schemas, this
 section uses CDDL to describe the format of JTD schemas.
 JTD schemas may recursively contain other schemas. In this document,
 a "root schema" is one that is not contained within another schema,
 i.e., it is "top level".
 A JTD schema is a JSON object taking on an appropriate form. JTD
 schemas may contain "additional data", discussed in . Root JTD schemas may
 optionally contain definitions (a mapping from names to schemas).
 A correct root JTD schema MUST match the "root-schema" CDDL
 rule described in this section. A correct non-root JTD schema MUST match
 the "schema" CDDL rule described in this section.

 CDDL Definition of a Schema

; root-schema is identical to schema, but additionally allows for
; definitions.
;
; definitions are prohibited from appearing on non-root schemas.
root-schema = {
 ? definitions: { * tstr => { schema}},
 schema,
}
; schema is the main CDDL rule defining a JTD schema.
;
; All JTD schemas are JSON objects taking on one of eight forms
; listed here.
schema = (
 ref //
 type //
 enum //
 elements //
 properties //
 values //
 discriminator //
 empty //
)
; shared is a CDDL rule containing properties that all eight schema
; forms share.
shared = (
 ? metadata: { * tstr => any },
 ? nullable: bool,
)
; empty describes the "empty" schema form.
empty = shared
; ref describes the "ref" schema form.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.2 describes these additional
; constraints in detail.
ref = (ref: tstr, shared)
; type describes the "type" schema form.
type = (
 type: "boolean"
 / "float32"
 / "float64"
 / "int8"
 / "uint8"
 / "int16"
 / "uint16"
 / "int32"
 / "uint32"
 / "string"
 / "timestamp",
 shared,
)
; enum describes the "enum" schema form.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.4 describes these additional
; constraints in detail.
enum = (enum: [+ tstr], shared)
; elements describes the "elements" schema form.
elements = (elements: { schema }, shared)
; properties describes the "properties" schema form.
;
; This CDDL rule is defined so that a schema of the "properties" form
; may omit a member named "properties" or a member named
; "optionalProperties", but not both.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.6 describes these additional
; constraints in detail.
properties = (with-properties // with-optional-properties)
with-properties = (
 properties: { * tstr => { schema }},
 ? optionalProperties: { * tstr => { schema }},
 ? additionalProperties: bool,
 shared,
)
with-optional-properties = (
 ? properties: { * tstr => { schema }},
 optionalProperties: { * tstr => { schema }},
 ? additionalProperties: bool,
 shared,
)
; values describes the "values" schema form.
values = (values: { schema }, shared)
; discriminator describes the "discriminator" schema form.
;
; There are additional constraints on this form that cannot be
; expressed in CDDL. Section 2.2.8 describes these additional
; constraints in detail.
discriminator = (
 discriminator: tstr,
 ; Note well: this rule is defined in terms of the "properties"
 ; CDDL rule, not the "schema" CDDL rule.
 mapping: { * tstr => { properties } }
 shared,
)

 The remainder of this section will describe constraints on JTD
 schemas that cannot be expressed in CDDL. It will also provide examples of
 valid and invalid JTD schemas.

 Root vs. Non-root Schemas
 The "root-schema" rule in permits a member named "definitions",
	but the "schema" rule does not permit for such a member. This
	means that only root (i.e., "top-level") JTD schemas can have a
	"definitions" object, and subschemas may not.
 Thus,

 { "definitions": {} }

 is a correct JTD schema, but

 {
 "definitions": {
 "foo": {
 "definitions": {}
 }
 }
 }

 is not, because subschemas (such as the object at
	"/definitions/foo") must not have a member named
	"definitions".

 Forms
 JTD schemas (i.e., JSON objects satisfying the "schema" CDDL
	rule in) must take on
	one of eight forms. These forms are defined so as to be mutually
	exclusive; a schema cannot satisfy multiple forms at once.

 Empty
 The "empty" form is defined by the "empty" CDDL
	 rule in . The semantics
	 of the "empty" form are described in .
 Despite the name "empty", schemas of the "empty" form are
	 not necessarily empty JSON objects. Like schemas of any of the eight
	 forms, schemas of the "empty" form may contain members named
	 "nullable" (whose value must be "true" or
	 "false") or "metadata" (whose value must be an object)
	 or both.
 Thus,

 {}

 and

 { "nullable": true }

 and

 { "nullable": true, "metadata": { "foo": "bar" }}

 are correct JTD schemas of the "empty" form, but

 { "nullable": "foo" }

 is not, because the value of the member named "nullable"
	 must be "true" or "false".

 Ref
 The "ref" form is defined by the "ref" CDDL rule in
	 . The semantics of the
	 "ref" form are described in .
 For a schema of the "ref" form to be correct, the value of
	 the member named "ref" must refer to one of the definitions
	 found at the root level of the schema it appears in. More formally,
	 for a schema S of the "ref" form:

 Let B be the root schema containing the schema or
	 the schema itself if it is a root schema.
 Let R be the value of the member of S with
	 the name "ref".

 If the schema is correct, then B MUST have a member
	 D with the name "definitions", and D MUST
	 contain a member whose name equals R.
 Thus,

 {
 "definitions": {
 "coordinates": {
 "properties": {
 "lat": { "type": "float32" },
 "lng": { "type": "float32" }
 }
 }
 },
 "properties": {
 "user_location": { "ref": "coordinates" },
 "server_location": { "ref": "coordinates" }
 }
 }

 is a correct JTD schema and demonstrates the point of the
	 "ref" form: to avoid redefining the same thing
	 twice. However,

 { "ref": "foo" }

 is not a correct JTD schema, as there are no top-level
	 "definitions", and so the "ref" form cannot be
	 correct. Similarly,

 { "definitions": { "foo": {}}, "ref": "bar" }

 is not a correct JTD schema, as there is no member named
	 "bar" in the top-level "definitions".

 Type
 The "type" form is defined by the "type" CDDL rule
	 in . The semantics of
	 the "type" form are described in .
 As an example of a correct JTD schema of the "type"
	 form,

 { "type": "uint8" }

 is a correct JTD schema, whereas

 { "type": true }

 and

 { "type": "foo" }

 are not correct schemas, as neither "true" nor the JSON
	 string "foo" are in the list of permitted values of the
	 "type" member described in the "type" CDDL rule in
	 .

 Enum
 The "enum" form is defined by the "enum" CDDL rule
	 in . The semantics of
	 the "enum" form are described in .
 For a schema of the "enum" form to be correct, the value
	 of the member named "enum" must be a nonempty array of
	 strings, and that array must not contain duplicate values. More
	 formally, for a schema S of the "enum" form:

 Let E be the value of the member of S with
	 name "enum".

 If the schema is correct, then there MUST NOT exist any pair of
	 elements of E that encode equal string values, where
	 string equality is defined as in .
 Thus,

 { "enum": [] }

 is not a correct JTD schema, as the value of the member named
	 "enum" must be nonempty, and

 { "enum": ["a\\b", "a\u005Cb"] }

 is not a correct JTD schema, as

 "a\\b"

 and

 "a\u005Cb"

 encode strings that are equal by the definition of string
	 equality given in . By contrast,

 { "enum": ["PENDING", "IN_PROGRESS", "DONE"]}

 is an example of a correct JTD schema of the "enum"
	 form.

 Elements
 The "elements" form is defined by the "elements"
	 CDDL rule in . The
	 semantics of the "elements" form are described in .
 As an example of a correct JTD schema of the "elements"
	 form,

 { "elements": { "type": "uint8" }}

 is a correct JTD schema, whereas

 { "elements": true }

 and

 { "elements": { "type": "foo" } }

 are not correct schemas, as neither

 true

 nor

 { "type": "foo" }

 are correct JTD schemas, and the value of the member named
	 "elements" must be a correct JTD schema.

 Properties
 The "properties" form is defined by the
	 "properties" CDDL rule in . The semantics of the "properties" form
	 are described in .
 For a schema of the "properties" form to be correct,
	 properties must either be required (i.e., in "properties") or
	 optional (i.e., in "optionalProperties"), but not both.
 More formally, if a schema has both a member named
 "properties" (with value P) and another member named
 "optionalProperties" (with value O), then O
 and P MUST NOT have any member names in
 common; that is, no member of P may have a name equal to
 the name of any member of O, under the definition of string
 equality given in .
 Thus,

 {
 "properties": { "confusing": {} },
 "optionalProperties": { "confusing": {} }
 }

 is not a correct JTD schema, as "confusing" appears in
	 both "properties" and "optionalProperties". By
	 contrast,

 {
 "properties": {
 "users": {
 "elements": {
 "properties": {
 "id": { "type": "string" },
 "name": { "type": "string" },
 "create_time": { "type": "timestamp" }
 },
 "optionalProperties": {
 "delete_time": { "type": "timestamp" }
 }
 }
 },
 "next_page_token": { "type": "string" }
 }
 }

 is a correct JTD schema of the "properties" form,
	 describing a paginated list of users and demonstrating the recursive
	 nature of the syntax of JTD schemas.

 Values
 The "values" form is defined by the "values" CDDL
	 rule in . The semantics
	 of the "values" form are described in .
 As an example of a correct JTD schema of the "values"
	 form,

 { "values": { "type": "uint8" }}

 is a correct JTD schema, whereas

 { "values": true }

 and

 { "values": { "type": "foo" } }

 are not correct schemas, as neither

 true

 nor

 { "type": "foo" }

 are correct JTD schemas, and the value of the member named
	 "values" must be a correct JTD schema.

 Discriminator
 The "discriminator" form is defined by the
	 "discriminator" CDDL rule in . The semantics of the "discriminator" form
	 are described in . Understanding the semantics of the
	 "discriminator" form will likely aid the reader in
	 understanding why this section provides constraints on the
	 "discriminator" form beyond those in .
 To prevent ambiguous or unsatisfiable constraints on the
	 "discriminator" property of a tagged union, an additional
	 constraint on schemas of the "discriminator" form exists. For
	 schemas of the "discriminator" form:

 Let D be the member of the schema with the name
	 "discriminator".
 Let M be the member of the schema with the name
	 "mapping".

 If the schema is correct, then all member values S of
	 M will be schemas of the "properties" form. For each
	 S:

 If S has a member N whose name equals
	 "nullable", N's value MUST NOT be the JSON
	 primitive value "true".
 For each member P of S whose name equals
	 "properties" or "optionalProperties", P's
	 value, which must be an object, MUST NOT contain any members whose
	 name equals D's value.

 Thus,

 {
 "discriminator": "event_type",
 "mapping": {
 "can_the_object_be_null_or_not?": {
 "nullable": true,
 "properties": { "foo": { "type": "string" } }}
 }
 }
 }

 is an incorrect schema, as a member of "mapping" has a
	 member named "nullable" whose value is "true". This
	 would suggest that the instance may be null. Yet, the top-level
	 schema lacks such a "nullable" set to "true", which
	 would suggest that the instance in fact cannot be null. If this were
	 a correct JTD schema, it would be unclear which piece of information
	 takes precedence.
 JTD handles such possible ambiguity by disallowing, at the
	 syntactic level, the possibility of contradictory specifications of
	 whether an instance described by a schema of the
	 "discriminator" form may be null. The schemas in a
	 discriminator "mapping" cannot have "nullable" set to
	 "true"; only the discriminator itself can use
	 "nullable" in this way.
 It also follows that

 {
 "discriminator": "event_type",
 "mapping": {
 "is_event_type_a_string_or_a_float32?": {
 "properties": { "event_type": { "type": "float32" }}
 }
 }
 }

 and

 {
 "discriminator": "event_type",
 "mapping": {
 "is_event_type_a_string_or_an_optional_float32?": {
 "optionalProperties": { "event_type": { "type": "float32" }}
 }
 }
 }

 are incorrect schemas, as "event_type" is both the value
	 of "discriminator" and a member name in one of the
	 "mapping" member "properties" or
	 "optionalProperties". This is ambiguous, because ordinarily
	 the "discriminator" keyword would indicate that
	 "event_type" is expected to be a string, but another part of
	 the schema specifies that "event_type" is expected to be a
	 number.
 JTD handles such possible ambiguity by disallowing, at the
	 syntactic level, the possibility of contradictory specifications of
	 discriminator "tags". Discriminator "tags" cannot be redefined in
	 other parts of the schema.
 By contrast,

 {
 "discriminator": "event_type",
 "mapping": {
 "account_deleted": {
 "properties": {
 "account_id": { "type": "string" }
 }
 },
 "account_payment_plan_changed": {
 "properties": {
 "account_id": { "type": "string" },
 "payment_plan": { "enum": ["FREE", "PAID"] }
 },
 "optionalProperties": {
 "upgraded_by": { "type": "string" }
 }
 }
 }
 }

 is a correct schema, describing a pattern of data common in
	 JSON-based messaging systems. provides
	 examples of what this schema accepts and rejects.

 Extending JTD's Syntax
 This document does not describe any extension mechanisms for JTD
	schema validation, which is described in . However, schemas are defined to optionally contain
	a "metadata" keyword, whose value is an arbitrary JSON
	object. Call the members of this object "metadata members".
 Users MAY add metadata members to JTD schemas to convey information
	that is not pertinent to validation. For example, such metadata
	members could provide hints to code generators or trigger some
	special behavior for a library that generates user interfaces from
	schemas.
 Users SHOULD NOT expect metadata members to be understood by other
	parties. As a result, if consistent validation with other parties is a
	requirement, users MUST NOT use metadata members to affect how schema
	validation, as described in , works.
 Users MAY expect metadata members to be understood by other
	parties and MAY use metadata members to affect how schema validation
	works, if these other parties are somehow known to support these
	metadata members. For example, two parties may agree, out of band,
	that they will support an extended JTD with a custom metadata member
	that affects validation.

 Semantics
 This section describes when an instance is valid against a correct
 JTD schema and the error indicators to produce when an instance is
 invalid.

 Allowing Additional Properties
 Users will have different desired behavior with respect to
	"unspecified" members in an instance. For example, consider the JTD
	schema in :

 An Illustrative JTD Schema

{ "properties": { "a": { "type": "string" }}}

 Some users may expect that

 {"a": "foo", "b": "bar"}

 satisfies the schema in . Others may disagree, as "b" is not one of
	the properties described in the schema. In this document, allowing
	such "unspecified" members, like "b" in this example, happens
	when evaluation is in "allow additional properties" mode.
 Evaluation of a schema does not allow additional properties by
 default, but this can be overridden by having the schema include a
 member named "additionalProperties", where that member has a
 value of "true".
 More formally, evaluation of a schema S is in "allow
	additional properties" mode if there exists a member of S
	whose name equals "additionalProperties" and whose value is a
	boolean "true". Otherwise, evaluation of S is not in
	"allow additional properties" mode.
 See for how
	allowing unknown properties affects schema evaluation, but briefly,
	the schema

 { "properties": { "a": { "type": "string" }}}

 rejects

 { "a": "foo", "b": "bar" }

 However, the schema

 {
 "additionalProperties": true,
 "properties": { "a": { "type": "string" }}
 }

 accepts

 { "a": "foo", "b": "bar" }

 Note that "additionalProperties" does not get "inherited" by
	subschemas. For example, the JTD schema

 {
 "additionalProperties": true,
 "properties": {
 "a": {
 "properties": {
 "b": { "type": "string" }
 }
 }
 }
 }

 accepts

 { "a": { "b": "c" }, "foo": "bar" }

 but rejects

 { "a": { "b": "c", "foo": "bar" }}

 because the "additionalProperties" at the root level does
	not affect the behavior of subschemas.
 Note from that only
	schemas of the "properties" form may have a member named
	"additionalProperties".

 Errors
 To facilitate consistent validation error handling, this document
	specifies a standard error indicator format. Implementations SHOULD
	support producing error indicators in this standard form.
 The standard error indicator format is a JSON array. The order of
	the elements of this array is not specified. The elements of this
	array are JSON objects with:

 A member with the name "instancePath", whose value is a
	 JSON string encoding a JSON Pointer. This JSON Pointer will point to
	 the part of the instance that was rejected.
 A member with the name "schemaPath", whose value is a
	 JSON string encoding a JSON Pointer. This JSON Pointer will point to
	 the part of the schema that rejected the instance.

 The values for "instancePath" and "schemaPath" depend
	on the form of the schema and are described in detail in .

 Forms
 This section describes, for each of the eight JTD schema forms, the
	rules dictating whether an instance is accepted, as well as the error
	indicators to produce when an instance is invalid.
 The forms a correct schema may take on are formally described in
	 .

 Empty
 The "empty" form is meant to describe instances whose
	 values are unknown, unpredictable, or otherwise unconstrained by the
	 schema. The syntax of the "empty" form is described in .
 If a schema is of the "empty" form, then it accepts all
	 instances. A schema of the "empty" form will never produce any error
	 indicators.

 Ref
 The "ref" form is for when a schema is defined in terms of
	 something in the "definitions" of the root schema. The "ref"
	 form enables schemas to be less repetitive and also enables
	 describing recursive structures. The syntax of the "ref" form
	 is described in .
 If a schema is of the "ref" form, then:

 If the schema has a member named "nullable" whose value
	 is the boolean "true", and the instance is the JSON
	 primitive value "null", then the schema accepts the
	 instance.
 Otherwise:

 Let R be the value of the schema member with the name
	 "ref".
 Let B be the root schema containing the schema or
	 the schema itself if it is a root schema.
 Let D be the member of B with the name

	 "definitions". Per ,
	 we know D exists.
 Let S be the value of the member of D whose
	 name equals R. Per , we know S exists and is a schema.

 The schema accepts the instance if and only if S accepts
	 the instance. Otherwise, the error indicators to return in this case
	 are the union of the error indicators from evaluating S
	 against the instance.
 For example, the schema

 {
 "definitions": { "a": { "type": "float32" }},
 "ref": "a"
 }

 accepts

 123

 but rejects

 null

 with the error indicator

 [{ "instancePath": "", "schemaPath": "/definitions/a/type" }]

 The schema

 {
 "definitions": { "a": { "type": "float32" }},
 "ref": "a",
 "nullable": true
 }

 accepts

 null

 because the schema has a "nullable" member whose value is
	 "true".
 Note that "nullable" being "false" has no effect in
	 any of the forms described in this document. For example, the
	 schema

 {
 "definitions": { "a": { "nullable": false, "type": "float32" }},
 "ref": "a",
 "nullable": true
 }

 accepts

 null

 In other words, it is not the case that putting a "false"
	 value for "nullable" will ever override a "nullable"
	 member in schemas of the "ref" form; it is correct, though
	 ineffectual, to have a value of "false" for the
	 "nullable" member in a schema.

 Type
 The "type" form is meant to describe instances whose value
	 is a boolean, number, string, or timestamp . The syntax of the "type" form is
	 described in .
 If a schema is of the "type" form, then:

 If the schema has a member named "nullable" whose value
	 is the boolean "true", and the instance is the JSON
	 primitive value "null", then the schema accepts the
	 instance.
 Otherwise:

 Let T be the value of the member with the name "type". The
following table describes whether the instance is accepted, as a function of
 T's value:

 Accepted Values for Type

 If "T" equals ...
 then the instance is accepted if it is ...

 boolean
 equal to "true" or "false"

 float32
 a JSON number

 float64
 a JSON number

 int8
 See

 uint8
 See

 int16
 See

 uint16
 See

 int32
 See

 uint32
 See

 string
 a JSON string

 timestamp
 a JSON string that follows the standard
		format described in ,
		as refined by

 "float32" and "float64" are distinguished from each
	 other in their intent. "float32" indicates data intended to
	 be processed as an IEEE 754 single-precision float, whereas
	 "float64" indicates data intended to be processed as an IEEE
	 754 double-precision float. Tools that generate code from JTD
	 schemas will likely produce different code for "float32" than
	 for "float64".

 If T starts with "int" or "uint", then the
	 instance is accepted if and only if it is a JSON number encoding a
	 value with zero fractional part. Depending on the value of
	 T, this encoded number must additionally fall within a
	 particular range:

 Ranges for Integer Types

 "T"
 Minimum Value (Inclusive)
 Maximum Value (Inclusive)

 int8
 -128
 127

 uint8
 0
 255

 int16
 -32,768
 32,767

 uint16
 0
 65,535

 int32
 -2,147,483,648
 2,147,483,647

 uint32
 0
 4,294,967,295

 Note that

 10

 and

 10.0

 and

 1.0e1

 encode values with zero fractional part, whereas

 10.5

 encodes a number with a non-zero fractional part. Thus, the schema

 {"type": "int8"}

 accepts

 10

 and

 10.0

 and

 1.0e1

 but rejects

 10.5

 as well as

 false

 because "false" is not a number at all.
 If the instance is not accepted, then the error indicator for
	 this case shall have an "instancePath" pointing to the
	 instance and a "schemaPath" pointing to the schema member
	 with the name "type".
 For example, the schema

 {"type": "boolean"}

 accepts

 false

 but rejects

 127

 The schema

 {"type": "float32"}

 accepts

 10.5

 and

 127

 but rejects

 false

 The schema

 {"type": "string"}

 accepts

 "1985-04-12T23:20:50.52Z"

 and

 "foo"

 but rejects

 false

 The schema

 {"type": "timestamp"}

 accepts

 "1985-04-12T23:20:50.52Z"

 but rejects

 "foo"

 and

 false

 The schema

 {"type": "boolean", "nullable": true}

 accepts

 null

 and

 false

 but rejects

 127

 In all of the examples of rejected instances given in this
	 section, the error indicator to produce is:

 [{ "instancePath": "", "schemaPath": "/type" }]

 Enum
 The "enum" form is meant to describe instances whose value
	 must be one of a given set of string values. The syntax of the
	 "enum" form is described in .
 If a schema is of the "enum" form, then:

 If the schema has a member named "nullable" whose value
	 is the boolean "true", and the instance is the JSON
	 primitive value "null", then the schema accepts the
	 instance.
 Otherwise:

 Let E be the value of the schema member with the name "enum". The
instance is accepted if and only if it is equal to one of the elements of
 E.

 If the instance is not accepted, then the error indicator for
	 this case shall have an "instancePath" pointing to the
	 instance and a "schemaPath" pointing to the schema member
	 with the name "enum".
 For example, the schema

 { "enum": ["PENDING", "DONE", "CANCELED"] }

 accepts

 "PENDING"

 and

 "DONE"

 and

 "CANCELED"

 but rejects all of

 0

 and

 1

 and

 2

 and

 "UNKNOWN"

 and

 null

 with the error indicator

 [{ "instancePath": "", "schemaPath": "/enum" }]

 The schema

 { "enum": ["PENDING", "DONE", "CANCELED"], "nullable": true }

 accepts

 "PENDING"

 and

 null

 but rejects

 1

 and

 "UNKNOWN"

 with the error indicator

 [{ "instancePath": "", "schemaPath": "/enum" }]

 Elements
 The "elements" form is meant to describe instances that
	 must be arrays. A further subschema describes the elements of the
	 array. The syntax of the "elements" form is described in
	 .
 If a schema is of the "elements" form, then:

 If the schema has a member named "nullable" whose value
	 is the boolean "true", and the instance is the JSON
	 primitive value "null", then the schema accepts the
	 instance.
 Otherwise:

 Let S be the value of the schema member with the
	 name "elements". The instance is accepted if and only if
	 all of the following are true:

 The instance is an array. Otherwise, the error indicator
		for this case shall have an "instancePath" pointing to
		the instance and a "schemaPath" pointing to the schema
		member with the name "elements".
 If the instance is an array, then every element of the
		instance must be accepted by S. Otherwise, the error
		indicators for this case are the union of all the errors
		arising from evaluating S against elements of the
		instance.

 For example, the schema

 {
 "elements": {
 "type": "float32"
 }
 }

 accepts

 []

 and

 [1, 2, 3]

 but rejects

 null

 with the error indicator

 [{ "instancePath": "", "schemaPath": "/elements" }]

 and rejects

 [1, 2, "foo", 3, "bar"]

 with the error indicators

 [
 { "instancePath": "/2", "schemaPath": "/elements/type" },
 { "instancePath": "/4", "schemaPath": "/elements/type" }
]

 The schema

 {
 "elements": {
 "type": "float32"
 },
 "nullable": true
 }

 accepts

 null

 and

 []

 and

 [1, 2, 3]

 but rejects

 [1, 2, "foo", 3, "bar"]

 with the error indicators

 [
 { "instancePath": "/2", "schemaPath": "/elements/type" },
 { "instancePath": "/4", "schemaPath": "/elements/type" }
]

 Properties
 The "properties" form is meant to describe JSON objects
	 being used as a "struct". The syntax of the "properties" form
	 is described in .
 If a schema is of the "properties" form, then:

 If the schema has a member named "nullable" whose value
	 is the boolean "true", and the instance is the JSON
	 primitive value "null", then the schema accepts the
	 instance.
 Otherwise:

 The instance must be an object.
 Otherwise, the schema rejects the instance. The error indicator for this
 case shall have an "instancePath" pointing to the instance,
 and a "schemaPath" pointing to the schema member with the
 name "properties" if such a schema member exists; if such a
 member doesn't exist, "schemaPath" shall point to the schema
 member with the name "optionalProperties".

 If the instance is an object, and the schema has a member
 named "properties", then let P be the value of the
 schema member named "properties". Per , we know
 P is an object. For every member name in P, a
 member of the same name in the instance must exist.
 Otherwise, the schema rejects the instance. The error indicator for this
case shall have an "instancePath" pointing to the instance, and a "schemaPath"
pointing to the member of P failing the requirement just described.

 If the instance is an object, then let P be the
	 value of the schema member named "properties" (if it
	 exists) and O be the value of the schema member named
	 "optionalProperties" (if it exists).
 For every member I of the instance, find a
	 member with the same name as I's in P or
	 O. Per , we know it is not possible for both P and
	 O to have such a member. If the "discriminator tag
	 exemption" is in effect on I (see), then
	 ignore I.
 Otherwise:

 If no such member in P or O exists and
 validation is not in "allow additional properties" mode (see
), then the schema rejects the instance.

 The error indicator for this case has an
		 "instancePath" pointing to I and a
		 "schemaPath" pointing to the schema.

 If such a member in P or O does exist,
		 then call this member S. If S rejects
		 I's value, then the schema rejects the instance.
 The error indicators for this case are the union of the
		 error indicators from evaluating S against I's value.

 If an instance is an object, it may have multiple errors arising
	 from the second and third bullet in the list above. In this case,
	 the error indicators are the union of the errors.
 For example, the schema

 {
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 }
 }

 accepts

 { "a": "foo", "b": "bar" }

 and

 { "a": "foo", "b": "bar", "c": "baz" }

 and

 { "a": "foo", "b": "bar", "c": "baz", "d": "quux" }

 and

 { "a": "foo", "b": "bar", "d": "quux" }

 but rejects

 null

 with the error indicator

 [{ "instancePath": "", "schemaPath": "/properties" }]

 and rejects

 { "b": 3, "c": 3, "e": 3 }

 with the error indicators

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
 { "instancePath": "/e",
 "schemaPath": "" }
]

 If instead the schema had "additionalProperties: true"
	 but was otherwise the same:

 {
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 },
 "additionalProperties": true
 }

 and the instance remained the same:

 { "b": 3, "c": 3, "e": 3 }

 then the error indicators from evaluating the instance against
	 the schema would be:

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
]

 These are the same errors as before, except the final error
	 (associated with the additional member named "e" in the
	 instance) is no longer present. This is because
	 "additionalProperties: true" enables "allow additional
	 properties" mode on the schema.
 Finally, the schema

 {
 "nullable": true,
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 },
 "additionalProperties": true
 }

 accepts

 null

 but rejects

 { "b": 3, "c": 3, "e": 3 }

 with the error indicators

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
]

 Values
 The "values" form is meant to describe instances that are
	 JSON objects being used as an associative array. The syntax of the
	 "values" form is described in .
 If a schema is of the "values" form, then:

 If the schema has a member named "nullable" whose value
	 is the boolean "true", and the instance is the JSON
	 primitive value "null", then the schema accepts the
	 instance.
 Otherwise:

 Let S be the value of the schema member with the
	 name "values". The instance is accepted if and only if
	 all of the following are true:

 The instance is an object. Otherwise, the error indicator
		for this case shall have an "instancePath" pointing to
		the instance and a "schemaPath" pointing to the schema
		member with the name "values".
 If the instance is an object, then every member value of
		the instance must be accepted by S. Otherwise, the
		error indicators for this case are the union of all the error
		indicators arising from evaluating S against member
		values of the instance.

 For example, the schema

 {
 "values": {
 "type": "float32"
 }
 }

 accepts

 {}

 and

 {"a": 1, "b": 2}

 but rejects

 null

 with the error indicator

 [{ "instancePath": "", "schemaPath": "/values" }]

 and rejects

 { "a": 1, "b": 2, "c": "foo", "d": 3, "e": "bar" }

 with the error indicators

 [
 { "instancePath": "/c", "schemaPath": "/values/type" },
 { "instancePath": "/e", "schemaPath": "/values/type" }
]

 The schema

 {
 "nullable": true,
 "values": {
 "type": "float32"
 }
 }

 accepts

 null

 but rejects

 { "a": 1, "b": 2, "c": "foo", "d": 3, "e": "bar" }

 with the error indicators

 [
 { "instancePath": "/c", "schemaPath": "/values/type" },
 { "instancePath": "/e", "schemaPath": "/values/type" }
]

 Discriminator
 The "discriminator" form is meant to describe JSON objects
	 being used in a fashion similar to a discriminated union construct
	 in C-like languages. The syntax of the "discriminator" form
	 is described in .
 When a schema is of the "discriminator" form, it validates that:

 the instance is an object,
 the instance has a particular "tag" property,
 this "tag" property's value is a string within a set of
	 valid values, and
 the instance satisfies another schema, where this other
	 schema is chosen based on the value of the "tag" property.

 The behavior of the "discriminator" form is more complex than the
	 other keywords. Readers familiar with CDDL may find the final
	 example in
	 helpful in understanding its behavior. What follows in this section
	 is a description of the "discriminator" form's behavior, as well as
	 some examples.
 If a schema is of the "discriminator" form, then:

 Let D be the schema member with the name
	 "discriminator".
 Let M be the schema member with the name
	 "mapping".
 Let I be the instance member whose name equals
	 D's value. I may, for some rejected instances,
	 not exist.
 Let S be the member of M whose name equals
	 I's value. S may, for some rejected instances,
	 not exist.

 If the schema has a member named "nullable" whose value is
	 the boolean "true", and the instance is the JSON primitive
	 value "null", then the schema accepts the instance. Otherwise,
	 the instance is accepted if and only if all of the following are
	 true:

 The instance is an object.
 Otherwise, the error indicator for this case shall have an
	 "instancePath" pointing to the instance and a
	 "schemaPath" pointing to D.

 If the instance is a JSON object, then I must exist.
 Otherwise, the error indicator for this case shall have an
	 "instancePath" pointing to the instance and a
	 "schemaPath" pointing to D.

 If the instance is a JSON object and I exists,
	 I's value must be a string.
 Otherwise, the error indicator for this case shall have an
	 "instancePath" pointing to I and a
	 "schemaPath" pointing to D.

 If the instance is a JSON object and I exists and
	 has a string value, then S must exist.
 Otherwise, the error indicator for this case shall have an
	 "instancePath" pointing to I and a
	 "schemaPath" pointing to M.

 If the instance is a JSON object, I exists, and
	 S exists, then the instance must satisfy S's
	 value. Per , we know S's
	 value is a schema of the "properties" form. Apply the
	 "discriminator tag exemption" afforded in to I
	 when evaluating whether the instance satisfies S's
	 value.
 Otherwise, the error indicators for this case shall be error
	 indicators from evaluating S's value against the
	 instance, with the "discriminator tag exemption" applied to
	 I.

 The list items above are defined in a mutually exclusive way. For
	 any given instance and schema, exactly one of the list items above
	 will apply.
 For example, the schema

 {
 "discriminator": "version",
 "mapping": {
 "v1": {
 "properties": {
 "a": { "type": "float32" }
 }
 },
 "v2": {
 "properties": {
 "a": { "type": "string" }
 }
 }
 }
 }

 rejects

 null

 with the error indicator

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 (This is the case of the instance not being an object.)
 Also rejected is

 {}

 with the error indicator

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 (This is the case of I not existing.)
 Also rejected is

 { "version": 1 }

 with the error indicator

 [
 {
 "instancePath": "/version",
 "schemaPath": "/discriminator"
 }
]

 (This is the case of I existing but not having a string
	 value.)
 Also rejected is

 { "version": "v3" }

 with the error indicator

 [
 {
 "instancePath": "/version",
 "schemaPath": "/mapping"
 }
]

 (This is the case of I existing and having a string
	 value but S not existing.)
 Also rejected is

 { "version": "v2", "a": 3 }

 with the error indicator

 [
 {
 "instancePath": "/a",
 "schemaPath": "/mapping/v2/properties/a/type"
 }
]

 (This is the case of I and S existing but the
	 instance not satisfying S's value.)
 Finally, the schema accepts

 { "version": "v2", "a": "foo" }

 This instance is accepted even though "version" is not
	 mentioned by "/mapping/v2/properties"; the "discriminator tag
	 exemption" ensures that "version" is not treated as an
	 additional property when evaluating the instance against S's value.
 By contrast, consider the same schema but with "nullable"
	 being "true". The schema

 {
 "nullable": true,
 "discriminator": "version",
 "mapping": {
 "v1": {
 "properties": {
 "a": { "type": "float32" }
 }
 },
 "v2": {
 "properties": {
 "a": { "type": "string" }
 }
 }
 }
 }

 accepts

 null

 To further illustrate the "discriminator" form with examples,
	 recall the JTD schema in , reproduced here:

 {
 "discriminator": "event_type",
 "mapping": {
 "account_deleted": {
 "properties": {
 "account_id": { "type": "string" }
 }
 },
 "account_payment_plan_changed": {
 "properties": {
 "account_id": { "type": "string" },
 "payment_plan": { "enum": ["FREE", "PAID"] }
 },
 "optionalProperties": {
 "upgraded_by": { "type": "string" }
 }
 }
 }
 }

 This schema accepts

 { "event_type": "account_deleted", "account_id": "abc-123" }

 and

 {
 "event_type": "account_payment_plan_changed",
 "account_id": "abc-123",
 "payment_plan": "PAID"
 }

 and

 {
 "event_type": "account_payment_plan_changed",
 "account_id": "abc-123",
 "payment_plan": "PAID",
 "upgraded_by": "users/mkhwarizmi"
 }

 but rejects

 {}

 with the error indicator

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 and rejects

 { "event_type": "some_other_event_type" }

 with the error indicator

 [
 {
 "instancePath": "/event_type",
 "schemaPath": "/mapping"
 }
]

 and rejects

 { "event_type": "account_deleted" }

 with the error indicator

 [{
 "instancePath": "",
 "schemaPath": "/mapping/account_deleted/properties/account_id"
 }]

 and rejects

 {
 "event_type": "account_payment_plan_changed",
 "account_id": "abc-123",
 "payment_plan": "PAID",
 "xxx": "asdf"
 }

 with the error indicator

 [{
 "instancePath": "/xxx",
 "schemaPath": "/mapping/account_payment_plan_changed"
 }]

 IANA Considerations
 This document has no IANA actions.

 Security Considerations
 Implementations of JTD will necessarily be manipulating JSON
 data. Therefore, the security considerations of are all relevant here.
 Implementations that evaluate user-inputted schemas SHOULD implement
 mechanisms to detect and abort circular references that might cause a
 naive implementation to go into an infinite loop. Without such
 mechanisms, implementations may be vulnerable to denial-of-service
 attacks.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Date and Time on the Internet: Timestamps

 This document defines a date and time format for use in Internet protocols that is a profile of the ISO 8601 standard for representation of dates and times using the Gregorian calendar.

 The Atom Syndication Format

 This document specifies Atom, an XML-based Web content and metadata syndication format. [STANDARDS-TRACK]

 JavaScript Object Notation (JSON) Pointer

 JSON Pointer defines a string syntax for identifying a specific value within a JavaScript Object Notation (JSON) document.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

 This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.

 Informative References

 JSON Schema: A Media Type for Describing JSON Documents

	

	

 Wellcome Sanger Institute

	

 JSON Schema defines the media type "application/schema+json", a JSON-
 based format for describing the structure of JSON data. JSON Schema
 asserts what a JSON document must look like, ways to extract
 information from it, and how to interact with it. The "application/
 schema-instance+json" media type provides additional feature-rich
 integration with "application/schema+json" beyond what can be offered
 for "application/json" documents.

 Work in Progress

 OpenAPI Specification

 OpenAPI Initiative

 A Media Type for Reputation Interchange

 This document defines the format of reputation response data ("reputons"), the media type for packaging it, and definition of a registry for the names of reputation applications and response sets.

 The I-JSON Message Format

 I-JSON (short for "Internet JSON") is a restricted profile of JSON designed to maximize interoperability and increase confidence that software can process it successfully with predictable results.

 Rationale for Omitted Features
 This appendix is not normative.
 This section describes possible features that are intentionally left
 out of JSON Type Definition and justifies why these features are
 omitted.

 Support for 64-Bit Numbers
 This document does not allow "int64" or "uint64" as
	values for the JTD "type" keyword (see Sections and). Such hypothetical
	"int64" or "uint64" types would behave like
	"int32" or "uint32" (respectively) but with the range
	of values associated with 64-bit instead of 32-bit integers. That is:

 "int64" would accept numbers between -(2**63) and
	 (2**63)-1

 "uint64" would accept numbers between 0 and (2**64)-1

 Users of "int64" and "uint64" would likely expect
	that the full range of signed or unsigned 64-bit integers could
	interoperably be transmitted as JSON without loss of precision. But
	this assumption is likely to be incorrect, for the reasons given in
	 .
 "int64" and "uint64" likely would have led users to
	falsely assume that the full range of 64-bit integers can be
	interoperably processed as JSON without loss of precision. To avoid
	leading users astray, JTD omits "int64" and
	"uint64".

 Support for Non-root Definitions
 This document disallows the "definitions" keyword from
	appearing outside of root schemas (see). Conceivably, this document could have instead
	allowed "definitions" to appear on any schema, even non-root
	ones. Under this alternative design, "ref"s would resolve to a
	definition in the "nearest" (i.e., most nested) schema that both
	contained the "ref" and had a suitably named
	"definitions" member.
 For instance, under this alternative approach, one could define
	schemas like the one in .

 A Hypothetical Schema Had This Document Permitted Non-root
	 Definitions. This Is Not a Correct JTD Schema.

{
 "properties": {
 "foo": {
 "definitions": {
 "user": { "properties": { "user_id": {"type": "string" }}}
 },
 "ref": "user"
 },
 "bar": {
 "definitions": {
 "user": { "properties": { "user_id": {"type": "string" }}}
 },
 "ref": "user"
 },
 "baz": {
 "definitions": {
 "user": { "properties": { "userId": {"type": "string" }}}
 },
 "ref": "user"
 }
 }
}

 If schemas like that in were permitted, code generation from JTD schemas
	would be more difficult, and the generated code would be less useful.
 Code generation would be more difficult because it would force code
	generators to implement a name-mangling scheme for types generated
	from definitions. This additional difficulty is not immense, but it adds
	complexity to an otherwise relatively trivial task.
 Generated code would be less useful because generated, mangled
	struct names are less pithy than human-defined struct names. For
	instance, the "user" definitions in might have been generated
	into types named "PropertiesFooUser",
	"PropertiesBarUser", and "PropertiesBazUser"; obtuse
	names like these are less useful to human-written code than names like
	"User".
 Furthermore, even though "PropertiesFooUser" and
	"PropertiesBarUser" would be essentially identical, they would
	not be interchangeable in many statically typed programming
	languages. A code generator could attempt to circumvent this by
	deduplicating identical definitions, but then the user might be
	confused as to why the subtly distinct "PropertiesBazUser",
	defined from a schema allowing a property named "userId" (not
	"user_id"), was not deduplicated.
 Because there seem to be implementation and usability challenges
	associated with non-root definitions, and because it would be easier
	to later amend JTD to permit for non-root definitions than to later
	amend JTD to prohibit them, this document does not permit non-root
	definitions in JTD schemas.

 Comparison with CDDL
 This appendix is not normative.
 To aid the reader familiar with CDDL, this section illustrates how
 JTD works by presenting JTD schemas and CDDL schemas that accept and
 reject the same instances.
 The JTD schema

 {}

 accepts the same instances as the CDDL rule

 root = any

 The JTD schema

 {
 "definitions": {
 "a": { "elements": { "ref": "b" }},
 "b": { "type": "float32" }
 },
 "elements": {
 "ref": "a"
 }
 }

 accepts the same instances as the CDDL rule

 root = [* a]
 a = [* b]
 b = number

 The JTD schema

 { "enum": ["PENDING", "DONE", "CANCELED"]}

 accepts the same instances as the CDDL rule

 root = "PENDING" / "DONE" / "CANCELED"

 The JTD schema

 {"type": "boolean"}

 accepts the same instances as the CDDL rule

 root = bool

 The JTD schemas:

 {"type": "float32"}

 and

 {"type": "float64"}

 both accept the same instances as the CDDL rule

 root = number

 The JTD schema

 {"type": "string"}

 accepts the same instances as the CDDL rule

 root = tstr

 The JTD schema

 {"type": "timestamp"}

 accepts the same instances as the CDDL rule

 root = tdate

 The JTD schema

 { "elements": { "type": "float32" }}

 accepts the same instances as the CDDL rule

 root = [* number]

 The JTD schema

 {
 "properties": {
 "a": { "type": "boolean" },
 "b": { "type": "float32" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "timestamp" }
 }
 }

 accepts the same instances as the CDDL rule

 root = { a: bool, b: number, ? c: tstr, ? d: tdate }

 The JTD schema

 { "values": { "type": "float32" }}

 accepts the same instances as the CDDL rule

 root = { * tstr => number }

 Finally, the JTD schema

 {
 "discriminator": "a",
 "mapping": {
 "foo": {
 "properties": {
 "b": { "type": "float32" }
 }
 },
 "bar": {
 "properties": {
 "b": { "type": "string" }
 }
 }
 }
 }

 accepts the same instances as the CDDL rule

 root = { a: "foo", b: number } / { a: "bar", b: tstr }

 Example
 This appendix is not normative.
 As a demonstration of JTD, in is a JTD schema closely equivalent to the
 plain-English definition "reputation-object" described in
 :

 A JTD Schema Describing "reputation-object" from

{
 "properties": {
 "application": { "type": "string" },
 "reputons": {
 "elements": {
 "additionalProperties": true,
 "properties": {
 "rater": { "type": "string" },
 "assertion": { "type": "string" },
 "rated": { "type": "string" },
 "rating": { "type": "float32" },
 },
 "optionalProperties": {
 "confidence": { "type": "float32" },
 "normal-rating": { "type": "float32" },
 "sample-size": { "type": "float64" },
 "generated": { "type": "float64" },
 "expires": { "type": "float64" }
 }
 }
 }
 }
}

 This schema does not enforce the requirement that
 "sample-size", "generated", and "expires" be
 unbounded positive integers. It does not express the limitation that
 "rating", "confidence", and "normal-rating" should
 not have more than three decimal places of precision.
 The example in can be compared against the equivalent example in
 .

 Acknowledgments
 provided lots of useful
 guidance and feedback on
 JTD's design and the structure of this document.
 suggested the addition of
 "nullable" and
 thoroughly vetted this document for mistakes and opportunities for
 simplification.
 suggested the current "ref"
 model and the addition
 of "enum". suggested
 extending "type" to
 have more support for numerical types. suggested additional
 clarifying examples of how integer types work. suggested
 many improvements to help make this document clearer.
 Members of the IETF JSON mailing list -- in particular, ,
 , , , , and -- provided lots of useful
 feedback.
 OpenAPI's "discriminator" object inspired the "discriminator" form. influenced various
 parts of JTD's early design.

 Author's Address

 Segment.io, Inc

 100 California Street
 San Francisco
 CA
 94111
 United States of America

 ulysse@segment.com

